Show simple item record

dc.contributor.authorKumaravel, Vignesh
dc.contributor.authorBartlett, John
dc.contributor.authorPillai, Suresh C.
dc.date.accessioned2021-03-16T15:58:07Z
dc.date.available2021-03-16T15:58:07Z
dc.date.copyright2021-01-20
dc.date.issued2021
dc.identifier.citationKumaravel, V., Bartlett, J. and Pillai, S.C. (2021) "Solid Electrolytes for High‐Temperature Stable Batteries and Supercapacitors", Advanced Energy Materials, 11 (3), p.2002869. DOI: https://doi.org/10.1002/aenm.202002869en_US
dc.identifier.urihttp://research.thea.ie/handle/20.500.12065/3549
dc.description.abstractReports of recent fire accidents in the electronics and electric vehicles (EVs) industries show that thermal runaway (TR) reactions are a key consideration for the industry. Utilization of solid electrolytes (SEs) could be an important solution in to the TR issues connected to exothermic electrochemical reactions. Data on the thermal stability of modern SEs, ionic transport mechanisms, kinetics, thermal models, recent advances, challenges, and future prospects are presented in this review. Ceramic polymer nanocomposites are the most appropriate SEs for high‐temperature stable batteries (in the range of 80–200 °C). Hydrogels and ionogels can be employed as stable, flexible, and mechanically durable SEs for antifreeze (up to –50 °C) and high‐temperature (up to 200 °C) applications in supercapacitors. Besides the thermal safety features, SEs can also prolong the lifecycle of energy storage devices in next‐generation EVs, space devices, aviation gadgets, defence tools, and mobile electronics.en_US
dc.formatapplication/pdfen_US
dc.language.isoengen_US
dc.publisherWileyen_US
dc.rightsAttribution 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectElectrolytes -- Thermal propertiesen_US
dc.subjectNanomaterialsen_US
dc.subjectElectric vehiclesen_US
dc.subjectEnergy storage devicesen_US
dc.subjectFire preventionen_US
dc.titleSolid Electrolytes for High-Temperature Stable Batteries and Supercapacitors /en_US
dc.typeinfo:eu-repo/semantics/reviewen_US
dc.contributor.sponsorRenewable Engine project - European Union’s INTERREG VA Programme; Department for the Economy (NI) and Department of Jobs, Enterprise and Innovation.en_US
dc.description.peerreviewyesen_US
dc.identifier.doi10.1002/aenm.202002869en_US
dc.identifier.eissn1614-6840
dc.identifier.issue3en_US
dc.identifier.startpage2002869en_US
dc.identifier.urlhttps://onlinelibrary.wiley.com/doi/10.1002/aenm.202002869en_US
dc.identifier.volume11en_US
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessen_US
dc.subject.departmentDept of Life Sciences, ITSen_US
dc.type.versioninfo:eu-repo/semantics/publishedVersionen_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution 4.0 International
Except where otherwise noted, this item's license is described as Attribution 4.0 International