
SCHOOL OF ENGINEERING

INSTITUTE OF TECHNOLOGY. SLIGO

Evaluation of the Determinism of the

Actuator Sensor Interface (ASI) on

Programmable Logic Controllers (PLC),

Personal Computers (PC) and Real-time

Operating Systems (RTOS)

Submitted for the Degree of Master of Engineering

Research Student

Shane Loughlin BEng, MIEI, LCGI

Research Supervisors

Fergal Henry B.E. MEng Sc,

Brendan Me Cormack B.E., MS. (Mech.), Ph.D

Submitted to the Higher Education and Training Awards Council

September 2004

ABSTRACT

Evaluation of the Determinism of the Actuator Sensor Interface (ASI) on

Programmable Logic Controller (PLC), Personal Computer (PC) and Real
Time Operating Systems (RTOS)

by
Shane Loughlin BEng, MIEI, LCGI

The purpose of this study was to evaluate the determinism of the AS-lnterface
network and the 3 main families of control systems, which may use it, namely
PLC, PC and RTOS. During the course of this study the PROFIBUS and
Ethernet field level networks were also considered in order to ensure that they
would not introduce unacceptable latencies into the overall control system. This
research demonstrated that an incorrectly configured Ethernet network
introduces unacceptable variable duration latencies into the control system,
thus care must be exercised if the determinism of a control system is not to be
compromised. This study introduces a new concept of using statistics and
process capability metrics in the form of CPk values, to specify how suitable a
control system is for a given control task. The PLC systems, which were tested,
demonstrated extremely deterministic responses, but when a large number of
iterations were introduced in the user program, the mean control system latency
was much too great for an AS-I network. Thus the PLC was found to be
unsuitable for an AS-I network if a large, complex user program Is required. The
PC systems, which were tested were non-deterministic and had latencies of
variable duration. These latencies became extremely exaggerated when a
graphing ActiveX was included in the control application. These PC systems
also exhibited a non-normal frequency distribution of control system latencies,
and as such are unsuitable for implementation with an AS-I network. The RTOS
system, which was tested, overcame the problems identified with the PLC
systems and produced an extremely deterministic response, even when a large
number of iterations were introduced in the user program. The RTOS system,
which was tested, is capable of providing a suitable deterministic control system
response, even when an extremely large, complex user program is required.

ACKNOWLEDGEMENTS

A sincere thanks to Fergal Henry, Brendan McCormack , my supervisors, for

their guidance and support.

Thanks to the staff of IT, Sligo for their support, in particular Ray Tobin

Automation Technician and all the staff in the Research Department.

Thanks to the staff and management of SLControls for their support and the

provision of funding, resources, and time which were contributed to this project.

Thanks to Laurie Reynolds of the Institute of Electrical Engineers (IEE) for the

invitation to present a paper from my findings during this study at the prestigious

Control 2004 event, at the University of Bath, U.K.

As always thanks to my parents, brothers and wife Siobhan for their continuing

support.

TABLE OF CONTENTS

1 INTRODUCTION..1
2 LITERATURE REVIEW.................. 3

2.1 Determinism....................... 3
2.2 Types of Control.. 5

2.2.1 PID Control... 5
2.2.2 Discrete Control..6

2.3 Fieldbuses.. 7
2.3.1 AS-!nterface.. 9
2.3.2 PROFIBUS D P...12
2.3.3 Ethernet... 13

2.4 PLC...................... 17
2.4.1 Background.. 17
2.4.2 PLC Operation.. 18

2.5 PC (Personal Computer)...20
2.5.1 PC Hardware.. 20
2.5.2 PC Software...21

2.6 RTOS..25
3 METHODOLOGY... 30

3.1 Previous work done... 30
3.1.1 GMPTG Test Plan..30

3.2 Control System Product Selection.. 33
3.3 Control System Cost.. 34
3.4 Control System Constraints...35
3.5 Design of Test to stress Control System constraints...36

4 RESULTS...43
4.1 Collection of Initial Results...43

4.1.1 Capability Index..46
4.1.2 Relative Capability..46
4.1.3 Setting the Specification Lim its.. 49

4.2 PLC_Rockwell_AB..52
4.3 PLC_3S_IFM.. 53
4.4 PC_3S_Beckhoff..54
4.5 PC_WinNT_VB...57
4.6 RTOS_3S_ELAU..61

5 DISCUSSION..62
5.1 Determinism of the Fieldbuses..62

5.1.1 Determinism of AS-1...62
5.1.2 Determinism of Ethernet 62

5.2 PLC..63
5.3 PC..64

5.3.1 PC _3S_Beckhoff ..64
5.3.2 PC_WinNT_VB... 64

5.4 RTOS... 65
5.5 A Significant Observation..66
5.6 Further Work... 69
5.7 Things that could have been done differently.. 70

6 CONCLUSIONS.. 71
7 BIBLIOGRAPHY... 73
8 APPENDIX A - Source Code and Test Results...................................... 76

Page

LIST OF FIGURES

Figure 1: Soft real time versus Hard real time for a periodic task (Source: [5])..............................4
Figure 2: Principal Networks positioned by application (Source: [15]).. 7
Figure 3: PROFIBUS Communications Model.. 8
Figure 4: Structure of an AS-lnterface message (Source [5]).. 10
Figure 5: A flow diagram explaining CSMA/CD MAC (Source [25])..13
Figure 6: Full Duplex Operation (Source [26])...15
Figure 7: Full Duplex Flow Control Diagram..15
Figure 8: The evolution of Ethernet (Source: [25]).. 16
Figure 9: PLC Scan Cycle... 18
Figure 10: Execution time for 1k PLC commands (Source [30]).. 19
Figure 11: Moore's Law - effect on performance (Source [31])...20
Figure 12: Moore's Law - effect on cost (Source [31])..21
Figure 13: Windows NT Priority Classes (Source [33])..22
Figure 14: RTX Architecture..27
Figure 15: CoDeSys Vendor independence (Source [50]).. 28
Figure 16: GMPTG Tests Digital Output Waveform (Source:[41])...31
Figure 17: Simplified GMPTG Test Hardware (Source:[41])... 31
Figure 18: PLC & RTOS Test configuration...38
Figure 19: PC Test configuration... 39
Figure 20: Photograph of test equipment...40
Figure 21: Test code execution flowchart..42
Figure 22: Results based on GMPTG format.. 43
Figure 23: Results displayed in Graphical Format, Linear Y Axis..44
Figure 24: Results displayed in Graphical Format, Logarithmic Y Axis.. 44
Figure 25: Percentage of readings between each Standard Deviation (Source [56]).................45
Figure 26: The 3 Relative Capabilities (Source [56])..47
Figure 27: RTOS_3S_ELAU Initial Test Capability Graph... 49
Figure 28: Skewing of the Cpk...51
Figure 29: Removal of the Skewing of the Cpk.. 51
Figure 30: PLC_Rockwell_AB Min, Mean and Max Results.. 52
Figure 31: PLC_3SJFM Min, Mean and Max Results...53
Figure 32: PC_3S_Beckhoff with no Loading Min, Mean and Max Results.................................55
Figure 33: PC_3S_Beckhoff with 100% Loading Min, Mean and Max Results............................56
Figure 34: PC_WinNT_VB Mean Results without ActiveX and No Load..................................... 58
Figure 35: PC_WinNT_VB Mean Results with ActiveX and No Load.. 59
Figure 36: PC_WinNT_VB Test Results, RealTime priority without ActiveX and varying Load. 60
Figure 37: RTOS_3S_ELAU Min, Mean and Max Results.. 61
Figure 38: PC_WinNT_VB frequency distribution... 67
Figure 39: PLC_Rockwell_AB frequency distribution...68

Page

LIST OF TABLES
Page

Table 1: Main features of the AS-lnterface (Source: [6])..9
Table 2: Mapping of Win32 to NT Numeric Priorities (Source [34])...23
Table 3: Control Systems Product Selection...33
Table 4: Control Systems Development Environment Costs... 34
Table 5: Control Systems Runtime Costs.. 34
Table 6: Control System Constraints... 35
Table 7: Probability of affecting Determinism... 36
Table 8: Programming Languages... 37
Table 9: RTOS_3S_ELAU Initial Statistics..49
Table 10: PLC_Rockwell_AB Test Results..52
Table 11: PLC_3S_IFM Test Results.. 53
Table 12: PC_3S_Beckhoff with no Loading Test Results.. 55
Table 13: PC_3S_Beckhoff with 100% Loading Test Results... 56
Table 14: PC_WinNT_VB Test Results without ActiveX and no Load...58
Table 15: PC_WinNT_VB Test Results with ActiveX and no Load... 59
Table 16: PC_WinNT_VB Test Results, RealTime priority without ActiveX and varying Load.. 60
Table 17: RTOSJ3S_ELAU_Test Results...61
Table 18: Table 15 results and Sampling information................................... 66
Table 19: Table 10 results and Sampling information..68

1 INTRODUCTION

The basic aim of this study is to determine if an acceptable level of determinism

can be achieved on the Actuator Sensor Interface using the following control

platforms:

• PLC - microprocessor based programmable logic controller.

• PC - Pentium based personal computer with a Windows operating

system.

• PC - Pentium based personal computer with a Windows operating

system and Real Time Extensions (RTE’s).

• RTOS - Pentium based computer with a Real Time Operating System.

A benefit of this study will be the generation of comprehensive test data, which

can be used to evaluate the performance of each of the above platforms, and to

highlight their respective strengths and weaknesses.

The initial phase of this study, as outlined in Chapter 2, required a review of the

relevant literature in order to acquire a mastery of the principles and theory of:

• Determinism

• AS-lnterface network and relevant Field level networks

• PLC control systems

• PC based control systems

• RTOS based control systems

On completion of the above stated objectives, previous methodologies, which

have been used by other researchers, were explored in Chapter 3, and a

number of control systems were selected for test. Using the knowledge gained

from previous research suitable tests were designed to stress test each of the

control systems.

1

After the tests were designed and the control systems acquired and

programmed, the tests were run in sequence. The results were gathered, and

incorporated in Chapter 4. These results were subsequently analysed in order

to determine the strengths and weaknesses of each control system. Statistics

were explored as a methodology to provide a numerical method of quantifying

the performance of different control systems.

Chapter 5 consists of a brief discussion of all of the control systems, which were

tested, and their corresponding results. Conclusions were drawn in Chapter 6

which outline the author’s interpretation of the results as found during the

course of the study.

2

2 LITERATURE REVIEW

2A Determinism

A fundamental definition, which had to be established at the outset of this study,

is the definition of determinism. It is a word which is used very flippantly and

there are numerous different definitions [1], [2], [3], [4]. Determinism is not

suited to being described in isolation. A much better understanding of

determinism can be achieved, if it is explained in the context of why

determinism is actually required. For this purpose, this study defines

determinism as follows:

• In a real time system the correctness of the computations are not only

dependent on the logical correctness of the computations, but also upon

the time at which the result is produced

• If the timing constraints of the system are not met, system failure is said

to have occurred

• The operation of the above real time system is thus dependant on

deterministic architecture and operating system

• A deterministic architecture is an architecture where the worst-
case response time can be stated with 100% certainty

Real time systems can also be subdivided into 2 main categories, namely hard

real time systems and soft real time systems. In hard real-time systems every

event is serviced, and the task associated with that event is started and finished

within a bounded period of time. In a soft real-time system some events may be

dropped (i.e., never serviced) and the time required to service the event is not

guaranteed to be bounded [5]. Figure 1 provides a diagrammatic explanation of

the different methods in which a soft and hard real-time control system handles

periodic tasks. The horizontal arrows that lead from the sampling instant to the

real-time task are the event latency, or the delay from the time the task should

begin execution to the time it actually begins execution.

3

Figure 1: Soft real time versus Hard real time for a periodic task (Source: [5])

With a maximum number of slaves connected to an AS-I network, the worst-

case response time is guaranteed to be 5ms. If the controller introduces an

event latency, which is greater than 5ms, then there is a danger that critical

events may be missed [6].

If the controller event latency cannot be accurately stated then, even though the

AS-I is deterministic, the controller is not, and the total control system must be

described as non-deterministic.

If on the other hand the controller event latency is deterministic and the event

latency can be stated with 100% accuracy, then because it is known that AS-I is

deterministic, it can be stated that the total control system can be described as

deterministic. Unfortunately this does not mean that the total control system is

suitable for the application in question. If the event latency introduced by the

controller is much larger than the guaranteed latency of AS-I (5ms) then even

though the control system is deterministic, it may be unusable due to an

unacceptable event latency.

4

The requirements for determinism are dependant on the control function that

must be achieved. For the purpose of this study the following shall be

considered:

■ PID Control

■ Discrete Control

2.2.1 PID Control

PID Control is often cited as being the most common reason for requiring

deterministic control, due the fact that its Integral and Derivative terms should

be calculated at fixed intervals. This is a valid requirement but is often used by

control system vendors to mislead, or highlight potential benefits with their

product offering [5].

The Derivative term in a PID controller can cause instability in a process and

should only be used if required [7]. The sampling interval has a much greater

effect on the Derivative than the Integral term and the vast majority of controller

functions can be achieved using P, and PI control [8]. This is substantiated by

the fact that the Closed-Loop or On-Line tuning method proposed by Ziegler

and Nichols in 1942, even goes as far as providing formulae for the settings of

the PID terms for P, PI and PID controllers [7], [8].

For reliable PID control, the required sampling interval for the Process Variable

should be approximately r /10, were r is the time constant of the system [8].

Most of the conventional process variables such as pressure, temperature, level

and flow, which have been placed under automatic control are relatively slow,

often with r values of many seconds and even minutes [9]. Thus a sampling

interval of 100ms should be more than adequate for most PID controller

settings, while this value could be substantially increased for P and PI

controllers.

2.2 Types of Control

5

Discrete control systems are used to control processes which are digital by

nature. They may have some analogue, and even PID control, but the overall

process requires sequential control of digital actuators. The digital actuators

typically utilize electrical, pneumatic or hydraulic principles.

In the early 1980’s the only digital outputs for many of the PLC’s used relays.

The switch on time for relays introduced a latency of greater than 10ms [10].

This latency was a limiting factor for the speed of response of the process.

During the 1990’s, due to the falling cost of semiconductors, transistor based

outputs became much more widely available. At this stage it became feasible to

create designs with latencies less than 1ms [11]. This increase in speed allowed

machine designers to create machines with much faster process responses.

The process variables for the most part consist of actuator position and product

detection. The sensors for actuator position and product detection utilize a

variety of operating principles such as hall effect, reed switch, pressure switch,

photoelectric, etc. The response times of these sensors are typically less than

1ms [10], but many high performance sensors are commercially available with

response times of less than 0.01ms [10].

2.2.2 Discrete Control

6

2.3 F ie ld buses

Fieldbuses are industrial communication systems that use a range of media

such as copper cable, fibre optics or wireless, with serial bit transmission for

coupling distributed field devices (sensor, actuators, drives, transducers, etc.) to

a central control or management system. Fieldbus technology was developed in

the 1980’s with the aim of replacing the commonly used central parallel wiring

and prevailing analogue signal transmission (4-20mA or +/- 10V interface) with

digital technology [14].

Due to different industry specific demands, geographical locations, and various

market forces, several bus systems with varying properties were established in

the market.

Figure 2 provides a very good overview of the main families of fieldbus. The first

main separation is due to the type of control, which can be broadly separated

into machinery and process [15]. Within the machinery section there are 3 main

offerings, which are Modbus [16], ODVA [17], and PROFIBUS [18].

•jj
SU PERVISO RY

PROFInel

Gj
CONTROL Ethemet/lP

Foundation

Fieldbus HSE

g I/O
IDA

(Modbus)
PROFIBUS

DP
Device Net

£ DEVICE ASI
Foundation

Fieldbus H1

PROFIBUS-

PA

MACHINERY PROC ESS

TYPE O F CONTROL

Figure 2: Principal Networks positioned by application (Source: [15])

7

The initial aims of this study limited the fieldbus investigation to the AS-

Interface, which is the device level offering of the PROFIBUS organisation, as

depicted in Figure 2. Kriesel and Madelung [6] state that the main limitations of

AS-I are the small network size and limited distance that it can span (<100m).

For larger industrial applications both Field and Cell level networks are required

as outlined in Figure 3. This study would be incomplete without a brief

investigation of both the Field and Cell level networks to ensure that they do not

inadvertently introduce an event latency that has a negative effect on system

performance.

PROFIBUS DP and Ethernet, which is the underlying technology upon which

PROFInet is based, were selected as the Field and Cell level networks for

investigation. This will allow the effect of the fieldbus on determinism to be

quantified, at all layers of the manufacturing organisation, as depicted by Figure

3.

Figure 3: PROFIBUS Communications Model

8

2.3.1 AS-lnterface

The AS-lnterface is the simplest automation networking solution [19J. It offers a

low-cost solution, which is required in networking. At the same time it provides

power for the peripheral elements, transmission of data and diagnostic means

throughout the whole system starting at the simple binary sensor up to the

highest factory level.

The development of AS-lnterface has been done by eleven competitive

companies and was funded by the German government. For this development a

consortium was founded in 1990 [20] [21]. The main features of the AS-

lnterface are outlined in Table 1.

FEATURE DESCRIPTION
Data

Transfer
Single-master system with cydic polling

Addressing Slaves receive a permanent address via the master or hand-held device
Network
structure

Line, ring or tree topology

Transfer
medium

Untwisted and unshielded two-wire cable for data and power (24V DC);
typically up to 200mA per slave, up to 8A per bus

Cable length 100m max. scaleable using repeaters
Number of

slaves
31 AS-lnterface slaves max. per network

Number of
sensors and

actuators

Up to 4 sensors and 4 aduators per slave; maximum 248 binary participants
per network

Telegrams
Telegram from the master containing the address; dired answer from the
slave (single master operation)

Net data 4 bits master to slave and 4 bits slave to master
Cyde time

with 31
slaves

5ms (decreases with decreased number of slaves)

Error
detection

Effedive detedion and retransmission of incorred telegram

Device
interface of

the AS-
lnterface

chip

4 configurable inputs/outputs for data, together with 4 parameter outputs and
2 controller outputs (strobe)

Tasks of the
master

Management
functions of
the master

Cydic polling of all slaves; cydic data transmission to and from the control
unit (PLC. PC)
Initialization of the network, identification of the slaves, acydic assignment of
parameter values to the slaves, diagnostics of data transfer and slaves, error
reports to the controller, addressing of replaced slaves ;

Table 1: Main features of the AS-lnterface (Source: {6])

9

The AS-lnterface replaces the complicated cable tree required by conventional

wiring techniques by connecting all peripheral components using a single cable.

Thus cabling expenditure is greatly reduced. One polling master and the

respective slaves replace I/O cards. It is important to note that the AS-lnterface,

does not link complex devices such as control units and subsystems. Rather it

links, normally under extreme environmental conditions, simple devices that

often only have a data demand of 1 bit.

The AS-lnterface uses master-slave-access with cyclic polling. In this procedure

the master sends a request containing a certain slave address, and the polled

slave with the address replies within the specified time, as outlined in Figure 4.

From the point of view of the transmission system only one master and only one

of the 32 slaves will participate in the data communications at a time. The AS-

lnterface data packets are short, simply structured and have a fixed length. Four

useable data bits are exchanged between a master and every individual slave

during one cycle. Therefore the data in both the master and the slave is

updated after one cycle. The process image is exchanged between the master

and the control unit via dual ported memory. Thus the data is available in the

control unit after one cycle.

10

From the point of view of determinism, one of the major advantages of the

structure of the AS-lnterface message is that the cycle time of the network

automatically adapts to the number of connected slaves, in a clearly defined

and measurable manner. If only 6 slaves are connected to the system a cycle

time of approximately 1 ms is achieved. In the case of a maximum configuration

with 31 slaves it will be 5ms [6]. The master can also repeat individual

messages when it receives no reply or no valid reply. It is not necessary to

complete the full cycle.

The above polling method (cyclic polling), even under extreme fault conditions,

is strictly deterministic. After Sms new sensor data will be available to the

control unit and new data will be transmitted from the control unit to the

actuators. This satisfies the demand that most PLC systems have during real

time processing [6J.

On large automation systems, the AS-lnterface limitation of 31 slaves with 4 bits

of input data and 4 bits of output data cannot cater for the total input and output

requirements. Another limitation of the AS-lnterface is that the maximum

network length of 100m can create an unacceptable constraint. As discussed

previously a common method of overcoming the above constraints is to

introduce a higher-level fieldbus network between the controller and more than

one AS-lnterface master. It is extremely important that such a fieldbus network

is implemented correctly in order to ensure that the determinism of the control

system as a whole is not compromised.

11

2.3.2 PROFIBUS DP

An extremely common method of expanding an AS-I network, with regard to

both distance and total I/O count is to implement a field level network, such as

Proibus DP as outlined in Figure 3.

PROFIBUS DP like the AS-lnterface was designed to be deterministic.

PROFIBUS DP also uses a polling mechanism between master and slave. The

time it takes a slave to respond to a message from the master is the reaction

time. Even if a PROFIBUS DP system receives many I/O signal changes at

some point in time, there is no change in reaction time. Because ProfibusDP is

deterministic, the reaction time can be accurately calculated [23].

A simplified calculation of system reaction time is available for a PROFIBUS DP

whereby the reaction time is derived from the following parameters:

■ TSDR (Station Reaction Time)

■ The Transmission (Baud) Rate

■ The Net Data Length specified

■ Min_Slave_lnterval (min time between two slave polling cycles)

A field level network consisting of a PROFIBUS DP Master and 31 PROFIBUS

DP Slaves can achieve an update time of 1 ms for the transmission of 8 bytes of

input data and 8 bytes of output data, which is sufficient for 31 separate

PROFIBUS DP to AS-I converters and 31 AS-I networks [24]. This clearly

demonstrates that a PROFIBUS DP field level network will not introduce any

significant latency to the control system.

12

2.3.3 Ethernet

Ethernet is by far the most widely used Local Area Networking (LAN)

technology in the world today. In total, Ethernet outsells all other LAN

technologies by a very large margin [25]. It is becoming increasingly common

for Ethernet to be used on the factory floor and all indications appear that it is

destined to become the preferred high-level fieldbus network.

Our discussion would not be complete, unless we investigated Ethernet to

ensure that it can be configured in such a manner as to have a negligible effect

on the determinism of the complete system.

The Ethernet Media Access Control (MAC) technology is called Carrier Sense

Multiple Access with Collision Detection (CSMA/CD). CSMA/CD is the

shorthand version for about seven different steps that make up an Ethernet

transmission [25]. These steps are depicted in Figure 5.

Station is Ready
to Send

Channel Busy New Attempt
(3)

Wait according to
Backoff Strategy

(6)
X

Channel Free
(2)

Transmit Data and
Sense Channel

(<)

Transmit
Collision Detected ► Jam Signal

(5)

▼

Figure 5: A flow diagram explaining CSMA/CD MAC (Source [25])

13

By definition a shared -rriejdia LAN transmission method also implies half

duplex. Half duplex means that a station is either transmitting or receiving, but

not both at the same time. This is because in CSMA/CD a station has to listen

to see if a channel is available, and only if it is, can a station start transmitting.

When one station is transmitting, all others are listening. Thus it is an either-or

situation for all stations on the LAN.

CSMA/CD MAC provided a very efficient method of operation for the coaxial

cable upon which Ethernet was founded. Sharing the transmission media also

brought with it collisions. Collisions are a very effective and efficient method of

preventing overload, but are capable of producing unacceptable delays in a

situation where determinism is important.

In the early 1990’s the following advances were made:

• 10BASE-T wiring was introduced and offered the capability for separate

transmit and receive data paths. Before the arrival of 10BASE-T wiring,

coaxial cable didn’t offer this capability. The use of only one electrical

(coax) wire made simultaneous transmission and reception impossible

• The emergence of multipoint Ethernet bridges or switches meant that the

physical media were no longer being shared by multiple users but were

increasingly being used to connect 2 switches or a switch and a Network

Interface Card (NIC) together in a point-to-point manner

In 1992, Kalpana seized this opportunity so that they could effectively double

the speed of Ethernet by using full duplex transmission. Full duplex

transmission means that a station can simultaneously transmit and receive.

Kalpana started working with many other vendors to establish a de facto

industry standard for full-duplex Ethernet over Unshielded Twisted Pair (UTP)

wire.

14

The ability of full-duplex to simultaneously transmit and receive data is very

clearly explained by Spurgeon [26], and is shown diagrammatically in Figure 6.

Figure 6: Full Duplex Operation (Source [26])

The CSMA/CD algorithm used on shared half-duplex Ethernet channels is not

used on a link operating in full-duplex mode. A station on a full-duplex link

sends whenever it likes, ignoring the carrier sense (CS). There is no Multiple

Access (MA) since there is only one station at ether end of the link and the

Ethernet channel between them is not the subject of access contention by

multiple stations. Since there is no access contention, there will be no collisions

either, so the station at each end of the link is free to ignore Collision Detection

(CD) [26]. Thus the flow control diagram of full-duplex Ethernet is greatly

simplified as depicted in Figure 7.

Station is Ready
to Send

▼
Transmit Data

T

Figure 7: Full Duplex Flow Control Diagram

Breyer & Riley [25] provide an extremely concise diagram outlining the evolution

of Ethernet as depicted in Figure 8.

15

Shared-rr.edia haH-dup'ox Ethernet with collisions pfesent

Sharedmedia haif-duptex Ethernet with dedicated RX^TX ca&:e$
with co t& on s present

D«dic«l«d m ca a hall-duplex Ethotnot with t c 'H o r i prosent.

Dedcated media fut!-dup'ex Ether oat (conbicfvfree).

Figure 8: The evolution of Ethernet (Source: [25])

Thus the investigation of Ethernet can be summarised by stating that traditional

half-duplex CSMA/CD Ethernet has inherent design issues that prevent it from

providing a deterministic response. Emerging solutions for real-time Ethernet

such as PROFInet-IRT V3 and EtherNet/IP combined with full-duplex

configurations, facilitates the design of deterministic Ethernet networks, which

are capable of providing similar and in some cases even better performance

than a PROFIBUS DP fieldbus [24].

16

2.4 PLC

2.4.1 Background

Machine control was first achieved using electromechanical relays in the mid

1900’s. Relay control provided reliable control for more than 70 years, with

virtually no competition. In the early 1970’s enormous advances were made in

digital electronics. These advances together with the development of

microprocessor based Programmable Logic Controllers (PLC’s) meant that

relay control systems were faced with true competition. A major advantage of

the PLC, over Digital Logic was that it featured a ladder programming language

modelled on relay circuitry. This eased the transition for maintenance personnel

and played a very important role in ensuring that PLC’s emerged as the best

overall choice for a control system, unless the ultimate in operating speed,

electrical noise immunity, or failsafe operation were required [27].

Throughout the 1970’s and 1980’s PLC’s evolved very quickly, from simple

discrete controllers, to much more powerful controllers capable of controlling

complex processes. As analogue to digital conversion techniques became more

and more sophisticated, it became possible to replace analogue control

systems with PLC’s capable of performing full Proportional, Integral and

Derivative (PID) control. The mathematical capabilities of the PLC increased

also and both Integer and Floating Point mathematical instructions became

available, and some of the larger processors were even capable of handling

complex ASCII strings. Examples of the complexity of the instruction set can be

found in [28] & [29].

17

A PLC executes in a cyclic manner as outlined in Figure 9. The length of time

to read the inputs and update the outputs is normally relatively constant, after

the device has been commissioned. The “Operate Program" duration is

variable, depending on the code that has to be executed.

2.4.2 PLC Operation

e
« E 0» • B «ft

%» * 2
UO CL

¡1
5 o

</>
=

• £ cc £

c 1
i f
0 a. 5 5

PLC c y c k PLC cycle t - ^

Figure 9: PLC Scan Cycle

On examination of the Instruction Set of a typical legacy non IEC61131-3

compliant PLC [28], it can be clearly demonstrated that the Instruction

Execution Timing depends on:

• Whether the instruction is True or False

• Whether the instruction refers to an Integer or Real

• Where the Address is located in Data Memory

• The number of elements acted on per scan

Another noteworthy point is that the more complicated mathematical

instructions are extremely slow to execute [28]. It is significant to note that one

execution of a TAN function takes almost 0.5ms. In fact the True Execution

Time of the TAN function can be as high as 600 times the False Execution

Time. It is also important to note that there are program flow instructions such

as Conditional Jumps, which the programmer can use.

18

Thus the length of time taken to scan the code can change dynamically,

depending on the logic of the program. Such variation in execution time would

undoubtedly seriously affect the determinism of the control system.

Figure 10 demonstrates that 1,000 (1k) PLC commands can execute in 15 ps

on a Pentium III 600 PC processor. This is more than 4 times faster than a fast

PLC. but it is more than 50 times faster than a standard PLC [30J.

p g g A Execution tim* ps

1000-

Figure 10: Execution time for 1k PLC commands (Source [30])

Even though conventional thinking suggests that the PLC must be deterministic

due to its extremely large installed base on real-time control systems, it is

extremely likely that the limitations of its processing power and instruction set

could result in situations where the programmer compromises the determinism

of the control system by the instructions that are used, and indeed the coding

practices used.

19

2.5 PC (Personal Computer)

2.5.1 PC Hardware

Gordon Moore, one of the founders of Intel, wrote an article for the 35^

anniversary issue of Electronics magazine published in April 1965 [31]. Moore

had been asked to describe the future of electronics. His research team had

recently doubled the capacity of a silicon chip. Balancing innovation and

economic factors. Moore extrapolated that the number of transistors on a silicon

chip could double each 18 months for the next decade. Professor Carver Mead

of Cal Tech, later dubbed the prediction as “Moore’s Law".

Moore's Law is also used to describe the law's results: the continuing

exponential growth of digital capability and improved price/performance. Over

the following 30 years. Moore's Law was proven to be accurate and has

resulted in dramatic increases in performance, as depicted by Figure 11, while

achieving enormous cost reductions, as depicted by Figure 12, on the PC

platform.

1®72

**0

Figure 11: Moore's Law - effect on performance (Source [31])

20

Figure 12: Moore's Law - effect on cost (Source [31])

Moore’s Law has continued to be obeyed in the period 2000 - 2004, which is

not contained in Figure 11 and Figure 12.

2.5.2 PC Software

From the start Microsoft have dominated the PC operating system software

market. The Microsoft operating system product families fall into 2 major

groups, which are:

• Descended from DOS (Windows 1.0-3.11. Windows 9x, Windows ME)

• Descended from Windows NT (Windows 2000, Windows XP)

Windows 1.0-3.11 and Windows 9x are not suitable for use in Real Time

Systems [32]. But some vendors such as Rockwell [9] provide automation

systems based on Windows NT, therefore this study would not be complete

without a detailed examination of Windows NT.

21

2.5.2.1 Windows NT

Within Windows NT and operating systems descended from Windows NT (e.g.

Windows 2000 and Windows XP), user applications are defined as processes.

Windows NT is a pre-emptive operating system that allows multiple processes

(applications) to run at the same time. A process has a number of properties

associated with it. For real time applications, one of the most important

properties is the priority class (such as real-time) that define the basic priority at

which the application will run. The priority model within Windows NT indudes 32

priority levels, of which 16 are reserved for the operating system and real-time

processes [33].

Each process maintains a private address space to ensure that it will not

interfere with other processes, and each process has a base priority class. As

shown in Figure 13 below, real-time applications can run with a base priority

class of 31 (highest priority), 24 and 16. Typically real-time applications can run

with a base priority of 24.

Priority Spectrum
Real-tBBB time-crkka] Real-time

classes
ReaLttae a tra u l

%item W eb lier i f « ,
Conor, caclr tWfclwg,
fife tyt., t i f re n

1-fW-l rWHh

Figure 13: Windows NT Priority Classes (Source [33])

22

A program is a static sequence of instructions, whereas a process is a set of

resources reserved for the thread(s) that execute the program. A thread is the

entity within a process that Windows NT schedules for execution. Without it the

process’s program can’t run [34]. Thus each process must have one or more

threads associated with it, within the same address space; there each thread

represents an independent portion of that process. These threads inherit the

properties associated with each process, including the priority level.

To the Win32 Application Programming Interface (API), each thread has a

priority based on a combination of its process priority class and its relative

thread priority. The mapping from the Win32 priority to the internal Windows NT

numeric priority is shown in Table 2 [34].

The priorities shown in Table 2 list the base priority of a thread, which is derived

from the process’ priority class. The thread’s priority can be programmatically

changed, within defined limits, by calling the function SetThreadPriority [34].

However, a thread’s priority can change as the thread executes. The system

can boost a thread’s priority higher as time goes on and reduce the priority back

down to the base, though windows NT will never reduce a thread lower that its

base priority.

For example, a process running at real-time class 24 can have threads that run

anywhere between classes 26-22, depending on their own independent priority.

These threads will always stay within the real-time priority class.

" ‘ Win32 Process PriorityClasses
Realtime J High Normal Idle

Timé Critical j 31 15 15 15
Highest - 26 15 10 6

.Win32 , Above normal. 25 14 9 5

. Thread , . Normal . 24 13 8 4
Priorities Below normal 23 12 7 3

Lowest 22 11 6 2
idle - 16 1 1 1

Table 2: Mapping of Win32 to NT Numeric Priorities (Source [34])

23

According to Microsoft; an application that j s running the Real-Time priority

class (a base priority of 16) can potentially take so much of the available CPU

resources that no resources will be available for other processes or threads.

This includes a possible “starving” of both the mouse and the keyboard. This

implies that the mouse may become unavailable to click another application to

execute an action. It also implies that the keyboard may not respond if you try to

press CTRL+ESC to get the Task List and cancel the application. Microsoft

even go so far as to say:

“Although Windows NT has good real-time capabilities; it is not designed to
compete with a special purpose real-time system, if you need such a system,
obtain the special real-time hardware and supporting operating system” [36].

In 1998 Rockwell Automation provided a very comprehensive white paper

outlining why they chose to use the Windows NT Operating Systems without

real time extendions such as Radisys InTime, VenturCom RTX and

Hyperkemel, for their PC-architecture-based soft control [9]. This is a very

interesting development, because no other PLC manufacturer took this stance,

and it directly contradicts Microsoft’s recommendations.

Rockwell Automation claims that running soft control in the Real Time (RT)

class prevents other applications from “severely” affecting determinism. This

statement is based on the assumption that lower priority applications will not

cause Ring 0 device drivers to perform operations. It is extremely likely that

lower priority applications will require device drivers to perform operations such

as reading and writhing to disk, network communications, audio, etc. [37].

Rockwell warn that if the periodic tasks are set for very short time periods, a

situation can occur where the keyboard and mouse are not recognised by

Windows because Windows is spending all of its time executing the real-time

tasks of their software. This would appear to point directly to the warning given

by Microsoft stating that applications running RealTime priority class can

actually cause a potential “starving” of both the mouse and keyboard [38].

24

In the early 1990’s a number of RTOS’s were commercially available. At that

time one of the largest purchasers of control systems was the General Motor

Power Train Group (GMPTG). At this time GMPTG took a strategic decision to

drive PLC providers to move to Open Control Systems (OCS) as outlined

below:

2.6 RTOS

"Historically, divisions that are now parts of GM Powertrain Group (GMPT) have been
considered to be leaders and innovators in the field of industrial control. The basic
architecture of a Programmable Logic Controller (PLC) was described by a group of
GM engineers in the early sixties. ” [39]

“Currently, most CNC, motion and discrete control applications within the automotive
industry incorporate proprietary control technologies. There are difficulties associated
with using proprietary technologies such as vendor-dictated pricing structures, non
common interfaces, higher integration costs and the requirement of specific training for
troubleshooting and operation. Controller elements, a modularity concept, and higher-
level requirements for various elements of an open modular architecture controller are
stated to convey the definitions of open, architecture controller in the context of
automotive applications. Satisfying these requirements will enable an open, modular
controller to be economicalmaintainable, open, modular and scaleable thus meet
the manufacturing needs in the automotive industry.” [40]

GMPTG ruled out the use of proprietary RTOS’s and endorsed the development

of commercially available Real Time Extensions (RTE’s) to augment the

Microsoft Windows NT Operating system [41]. GMPTG conducted a series of

exhaustive tests on the 3 main commercially available RTE’s, which were

HyperKernei from Imagination Systems Inc., INtime from RadiSys and RTX

from VenturCom. GMPTG concluded that Windows NT in isolation should not

be used for control, but that any of the above RTE’s used correctly with

Windows NT is capable of providing a deterministic OCS capable of providing

hard real time control [41].

25

In the late 1990’s the RTE providers did a lot of further work [42], [43], [44], [45],

[46], [47], [48], but the majority of the tests that were carried out were subsets of

the tests carried out by the GMPTG [41]. A lot of the resulting papers were

extremely commercially oriented, and were specifically aimed at achieving

credibility for a particular suppliers product offering.

In 1998 Rockwell Automation produced a white paper, which directly

contradicted the use of RTE’s and attempted to discredit the work done by the

RTE providers by stating [9]:

“Several vendors opted to collect one data point on the Windows NT operating
system, present it out of context, and then claim that it was unacceptable for
control. These vendors have committed to a path of proprietary extensions that will
limit their ability to adopt standard Microsoft technologies

This paper very clearly outlines some of the potential dangers of proprietary

extensions, at the time that it was published (1998), but over the past 5 years,

VentureCom [49], and others, have demonstrated that many of Rockwell

Automation’s causes for concern were not justified, and VentureCom currently

provide comprehensive support for all of Microsoft’s recent Operating Systems

including Windows NT, 2000 and XP.

26

VentureCom's RTX product is implemented as a collection of libraries (both

static and dynamic), a real-time subsystem (RTSS) realised as a Windows XP

kernel device driver, and an extended Hardware Abstraction Layer (HAL) as

outlined in Figure 14. The subsystem implements the real-time objects and

scheduler. The libraries provide access to the subsystem via a real-time

Application Programming Interface (API), known as RtWinAPI. RtWinAPI

provides access to these objects. The RTWinAPI can be called from within the

standard Win32 environment as well as from within RTSS. Using RtWinAPI

from Win32 does not provide the determinism available with RTSS, but it does

allow for much of the application development to be done in the Win32

environment. All that is required to convert a Win32 program to an RTSS

program is to re-link with a different set of libraries [49].

Figure 14: RTX Architecture

Architectures such as the RTX allow Windows operating systems (based on

Windows NT) and a real time operating system, based on RTE's to co-exist on

one platform.

27

Even though GMPTG attempted to drive the development of the OCS onto the

Windows NT platform augmented with RTE’s, there are many other platforms,

which cannot be omitted from this study.

An alternative methodology, to gain the business benefits outlined by the

GMPTG was supplied by a German company called 3S [50]. 3S created a

programming tool for industrial controllers and PLC components based on the

international standard IEC 61131-3 [51], called CoDeSys (short for Controller

Development System). This is an innovative approach because the CoDeSys

programming environment is a platform and manufacturer independent

programming system. As outlined in Figure 15, CoDeSys allows the

programmer to program different PLC's from different manufacturers in the

same environment. This functionality allows code portability across multiple

platforms, and directly challenges the monopolistic market of the PLC

manufacturers as defined by ARC [52].

Controller A SoftPLC B Drive C Intell. Clamp
Manufacturer 1 Manufacturer 2 Manufacturers Manufacturer 4
MC 69332/OS9 Pentium ll/NT 3ABeOC167 8051

Figure 15: CoDeSys Vendor independence (Source [50])

28

CoDeSys SP is a runtime kernel for PLC’s. There are 4 different types of

CoDeSys SP, but the most powerful is CoDeSys SP 32 Bit Full (CSP32F) for

32-bit processors with multi tasking OS (VxWorks, WinCE & Linux). It is worth

noting that the CSP32F can be implemented on the Motorola MC680x0,

Motorola MC683xx, Motorola ColdFire, Intel 80x86, Intel Pentium x

ARM and Power PC processor families.

CoDeSys also supports implementations on Windows operating systems.

CoDeSys SP RTE is a SoftPLC, which runs under Windows. It uses a standard

industrial PC with the Windows NT, 2000 or XP operating system. The real time

kernel (based on VXWorks) guarantees a deterministic behaviour with jitter in

the millisecond (ms) region.

3S created an Automation Alliance of independent automation vendors [53],

who have developed OCS based on their products. At present there are more

than 29 independent vendors with product offerings based on the SP, and more

than 21 vendors with product offerings based on the SP RTE. This represents

an extremely large number of product offerings, on both RTOS, and Windows

operating systems with RTE’s, which are relevant to this study.

29

3 METHODOLOGY

3.1 Previous work done

Many of the papers produced in the late 1990’s [42], [43], [44], [45], [46], [47],

[48], are too commercially focussed to provide the basis for a study such as

this, but the original study carried out by GMPTG [41] remains a valid study with

independent test plans.

3.1.1 GMPTG Test Plan

3.1.1.1 Overall Aim

The overall aim of the GMPTG tests [41] was to determine if hard real-time

event handling could be achieved on the Windows NT operating system with

Real Time Extensions (RTE’s).

If any substantial event latencies (the delay from the time the task should begin

execution to the time it actually begins execution) are introduced into the control

system then it is only capable of providing soft real-time event handling, as

outlined in Figure 1, and is not capable of providing a deterministic response. It

is important to note that some latency is quite acceptable, and in fact all control

systems demonstrate some form of event latency. Only when the latency

exceeds pre-defined limits, can the system be deemed to be incapable of hard

real-time event handling.

30

The GMPTG engineers created an application, which was installed on the

system under test. The application toggled a digital output between +5V and OV

at 0.5ms intervals (as per Figure 16). The GMPTG engineers installed National

Instruments digital output cards in the systems under test and connected the

digital outputs to a National Instrument Data Acquisition System as shown in the

simplified diagram in Figure 17. The Data Acauisition system measured the

event latency of the digital output, and thus the event latency of the executing

code, by measuring the mark and space of the digital output waveform.

3.1.1.2 Test Methodology

+5v' i

. w T im û
I I

1000
1 1 1 I I

2000 3000
microseconds

1 1
4000

Figure 16: GMPTG Tests Digital Output Waveform (Source:[41])

Data Acquisition System PCI-MIO-16E-1 NI PC-DIO-96 RTOS system
Dell Dimension XPS H266

Nematron lCC-6000
etc.

Figure 17: Simplified GMPTG Test Hardware (Source:[41])

While the application was running on the system under test artificial loads and

fault conditions were simulated on the system under test, to determine the

worst-case event latency of the system, and thus state the determinism of the

system. These artificial loads included:

31

• WinTach running

• A large compile with Visual C++

• Faulty device drivers

• Normal desktop applications

• Faulty programs which cause NT to crash

3.1.1.3 Conclusions

The method used by GMPTG of strobing the digital output on and off at

predetermined intervals and measuring the mark space ratio in a Data

Acquisition System was selected as an ideal methodology for the tests to be

carried out in this study.

It is important to note that the main focus of the GMPTG work was to evaluate

just NT based Real Time Extensions and Windows NT. It did not include any

tests with regard to PLC’s or RTOS’s. It is also extremely focused on loading

the system under test with tests such as “Normal desktop applications” that are

only relevant to Windows NT. The WinTach program represented an extremely

controllable method of simulating loads on a Windows NT system, but

unfortunately at the time of this study it was no longer commercially available.

An alternative benchmarking software application called BurnlnTest from

Passmark [54] was selected, and used during this study. BurnlnTest provided a

comprehensive method of simulating variable loads on the CPU, Memory

(RAM), 2D Graphics, 3D Graphics, Disks (A: and C:), Network, CD/DVD and

USB ports.

The GMPTG tests do not focus on the effect of the processing power and

instruction set of the system under test. The processing power and instruction

set limitations can have an adverse effect on the determinism of a system and

as such had to be tested during this study.

32

3.2 Control System Product Selection

There are many products based on the PLC, PC and RTOS platforms but for

the purpose of this study, the tests have been limited to the comparison of 5

diverse control systems. The control systems products were selected as

outlined in Table 3. The control systems have been named with the following

syntax:

XXX_YYY_ZZZ

Where:

• XXXis the control system family (i.e. PLC, PC or RTOS)

• YYY is the supplier of the operating system or the operating system

• ZZZ is the controller supplier or the application software

Visual Basic was selected as opposed to Allen Bradley’s Softlogix [37] in order

to control all Process and Thread priorities, to ensure that they never occupied

the Time Critical Priority [33], [34], as outlined in Table 2, during the test.

, . DESCRIPTION ; VENOOR PRODUCT

PLC_Rockwell_AB Microprocessor based Rockwell / Allen
Bradley (AB) PLC

Rockwell,
Allen Bradley

1785-L60L-
C

PLC_3S_IFM Microprocessor with 3S PLC runtime kernel,
and IFM controller IFM

Controller
E

PC_3S_Beckhoff
Pentium processor with Windows 2000
operating system and 3S runtime kernel for
Windows, and Beckhoff controller

Beckhoff TwinCAT

PC_WinNT_VB Pentium processor with Windows 2000
operating system Visual Basic application Microsoft

Visual
Basic

RTOS_3S_ELAU Pentium processor with 3S PLC runtime
kernel and ELAU controller ELAU MaX4

Table 3: Control Systems Product Selection

33

The cost of each control system product is outlined in Table 4 and Table 5. The

cost is extremely important, because in the absence of good technical selection

criteria, cost is often used for selection. The costs have been split into

development and runtime, because development costs are only incurred once,

while runtime costs are incurred every time a control system is implemented.

The costs of input and output hardware have not been included due to the many

options available. The communications protocols supported as standard by the

control system have been included. This is a very important factor, because

communications cards can cost from €500 to €1500 if they are to be included in

the control system at a later date [16], [17], [18]. The cost differential between

the control systems is enormous, with the most expensive system

(PLC_Rockwell_AB) costing more than 23 times the cheapest system

(PLC_3SJFM).

3.3 Control System Cost

^ ^ - s y s t e m " ^ 1r SOFTWARE P‘
*PLC Rockwell AB €2605

PLC 3S IFM €365
PC 3S Beckhoff €770
PC WinNT VB €520

RT OS_3S_ELAU €2970

Table 4: Control Systems Development Environment Costs

SYSTEM ?" COMMUNICATIONS LICENSE PROCESSOR TOTAL
*PLC Rockwell AB DH+, RS232 €0 €13895 €13895

PLC_3S_IFM PROFIBUS DP, AS-
1, RS232 €0 €593 €593

PC_3S_Beckhoff Ethernet, RS232 €770 **€1000 to
€3500

€1770 to
€4200

PC_WinNT_VB Ethernet, RS232 €0 **€1000 to
€3500

€1000 to
€3500

RTOS_3S_ELAU
Ethernet, RS232,

RS485, PROFIBUS
DP, CAN

€95 €3970 €4065

Table 5: Control Systems Runtime Costs

* Valid at time of purchase (2002) for processor, this does not include Rack or Power Supply.
** The processor Is a PC which is commercially available for less than €1000, but the

environment may be harsh and require an industrial PC which is available for €3500.

34

Each control system has its own inherent constraints, which affect its operation,

as outlined in Table 6. The tests carried out in this study have been designed to

exaggerate the effect of the constraints on each system, and ensure that the

control system is capable of providing a deterministic response, compatible with

the time constraint of an AS-I network.

A constraint peculiar to Visual Basic when it is used as a control platform is the

latencies, which can be introduced when ActiveX and OCX controls are used

[55]. Both ActiveX and OCX controls are independent program modules that

can be accessed by other programs in a Windows environment. Many

programmers don’t consider the fact that these controls have full access to the

Windows operating system and even though they may provide an excellent

solution to a requirement such as graphing or trending, they may have an

adverse effect on system performance.

3.4 Control System Constraints

ï X S Y S T Ë M ' 7 ^CONST R ÂÎN f EFFECT

PLC_Rockwell_AB
Instruction Set,
Slow Execution
Speeds

This control platform will have a long scan time
if Iteration or Floating Point mathematics is
utilised by the Programmer

PLC_3S_IFM

instruction Set,
Slow Execution
Speeds, Faulty
Slaves

This control platform will have a long scan time
if Iteration or Floating Point mathematics is
utilised by the Programmer. This controller is
also an AS-I master, thus faulty slaves may
affect the control system

PC_3S_Beckhoff CSMA/CD, System
Loads

This control platform with Ethernet architecture
will be prone to latencies if CSMA/CD is used.
Other applications running on the PC may
affect system performance

PC_NT_VB
ActiveX, OCX,
Process Priority,
System Loads

It is extremely likely that ActiveX and OCX
components will introduce latencies of variable
duration. The priority process and threads of
the control application and other applications
running on the PC may effect system
performance

RTOS_3S_ELAU None identified
No constraint has been identified for this control
platform. None of the constraints applicable for
the other control platforms apply.

Table 6: Control System Constraints

35

Table 7 outlines the probability of the constraints of each of the control systems

affecting the determinism of the control system.

3.5 Design o f Test to stress Control System constraints

v SYSTEM ” ' ■ ^ *
A" "

PIÒ r NETWORK

i—c— —1

ITERATION
FLOATING

POINT
MATHS

Burnln
Test

ActiveX

PLC Rockwell AB Low High High r
PLC 3S IFM Low Low High High

PC 3S Beckhoff Low High Medium Medium Medium
PC WinNT VB Low ^ iâ i-r'ï'K Medium Medium High High

RT OS_3S_ELAU Low 'taci ut.; ->î5*b Medium Medium * - ̂ i ' * - -

Table 7: Probability o f affecting Determinism

A major limiting factor of the microprocessor based PLC’s of the 1980’s and

1990’s is the execution time for the instruction set. There is excellent evidence

available to demonstrate that traditional PLC’s can be as much as 50 times

slower than an Open Control System (OCS) [5], [30]. Over the years the PLC

Ladder programming language has been expanded to include mathematical

Instructions but due to the unsuitability of the control platform these instructions

are extremely slow to execute [28].

With the evolution of Six Sigma [56] and Overall Equipment Effectiveness

(OEE) [57] it has become increasingly important that the controller is capable of

gathering statistical data on the variables it is controlling. It is not uncommon for

process engineers to request the minimum, maximum, mean and standard

deviation of particular process variables. Gathering such statistical data on

variables would be extremely demanding for a PLC, because it requires both

floating-point mathematics and numerous iterations through the sample data. It

is extremely interesting to note that the instruction set on the mid range

traditional PLC’s does not even support iteration instructions such as FOR loops

[29]. The FOR loop instruction is only available on the large traditional PLC’s

[28].

36

Even though PID control was evaluated as having a low probability of affecting

determinism, it was included in the test application due to the fact that it is very

often associated with determinism. Code was written to simulate and control a

PID process for each of the control systems. Every attempt was made to keep

the test code as close to identical as possible across all of the various

platforms. The test code consisted of the following main code modules:

■ PID

■ Statistics

■ Visualisation (including graphing where possible)

Graphing was specifically selected because it is an essential requirement for

controller tuning and it also provided the opportunity to evaluate on the

PC_WinNT_VB platform, the effect that ActiveX’s or OCX’s, which require a lot

of PC resources and inter process switching, have on the determinism of a

Visual Basic application.

Table 8 outlines the programming languages that were used for each of the

code modules on each of the systems under test. A point worth noting is that

the OCS’s offer by far the most comprehensive programming environments,

due to their compliance with IEC-61131 [51], integrated visualisation and

trending as standard.

"CODE
MODULE ■

PC WinNT
" V b • ‘ - “t .'

PLC Rockwell
AB ~ '

PC 3S
Beckhoff PLC£3S_IFM ,RTOS_3S_ELAU

Program
Structure

Visual Basic Ladder
Sequential

Function
Chart

Sequential
Function Chart

Sequential
Function Chart

Statistics Visual Basic Ladder
Structured

Text
Structured

Text
Structured Text

PID Visual Basic Ladder
Structured

Text
Structured

Text
Structured Text

Random
Number

Visual Basic Ladder
Structured

Text
Structured

Text
Structured Text

Visualisation Visual Basic Not Available CoDeSys CoDeSys CoDeSys
Graphing ActiveX Not Available Trace Trace Trace

Table 8: Programming Languages

37

The test configurations that were adopted are outlined in Figure 18 and Figure

19 and a photograph of the test systems is contained in Figure 20. Due to the

high cost of fieldbus devices only 2 of the control systems under test utilized

fieldbus based I/O. Ethernet based I/O configured on an office CSMA/CD

Ethernet network was used on the PC_3S_Beckhoff control system, while an

AS-I slave was used on the PLC_3S_IFM. Standard I/O was utilized on all the

other control systems. In the case of the PC_NT_VB, this was achieved by

using one of the parallel port digital outputs.

With the exception of visualisation on the PLC_Rockwell_AB, identical

applications ran on each system under test. Because the PLC_Rockwell_AB

was a microprocessor based PLC it did not have visualisation available.

Programmable Logic Controllers (PLC’s)

PLC_Rockwell_AB
(A l to n B r a d to y 5 Æ 0 L)

PID Statistics

Strobe Digital
Output every Scan

PLC_3S_IFM
(IFM Controltof E)

VauafcsaUon

PIO Statistics

Slave every Seen

Real Time Operating
System (RTOS)

RTOS_3S_ELAU
(E l A U M a X 4)

PID Statistics

Slrofee Dtgrtal
Output every Scan

ASi Slave
Strobe Digital Output every Scan

Digital lr<Kjt
(PlC_Rockwai_AB_Strobe)

Digital Input
(PtC_3S.IFM_Sirobe)

Digital Input
(RTOS_3S_ELAU_Strobe)

Sion Vanobta
(iStroboSol) |

Array of Seen TW m
(iScanT»nes)

Data Acquisition System
ELAU MaX4 with 3S Real Tune Operating System (RTOS)

Figure 18: PLC & RTOS Test configuration

38

Personal Computer (PC)
Wl»i Window» 2000 Operating System

PC 3S Beckhoff
(BockhofT TwinCAT)

PC_NT_VB
(Microsoft Visual Bas«)

PID Statistic* VOuaftsatton no j su » « . j
Strofe« valúa ln Slav« avary Scan Strofe« Digitai Output «v«ry Scan

Dynamic Link Library (DLL)

Etw m M C aro ■ PC ParalW Port

Ethernet Slavo

S iro te Digital Output avary S e a r

Figure 19: PC Test configuration

39

RT 0S_3S_ELAUPLC Rockwell AB

PC_3S_Beckhoff
PLC_3S_IFM

Figure 20: Photograph o f test equipment

The execution of the test code is explained graphically in Figure 21. The test

code consist of 4 main parts as follows:

• PID Controller Simulation

• Visualisation

• Statistics Iterations

• Strobe the Digital Output

In the PID Controller Simulation module a random number generator is used to

create a continuously varying Process Variable. The process variable is

supplied to the PID Code module, and applied to the PID algorithm, and a

suitable controller output is produced.

40

On the PC_WinNT_VB platform, the visualisation is an integral part of the code.

All of the 3S programming environments contain a visualisation package as an

integral part of their programming environment. The PLC_Rockwell_AB platform

does not support any visualisation functions.

In the Statistics Iterations module, iterations of statistical calculations were used

to stress test each platform. The basic statistics calculations consisted of 2

iterations through an array of 500 floating point values of the Process Variable.

On the first pass the Sum, Minimum and Maximum values are calculated. When

the first pass is complete it is possible to calculate the Mean. When the Mean is

known, the Standard Deviation can be calculated by performing a second pass

through the array. The code was also constructed to allow for any number of

iterations of the statistics to be performed.

The ‘Strobe Digital Output’ module, toggled the digital output every time that it

was executed. This generated a pulse waveform output similar to Figure 16, but

the On time and Off time of the signal varies depending on the length of time

that the controller required to execute all of the other code modules.

This On time and Off time were measured directly by the Data Acquisition

System and recorded in milliseconds (ms). The ‘On time’ and ‘Off time’ were a

direct measurement of the latency of the control system under test, thus the

term Control System Latency was adopted. The control system latency consists

of the Scan Time (i.e. the length of time that the controller required to execute

its user program) and all other latencies such as network load, and the length of

time required for the transistor in the digital output to switch on or off.

Initially the test duration was set for 1 hour as per the GMPTG tests [41], but

this would have taken an enormous amount of time to complete all of the tests

in the required timeframe. Using statistical methods it was possible to analyze

the performance of each system under test even if the test only ran for a

duration of 60 seconds.

41

VM

»| fr—M» [«

Y - STATISTICS ITERATIONS

U o v . l t

l E~ '
U o v » k > r « « n t

erf I*» A ."»,

F =f f ^

VM

J l.

A

Figure 21: Test code execution flowchart

42

4 RESULTS

The initial results were collected and the control system latencies, which were

measured in ms, were inserted into the relevant interval bins. This resulted in a

count per interval bin as per the GMPTG tests [41J. An example of the test

results tabulated in this format can be found in Figure 22 below. The Std Dev,

a , was calculated according to Equation 1, where x, is the value of the current

observation and x is the mean of the observations and n the number of

samples in the range.

_j________
«-1

Equation 1: Standard Deviation Equation (Source [56])

4.1 Collection o f In itia l Results

I- , ' Control System Latency (Numerical ^.Statistics)

COUNT VM\i COUNT
=0 to 1 ms 13 . 0 to 9 ms 4732 0 to 99 ms 5385
1 to 2 ms 10 10 to 19 ms 525 100 to 199 ms 2

' 2 to 3 ms 7 20 to 29 ms 103 200 to 299 ms STATISTICS |
' 3 to~4'ms 22 30 to 39 ms 11 300 to 399 ms Min 1

4 to 5 ms 35 40 to 49 ms 7 400 to 499 ms Max 121
5 to 6 ms 140 50 to 59 ms 500 to 599 ms Average 9 81232597
6 to 7 ms 1594 80 to 69 ms 2 500 to 699 ms Std Oev 4.638375853
7 to 8 ms 1158 70 to 79 ms 1 700 to 799 ms
8 to 9 ms 1740 80 to 89 ms 3 800 to 899 ms

9 to 10 ms 13 90 to 99 ms 1 900 to 999 ms

Figure 22: Results based on GMPTG format

With the very large volume of tests across all of the different control systems, it

very quickly became difficult to evaluate the data in numerical format. Better

readability was achieved when the results were displayed in graphical format.

The data was plotted using a linear Y Axis as demonstrated in Figure 23 and a

logarithmic Y Axis as demonstrated in Figure 24. The logarithmic scale had the

effect of highlighting the values in every interval bin regardless of the magnitude

of the value.

43

coarmoi m T W LATWCY $mm ftM

SOD

*«D
««0

I -

0 —
•to

Figure 23: Results displayed in Graphical Format, Linear Y Axis

C X M T M t IY S T H II A l l N O t

■' «• <k>ai)»>-.)k la Ik la U l» «*>» — !!>••• Ik ln lk«B

Figure 24: Results displayed in Graphical Format, Logarithmic Y Axis

44

As the tests were conducted it became apparent that a lot of data was being

gathered about the performance of the various systems but there was no

objective measurement by which to compare the acceptability of their

performances.

Caplen outlined in Figure 25 the percentage of readings between each standard

deviation on a normal distribution [56]. An attempt was made to use 6a and 80-

values but these variables are not useful to determine if a control system is

suitable in isolation. Some of the platforms demonstrate an extremely low a ,

and as such are extremely deterministic, but the mean is extremely high thus

the control system is unsuitable for the control task.

Figure 25: Percentage of readings between each Standard Deviation (Source [56])

45

Caplen [56] explained that it is often useful to have a simple capability index

(Cp) to show how capable or otherwise a process is with respect to its

specification limits. A capable process is one where almost all of the

measurements fall within the specification limits. Caplen went on to explain Cp

as outlined in Equation 2

4.1.1 Capability Index

Capability Index = Cp = (Total Tolerance)
(6 Standard Deviations)

Equation 2: Capability Index Equation (Source [56])

4.1.2 Relative Capability

BS 5700 [57] introduced 2 new terms:

• U = Upper specification limit

• L = Lower specification limit

which combined with Equation 2 facilitated the use of a numeric range to

indicate relative capability as follows

• High relative capability >1.33

• Medium relative capability 1.00 to 1.33

• Low relative capability < 1.00

The 3 capabilities listed above are displayed graphically in Figure 26. This

methodology provided an ideal solution by providing one figure to indicate if the

control system was performing in an acceptable manner or not.

46

Figure 26: The 3 Relative Capabilities (Source [56])

BS 5700 [58] also points out that when it is not possible to set the process

mean midway between the specification limits, a single Cp value is misleading,

and it is necessary to compute two CPk values, one for each limit, and use the

lower of the two. The equations for each of these Cpu and Cpi are outlined in

Equation 3 and Equation 4 respectively.

Equation 3: Capability Index Upper (Source [56])

47

Because it is not possible for us to influence the process mean in these tests

Cpk, Cpu and Cpi are more relevant than a single Cp variable.

For the purpose of these control system tests an extremely aggressive set of

capability categories were created. This is justifiable due to the criticality of the

variable (event latency) being measured. The 4 capability categories were

created as follows:

• An extremely suitable control system CPk > 2.00

• A suitable control system 1.33 < Cpk < 2.00

• An unsuitable control system 1.00 < CPk < 1.33

• An extremely unsuitable control system Cpk < 1.00

Even though it was relatively easy to perform all of the capability calculations,

the preferred option was to display the results in graphical format similar to

Figure 23 and Figure 24. Unfortunately the results when plotted in Excel were

unsatisfactory due to the fact that the chart does not provide a good method of

creating a high quality histogram.

A suitable ActiveX, which provides extremely high quality histograms was

sourced at a software company called vdisoft [59] and incorporated into a Visual

Basic Application.

Equation 4: Capability Index Lower (Source [56])

48

4.1.3 Setting the Specification Limits

4.1.3.1 Initial Setting

Initially the specification limits U and L were set at Oms and 15ms respectively

and the Target was set to 7.5ms. An initial test was conducted on the

RTOS_3S_ELAU, with no statistics iterations, and it produced the data

contained in Figure 27 and Table 9. This demonstrated that this controller was

well capable of providing a very deterministic response, with an extremely low

standard deviation, but the Cpjand C,* values were much lower than the Cpu

value. There appeared to be a skewing effect, which required more

investigation, before the tests were started.

ta

¿ a t "

Figure 27: RTOS_3S_ELAU Initial Test Capability Graph

N C S Z] Cph Cpu C * Mean Standard Deviation
29977 90.288 12.048 168 528 12.048 1.001 0028

Table 9: RTOS 3S ELAU Initial Statistics

49

4.1.3.2 Skewing of the Cpk

Even though the capability results are extremely high, they are quite misleading.

1 ms is a much better performance than the selected target of 7.5ms, but it does

represent a deviation from the target and the Cpi value demonstrates this by

producing a value of 12.048, while the Cpu produces a value of 168.528. BS

5700 dictates that the CPk value must be the lowest of the Cpu and Cpi values

and as such is correct in producing a CPk of 12.048 [58]. Thus when the

controller performs better than the target the Cpk actually produces a worse

result than if all of the values were exactly on the target.

To solve the above phenomenon, every reading that was less than 7ms was

deemed to have met its target and the Data Acquisition System code was

modified to place this reading in the 7ms interval bin as opposed to the interval

bin (i.e. 1 to 6) in which it actually occurred. This modification is explained

diagrammatically in Figure 28 and Figure 29. This modification eliminated the

skewing of the Cp and CPk

4.1.3.3 Final Setting

The specification limits were reduced in order to ensure that the control system

latency could not exceeded 2 x AS-I updates, without being detected. AS-I has

a guaranteed worst-case response of 5ms, thus a U specification limit of 2 x

5ms = 10ms would be appropriate. The U specification limit was reduced by

1 ms to 9ms to allow for a margin of resolution error. Thus the specification limits

U and L were then set to 5ms and 9ms respectively and the Target was set to

7ms.

For completeness the 8cr and Mean + 4 a values were collated in the results.

The 8 a value provided an extremely useful indication of the variability of the

control system latency, while the Mean +4 a value provided a statistical

estimate of the maximum value of the control system latency.

50

Figure 28: Skewing of the C

Figure 29: Removal of the Skewing of the C,*

51

The PLC_Rockwell_AB test results are depicted in Table 10 and Figure 30.

These results clearly demonstrate that there is an extremely low deviation in the

Control System Latency, especially when there are no statistics iterations.

However the performance is extremely poor when iterations are required, and

even though the results are extremely deterministic the mean value is well

outside the acceptable timing constraints of an AS-I network.

4.2 PLC_Rockwell_AB

Statistics
Iterations

Min Mean
I j

Max Cpk
Standard

Deviation (a)
8<r

Mean
♦ Act

0 7.00 7.00 13.00 14.60 0.051 0.401 7.2

1 90.00 91.41 93.00 H -38.47 0.711 5.68 j 94.25

3 268.00 269.23 2 7 1 .0 0 |] -121.89 0.711 5.68 272.07

5 445.00 447.03 449 00 j j -197.37 0.74 5.92 449.99

10 890.00 890.74 892.00 (J -460.99 0.64, M 2 j 893.30

Table 10: PLC Rockwell AB Test Results

— 1000

0 1 3 5 10

Statistic* Iterations

F igure 30: PLC_Rockwell_AB Min, Mean and Max Results

52

The PIC_3S_IFM tests produced very similar results to the PLC_Rockwell_AB

tests. These results are contained in Table 11 and Figure 31. These tests also

demonstrate that this controller has an extremely low deviation in the Control

System Latency, especially when there are no statistics iterations. However the

performance is extremely poor when iterations are required. In fact this

controller is incapable of performing more than 3 iterations, thus there are no

entries for the 5 and 10 iterations rows in Table 11. These tests were carried out

with the AS-I network configured for 32 nodes but with only one node connected

in order to simulate maximum network loading. Even under maximum network

loading the controller was quite capable of providing an excellent Cp* of 41.56

when no iterations were performed.

4.3 PLC_3SJFM

Statistics
Iterations Min Mean Max

Cpk

Standard
Deviation (<r)

8(7
Mean
♦ A ct

0 7.00 7.00 8.00 41.56 0.02 0.16 7.08

1 83.00 85.32 88.00 -25.39 1.00 8.00 89.32

3 261.00 263.30 266.00 -89.05 0.95 7.601267.10

Table 11: PLC 3S IFM Test Results

□ MIN

■ MEAN

□ MAX

Figure 31: PLC_3S_IFM Min, Mean and Max Results

53

The PC_3S_Beckhoff tests were run with the no loading on the PC (Table 12

and Figure 32), and 100% loading on the PC (Table 13 and Figure 33). The

results obtained were dramatically different to the PLC test results. The

controller was much less capable and the deviation was much larger. Even

though the loading had a measurable effect on performance, the controller was

not capable, and as such cannot provide a deterministic response, even with no

loading.

The minimum was much larger than expected. Even under extreme loading it

would have been reasonable to expect that some of the control system

latencies would have been in the 7ms to 10ms range. Upon investigation the

Beckhoff digital output card had a response time of 3ms, which undoubtedly

introduced latency into the control system. The fact that the digital output was

connected using Ethernet configured as CSMA/CD with a standard switch

would also have contributed greatly to the variation in the Standard Deviation

and the extremely large maximum values that were found.

In order to ensure that there was nothing wrong with the code, a second digital

output was strobed in exactly the same manner as the first, but it was

connected back as a digital input to the PC_3S_Beckhoff system. Using this

technique is was possible to establish that there was a variable event latency

between the controller switching its DO on and the actual hardware switching

on.

Even though it is outside the scope of this study, it becomes evident that such

operation could cause serious malfunction of the control system and highlights

the potential lack of determinism on an incorrectly configured Ethernet based

control system.

4.4 PC_3S_Beckhoff

54

Statistics
Iterations

Min Mean Max
r . Standard

Deviation (a)
8 . ♦ 4 a

0 12.00 14.11 166.00 -0.45 3.78 30.24

12.321

29.23

20.191 12.00 14.03 29 00
H

-1.09 1.54

3 12.00 14.56 618.00 -0.13 14.05 112.40 70.76

5 12.00 14.03 32.00 -1.05 1.59 12.72 20.39

10 12.00 18.72 986.00 -0.08 40.23 321.84 17964

15 14.00 __29.41 961.00 -0 25 27.72 221.76 140 29

Table 12: PC_3S_Beckhoff with no Loading Test Results

55

Statistics
Iterations

Min Mean Max Cpk Deviation (cr)

8 (T
>a
Mean
♦ 4 a

0 12.00 14.23 226.00 -0.32 5.42 43.36 i 35.91

1 12.00 15.75 724.00 -0.08 29.39 234.12 133.31

3 12.00 14.54 324.00 -0.21 8.97 71.76 50 42

125.735 11.00 15.61 787.00 -0.08 27.53 220.24

10 13.00 19.83 946.00 -0.07 50.29 402.32 220 99

15 14.00 28.83 807.00 -0.26 25.23 201.84 129.75

Table 13: PC_3S_Beckhoff w ith 100% Loading Test Results

56

The testing of the PC_WinNT_VB required the largest body of work. It became

apparent very soon that it was not possible for a Visual Basic application on

Windows NT platform to provide deterministic performance. This came as no

surprise because Microsoft warned of this [33], [35], [36], [38] and the GMPTG

test results clearly demonstrate it [41]. Nevertheless Rockwell claimed that by

elevating the priority of a task from Normal to RealTime priority that Windows

NT was capable of providing satisfactory control [9]. Thus this study would not

be complete if Rockwell’s suggestion was not investigated.

When the BurnlnTest application is not running, there is no load on the PC. This

scenario produced the results found in Table 14 and Figure 34. These results

clearly demonstrate that the performance of the VB application is unacceptable,

but highlights very little improvement in the average performance of the Visual

Basic application when it is running as a RealTime task. On closer examination

of Table 14 it becomes apparent that the standard deviation (sigma) is

sometimes better when the task is run at RealTime priority, but this

improvement is erratic, and not reproducible, thus should not be considered.

When a standard Graphing ActiveX is activated in the VB application the

performance of the controller is drastically reduced as demonstrated in Table 15

and Figure 35. This clearly demonstrates that ActiveX’s can have an extremely

detrimental effect on the performance of a VB application regardless of the

priority at which the task is running, and as such should not be used in

conjunction with an application, which has a controlling function.

When the application is running as a RealTime task, the Graphing ActiveX is

not activated, and a varying BurnlnTest load is applied to the application, there

is only a marginal effect on the control system latency as demonstrated by

Table 16, and Figure 36.

4.5 PCJAfinNT_VB

57

Statistics
Iterations Priority Min Mean Max Cpk r r

(^)

8(7
Mean
* 4 (7

0 Normal 7.00 9.66 37.00 -0.09 2.52 20 16 19.74

1 Normal 7.00 12.05 428.00 -0.13 7.72 61.76 42.93

3 Normal 7.00 16.68 410.00
r“

-0.32 8.05 64.40 48.88

5 Normal 12.00 21.33 415.00 -0.36 11.39 91.12 66.89

10 Normal 23.00 33.91 426.00 -0.47 17.77 142.16 104.99

15 Normal 34.00 45.85 513.00 -0.59 20.77 166.16 128.93

0 RealTime 7.00 10.20 41.00 -0.15 2.61 20.88 20.64

1 RealTime

RealTime

7.00 13.01 32.00 -0.61 2.19 17.52 21.77

3 7.00 18.13 358.00 -0.35 8.64 69.12 52.69

5 RealTime 12.00 22.47 554.00 -0.34 13.15 105.20 75.07

10 RealTime 23.00 3337 370.00 -0.84 9.66 77.28 72.01

____15 RealTime 34.00 44 60 385.00 -1.06 11.21 89.68 89.44

Table 14: PC_WinNT_VB Test Results without ActiveX and no Load

50

0 1 3 5 10 15

S ta tistics iterations

Figure 34: PC_WinNT_VB Mean Results without ActiveX and No Load

58

Statistics
Iterations Priority Min Mean Max

| Standard"
Deviation

(a) \

I 1

8cr
Mean
+ A ct

0 Normal 124.00 141.79 354.00 -2.87 15.44 I 123.521 203 55

1 Normal 127.00 152.22 74900 -0.77 62.21 [497 .68 401 06

3 Normal 131.00 162.21 946.00 -0.68 74.66 [597.28 460.85

5 Normal 134.00 160.01 823.00
—

-0.84 59.78 478.24 399 13

10 Normal 145.00 177.49 952.00
—

-0.71 78.88 631.04 493.01

15 Normal 157.00 198.67 713.00
—

-0.82 77.47 619.76 1508.55

0 RealTime] 128.001 137.79 644.00 -1.63 26.27 210.16 242.87

1 RealTime 127.00 135.88 161.00 -986 4.29 34.32 153.04

3 RealTime I 128.00 141.03 158.00 -10.40 4.23 33-84 157.95

5 RealTime 135.00 142.32 153.00 -14.99 2.98 2 3 '64 154 24

10 RealTime 144.00 157.49 685.00 -1.81 27.29 218.32 266.65

15 ; RealTime [152.00] 162.35 702.00 -1.81 28.29 226.32 275.51

Table 15: PC_WinNT_VB Test Results with ActiveX and no Load

250 r-

0 1 3 5 10 15

Statistic« Iterations

Figure 35: PC_WinNT_VB Mean Results with ActiveX and No Load

59

Statistics
Iterations

%
Load

Min

Mean
I

Max

■■

Cpk Deviation

< *)

8 cr
Mean
♦ 4<r

0 0% 7.00 10.20 41.00 -0.15 2.61 20 88 20 64

1 0% 7.00 13.01 32.00 -0.61 2.19 17.52 21.77

3 0% 7.00 18.13 358.00
—

-0 35 8.64 69.12 52.69

5 0% 12.00 22.47 554.00 -0.34 13.15 105.20 75.07

10 0% 23.00 33.37 370.00 -0 84 9.66 77.28 72.01

15 0% 34.00 44.60 385.00 -1.0? 11.21 89.68 89.44

0 50% 7.00 10.22 51.00
—

-0.15 2.72 21.76 21.10

1 50% 7.00 13.00 560.00 -0.15 9.18 73.44 49.72

3 50% 7.00 18.68 529.00
—

-0.32 10.13 81.04 59.20

5 50% 12.00 22.86 471.00 -0.47 9.88 79.04 62.38

10 50% 23.00 35.25 565.00 -0.60 14.66 117.28 93.89

15 50% 32.00 40.00 638 00 -0.72 16.00 128.00 104.00

Table 16: PC_WinNT_VB Test Results, RealTime priority w ithout ActiveX and varying
Load

Figure 36: PC_WinNT_VB Test Results, RealTime priority w ithout ActiveX and varying
Load

60

The RT0S_3S_ELAU test results are summarized in Table 17 and Figure 37

and demonstrate optimum performance over the full range of the statistics

iterations. These tests demonstrate that there is virtually no deviation of the

control system latency time on this controller. The maximum resolution of the

Data Acquisition System was 1ms. Therefore the fact that the minimum was

7ms and the maximum was 8ms, may actually demonstrate that this controller

was capable of providing deterministic control, with a reproducibility of better

than 1ms, even under an extremely large number of iterations.

4.6 RT0S_3S_ELAU

Statistics
Iterations

'
Min Mean Max Cpk

Standard
Deviation (o ')

8<J
Mean
♦ 4<T

0 7.00 7.00 8.00 115.42 0.01 0.08 7.04

1 7.00 7.00 8 00 115.39 0.01 0.08 7.04

3 7.00 7.00 8.00 81.25 0.01 0.08 7.04

5 7.00 7.00 8.00 72.21 0.01 0.08 7.04
10 7.00 7.00 8.00 51.67 0.01 0.08 7.04

15 7.00 7.02 8.00 5.04 0.13 1.04 7 54

Table 17: RTOS 3S ELAU Test Results

a m in

■ MEAN

□ MAX

1 2 3 4 5 0

S tatistics Iterations

Figure 37: RTOS_3S_ELAU Min, Mean and Max Results

61

5 DISCUSSION

5.1 Determinism of the Fieldbuses

5.1.1 Determinism of AS-I

The results gathered in Table 11 clearly demonstrate that PLC_3S_IFM’s AS-I

network is capable of providing a deterministic response of better than Sms

when it has 31 missing slaves. It achieved an excellent CPk of 41.56 and a

Mean + 4a value of 7.08ms. These results were achieved on an AS-I network

with 31 missing slaves. These conditions represent the maximum number of

errors that can exist on a AS-I network and thus simulates an extreme loading

condition. Because the results on the PLC_3S_IFM were so conclusive and all

AS-I masters have to pass the same stringent certification tests it was not

necessary to incur the additional costs of inserting AS-I master cards on the PC

and RTOS based systems [6]. Thus we confirm that the AS-I network is capable

of providing a deterministic response even under extreme fault conditions.

5.1.2 Determinism of Ethernet

Even though it is not a requirement of this study to evaluate the determinism of

Ethernet as a network, it is an inherent part of the PC_3S_Beckhoff control

system under test and as such required some investigation. The Ethernet I/O of

the PC_3S_Beckhoff was connected via a normal hub, on an Ethernet network

configured as CSMA/CD in full duplex. This configuration represents a typical

Information Technology (IT) configuration, but the best result which could be

achieved was an unacceptable CPk o f-0.45 and Mean + 4a value of 29.23ms.

Thus this Ethernet network configuration is not suitable as a fieldbus network for

a field level network above an AS-I network. Other configurations may be

suitable but were not tested during this study [25], [26]. Special design

considerations are also required for Ethernet, when it is implemented in

industrial installations, if a deterministic response is required [60].

62

Both the PLC_Rockwell_AB and PLC_3SJFM clearly demonstrated an

extremely deterministic response. When no statistical iterations were required

the PLC_RockwelLAB achieved a CPk of 14.60 and Mean + 4a value of 7.2ms,

while the PLCJ3SJFM achieved a CPk of 41.56 and Mean + 4 a value of

7.08ms, clearly demonstrating that both platforms are excellent platforms for an

AS-I network.

When the statistical iterations were introduced the limitations of the processing

power of the PLC were highlighted. The results were extremely dramatic, and

the PLC_3S_IFM was actually incapable of providing more than 3 iterations

without actually going into a fault condition whereby it could not actually execute

its user program. It is very important to note that even under these extreme

loading conditions that the PLC achieved a deterministic response, with the

standard deviation never exceeding 1.00. However it did not have the

processing power to execute the iterations in an acceptable time limit for the

AS-I network. When 1 statistical iteration was introduced, the

PLCJRockwell_AB’s performance dropped to an unacceptable Cpk o f-38.47

and Mean + 4a value of 94.25ms. The PLC_3S_IFM’s performance was only

slightly better with a Cpk of -25.39 and Mean + 4 a value of 89.32ms.

These tests clearly demonstrate that the PLC is an excellent platform for

providing a deterministic response but the designer must take into account the

processing that is required for the user program or the overall control system

latency may be increased to unacceptable limits for an AS-I network.

An item worthy of mention is the fact that the PLC_3S_IFM achieved a

marginally better performance than the PLC_Rockwell_AB even though it is

less than 1/20th of the cost, and has PROFIBUS DP and AS-I communications

capability. Thus the PLC ‘price versus performance ratio’ has improved

considerably in the last 20 years.

5.2 PLC

63

5.3 PC

5.3.1 PC_3S_Beckhoff

It may be possible for the PC_3S_Beckhoff to provide a deterministic response

but not enough work was done in this area to clearly demonstrate this. What

was clearly demonstrated is that the incorrect hardware selection and/or

configuration of an Ethernet based PC_3S_Beckhoff system can seriously

compromise the determinism of a system.

5.3.2 PC_WinNT_VB

This work clearly demonstrates that the Windows based operating system,

without an RTE is totally unsuitable for providing deterministic control. The

Standard Deviation gathered from these tests ranges from an unacceptable

2.52 to a dreadful 118.24. In extreme cases the Mean has exceeded 600ms

and the Maximum has exceeded 964ms, which undoubtedly represents a

control system failure.

It is possible to improve the performance of the PC_VB_APP by raising the

priority of the process from ‘normal’ to ‘realtime’. This is clearly demonstrated by

the fact that under 100% loading both the Standard Deviation and Mean

responses for processes with realtime priority can be as much as 40 times

better than a process with normal priority. Even though this appears to

substantiate Rockwell Automation’s claims that hard real time extensions are

not required [9], the response of a realtime process is not at all deterministic

and Microsoft’s advice not to use the Windows operating system for realtime

control [33], [35], [36], [38], should be strictly adhered to. A major finding of this

work was the effect of the use of graphing ActiveX within a VB application.

Regardless of the priority of the process (normal or realtime), an ActiveX that

refreshes the display caused a dramatic degradation of system performance

and rendered the application incapable of achieving its control function.

64

5.4 RTOS

The performance of RT0S_3S_ELAU was excellent. Its Standard Deviation

was an order of magnitude better than any of the other systems.

When 0 statistics iterations were required, the RTOS_3S_ELAU produced a CPk

value of 115.42, which is 7.9 times better than the PLC_RockwelLAB, and 2.7

times better than the PLC_3S_IFM.

Even with 15 statistics iterations being calculated, the RTOS_3S_ELAU was

capable of achieving a Cpk of 5.04, a standard deviation of 0.13ms and a Mean

+ 4 <t value of 7.54. This Cpk of 5.04 is more than twice the value of Cpk that has

been specified in this study as the requirement for an extremely suitable control

system.

The RTOS_3S_ELAU provides an ideal performance for a deterministic network

such as the AS-I network and when subjected to statistics iterations has the

processing power to out-perform any of the other systems that have been put

under test.

65

A significant observation, which can be made, is that in some instances the

Maximum control system latency values exceed the Mean + 4cr values. +/- 4 u

represents 99.94% of the population (as per Figure 25) [56]. If a test is to

produce 1 sample, whose result falls outside of this population then 1 sample

must be less than 0.06% of the total number of samples taken during this

particular test. Thus the minimum number of samples required to produce 1

sample with a value outside the Mean + 4 a value is 1667 samples.

Table 15 outlines the test results on the PC_WinNT_VB for the control system

latency with the graphing ActiveX activated and no BumlnTest load. By adding

the sampling data to some of the Table 15 results a table such as Table 18 can

be produced. Table 18 clearly demonstrates that for the majority of the tests the

Maximum control system latency values exceed the Mean + 4<r values by a

very large amount, but there are not enough samples for 0.06% of the samples

to produce 1 sample. Thus the a calculation, and Maximum control system

latency must be investigated further to ensure that there is no error in the

results.

5.5 A Significant Observation

- Mean + 4cr Max M a x -(M e a n * 4 cr) Samples 0.06% of N

203.55 354.00 150.45 427 0.26
401.06 749.00 347.94 398 0.24
460.85 946.00 485.15 359 0.22
399.13 823.00 423.87 - 372 0.22
493.01 952.00 458.99 329 0.20
508.55 713.00 204.45 286 0.17
242.87 644.00 401.13 409 0.25
153.04 161.00 7.96 446 0.27
157.95 158.00 0.05 429 0.26
154.24 153.00 -1.24 409 0.25
266.65 685.00 418.35 385 0.23
275.51 702.00 426.49 * 373 0.22

Table 18: Table 15 results and Sampling information

66

Figure 38 demonstrates a frequency distribution of a re-run of one of the tests

contained in Table 15. When the frequency distribution is analysed it does not

display a normal distribution. It consists of a number of normal distributions with

rogue values. In this instance there was 1 sample in isolation, which produced a

control system latency of 533ms. (Note: for the purpose of readability I have

manually changed the number of samples with a latency of 533ms to 10. No

other readings have been changed). This value of 533ms may be statistically

insignificant, but could have catastrophic effects on a control system.

Figure 38: PC_WinNT_VB frequency distribution

Table 19 consists of the PLC_Rockwell_AB results from Table 10 and the

sampling data. This data is a complete contrast to the data contained in Table

18. The only time that the Maximum control system latency exceeds the Mean +

4 <j value is when there are an enormous number of samples and up to 10

samples could fall outside the +/- 4 a range. Figure 39 demonstrates a

frequency distribution of a re-run of one of the tests contained in Table 10. This

frequency distribution displays a normal distribution, with no rogue values.

67

M ean+ 4 <7 Max Max - (Mean+ 4 <j) 0.06 h of N

7.2 13.00 5.8 17281 10.37

94.25 93.00 -1.25 660 0.40

272.07
449.99

271.00 -1.07 225 0.14

449.00 -0.99 136 0.08

893.30 892.00 -1.3 68 0.04

Table 19: Table 10 results and Sampling information

Figure 39: PLC_Rockwell_AB frequency distribution

All of the maximum values for the RTOS__3S_ELAU control system latencies, as

outlined in Table 17, exceed the Mean + 4 <r value. This would tend to point to

the danger that the RTOS_3S_ELAU may demonstrate a non normal

distribution in the same manner as the PC based systems. On closer inspection

it becomes apparent that this is due simply to a rounding error. The interval bin

has a resolution of 1ms, while the Mean + 4 a value is calculated to an

accuracy of 2 decimal places. Thus we can state that the RTOS_3S_ELAU

displays a normal distribution, in the same manner as the PLC control systems,

and in direct contrast to the PC control systems.

68

5.6 Further Work

Unfortunately every project has a limited scope, duration and resource limit. If

extra resources had been available it would have been useful to quantify the

determinism of the AS-I network when the maximum number of correctly

working slaves are connected [6], even though the literature survey clearly

states that the AS-I network is deterministic.

An extremely interesting area, which was outside the scope of this study, is the

evaluation of determinism across various different Ethernet configurations. A lot

of information is available from Ethernet component providers, demonstrating

how determinism can be achieved but quantifying how each of the potential

configurations performs would undoubtedly produce useful results.

The tests that were performed on the PLC were based on only 2 PLC’s that are

microprocessor based. There are many PLC’s now available, such as the Allen

Bradley ControlLogix, that are actually PC based [37]. It is extremely likely that

platforms such as these are capable of providing the processing power to

provide a deterministic response, even under extreme loading such as the

statistics iterations. Future work should expand these tests to evaluate more

PLC, PC and RTOS platforms.

The effect of the ActiveX in the PC_VB_APP was extremely dramatic. It is not

possible at this stage to state whether it was due to inter-process switching or

possibly graphics requirements. A lot of work could be concentrated in this area

to determine exactly what caused this phenomenon.

The RTOS_3S_ELAU clearly out-performed all of the other systems under test.

It would be extremely interesting to design a test capable of stress testing the

RTOS_3S_ELAU to quantify exactly how much better it is than the other

systems.

69

5.7 Things that could have been done differently

In this study the ELAU MaX4 was used as the Data Acquisition System. In this

configuration it was capable of providing a resolution of 1ms. In hindsight higher

accuracy results could have been achieved by using the National Instruments

Data Acquisition card as per the GMPTG tests.

70

6 CONCLUSIONS

After evaluating the determinism of the AS-I network, PLC systems, PC

systems and RTOS systems the following conclusions can be drawn:

The following conclusions can be drawn from the study of the fieldbus systems:

• The AS-I network, even under extreme fault conditions of 31 faulty slaves

is deterministic, and has a worst-case response of Sms

• The PROFIBUS DP network is also deterministic and will not introduce

any latency, if used as a field level network above an AS-I network.

• An incorrectly configured Ethernet network is extremely non-deterministic

• The literature states that a correctly configured Ethernet network is

deterministic, but this configuration was not tested during this study

Both of the PLC systems, which were tested, PLC_Rockwell_AB, and

PLCJ3SJFM, demonstrated very similar results, thus the following conclusions

can be drawn for both PLC systems:

• The PLC systems are extremely deterministic

• The PLC systems control system latency exhibits a normal frequency

distribution

• The instruction set is very limited

• The PLC systems do not have sufficient processing power for a lot of

iteration as simulated by the statistics iterations in the tests

• Even though the PLC systems are deterministic, due to its lack of

processing power, it is not suitable as a control system for applications

where a lot of iteration is required

• The PLC systems are suitable control systems for implementation with

an AS-I network, if the user program does not require a lot of processing

71

The conclusions from the PC systems is limited to the PC_WinNT_VB. This is

due to the fact that more tests would need to be done on the PC_3S_Beckhoff

before accurate conclusions could be drawn. With the PC_WinNT_VB the

following conclusions can be drawn:

• The PC_WinNT_VB system is extremely non-deterministic

• The PC_WinNT_VB system control system latency exhibits a non-normal

frequency distribution, with many observations, which do not belong to

the curve

• Modifying the process priority from Normal to RealTime does not

significantly improve the performance of the system

• The PC_WinNT_VB is not suitable for implementation with an AS-I

network regardless of the user program

From the RTOS system, which was tested (RTOS_3S_ELAU), the following

conclusions can be drawn:

• The RTOS system is extremely deterministic

• The RTOS system has more than enough processing power for

applications, which require a lot of iteration as simulated by the statistics

iterations in the tests

• The RTOS system was the only system, which was capable of providing

a suitable control system latency for an AS-I network when the maximum

number of statistics iterations calculations were being performed

Also statistics must be used prudently. Assumptions should not be made that

systems follow a normal distribution. This can only be determined after testing

has been completed. A very useful rule of thumb which was identified is that if

the number of samples is less than 1667 and the maximum value exceeds the

Mean + 4 a , then in all likelihood the system does not have a normal

distribution.

72

7 BIBLIOGRAPHY
[1J http://www.industrialnetworkinQ.co.uk/maQ/v7-1/andv.html

[2] http://www chipcenter.com/circuitceliar/september99/c99wD2 htm

[3] http://cthulhu.control.com/alist/archive.old/msq01959.html

[4] http://msdn.microsoft.com/1ibrarv/defaultasp7urls/librarv/en-

s/dnwboen/html/msdn realtime.asp

(5J RadiSys Corporation. “Determinism and the PC Architecture - Applying PC Hardware to

Real-Time. Applications Technical Paper*. July 1998.

[6] Kriesel W, Madelung O. 'AS-lnterface, The Actuator-Sensor-lnterface for Automation*.

Hanser. 1999.

[7] Smith. C.A. Corripio. A.B. ‘ Principles and Practices of Automatic Process Control*. 1997.

[8] Shinskey. F.G. ‘ Process Control Systems, Application. Design, and Tuning*. 1998.

[9] Rockwell Automation. "White Paper. Using the Windows NT Operating System for Soft Real

time Control - Separating Fact from Fiction’ . 1998.

[10] Radionics. ’ Industrial Components Catalogue*. March 2003 - February 2004.

[11] Wamock, I.G. 'Programmable Controllers operation and application’ . 1988.

[12] Keyence. "Sensors Vision and Measurement’ . 2003.

[13] Omron. ’Sensing & Safety general catalogue*. 2003.

[14] PROFIBUS Nutzerorganisation e.V. PNO. ‘PROFIBUS TECHNOLOGY AND

APPLICATION. System Description’ . October 2002

[15] Polsonetti, C. ’ INDUSTRIAL ETHERNET PROTOCOLS: THE NEXT BATTLEGROUND*.

http://ethemet. industrial-networkino com/articles/i 12protocols.aso. November 2002

[16] www mod bus orq

[17] www;odva Qf.q

[18] www profibus com

[19] Kriesel W. Gibas P. Riedel M. Blanke W. ’ Feldbus als Mehrebenenkonzept, messen,

steuern, regeln' Berlin 33(1990)4. S. 150-153

[20] Shiff. A. "AS-I: Technischer Losungsansatz; Vortrag auf dem Fachgesprach ’ Bussysteme"

des VDI/VDE-Technologiezentrum Informationstechnik*. Berlin im Februar 1991 (als Sprecher

des Lenkungsausschusses des AS-l-Konsotriums)

[21] Madelung, O.W. *Acktuator Sensor Interface. Grundforderungen an ein neues Buskonzept".

Sensor Report (1992) HefM.

[22] Madelung O.W. ‘AS-I ersetzt nicht nur den Kabelbaum. Das einfache Feldbussystem für

binare Peripherieelemente*. Electronik plus. Heft „ Feldbusse. Franzis-Veriag. München 1992.

[23] Acromag, Technical Reference. Introduction to ProfibusDP". 2002.

[24] Hirschmann Network Systems. *White Paper. Real Time Services (QoS) in Ethernet Based

Industrial Automation Networks"

73

http://www.industrialnetworkinQ.co.uk/maQ/v7-1/andv.html
http://www
http://cthulhu.control.com/alist/archive.old/msq01959.html
http://msdn.microsoft.com/1ibrarv/defaultasp7urls/librarv/en-
http://ethemet

[25] Breyer R.. Riley S "Switched Fast and Gigabit Ethernet. Third Edition. Understanding.

Building and Managing High-Performance Ethernet Networks*. 1999.

[26] Spurgeon. C.E. 'Ethernet. The Definitive Guide". 2000.

[27] Warnock. I.G. "Programmable Controllers. Operation and Application". 1988.

[28] Allen Bradley. 'PLC-5 Programmable Controllers. Instruction Set Reference". November

1998.

[29] Allen Bradley. "SLC 500™ Instruction Set". April 1999.

[30] Beckhoff TwinCAT®. "The Windows Control and Automation Technology. PC Control

Introduction" March 2001.

[31] Intel. "Expanding Moore’s Law. The Exponential Opportunity". 2002

[32] http /Avww.microsoft.conVwindowsA/VinHistoryDcsktop mspx

[33] Microsoft Corporation. "Real-Time Systems and Microsoft Windows N T. June 29. 1995.

[34] Solomon. D.A. “Inside Windows NT". Microsoft Press. 1998.

[35] Microsoft MSDN Library. “Article Q10280. Realtime Priority Applications and Windows NT".

May 9. 1997.

[36] Microsoft MSDN Library. "Article Q94265, Windows NT and Real-Time Operating Systems".

May 6. 1997.

[37] Rockwell Automation. “Allen Bradley SoftLogix5800 Systems User Manual". August 2002.

[38] Microsoft MSDN Library. "Artide Q10280. Realtime Priority Applications and Windows NT*.

May 9. 1997.

[39] Chrysler. Ford. G M. "Requirements of Open. Modular Architecture Controllers for

Applications in the Automotive Industry. Version 1.1*. December 13.1994.

[40] GMPTG. "Open Modular Architecture Controls at GM Powertrain, Technology and

Implementation. Version 1.0“. May 14 1996.

[41] Frampton, N., Tsao, J. Yen. J. "Hard Real-time Extensions of NT© Evaluation Report. Test

Plan and Phase 1 & 2 Results*. April 17. 1998.

[42] RadiSys Corporation. "Determinism and the PC Architecture - Applying PC Hardware to

Real-Time, Applications Technical Paper". July, 1998.

[43] RadiSys Corporation. "Real-Time OPC Utilizing INtime to Implement Deterministic OPC

Servers. White Paper". April, 1998.

[44] RadiSys Corporation. "INtime Interrupt Latency Report. Measured Interrupt Response

Times, Technical Paper*. November. 1998.

[45] RadiSys Corporation. “Windows NT Thread Latency Measurements Measured Response

Times for the REAL_TIME_PRIORITY_CLASS Technical Paper". December, 1998.

[46] Radisys Corporation. Fischer. P. "Reliable Control with Windows N T . 1998.

[47] Radisys Corporation. Fischer, P. "Distributed Real Time Systems with Windows NT and

INTtme". 1998,

[48] Nematron. "PC-Based Control Technology. An In-Depth Look*. 2000.

74

[49] VentureCom, O'Keefe. J.A.. "Venturecom RTX™ Enabling Microsoft® Windowst® Windows

XP and Windows XP Embedded for Hard Real-Time". 2002.

[50] 3S. "Product Brochure. 3s - Smart Software Solutions GmbH'. 2004

[51] PLCopen. “IEC61131-3: a standard programming resource". March 2004.

[52] htto://www.arcweb.com/research/auto

[53] www.gMtQmg tiy i-gHigncg^co.m

[54] http://www.passmark.com/products/bit.htm

[55] Balena. F. "Programming Microsoft Visual Basic 6.0’ . 1999.

[56] Caplen. R.H. "A practical Approach to Quality Control". 1988.

[57] Loughlin. S. "A holistic approach to Overall Equipment Effectiveness (OEE)\ IEE

Computing and Control Engineering. December / January. 2003 / 2004.

[58] BS 5700. '1984 Guide to process control using quality control chart methods and cusum

techniques". 1984.

[59] http://www.vdisoft.com

[60] Lounsbury, B., Westerman, J. "Ethernet: Surviving the Manufacturing and Industrial

Environment White Paper". 2001.

75

http://www.arcweb.com/research/auto
http://www.passmark.com/products/bit.htm
http://www.vdisoft.com

8 APPENDIX A - Source Code and Test Results

76

Appendix A contains all of the source code and test results used during the
course of this project. Appendix A is supplied in electronic format on the
attached Compact Disk (CD) labelled ‘MRA1724 Shane Loughlin' where
MRA1724 is the HETAC assigned registration number for this project. The CD
contains the following sub directories:

■ CODE’ contains all of the test code that was implemented on each of the
control system platforms.

■ ‘Initial Results' contains an example of the first results that were
produced.

■ ‘Investigation of Normal distribution’ contains the data that was used to
investigate the normal distributions on the PC_WinNT_VB and the
PLC_Rockwell_AB.

■ ‘Removal of Skewing of the C,*’ contains the diagrams that were used to
depict how the skewing of the C<* was removed.

■ 'Results Screen Dumps’ contains all of the actual screen dumps from the
Report Generator application, which was used to collate the data from
the control platforms during the execution of the tests.

A diagram of the layout of the directories on the CD is shown below:

sOAPPSvDIXA
a CODE

C l PC_35_Beckhoff

D PC_WlnNT_VB
CJ PLC_3S JFM
_J PLC_Rockwel_AB
_J REPORT_GENERATOR
_ j RTOS_3S_B.AU

_ll Initial Results
_ l Investigation o f Normal Ostrtoutton
_J Removal o f Skewing o f the Cpk
_J Results Screen Dumps

An electronic copy of this thesis is contained in the root directory of the CD and
is labelled ‘MRA1724 Shane Loughlin.pdf

77

The following software is required to view, program or execute the code in the
CODE sub-directories:

■ PC_3S_Beckhoff - Beckhoff TwinCat PLC Control V2.9.0
■ PC_WinNT_VB - Microsoft Visual Basic 6.0
■ PLC_3S_IFM - CoDeSys V2.2.5.2
• P LC_Rockwel l_AB - RSLogix 5.20.10
■ REPORT_GENERATOR - Microsoft Visual Basic 6.0
■ RTOS_3S_ELAU - ELAU EPAS-4 Version 14.02

NOTE: These versions of software are the versions that were used during the
course of this project. It is reasonable to assume that these applications will be
upwardly compatible to newer versions of the same applications.

78

