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Atlantic herring (Clupea harengus) in the Irish and Celtic Seas; tracing 

populations of the past and present. 

Noirin D. Burke 

Abstract 

Several herring stocks are found around Ireland, of which the Irish and Celtic Seas are 

two. Herring in the Irish Sea spawn in autumn and in the Celtic Sea spawning takes 

place in autumn and winter. During the first year of life Celtic Sea herring disperse 

into the Irish Sea. The two stocks mix at nursery grounds in the Irish Sea, hampering 

the production of juvenile abundance estimates for the Irish Sea stock.  

In this study otolith shape was used to classify juvenile herring at Irish Sea nursery 

grounds as autumn spawned (most likely of Irish Sea origin) and winter spawned fish 

(most likely of Celtic Sea origin), with a success rate of 86-87%. Otolith shape 

analysis separated winter spawned juveniles that are retained in the Celtic Sea from 

those that disperse into the Irish Sea with a high degree of accuracy (>95%). Shape 

analysis of the first winter ring in the otolith was then used to determine nursery 

ground of origin in two year old adult Celtic Sea herring, showing that approximately 

42% of fish spent their nursery phase at Irish Sea nursery grounds. This provides 

strong evidence that Celtic Sea herring, which disperse into the Irish Sea as larvae, 

return to the Celtic Sea as adults by natal homing. The implications of these findings 

for herring population structure theories are discussed 

Otolith microstructure analysis of historical otoliths, collected in the Irish Sea from 

1993-2003, revealed interannual fluctuations in the relative proportions of autumn and 

winter spawned juveniles. The contribution of winter spawned fish (most likely of 

Celtic Sea origin) was removed from the estimate of juvenile abundance for the Irish 

Sea stock. This adjustment significantly improved the relationship between juvenile 

abundance at age-1 and the abundance of age-3 fish from the same year class (r > 0.8, 

p < 0.05). This separation method could be routinely used to generate recruitment 

indices for the Irish Sea stock.  

The abundance of winter spawned juveniles in the Irish Sea was negatively correlated 

with the frequency of strong south westerly winds during the larval phase (r = -0.96, 

p<0.05).  The underlying cause of this relationship can only be speculated; it may 

reflect the dispersal of Celtic Sea larvae out of the Irish Sea or increased larval or 

juvenile mortality during years of frequent strong south westerly winds.  
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Summary 

Atlantic herring (Clupea harengus L.) is a valuable commercial species found in both 

the East and West Atlantic Ocean. Populations range from Georges Bank and the Gulf 

of Maine in the west to the Baltic and Barents Sea in the east. In the Northeast 

Atlantic there are approximately fourteen stocks, each with their own spawning time 

and location, and migratory routes. The factors that preserve this stock complexity 

have fuelled extensive research and a number of theories have been proposed to 

explain how population structure is maintained.   

Several herring stocks are found around Ireland, of which the Irish and Celtic Seas are 

two. Herring in the Irish Sea spawn in autumn and in the Celtic Sea spawning takes 

place in autumn and winter. The two stocks are managed separately; however during 

the first year of life Celtic Sea herring disperse into the Irish Sea. As a result the two 

stocks mix at nursery grounds in the Irish Sea, hampering the production of juvenile 

abundance estimates for the Irish Sea stock.  

Otoliths (earstones) provide a permanent record of growth rates in bony fish and can 

be used to separate stocks with different life histories. This study uses otolith 

microstructure and shape analysis to distinguish between herring from different 

spawning seasons and nursery areas. Otolith shape was used to classify juvenile 

herring at Irish Sea nursery grounds as autumn spawned (most likely of Irish Sea 

origin) and winter spawned fish (most likely of Celtic Sea origin). The method 

achieved a classification success rate of 86-87% when ground truthed using the 

already validated otolith microstructure method. Otolith shape analysis separated 

winter spawned juveniles that are retained in the Celtic Sea from those that disperse 

into the Irish Sea with a high degree of accuracy (>95%). Shape analysis of the first 

winter ring in the otolith was then used to determine nursery ground of origin in two 

year old adult Celtic Sea herring. The results indicate that approximately 42% of fish 

spent their nursery phase at Irish Sea nursery grounds. This provides strong evidence 

that Celtic Sea herring, which disperse into the Irish Sea as larvae, return to the Celtic 

Sea as adults by natal homing. These findings have important implications for herring 

population structure theories. 

Otolith microstructure analysis of historical otoliths, collected in the Irish Sea over a 

ten period (1993-2003), revealed considerable annual fluctuations in the relative 

proportions of autumn and winter spawned juveniles. Separate abundance estimates 
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were produced for each component and the contribution of winter spawned fish (most 

likely of Celtic Sea origin) was removed from the estimate of juvenile abundance for 

the Irish Sea stock. This adjustment significantly improved the relationship between 

juvenile abundance at age-1 and the abundance of age-3 fish from the same year class 

estimated from commercial and acoustic survey data from the Irish Sea (r > 0.8, p < 

0.05). This highlights the potential for using the separation method to generate 

recruitment indices more appropriate for the Irish Sea stock.  

There was a significant negative correlation between the abundance of winter 

spawned juveniles in the Irish Sea and the frequency of strong prevailing winds from 

a south westerly direction during the larval phase (r = -0.96, p<0.05).  The underlying 

cause of this relationship can only be speculated; it may reflect the dispersal of Celtic 

Sea larvae out of the Irish Sea or increased larval or juvenile mortality during years of 

frequently strong south westerly winds.  
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Chapter 1 

 

General Introduction 

 

1.1 Herring biology and population structure 

Herring are distributed throughout the Northern hemisphere, with populations 

occurring in the northeast and northwest, Pacific (Pacific herring, Clupea pallasii 

V.) and Atlantic Oceans (Atlantic herring, Clupea harengus L.). Within the northeast 

Atlantic, there are numerous stocks, each with their own spawning time and location, 

and migratory patterns, which are generally subject to their own distinct fishery 

(reviewed by Parrish and Savile, 1965). The Atlanto-Scandian complex of herring 

(Icelandic summer spawners and Norwegian spring spawners) are currently the largest 

group in the world (FAO, 2004). In 2004, global capture production was over 2 

million tonnes, with Norway and Iceland being the countries with the largest catches 

(FAO, 2004). Their widespread commercial importance has led to extensive research 

during the last century, which has provided much information on their biology and 

ecology. Female herring lay their eggs on the seabed, usually in water 10-80m deep, 

on hard ground covered with small shells, stones or seaweed. The eggs are fertilized 

in the water by the male herring, which discharge their sperm at the same time as the 

females lay their eggs. The eggs incubate for between 10-30 days depending on water 

temperature until they hatch. By the time they reach about 40mm in length they are 

found at inshore nursery grounds. They can remain as larvae for between three and 

eleven months (typically seven). The metamorphosis to juvenile includes the 

development of scales and adult pigmentation. They remain at nursery grounds until 

they move out to more offshore feeding grounds when mature, usually around three 

years of age (Parrish and Saville, 1965) although this can vary depending on the 

stock. Adults migrate between feeding and spawning grounds throughout their 

lifecycle. These migratory patterns cause uncertainty for the assessment of the 

associated herring fisheries when fish from different management areas mix.  

Herring in north-east Atlantic were historically considered to be one large biological 

unit (Parrish and Saville, 1965). However consistent differences in certain 

morphological features were recognized by Heinke (1898) and his co-workers 

towards the end of the 19
th

 century and herring in northeast Atlantic were divided into 
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races. Since then a number of different theories have been developed, which try to 

explain herring population structure. Parrish and Saville (1965) separated the 

northeast Atlantic groups into shelf and oceanic populations, based on differences in 

morphology and physiology between the groups. The shelf population was distributed 

in the shelf waters of the North Sea and adjacent waters (including the Irish and Celtic 

Seas), while the oceanic population was widespread in oceanic waters, from the 

northern Norwegian and Barents Sea to the Atlantic seaboard of the British Isles. 

Shelf individuals were smaller in size to their oceanic counterparts, and also had a 

shorter lifespan. Many stocks are referred to by the spawning season in which they are 

productive, with winter spawners spawning between November and January, while 

autumn spawners spawn between August and October. Oceanic individuals are mostly 

winter – spring spawners, spawning between February to March, while shelf 

individuals spawned between August and December (Parrish and Saville, 1965). 

Cushing (1967) proposed the match/mismatch hypothesis, which suggested that 

herring spawn in time for peaks in plankton productivity. This resulted in herring 

larvae being dispersed during periods of high food availability.  

While these theories try to predict how herring populations are structured, a number 

of other theories have looked at the mechanisms that maintain these structures. 

According to the discrete population concept (Iles and Sinclair, 1982), larval herring 

populations are kept separate from each other by oceanographic features and fish 

behaviour. This separation results in genetically distinct herring populations that 

spawn at distinct locations during seasonally fixed spawning periods. While herring 

populations maintain distinct spawning times and locations, juveniles from different 

spawning populations have been identified in mixed aggregations (Brophy and 

Danilowicz, 2002, Clausen et al., 2007, Husebo et al., 2005, Mosegaard and Madsen, 

1996), suggesting that larval populations are not completely isolated from each other. 

Smith and Jamieson (1986) argued that herring populations expand and contract their 

range due to environmental and fishing pressures. According to their “dynamic 

balance” model, the observed lack of genetic variability between the proposed stocks 

of herring is the result of extensive gene flow between them (Smith and Jamieson, 

1986). However this theory does not explain the consistent differences in certain 

morphological features in herring from different locations. An alternative theory put 

forward by McQuinn (1997) is based on the metapopulation concept (Levins, 1968). 
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In his “Adopted Migrant Concept” McQuinn suggested that herring from a number of 

local populations form one metapopulation. The local populations retain 

morphological differences, although limited genetic exchange occurs. Population 

structure is maintained by repeat homing rather than natal homing, i.e. spawning 

behaviours are not imprinted during the larval phase, but are learned by juveniles 

from the adult herring with which they associate. This however has not been 

supported for herring in the Irish and Celtic Seas. Brophy and Danilowicz (2002) 

identified winter spawned juveniles of Celtic Sea origin in Irish Sea nursery grounds 

using otolith microstructure analysis. When adult spawning samples were classified to 

hatch type, only 2% were classified as winter spawned (Brophy et al., 2006) 

suggesting that these Celtic Sea fish do not remain in the Irish Sea to spawn, and 

therefore do not learn their spawning behaviour from the adults they associate with in 

the Irish Sea. 

There is little agreement on how herring populations are structured, with no one 

theory being useful for explaining the observed patterns in different populations. For 

example, Brophy and Danilowicz (2002) demonstrated that Celtic Sea juveniles that 

disperse into the Irish Sea do not switch spawning season and take on the spawning 

behaviour of the adult with which they associate (as predicted by the Adopted-

Migrant hypothesis). In contrast McQuinn found sufficient evidence to say that the 

season of first spawning was not a fixed property in sympatric seasonal spawning 

herring populations in east and west Newfoundland and that juveniles can switch 

spawning season (McQuinn, 1997).  

 

1.2 Herring fisheries around Ireland 

 

Herring are one of the most important pelagic species exploited by the Irish fishing 

industry and important ports in the south and south-west include Cobh, 

Castletownbere, Dingle and Dunmore East (Marine, 2004).The preliminary total 

landing figures in 2002 amounted to 30,000 t and were valued at over €6.4 million 

(Marine, 2004). 

Herring around Ireland have been divided into 4 different stocks for management and 

assessment purposes and are considered to be biologically separate (Marine, 2007). 

These stocks are as follows and are their ranges are shown in Fig 1.1: - 
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 West of Scotland – ICES Div. VIa (North) 

 Irish Sea – ICES Div. VIIa (North) 

 West and North of Ireland - ICES Div. VIa (South) and Div. 

VIIb 

 Celtic Sea and South West of Ireland - ICES Div. VIIa (South); 

Div. VIIg and Div. VIIj 

 

In 2003, the herring fishery was estimated to be worth more than €12 million per 

annum to the southwest region, supporting over 1000 jobs between the fishing vessels 

and the processing industry (Marine, 2004). During the 2003/2004 season, a 

maximum of 10 vessels were reported to be participating in herring fishing in the 

Celtic Sea area. While the number of vessels participating in the fishery has decreased 

in recent years, the efficiency of the larger boats has increased (Marine, 2007).  

The main catches within the Irish Sea in recent years have been taken by a small 

number of Northern Irish trawlers. The UK were allocated 74% of the herring total 

allowable catch (TAC) quota in 2007, while Ireland was allocated the remaining 26% 

(Marine, 2007) in the Irish Sea. Within the Celtic Sea, Ireland was allocated 86.4% of 

the herring TAC Quota for 2007 (Marine, 2007). The fishery within the Celtic Sea 

was closed as a result of the stock collapse during the mid 1970’s, which coincided 

with a period of high fishing mortality. The use of closed areas on a rotational basis 

and closed seasons is now used as a method to protect spawning shoals and was first 

implemented by fishermen in the southwest area in 2002. This closure was in 

response to increasing proportions of young fish (< 2 year old), which had dominated 

the catches in the area for a number of years. Historically, large catches were taken 

from the Celtic Sea area by the Dutch fleet but in recent years the reported catch has 

been negligible. Irish landings of herring from the Northwest have decreased sharply 

since 1999 due to decreasing demand for herring and the increasing availability of 

more valuable species, including mackerel, and horse mackerel (CSO, 2007). The 

absence of herring from traditional spawning grounds off Galway and Mayo 

illustrates the decline of the stock in this area although it may be stabilized at a low 

level. Although the number of boats involved in the herring fishery has declined in 

recent years it is still a valuable component in the Irish fishing sector (Marine, 2004). 
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Celtic Sea herring spawn from October to February with some reports of spawning in 

March. Fish are classified as autumn or winter spawners depending on their time of 

spawning (Breslin, 1998, Molloy, 1980a). Traditionally the stock of herring in the 

Irish Sea was viewed as two separate units, the Manx component and the Mourne 

component. Autumn spawners dominated both components, with the majority of 

herring spawning in a four-week period between September and October, however a 

small amount of spawning activity has been identified in areas north of the Isle of 

Man up to January (Dickey-Collas et al., 2001). The Mourne contribution to the Irish 

Sea stock declined during the 1990’s to approximately 3% of the total herring in the 

Irish Sea (Dickey-Collas et al., 2001). However, in recent years, this stock has started 

to show signs of recovery and was reopened for fishing in 2005 (DARD, 2005). The 

North-West of Ireland stock spawns in winter and spring (Hatfield and Simmonds, 

2002) and the fishery in this area exploit a mixture of autumn- and winter/spring-

spawning fish. The Clyde west of Scotland stock is spring spawning (Hatfield and 

Simmonds, 2002) but its contribution to the overall number of herring around the Irish 

coast is uncertain.   

 

1.3 Stock structure of Celtic and Irish Sea herring 

 

It is now widely accepted that a proportion of juveniles from the Celtic Sea area are 

found at nursery grounds in the Irish Sea due to dispersal during the first year of life. 

Evidence from larval drift studies (Özcan, 1974), length and vertebral count 

distributions (Bowers, 1964), tagging studies (Molloy et al., 1993) and otolith 

increment widths (Brophy and Danilowicz, 2002) all show mixing of the two stocks 

in the Irish Sea during the early (larval/juvenile) life stages. Oceanographic evidence 

indicates that the water circulation patterns favour the dispersal of larvae from the 

Celtic Sea spawning grounds into the Irish Sea. Strong northerly flow rates through 

St. Georges channel drive water through the western Irish Sea before it exits the Irish 

Sea through the North Channel (Xing and Davies, 2001). Real wind-driven particle 

tracking studies have suggested that large wind events in February may force particles 

from the Celtic Sea into the west Irish Sea within 30 days (O' Brien and Little, 2006). 

Using otolith microstructure, Brophy and Danilowicz (2002) successfully separated 

juvenile herring collected from the Irish Sea, into autumn and winter spawned fish. 
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This verified that there are two components in the Celtic Sea stock, the juveniles that 

remain in the Celtic Sea (resident) and those that move into nursery grounds in the 

Irish Sea during the first year of life (migrant). Indirect evidence of this migrant 

component returning to join the Celtic Sea winter spawning stock as adults has been 

provided by tagging experiments (Molloy et al., 1993) and by the absence of winter 

spawned fish from spawning assemblages in the Irish Sea (Brophy et al., 2006). The 

coincidence of low recruitment in the Celtic Sea during the 1970’s with the industrial 

fishery, which targeted juvenile herring in the Irish Sea from 1967 –1978, also 

suggests that the Irish Sea is an important source of Celtic Sea recruits (ICES, 2001). 

Environmental variables in particular may effect the transportation of juveniles into 

the Irish Sea and have important implications for the number of winter spawned 

juveniles found in the Irish Sea on an annual basis.  

 

1.4 Herring assessments in the Irish and Celtic Seas 

 

Accurate juvenile abundance estimates play an important role in stock assessments. 

Stock assessments are used to identify the current state of stock, to examine the future 

outcome for the stock given a number of alternative management strategies, to 

determine whether a stock is under- or over-exploited, or if its status will change in 

the future if subject to different levels of exploitation. Its ultimate goal is to provide 

reliable management advice to avoid long term economic or social problems 

associated with population crashes. 

Herring are currently assessed as two single stocks in the Irish and Celtic Seas (ICES, 

2007). TAC’s are set annually and are based on assessments carried out seasonally in 

both areas. Assessments are based on survey and catch data which provides 

quantitative estimates of the numbers of fish expressed in tonnes (Marine, 2007). 

Much uncertainty surrounds the assessment of Irish and Celtic Sea herring due to 

mixing between the stocks outside of the spawning season (Brophy and Danilowicz, 

2002, Molloy et al., 1993) and juvenile mixing has resulted in the failure to produce 

an adequate recruitment index for the stocks (Marine, 2007). Estimates of Spawning 

Stock Biomass (SSB) and fishing mortality have been uncertain in the Celtic Sea and 

Irish Sea since 2000 (ICES, 2007). 
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The abundance estimates for age-1 fish (defined as individuals with one winter ring) 

provided by the Northern Ireland acoustic survey includes an unknown proportion of 

fish of Celtic Sea origin. Without the removal of this Celtic Sea fraction, juvenile 

abundance estimates from the Irish Sea are not appropriate for the calculation of Irish 

Sea recruitment indices, as they will include fish in the assessment who do not recruit 

to the Irish Sea spawning stock as adults. Similarly, if these adult fish return to join 

the Celtic Sea spawning stock, they may provide an appropriate recruitment index for 

that stock.  

 

1.5 Otolith applications in fisheries science 

 

Otoliths are ear stones which are found in the semi-circular canals of teleost fish from 

freshwater and marine habitats, from polar to tropical regions. They assist in detecting 

sound and are used for balance and orientation (Popper et al., 2005, Campana and 

Neilson, 1985). There are three pairs, the lapilli, the sagittae and the asterisci of which 

the sagittae are the largest (Fay and Popper, 1980). Otoliths are easily stored and 

processed once extracted leading to their extensive use in fisheries research. 

The shape and size of the sagittal varies between species, and therefore can be used in 

taxonomy (Harkonen, 1986). Many factors have been cited as influencing the size and 

shape of the sagittal otolith. They include the physical packing of the otolith within 

the skull (Smith, 1992), and environmental factors such as depth, water temperature, 

mineral and food availability (Lombarte and Cruz, 2007, Lombarte and Lleonart, 

1993, Wilson, 1985, Fey, 2001). Gauldie (1988) proposed the function of hearing 

itself controlled the size and shape of the otolith. Cruz and Lombarte (2004) found 

that fish that belonged to groups considered as being specialists in sound production 

had larger otoliths than those which used visual communication and bright body 

colours. Another suggested reason for otolith size differences, is related to balance 

and swimming. Popper et al. (2005) outlined a number of observations to support this 

hypothesis including the fact that some of the largest ocean fish, such as tuna and 

swordfish have some of the smallest otoliths relative to body size, whereas many 

shallow water reef fish have considerable large otoliths. They suggest that large 

otoliths would be a disadvantage in fish that are fast, agile swimmers, resulting in 

over sensitivity of the fish to changes in angular motion (Popper et al., 2005). 
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Otoliths consist of layers of protein and calcium carbonate, which are deposited 

throughout the life of the fish. These depositions form microscopic increments, which 

are visually similar to the growth rings of a tree and provide a permanent record of 

daily and annual growth rates. Daily increments were first discovered in 1971 

(Panella, 1971). When growing conditions are less favourable, the rate of deposition 

slows and a protein poor translucent ring is laid down on the otolith. In temperate 

regions, this period of slower growth usually occurs in winter. These macroscopic 

annual structures can be used to age a fish and have been used since 1899 when 

Reibisch first observed annual ring formation in plaice (Pleuronectes platessa L.) 

(Ricker, 1975).  

Determinations of fish age and growth rates are important techniques in the study of 

fish biology. Of the structures which encode age information in fishes (bones; fin 

rays, vertebrate, cleithra, opercular bones; scales and otoliths), otoliths provide the 

most reliable indication of age for most species (Campana and Jones, 1992). Otoliths 

grow throughout the life of a fish and, unlike scales and bones, are metabolically 

inert; once deposited, otolith material is unlikely to be reabsorbed or altered 

(Campana and Neilson, 1985). Otolith growth rate is proportional to fish growth 

(Campana and Neilson, 1985) and measurements of otolith length and annual bands 

can provide us with knowledge of age structure, growth rates and life history events 

within a population. Otolith growth is influenced by a number of environmental 

factors including temperature (Fitzhugh and Nixon, 1997, Fey, 2001), prey density 

(Folkvord et al., 1997, Feet et al., 2002) and photoperiod (Dowd and Houde, 1980) 

and changes in environmental conditions can cause variations in otolith structure. 

These variations have been used to identify individuals from different stocks and 

spawning aggregations which have experienced different environmental conditions 

(Berg et al., 2005, Moksness and Fossum, 1991, Mosegaard and Madsen, 1996). 

 

1.6 Otolith microstructure 

 

Otolith daily increments form as a result of a circadian rhythm (once per 24hrs) and 

by the action of environmental conditions (often more frequent than one per 24hrs). 

Sub-daily increments are a potential error in otolith interpretation (Campana and 

Neilson, 1985). The assumptions that there is only one increment deposited per day, 
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and that otolith growth is proportional to fish growth, should be validated before 

microstructure analysis can be used to estimate exact daily ages and hatch dates of 

individual fish (Geffen, 1992). Methods of validation include using fish of known age 

in the laboratory (Neilson and Geen, 1981) and the incorporating of time/date 

markers, such as thermal marking (Volk et al., 1999).  

Otolith microstructure can also be used to differentiate between stocks (Campana and 

Neilson, 1985), by looking at differences in growth patterns. When otolith 

microstructure is used as a population marker, exact daily age does not need to be 

known and deviation from regular daily increment formation should not change the 

interpretation of the results. Thorrold and Williams (1989) found significant variation 

in otolith growth patterns between different cohorts of larval tropical herring and 

Munk et al. (1991) showed that geographical location influenced otolith growth in 

larval herring from the North Sea. Otolith microstructure has been used to 

differentiate between seasonal herring populations in the Irish and Celtic Seas 

(Brophy and Danilowicz, 2002), the Norwegian Sea (Moksness and Fossum, 1992), 

and the North Sea (Mosegaard and Madsen, 1996). Autumn spawned fish generally 

experience slower growth than winter and spring spawned resulting in narrower 

increment widths and smaller fish sizes.  

 

1.7 Otolith morphometrics and shape analysis 

 

Otolith shape would appear to be an ideal marker for fish populations. It is distinctly 

species specific (L'Abee-Lund, 1988) and less variable than fish growth, most 

probably due to the dual function of the otolith as an organ of balance and hearing 

(Campana and Casselman, 1993). They are metabolically inert and are therefore 

unaffected by short-term changes in fish condition (i.e. starvation), which can have 

irreversible effects on morphometrics. The sagitta is the most commonly analysed 

otolith and was found to provide slightly better stock discrimination outcomes for cod 

(Gadus morhua L.) than the lapilli or asterisci otoliths (Campana and Casselman, 

1993).  

Basic methods of otolith shape analysis include manual distance measurements that 

can be used to calculate size parameters such as area and perimeter. These in turn can 

be used in a series of mathematical equations to calculate shape indices such as 
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circularity and roundness which are used to characterise the shape of the otolith (Tuset 

et al., 2003, Russ, 1990). More complex methods look at the overall shape and use 

image analysis software to describe the shape of the otolith. Outline methods use 

trigonometric functions (e.g. polynomials, Fourier series) or other empirical functions 

(e.g. eigenshape analysis, median axis) to analyse outlines of otolith silhouettes. Many 

of these methods are incorporated into software packages. Generally, mathematical 

functions (usually Fourier transforms) are used to generate a set of shape variables 

from digitised outlines. Each successive shape variable adds increasing detail to the 

description of the overall shape. These shape variables can be analysed using 

multivariate analysis such as discriminate function analysis. 

In Fourier analysis, the digitised outline of an image is recorded as a set of polar or 

Cartesian coordinates. Cartesian methods are often preferred as they do not rely on a 

radiating centroid. This use of a radiating centroid means polar Fourier functions may 

not work successfully when otoliths are particularly convoluted, or the rostrum has 

significant curvature that it would be possible for radii to intersect the perimeter at 

more than one point.  

This study uses the elliptic Fourier analysis (EFA) to describe otolith shape in Atlantic 

herring. EFA uses Cartesian (x,y) coordinates along the outline of an object to 

characterise its shape. Unlike some other methods (e.g. Fast Fourier Analysis) EFA 

does not require coordinates to be equally spaced around the outline of the object, 

therefore it can describe more complex shapes.  

Many studies have used otolith shape analysis to separate fish populations and stocks. 

Bird et al. (1986) used Fourier transformations to differentiate between Alaskan 

(Clupea pallasii V.) and Northwest Atlantic herring (Clupea harengus L) populations 

and found that shape showed significant differences between fish of different ages and 

from different populations. Fourier transformations have also been used in stock 

identification studies of salmon (Salmo salar L.) (Finn et al., 1997, Friedland et al., 

1994, Friedland and Reddin, 1994) and orange roughy (Hoplostethus atlanicus L.) 

(Gauldie and Jones, 2000, Robertson and Talman, 2002, Smith et al., 2002) and cod 

(Gadus morhua L.) (Berg et al., 2005, Cardinale et al., 2004), Atlantic mackerel 

(Scomber scombrus L.) (Castonguay et al., 1991) and spotted seatrout (Cynoscion 

nebulosus C.) (Colura and King, 1995). Classification success rates varied from 60-

91% for interstock separation depending on the species. 
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1.8 Summary of objectives 

 

This thesis uses otolith shape measurements to distinguish between winter-spawned 

Celtic Sea juveniles at Irish Sea nursery grounds (migrant) from those who remained 

in the Celtic Sea (resident). A new method is developed which uses traces of internal 

annuli to determine nursery ground origin in adult fish. Otolith shape analysis is also 

examined as a method for separating juveniles of different hatch types in the Irish Sea 

(autumn and winter spawned). As nursery ground and spawning area of origin are 

identified, the current theories on herring stock structure and natal homing behaviour 

are discussed. Microstructure analysis of archived otolith collections is used to 

examine temporal trends in the movement of Celtic Sea juveniles into the Irish Sea. 

The influence of environmental conditions on the growth and distribution of both 

populations in the Irish Sea is investigated. Each chapter represents a self-contained 

unit formatted as a journal article. The scope of each chapter is summarized below:  

 

Chapter 2: Shape analysis of otolith annuli in Atlantic herring (Clupea 

harengus); a new method for tracking fish populations.  

Otolith shape analysis is used to distinguish between resident and migrant 

winter spawned Celtic Sea juveniles. Based on the successful separation of 

age-0 fish collected in 2004, the 1
st
 winter ring is traced in age-1 fish collected 

in 2005 to examine if shape characteristics are preserved to a sufficient level to 

facilitate identifying nursery ground origin in adult fish.  

 

Chapter 3: Otolith shape analysis, its application to discriminating between 

Irish and Celtic herring (Clupea harengus) stocks in the Irish Sea.  

In this study otolith shape analysis is presented as an alternative method to 

otolith microstructure analysis for identifying winter spawned juveniles in the 

Irish Sea. The two methods are compared with regard to reliability and 

efficiency, and overall classification success rates.    

 

Chapter 4: Otolith shape analysis provides evidence of natal homing in 

Atlantic herring (Clupea harengus). 
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This study completes that examination of a cohort from the larval to the adult 

phase. Larval otolith microstructure is used to identify winter spawned fish 

from the Celtic Sea and to determine when the migrant and resident 

components diverge. Traces of the 1
st
 winter ring in adult (age-2) fish 

collected in the Celtic Sea in 2006 are used to describe juvenile otolith shape. 

The relative proportion of each component in adult spawning assemblages in 

the Celtic Sea was then estimated using mixed stock analysis, and discriminate 

function analysis and with the age-0 individuals from the same cohort as the 

reference sample.   

 

Chapter 5: Temporal trends in the stock composition and abundance of 

juvenile Atlantic herring (Clupea harengus) in the Irish Sea.  

Otolith microstructure analysis is used in this study to estimate the proportion 

of winter spawned individuals in samples of age-1 herring from the western 

Irish Sea over a ten year period (1993-2004). These proportions are used to 

investigate the potential of splitting juvenile abundance estimates to produce 

recruitment estimates more appropriate for the Irish Sea herring stock 

assessment. Temporal trends in abundance and growth rates of winter spawned 

juveniles in the Irish Sea are also examined in relation to environmental 

conditions (temperature, wind speed and direction and food availability).  
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Figure 1.1 Map showing the management units and main spawning locations of 

herring in the Irish and Celtic Sea. Solid circle; Isle of Man autumn spawners. Open 

circle; Mourne autumn spawners. Solid triangles; Celtic Sea autumn and winter 

spawners. The movement of larvae/juveniles from the Celtic Sea into the Irish Sea is 

indicated by solid arrow. Proposed return route indicated by dashed arrow. The solid 

and dashed lines mark the boundaries of ICES divisions and subdivisions 

respectively. 
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Chapter 2 

 

Shape analysis of otolith annuli in Atlantic herring (Clupea harengus); a new 

method for tracking fish populations
1
  

 

2.1 Abstract 

 

The mixing of Atlantic herring (Clupea harengus) stocks during the early life phases 

has important implications for management of the associated fisheries. There are two 

components within the winter-spawning Celtic Sea stock with characteristic growth 

and recruitment patterns; Celtic Sea fish that move into the Irish Sea (migrant 

component) grow more slowly and hence recruit to the adult population later than 

those that are retained close to the spawning grounds (resident component). The rate 

of return of the dispersed component to the Celtic Sea, the relative contribution of 

each component to the adult stock, and it’s inter annual variation are unknown.  

A method to discriminate between the migrant and resident components of the winter-

spawning Celtic stock, based on shape analysis of the juvenile portion of the otolith, is 

presented here. Juvenile herring were collected in 2004 and 2005 from nursery 

grounds in the Irish and Celtic Seas. Autumn- and winter-spawned juveniles were 

distinguished using larval otolith microstructure measurements. A classification 

function based on linear otolith measurements and Fourier descriptors was used to 

differentiate between age-0 winter spawned herring from the two seas. This 

classification function was applied to age-1 juveniles from the same areas using 

otolith descriptors of the region bounded by the first annulus. The dispersed and 

resident components could be distinguished with a high degree of accuracy (>95%). 

The potential use of otolith characteristics for tracing juvenile origin in adult fish, 

assessing levels of natal homing and measuring recruitment levels from each nursery 

area are discussed. 

 

 

 

                                                 
1
 Chapter published: BURKE, N., BROPHY, D. and KING, P. A. 2008. Shape analysis of otolith 

annuli in Atlantic herring (Clupea harengus); a new method for tracking fish populations Fisheries 

Research, 91: 133-143. 
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2.2 Introduction 

 

Otolith analysis is an important tool in the study of fish populations. It provides a 

record of the growth patterns in individuals, cohorts and populations and can 

accurately estimate age and growth at both the daily and yearly level (Campana and 

Thorrold, 2001). Increment counts and measurements can provide information on 

hatching times and growth rates (Fox et al., 2003, Gallego et al., 1999, Munk et al., 

1991, Sinclair and Tremblay, 1984) and offer insight into stock structure for 

numerous species (Ayvazian et al., 2004, Brophy and Danilowicz, 2002, Finn et al., 

1997, Mosegaard and Madsen, 1996).Variation in otolith shape is also a useful 

descriptor for discriminating between fish stocks (Begg and Brown, 2000, Campana 

and Casselman, 1993, Cardinale et al., 2004, Robertson and Talman, 2002, Stransky, 

2005, Turan, 2000)and can also be used in age classification (Bermejo, 2007). 

Environmental factors such as sea temperature and food availability have been linked 

to spatial variation in fish growth rates (Bailey and Alanara, 2006, Campana and 

Casselman, 1993, Fox et al., 2003, Gallego et al., 1999, Munk et al., 1991). Variation 

in growth rate produces corresponding variation in otolith microstructure and shape 

(Gauldie and Nelson, 1990) due to the proportional relationship between otolith 

growth and somatic growth (Campana and Neilson, 1985). Consequently, groups of 

fish that maintain distinct distributions for part or all of their lives can be 

distinguished using microstructure analysis of daily increments, internal 

measurements of the distances between the nucleus and the annual rings (Begg et al., 

2001, Suthers and Sundby, 1993) and shape analysis of the otolith (Berg et al., 2005, 

Cardinale et al., 2004, Stransky and MacLellan, 2005, Turan, 2000).  

As otolith constituents are not altered or reabsorbed during the life of the fish 

(Campana and Neilson, 1985), annual and daily increments provide a permanent 

record of previous growth rates. Measurements of these chronological features are 

specific to particular periods in the life history of the fish. In contrast, shape 

parameters or truss measurements from the external edge of the otolith reflect the 

average growing conditions experienced by the fish up to that point in its life because 

the external outline of the otolith changes as the fish grows. It may be possible to 

measure the shape of the otolith at a previous point in a fish’s life by using the outline 

of an internal feature such as an annulus. Shape parameters or measurements 
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generated from an internal annulus would represent growth variation during the period 

corresponding to the otolith region bounded by the annulus in question. While 

measurements of growth increments (lengths from nucleus to annual rings) have been 

used in stock identification studies, shape analysis of internal growth rings has not 

been investigated. It is likely that, for fish with well-defined annual rings, a trace of 

the region bounded by the first annulus would correspond well to the shape of the 

otolith at the time of annulus formation. In this case, shape parameters generated from 

this internal trace could be used in intraspecific investigations. This study assesses the 

feasibility of using shape parameters generated from internal traces of the first 

annulus to identify juvenile origin in herring (Clupea harengus).  

Atlantic herring are one of the most important pelagic species exploited by the 

European fishing industry. There are four management units around the Irish 

coastline, and fish in these areas have their own spawning time and location. Within 

the Irish Sea, herring spawn in autumn, usually for a 3-4 week period beginning in 

September (Dickey-Collas et al., 2001) while herring in the Celtic Sea spawn in 

autumn and winter (Molloy, 1980a). Autumn- and winter-spawned herring display 

distinct otolith microstructure patterns and can be distinguished using increment width 

measurements (Brophy and Danilowicz, 2002). Otolith microstructure analysis has 

shown that herring from the Celtic Sea are transported into the Irish Sea during the 

first year of life (Brophy and Danilowicz, 2002). Evidence from tagging studies, 

otolith microstructure and parasite prevalence suggests that Celtic Sea juveniles in the 

Irish Sea return to join the Celtic Sea spawning stock when they mature (Brophy et 

al., 2006, Campbell et al., 2007, Molloy et al., 1993).  The effect of juvenile mixing 

on recruitment to the fishery in the Celtic Sea is still unquantified and the importance 

of the Irish Sea nursery to the Celtic Sea stock has not been assessed or monitored 

(ICES, 2007). 

This study investigates if age-0 winter-spawned herring that drift into the Irish Sea 

during the first year of life (migrant component) can be distinguished from those that 

remain in the Celtic Sea (resident component) on the basis of otolith shape. Previous 

research has found substantial variation in growth rates between these two 

components (Brophy and Danilowicz, 2002), so it is likely that these growth 

differences are reflected in otolith shape parameters. The extent to which shape 

variation is preserved in the internal morphology of the otolith is investigated using 
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traces of the first winter ring in one year old fish from the same cohort.  If shape 

variation is sufficiently preserved, these internal traces may be used to trace juvenile 

origin in adult fish.  This method could be used to evaluate the extent of movement 

between nursery, feeding and spawning grounds, thus elucidating the mechanisms 

implicit in herring stock structure. This would provide critical information where 

uncertainty in stock assessments has resulted from a lack of reliable information on 

stock mixing (ICES, 2007). The method may also be useful in separating stocks where 

distinct growth patterns are only observed during the juvenile phase or where adult 

stocks are not significantly geographically separated. Measurements of internal annuli 

were investigated to identify if differences between two different components of the 

same stock separated by nursery ground origin could be used for discrimination 

purposes. 

 

2.3 Methods 

 

Fish sampling 

Atlantic herring (Clupea  harengus) were collected in the Irish and Celtic Seas in 

2004 and 2005.  Sampling was stratified by length in order to target fish from the 

2003 cohort as age-0 fish in 2004 (7-19 cm) and age-1 fish in 2005 (15 –23 cm). Fish 

with no translucent winter ring in the otoliths were classified as age-0 and those with 

one translucent winter ring were classified as age-1. Irish Sea fish were collected 

using mid-water trawls during herring acoustic surveys conducted by the Agri-Food 

and Biosciences Institute (AFBI)
2
 in September 2004 and 2005 onboard the RV 

“Lough Foyle” and RV “Corystes”, respectively. Fish from the Celtic Sea were 

collected during groundfish surveys conducted by the Marine Institute onboard the 

RV “Celtic Explorer” in November 2004 and 2005. Fish were collected from three 

sites in the Irish Sea and two sites in the Celtic Sea in 2004, and from one site in the 

Irish Sea and one site in the Celtic Sea in 2005 (Figure 2.1). Fish were processed 

onboard or frozen whole at –20˚C. Total standard length and weight were recorded to 

the nearest 0.1 cm and 0.1 g respectively and both sagittal otoliths were removed and 

cleaned in water before drying and storing in 5 ml plastic vials.  

 

                                                 
2
 Formerly known as The Department of Agriculture and Rural Development , Northern Ireland. 
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Otolith ageing and microstructure analysis 

Otoliths were left to soak in water for up to 24h to improve clarity of the annual rings. 

Age-0 individuals collected in 2004 and age-1 individuals collected in 2005 were 

selected for further analysis. The mean lengths and numbers of fish used in the 

analysis are shown in Table 2.1.  

Otolith microstructure analysis was then used to classify individuals as winter- or 

autumn-spawned based on daily increment widths at the larval core using the method 

developed by Brophy and Danilowicz (2002). One otolith (typically the right) from 

each individual was used for microstructure analysis. All otoliths were mounted using 

TAAB™ resin. Age-0 otoliths were mounted and polished on the sulcus side until the 

larval core was fully exposed. Age-1 otoliths were initially polished on the anti-sulcus 

side until light could penetrate the larval core, and were then remounted and polished 

on the sulcus side until the larval core was fully exposed. 

The core was photographed at 1000X using an Olympus™ compound microscope 

with an Olympus™ Camedia digital camera. Daily increments were measured along 

the longest axis from the centre to the edge of the image. Otoliths with average 

increments widths of > 2.3 µm between increments 61-70 were classified as winter-

spawned (97% of fish), while fish with average increment widths of < 2.2 µm were 

classified as autumn-spawned (3% of fish), as determined by Brophy and Danilowicz 

(2002). Autumn spawned fish were excluded from further analysis. This was done in 

order to restrict the investigation of otolith shape to fish that had spawned at the same 

time of year and were most likely of Celtic Sea origin. This removes the potentially 

confounding influence of hatching time and stock origin on otolith shape and restricts 

the investigation of otolith shape to the migrant and resident components of the Celtic 

Sea winter-spawned juvenile herring stock. Autumn-spawned fish were also removed 

due to the insufficient size of the sample (only 3% of fish sampled). 

 

Otolith shape analysis 

Otolith characteristics (size and shape) reflect the growth pattern of the fish as well as 

being markedly species specific (L'Abee-Lund, 1988). As a result it can be used to 

differentiate between species (L'Abee-Lund, 1988) as well as between 
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populations/stocks of the same species (Begg and Brown, 2000, Campana and 

Casselman, 1993, Cardinale et al., 2004, Robertson and Talman, 2002, Stransky, 

2005, Turan, 2000). Otoliths grow throughout the life of the fish and do not appear to 

be subject to mineral resorption except under extreme circumstances (Mugiya and 

Uchimura, 1989). 

Otolith shape can be described using manual distance measurements to calculate 

shape indices such as circularity and form factor. More complex methods such as 

Fourier series shape analysis, use image analysis software to trace otolith outlines and 

to generate shape coefficients. In this study, a combination of shape indices and 

elliptical Fourier shape descriptors were used to describe otolith shape variation in 

juvenile herring from the Irish and Celtic Seas. 

Using typically the left otolith, otolith images were digitised using an Olympus™ 

Camedia digital camera and an Olympus™ SZX7 stereomicroscope at 20X 

magnification. Where only the right otolith was available, images were horizontally 

flipped using standard image analysis techniques. Age-0 otoliths were positioned 

sulcus side down with the rostrum pointing to the left and photographed using 

transmitted light (Figure 2.2a). Age-1 otoliths were positioned in the same orientation 

and photographed as bright objects on a dark background to ensure the first winter 

ring was clearly visible. For each age-1 image the outer edge of the first winter ring 

was traced manually using Olympus Dp-Soft software (Figure 2.2b). To assess the 

repeatability of the manual traces, three traces were taken of first winter ring in four 

otoliths. These traces were then used to obtain a measurement of precision. 

Coefficients of variation were calculated for feret lengths, feret widths, areas and 

perimeters of each otolith.  All coefficients of variation (CV’s) were found to be <1%. 

This shows that the outline could be traced manually with a high rate of precision. 

Each trace was filled-in in black using Microsoft Paint and saved for further analysis 

(Figure 2.2c). 

 

Shape indices 

Using the image of each age-0 otolith and the trace from each age-1 otolith, a series of 

2-dimensional measurements was taken using Olympus™ Dp-Soft: area, perimeter 

and feret length and feret width. Feret length and feret width are the length and width 
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of a box which encloses the otolith. These measurements were used to calculate a 

number of shape indices (Russ, 1990, Tuset et al., 2003) that are outlined in Table 2.2. 

 

Analysis of otolith outlines 

Using images of whole otoliths for age-0 fish and traces of the 1
st
 winter ring filled in 

black for age-1 fish, digitalised outlines were generated using TpsDig
3
 image analysis 

software. Outlines can be automatically computed around structures that are either 

dark on a light background or light on a dark background, therefore otolith images 

were converted to black objects on a white background using TpsDig. Outlines were 

saved as a series of x, y coordinates as TPS files. The user either accepts the actual 

number of coordinates generated by TpsDig or can specify a lower number of 

coordinates. The actual number generated was used in this investigation. Each trace 

was started at the excisura major, which is the notch located in the anterior rim of the 

sagittal otolith (see Figure 2.2b). TPS files were then converted into a single data file 

in the format that is required for the Fourier analysis program EFAwin
4
.  

Using the EFAwin program, 20 harmonics were generated for each otolith. Each 

harmonic consisted of four coefficients resulting in 80 coefficients (C) per individual. 

The program standardises for size and orientation, giving the first three coefficients 

fixed values of C1 = 1, C2 = C3 = 0. Each individual is therefore represented by 77 

unique coefficients (C4-C80). Further details on elliptic Fourier analysis can be found 

in Bird et al. (1986) and Lestrel (1997). 

A preliminary trial was conducted to establish the precision associated with the 

measurement of the shape variables. Nine otoliths were photographed three times. 

Images were used to generate three separate sets of coordinates. These coordinates 

were then used to generate three sets of shape variables for each image based on the 

repeated outline generation. The repeatability of the shape variable measurements was 

examined across different images of the same otolith and across multiple traces made 

using the same image using coefficients of variation. Coefficients of variation (CV) 

were calculated using the formula:   

 

                                                 
3
 Public domain program developed by F. J. Rohlf, available freely on the internet at 

http://life.bio.sunysb.edu/morph/index.html 
4
 Public domain program developed by F. J. Rohlf and S. Ferson, available freely on the internet at 

http://life.bio.sunysb.edu/morph/index.html 

http://life.bio.sunysb.edu/morph/index.html
http://life.bio.sunysb.edu/morph/index.html
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Coefficient of variation = 100*
x

Sd
 

Where  is the mean and Sd is the standard deviation.  

High levels of precision were achieved when shape variables were measured using 

multiple traces of the same image (CV < 10% for 92% of variables). Many of the 

shape variables could not be measured with satisfactory precision across different 

images of the same otolith (CV > 20% for 68% of the variables, see Appendix A). 

This variability may arise due to small variations in the three dimensional positioning 

of the otolith on the microscope stage. For this reason, further analysis was restricted 

to variables which could be measured with reasonably high levels of repeatability 

(CV<18%).   

 

Data Analysis 

 

Growth and condition 

Spatial variability in fish size, larval growth rates and juvenile condition was 

investigated. Total otolith length and the length of the otolith region bounded by the 

first annulus were used as an index of fish size at the end of year one in 0- and age-1 

fish respectively. The mean widths of increments 61-70 were used as a measure of 

late larval growth rates. Fulton’s condition index was calculated using the formula; 

3L
W  where W = weight and L= length. Growth and condition variables were first 

tested for normality and homogeneity of variance to assess their suitability for 

parametric testing. All tests were carried out with an alpha significance level of 0.05 

using MINTAB 14 for windows. Based on the results of these tests, Kruskall-Wallis 

rank sum tests or univariate ANOVA were used to detect differences in otolith length, 

larval growth rates and fish condition between components (resident and migrant) for 

age-0 and age-1 and between sites within components for age-0 fish.  

 

Shape variables 

Shape indices and coefficients (henceforth referred to collectively as shape variables) 

were examined for normality and homogeneity of variance using Kolmorgorov-

Smirnov normality tests and Levene’s tests respectively. All tests were carried out 
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with an alpha significance level of 0.05 using MINTAB 14 for windows. Variables 

that displayed normal distribution and homogeneity of variance were tested using 

Univariate ANOVA for otolith shape differences between components (resident and 

migrant) and between sites within each component. Variables that showed no 

significant difference in shape between sites within each component were deemed 

representative of that component. Variables that differed significantly between the 

resident and migrant components were considered potentially useful in the 

development of a discriminate function analysis (DFA) to classify fish to nursery 

areas and were selected for further analysis.  

Based on the results of these tests on the five shape indices and 77 coefficients 

calculated, one shape index (rectangularity) and three coefficients (C12, C14 and 

C25) were selected for further analysis. To ensure that DFA would not be affected by 

multicollinearity, variables were tested for univariate correlation using Pearson’s 

correlation coefficient using MINITAB 14 for windows and within group correlation 

using SYSTAT 11 for windows. Multicollinearity can result in the use of redundant 

predictors and can affect the outcome of the analysis (Graham, 2003). Variables were 

also tested for homogeneity of covariance matrices by carrying out Box’s M test using 

PAST- version 1.75b (Hammer et al., 2001) to ensure they meet all the assumptions 

of MANOVA (Gotelli and Ellison, 2004). Using SYSTAT 11 for windows ANCOVA 

(with otolith length as a covariate) were carried out to determine if there was a 

significant relationship between otolith length and each variable (p < 0.05).  No 

significant interactions were identified. Next, variables were tested for significant 

correlation with otolith length. Where significant correlation was present the size 

effect was corrected for using the common within group slope (b) (Begg et al., 2001, 

DeVries et al., 2002, Galley et al., 2006, Reist, 1985, Tuset et al., 2006). This 

procedure was used to adjust C14, for which a significant correlation was identified 

(see Table 2.3). For the age-1 fish, otolith length was taken as the feret length of the 

trace of the first winter ring. Variables were also tested for correlation with Fulton’s 

condition index and width of increments 61-70 to determine if shape was directly 

correlated with late larval growth or juvenile condition. 

DFA was carried out using rectangularity, C12, C14 (adjusted) and C25 on age-0 fish 

to determine the proportion of individuals that could be correctly classified to nursery 

area based on otolith shape. This procedure initially classifies each case into the group 
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where the value of its classification function is largest. These results may be 

misleading because the classification rule is evaluated using the same cases that are 

used to compute it. The jackknifed classification procedure attempts to remedy this 

problem by removing and replacing each case one at a time and using functions 

computed from all the data except the case being classified (Engelman, 2004). Both 

procedures were carried out using the age-0 data. Once the variables that could be 

used to distinguish between the migrant and resident components had been identified, 

the next step was to establish if this shape variation was sufficiently preserved in the 

first winter ring to distinguish between age-1 fish from each component. The 

discriminate function developed for the age-0 fish was used to classify age-1 fish to 

nursery area (Celtic Sea-resident / Irish Sea-migratory) by the cross validation 

procedure. The percentage of individuals correctly classified to each nursery area 

based on the shape characteristics of the first winter ring was then assessed. 

 

2.4 Results 

 

Analysis of otolith growth and length and fish condition identified distinct differences 

in growth patterns between the resident component of winter spawned fish collected 

in the Celtic Sea and the migrant component of winter spawned fish collected in the 

Irish Sea in both 2004 and 2005. One-way ANOVA showed that for winter-spawned 

herring there was a significant difference in the mean width of increments 61-70 

between the resident component and migrant component in both 2004 (p < 0.01) and 

2005 (p = 0.02) with the migrant component displaying slower growth than its 

resident counterpart. Fish condition (F) was also shown to be significantly different 

between the two components (p < 0.01), with age-0 juveniles in the Celtic Sea being 

in better condition than those from the Irish Sea. Otolith length did not meet the 

assumptions for parametric testing, therefore a Kruskall-Wallis rank sum test was 

used to test for differences between the components. Significant differences in otolith 

length at the end of the first year were identified between the resident and migrant 

components for both the age-0 fish collected in 2004 (p < 0.01) and the age-1 fish 

collected in 2005 (p < 0.01). However, otolith length was also found to differ 

significantly between sites within the Irish Sea (p < 0.01) and Celtic Sea (p < 0.01) for 

age-0 fish collected in 2004. 
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Shape variables were tested for normality and homogeneity of variance and were 

selected for inclusion in the discriminate function analysis (DFA) based on the spatial 

and temporal variation revealed by ANOVA. Variables showed significant variability 

between components and no variability between sites within each component and 

were therefore representative of that nursery area (see Table 2.4). None of the 

variables selected showed significant correlations in either univariate Pearson’s 

correlation or within group correlation matrices. Homogeneity of variance was shown 

using Box’s M test (p= 0.67).   

Otolith shape variables and fish length and weight were used to investigate the 

relationship between otolith characteristics and fish growth and condition. These 

relationships were not clear-cut. Late-larval otolith growth (mean width of increment 

widths 61-70) was not correlated with any of the selected shape variables. Fulton’s 

condition index was significantly correlated with C25 for the Irish Sea individuals (p 

= 0.01) but no such correlation was observed in the Celtic Sea fish. 

The DFA of age-0 fish gave an overall classification success of 84% and a jack-knifed 

classification of 83%, with a classification success of over 81% for fish from both the 

Celtic and Irish Seas (see Table 2.5). 

In the cross-validation of the age-1 fish using the DFA developed for the age-0 

individuals, 97 % of age-1 individuals were classified correctly. Of the age-1 fish, 93 

% of Celtic Sea fish and 100 % of Irish Sea fish were successfully classified to the 

correct region (see Table 2.5). The canonical scores of age-0 and age-1 fish obtained 

from the discriminate function analysis and cross validation procedure are shown in 

Figure 2.3a and 2.3b.  

 

2.5 Discussion 

 

Otolith microstructure analysis was used to distinguish between autumn and winter-

spawned juvenile herring from the 2003 cohort, before the analysis of otolith shape 

variation was carried out. Microstructure analysis has been used to address questions 

relating to growth rates, age estimates, stock discrimination, dispersal patterns and the 

effect of temperature and feeding on individuals (Baumann et al., 2006, Clausen et 

al., 2007, Folkvord et al., 1997, Fox et al., 2003, Morales-Nin et al., 1998, Suthers 

and Sundby, 1993). In this investigation, microstructure analysis was used to 
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distinguish between autumn and winter spawned fish. This was achieved using the 

method developed by Brophy and Danilowicz (2002). The increment widths observed 

were consistent with the limits set by Brophy and Danilowicz (2002) in their study of 

juvenile herring in the Irish and Celtic Seas and those observed in adult herring from 

the same areas (Brophy et al., 2006). The three studies show consistent increment 

width patterns in Irish and Celtic Sea herring across six year classes indicating 

temporal stability of this stock marker. Otolith microstructure analysis is therefore an 

ideal method for identifying the migrant component of Celtic Sea winter-spawned 

juveniles when mixed with the autumn-spawned Irish Sea stock at Irish Sea nursery 

grounds. However, increment widths cannot be used to identify the migrant 

component once it has recruited to the adult stock in the Celtic Sea and mixed with 

the resident component of winter-spawned fish there, as all fish will display increment 

widths characteristic of winter growth. This was the rational for using otolith shape to 

discriminate between the resident and migrant components. 

The results of this study show that the shape of otolith annuli can be used to 

distinguish between the migrant and resident components of the Celtic Sea winter-

spawned stock. A high level of classification success (97%) was achieved when fish 

from each component were classified to nursery area based on the shape of the first 

winter ring. These findings contrast with the study carried out by Turan (2000) in 

which herring from the Celtic Sea could not be distinguished from herring from the 

North Sea based on truss measurements of the otolith outline. The levels of 

classification success in this study may indicate that internal measurements are a more 

powerful method for stock discrimination, where juveniles are less migratory / more 

sedentary and therefore exposed to more constant environmental conditions. This 

juvenile section of the otolith can be traced at any stage of the fish’s life and may 

facilitate the tracing of nursery origin in adult fish. While this will depend on the 

thickness of the adult otoliths it is likely for herring given the clarity of increments in 

older fish (pers. obs.). 

As with all morphometric analyses, a number of confounding effects must be 

considered to ensure that classification is based on shape alone. Sex, age and size may 

all influence otolith shape (Cardinale et al., 2004), leading to misinterpretation of 

spatial variation in shape parameters. The fish used in this study were homogenous 

with respect to age as they were all from the same year class. Sex related differences 
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are unlikely to influence the results as all fish sampled were immature and of 

indeterminate sex. In addition, no significant effect of sex on otolith shape has been 

observed in herring (Bird et al., 1986). In this study, herring from the two components 

showed considerable differences in otolith length (taken as an indication of size). This 

is an important effect and can compromise stock discrimination studies if variables 

are not standardised (Smith, 1992). Only one of the shape variables used in the final 

analysis was correlated with length. This variable was standardised to ensure the 

classification of fish to nursery area was independent of length. The observed 

differences in otolith shape between juvenile herring from the Irish and Celtic Seas 

are therefore independent of age and size. 

In the case of juvenile herring from the Irish and Celtic Seas, the observed length 

difference was sufficiently great to allow the two groups to be separated purely on the 

basis of the size of the otolith region bounded by the first annulus. However, 

discrimination based on size-independent shape variables is preferable for a number 

of reasons. Firstly, size can be affected by sampling bias and sample design (Dos Reis 

et al., 1990). Shape on the other hand is not affected by the biases associated with size 

and represents a more reliable method for classifying individuals. In this study, size 

showed significant variation between sites within each region as well as between 

regions. Therefore, unlike the shape variables, the size of fish from one site may not 

be truly representative of fish from that component and any characterisation based on 

size will be greatly influenced by choice of site. In addition size differences observed 

at one point in the life cycle may be less apparent at a later stage due to size-selective 

mortality. Over-wintering mortality has been shown to be size dependent in herring 

with smaller fish being more prone to starvation than larger individuals during the 

first winter (Norcross et al., 2001). Lastly, in cases where there is greater overlap in 

size between regions, it is likely that a multivariate classification function based on 

several size-independent shape variables would have greater discriminatory power 

than size alone. In previous years, the size differences between juvenile herring from 

the Irish and Celtic Seas were not as marked (Brophy, 2002, Brophy and Danilowicz, 

2002) and fish from the two areas could not be separated by size alone. 

Discrimination based on shape will be more widely applicable across years and 

regions than separation based on size alone. 
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The factors influencing otolith shape have not been directly tested in the current study 

and, in general, are not fully understood. Numerous studies have evaluated the relative 

importance of genetic / environmental effects on otolith shape in particular fish 

species in the context of stock discrimination, but a limited number of studies have 

directly investigated the determinants of otolith shape. Gauldie and Nelson (1990) 

found that faster growth produced long thin crystals compared with shorter more 

compacted ones in slower growing fish, which could influence the overall shape of 

the developing otolith. Gagliano and McCormick (2004) showed that otolith shape 

was influenced by recent feeding histories in tropical fish species. They established 

that shape differences could not be attributed to size differences among fish and 

suggested that shape may reflect fish condition. Other studies have documented a link 

between shape differences and somatic growth rates (Begg and Brown, 2000, 

Campana and Casselman, 1993, Cardinale et al., 2004, Simoneau et al., 2000). For 

some species, the level of classification success obtained using otolith shape analysis 

increases with the extent of genetic discreteness or geographic separation displayed by 

study groups (Castonguay et al., 1991, Friedland and Reddin, 1994), implying that 

otolith shape variation is determined by genetics to at least some degree. Turan (2000) 

observed a direct relationship between phenotypic divergence and geographic 

separation of herring in the northeast Atlantic using meristics and truss measurements 

of otoliths. While both methods were able to separate Icelandic, Baltic and 

Trondheimsfjord stocks, North Sea and Celtic Sea could not be separated out from 

one another. Substantial otolith shape differences have also been observed between 

groups of fish that are close in geographic distribution (Galley et al., 2006, Pothin et 

al., 2006) and for stocks that could not be separated using genetic techniques 

(DeVries et al., 2002). Otolith shape differences between reared and wild components 

of cod (Cardinale et al., 2004) and lake trout (Simoneau et al., 2000) also highlight 

how environmental factors such as temperature and feeding conditions can produce 

otolith shape variation in the absence of genetic differences.  

It is improbable, that the observed shape differences between the migrant and resident 

components observed in this study are driven by genetic factors, as the fish collected 

from both the Celtic and Irish Seas were most likely from the same Celtic Sea winter-

spawned stock. Also genetic homogeneity of herring stocks in spawning aggregations 

around the British Isles has been reported in several investigations (Jorstad et al., 
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1991, King et al., 1987, Turan, 1997). It is more plausible that environmental factors 

produce otolith shape variation in the fish sampled. Sea temperatures observed in the 

Irish and Celtic Seas over the last 50 years have shown a trend, with mean 

temperatures rarely exceeding 10
o
C in the Irish Sea and rarely going below 10

o
C in 

the Celtic Sea (Fox et al., 2000). The link between fish growth rates and temperature 

is well established (Bailey and Alanara, 2006, Brander, 2000, Young et al., 2005) and 

may explain the growth and condition differences observed between the migrant and 

resident components. In the current study, the relationship between otolith shape and 

fish growth and condition was not clear-cut. While one shape variable was found to be 

correlated with Fulton’s condition index in the Irish Sea, none of the variables were 

correlated with fish condition in the Celtic Sea. In the absence of any genetic variation 

between the two components (King et al., 1987), it is likely that the otolith shape 

variation between the winter-spawned juvenile herring at Irish and Celtic Sea nursery 

grounds is caused by environmentally driven growth differences.  

Studies to date have focused on the shape of the external otolith outline or 

measurements of internal features. This study highlights the potential for using 

analysis of internal shape to distinguish between groups of fish that are separated at a 

particular point in the life history. If, at the time of annuli formation, a stock consists 

of more than one component distributed at different geographic locations, such as 

nursery areas, feeding grounds or over-wintering areas, the shape of this internal 

feature may provide a method for tracing which component an individual belonged to 

at a later stage in the fish’s life history when the fish occurs in a mixed assemblage.  

The method has potential for intraspecific studies, where internal otolith annuli are 

well defined (e.g. plaice and cod) and can be reliably traced out. The successful 

classification of 83% of winter spawned age -0 juveniles is reasonably high compared 

to other Fourier analysis studies. The success of otolith shape analysis at separating 

individuals for interstock investigations varies from 60 - >90 % depending on the 

species (Berg et al., 2005, Bird et al., 1986, Cardinale et al., 2004, Castonguay et al., 

1991, Friedland et al., 1994, Gauldie and Jones, 2000, Pothin et al., 2006, Smith et 

al., 2002). While Pothin et al. (2006) achieved >90% classification success, the fish 

sampled (white goatfish) have been shown to have very high site fidelity. In a tag-

release study carried out by Holland et al. (1993), 93% of white goatfish recaptures 

occurred at the site of release. Further knowledge of the movements of species may 
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help explain why in some studies significant differences are observed between stocks 

at a local level (Cardinale et al., 2004) while in others the degree of difference 

increases with geographic separation (Castonguay et al., 1991).  

While other studies have investigated the shape of the otolith outline, this is the first 

study to examine the shape of an internal otolith annuli. The successful classification 

of 97% of age-1 individuals from the trace of the first winter ring provides promising 

results for the application of this technique to the separation of stock components that 

occupy distinct environments during the juvenile phase. The technique could 

potentially be applied to other calcareous structures that show annual growth rhythms 

such as scales, bones and spines (Meunier, 2002). Scale morphology has been used to 

distinguish between fish populations at the local level (Poulet et al., 2005) as well as 

over wider geographical areas and across numerous year classes (Ibanez et al., 2007, 

Richards and Esteves, 1997). Classification success rates varied from 57-84% 

depending on the numbers of samples and year classes used. In a study on 

measurements of scale annuli, Debarros and Holst (1995) identified significant 

differences in annuli width between Norwegian spring spawning herring that had 

spent their juvenile phase at different nursery grounds. The shape of annuli may also 

be useful for separating these different components. 

Regardless of what is causing the observed differences, analysis of internal otolith 

outlines has great potential for tracing nursery ground origin in adult herring. A 

method for identifying the migrant component is of value to the management of the 

associated fishery. The method developed in this study identified no detectable 

exchange between the resident and migrant components up to the second winter. 

Evidence from other studies suggests that Celtic Sea winter-spawned juveniles in the 

Irish Sea return to join the Celtic Sea spawning stock when they mature at age two or 

three (Brophy and Danilowicz, 2002, Campbell et al., 2007, Molloy, 1980a, Molloy, 

1980b). In this study, the migrant component of winter-spawned juveniles in the Irish 

Sea has been shown to grow at a slower rate than their resident counterparts. Pre-

recruitment growth in Celtic Sea herring juveniles has been linked to age at first 

maturity, with larger fish recruiting to the spawning stock one to two years earlier 

than fish that had experienced slower growth rates, characteristic of the migrant 

component (Brophy and Danilowicz, 2003). The delayed recruitment of the migrant 

component in the Irish Sea to the Celtic Sea stock will have subsequent effects on the 
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strength of each year class recruiting to the Celtic Sea winter fishery. Regular 

monitoring of the dispersal of Celtic Sea herring into the Irish Sea and during the first 

year of life and the return of this component to the adult stock in the Celtic Sea would 

aid predictions of annual fluctuations in recruitment strength.  

If this method is to be used to monitor the return of the migrant component to the 

Celtic Sea stock, it will need to be ground-truthed on a yearly basis, to account for the 

effect that inter-annual variation in environmental conditions could have on the otolith 

shape characteristics of fish from each component. The incorporation of this method 

into annual herring sampling programmes would increase the level of knowledge 

obtained from the otoliths of each fish at very little extra cost to the sampler. Other 

potential nursery areas for the Celtic Sea winter-spawning stock, such as the west and 

south west coast of Ireland, could be identified using oceanographic dispersal models 

and juvenile surveys. Such nursery areas, once identified, should then be characterised 

in terms of otolith shape of the fish residing there to ensure that adults can be reliably 

assigned to their nursery area of origin.   

Other methods that may be useful in this area and show potential for use in 

conjunction with otolith shape include parasite prevalence’s and tagging. A study 

carried out by Campbell et al. (2007), showed differences between the parasites 

present in juveniles at Irish Sea nursery grounds and those infecting the adult 

spawning stock. The study also identified a common parasite between spawning 

adults in the Irish Sea and a spawning sample collected to the south of Ireland. By 

combining these two methods the rate of classification success achieved with either 

method on its own could be improved. Results of tagging studies indicate that a 

considerable amount of juveniles from the Irish Sea migrate southwards to recruit to 

the Celtic Sea stock (Molloy et al., 1993).  

The method presented here could also be applied to other herring stocks that migrate 

between nursery, feeding and spawning grounds and mix with other stocks in the 

process. For example, within the North Sea there are two major components of 

autumn spawning herring: Buchan / Shetland herring, Dogger / Banks herring and a 

winter spawning component, the Downs herring. Genetic analysis has determined that 

most aggregations in the North Sea are genetically indistinguishable from each other 

(Mariani et al., 2005). The three components mix for the majority of the year on 

feeding grounds and then migrate to specific grounds to spawn. Due to this mixing the 
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landings are not disaggregated and the three components are managed as a single 

stock. However all three components have different nursery grounds and have 

displayed different growth rates, with different mean lengths at the age-1 stage (Daan 

et al., 1990, Heath et al., 1997). This difference in geographic location during the first 

year of life and the differences in growth rates may result in shape differences within 

the first annuli of fish in each component. Shape analysis of this internal feature may 

provide a method for identifying juvenile origin in adult autumn-spawning herring at 

the North Sea feeding grounds. Autumn spawned larvae have been shown to drift into 

the Skagerrak-Kattegat where they remain until they migrate back to the North Sea at 

age 2/3 (Rosenberg and Palmen, 1982).  Shape analysis of the first winter annuli 

could be investigated to assess its potential for identifying adults in the North Sea who 

spent their juvenile phase in the Skagerrak-Kattegat.  

 

2.6 Conclusion  

 

The method presented here provides valuable results for otolith science. Shape 

analysis of internal annuli was used to separate the migrant and resident components 

of the Celtic Sea winter-spawned juvenile stock, and performed considerably better 

than size alone. Shape differences can most likely be linked to environmental 

conditions since all fish were from the same spawning stock. If ground-truthed on a 

yearly basis this method could be used to monitor and assist in the management of the 

Celtic Sea herring stocks. The method also has wide application to other stocks and 

populations that split into separate components at particular stages in their life history 

or mix at feeding / spawning aggregations. As a method it shows potential for internal 

shape analysis of not only otoliths but also scales and bones as well. It would be easily 

incorporated into stock discrimination studies where images of calcified structures are 

taken and may provide a useful source of information for stock discrimination studies, 

which play a fundamental role in the management of fish stocks and preserving 

biodiversity.   
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Figure 2.1 Sampling locations in the Celtic Sea (crosses) and Irish Sea (diamonds) of 

fish from the 2003 cohort as age-0 fish in 2004 (solid) and age-1 fish in 2005 

(outlines). Dotted and criss-cross ellipses denote principle spawning areas for winter 

and autumn spawning fish, respectively. Solid arrow indicates dispersal of Celtic Sea 

herring to nursery grounds in the Irish Sea. Dashed arrow indicates proposed return 

route.  
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Figure 2.2a  

 

Figure 2.2b  

 

Figure 2.2c  

Figure 2.2. Otolith Images: a) image of age-0 herring otolith taken using transmitted 

light; b) age-1 herring otolith with trace of the first winter ring marked by black line. 

Outline traces started at excisura major marked by arrow; and c) age-1 herring otolith 

trace filled in black in preparation for elliptic Fourier analysis.  
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Figure 2.3a 

 

 

Figure 2.3b 

Figure 2.3. Frequency distribution of canonical scores of (a) age-0 fish obtained from 

discriminant function analysis, and b) age-1 fish that were classified using the same 

classification function.  All fish are from the 2003 cohort. Black bars indicate Celtic 

Sea fish; open bars indicate Irish Sea fish. Dashed lines indicate approximated 

separation of components. 
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Table 2.1 Mean length ± standard deviation and mean increment width from 

increment 61-70 ± standard deviation of winter-spawned herring captured in 2004 and 

2005.  

 

 2004 age-0 2005 age-1 

Region n Fish length 

(cm) 

Increment width 

(µm) 

n Fish length 

(cm) 

Increment width 

(µm) 

       

Irish Sea 90 9.7 ± 1.1 3.1 ± 0.5 29 18.2 ± 0.6 3.2 ± 0.4 

Celtic Sea 68 15.3 ± 1.0 3.4 ± 0.5 28 20.5 ± 0.6 3.4 ± 0.3 

 



Table 2.2 Size parameters and resulting shape indices calculated for analysis of each 

otolith in age-0 and age-1 fish from the 2003 cohort.  

 

Size Parameters Shape Indices 

Area (A) Circularity = P/ A
2
 

Perimeter (P) Rectangularity = A / (FL*FW) 

Feret Weight (FW) Form-Factor = (4πA)/ P
2
 

Feret Length (FL) Roundness = (4A) / (πFL
2
) 

 Ellipticity = (FL-FW) / (FL+FW) 
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Table 2.3 Pearson’s correlation coefficients for variables selected for discriminate 

function analysis for age-0 fish from the 2003 cohort from the Irish and Celtic Seas.  

 

 Celtic Sea age-0 Irish Sea age-0   

 Length Length B 

Rectangularity -0.20 (0.10) -0.11 (0.32)  

C12 0.01  (0.99) -0.17 (0.12)  

C14 0.12 (0.34) 0.27 (0.01) 7 * 10 
-5

 

C14 adjusted 0.02 (0.86) 0.17 (0.12)  

C25 -0.08 (0.55) -0.18 (0.09)  

p values are indicated in parenthesis. 
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Table 2.4 Results of ANOVAs investigating otolith shape differences between sites 

within each area and between areas (Celtic and Irish Seas) for age-0 juveniles from 

the 2003 cohort.  

 

 Between sites 

within Irish Sea ‘04 

Between sites within 

Celtic Sea ‘04 

Celtic Sea vs. Irish 

Sea  ‘04 

 F df p F df p F df P 

Rectangularity 0.99 2 0.37 3.05 1 0.09 11.73 1 <0.01 

C12 1.88 2 0.16 2.42 1 0.13 36.32 1 <0.01 

C14 0.61 2 0.55 0.12 1 0.73 40.53 1 <0.01 

C25 1.09 2 0.34 0.04 1 0.84 34.81 1 <0.01 
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Table 2.5 Jackknifed classification matrix for discriminate function analysis of the 

age-0 juveniles and cross validation of age-1 fish from the Irish and Celtic Seas. All 

fish sampled from the 2003 cohort. 

 

Actual origin  

Age 

Classified to 

Celtic Sea Irish Sea % Correct 

Celtic Sea 0 55 13 81 

 1 28 2 93 

Irish Sea 0 14 73 84 

 1 0 29 100 

Total 0 69 83 83 

 1 28 31 97 
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Chapter 3 

 

Otolith shape analysis, its application for discriminating between Irish and Celtic 

Sea herring (Clupea harengus) stocks in the Irish Sea
5
. 

 

3.1 Abstract 

The extensive movement of Celtic Sea juvenile Atlantic herring (Clupea harengus) 

during the first year of life into the Irish Sea results in two stocks of herring occurring 

together at Irish Sea nursery grounds: the resident autumn spawned juveniles that 

originate in the Irish Sea and the winter spawned juveniles that hatch in the Celtic Sea 

and drift into the Irish Sea during their larval stage.  

Measurements of otolith increment widths can be used to distinguish between the fast 

growing winter-spawned and slow growing autumn-spawned stocks; however this 

method can be time consuming. This study investigates otolith shape analysis as an 

alternative method for discriminating between seasonal spawning stocks. Juvenile 

herring were collected from nursery grounds in the Irish Sea in 2006 and were 

classified as autumn or winter spawned using increment width measurements. Otolith 

shape was defined using shape indices and Fourier descriptors. Juveniles were 

successfully classified to hatch type with a high degree of accuracy (86-87%) using 

shape variables. The potential use of otolith shape analysis for identifying Celtic Sea 

juveniles in the Irish Sea and its possible use for other mixed herring stock 

assessments is discussed.  

 

3.2 Introduction 

 

Atlantic herring (Clupea harengus) is a highly complex species. Numerous stocks 

display differences in spawning season and location and life history parameters 

(McQuinn, 1997). Due to larval dispersal and adult migrations stocks, that spawn in 

separate locations often mix at nursery and feeding grounds (Messieh et al., 1989, 

Mosegaard and Madsen, 1996, Rosenberg and Palmen, 1982) causing much 

uncertainty for management. This uncertainty has led to extensive research into 

methods for separating mixed herring stocks. Otolith microstructure (Brophy and 

                                                 
5
 Chapter submitted to ICES Journal of Marine Science. Authors: Noirin Burke, Deirdre Brophy and 

Pauline A. King.  
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Danilowicz, 2002, Clausen et al., 2007, Moksness and Fossum, 1991), otolith 

morphometric analysis (Messieh et al., 1989, Turan, 2000, Burke et al., 2008), 

vertebral counts (Mosegaard and Madsen, 1996), parasite prevalence (Campbell et al., 

2007) and genetics (Ruzzante et al., 2006, Dahle and Eriksen, 1990) have all been 

used to distinguish between stocks or stock components with varying success rates 

depending on the stocks / stock components being investigated.  

Around the Irish coastline, herring are managed in four separate units, of which the 

Irish Sea (ICES division VIIaN) and the Celtic Sea (ICES division VIIaS, VIIg-k) are 

two. Within the Irish Sea, herring spawn in autumn, usually during a three to four 

week period from September onwards (Dickey-Collas et al., 2001), while in the Celtic 

Sea spawning occurs in autumn and winter (Molloy, 1980a). Evidence from larval 

drift studies (Özcan, 1974), length and vertebral count distributions (Bowers, 1964), 

tagging studies (Molloy et al., 1993) and otolith increment widths (Brophy, 2002) 

show that juvenile herring disperse from the east of the Celtic Sea into the Irish Sea 

during their first year of life and mix with the resident Irish Sea stock at nursery 

grounds in the Irish Sea. Evidence of the winter-spawned Celtic Sea herring returning 

to join the Celtic Sea winter spawning stock when they mature has been provided by 

tagging experiments (Molloy et al., 1993), otolith microstructure (Brophy et al., 2006) 

and parasite prevalence (Campbell et al., 2007).  

Otolith microstructure analysis has been used extensively in herring research since the 

discovery of daily increments within otoliths (Panella, 1971). Differences in 

microstructure between seasonal herring stocks have been used as a stock marker in 

the Irish and Celtic Sea (Brophy, 2002) , the Norwegian Sea (Moksness, 1992), the 

North Sea (Mosegaard and Madsen, 1996) and the North Sea and western Baltic 

(Clausen et al., 2007). Within the Irish Sea, Brophy and Danilowicz (2002) found a 

clear bi-modal distribution in width at larval increments 61-70 reflecting the presence 

of two groups: the slower growing autumn spawned individuals and faster growing 

winter spawned fish. These growth pattern differences could potentially be used to 

identify winter spawned Celtic Sea juveniles in the Irish Sea on a routine basis. 

However otolith microstructure analysis can be time consuming, if otolith shape 

analysis could successfully separate the two components it could provide a fast and 

sustainable method for management. Without the separation of this stock, accurate 

juvenile abundance estimates for the Irish Sea fishery is hampered and results in the 

failure to produce a precise recruitment index for the Irish Sea (ICES, 2007).  
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Otolith shape analysis is also widely used for fish species identification and stock 

classification. Otolith shape is markedly species specific (L'Abee-Lund, 1988) and 

less variable than fish growth, presumably due to the dual function of the otolith as an 

organ of equilibrium and hearing (Campana and Casselman, 1993). Otolith shape has 

been used in numerous stock discrimination studies (Cardinale et al., 2004, DeVries et 

al., 2002, Stransky et al., 2008) with levels of classification success ranging from 60-

95 % for interstock separation depending on the species.  

This study assesses the usefulness of otolith shape analysis as a tool for discriminating 

between Irish Sea (autumn spawned) and Celtic Sea (winter spawned) juveniles at 

Irish Sea nursery grounds are considers its value in the assessment of the Irish and 

Celtic Sea herring fisheries and other mixed herring stocks.  

 

3.2 Methods 

 

Fish sampling 

Atlantic herring (Clupea harengus) were collected in the Irish Sea in September 2006 

using mid water trawls during the herring acoustic survey onboard the RV “Corystes” 

with the Agri-Food Biosciences Institute (AFBI)
6
, Northern Ireland. Individuals 

ranging from 7-19cm were collected in order to target fish from the 2005 year class as 

age-0 fish (i.e. fish with no translucent winter ring in the otoliths). Sampling was 

spatially stratified with four stations selected from the east of the Isle of Man and four 

from the west (see Figure 3.1). Fish were processed onboard or frozen whole at –

20
o
C. Total standard length and weight were recorded to the nearest 0.1cm and 0.1g 

respectively and both sagittal otoliths were removed and cleaned in water before 

being stored dry in 5ml plastic vials.  

 

Otolith microstructure analysis 

Examination of otolith annuli was used to verify that all fish used in the analysis were 

at the age-0 stage. The mean lengths and numbers of fish used in analysis are shown 

in Table 3.1. 

Otolith microstructure analysis was then used to classify individuals as winter or 

autumn spawned based on daily increment widths at the larval core using the method 

                                                 
6
 Formerly known as The Department of Agriculture and Rural Development, DARD. 
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developed by Brophy and Danilowicz (2002) . Otoliths were processed following the 

method described in Burke et al. (2008). 

Otoliths with an average increment width of >2.3 µm between increment 61-70 were 

classified as winter spawned, while fish with mean increment widths of <2.2 µm were 

classified as autumn spawned. Approximately 50% of individuals were classified 

using manual increment measurements. A blind test of 10 randomly selected otoliths 

was carried out to assess the success of classification based on visual inspection. 

Classification based on visual inspection was feasible due to the distinct growth 

patterns displayed by autumn and winter spawned fish (Brophy and Danilowicz, 

2002) (see Figure 3.2a). The achieved classification success to hatch type was 100%, 

and remaining individuals were classified based on visual inspection alone.  

 

Otolith shape analysis 

Otolith shape can be described in a number of ways, one of the simplest being manual 

distance measurements. These measurements can be used in a series of mathematical 

equations that calculate shape indices which in this study included circularity, 

rectangularity, roundness, form-factor and ellipticity. More complex methods use 

image analysis software to generate coefficients that describe the shape of the otolith, 

such as Fourier series shape analysis. In this study, elliptic Fourier analysis was used 

to generate 77 shape coefficients (C4-C80) to describe the shape of each otolith 

outline. A combination of shape indices (form-factor) and coefficients (C12, C19 and 

C21) were used to describe otolith shape variation in juvenile autumn and winter 

spawned herring collected at nursery grounds in the Irish Sea. Methods used for 

obtaining shape indices and elliptic Fourier shape coefficients are described in Burke 

et al. (2008). Both otolith microstructure analysis and otolith shape analysis 

procedures were timed to estimate the processing time required for each method. 

 

Data analysis 

For the purpose of data analysis, winter and autumn spawned fish were treated as two 

separate stocks. Variability in growth was examined using fish and otolith lengths 

(Table 3.1). Lengths were first screened for normality and homogeneity of variance 

using Kolmorgorov-Smirnov normality tests and Levene’s tests respectively. All tests 

were carried out with an alpha significance of 0.05 using MINITAB 14 for windows. 

Attempts to transform the data were unsuccessful so Kruskall- Wallis rank sum tests 
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were used to test for differences in fish and otolith lengths between the stocks and 

between sites within each stock.  

Shape indices and elliptic Fourier shape coefficients (henceforth referred to 

collectively as shape variables) were screened using the same procedure. Variables 

which did not meet the assumptions for parametric tests were tested using the non-

parametric equivalent.  

Univariate ANOVAs or Kruskall- Wallis rank sum tests were used to test for shape 

differences between the stocks and between sites within each stock using MINITAB 

14 for windows. Variables that showed no difference in shape between sites within 

stocks were deemed representative of that stock. Variables that differed significantly 

between stocks were considered potentially useful for classifying fish to spawning 

season and were selected for further analysis. Next, variables were tested for 

significant correlations with each other. Where two variables were found to have a 

high correlation coefficient (>0.5) only one was selected for use in the final analysis. 

Based on the results of these tests form-factor and three coefficients (C12, C19 and 

C21) were selected for further analysis.  

Next, variables were tested for significant correlation with fish length to identify any 

size effects using Pearson’s correlation. ANCOVAs (with fish length as a covariate) 

were carried out using SYSTAT 11 for windows to determine if there was a 

significant relationship between fish length and each variable (p<0.05) within each 

stock. If no significant interaction is identified size effects can be corrected for using 

the common within group slope (Begg et al., 2001, DeVries et al., 2002, Galley et al., 

2006, Reist, 1985). Form-factor and C21 were identified as significantly correlated 

with fish length and were adjusted accordingly as no significant interaction was 

identified. This adjustment successfully removed the significant correlation with fish 

length.  

Variables were also tested for within group correlation using SYSTAT 11 for 

windows to ensure multicollinearity would not result in use of redundant predictors in 

the final analysis. Box’s M test was carried out using PAST-version 1.75b (Hammer 

et al., 2001) to test for heterogeneity of covariance matrices and was identified as 

significant (p = 0.02) 

Where the assumptions of equal covariance matrices are violated the optimal 

classification is achieved using a quadratic function rather than a linear (Seber, 2004). 
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Quadratic discriminate function analysis (QDFA) was carried using form-factor 

(adjusted), C12, C19 and C21 (adjusted) to determine the proportion of individuals 

that could be correctly classified as belonging to the autumn or winter spawned stock 

based on otolith shape. This procedure initially classifies each case into the group 

where the value of its classification functions is highest. These results may be 

misleading because the classification rules are evaluated using the same cases that are 

used to compute them. The jackknifed classification procedure attempts to remedy 

this problem by removing and replacing each case one at a time and using functions 

for all the data except the one being classified (Engelman, 2004). Both procedures 

were carried out in SYSTAT 11 for windows for age-0 autumn-spawned and winter-

spawned stocks. 

 

3.4 Results 

 

Of 244 fish analysed, 115 were classified as autumn-spawned while 129 were 

classified as winter-spawned based on otolith increment widths. Ninety seven percent 

of the individuals classified as autumn-spawned were from stations in the east Irish 

Sea, while 92% of individuals classified as winter were from stations in the west Irish 

Sea (see Figure 3.1). Of the individuals classified by manual measurement  of the 

increment widths (54% of total) the same split in mean increment widths at increment 

61-70 was identified as Brophy and Danilowicz (2002). Processing times took 

approximately five minutes per individual for otolith shape analysis and 20 minutes 

for microstructure analysis where manual increment measurements were taken. This 

was reduced to approximately 12 minutes when classification was carried out by 

visual inspection alone.  

Kruskall-Wallis rank sum tests identified differences in both otolith and fish lengths 

between the two stocks (p<0.05). However both otolith and fish length was also found 

to differ significantly between sites within the autumn-spawned (p<0.05) and winter-

spawned stock (p<0.05).  Fish length was also observed to overlap between the 

autumn and winter components and not display the clear bi-modal distribution that 

otolith microstructure did (see Figure 3.2b).  

Individuals were classified to spawning type using Quadratic discriminate function 

analysis. Classification rates varied from 87% for overall classification and 86% for 
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jackknifed classification.  The mahal distances were plotted to show visually how the 

two stocks separated from one another (see Figure 3.3). 

 

3.5 Discussion 

 

The distribution of Celtic Sea winter spawned juveniles to the West of the Isle of Man 

(92% of fish sampled) and Irish Sea autumn spawned juveniles to the East of the Isle 

of Man (97% of fish sampled) in 2006 suggests that both stocks inhabit distinct 

locations within the Irish Sea nursery areas. However this segregation was not 

observed at all sites or in previous work on juvenile herring in the Irish Sea (Brophy 

and Danilowicz, 2002, Burke et al., 2008). Brophy and Danilowicz (2002) found 

inter-annual variation in the distribution patterns  of winter and autumn spawned 

juveniles in the Irish Sea with winter-spawned fish occurring on both sides of the Irish 

Sea. With the distribution of juveniles across the Irish Sea varying from year to year 

their separation based on geographical location alone would not be temporally stable. 

Similarly, fish size can not be used to separate autumn and winter spawned juveniles. 

While fish and otolith length did differ significantly between autumn and winter 

spawned fish, they also differed between sites within each spawning group. Unlike 

otolith microstructure measurements, fish length did not display a bimodal 

distribution and overlapped between autumn and winter spawned fish. This overlap in 

size between autumn and winter spawned juveniles was also observed by Brophy and 

Danilowicz (2002) in the Irish Sea in 1999 and 2000. This, together with the 

differences observed between sites within each component, suggests that size is more 

influenced by environmental conditions during the juvenile phase than by hatching 

date or stock origin. This would indicate that size is not a suitable parameter for 

separating the two components. 

Shape variables that displayed significant correlation with fish length were adjusted 

for the size effect using the common within group slope. This correction was crucial 

as size effects can compromise stock discrimination studies if variables are not 

standardised (Smith, 1992). The adjustment of variables did not remove differences 

between spawning groups making discrimination based on shape more widely 

applicable across years and regions than separation based on size alone. 

The factors that influence shape are not fully understood and are not investigated 

directly in this study. Numerous studies on stock discrimination have evaluated the 
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relative importance of genetics / environmental conditions on otolith shape but few 

studies have directly examined the subject. Gauldie and Nelson (1990) found growth 

rates had a direct link to otolith shape with faster growth producing longer thinner 

crystals while Gagliano and McCormack (2004) found that recent feeding regimes 

influenced otolith shape in tropical fish species. Other studies have linked shape 

differences to rates of somatic growth (Begg and Brown, 2000, Cardinale et al., 2004, 

Simoneau et al., 2000). Some studies have found that classification success from 

otolith shape increased as genetic discreteness or geographic separation increased 

(Cardinale et al., 2004, Friedland and Reddin, 1994) implying the genetic differences 

were responsible for shape variation. Other studies have shown substantial differences 

between groups with little or no geographic separation (Galley et al., 2006, Pothin et 

al., 2006), or which could not be separating using genetic techniques (DeVries et al., 

2002). Reared and wild components of the same genetically distinct stock have also 

been shown to display differences in otolith shape in response to difference in 

environmental conditions (Cardinale et al., 2004, Simoneau et al., 2000).  It is 

uncertain if the shape differences between the autumn and winter stocks observed in 

this study are driven by genetic factors or by differences in environmental conditions 

experienced by the components during the first year of life. Little genetic difference 

have been observed between stocks around the British Isles to date (King et al., 1987, 

Jorstad et al., 1991, Turan, 1997) and both spawning types experience different 

environmental conditions due to the difference in their spawning times. 

Regardless of what is causing the observed differences, shape analysis has great 

potential for providing a fast, reliable and sustainable method of identifying 

components of fish within a mixed fishery. It is less time consuming than otolith 

microstructure analysis and has lower running costs with software being freely 

available for carrying out analysis once images are taken. The procedure is also far 

less destructive to the otoliths as only images of whole otoliths are used; 

microstructure analysis relies on the polishing or sectioning of the otolith to expose 

the larval core. Otoliths can easily be damaged or destroyed during the microstructure 

process rendering the otolith worthless.  

Within the Irish Sea otolith shape analysis may provide an alternative or collaborative 

method to otolith microstructure analysis for separating trawl catches of juveniles into 

autumn and winter spawned fish. This would benefit the management of herring in 

both the Irish and Celtic Seas (ICES, 2007). Regular monitoring of the proportion of 
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Celtic Sea juveniles in the Irish Sea would improve the juvenile abundance estimates 

for the Irish Sea and increase the accuracy of recruitment indices for the Irish Sea 

spawning stock. The incorporation of this method into annual herring sampling 

programmes would supply information to the scientist at very little extra cost or 

effort. 

Otolith shape analysis may have applications in the management of other mixed 

herring stocks. In the North Sea autumn spawned juveniles drift into the western 

Baltic during their first year of life and mix with western Baltic spring spawned 

herring. At present they are monitored in the western Baltic where the catch is split 

into autumn and winter spawned using otolith microstructure analysis (ICES, 2007).  

Western Baltic spring spawned juveniles that drift into the North Sea during the first 

year of life are identified using vertebral counts and otolith microstructure analysis 

(ICES, 2007, Clausen et al., 2007). If the seasonal spawning stocks in these areas 

show variability in otolith shape the method could facilitate their rapid separation and 

be incorporated into routine assessment.  

 

3.6 Conclusion 

 

The method presented here shows potential for separating components of fish in 

mixed stock fisheries. The results correspond well with other studies that have 

assessed otolith shape analysis as a method for separating stocks. The advantages of 

this method over current methods such as otolith microstructure analysis include 

speed of analysis, availability of software, and preservation of otolith for further / 

alternative analysis. The potential to adjust shape variables for size effects where 

significant correlations exist make them more useful than characteristics based on size 

/ growth alone. As a method it could be easily incorporated in stock discrimination 

studies where otolith analysis is already carried out.  
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Figure 3.1 Map showing relative proportion of autumn- (white slice) and winter- 

(black slice) spawned age-0 herring collected in the Irish Sea in 2006. 
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Figure 3.2 Frequency distribution of a) mean increment width at increment 61-70 and 

b) mean fish lengths; of age-0 fish captured in the Irish Sea in 2005. Black bars 

indicate winter spawned Celtic Sea fish; open bars indicate autumn spawned Irish Sea 

fish.  
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Figure 3.3 Frequency distribution of mahal distances obtained from quadratic 

discriminate function analysis of age-0 fish collected in 2005. Black triangles indicate 

winter spawned Celtic Sea fish; open squares indicate autumn spawned Irish Sea fish.  
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Table 3.1 Mean fish length and otolith length ± standard deviation for autumn- and 

winter-spawned age-0 fish captured in the Irish Sea in 2006.  

 

Spawning group N Fish length (cm) Otolith length (mm) 

Autumn 118 11.5 ± 1.9 2.2 ± 0.2 

Winter 126 10.7 ± 1.3 2.0 ± 0.1 
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Chapter 4 

 

Otolith shape analysis provides evidence of natal homing in Atlantic herring 

(Clupea harengus) 

 

4.1 Abstract 

 

Herring stock structure continues to be the focus of extensive research. Studies which 

focus on stock discrimination attempt to clarify the mechanisms that maintain 

complexities such as separate spawning times and locations in a migratory species, 

where stocks often mix throughout their adult lives. Within the Celtic Sea there are 

two components of winter-spawned Atlantic herring (Clupea harengus); those that 

spend their juvenile phase at Celtic Sea nursery grounds (resident), and those that drift 

into Irish Sea nursery grounds during their first year of life (migrant). Previous work 

has established that the two groups show variation in otolith shape and outline analysis 

of the first winter ring can be used to determine the nursery ground origin of 1 year old 

fish. This study applies this separation technique to spawning adults collected from the 

Celtic Sea in winter. The results indicate that approximately 42% of these fish spent 

their juvenile phase in the Irish Sea, confirming that despite extensive dispersal during 

early life, Celtic Sea migrants return to their natal stock to spawn. This is the first 

study to show strong evidence of natal homing in a cohort of Atlantic herring and the 

studies findings offer valuable insights into the mechanisms maintaining population 

structure.  

 

4.2 Introduction 

 

The ambition to isolate the factors that regulate fish populations provides many 

challenges for fisheries science and assessments and is often a driving factor behind 

fisheries research, especially for commercial species. Even the definitions of such 

terms as the “unit stock” has provided much debate in scientific literature (Waldman, 

2005). The mechanisms that maintain fish population structure and integrity are often 

hard to identify in nature. In the marine environment, understanding of stock structure 

is complicated by the lack of obvious physical barriers to groups of fish mixing 

throughout their life history. With migratory species the issue is further confused as 
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fish move between nursery, feeding, wintering and spawning grounds as part of their 

reproductive strategy. While physical barriers such as ocean currents (Wilson and 

Boehlert, 2004, Wroblewski et al., 2000) may provide the limiting factor for some 

populations, behavioural cues may be more influential in other groups such as 

salmonidae (Quinn et al., 2006, Satou et al., 1998) and reef fish (Almany et al., 2007, 

Gerlach et al., 2007). 

Atlantic herring (Clupea harengus) is a highly complex migratory species of 

substantial economic importance within the northern hemisphere. In the north east 

Atlantic there are numerous herring management and assessment units each with their 

own spawning time and location (Parrish and Saville, 1965). There are several 

examples of herring stocks mixing at juvenile nursery areas and adult feeding grounds 

(Husebo et al., 2005, Rosenberg and Palmen, 1982, Ruzzante et al., 2006, Brophy and 

Danilowicz, 2002). A number of theories have been proposed to explain how herring 

population structure is maintained. Iles and Sinclair (1982) hypothesized that herring 

population structure is maintained through the retention of larvae near natal spawning 

grounds by ocean currents. Adults home to specific natal spawning grounds at precise 

spawning times, keeping local populations reproductively isolated. In contrast, Smith 

and Jamieson (1986) proposed that there was no stable population structure in herring, 

that larval and juvenile mixed randomly: with some fish homing to their natal 

spawning grounds while others stray, making gene flow between populations 

significant. They suggested that herring populations would expand and contract their 

range in relation to environmental factors and fishing pressures. According to 

McQuinn’s “adopted migrant” hypothesis (McQuinn, 1997) homing is learnt through 

social transmission and adult herring display repeat homing instead of natal homing. 

Larvae and juveniles that stray from the natal population learn their homing and 

migration patterns from the adults with which they associate and recruit to this 

adoptive population. Evidence from herring stocks does not provide definitive support 

for any one theory. Larval and juvenile herring have been shown to drift away from 

their natal spawning area and mix with juveniles from other herring stocks (Brophy 

and Danilowicz, 2002, Rosenberg and Palmen, 1982) which is inconsistent with the 

closed life cycle model of Iles and Sinclair (1982). There is indirect evidence to 

indicate that these juveniles return to spawn with their natal spawning stock providing 

support for the occurrence of natal rather than repeat homing (Brophy and Danilowicz, 

2002, Rosenberg and Palmen, 1982, Molloy et al., 1993, Campbell et al., 2007, 
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Brophy et al., 2006). The complexity of herring populations in the North East Atlantic, 

each with their own spawning time and location would suggest that populations are 

not in dynamic balance (Parrish and Saville, 1965).  

Around the Irish coastline, there are four management units, of which the Irish and 

Celtic Seas are two (ICES Divisions VIIa and VIIj respectively). Within the Irish Sea, 

herring spawn in autumn, usually for a 3-4 week period beginning in September 

(Dickey-Collas et al., 2001). In the Celtic Sea, spawning takes place in both autumn 

and winter (Molloy, 1980b) and it is now widely accepted that a considerable 

proportion of Celtic Sea winter-spawned juveniles drift into the Irish Sea nursery 

grounds during the first year of life (ICES, 2007). Otolith increment width 

measurements have been used to identify Celtic Sea winter-spawned juveniles that 

drift into Irish Sea nursery grounds (Brophy and Danilowicz, 2002, Burke et al., 

2008). Evidence from tagging studies (Molloy et al., 1993); microstructure analysis 

(Brophy et al., 2006) and parasite prevalence (Campbell et al., 2007) suggests that 

these migrant Celtic Sea juveniles return from the Irish Sea to join the Celtic spawning 

stock when they mature; however no previous study has traced a cohort from the 

larval to the adult phase to provide direct evidence of natal homing.  

Burke et al. (2008) used otolith shape analysis to distinguish between winter spawned 

juveniles collected in the Irish Sea (migrant) from those sampled in the Celtic Sea 

(resident). This shape difference was found to be preserved to an adequate level in the 

trace of the first winter annuli of the otolith to differentiate between the resident and 

migrant components in older fish. This method is used in the current study to 

determine the juvenile origin of two year old adult fish collected from spawning 

assemblages in the Celtic Sea in winter (the same cohort that was examined in the 

previous study). If members of the migrant component are shown to return to the 

Celtic Sea stock this would provide direct evidence of natal homing in Celtic Sea 

herring. This would be a very significant finding, providing insight into herring 

population structure and natal homing in marine fish populations. The importance of 

the Irish Sea nursery grounds to the Celtic Sea spawning stock is also evaluated. 

 

 

 

 

 



 65 

4.3 Methods 

 

Fish sampling 

Juveniles 

Atlantic herring were collected in the Irish Sea and Celtic Sea in 2004. Fish sampling 

was stratified by size (9-17cm) in order to target herring from the 2003 cohort as 

juveniles. Irish Sea samples were collected using mid water trawls during the herring 

acoustic survey conducted by the Agri-Food and Bio-sciences Institute in Northern 

Ireland
7
 onboard the RV “Lough Foyle”. Celtic Sea fish were collected during the 

ground fish survey conducted by the Marine Institute onboard the RV “Celtic 

Explorer”. Fish were collected in 2004 at three sites in the Irish Sea and two sites in 

the Celtic Sea (see Figure 4.1). Fish were processed onboard or frozen at -20
o
C. Total 

length and weight were recorded to the nearest 0.1cm and 0.1g respectively. Sagittal 

otoliths were removed and cleaned in water before being dried and stored in 5ml 

plastic vials. Full details of juvenile sampling is given in Burke et al. (2008).  

 

Adults 

Adult herring were collected in the Celtic Sea in 2006. Adults (fish classified as 

having two translucent winter rings in their otoliths) were targeted in 2006 by 

collecting fish between 18-26 cm. Samples were collected during the herring acoustic 

survey conducted by the Marine Institute onboard the RV “Celtic Explorer” at four 

sites in the Celtic Sea (Figure 4.1). Fish were processed onboard or frozen at -20
o
C. 

Total length and weight were recorded to the nearest 0.1cm and 0.1g respectively. Sex 

and maturity stages of adult herring were determined by visual inspection of the 

gonads according to the eight point maturity scale as used by the Irish Marine Institute 

(Landry and McQuinn, 1988). Sagittal otoliths were removed and cleaned in water 

before being dried and stored in 5ml plastic vials. 

 

Otolith aging and microstructure analysis 

Otoliths were placed in water and age was determined based on visual inspection of 

the translucent and opaque bands. Fish from the 2003 cohort were selected for the 

analysis (ie. age-0 fish from the 2004 collections and age-2 fish from the 2006 

                                                 
7
 Formally known as the Department of Agriculture and Rural Development.  
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collections). The mean length and numbers of fish used in analysis are shown in Table 

4.1. 

Otolith microstructure analysis was used to classify individuals as autumn or winter 

spawned based on the method developed by Brophy and Danilowicz (2002). One 

otolith (typically the right) was used for microstructure analysis for each fish. Juvenile 

otoliths were mounted in TAAB resin on the sulcus side and polished until the larval 

core was exposed. Adult otoliths were mounted on the anti-sulcus side first and 

polished until light could penetrate the larval core. Each otolith was then remounted 

sulcus side down and polished on the opposite side until the larval core was fully 

exposed. Fish with a mean increment width of >2.3 µm between increments 61-70 

from the core were classified as winter spawned, while fish with a mean increment 

width <2.2 µm in the same region were classified as autumn spawned. For some adult 

otoliths classification was based on visual inspection alone without measurement of 

increment widths. This was feasible due to the distinct otolith growth patterns 

displayed by autumn and winter spawned fish (Brophy and Danilowicz, 2002). To 

determine the reliability of the method a blind test was carried out using a random 

selection of 10 otoliths containing both autumn and winter spawned fish. Here 100% 

classification success to hatch type was achieved. 

Autumn spawned fish were excluded from further analysis (2.5% of total fish 

sampled) in order to restrict the study to fish that had all spawned at the same time of 

year and were most likely of Celtic Sea origin. This limited the examination to 

resident (juveniles that remained at Celtic Sea nursery grounds) and migrant (juveniles 

that were present in Irish Sea nursery grounds) components of the Celtic Sea winter 

spawned herring stock.  

 

Otolith shape analysis 

Juveniles 

Otolith shape can be described in a number of ways. Otolith size measurements can be 

used to calculate shape indices such as rectangularity / roundness which describe 

specific elements of the shape of the otolith. More complex methods include image 

analysis techniques such as Fourier analysis that characterise the outline of the otolith. 

In this study, a combination of shape indices and Fourier analysis were used to 

describe the shape of each otolith. A classification function was developed to 

differentiate between age-0 winter spawned herring from the Irish Sea (migrant 
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component) and the Celtic Sea (resident component). Full details of this method are 

given in Burke et al. (2008) and summarised below.  

Using typically the left otolith (where only right otoliths were available, images were 

flipped using standard image analysis techniques) images were digitalised using an 

Olympus™ Camedia digital camera and an Olympus™ stereomicroscope at 20X 

magnification. Otoliths were positioned sulcus side down with the rostrum pointing to 

the left and photographed using transmitted light. Digital otolith images were obtained 

using an Olympus™ Camedia digital camera and an Olympus™ stereomicroscope at 

20X magnification. Using these images a series of two dimensional measurements 

were taken using the image analysis package Olympus™ DP-Soft. These 

measurements were then used to calculate a series of shape indices (Tuset et al., 2003, 

Russ, 1990) that are outlined in Table 4.2. Images were also used to obtain a 

digitalised outline of each otolith using TpsDig
8
 software and to generate elliptic 

fourier harmonics using EFAwin
9
, to describe the otolith shape for each individual. 

Each harmonic consisted of four coefficients resulting in 80 coefficients per individual 

(C1-C80).  

Shape indices and coefficients (henceforth referred to collectively as shape variables) 

were examined to identify variables suitable for describing shape differences between 

the migrant and resident component in the juvenile sample. Variables selected for 

further analysis met the assumptions of normality and homogeneity of variance and 

displayed significant differences between components. The selected variables also 

showed no significant variation in fish from different sampling sites within each area. 

One shape index (rectangularity) and three coefficients (C12, C14 and C25) were 

selected based on these criteria.  Any correlation with otolith length was removed 

using the common within group slope (b) (Turan, 2000, Tuset et al., 2006, Reist, 

1985). This was carried out to ensure size effects would not influence the 

classification of individuals, as site differences within components were observed in 

otolith length (p < 0.05). Discriminate function analysis was carried out in SYSTAT 

11 for windows to determine the proportion of individuals that could be correctly 

classified to nursery area based on otolith shape.  

                                                 
8
 Public domain program developed by F. J. Rohlf, available freely on the internet at 

http://life.bio.sunysb.edu/morph/index.html 
9
 Public domain program developed by F. J. Rohlf and S. Ferson, available freely on the internet at 

http://life.bio.sunysb.edu/morph/index.html 

http://life.bio.sunysb.edu/morph/index.html
http://life.bio.sunysb.edu/morph/index.html
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Otolith microstructure was used to examine larval growth patterns in both migrant and 

resident components. By analysing larval growth patterns, the stage in the life cycle at 

which the two components separated was assessed. Larval drift studies (Özcan, 1974) 

have indicated that this separation occurs quite early on in the larval stage. As growing 

conditions differ between the Celtic and Irish Seas, different growth patterns will be 

observed in the two components once they separated. Average increments widths 

between days 1-10, 11-20, 21-30, 31-40, 41-50, 51-60, and 61-70 were examined in 

both components to investigate when separation takes place. 

 

Adults  

Using typically the left otolith (where only right otoliths were available, images were 

flipped using standard image analysis techniques) images were digitalised using an 

Olympus™ Camedia digital camera and an Olympus™ stereomicroscope at 20X 

magnification. Adult otoliths were positioned sulcus side down with the rostrum 

pointing to the left, as a bright object on a dark background to ensure the first winter 

ring was clearly visible. For each adult fish the outer edge of the first winter ring was 

traced manually using Olympus™ DP-soft. The feasibility of using the trace of the 

first winter ring to determine juvenile origin was previously established by Burke at al. 

(2008) using age-1 juveniles. Each trace was filled-in in black using Microsoft paint 

and saved for further analysis.  

Using the trace of the first winter ring shape indices were calculated as described for 

the juvenile otoliths.  

Traces of first winter rings filled in black were also used to generate elliptic Fourier 

coefficients to describe each otolith outline using TpsDig
10

 and EFAwin
11

 software. 

Data on the relevant shape variables (Rectangularity, C12, C14 C25) were selected for 

determination of juvenile origin. C14 was adjusted using the common within group 

slope of the relationship with otolith length to remove size effects. The slope was 

calculated using data from both juvenile and adult otoliths.  

 

 

 

                                                 
10

 Public domain program developed by F. J. Rohlf, available freely on the internet at 

http://life.bio.sunysb.edu/morph/index.html 
11

 Public domain program developed by F. J. Rohlf and S. Ferson, available freely on the internet at 

http://life.bio.sunysb.edu/morph/index.html 

http://life.bio.sunysb.edu/morph/index.html
http://life.bio.sunysb.edu/morph/index.html
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Mixed stock analysis 

Integrated stock mixture analysis (ISMA) was used to determine the proportion of 

migrant and resident individuals present in the sample of spawning herring from the 

Celtic Sea using the juvenile otoliths as the reference sample. 

The ISMA method used here is a modified version of the maximum-likelihood-based 

method based on the EM algorithm by Millar (1987) refined by S.E. Campana and S. 

J. Smith (Campana et al., 1999). To evaluate the accuracy of this method for 

classifying individuals based on shape, 10 simulation tests were carried out. A random 

selection of juveniles were removed from the juvenile reference sample and tested as 

the unknown sample against the remaining individuals. Classification success was 

compared to a perfect classification success of 100%, where all individual fish were 

assigned to the correct component.  

Discriminate function analysis (DFA) was also used to determine the juvenile origin 

of the adult fish. The cross validation procedure was used to ascertain which 

individuals fell into the migrant and resident categories. Discriminant analysis is less 

suitable than ISMA for separating group mixtures when there is no prior knowledge of 

the composition of the mixed assemblage (Campana et al., 2000). However, unlike 

ISMA, it can be used to assign each individual to a reference group. It facilitated the 

comparison of growth and maturity in the fish classified to either component. DFA 

was carried out with the prior probabilities set at the levels determined by ISMA. 

Based on the results of this analysis, the migrant and resident components of the adult 

sample were examined for differences in maturity and condition to determine if 

nursery ground of origin had subsequent effects on the condition or age at maturity of 

adult fish. Fish condition was quantified using Fulton’s condition index. Fulton’s 

condition indices are calculated using the formula, W/L
3
 where W is the total fish 

weight and L is total fish length. Condition indices were tested for normality and 

homogeneity of variance using Kolmorgorov-Smirnov normality tests and Levene’s 

tests respectively. Tests were carried out in MINITAB 14 for windows to an alpha 

significance of 0.05. A Univariate ANOVA was then used to compare fish condition 

between components. Variation in maturity stages between the groups was assessed 

using an interactive chi-squared test (Preacher, 2001). 

Otolith length was examined to identify growth differences between the migrant and 

resident components at the juvenile phase. While growth differences were identified 

between migrant and resident components, otolith length was also identified as 
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significantly different between sample sites within resident (p = 0.006) and migrant (p 

< 0.001) components. This within component variation indicates otolith size is not a 

reliable indicator of component type. It may vary from one sample site to the next and 

may be altered due to sample site selection and may also be influenced by size 

selective mortality.   

 

4.4 Results 

 

Analysis of larval growth identified distinct differences between migrant and resident 

components in otolith increment widths from as early as increments 1-10 after the 

hatch check (see Table 4.3 and Figure 4.3). 

Using shape variables selected for DFA of the juvenile sample, an overall 

classification success of 84% and a jackknifed classification of 83% was obtained. A 

more detailed analysis of juvenile results is present in Burke et al. (2008).  

An average of 86% classification success was achieved when ten ISMA simulation 

tests were conducted using juvenile otoliths of known nursery ground origin (Table 

4.4). These classification success rates indicate that the margin of error associated with 

the determination of nursery ground origin in the adult samples is in the region of ± 

7%.  

Using ISMA analysis the estimated proportions of the resident and migrant component 

in the samples of spawning adults were 58% and 42% respectively. Considering the 

margin of error obtained in simulation tests, the contribution from the resident 

component could range from 51% -65% and the migrant from 35%-49%. ISMA was 

also carried out for samples from each site in the Celtic Sea separately. Adult fish 

which had spent the juvenile period in the Irish Sea occurred at all four stations. The 

proportion of these migrant individuals ranged from 34% - 52% depending on the 

station sampled. The station with the highest number of migrant individuals was the 

inshore station with the most easterly orientation closest to the Irish Sea (Figure 4.2, 

Table 4.5).  

The DFA was used to assign each adult individual to the migrant or resident 

component based on the canonical scores. Prior probabilities were set to 0.58 and 0.42 

based on the results of ISMA (if priors are not set manually they with automatically be 

set to 0.5 and 0.5). An important element of mixed stock analysis is that all groups 

contributing to the mix are properly represented in the reference sample. If fish from 
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other areas are contributing this may undermine the accuracy of the classification of 

the adult sample. Canonical scores were used to identify the potential that other groups 

were contributing to the adult sample, such as herring from the West coast of Ireland, 

however the shape of otoliths from other stocks around the Irish coastline were not 

included in the classification process. Distribution of canonical scores shows that the 

otolith shape of the adult sample corresponds well with the shape of the two reference 

groups of juvenile fish. This indicates that members of the adult group have not spent 

their juvenile phase outside of the reference areas (Celtic Sea and Irish Sea). 

Canonical scores of juvenile and adult fish are shown in Figure 4.4a and b. The results 

of both methods are summarised in Table 4.5.  

Chi-squared analysis revealed no significant difference in the maturity stage of 

migrant and resident adults (X
2
 = 0.78, p > 0.05). Fish condition was also found not to 

differ significantly between components using univariate ANOVA (p > 0.05) (Table 

4.5). 

  

4.5 Discussion 

 

ISMA based shape analysis of the juvenile portion of the otolith (region bounded by 

the first annulus) indicates that approximately 42% percent of the adult fish collected 

from the spawning assemblages in the Celtic Sea in winter had spent their juvenile 

phase in the Irish Sea. Results from simulation tests indicated an error rate of ± 7% in 

ISMA, however by observing canonical score results we identified a number of fish 

who spent their juvenile phase in the Irish Sea with a high degree of certainty.  

This is the first study to track a stock throughout the life cycle and provide direct 

evidence of natal homing in Atlantic herring. Integration across the entire life history 

and consideration of the dispersive larval stages are crucial elements of natal homing 

investigations (Bradbury and Laurel, 2007). Winter spawned juveniles identified in the 

Irish Sea are most likely of Celtic Sea origin (Brophy and Danilowicz, 2002, Brophy 

et al., 2006, Özcan, 1974). Otolith microstructure allowed the reconstruction of 

growth patterns and was used to identify juveniles of Celtic Sea origin that dispersed 

into the Irish Sea early in life (Brophy and Danilowicz, 2002). Otolith shape 

differences between the two components at the age-0 stage were identified and were 

found to be preserved to an adequate level in the trace of the first winter ring in age-1 

fish (Burke et al., 2008). Using both otolith microstructure and shape analysis, a 
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cohort of Celtic Sea herring was traced from the larval to adult phase. This study 

shows adult spawning assemblages in the Celtic Sea contain fish that spent their 

juvenile phase in the Irish Sea and demonstrates natal homing in Celtic Sea herring.  

 The concept of fish returning to their natal site for reproduction has inspired many 

studies which attempt to identify the means by which fish find their way home. There 

are two schools of thought on how fish find their way home: learned behaviour and 

larval imprinting. In this study, learned behaviour can be ruled out as migrant 

juveniles who associated with autumn spawned Irish Sea adults did not recruit to the 

Irish Sea spawning stock (Brophy et al., 2006). If larval imprinting is the mechanism 

enabling homing behaviour it would take place before migrant individuals left their 

natal spawning ground. The examination of otolith microstructure measurements 

found significant differences between resident and migrant components at increments 

1-10 indicating that migrant larvae drift out of the natal area quite quickly, meaning 

larval imprinting must occur quite early in the larval phase. Herring hatch checks are 

thought to appear 10 days after hatching, when the yolk sac is absorbed (Geffen, 

1982). Based on these timelines, migrant herring larvae move out of their natal 

spawning area 10-20 days after hatching. If they leave their natal spawning area at 

such a young age, how do they remember where home is? Are larval herring’s sensory 

abilities sufficiently developed to facilitate detection and storage of characteristics of 

their spawning area?  

The best examples of studies on homing behaviour in fish have been carried out on 

salmon (Quinn et al., 2006, Satou et al., 1998) and reef fish (Almany et al., 2007, 

Gerlach et al., 2007). Olfactory sensors, visual cues and detection of the earth’s 

magnetic field have been shown to play an important role in homing behaviour 

(Almany et al., 2007, Gerlach et al., 2007, Mitamura et al., 2005, Quinn et al., 2006, 

Satou et al., 1998).  Pre-settlement reef fish larvae show a preference for the odour of 

their natal reef (Gerlach et al., 2007) and are capable of returning to a very small 

target reef (Almany et al., 2007). When tested in relation to visual cues Mitamura et 

al. (2005) found that black rockfish relied more on their olfactory system than their 

sight to find their way back to their natal site. Salmon have been shown to prefer home 

water over non-home water and it has been demonstrated that laceration of the 

olfactory sense organ seriously damages an individuals ability to detect home water 

and their upstream-running behaviour (Satou et al., 1998). The exact stimulus for natal 

homing in Atlantic herring is unknown, however studies on herring sensory systems 
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have shown their importance at the larval and juvenile phase (Dempsey, 1978, Skajaa 

et al., 2004). Skajaa et al. (2004) found that herring showed increased responsiveness 

to predators with age and condition. Dempsey (1978) found that herring juveniles 

show a preference for water which has already contained herring and that severing of 

the olfactory nerves resulted in the failure to detect food. Atlantic herring have been 

shown to produce fast repetitive tick sounds in association with bubble expulsion from 

the anal duct region indicating their sense of hearing is also used for communication 

(Wilson et al., 2004). Perhaps a combination of olfactory, visual and hearing systems 

is used to guide individuals, with vision and smell being used to help individuals 

navigate to the right general location while sound is used to find specific shoals.  

Individuals may also use their olfactory systems to smell out spawning aggregations. 

Female goldfish have been shown to release a urinary pheromone into the water to 

advertise to males their condition and location (Appelt and Sorensen, 2007). 

Individuals may be predisposed to spawn at a particular time of year, determined by 

time of hatching. This may regulate the timing of their reproductive system, and cause 

them to orientate themselves with the closest spawning aggregation, which they locate 

by smell. The exact stimulus used by herring in homing behaviour is a fascinating 

subject and warrants further investigation. 

This study has not investigated the spatial resolution of the homing behaviour. Otolith 

shape and microstructure analyses are probably not sufficiently sensitive to distinguish 

between fish from individual spawning beds. Other methods such as mass marking 

could be used to investigate the spatial scale of homing in Celtic Sea herring. Mass 

marking methods such as maternal transmission of stable isotopes have been used to 

investigate the fate of juveniles after they are spawned (Almany et al., 2007, Thorrold 

et al., 2006, Thorrold et al., 2001). Thorrold et al. (2006) showed that isotope markers 

(barium 137) injected into pre-spawning females were transferred to the otoliths of 

embryonic juveniles. The method was particularly effective in benthic spawners. This 

application holds promise for future investigations of the spatial resolution of natal 

homing in herring which are also benthic spawners.  

Mass marking may also provide a method for identifying the level of straying between 

the two stocks. Genetic analysis has found no significant difference between herring in 

the Irish and Celtic Seas (Jorstad et al., 1991) indicating that there is some degree of 

gene flow between the two stocks. Straying between the two stocks was proposed by 

Brophy et al. (2006), when a small proportion of individuals (2%), identified in 
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autumn spawning aggregations, were classified as winter spawned, and shown 

switching spawning times. By monitoring the levels of natal homing and 

environmental conditions on a yearly basis, the conditions that trigger the homing 

response, such as sea temperature and water currents could be investigated. If 

chemical cues released in the water trigger fish to smell their way home, wind 

direction will have a significant effect on homing. Wind driven currents carrying 

chemical cues from the Celtic Sea into the Irish Sea will simulate migrant fish to 

return to their natal spawning sites. On the other hand, years when wind conditions are 

not favourable may cause higher numbers of migrant fish to stray and switch spawning 

times or die and ultimately be lost from the Celtic Sea spawning stock. It has been 

suggested that migrant Celtic Sea juveniles identified in the Irish Sea could be added 

to Celtic Sea assessment values and used to improve the accuracy of Celtic Sea 

recruitment indices (ICES, 2007, Burke et al., 2008). However if homing behaviour is 

linked to environmental conditions, than weather patterns in each sample year will 

have to be factored in. If water temperatures simulate homing behaviour, wind 

conditions may also be important, as water temperatures in the Irish Sea have been 

shown to be influenced by wind direction (see chapter 5).  

 

4.6 Conclusion 

 

The results presented in this study provide exciting findings for the natal homing 

hypothesis. They also have important implications for herring stocks in the Irish and 

Celtic Seas and have wider applications to other herring stocks and herring stock 

structure theories.  

Larval imprinting is suggested as the mechanism for homing behaviour in this study as 

learnt homing behaviour has not been demonstrated by the component of herring 

which moved into the Irish Sea during the early larval stage.  

Studies of sensory responses in other fish species indicate that the olfactory system 

plays a role in homing, and smell has been shown to be important for food detection in 

herring. The level of development in sensory abilities in larval herring and the cues 

that trigger the homing response in adult herring are largely unknown. Further 

investigation into the links between environmental conditions and homing behaviour 

may indicate the factors that influence migrant Celtic Sea herring to home from the 

Irish Sea. 
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This is first study to trace a cohort of herring from larval to adult life and provide 

direct evidence of natal homing in Celtic Sea herring. Further research using methods 

such as mass marking may indicate the spatial scale of this homing ability and the 

levels of straying between the two stocks.  
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Figure 4.1 Sampling locations in the Irish Sea and Celtic Sea for fish from the 2003 

cohort collected as juvenile fish in 2004 (solid circles) and from the Celtic Sea as adult 

fish in 2006 (open circles).  
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Figure 4.2 Map showing the relative proportion of resident (black slice) and migrant 

(white slice) adult fish collected in the Celtic Sea stations in 2006. Station code shown 

to right of pie chart. 
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Figure 4.3 Mean increment widths, plotted against increment number for resident 

(black) and migrant (white) juvenile herring collected in 2004. Error bars show the 

standard error of the mean values. 
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(b) 

Figure 4.4 Frequency distribution of canonical scores obtained from discriminant 

function analysis of otolith shape variables for (a) juvenile fish, and (b) adult fish that 

were classified using the same classification function. All fish are from the 2003 

cohort. Black bars indicate Celtic Sea fish; open bars indicate Irish Sea fish.  
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Table 4.1 Mean fish length and otolith length ± standard deviation of winter spawned 

herring from the 2003 cohort captured as juvenile fish in the Irish and Celtic Seas in 

2004 and adult fish in the Celtic Sea in 2006. Otolith length of adult fish refers to feret 

length of first winter ring.  

 

Region Age n Fish length (cm) Otolith length (mm) 

Irish  0 90 9.7 ± 1.1 1.9 ± 0.2 

Celtic  0 68 15.3 ± 1.0 2.8 ± 0.1 

Celtic 2 120 23.3 ± 0.7 2.5 ± 0.2 
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Table 4.2 Size parameters and resulting shape indices calculated for analysis of each 

otolith in 0- and adult fish from the 2003 cohort.  

 

Size Parameters Shape Indices 

Area (A) Circularity = P/ A
2
 

Perimeter (P) Rectangularity = A / (FL*FW) 

Feret Weight (FW) Form-Factor = (4πA)/ P
2
 

Feret Length (FL) Roundness = (4A) / (πFL
2
) 

 Ellipticity = (FL-FW) / (FL+FW) 
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Table 4.3 Comparison of larval otolith increment widths between winter spawned age-

0 fish sampled at nursery grounds in the Irish and Celtic Sea in 2004. (Kruskall-Wallis 

tests with Bonferroni adjusted probably level for multiple comparisons.) Significant 

differences marked with asterisk.  

 

 Mean Increment Width (µm)   

 

Increments 

Celtic Sea 

(n=70) 

Irish Sea 

(n=90) 

 

H 

 

P 

0-10 1.24 1.06 9.80 0.002 * 

11-20 1.32 1.22 8.93 0.003 * 

21-30 1.76 1.66 6.20 0.013 

31-40 2.20 2.06 7.86 0.005 * 

41-50 2.51 2.35 9.02 0.003 * 

51-60 2.90 2.70 8.43 0.004 * 

61-70 3.40 3.20 10.98 0.001 * 

Bonferroni adjusted significance level: 0.05/7 = 0.007.  
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Table 4.4 Summary of Simulation Tests carried out using ISMA (Integrated Stock 

Mixture Analysis). 

 

Test 

Number 

% Celtic 

Sea Origin 

% Classified as 

Celtic Sea 

% Irish 

Sea Origin 

% Classified 

as Irish Sea 

% Classified 

Correctly 
      

1 50 45 50 55 90 

2 50 42 50 58 85 

3 50 57 50 43 86 

4 40 28 60 72 70 

5 35 43 75 57 88 

6 60 63 40 37 93 

7 45 54 55 46 84 

8 25 25 75 75 100 

9 55 40 45 60 73 

10 60 61 40 39 97 

Average % of individuals Classified Correctly 86 
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Table 4.5 Mixed stock analysis of adult herring collected in the Celtic Sea. 

Discriminate function analysis of adult herring tested as new group using classification 

function developed for juvenile sample. Resident = individuals who spent their 

juvenile phase at Celtic Sea nursery grounds. Migrant = individuals who spent their 

juvenile phase in Irish Sea nursery grounds. DFA= discriminate function analysis. 

ISMA = integrated stock mixture analysis.  

 

Group  DFA ± 

Error 

ISMA ± 

Error 

Numbers at 

Maturity 

Fulton’s 

Condition 

Index Stage 3 Stage 4 

       

All Stations 

Pooled 

Resident 59.0 ± 7 58.0 ± 7 43 25 8.62 * 10
-3

 

Migrant 41.0 ± 7 42.0 ± 7 33 19 8.57 * 10
-3

 
       

 

Station 1 

Resident 57.0 ± 7 58.0 ± 7    

Migrant 43.0 ± 7 42.0 ± 7    

 

Station 2 

Resident 67.0 ± 7 66.0 ± 7    

Migrant 33.0 ± 7 34.0 ± 7    

 

Station 3 

Resident 50.0 ± 7 48.0 ± 7    

Migrant 50.0 ± 7 52.0 ± 7    

 

Station 4 

Resident 53.0 ± 7 60.0 ± 7    

Migrant 47.0 ± 7 40.0 ± 7    
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Chapter 5 

 

Temporal trends in the stock composition and abundance of juvenile Atlantic 

Herring (Clupea harengus) in the Irish Sea 

 

5.1 Abstract 

Celtic Sea herring (Clupea harengus) show extensive movement into the Irish Sea 

during their first year of life where they mix with resident fish. This influences the 

assessment of Irish Sea herring as juvenile abundance at Irish Sea nursery grounds 

does not provide a reliable recruitment index. Otolith microstructure can be used to 

separate Irish Sea autumn spawned and Celtic Sea winter spawned juveniles. The 

incorporation of this technique into routine monitoring of the fishery could facilitate 

the development of a recruitment index for the Irish Sea stock. 

Otolith microstructure was used in this study to estimate the proportion of winter-

spawned individuals in samples of age-1 herring (fish with one translucent winter ring 

in the otolith) from the western Irish Sea over a ten year period (1993-2003). These 

proportions were combined with data from the assessment of the Irish Sea stock to 

produce separate abundance estimates for each component. After adjustment, the 

abundance of age-1 autumn spawned Irish Sea juveniles was significantly correlated 

with the abundance of age 3 fish  (fish with three translucent winter rings in the 

otolith)  from the same year class estimated from commercial catch and acoustic 

survey data (r > 0.8, p < 0.05). Temporal trends in the abundance, growth and 

condition of the components were analysed in relation to environmental variables 

(temperature, wind and food availability). There was a significant negative correlation 

between the abundance of winter spawned fish in the Irish Sea and the incidence of 

strong prevailing winds from a south westerly direction during the larval phase (r = -

0.96, p < 0.05).  

These findings have important implications for the monitoring and assessment of 

herring in the Celtic and Irish Sea and the prediction of recruitment to the fishery. 

    

5.2 Introduction 

 

The movement of fish stocks between management areas and the mixing of stocks at 

feeding and nursery areas greatly complicates fisheries management. When stocks are 
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managed separately despite mixing throughout their lifespan, estimates become 

uncertain and an accurate assessment of the state of the stock is hard to ascertain 

(Daan et al., 1990). These uncertainties pose particular problems for fisheries 

management where fish stocks straddle national boundaries and are targeted by 

fisheries from multiple jurisdictions.  

The uncertainty in many mixed stock assessments has lead to the development of 

numerous methods for identifying stocks. Natural population markers include body 

morphometrics and meristics, otolith microstructure, shape and chemistry, parasite 

prevalence, gene frequencies and fatty acid profiles. Artificial tags and otolith 

marking techniques can also be used to trace populations (Friedland and Waldman, 

2005).  

Otolith microstructure analysis has been used extensively in fisheries research since 

the discovery of daily growth markings in otoliths (Panella, 1971).  Otoliths grow 

throughout the life of the fish and once deposited are unlikely to be reabsorbed or 

altered by negative growing conditions (Campana and Neilson, 1985). Their growth 

rates can be influenced by a number of environmental factors such as temperature 

(Fey, 2001), prey density (Feet et al., 2002), and photoperiod (Dowd and Houde, 

1980). These properties make otoliths the ideal structure for tracing stocks that 

experience different environmental conditions during their life history. Otolith 

microstructure has proven particularly useful for distinguishing between seasonal 

spawning groups of herring (Brophy and Danilowicz, 2002, Clausen et al., 2007, 

Moksness and Fossum, 1991, Mosegaard and Madsen, 1996, Munk et al., 1991). 

Within the northeast Atlantic, there are approximately fourteen separate herring stocks 

each with its own spawning time and location and there are numerous examples of 

stocks mixing throughout their life histories (Parrish and Saville, 1965). Around the 

Irish coastline there are four management units of which the Irish Sea and Celtic Sea 

stocks are two (ICES Divisions VIIa and VIIJ respectively). These stocks are 

managed separately; however, it is now widely accepted that there is extensive mixing 

of the two stocks during the juvenile phase (Bowers, 1964, Brophy and Danilowicz, 

2002, Molloy et al., 1993, Özcan, 1974). Within the Irish Sea there are two autumn 

spawning components, the Manx and the Mourne stock, with the majority of 

spawning occurring in a four-week period between September and October (Dickey-

Collas et al., 2001). In the Celtic Sea spawning takes place in both autumn and winter 

between October and January (Molloy, 1980a). Evidence from tagging studies 
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(Molloy et al., 1993), length and vertebral count distributions (Bowers, 1964), larval 

drift studies (Özcan, 1974) and otolith microstructure analysis (Brophy and 

Danilowicz, 2002) has shown that juveniles from the Celtic Sea mix with juveniles 

from the Irish Sea at Irish Sea nursery grounds. These juveniles are not present in the 

adult spawning stock in the Irish Sea (Brophy et al., 2006) but return to the Celtic Sea 

as adults to spawn (see chapter 4). The contribution of the migrant component to the 

total abundance of juveniles in the Irish Sea varies from year to year (Brophy and 

Danilowicz, 2002, Burke et al., 2008) and the cause of this variation is unknown. It 

has been suggested that large wind events could increase the dispersal of Celtic Sea 

herring larvae into the Irish Sea (O’Brien & Little, 2006) and in this study the 

relationship between the prevailing winds and the abundance of winter spawned 

juveniles in the Irish Sea is examined. 

As a result of this movement of Celtic Sea fish, juvenile abundance estimates from 

nursery grounds in the Irish Sea do not provide a reliable index of recruitment to the 

Irish Sea stock and it has been recommended that separation of Irish Sea juveniles 

into autumn and winter spawned fish based on otolith microstructure and/or length 

compositions be used to produce a recruitment index more appropriate to the Irish Sea 

stock (ICES, 2007). However the success of the splitting technique may be hampered 

by the limitations of otolith microstructure analysis. Microstructure analysis can only 

classify individuals from different spawning seasons. It cannot be used to differentiate 

between autumn spawned juveniles of Celtic Sea origin in the Irish Sea, and the 

resident autumn spawned population. Similarly winter spawning individuals in the 

Irish Sea cannot be broken down into those from the Celtic Sea spawning stock, and 

any resident winter spawned individuals who were spawned there, or individuals from 

the Clyde west of Scotland stock. 

Recruitment indices produce early information for fisheries managers on year class 

strength and are used in stock assessments and virtual population analysis. They are 

important for monitoring fish stocks and give an early warning of poor year classes 

that may affect the overall biomass levels. Accurate and reliable recruitment indices 

are especially important in the management of species with highly variable 

recruitment such as herring (Parrish and Saville, 1965). 

Otolith microstructure is used in this study to assess the relative proportions of winter 

and autumn spawned fish present in the Irish Sea over a ten year time span. These 

proportions are combined with data from the assessment of the Irish Sea stock to 
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produce separate abundance estimates for each component. Correlations with adult 

abundance estimates are investigated and the potential for using these split estimates 

of juvenile abundance to develop recruitment indices for the Irish and Celtic Sea 

herring stocks is evaluated. The influence of environmental conditions such as wind 

speed and direction, sea surface temperature and food availability on abundance and 

growth of autumn and winter spawned juveniles is also examined.  

 

5.3 Methods 

 

Fish sampling and otolith collection 

Atlantic herring (Clupea harengus) otoliths were selected from the Agri-food and 

Biosciences Institute Northern Ireland (AFBI)
12

  historical archive. These otoliths had 

been collected during herring acoustic surveys in the Irish Sea from 1993 – 2003. 

During these surveys fish were collected using midwater trawls. Samples were 

stratified by length, with a minimum of two individuals taken from each length class 

where possible. Total length and weight were recorded to the nearest 0.1cm and 0.1g 

respectively and sex and maturity stage recorded. Sagittal otoliths were removed and 

cleaned in water before being dried and stored in plastic blocks. Otoliths were used 

for ageing and set in resin in plastic storage blocks.  

For the current study, otoliths classified as age-1 (one translucent winter ring) were 

selected from the historical collection. The maximum available number of individuals 

was selected for each year. (It was necessary to leave one set of otoliths for each 

length class unprocessed in order to preserve the AFBI archive). Years where a 

minimum sample size of 20 individuals was not achieved were excluded from further 

analysis. Selection of individuals indicated that the majority of samples were from the 

west Irish Sea. It was decided to restrict the study to this geographical area. Selected 

otoliths were photographed within their resin/plastic blocks and then removed from 

the plastic blocks using a coping saw. Each individual piece was then heated to soften 

the resin and facilitate the removal of the otoliths from the plastic blocks. Once 

removed the otoliths were stored in plastic eppendorf tubes. Additional age-1 samples 

were obtained from samples collected during other studies conducted by Brophy and 

                                                 
12

 Formally known as the Department of Agriculture and Rural Development Northern Ireland  
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Danilowicz (2002).  The total number of otoliths that were examined for each year is 

shown in Table 5.1 with sample locations displayed in Figure 5.1. 

 

Otolith analysis 

Age estimates were confirmed based on visual inspection of the translucent and 

opaque bands at 20X using an Olympus™ stereoscopic microscope. Otolith 

microstructure analysis was used to classify individuals as autumn / winter spawned 

based on the method developed by Brophy and Danilowicz (2002). This method 

classifies individuals based on the growth patterns displayed in the larval core of the 

otolith. All otoliths were initially mounted sulcus side up in 1.5 ml eppendorf lids in 

TAAB™ epoxy resin and polished until light could penetrate the larval core. The 

blocks of resin were then inverted and remounted to facilitate polishing on the sulcus 

side. Otoliths were then polished until the larval core was fully exposed.  

The core was photographed at 1000X using an Olympus™ compound microscope 

with an Olympus™ Camedia digital camera attached. Daily increments were 

measured along the longest visible axis from the nucleus to the image edge. Otoliths 

with an average increment width >2.3 µm between increments 61-70 were classified 

as winter spawned, while fish with an average of < 2.2 µm between increment 61-70 

were classified as autumn. Total length to the edge of the first winter ring in age-1 fish 

were measured to obtain a growth measurement for the first year. 

 

Fisheries data 

Age structured abundance estimates from commercial catches and annual acoustic 

surveys in the Irish Sea were obtained from the ICES herring working group report 

(ICES, 2007). Information from assessments on the mean length and weight -at-age 

was also used in analysis. Annual estimates of abundance for one group fish from the 

Integrated Catch at Age analysis (Patterson, 1998) were split according to the 

proportions of autumn and winter spawned fish in the otolith samples to produce 

separate estimates of abundance for each stock. Estimates of juvenile abundance 

(before and after splitting) were investigated for significant correlations with catch at 

age three and the acoustic estimate of herring age three in the Irish Sea for the same 

year class to determine if adjustment would improve the relationship. The correlation 

between the abundance of autumn spawned juveniles in the Irish Sea and the 

spawning stock biomass of the Irish Sea stock two years previously was examined. 
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The correlation between the abundance of winter spawned juveniles in the Irish Sea 

and the acoustic estimates of abundance of three year old adults from the same year 

class in the Celtic Sea stock two years later was investigated. The relationship 

between abundance of winter spawned juveniles and spawning stock biomass of the 

Celtic Sea stock two years previously was also examined. 

The larval growth (increments widths 1-70) and juvenile growth (length to the outer 

edge of the first winter ring) of autumn spawned fish were tested for a significant 

correlation with the mean length-at-age two, three and four; and the mean weight-at-

age two, three and four taken from catch data from the Irish Sea for the same year 

class. This was carried out to determine if larval or juvenile growth has a subsequent 

effect on the size of adult fish in the Irish Sea. Larval growth and juvenile growth of 

both components were also examined in relation to abundance of winter spawned 

juveniles in the Irish Sea to establish if growth was density dependent.  

 

Environmental data 

Temperature data was obtained from the coastal temperature network and ferry route 

programme carried out by CEFAS (Joyce, 2004). Using this dataset, the mean 

monthly sea surface temperature was obtained for Port Erin (54.083 N, 4.766 W) in 

the Irish Sea and the Angle station (51.683 N, 5.083 W) at the south west tip of Wales 

(Figure 5.1). Annual sea surface temperatures were examined for significant 

correlations with the abundance of winter spawned juveniles in the Irish Sea and with 

larval and juvenile growth rates in both components.  

Comparisons of larval growth rates between the migrant and resident components of 

Celtic Sea juveniles indicate that the migrant component disperses quite early in the 

larval phase (see chapter 4). Back calculation of spawning dates using otolith 

microstructure analysis showed the migrant component were spawned between 

January and February (Brophy and Danilowicz, 2002) which is consistent with the 

observed spawning behaviour of the adult winter spawning stock . Therefore wind 

conditions between January and March may influence the transportation of larva into 

the Irish Sea. Hourly wind speed and direction data was obtained from MET Eireann 

from the Rosslare weather station (52.255 N, 6.334 W) which is located on the south-

east corner of Ireland (Figure 5.1).  

Daily wind speed and direction were calculated and a single wind variable (wind 

factor) was derived by combining data from the months when movement of herring 
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larva into the Irish Sea was most probable (January – March). Wind factor was 

calculated by summing daily wind speed values for each month. Prevailing winds 

(SSW to SW; 191-236
0
) were given a positive value. Winds from the opposite 

direction were given a negative value (SE to SEE; 123-169
0
). The number of days 

when the wind direction was from the prevailing direction (191-236
0
) was also 

calculated for January, February and March separately and all three months combined. 

The number of days when wind speed was > 10 knots, >15 knots and >20 knots was 

calculated both in regards to prevailing winds (191-236
0
) and general turbulence (all 

directions) for January, February and March separately and for all three months 

combined. Wind variables and abundance of winter spawned one group fish in the 

Irish Sea were investigated for significant correlations. Wind conditions were assessed 

for all year-classes except for the 1996/97 year class, as no wind speed data could be 

obtained for 1997. The relationship between wind speed and direction and the sea 

surface temperature at Port Erin and Angle was also investigated to determine if wind 

conditions improved growing conditions for juveniles in the Irish Sea. Wind roses 

were produced using WRPLOT View version 5.3
13

 to visual display wind conditions 

between January and March in each sample year. The average daily wind speed were 

used to construct the wind rose for January to March 2000 as hourly wind speeds were 

not available for this year. It is important to note that during the winter period 

(January-March), larvae dispersing from the Celtic Sea into the Irish Sea are not 

subject to the cyclonic gyre which forms in the western Irish Sea in spring/summer 

each year. This gyre forms a dome of cold dense water that lies beneath a strong 

thermocline and affects the movement of water in the Irish Sea (Horsburgh and Hill, 

2003).  

Levels of Calanus finmarchicus in the Irish Sea were taken as an indicator of food 

availability. Data on the abundance of C. finmarchicus was obtained from the 

continuous plankton recorder survey carried out by the Sir Alister Hardy Foundation 

for Ocean Science (SAHFOS). Samples were taken monthly in the Irish Sea and the 

numbers of samples ranged from 0-37, with a mean of 16 samples been taken in each 

month. In this study we used mean monthly counts for the Irish Sea from 1993 – 

2003. The average mean monthly count of Calanus finmarchicus in the Irish Sea was 

0.26 per 3m
-3

. Average counts were calculated for each sample year. Correlations 

                                                 
13

 Freely available at http://www.weblakes.com/lakewrpl.html 
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between annual levels of Calanus finmarchicus and the abundance and growth of 

winter and autumn spawned juveniles in the Irish Sea were investigated. However it 

should be noted that Calanus finmarchicus is not always the dominant species of 

Calanus in the Irish Sea (Nash and Geffen, 2004). Nash and Geffen (2004) found 

Calanus helgolandicus to be more abundance in six out of the seven years they 

carried out sampling in the western Irish Sea. 

 

5.4 Results 

 

The separation of individuals into autumn and winter spawned revealed significant 

fluctuations in the proportions of winter spawned juveniles present in the Irish Sea 

(24-89%) over the period of the study (Figure 5.1 and Table 5.1). This shows that 

adjusting the abundance of one group fish using a standard scaling factor would not 

improve the accuracy of herring assessments. If adjustment of the abundance 

estimates of one group fish is to be carried out routinely as part of annual herring 

assessments the proportions of autumn and winter spawned fish will need to be 

assessed on a yearly basis. 

Abundance of one group fish in the Irish Sea taken from herring acoustic surveys was 

reduced to account for the proportion of winter spawned juveniles present. This 

adjustment produced a marked improvement in the relationship between the 

abundance of one group fish and the number of fish age three for the same year class 

taken in commercial catches (unadjusted juvenile abundance: r = 0.44, p = 0.33; 

adjusted juvenile abundance:  r = 0.82, p = 0.03, Figure 5.2). The adjustment also 

improved the relationship between abundance of one group fish and the acoustic 

estimate of age three fish from herring acoustic estimates for the same year class 

(unadjusted juvenile abundance; r = 0.68, p = 0.09; adjusted juvenile abundance: r = 

0.88, p < 0.01, Figure 5.3).  

No significant correlation was identified between the abundance of autumn spawned 

fish in the Irish Sea and the spawning stock biomass two years previously (p >0.05), 

however the temporal coverage of the spawning stock biomass estimates for the Irish 

Sea stock was not complete, so the relationship could only be investigated over five 

years, which may have resulted in the exclusion of key years.  

The relationship between the abundance of winter spawned juveniles in the Irish and 

the spawning stock biomass in the Celtic Sea two years previously was just outside 
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significance (r = 0.73, p = 0.06, see Figure 5.4). There was no correlation between the 

abundance of winter spawned juveniles in the Irish Sea and the acoustic estimate of 

three year old fish from the same year class in the Celtic Sea, however this may also 

reflect the exclusion of a number of years as the the temporal coverage of the acoustic 

index of abundance for the Celtic Sea stock was not complete, so the relationship 

could only be investigated over five years.  

There were no significant correlations between larval or juvenile growth rates of 

autumn spawned juveniles and the subsequent length or weight at age two/ three or 

four in Irish Sea fish (p > 0.03, see Bonferroni corrections Table 5.2). 

There were no significant relationships between temperature, and the abundance of 

Celtic Sea winter spawned juveniles in the Irish Sea, or larval and juvenile growth 

rates in either autumn or winter spawned components (p > 0.05). 

The prevailing winds in the south of Ireland are from the southwest. In the current 

study, wind was predominantly from the southwest between January to March in all 

but one of the years examined, 1996 (Figure 5.5). There was a significant negative 

correlation between the abundance of winter spawned juveniles in the Irish Sea and 

the number of days during the January-March period when wind speed was >15 knots 

and wind direction was from 191-236
o
 (SSW-SW) (r =-0.96, p < 0.01, Figure 5.6). 

The abundance of winter spawned juveniles in the Irish Sea was not correlated with 

the other wind variables (wind factor or wind strength for all directions). 

Wind variables were also tested for significant correlations with temperature. Wind 

factor and the mean monthly temperature at Port Erin for February were significantly 

correlated (r = 0.93, p = 0.02) possibly because warmer water is carried from the 

Celtic Sea into the Irish Sea with south westerly winds (Figure 5.7).  

There were no significant correlations between mean counts of Calanus finmarchicus 

and the abundance or growth of winter and autumn spawned juveniles in the Irish Sea 

(p > 0.05). A summary of variables examined for significant correlations is shown in 

table 5.2. 

 

5.5 Discussion 

 

This study was primarily based on historical otoliths from AFBI herring acoustic 

survey carried out between 1993 and 2004. While the best possible use was made of 

the material available, the study was limited by sample sizes. All otoliths used to 



 94 

estimate the proportion of winter spawned fish in the Irish Sea came from the west 

Irish Sea as samples from the east Irish Sea were not present in the archive in 

sufficient numbers. However, previous research has shown that the abundance of 

winter spawned fish increases from east to west (see chapter 4). Therefore, the 

abundance of winter spawned fish may be overestimated by excluding samples from 

the east Irish Sea. If carried out as part of annual sampling programmes larger samples 

from a wider range of sites would be recommended to estimate the relative 

proportions of autumn and winter spawned fish at Irish Sea nursery grounds. Ideally a 

sample of juveniles would be taken at each sampling station during the herring 

acoustic surveys. Samples would then be split into autumn and winter spawned 

components using otolith microstructure analysis. The relative proportion of each 

component would be calculated for the Irish Sea and the autumn spawned component 

could be used for producing recruitment indices for the Irish Sea herring stock. 

Despite the crude methods used during the current study to estimate the abundance of 

winter spawned juveniles in the Irish Sea, the splitting of abundance estimates based 

on the proportions of autumn and winter spawned juveniles leads to a significant 

improvement in the relationship between juvenile and adult abundance estimates. This 

indicates that, if in future years this splitting technique was carried out more 

rigorously, as part of the routine monitoring of the stock, a very reliable recruitment 

index for the Irish Sea could be produced.  

One limitation of the otolith microstructure method is its inability to identify autumn 

spawned juveniles who have not originated in the Irish Sea.  Herring spawn in autumn 

and winter in the Celtic Sea and it has been recognised that a considerable proportion 

of autumn spawned juveniles are present in the Celtic Sea during certain years (ICES, 

2007). This limitation also applies to winter spawned herring. While the majority of 

spawning in the Irish Sea occurs in autumn, a small amount of spawning has been 

observed up to January (Dickey-Collas et al., 2001). These fish may contribute to the 

abundance of Celtic Sea winter spawned juveniles in the Irish Sea and undermine the 

accuracy of this abundance estimate. However the relationship between Celtic Sea 

SSB and the abundance of winter spawned juveniles in the Irish Sea two years on 

(p=0.06) would indicate that resident Irish Sea winter spawned fish do not contribute 

significantly to abundance of winter spawned fish in the Irish Sea. The results of this 

study indicate that, while the presence of autumn spawned juveniles from the Celtic 

Sea, or resident winter spawned juveniles at Irish Sea nursery grounds cannot be ruled 
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out at present, it does not significantly confound the adjustment of recruitment indices 

using the separation of autumn and winter spawned fish. It must also be considered 

that herring from other areas may contribute to the juvenile assemblages in the Irish 

Sea, such as Scottish, Clyde stocks. Estimated of hatch date using microstructure 

analysis indicated that juveniles in the Irish Sea were either autumn or winter spawned 

(Brophy and Danilowicz, 2002), indicating that spring spawned juveniles do not 

contribute significantly to juvenile assemblages in the Irish Sea.   

It has been suggested that if Celtic Sea juveniles could be identified during Irish Sea 

herring surveys it could contribute to the calculation of recruitment indices for Celtic 

Sea herring (ICES, 2007). Previous studies have shown that this migrant component 

are not present in the Irish Sea spawning stock (Brophy et al., 2006) and that they 

display natal homing behaviour as adult fish (see chapter 4). In this study, the 

abundance of Celtic Sea winter spawned juveniles in the Irish Sea was not 

significantly correlated with acoustic estimates of abundance for three year old fish 

from the same year class. This may reflect the fact that this component is only a 

proportion of the juvenile stock. Annual fluctuations in survival at other nursery 

grounds (e.g. in the Celtic Sea) may be independent of variation at Irish Sea nursery 

grounds. The Celtic Sea fishery includes a mixture of autumn and winter spawned 

individuals and both components are assessed a single stock. The recruitment index 

considered here for the Celtic Sea stock excludes the contribution of the autumn 

spawned component. This introduces another possible source of error in the juvenile-

adult recruitment relationship. If splitting procedures are instigated on a routine basis 

in the Irish Sea, the link between the abundance of winter spawned juveniles in the 

Irish Sea and year class strength in the Celtic Sea adult stock could be examined in 

greater detail. The recruitment index for the Celtic Sea stock may be improved if 

juvenile abundance data from the Irish Sea is combined with juvenile data from Celtic 

Sea nursery grounds.  

Juvenile abundance estimates are used to predict year-class strengths and predict the 

numbers of fish that will recruit to the spawning stock in the future. A number of 

studies have successfully used juvenile abundance estimates of redfish, herring and 

cod to predict year class strength for the associated adult fishery (Axenrot and 

Hansson, 2003, Helle et al., 2000, Magnusson and Johannesson, 1997). They provide 

an early warning signal of weak year classes, and give fisheries scientists the 

opportunity to put precautionary measures in place to protect the stock. Several 
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herring stocks have collapsed in the past and where management action was taken the 

stocks have been shown to recover; where no management action was taken no signs 

of recovery have been observed (Zheng, 1996). In the North Sea, information from 

herring stock assessments have identified poor recruitment over the last six years and 

has lead management to recommend quota restrictions in response to this pattern 

(ICES, 2007).    

Splitting techniques are already used in the assessment of North Sea autumn spawners 

(NSAS) and Downs herring and Western Baltic spring spawners (WBSS). NSAS and 

Downs herring drift into ICES area IIIa as larvae and mix with adult WBSS that also 

move into the area as adult. WBSS also migrate as far as the North Sea. The 

components are identified within samples from commercial catches using otolith 

microstructure and vertebral counts (Clausen et al., 2007, ICES, 2007). North Sea 

catch estimates are calculated by taking the catches from the North Sea and 

subtracting the WBSS individuals and adding in NSAS and Downs herring sampled in 

area IIIa (ICES, 2007).   

The proportion of winter spawned juveniles in the Irish Sea was found to vary 

considerable from year to year (24-89%). This variability may arise due to a 

combination of factors. Larval abundance will be affected by variations in spawning 

activity in the Celtic Sea. High numbers of winter spawned juveniles in the Irish Sea 

may reflect a high spawning stock biomass in the Celtic Sea in the year of hatching. In 

this study the abundance of winter spawned juveniles in the Celtic Sea did appear to 

increase with spawning stock biomass in the Celtic Sea two years previous. This 

relationship might improve if the time series were extended or if the contribution of 

the autumn spawning component could be removed from the estimate of spawning 

stock biomass.  

Abundance of winter spawned juveniles at Irish Sea nursery grounds will also be 

influenced by mortality at the egg, larval and juvenile stages. Compensatory patterns 

in herring stocks have been linked to density dependence and possible environmental 

processes (Fox, 2001, Nash and Dickey-Collas, 2005, Zheng, 1996). At the egg stage, 

hatching success may be lowered due to overcrowding of eggs on spawning beds 

leading to anoxia and developmental retardation, which has been demonstrated for 

Pacific herring (Clupea pallasii V.) (Stratoudakis et al., 1998), however this will only 

effect stocks where spawning beds are limited in size (Johannessen, 1986). Density 

dependence may also become important when herring group together and begin to 



 97 

shoal. At this stage there may be more competition for food between individuals 

(Purcell and Sturdevant, 2001) and higher levels of predation from other species 

(Walter et al., 1986). Variability in mortality during the egg, larval and juvenile stages 

will dampen the effect of high spawning stock biomass and reduce its correlation with 

juvenile abundance. 

An inverse relationship was identified between the prevailing wind conditions 

(southwest) and the abundance of Celtic Sea winter spawned juveniles in the Irish 

Sea. There are two scenarios that may lead to this negative relationship. The first is 

that stronger than average south westerly winds increase the flow of water through the 

Irish Sea and out through the North Channel, thus flushing more larvae out of the Irish 

Sea. Xing and Davies (2001) demonstrated that strong northerly flow through St. 

Georges Channel affects water in the western Irish Sea and that these strong northerly 

flows continue on into the North Channel where water exits the Irish Sea.  

The transportation of Celtic Sea juveniles into the Irish Sea will be influenced by 

wind speed and direction, the effect of wind conditions on water currents and the 

position of the herring larvae within the water. The prevailing winds in this area are 

generally southwest between January to March and circulation models of surface 

currents for the Irish Sea and George’s channel indicate that these would influence the 

transportation of Celtic Sea juveniles into the Irish Sea (Davies, 1994, Davies and 

Jones, 1992, Davies and Xing, 2003, Xing and Davies, 2001). Cooper (1960) 

demonstrated that both south and southwest winds along the southern coast of Ireland 

will promote the movement of surface water from the Celtic Sea into the Irish Sea, 

even when Ekman’s spiral is taken into account. Ekman’s theory predicts that wind 

stress taken together with the Coriolis effect (the deflection of water relative to the 

earth’s rotation), will cause water to move at a right angle to the wind (Price et al., 

1987). However this movement refers to surface water and the position of the herring 

larvae within the water column may have a significant effect on their direction of 

transportation. Heath et al. (1988) investigated the vertical distribution of herring 

larvae (6-18mm) and found that in general they are confined to the upper layers in the 

open-ocean. They found a general layering of larvae in response to high surface 

irradiance and a downward displacement and dispersal of the population in relation to 

high wind velocities. Otolith increments indicate that Celtic Sea winter spawned 

larvae that are transported into the Irish Sea begin their move between days 1-10 after 

hatching. Based on the size of herring larvae from the Downs and Dogger stocks at 
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hatching (presented in Parrish and Saville 1965), larvae would be >7mm when they 

began their dispersal from the Celtic Sea into the Irish Sea. Larval herring have been 

shown to move along transport routes caused by topography and coastal currents 

(Sætre et al., 2002, Townsend, 1992), and wind patterns have been shown to play an 

important role in the distribution of larval fish for numerous species including cod and 

plaice (Hinrichsen et al., 2003, Catalán et al., 2006, Nielsen et al., 1998). Strong wind 

events have been shown to negatively affect settlement patterns in wrasse Symphodus 

ocellatus L. with calmer weather during the planktonic period increasing settlement 

success (Raventos and Macpherson, 2005). Further research is needed to assess the 

effect of wind conditions on the movement of sub-surface waters and larval studies 

would provide more information on the position of the larvae within the water column 

during the early larval phase. 

The second scenario is that winter spawned juveniles experience higher mortality 

rates while at nursery grounds in the Irish Sea in years of strong south westerly winds 

due to associated changes in other environmental conditions (e.g. food availability).  

The abundance of winter spawned juveniles may also be influenced by the resident 

autumn spawned stock. Autumn spawned fish will be between 4 and 6 months old 

when winter spawned larvae drift into the Irish Sea at an inferior developmental stage. 

Autumn and winter spawned fish may compete for food and may be subject to the 

same predation pressures. Their larger size may give autumn spawned herring an 

advantage over winter spawned herring in both cases. Growth-selective mortality has 

been identified in fish with smaller individuals being more vulnerable to predation 

(Takasuka et al., 2003) and age has been demonstrated to be more important than size 

to herring larvae’s responsiveness to predators (Skajaa et al., 2004). Monitoring the 

variability in abundance and growth patterns of the winter spawned juveniles in the 

Irish Sea and explaining the factors that produce this variability may contribute to 

management predictions for the Celtic Sea stock in particular and to understanding of 

herring recruitment dynamics in general. 

Temperature and prey availability are important factors in fish growth (Bailey and 

Alanara, 2006, Baumann et al., 2006, Fey, 2001, Gallego et al., 1999, Michalsen et 

al., 1998, Husebø et al., 2007, Hakala et al., 2003). However, in this study, larval or 

juvenile growth rates did not appear to be linked to temperature or abundance of 

Calanus finmarchicus. This may be because the food availability and temperature 

conditions to which herring in the Irish Sea are exposed is not accurately reflected by 



 99 

the environmental measurements used (sea surface temperature and continuous 

plankton recorder measurements of  Calanus finmarchicus).  

 

5.6 Conclusion 

 

Despite the limitations of the splitting procedure, the adjustment of age-1 abundance 

estimates lead to significant improvements in correlations with abundance estimates 

of age three fish from the same year class from commercial catches and acoustic 

surveys in the Irish Sea. These improvements highlight the value of this technique in 

annual herring sampling programmes and indicate that the splitting technique will 

generate recruitment indices more appropriate for Irish Sea herring stock assessments. 

The abundance of winter spawned juveniles in the Irish was inversely related to the 

incidence of strong south westerly winds between January and March. The underlying 

cause of this relationship is not clear, however, it may reflect dispersal of larvae out of 

the Irish Sea or increased juvenile mortality during years of frequent strong south 

westerly winds. Modelling studies and larval surveys may help to establish the effect 

of wind on dispersal and survival.  
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Figure 5.1 Maps showing the locations of wind station at Rosslare (bulls-eye in left 

top panel), and sea surface temperature stations at Port Erin (solid square in top left 

panel) and Angle station (solid triangle in top left panel); and the relative proportion 

of autumn (open slice) and winter (closed slice) spawned individuals at each sample 

site in 1993, 1995, 1996, 1997, 1998, 2001, and 2003.  
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b) 

Figure 5.2 Relationship between the abundance of one-group fish from Irish Sea 

herring stock summary and catch age 3 for the same year class for a) unadjusted 

abundance and b) abundance adjusted to remove proportion of winter spawned 

juveniles present. Catch in numbers (thousands) for herring division VIIa (N). Labels 

refer to hatch year.  
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b) 

Figure 5.3 Relationship between the abundance of one-group fish from Irish Sea 

herring stock summary and acoustic estimate of herring abundance age three for the 

same year class from ABFI surveys for a) unadjusted abundance and b) abundance 

adjusted to remove proportion of winter spawned juveniles present. Labels refer to 

hatch year. 
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Figure 5.4 Relationship between juvenile abundance of winter spawned fish and 

Celtic Sea spawning stock biomass. Labels refer to hatch year. 
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Figure 5.5 Wind roses summarising the wind conditions for January to March in 

1992, 1994, 1995, 1996, 2000, and 2002. Wind speed is shown in knots.  
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Figure 5.6 Relationship between juvenile abundance of winter spawned fish and 

number of days in January to March when wind speed > 15 knots and wind direction 

between 191-236
o
. Labels refer to hatch year. 
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Figure 5.7 Relationship between wind factor and the mean monthly sea surface 

temperature for Port Erin in the Irish Sea for the month of February.   
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Table 5.1 Summary data for otoliths from age-1 juveniles collected from 1993-2003. 

The table shows the number of sites from which otoliths were available, total 

individuals sampled (n) and the number of individuals classified as autumn-spawned 

(na) and winter-spawned (nw). 

 

Year Year class Number of 

sites 

N  na nw  

1993 91/92 3 21 16 5 

1995 93/94 3 20 7 13 

1996 94/95 2 21 5 16 

1997 95/96 3 22 4 18 

1998 96/97 3 21 8 13 

2001 99/00 12 70 26 44 

2003 01/02 3 21 16 5 
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Table 5.2 Summary of variables examined for significant correlations where a) 

fisheries data b) larval and juvenile growth c) environmental data and larval and 

juvenile growth and d) environmental data. JA = juvenile abundance; JA AS = 

juvenile abundance autumn spawned; JA WS = juvenile abundance winter spawned; 

LG AS = larval growth autumn spawned; JG AS = juvenile growth autumn spawned; 

Catch IS = catch age 3 Irish Sea; AC IS = acoustic estimate age 3 Irish Sea; SSB IS = 

spawning stock biomass Irish Sea; AC CS = acoustic estimate age 3 Celtic Sea; SSB 

CS = spawning stock biomass Celtic Sea. P-values shown in italics. Significant 

relationships marked with an asterisk. 

 

a) 

 
  JA JA AS JA WS LG AS JG AS 

JA WS  -0.05 

0.91 

 0.16 

0.73 

-0.18 

0.70 

Catch 

 IS 

0.44-

0.33 

0.82 

0.03 

   

AC IS 0.68 

0.09 

0.88 

0.01* 

   

SSB IS 0.00 

0.99 

-0.70 

0.19 

   

AC CS   0.04 

0.95 

  

SSB CS   0.73 

0.06 

  

Calanus 
finmarchicus  

-0.27 

0.61 
   

   

 

b) 

 
    LG AS JG AS 

F
is

h
 L

e
n

g
th

 (
cm

) 
 

Age 2 -0.09 -0.67 

0.86 0.10 

Age 3 0.38 -0.18 

0.40 0.70 

Age 4 -0.49 -0.77 

0.26 0.04 

F
is

h
 W

ei
g

h
t 

(g
) Age 2 0.01 -0.65 

0.98 0.12 

Age 3 0.15 -0.33 

0.74 0.47 

Age 4 -0.46 -0.79 

0.30 0.03 
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c) 

 
   JA WS LG AS JG AS LG WS JG WS 

T
em

p
er

a
tu

re
 P

o
rt

 

E
ri

n
 

Jan. -0.73 -0.40 -0.11 0.53 0.00 

  0.06 0.38 0.82 0.23 1.00 

Feb. -0.59 0.41 0.23 0.10 0.47 

  0.16 0.36 0.62 0.83 0.29 

March -0.65 0.62 0.60 -0.28 0.89 

  0.12 0.14 0.15 0.55 0.01* 

Annual -0.39 0.61 0.60 0.03 0.56 

0.38 0.14 0.15 0.95 0.19 

T
em

p
er

a
tu

re
 A

n
g

le
 

S
ta

ti
o

n
 

Jan. -0.43 -0.44 -0.54 0.52 -0.21 

  0.34 0.32 0.21 0.23 0.65 

Feb. -0.54 0.44 0.17 0.14 0.48 

  0.22 0.32 0.71 0.77 0.28 

March -0.49 0.73 0.76 -0.45 0.84 

  0.27 0.06 0.05 0.31 0.02 

Annual 0.40 0.63 0.23 -0.28 0.13 

0.38 0.13 0.62 0.55 0.79 

Abundance Calanus finmarchicus  0.40 

0.38 

0.63 

0.13 

0.23 

0.62 

-0.28 

0.55 

0.13 

0.79 

 

d) 

 
      Temperature Port Erin Temperature Angle Station 

    JA. 

WS 

Jan Feb March Annual  Jan Feb March Annual  

W
in

d
 F

a
ct

o
r
 

Jan-

Mar. 

-0.72   0.85 0.71   0.90 0.44 

0.11   0.03 0.11   0.02 0.38 

Jan. -0.48 0.04 0.44 0.50 0.57 0.15 0.55 0.77 0.46 

0.33 0.94 0.39 0.31 0.24 0.77 0.26 0.07 0.37 

Feb. -7.84  0.95 0.87 0.90  0.91 0.72 0.24 

0.07  <0.01* 0.02 0.02  <0.01* 0.11 0.65 

Mar. -0.11   0.19 -0.09   0.58 0.44 

0.84   0.72 0.87   0.22 0.38 

D
a

y
s 

J
a

n
u

a
ry

- 
M

a
rc

h
 

w
in

d
  

1
9

1
-2

3
6

o
 

All 

Speeds 

-0.49   0.93 0.78   0.91 0.30 

0.27   <0.01* 0.04   <0.01* 0.51 

>10k  -0.79   0.90 0.79   0.85 0.27 

0.06   0.01* 0.07   0.03 0.60 

>15k  -0.96   0.98 0.76   0.90 -0.06 

<0.01*   <0.01* 0.08   0.02 0.91 

>20k  -0.05   0.15 -0.27   0.33 -0.01 

0.92   0.77 0.61   0.52 0.99 

D
a

y
s 

J
a

n
u

a
ry

- 

M
a

rc
h

 w
in

d
 3

6
0

o
 >10k  0.23   -0.21 0.04   -0.35 -0.23 

0.66   0.69 0.95   0.49 0.66 

>15k  -0.17   0.02 -0.01   -0.27 -0.90 

0.75   0.96 0.99   0.60 0.02 

>20K 0.15   -0.16 -0.42   -0.43 -0.71 

0.78   0.77 0.41   0.11 0.11 

Bonferroni adjusted significance level: 0.05/3 = 0.016, 0.05/4 = 0.012 
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Chapter 6 

 

General Discussion 

 

6.1 Otolith shape analysis and stock discrimination 

  

Classification success rates from stock discrimination studies based on otolith shape 

vary from 60-90% depending on the species (Bird et al., 1986; Castonguay et al., 

1991; Friedland et al., 1994; Gauldie and Jones, 2000; Smith et al., 2002; Cardinale et 

al., 2004; Berg et al., 2005; Pothin et al., 2006).  The levels of classification success 

achieved in this study (81- 100%) show that otolith shape is useful for discriminating 

between juvenile herring from different nursery areas and spawning components and 

in particular for tracing nursery ground of origin in winter spawned Celtic Sea fish 

using the shape of the first winter ring. The method could be applicable to other 

herring that show movement of juveniles outside their natal area. In particular, the 

North Sea autumn spawners and Downs herring display a similar pattern of mixing. 

Juveniles have been shown to migrate into the Skagerrak where they mix with 

Western Baltic spring spawners until they migrate back at age 2/3 (Rosenberg and 

Palmen, 1982). While the juveniles are currently identified in the western Baltic using 

otolith microstructure and vertebral counts (Clausen et al., 2007, ICES, 2007), the 

proportion of adults in the North Sea who spent their nursery period in the western 

Baltic is not known. Shape analysis of otolith annuli could be investigated as a 

method of tracing this migrant component, and to identify if a similar stock structure 

is evident. Shape analysis of internal annuli may also prove useful for tracing nursery 

origin in mixed feeding stocks. There is much potential for the method to be applied 

to questions of herring stock structure and migration patterns in the northeast Atlantic, 

as many stocks cannot be classified using genetic analysis (Bekkevold et al., 2007, 

Hatfield et al. 2007, Mariani et al., 2005). Shape analysis of internal structures in 

other hard parts that show annual growth rhythms such as scales, bones and spines 

(Meunier, 2002) could also be useful in stock discrimination. Scale morphology has 

been used to distinguish between fish population, resulting in classification success 

rates of between 57-84% (Poulet et al., 2005, Richards and Esteves, 1997, Debarros 

and Holst, 1995, Ibanez et al., 2007) 
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6.2 Structure of herring stocks around Ireland 

 

The mixing that occurs between herring stocks from the Irish and Celtics Seas is 

verified by studies of larval drift (Özcan, 1974), parasite prevalence (Campbell et al., 

2007), tagging studies (Molloy et al., 1993) and otolith microstructure (Brophy, 2002, 

Brophy and Danilowicz, 2002). The study of juvenile and adult Celtic Sea winter 

spawned fish provides strong evidence that Celtic Sea herring that disperse into the 

Irish Sea return to their natal area to spawn. While previous studies provided indirect 

evidence of natal homing (Brophy et al., 2006, Molloy et al., 1993), this is the first 

study to trace the movement of a cohort from juvenile to adult stage and show direct 

evidence of natal homing. Despite extensive mixing of the early life stages Celtic and 

Irish Sea herring form two distinct stocks with little mixing between them. This 

contrasts with the lack genetic differences  observed in other herring stocks to the 

west of Britain and Ireland.  A multidisciplinary study (WESTHER) used body 

morphometrics, otolith shape, meristic characters, internal parasites, otolith 

microchemistry, otolith microstructure and genetics in an attempt to separate the 

stocks (Hatfield et al., 2007). No apparent differences were observed across the 

“Malin shelf unit” which includes various temporal and spatially distinct spawning 

assemblages, and encompasses seven ICES management areas (VIaN, VIaS and VIIb, 

Clyde and the Irish Sea). It is suggested that the fish in this area form a 

metapopulation with large amounts of exchange between subgroups. The study 

successfully discriminated Celtic Sea fish from the other subgroups. The 

recommendations arising from the WESTHER study are that herring to the west of 

Britain and Ireland are managed as two units: the Malin shelf unit (containing the 

current ICES stocks VIaN, VIaS, VIIb, Clyde and Irish Sea) and the Celtic Sea unit 

(containing the current Celtic Sea and VIIj stock). 

 

6.3 Herring stock structure theories 

 

Herring populations are distributed throughout the Northern hemisphere with 

approximately 20 stocks in the North Atlantic. Six are located in the northwest 

Atlantic, while the remaining 14 are found in the northeast. Of these, the Atlanto-

Scandian complex of herring (Icelandic summer spawners and Norwegian Spring 

spawners) are currently that largest group in the world (FAO, 2004). Herring 
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populations can be highly variable and many stocks have displayed population 

collapses and recoveries over the last 50 years (Zheng, 1996). As they migrate 

between spawning, nursery and feeding grounds herring from different management 

areas and stocks mix. However the distinct spawning times and locations, and 

morphometric characteristics displayed by many herring stocks suggests that although 

genetic differences are often not found, stocks are not identical and therefore should 

not be managed as just one unit. This issue presents a particular challenge for fisheries 

scientists.  

Many efforts have been made to construct a unifying theory to explain herring 

population structure. Theories range from complete isolation to complete transience 

(Iles and Sinclair, 1982, Smith and Jamieson, 1986), with the metapopulation theory 

proposed by McQuinn (1997), offering a compromise between the two. 

In some areas herring stocks show distinct structure while in others stock boundaries 

are more fluid. North Sea and Downs herring spawn in different geographic locations 

and at different times of the year. They mix as juveniles where some drift into the 

Skagerrak where they remain until age 2/3 (Rosenberg and Palmen, 1982). While both 

stocks display distinct spawning times and locations, little or no genetic differences 

have been identified between them (Mariani et al., 2005). This is similar to the 

situation displayed in the Malin shelf area as described above. 

In contrast, genetic differences have been observed between herring populations in the 

Baltic Sea (Jorgensen et al., 2005) . Bekkevold et al. (2005) identified genetic 

differences between herring populations from the North Sea and the Baltic. In both 

cases, salinity gradients are proposed as a mechanism for maintaining isolation 

between spawning populations (Bekkevold et al., 2005). The distinct spawning units 

observed in the Irish and Celtic Seas (Burke et al., 2008, Hatfield et al., 2007) may be 

maintained by environmental differences between the two areas.  

As new techniques are applied to stock identification and more information becomes 

available on stock structure it emerges that perhaps no one theory can explain 

structure in all herring populations. It also becomes evident that environmental 

conditions can have a significant effect on structure. As climate conditions change 

adaptive responses cause stock boundaries to change, leading to increased or 

decreased levels of exchange between groups. 
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6.4 Archival otolith samples 

 

The results presented in chapter 6 highlight the value of historical otolith collections 

for studies of fish population dynamics and stock structure. The AFBI otolith 

collections provided information over a long time series and facilitated the 

development of a recruitment index for the Irish Sea stock.  The archive was also used 

to examine temporal trends in abundance and growth in relation to environmental 

conditions.  

Otolith archives provide an enormous data resource. Fisheries institutes around the 

world hold collections of historical otoliths, which can be utilised at very little cost to 

the researcher. Most research studies are conducted over a three year time span. The 

use of archival otoliths facilitates extending the temporal range of the study. In an age 

of increasing stock depletions and climate change (>25% of the worlds fish and 

shellfish stocks are currently overexploited or significantly depleted (UNEP, 2006), it 

is increasingly important to understand long term trends in fish populations. Also, as 

new techniques are developed, the potential for unlocking information from historical 

otoliths increases. Archived otoliths have been used to examine genetic stability in 

populations over time in cod  (Nielsen et al., 1998, Poulsen et al., 2006) and have also 

been used to link trends in growth, recruitment and population abundances to 

environmental conditions and climate change in cod (Pilling et al., 2007), sole 

(Millner and Whiting, 1996), and striped mullet (McDonough and Wenner, 2002). It 

is critical that otolith collections are properly preserved and achieved to be used to 

their full potential.  

 

 

 

 

 

 

 

 

 

 

 



 114 

Appendix A: 

Average coefficients of variation for each shape variable (SV) generated in Image and 

outline trials using elliptic Fourier analysis (EFA) 

 

Method EFA Image Trail EFA Outline Trial 

SV Average (%) Average (%) 

4 0.66 0.01 

5 16.9 0.13 

6 4.68 0.27 

7 94.66 2.65 

8 2.47 0.08 

9 5.68 0.08 

10 3.86 0.18 

11 8.29 0.21 

12 13.59 0.1 

13 5.31 0.13 

14 9.18 0.02 

15 2.79 0.27 

16 209.91 6.83 

17 8.44 0.27 

18 140.65 0.82 

19 4.4 0.35 

20 8.93 0.36 

21 17.91 0.54 

22 12.11 0.79 

23 26.57 1.56 

24 9.58 0.38 

25 6.94 0.41 

26 186.47 1.14 

27 51.64 1.01 

28 14.4 1.05 

29 65.54 16.06 

30 101.88 0.51 

31 54.45 8.81 

32 40.53 2.97 

33 87.69 1.2 

34 5.7 0.15 

35 28.17 0.24 

36 19.43 9.43 

37 12.12 0.28 

38 85.45 1.22 

39 15.92 0.48 

40 30.26 0.47 
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SV Average Average 

41 23.48 0.38 

42 60.59 1.72 

43 49.47 4.62 

44 263.9 0.83 

45 30.2 0.98 

46 11.26 0.56 

47 37.56 13.98 

48 482.19 10.68 

49 38.55 0.23 

50 46.77 0.26 

51 51.38 26.34 

52 1783.48 0.36 

53 36.95 0.97 

54 98.2 2.75 

55 41.39 0.06 

56 520.96 9.5 

57 30.98 1.01 

58 16.94 0.95 

59 21.23 1.61 

60 114.08 1.01 

61 51.32 0.46 

62 79.65 3.95 

63 160.12 1.71 

64 88.58 5.53 

65 53.77 0.31 

66 21.05 1.64 

67 74.11 2.96 

68 68.84 67.59 

69 55.01 4.37 

70 146.65 1.36 

71 262.12 4.38 

72 98.98 2.47 

73 271.44 2.41 

74 45.75 7.34 

75 46.02 10.6 

76 204.87 2.85 

77 168.14 1.48 

78 45.08 3.71 

79 182.47 4.12 

80 45.98 6.25 
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