Show simple item record

dc.contributor.authorVashishtha, Ashish
dc.contributor.authorCallaghan, Dean
dc.contributor.authorNolan, Cathal
dc.contributor.authorDeiterding, Ralf
dc.date.accessioned2021-11-10T00:15:03Z
dc.date.available2021-11-10T00:15:03Z
dc.date.copyright2021-10-08
dc.date.issued2021
dc.identifier.citationVashishtha, V., Callaghan, D., Nolan, C, & Deiterding, R. (2021). Numerical investigation of detonation propagation through small orifice holes. Transactions on Aerospace Research. DOI: https://doi.org/10.2478/tar-2021-0014en_US
dc.identifier.urihttp://research.thea.ie/handle/20.500.12065/3789
dc.description.abstractSeeking to better understand the physical phenomena underlying detonation wave propagation through small holes (especially the phenomenon of detonation re-initiation or its failure), we investigated the propagation of a detonation wave along a tube filled with a hydrogen-oxygen mixture diluted with argon, in the presence of obstacles with a small orifice hole. Numerical simulations were performed in a two-dimensional domain using adaptive mesh refinement and by solving compressible Euler equations for multiple thermally perfect species with a reactive source term. A premixed mixture of H2:O2:Ar at a ratio 2:1:7 at 10.0 kPa and 298 K was used in a 90 mm diameter tube with a detonation wave travelling from one end. We found that a single orifice placed at 200 mm from one end of the tube, with varying diameters of 6, 10, 14, 16, 18, 30, and 50 mm, showed an initial decoupling of the detonation wave into a shockwave and flame front. The detonation wave fails to propagate along the tube for orifice diameters less than λ, while it propagates by different re-initiation pathways for orifice diameters greater than λ, where λ is the cell-width for regular detonation propagation.en_US
dc.formatapplication/pdfen_US
dc.language.isoengen_US
dc.publisherSciendoen_US
dc.rightsAttribution 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.titleNumerical investigation of detonation propagation through small orifice holesen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.contributor.affiliationInstitute of Technology Carlowen_US
dc.contributor.affiliationInstitute of Technology Carlowen_US
dc.contributor.affiliationInstitute of Technology Carlowen_US
dc.contributor.affiliationUniversity of Southamptonen_US
dc.description.peerreviewyesen_US
dc.identifier.doi10.2478/tar-2021-0014en_US
dc.identifier.endpage33en_US
dc.identifier.issue264en_US
dc.identifier.orcid0000-0002-8385-3740en_US
dc.identifier.orcid0000-0002-84350-6252en_US
dc.identifier.orcid0000-0003-4748-3292en_US
dc.identifier.orcid0000-0003-4776-8183en_US
dc.identifier.startpage17en_US
dc.identifier.urlhttps://www.sciendo.com/article/10.2478/tar-2021-0014en_US
dc.identifier.volume3en_US
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessen_US
dc.subject.departmentengCORE - IT Carlowen_US
dc.type.versioninfo:eu-repo/semantics/publishedVersionen_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution 4.0 International
Except where otherwise noted, this item's license is described as Attribution 4.0 International