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Abstract

Derivations of Group Algebras with Applications

This thesis is a study of derivations of group algebras. Derivations are
shown to be trivial for semisimple group algebras of abelian groups. The
derivations of a group algebra are classified in terms of the generators and
defining relations of the group. If[RGJis a group ring, where R is commutative
and S is a set of generators of G then necessary and sufficient conditions on
a map from S to RG are established, such that the map can be extended to
an R-derivation of RG. This theorem is utilised to construct a basis for the
vector space of derivations of abelian group algebras, dihedral group algebras
and quaternion group algebras.

Derivations of group algebras are considered as linear finite dynamical
systems and their associated directed graphs are studied. The motivation
for this comes from the fact that if DerpKGg and DerpKH{( are not isomor-
phic as additive groups then KG and KH are not isomorphic as rings. It
is shown that if R and S are ring isomorphic, then there is a bijection from
DerpRqg onto DerpSq such that corresponding derivations have isomorphic
associated digraphs. Therefore properties of the linear finite dynamical sys-
tem associated with a derivation can be used to distinguish between group
rings.

Derivations of a group algebra form a Lie algebra and it is shown that this
Lie algebra DerpKGq is a complete Lie algebra, when G is a finite abelian
group such that its Sylow p-subgroup is elementary abelian.

Derivations can be used to show that two group algebras are not iso-
morphic as rings. As an example dihedral and quaternion group algebras
are contrasted by showing that their respective derivation Lie algebras have
different dimension and centers of different dimension. The thesis concludes
by giving an alternative proof of Deskins’ Theorem using derivations.
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Chapter 1

Introduction

This thesis is an analysis of the structure and applications of derivations of nite
group algebras. We are primarily motivated by the desire to better understand
the underlying structure of the group algebra but also by the application to error
correcting codes. These applications include the error correcting codes necessary for
applications where the signal is subject to heavy interference (a high noise channel)
and where there is a requirement to have low energy inputs for the transmitting
device. Such applications include transmitting data from o shore wind and wave
energy devices and the software for wireless body area networks (WBANS) (also
known as body sensor networks (BSNs)). The WBAN application may be useful in
the software applications needed in designing portable biomedical diagnostics and

veterinary applications.

The codes used in these applications need to be particularly e cient. This is
due both to the high levels of noise on the channel and due to the small size of
the devices comprising the WBAN. In particular, it is desirable that they have no
short cycles. Codes (in particular Low Density Parity Check Codes (LDPC) and

Convolution Codes) can be constructed algebraically using group algebras [30].
Functions, namely derivations, de ned on a group algebra are examined. The

1



motivation is to answer structural questions relating to group algebras and in par-
ticular: Does there exist a ring isomorphism between group algebras of two noniso-
morphic groups over the same eld? This thesis will primarily be concerned with
nite group algebras of positive characteristic. This focus is again motivated by
the application to error correcting codes. Particular attention will be given to nite
modular group algebras. We start by discussing both key players, namely group

algebras and derivations.

Figure 1.1: Finite modular group algebras within the class of rings and vector
spaces

A group algebra can be considered as a ring, a vector space and a Lie algebra.
Let G be a group and letK be a eld. Then we shall denote the group algebra
formed from K and G by KG. Considering group algebras as vector spaces has
proven useful in the study of linear block codes. As an example, in [28], linear
block codes have been generated from elements of group algebras of certain types

(zero divisors and units).

Derivations are additive group homomorphisms. However they are not ring

homomorphisms since they are in general not multiplicative. They do however,



obey a di erent multiplication rule known as Leibniz's rule. As such, derivations
are generalisations of the di erentiation of real functions discovered by Leibniz and

Newton.

In their 2014 paper \Linear codes using skew polynomials with automorphisms
and derivations" [9] D. Boucher and F. Ulmer generalise codes as modules over skew
polynomial rings of automorphism type to those skew polynomial rings whose mul-
tiplication is de ned using an automorphism and a derivation. Codes constructed
in this way have in some cases produced better distance bounds than that of other
codes of the same length and dimension. This means that they can detect and or
correct more errors in a transmission. They also introduce the notion of evalua-
tion codes using these rings. M. Boulagouaz and A. Leroy irp) ¢codes” [10]
introduce the notion of cyclicg pg ; ¢gcodes, wherd pqis an element of a skew
polynomial ring. The use of derivations in coding theory has thus far been restricted
to the setting of skew polynomial rings. A goal of this thesis is to better understand
derivations of group rings. As a consequence this opens up the possibility to apply

derivations to coding theory from a group rings perspective.

We begin our study of derivations of group algebras with some naive ques-
tions. Are there any derivations de ned on group algebras? Assuming the set
of derivations of a particular group algebra is non-empty: Are all the derivations
of the group algebra inner derivations or do there exist outer derivations? What
structure and size does the set of derivations have? These questions ultimately

lead us to the central question of this thesis.

What, if anything can the set of derivations of a group algebra L.1)

tell us about the structure of the group algebra itself?

Chapter 2 introduces the notion of a group algebra and also de nes a derivation of

a ring. The set of derivations of a ringR, is denoted byDerpRgq Theorem 2.2.5
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classi es the derivations of group algebras in terms of the generators and de ning
relations of the group. IfRG is a group ring, whereR is commutative andS is a
set of generators ofs then necessary and su cient conditions on a map frong to
RG are established, such that the map can be extended to &derivation of RG.

If the group is abelian then our focus is directed towords studying modular group
algebras. This is a consequence of the fact that the only derivation de ned on a
semisimple group algebra of an abelian group is the zero map. The derivations of
nite group algebras are constructed and listed in the commutative case and in
the case of dihedral groups. In the dihedral case, the inner derivations are also
classi ed. Lastly, these results are applied to construct well known binary codes as
images of derivations of group algebras. The results in this chapter were published

in [12].

Derivations of a modular group algebr&K G are the subject of Chapter 3. A
subring of KG that will prove useful in this and subsequent chapters, namely the
ring of constants, QK G qis introduced. The connection between derivations and
homomorphisms is studied and the concept of a di erential ideal is introduced.
The augmentation ideal pG;Hqis shown to be a dierential ideal with respect
to a derivation if and only if the image of the subgrougH under the derivation is
contained in the augmentation ideal. As a consequendd, P QK G qimplies that
the augmentation ideal pG;H qis a di erential ideal. Itis shown in Theorem 3.1.18
that a ring isomorphism fromR to S induces an isomorphism of additive groups
betweenDerpRq and DerpSqg It is also shown in Section 3.1 that if two group
algebras overK are isomorphic asK -algebras, then their respective derivation
algebras are isomorphic as Lie algebras. These results provide a tool for gleaning
information about the structure of a group algebra from that of its derivation
algebra. As an example, if there are more derivations &G than of KH , then

KG and KH are not isomorphic as rings by Theorem 3.1.1&,Dg is studied as



an example of a modular group algebra. Its derivations, ideals and unit group are
found as well as the image of an element of the group algebra under conjugation
by units. It is shown that no outer derivation of KH becomes inner irKG, where

H is a subgroup ofG. This chapter concludes with a brief look at generating error

correcting codes from derivations of modular group algebras.

A derivation of a commutative group algebraKG is considered as a linear
nite dynamical system (LFDS) in Chapter 4. The resulting LFDS corresponds to
a directed graph with the elements oKG as vertices and an arc between each vertex
and its image under the derivation. As previously stated, the results of Chapter 3
provide a tool for gleaning information about the structure of a group algebra
from that of its derivation algebra. Counting derivations can be used to show that
group algebras are not isomorphic as rings. However, this may not always work
since for examplé=,pC, Csgand FopC, Cgqboth have 22 derivations. Therefore
we will seek to use other properties of the LFDSs associated with the derivations
of group algebras to distinguish between the nonisomorphic group algebras. The
maximum value of the preperiod of a LDFS is one such property and is used to show
that Fo,pCs Cygand FopC,  Cgg are not ring isomorphic. When the derivation
is nilpotent, the maximum value of the preperiod corresponds to the nilpotency

index of the derivation.

The set of derivations of a commutative group algebra over a nite eld is
again the subject of Chapter 5. However, this chapter studies the Lie algebra
formed from this set of derivations by de ning multiplication as the Lie commu-
tator. This Lie algebra is know as the derivation algebra. The motivation comes
from Theorem 3.1.20, which states that & -algebra isomorphism between two
nite group algebras implies that their derivation algebras are isomorphic as Lie
algebras. It is shown that the derivation algebra of a commutative group algebra

over a nite eld has trivial center. A Lie algebra that has trivial center and whose



derivations are all inner is called complete. It is proven in Theorem 5.4.14 that
if K is a nite eld of characteristic p and G is a nite abelian group such that
its Sylow p-subgroup is elementary abelian, then the derivation algebra &G is

complete.

A very interesting problem in group rings is whether the group ring determines
the group. This question is referred to as the Isomorphism Problem of Group Rings
[40]. The set of derivations of a group algebra can be trivial. For example the zero
map is the only derivation of the semisimple group algebrg,C,, where n is an
odd integer. In contrast, by Theorem 2.3.4 of Chapter 2 the group algebig,P
whereP is a nite abelian p-group always has non trivial derivations. This simple
observation motivates the application of the results of Chapters 2 - 5 to the study
of the Isomorphism Problem within the following context: LetP and Q be nite
p-groups andK the eld with p elements. The Modular Isomorphism Problem asks

if the following statement is true:

KP KQ Wi P Q:

The Modular Isomorphism Problem was solved for abelian groups in 1956 by De-
skins [14]. Chapter 6 begins by studying the derivation algebras B:D,» 1 and
F2Q.m 1. These results are then used to prove thd, Dom 1 and FxQ,m 1 are not
isomorphic asK -algebras or in fact as rings. Therefore these group algebras do not
provide a counterexample to the Modular Isomorphism Problem. The information
discovered about derivations of group algebras provided the tools necessary to give

an alternative proof of Deskins Theorem in Theorem 6.2.16.



Chapter 2

Derivations of Group Algebras

and Codes

2.1 Introduction

Group rings and derivations of rings have both been studied for more than 60 years.
For a history of group rings see Polcino Milies and Sehgal [40] and for a survey
article on derivations see Ashraf, Ali, and Haetinger [3]. The results of Posner [41]
and Herstein [24] attracted particular attention. Prime, semiprime and 2-torsion

free rings were a focus of the resulting research.

Derivations of C -algebras have been studied by several authors. In [44], Sakai
proved that every derivation of a simpleC -algebra becomes inner in its multiplier
algebra. Mathieu and Villena, in [36] study the structure of Lie derivations of
C -algebras. In the 2000 paper Derivations on Group Algebras [19], Ghahramani,
Runde and Willis, examine the rst cohomology space of the group algebka pGq
where G is a locally compact group. The derivation problem asks whether ev-
ery derivation from LpGgto M pGqis inner, whereG is a locally compact group

and M pGq s the multiplier algebra of L'pGq It was solved in the a rmative by
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Losert [34]. The 2017 preprint \Derivations of Group Algebras”, [2] by Arutyunov,

Mishchenko and Shtern describes the outer derivations bfpGq

Group rings have been used to construct new codes as well as to study existing
codes. In [28] Hurley and Hurley present techniques for constructing codes from
group rings. The codes constructed consist primarily of two types, zero-divisor
codes and unit-derived codes. The structure of group ring codes is examined in
[27]. The author gives a decomposition of a group ring code into twisted group
ring codes and proves the nonexistence of self-dual group ring codes in particular

cases.

Derivations have also been employed in coding theory. In [9] codes are con-
structed as modules over skew polynomial rings, where the multiplication is de ned
by a derivation and an automorphism. In this chapter derivations of group algebras

and their application to coding theory are considered.

However, there has not been as much research into derivations of group alge-
bras with positive characteristic. Notable exceptions include Smith [49], Spiegel
[50], Ferrero, Giambruno and Polcino Milies [17] and Artemovych, Bovdi and Salim

[1]. In [17] the authors prove the following theorem.

Theorem 2.1.1. [17] Let R be a semiprime ring andG a torsion group such that
rG : ZpGgs 8 , where ZpGq denotes the center of5. Suppose that eitherchar
R 0 or for every characteristicp of R; p opyg for all g P G. Then every

R-derivation of RG is inner.

In this thesis we are particularly interested in nite group algebras. This is
motivated in part by applications to error correcting codes. Theorems 2.1.1 and
2.3.1 direct our focus, in the commutative case, to the study of derivations of

modular (nonsemisimple) group algebras with positive characteristic.
Theorem 2.2.2 shows that wherK is an algebraic extension of a prime eld

8



all derivations of a K -algebra areK -derivations. If RG is a group ring, where
R is commutative andS is a set of generators o6 then necessary and su cient
conditions on a mapf : S N RG are established, in Theorem 2.2.5, such thdt
can be extended to arR-derivation of RG. Section 2.3 outlines some applications
of the results of Section 2.2. All derivations of nite commutative group algebras
of positive characteristic are determined in Theorem 2.3.4. & is a nite abelian
group andK a nite eld of positive characteristic p then the image of a minimum
set of generators of the Sylow-subgroup of G under a derivation of KG can
be chosen arbitrarily, however this is not always the case in the noncommutative
setting. An inner derivation of a ringR mapsa PR to ba ab for some element
b P R. In the case of nite dihedral group algebras of characteristic 2, a basis is
given for the space of derivations in Theorem 2.3.11 and also for those that are

inner in Theorem 2.3.13.

The extended binary Golayr24; 12; 8scode and the extended binary quadratic
residuer48; 24; 12s code are both presented as images of derivations of group alge-

bras in Section 2.3.3.

De nition 2.1.2. Notation: N; Z and Q denote the natural numbers, the in-
tegers and the rational numbers, and=, denotes the nite eld with p" ele-
ments. The group ringRG denotes the set of all formal linear combinations of

o

the form 5 @40, of nite support where a4 PR, together with the operations of

o

addition (componentwise) and multiplication de ned asp o 8390pP g bhhq

o

o:nrc 8gbhgh. We adopt the usual convention that empty sums are 0 and empty

products are 1.

De nition 2.1.3. A derivation of a ring R is a mappingd: R N R satisfying

da bg dpaq dpxg for all a;bPR: (2.1)
dpabg dpadgp adpg for all a;bPR: (2.2)



Equation (2.2) is known as Leibniz's rule. WriteDer pRq for the set of derivations

of a ring R. Note that if R is a unital ring then dplqg O, sincedplg d 1plq
dplal  1dplg

De nition 2.1.4. Letd PDerpRgandr PR for aring R. Then the mapr d: R N

R is de ned asa PRNrdpaq for all a PR.

Lemma 2.1.5. Let Z be a central subring of a ringR. Then DerpRqtogether with

the action is a Z-module.

De nition 2.1.6.  Let RG be a group ring. Then a derivationd: RG N RG is an
R-derivation if dpRq t Ou.

De nition 2.1.7. Given aringR and a;bP R, de ne the Lie commutator ra; s
ab ba A derivation don aringR isinner if for all a PR we havedpag ba ab

for somebPR. In this case we writed dp.

2.2 Derivations of Group Rings

In this section we establish necessary and su cient conditions on a map: S N
RG, such thatf can be extended to arR-derivation of the group ring RG, where
S is a set of generators oG and R is commutative. First, some identities and

preliminary results are presented.
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Lemma 2.2.1. Let d be a derivation of a ringR. Then

im bm 11 im
pgq dp  aq P aomap  &q ; forall & in R: (2.3)
i1 i1 o1 jia
m1 .
pi gdpa™q a'dpagg®™ ! '% for all aPR and m PN: (2.4)
q . | i 0 |
giiq adpg™ ' 'Y 0O; for all units ain R of order n: (2.5)

i 0

pvgdpakq ka* dpag for all a PR which commute withdpagand k P N:
(2.6)

pvgq dpaq  ka* ldpag for all units a PR which commute withdpagand k P Z:

(2.7)
Proof. pqgWe will prove Equation 2.3 by induction onm.
Base casem 1. This is true asdpa.q ,1 1 dpayal.
+ ° + +
Assume thatdp " aq [, p | ! & cdpaigp ' 189 . Then
m 1 im im
dp aq dp acem 1 a dpam 19
i1 i1 i1
bm 11 im im
P aomap  &q am 1 a dpam 10
i1 1 i1 i1
rr: 1 11 m 1
P amap  &q:
i1 1 i1
Therefore Equation 2.3 holds for alm P N.
pigLet & ain Equation 2.3. Then for allm PN
’m 11 im bm _ _ rr) 1 . .
draq p agmgp  ag a ‘dpca™ ' aldpacp™ * %
i1 o1 i1 i1 i 0

11



pii g Settingm  n in Equation 2.4 implies

n 1
0 dplg dp'q =~ adme™ '

i 0
pvgLet a be an element oR that commutes with dpag Then using Equation 2.4
k 1 k 1

q  ddpcg® 9  a 'dmg ka* dpg

i 0 i 0

k

dpa

pvg Let a be a unit which commutes withdpag Then a ! is also a unit

which commutes withdpagsincea dpag a dpagpa ! a 'adpacp ! dpacp L.
Therefore 0 dplg dpa 'ag dpa 'op a dpagand sodpa g a dpacp !

a 2dpag Moreover,a ! commutes withdpa gsincea 'dpa 'q a p a 2dpaqq

a %dpacp ' dpa lcp . Therefore for any positive integeik

de g dpm 'd'q kpa 'd 'dpa 'q kpa ¥ 'gp a 2dpgg kpa * ‘odpag

Furthermore, 0 dplg dp®g Oa 'dpag and so Equation (2.7) holds for all

integersk. ]

The following Theorem shows that wherK is an algebraic extension of a prime

eld all derivations of a K -algebra areK -derivations.

Theorem 2.2.2. Let A be aK-algebra whereK is an algebraic extension of a

prime eld F and letd PDerpAg ThendgK g t Ouandd is a K -linear map.

Proof. Let d PDerpAqg If charg=q i OthenforbPF,dgg dpl 1 1q
dplg dplg dplg bdilg b0 O, and sodgcFq O. LetF Q and let
a,bPZ with bj 0. Notethat0 dpg dpl 1g dplg dp 1g O dp 1g
sodp 1g 0. Thenbdm{bq dpa{bq dea{bg  dpa{b a{bg dpaq

12



dpl 1g p dplg dplgg O. Thereforedpa{bq O, sodpFqg O for

all prime elds F.

Let a be a nonzero element oK and let maxq  * by x) P Frxsbe the
minimal polynomial of a over F. ais a central unit in K and so Equation 2.7 of
Lemma 2.2.1 applies. Note that fobPF and PK we havedm q bdy g since
doFg 0. Thus applying a derivationd to mapaq 0 and using Equation 2.7

Na Na

0 dpg dpm.mqq dp byag — bydElqg
) i o
byjal *dmg ~ byjal * dmg gegmg
i 0 i1

whereq is a polynomial in Frxs Moreover,gpag O as this would contradict the
minimality of the degree ofm,mxg Thereforedpag O, sinceqgpaqis invertible as

it is a non zero element of the eldK. HencedgK g t Ou.

The K -linearity of d is immediate sinced is additive and ifa PA and k PK

thendpkaq dpkcp kdpag O kdpag ]

Corollary 2.2.3. Let K be an algebraic extension of a prime elé. Let G be
a torsion group such thatrG : ZpGgs 8 , where ZpGq denotes the center ofs.
Suppose that either chgk g 0 or that charKq pi O, and p does not divide

the order ofg, for all g PG. Then every derivation ofKG is inner.

Proof. By Theorem 2.2.2, every derivation oKG is aK -derivation and since every

eld is semiprime, Theorem 2.1.1 implies that every derivation dkKG is inner. [

Note that in Corollary 2.2.3 if \derivation" is replaced by \K -derivation" then
this is a special case of Theorem 2.1.1. Also the requirement thiat is algebraic

over F is necessary in Theorem 2.2.2 as the following example shows.

Example 2.2.4. Let Qpqbe a transcendental extension of the rationals (the eld
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of rational functions oft). SinceQptqis a Q-algebra, Theorem 2.2.2 implies that
dpQqg t Ou for all derivations d of Qptg However, by Proposition 5.2 of Chapter
VIl in [33], there exists a nonzero derivationd of Qpqg since Qpgis a nitely

generated extension ove® that is not separable algebraic.

Theorem 2.2.5. LetG x S| Ty be a group, whereé is a generating set and’ a
set of relators. LetFg be the free group ors and : Fs N G the homomorphism
of Fs onto G. Let R be a commutative unital ring and a map from S to RG.

Then

(i) f can be uniquely extended to a mdp from Fs to RG such that

f puvg f pugpvg pud pvg for all u;v PFs; (2.8)

(i) the map f from S to RG can be extended to aiRR-derivation of RG if and

onlyif f pq O, foralltPT,

(i) if f can be extended to aR-derivation of RG, then this extension is unique.

Proof. Let f be a map fromS to RG. is the identity map on S, so fors P S,
s 1sq B 1q psg B lop plq 1,so ps g s Thus s the

identity mapon SY S 1.

(i) We wish to extendf to f : Fs N RG, which satis es Equation 2.8.

Denef :Fs N RG as follows:

$
L fpviq if w; PS;
&
f pyig ! Wif pwv, 1QNi if w, PS 1; (29)
%0 ifw 1

14



+
and letting w :‘ . Wi, wherew; PSY S 1, dene

’k 11 1k
f pvg P wd pvagp  wq: (2.10)
i1 g1 ii1
+ + :
LetOwr | @ k and u i W andv . | 1Wi. Then by Equations 2.9
and 2.10
>k 11 1k
fpuvg P wd pvap  wq
i1 o1 i1
>I 11 1l 1k
p wd pvgp  wq W
i 1j 1 j i1 il
1l ’k 11 1k
wi p wd pvgp  wq
j 1 i1y ji1
1k 1l
fpuq v g pvidf /g
i1 i1

f ugpg pudf prg

Thereforef de ned by Equations 2.9 and 2.10 satis es Equation 2.8.

If wis a word onS, denote the reduced word byw. In order for f to be well
de ned on Fs we need to show thatf pvg f pwqfor all wordsw on S. Let u;v

be words onS and leta PS.

Then by Equation 2.9,f pacp ! af pplq fpagp ! aa fpacp ! O.
Similarly, f paop * af palqg OforallaPS ! LetaPSYS ' Then by
Equation 2.10,f paa g 0 and so by Equation 2.8

f puaa 'vg f pug pa 'vg g paa ‘vg

f pug vg g paa ‘g pvg puaa ' g fopug prg ud g fopuvg
Thereforef pvg f pwqfor all wordsw on S. We now prove the uniqueness of

15



Assume that there existsamap : Fs N RG, distinct from f which is also an
extension off and which also satis es Equation 2.8. Let 1 be the identity element of
Fs. Thenf plg f plplqq f plol 1f plg which impliesthatf plg 0 f plg
LetsPS. Thenf psqg fpg f psgandO0 f ps 'sq f ps 'gs s f psg This
impliesthatf ps 'q s f s ! f s g Therefore there exists an element
x of Fg, of positive lengthcj 1, such thatf xq f xqgqandf mq f pzqfor

+
all words z in Fs of length less thanc. Write X |° 1 Xi, wherex; PSY S L
+ + +
Thusf p *ixg fp frxgandf pq f px.q since” | ;x and x. are

both elements ofFs whose length is less tham. Therefore by Equation 2.8

t1 t 1 t 1 t1
fxg fp xigmxaq p Xid xa fp xigmag p xid g f xq
i1 i1 i1 i1
This contradiction implies that f is the unique extension of to Fs, such that
f puvg f pug prg pud pvg for all u;v PFs. This proves(i) .

(i) ConsideringS as a subset oG, suppose that the mapf : S N RG can
be extended to anR-derivation d of RG. Then for anys P S, dpsq f psg and
0 dm'sqg dps ‘g s 'dpsgand sodps lq s ldpscs ! s f psos L.

+
Thereforedpaq f pag for allaPSY S ! by Equation 2.9. Lett ~ "t PT,
wheret; PSY S 1fori 1;2;:::;m. Then by Equations 2.10 and 2.3
’m 11 im 5m 11 im
f g p td piap g P toigp g dag O
i1 g1 jia i1 g1 jia
This proves the implication in (ii) .

Conversely, assumé pq O, forallt PT. Lett PT. Then pq 1 and

fagt'qg Osince0 fpttlg fpgp'g pd @'qg Oplg pld @ 'q

16



f p g Let Ptl; 1u Then forallw PFg

fpvitwg f pvigpwg pvid ptwg
f pv 'lgpgwg pv'd pgpvg pv'td pvg (211)
f pw'gpvg pv ' pvg f pv ‘wg O

Let N x TFsybe the normal closure off. Any non-identity element n of N can
+
be written as :‘ W, ltiiwi, wherew; PFs, ti PT and ; Pt 1; 1u. Therefore by

Equations 2.10 and 2.11

1k

i1
11 1k

w ttiw fopw ttiwig w w0

i1 j o1 i1

k

Also pjnqg 1, foralln PN and so for anyw P Fs, f pvng f pwvg png

pvd pnqg f pvg Letg;hPG x S| Ty % and let u;v be elements
of Fs, such thatg  pugand h pig Extend f: SN RGtof:G N RG
by dening fgg  f pug Then fighg  f puvg  f g g pud prg
fpgch  of pha Supposef~is also an extension of distinct from f" that satis es
frghg  fpgoh  gfphgfor all g;h PG. Let I: G N N be the minimum length of
an element ofG, dened by Ipgg mintk | g * ,k 1G: G PSYS 'u Then
there exists anx P G of minimum length such that fxq f'\p<q For all sPS,
0 fpss g fpos ! sfps lgandfpsq fisg Thusfps g s fpscs *

s ¥pwe t f plq fs g Thereforefpyg fpggfor all g PG such that
Ipgg 2 and sox can be written asx  yz, wherey;z PG such that lpyg Ipxq
and lzq  Ixg Then fixq  fpyzqg e yieg e yieg fixg
This contradiction implies that " is the unique extension of such that f'pghq

fpgch  of thgfor any g; h PG. Extend ', R-linearly to RG and denote this unique
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extension also byf". Let " agg and " byh be elements oRG, where
PG hPG

9
ag; b, PR. Then f'p q fpq fp gasf isanR-linear map. Moreover

fpa fpa = afmg ~ bh T a9 hfhg
gPG hPG gPG hPG
©oaghfoh T aghhgfthg T aghyfoch  ofthag
g;h g;h g;h

" aghfpohg 7 agbgh 7 a0 bh fp g
g:h g:h g h
Therefore the mapf'\ obeys Leibniz's rule for all products of elements &G and

so is anR-derivation of RG. This proves(ii) and (iii) . ]

Corollary 2.2.6. Let G x S| Ty be a group, whereS is a generating set and’
a set of relators. LetFs be the free group or8 and : Fs N G the homomorphism
of Fs onto G. Let K be an algebraic extension of a prime eld anfl a map from

S to KG. Then

(i) f can be uniquely extended to a mdp from Fs to KG that satis es Equa-

tion 2.8,

(i) f can be extended to a derivation dKG if and only if f pgg O, for all
tPT,

(i) if f can be extended to a derivation &G, then this extension is unique.

Proof. By Theorem 2.2.2 all derivations oKG are K -derivations and so the result

follows from Theorem 2.2.5. O

Remark 2.2.7. The restriction that R be a commutative ring in Theorem 2.2.5
is necessary. To demonstrate this, let;;r, be noncommuting elements in a ring
R and let G be the in nite cyclic group generated byS t su, that is the free

group onS. Let f : S N RG be the map de ned bys PNr; and extendf to a
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mapf : G N RG as in Theorem 2.2.5i). Assume thatf can be extended to an

R-derivation d of RG. Then

dpsaro,s  sdp,sq  rirpS  Srodpsq  rirpS  Srory prafp  rorq0s:

However

dpsr,sq rzdpszq ropriS Sriq  2roris:

Therefore the Leibniz rule does not apply sincdpsrosq  dpsg,s  sdpr,sg This

contradicts the assumption thatf can be extended to arR-derivation of RG.

2.3 Applications

We will now apply the results of the previous sections to nite commutative group
algebras in Section 2.3.1 and then to nite dihedral group algebras in Section 2.3.2.
The study of nite group algebras is motivated in part by applications to coding
theory which appear in Section 2.3.3, where the extended binary Gol&¥4; 12, 8s
code and the extended binary quadratic residuel8; 24; 12s code are presented as

images of derivations of group algebras.

2.3.1 Derivations of Commutative Group Algebras

The next result directs our study of derivations of commutative group algebras to

the nonsemisimple case.

Theorem 2.3.1. Let R be a commutative unital ring. LetH be a torsion central
subgroup of a groufis, where the order ot is invertible in R, for all h PH. Then

doRqg t Ouif and only if dgRHq t Ou, for all d PDerpRGq

Proof. Let d be any element ofDerpRGg Assume thatdpRg t Ou. Let h be
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an element ofH of orders. Applying d to h® 1 implies sh® dghg O by
Equation 2.7 of Lemma 2.2.1. By assumptios is invertible in R and sos is also
invertible in RG. Thereforedghqg 0 for any d P DerpRGqg Let " anh be

hPH
any element ofRH. Then

dpg dp ahg ~ dmhg  andphg  ang O

hPH hPH hPH hPH

by Leibniz's rule sincedpRq t Ouand sodpRH(Q t Ou. The converse is immediate.

O

Corollary 2.3.2. (i) Let G be a nite abelian group andF either the rational
numbers or an algebraic extension of the rationals. ThénG has no nonzero

derivations.

(if) Let H be ap-regular subgroup of a nite abelian groufis andF  Fy. Then

all derivations of FG are FH -derivations.

Proof. For part (i) let H G. In both casesF is a commutative unital ring and
H is a torsion central subgroup ofs, where the order ofh is invertible in F for all
hPH. Alsodpcq t Oufor all d P DerpFrGqg by Theorem 2.2.2. Therefore the

results follow from Theorem 2.3.1. O]

Note that (i) of this Corollary also follows from Theorem 2.1.1.

Remark 2.3.3. In Theorem 2.3.1, the requirement that the subgroupi is central
is necessary. For example, there are 26 non zero derivationgegiDg. Moreover the

27 derivations ofF3Dg are inner by Theorem 2.1.1 or Corollary 2.2.3.

In Theorem 2.3.4 we determine all derivations of nite commutative group

algebras of positive characteristig.
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Theorem 2.3.4. Let K be a nite eld of positive characteristicp. LetG H X
be a nite abelian group, whereH is a p-regular group andX is a p-group with the

following presentation

X xxl;:::;xr,|x'[k’mk 1 rxe;xis L forall k;1 Ptl;2;:::nuy

&1 ifi jand
fipa
%0 otherwise:
Then f; can be uniquely extended to a derivation &G denoted byB. Moreover

DerpgKG gis a vector space oveK with basistgB |gPG;i  1;:::;nu.

Proof. By Corollary 2.3.2(ii) all derivations of KG are KH -derivations. Let S

uniquely extended to a mapf : Fs N KG satisfying Equation 2.8. Moreoverf
can be extended to a derivation oKG ifand onlyiff pq Ofort P trxy; xS xEmk |

kil 21;2;::::nu. Let a;bPS. Then

fra'blag fpalplab alf b a'bf pap a 'b laf pu
alfpacp b lab a b fpxp lab a b fpagp a b lafpxy
alfpag blfpg a fpag blfpg O

Thereforef pixyg;x;sq O, forallk;l 1;2;:::;n. Also by Equation 2.10

p™ k 11 p™k

fp™ g ° p oxd pagp  xq  p™xP % pog o O

i1 o1 jii1

sinceKG has characteristicp. Therefore any mapf : S N KG can be uniquely
extended to a derivation ofKG. By Lemma 2.1.5DerpgKG qis a vector space over

K. LetB t gB|gPG;i 1;:::;nu Anymapf:S N KG can be written
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[} [}
n

as ;i ges Kigdfi, wherekiy PK. The extension off to a derivation of KG is

o o

1 grc KigOB. Therefore any derivation ofKG can be written as aK -linear

o o)

n

combination of the elements oB. Furthermore, if p ', ¢ kig0BaXjq O,

then  pcKgj9 O, which implieskg; O for all g P G. Therefore the elements

of B are K -linearly independent and so form a basis derKG g O

Remark 2.3.5. Derivations of nite commutative group algebrasF, G are either
the zero derivation (in the semisimple case by Corollary 2.3.2(ii)) or can be decom-
posed as in Theorem 2.3.4 as the sum of derivations of the group algebras of the

cyclic direct factors ofG.

As we will see in the next section, derivations of noncommutative nite group

algebras are more involved.

2.3.2 Derivations of Dihedral Group Algebras

Let n be an integer greater than 2 and leD,, denote the dihedral group with 2
elements and presentationxx;y | X" y? pxyd 1ly. This section classi es the

derivations of the group algebraF,m D .

De nition 2.3.6.  Let RG be a group ring. Theaugmentation ideal of RGdenoted

o

by pGq is the kernel of the homomorphism fronRG to R de ned by 55 8,9 PN
gPG ag
Lemma 2.3.7. [38, pp.113] The centre of the group algeb®G has as aK -basis

the set of all nite conjugacy class sums. ]

Lemma 2.3.8. If n is even,ZpF,mD,nq the center of Fom Dy, is a subspace of

n

Fom Do, of dimension$ 3 and a basist 1; xz: xt x Lx?2 x 2% oiiiox2 !

X 2 Ly x%y xty x" 2y: xy  x%y xSy x" lyu.

If nis odd, ZpFm Doyq has dimension;2 and a basistl; x* x % x?

2 n 1 n 1 2 1
X 5 i, X 2 x2;y Xy X7y x" yu.
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Proof. If n is even the conjugacy classes bf,, are as follows:t1u, txzu, tx';x 'u,
fori  1;2:::;5 1, ty;x%y;x%y; i x" Zyuand txy; x3y; xy; i x™ tyu If niis

odd the conjugacy classes @, are as follows:t1y, tx';x 'u fori 1;2;:::; ”—21

and by Lemma 2.3.7. O

Corollary 2.3.9. Let Cpygand Cpxyqgdenote respectively the centralisers gfand
Xy in Fom Do,. Then the following are bases fo€pyqand Cpxy g

Case (1): nis even

Beyg t 1, xz; y; xeyuYipx' x ‘g ' x 'oy|i L;2::% du

Bepxyg t 1, x2; xy; xexyuYtpx' x ‘g xpx' x ‘oy|i L2:0 o du

Case (2): nis odd

Boyg t 1, yuYtpx' x 'g ' x 'oy|i 1,202 u
Bopxyq t 1; xyuYtpx' x 'g xp' x 'oy|i L2 %tu

Proof. Let g P D,, and denote by Orbpy’q the subsettg; d’u of D,,. The set
tOrbpyYg |g P Guis a partition of D,,. The set of elements formed by taking the
partition sums forms a basisBpyqfor Cpyg whenn is even andB,pyq whenn is
odd. The map : D,, N D5, de ned by y PNxy and x PNx is an automorphism

of D,,. Extend Fom-linearly to an F,m -algebra automorphism offom D,.

Letc a by, wherea;bPF,mxxy. Assume thatc PCpyg Thenpa byy
ypa byg which implies thatay yaandby yband soa;bP ZpF,mDong
Therefore pog PCpxyq since

Xy pog Xxypa bxyg axy bxyxy pa bxygy  peoxy:
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Conversely, assumepcg a bxyPCmxyqg Then

a’xy b xym bxyg pa bxyy axy b:

This impliesa @& andb b and soc PCpyg Thereforec P Cpyqif and only if
pcq PCpxyg Applying  to the basisBepyqgivesBepxygand applying to Bopyq
givesBxyg m

De nition 2.3.10.  Given a derivationd of Fom D2, denote it by d  dyxy1, Where
x!  dmxgandy! dpyg Note that dpxgand dpyquniquely determine this deriva-

tion.

By Lemma 2.1.5,DerpF,m D,,qforms a vector space oveF,n. The following

Theorem exhibits a basis foDerpFm Doy g

Theorem 2.3.11. If n is even,DerpF,m D,y has dimension2n 4 and a basis

tdy: | X5 y'g Ptpy; Og ply;! q| PBepyqg ! PBepyquu

If nis odd, DerpFon Do has dimension®-2 and a basis
deyt | X5y g P tpp'  x 'ay;0gpd xay; 1 0; yg
xpd x fayix! x g x loygli L tSruc

Proof. The relators of D,, are y?, ;xyd and x". Therefore by Corollary 2.2.6,
f:tx;yu N FomD,, can be extended to a derivation of,m D, if and only if
f p’qg f pxyedg f m"q 0. f p?q O if and only if f pyg PCpyg Also
f pxyddq Oif and only if f xqy  xf pyq PCpxyq sincef ppxyddq f pyoxy

xyf mxygandf xyq fmxogy xfpyg We now treat the cases whera is even

and n is odd separately.
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Case (1):niseven. f x"q f mzxzq f mzokz xzf xzq O, for
all f pxq PFom D2y, sincexz P ZpFmDong Thereforef : tx;yu N Fom Dy, can be
extended to a derivation ofF.,m D5, if and only if f pyg PCpygand f pxay  xf pyq P

Cxyq

Let f pygand f pxyq be arbitrary elements ofCpyq and Cpxyq respectively.

o
n 2

Write f pyq i (ritiandf pxyq i”fki i, whereri;ki PFom, ! P
Bepygand | PBexyqg Then f xyg fxgy x andsofxqg y Xy.

Therefore
DerpFanDong t Opy xy: o T Oy iy rxtyy; rtiqU

Dene Be t dpy o Ouys q| PBeXyg ! PBepyqu Then B is a spanning set
for Derﬂzzm Dan Sincerl dp(l’qu r2 dp(Zrqu dp‘lxl r2X2§|'1Y1 r2y2q for rl; r2 PFZm
and X1;X2;¥1;¥2 P FomDo,. We now show that the elements oB, are linearly

independent. Assume

Kidp ;y:0q Nidpa iy g Op ko iy rixiy: ritig Gooog

This impliesr; ki Ofori 1;2;:::;n 2. ThereforeDerpF,m D, qhas a basis
Be t dyyt| pxbiy'gPtpy; Og pxly;! q| PBemxyg ! PBepyquuand dimension
2n 4.

Case (2):nis odd. Letfpxqg a by, wherea;bP Fonxxy. Assume that

f can be extended to a derivation oDerpgFo,m Doy Sof px"q 0. Applying
Equation 2.10 gives

5n 11 in r: 1 r: 1
0 p Xxd mgp  xq x'pa byx" 't npax" ! x? lpy:

i1 1 i1 t o t o

Right multiplying this equation by x and usingn 1 (mod 2) and | 01 x2t
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proxtd n [, xtgivesa [ gxtby 0. This implies thata 0 and
bP pxyq Therefore there is a third condition whem is odd, namelyf pxq by,

wherebP pxyq
Let f pyq P Cpygand let f pxyq P Cxyg Then f pxyq

foxay x andsofpxq y xy . ThereforeDerpFomDonq t doy xy: | P
Cxyg PCpqg x P pxyqu Write and asF,m-linear combinations

of Bopxyqgand B,pyqrespectively, that is

n 1 n 1
2 2
kil koxy ki x g kaixp X oy
i1 i1
n i n_1
,2 . . 2 . .
ryd rpy rsipgx' x 'q rqipX' x 'y and so
i1 i 1
n 1

X kil rix pke raky o kypx x g

n 1 n 1
2 2
raixp'  x'dq K Tk X oy

i1 i1

5

Then p x q P pxygimplies that k;  rq; ko r, and kg rq, for

i 1,2:::;%52 ThereforeDerpgFomDonq t dpy xy. U Where

y xy rpl xay kg x oy oragixp x oy
i1 i1

and rl rpy raX x 'qg  rap x o
i1 i1

Dene B, t dyy,u where xtylg P tpp  xay;1g px' X 'oy;0 X'
x 'gy;x' x 'g pPyg O x fayg i 125 U Bo is a spanning set
for DerpFom Do The elements ofB, are linearly independent sincal,y «y. g

dpoq implies that ry 1, ray  ray ks O, fori  1;2::r; ot

Therefore DerpFm Dong has a basisB,  t dewyiu where pxylg P tpp
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xay;lg px' X 'oy;0g xpx' x ‘ay;x x ‘g o poyg porpx x ‘ayq |
1;2;:::; % 2u Thus DerpFom Doyghas dimension g52q 2 31, O

Lemma 2.3.12. [42] Let a and c be elements of a rindR and let d. be the map

from R to R dened byd:;paq rc;as ca acforallaPR. Then
1. The Lie commutator is anti-symmetric, i.e.ra;bs r b;as
2. The mapd, is an inner derivation for all cPR.
3.d. Oifandonly if cPZpRq

We now give a basis for the set of inner derivations &hm Dy, .

Theorem 2.3.13. The set of inner derivations ofF,nm Dy, is an F,m -vector space

with dimension 3t”—21u and basis

dp |bPtX' | L2t wyYitx'y i 0102t u 1u( ;

Proof. By Lemma 2.3.12 the Lie commutator is anti-symmetric and so it is sym-
metric in characteristic 2. Leta;b;cP FmD,,. Then d, ppcq  depa  bg
depaq depog  dapeg  dopegand so the inner derivations ofF,m D5, are closed un-
der addition. If kK PF,m, then kdy, dyp and thus the inner derivations ofFom Doy
form a vector subspace oDerpFonDong Let Bt X' | i 1,25t w Y
tx'y i 012t tu

Case(1)n is even. Writen  2c. By Lemma 2.3.8,ZpFnD2nqis ap;  3a
dimensional subspace ¢¥,n D,, with basisB; t 1;x%x x 1;x? x 2;:::;x>* 1

xP 14 © Lx2ys © 12 lyy The union of the disjoint setsB and By is a basis

for Fom Dop,.

Case(2)n is odd. Write n  2c 1. By Lemma 2.3.8ZpF»Dy,qis ap”z—3q-

dimensional subspace of,m D, with basisB,; t 1;x x %Lx> x ?;:::;x¢

o

X S izcox‘yu. Again, the disjoint union of B and B; is a basis forF,m Dy,.
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o
3th

1
Write a z, : ?uaih, wherez, PZpF,m D, & PFom and b P B, for

i 1;2;:::;3t”—21u d. Oifand only if cPZpF.m Dyygqand so

n 1 n 1
BtTU 3tTU
B B

dai by dai b -

i1 i1

a

Therefore the settd, | b P Bu spans the set of inner derivations off,m D,,. More-

© gin 1 ® gin 1
over,if 72 Yday  dothen > 7 “ah PZpFmDaqwhich implies thata 0,
fori  1;2;::: ;3t”71uand so the setd, | bPBuforms a basis for the vector space

of inner derivations ofFom D,,. O

The derivation problem asks whether every derivation fronh.'pGgto M pGq
is inner, whereG is a locally compact group andV pGqis the multiplier algebra
of L'pGq It was solved by Losert [34]. We can ask a similar question for nite
group algebras. LetKG be a group algebra where botiK and G are nite. Are
all derivations of KG inner? Theorems 2.3.11 and 2.3.13 show that the dimension
of DerpF,m Donqis greater than the dimension of the inner derivations df,m D 5y,
and so not all derivations ofF,n D, are inner. However does there exist an algebra
A « KG such that all derivations of KG become inner inA? Theorem 2.3.15

answers this question.

De nition 2.3.14.  [42] Let R Qe a ring and a derivation of R. The ring
n

Rrx; s T oax |nPN;a PR , where addition is performed componentwise
i 0
and multiplication satis es the relation xa ax paqg for all a PR is called a

di erential polynomial ring .

Theorem 2.3.15. Let G be a nite group andKG be the group algebra over the
KGrx;ds
x* 1q
ideal of KGrx;ds generated byx? 1. Then all derivationsd of KG are inner on

nite eld K. Let Aq , Wwhered PDerpKGgand x?> 1qis the 2-sided

Aqg.
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Proof. Let Dy be the inner derivation of Ay induced by x, that is Dy: Agq \
Aq, dened by a PNxa ax. By the multiplication relation of Ay de ned in
De nition 2.3.14, xa ax ax dpaq ax dpag Therefore the restriction ofDy
to KG is equal tod. ]

2.3.3 Applications to Coding Theory

Example 2.3.16. Let C,s x x | x?* 1y and let d: FoC,s N F,Cys be the
derivationde ned by x PN1 x x3 x* x® x7 x° x'2(by Theorem 2.3.4 this
uniquely de nes a derivation). Then by Lemma 2.2.1dx?"q 0 and dx?®" q
x?"dxq for n P t0; 1;:::;11u. The image of the group algebra under this derivation
is a binary code of length 24 and dimension 12. A generator matr@,4 of this
code is given in Figure 2.1.

Figure 2.1: Generator matrix of the binaryr24; 12, 8scode de ned by the derivation
d.

110111010100100000000000
001101110101001000000000
000011011101010010000000
0000001101121010100100000
000000001101110101001000
000000O0O0O0O011011101010010
100000000000110111010100
001000000000001101110101
010010000000000011011101
010100100000000000110111
1101010010000000000011012
011101010010000000000011

G24

Permuting the columns ofG,,4 using the permutation

6; 19, 12,10, 11; 22, 8; 21; 15,16, 18, 9; 24; 13, 20q(7; 23, 17; 14q

and then transforming it to reduced row echelon form produces the matrix given
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as the generator of the extended binary Golay code in [25]. So the imagee€,,4
under the derivation is equivalent to the extended binary Golay24; 12; 8scode. It

has minimum distance 8 and is a doubly even and self dual extremal code.

Figure 2.2: The right hand block of a generator matrix of the binary48; 24; 12s
code de ned by the derivation .

100100011100010011011001
011001101100100011100010
010000101011100111010100
100010000111011011100001
000100001010111001120101
0100010011010101010121010
01100010111000110112121111
10000000121110001200011112
111011111011010011100100
110101110011000001011000
001110111110110100111001
001101011100110000010110
011010000011001110101100
100111001011011111011100
000110100000110011101011
001001110010112101111220111
111100011000111100000001
11111110112100011101000110
010110101010101100100010
101011100111010100001000
100001110110111000010001
0010101110011210101000010
010001110001001101100110
100110110010001120001001

Example 2.3.17. LetCss X x | x*® 1lyand : F,Css N F,Cug be the derivation

de ned by

X le X24 X27 X31 X32 X33 X37 X40 X41 X43 X44 X47:

Again by Theorem 2.3.4 this uniquely de nes a derivation oF,C4s. The image

of the group algebra under this derivation is a binary48; 24; 12s doubly even self
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dual code (veri ed using GAP 4.8.6 [18]). It is equivalent to the extended binary
guadratic residue code of length 48 [26]. A generator matrix for this code is given
by the block matrix rl,4 | As wherel »4 is the identity of the ring of 24 24 matrices

over F, and A is the matrix given in Figure 2.2.
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Chapter 3

Derivations of Modular Group

Algebras and Codes

In this chapter we examine the derivations of a modular group algebtdaG and
briey discuss an application to the theory of error correcting codes. The ring
of constants, QK G qis introduced. This subring ofKG will prove useful in this
and subsequent chapters. Necessary and su cient conditions on a subgrodpof
G are given such that the augmentation ideal pG;Hqis a di erential ideal. An
implication of this result is that, H being contained within the ring of constants is

a su cient condition for the augmentation ideal pG;Hqto be a di erential ideal.

It is shown in Theorem 3.1.18 that if : R N S is a ring isomorphism, then

: DerpRq N DerpSqdened by d PN d 1 is an isomorphism of addi-
tive groups. If KG and KH are isomorphic asK -algebras, thenDerpKG g and

DerKH qare isomorphic as Lie algebras. An ideal &G generated by constants

of KG is shown in Corollary 3.1.16 to be a di erential ideal for all derivations of

KG.

Section 3.2 examines the modular group algebFgDg. A basis for its deriva-

tion algebra is given and those derivations that are inner are identi ed. Table 3.1
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combined with Lemma 3.2.22 gives all conjugates of elements®§ by units of
F,Dg. Summing these gives the conjugates of all elements BfDg by units of
F,Dg. The ideals of F,Dg are shown in Figure 3.1 and for specic ideals, the
derivations that map the ideal to itself are identi ed. A presentation of the unit

group of F,Dg is also given.

The existence of an algebr& such that outer derivations ofKG become inner
on A, is discussed brie y in Section 3.3. It is shown in Lemma 3.3.3 that no outer
derivation of KH becomes inner inKG, whereH is a subgroup ofG. A list of
theorems from linear algebra that are used in the subsequent section and chapters
is given in Section 3.4. The nal section of this chapter looks at generating error

correcting codes from derivations of modular group algebras.

3.1 Derivations, ldeals and Homomorphisms

De nition 3.1.1. Let R be aring andH a subgroup of a groupsG. The augmen-

tation ideal denoted by rpG;Hqgor pG;Hqis the left ideal of RG generated,by

the setth 1 | h PHu Thatis, rpG;H(q " .h 19| » PRG
pG; Ggis denoted by pGqg "

Lemma 3.1.2. [40] Let S be a set of generators of a subgrowp of a groupG.

Then, the setts 1| sPSuis a set of generators of pG;Hqgas a left ideal ofRG.

De nition 3.1.3. Denote byT t g |i Plua complete set of representatives of
left cosets ofH in G. The identity element is always chosen as the representative

of H.

Proposition 3.1.4. [40] Let R be a ring andH a subgroup of a grous. Then
thesetBy t gh 1q|gPT;hPH;h 1luis a basis of gpG;HqoverR.
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Lemma 3.1.5. [40] Let R be a ring and letH be a subgroup of a grou®. Then
the ideal pG;HQqis a two-sided ideal oRG if and only if H is a normal subgroup

of G.

Proposition 3.1.6. [40] Let H be a normal subgroup of a grou@. Then

1. The canonical group homomorphism : G N G{H can be extended to an

5

epimorphism : RG N RpG{Hgsuch that ~ a,g ag Poq
gPG gPG

2. kerp q pG; H(Q

RG
PGiHQ

De nition 3.1.7. A dierential ring is a unital ring R together with a distin-

3. RpG{H ¢

guished derivationd of R, and is denoted by the paimpR; dg

De nition 3.1.8.  Let pA;dgbe a di erential ring. Then a (left / right / two-sided)
ideal I of A is adierential ideal of pA;dq if dpaq PI, for all aPl,ie. ddqg€1.
Also, | is a dierential (left / right / two-sided) ideal of A, if dp g € |, for all
d PDerpAg

Lemma 3.1.9. Let | be a dierential two-sided ideal of a di erential ring pA; dg
Thend: A{l N A{l dened bydpa 1q dpaq | is a derivation of A{l and is

independent of the choice of representative in the coset. m

De nition 3.1.10.  Let pA; dgand pB; dgbe di erential rings. A di erential homo-
morphism from pA;dqto pB; dgis a ring homomorphism which commutes with

the derivations. Thatis, d d

Lemma 3.1.11. Let | be a dierential two-sided ideal of a ringA. Then the
homomorphism : AN A{l dened byabNa | is a dierential homomorphism

from pA; dgto pA{l; dgfor all d PDerpAq
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Proof. Let d PDerpAgand letd: A{l N A{l be dened bydma Iq dpgq I,
wherea PA. Then by Lemma 3.1.9,d P DerpA{l gand

pd o dm Ig dmg | p  dgmg O

Lemma 3.1.12. Let | and I, both be (left / right / two-sided) ideals of a nite
unital ring R such thatl, is the principal ideal generated by the elemeiat and

o€ . Then for any d PDerpRq dd,g €| if and only if dpaq PI .

Proof. Let d P DerpRg Assume thatdp,q € |. Then dpaq PI sincea P I,.
Conversely, assume thadpag PI. Let P I, and write ,” .rias; where
ri;si PR, fori  1;2;:::;n andn is a positive integer. Then

dp q : driasiq : dorices  ridmos riadmsiq
i1 i1
If 1, and | are left ideals, then it can be assumed thas; 1 and sodpsiq O.
Also, dgricp P11, sincea Pl, € | andr;dpaq PI, since it is assumed thadpaq PI .
Therefore dp q . doricg ridpaq P I, since it is a sum of elements of.
Likewise, if |5 andillare right ideals, then then it can be assumed that; 1.
Also, adpsig Pl and dpagsi P 1 and sodp g . dpacsi adpsig P I. Finally,
if I, and | are two-sided ideals, therdp q PI, siinlcedrriqas; ridpags; and r;adpsiq

are all in 1. Therefore in each casdp g Pl and sodp.q€ 1. H

Lemma 3.1.13. Let | be the (left / right / two-sided) ideal of a nite unital ring
R generated by the elements;; ay;:::;a,. Thendd g€ | if and only if dpg g Pl
forallj 1;2;:::;n.

Proof. Let I, be the principal ideal ofR generated bya; with the same sidedness
asl. Thenl 1, g la, . Assume thatddq€1. Forallj 1;2:::;n,
g P1 and sodpg; g PI. Conversely, assume thatlpg;q PI forall j  1;2;:::;n.
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Thenddyq €1, for all j by Lemma 3.1.12. Let Pl and write L
where ; Ply . Thendp jq Pl forallj 1;2;:::;nand so
n n
dpogq d i dp ;qPI:
i1 i1

]

Corollary 3.1.14. Let H be a subgroup of a nite grougs, let K be a nite eld
and letd PDerpKG g Then pG;HQqis a dierential ideal of pKG;dqif and only

if dHgq€ pGiHg

Proof. Let d P DerlKGqg pG;HQqis a left ideal of KG generated by the set
th 1| h PHu Therefore by Lemma 3.1.13, pG;Hqis a dierential ideal of
PKG;dqifand only if dgh 1g dphgP pG;Hq forallh PH. m

De nition 3.1.15. Let d be a derivation of a unital ringR and let be a subset
of DerpRqg Then the subring ofR denedby C t cPR|dpcg OforalldP u
is called thering of constants of . If is a set with one elemend then C wiill

be denoted byC and if DerpRqthen C will be denoted byCpoRgand is then

called thering of constants ofR.

Corollary 3.1.16. Let K be a nite eld and let G be a nite group. Letl be a
(left / right / two-sided) ideal of KG generated by a subset of the ring of constants,

CKGg Then |l is a dierential ideal of KG.

Proof. Let | be a (left / right / two-sided) ideal of KG generated byC € GKGqg
The dpCq OPI, for all d PDerpKG g Thereforel is a di erential ideal of KG,
by Lemma 3.1.13. O

Corollary 3.1.17. Let G be a nite group and letK be a nite eld. Let H be a
subgroup ofG such thatH € CKG g the ring of constants ofKG. Then pG;Hq

is a di erential ideal of KG.
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Proof. pG;HQis a left ideal of KG generated by the seth 1| h PHu The

result now follows by Corollary 3.1.16. ]

Theorem 3.1.18. LetR and S be rings and let : R N S be a ring isomorphism.
Let : DerpRq N DerpSqbe de ned byd PN d 1. Then is an isomorphism

of additive groups.

Proof. Let d P DerpRg  pdq d 1is an additive map since it is the

composition of additive maps. Let; PR and leta p gandb p g Then

pdgalg d ‘'pmg dp g dpg dpqg
dp q dpq dog pg pg dpq
dpgb a dpgq pdgach  a pdoig

Therefore, pdqg satis es Equations 2.1 and 2.2 and so is a derivation &. The
map !:DerpSqN DerpRgdenedby D PN ' D s a two-sided inverse of

and so is a bijection. Letd; PDerpRqg Then

pd digpg pd digaq pdpaq  dipaqq
pdpaqq  pdipagq pdgp g pdigp g

Therefore preserves the additive group structure oberpRgand so is an additive

group isomorphism. O

Lemma 3.1.19. Let p be a prime number, letr, be the eld with p elements and
let K be a nite eld of characteristic p. Let G and H be nite p-groups and let

: KG N KH be a ring isomorphism. Then is an F,-algebra isomorphism.

Proof. is a ring isomorphism and so is bijective. Let be an arbitrary element

of KH and leta p g Denote the multiplicative identity of KG and KH as
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ec and ey respectively. Then

Pecd PPeaq  pq  pagsq Pt

Therefore pesq ey. Also for anyk PFp

Therefore kegaq kKecq pag key pag Kk pagand so is an Fy-linear
map. O

Theorem 3.1.20. Let : R N S be aK -algebra isomorphism. Then : DerpRq N

DerpSq de ned byd PN d 1 is a Lie algebra isomorphism.

Proof. Let d;D PDerpRgand letk PK. By Theorem 3.1.18, pdqis a derivation

of Sand is an additive map. Therefore

pkdq kd 1k d 1k pg
rpdg pbgs r d % D s d D ! D d ‘!
rd;Ds ' pd;Dsq

Therefore is a lie algebra homomorphism. is a bijection by Theorem 3.1.18. [J

Theorem 3.1.21. Let | be a dierential two-sided ideal of a unital ringR and
let d P DerpRg Let d: R{l N R{l be dened bydea 1q dpagq |. Then
: DerpRq N DerpR{l qde ned by d PNd is a Lie algebra homomorphism.

Proof. d P DerpR{l qfor all d P DerpRqg by Lemma 3.1.9. The homomorphism
:R N R{l dened by a PNa | is dierential by Lemma 3.1.11. Letd;D P
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DerpRg let k PK and leta PR. Then

pd Dogma Iq pd Dgmaq | dpg | Dpaq |
pdga 1q pOaga Iq
pkdg@a 1q kdpag | kpdeag 1gq Kk pdga  1g and
r pdg pPgsp g pdgppDg@a lgg pOgp pdg@  1qg
pdgpeq 1q  pDqumipag 1q9q
dDpaq | Ddpaq |
r d;Ds@aq | pd;Dsgp 1 g

Therefore is a Lie algebra homomorphism. O

Corollary 3.1.22. Let K be a nite eld and let N be a normal subgroup of
a nite group G such thatdpNg € | pG;Nq for all d P DergKGag Then
: DerpKG g N DerpK G {l qde ned by d PNd is a Lie algebra homomorphism.

Proof. | is a two-sided ideal olKG by Lemma 3.1.5 and is a di erential ideal for
all d PDerpKG qby Corollary 3.1.14. Therefore is a Lie algebra homomorphism
by Theorem 3.1.21. O

3.2 An Example: F;Dg

Let Dg be the dihedral group of order 8 with presentation

Ds xX;y|y> x* pxy¢ 1y
Let® 1 x x2 x5

Remark 3.2.1. The group algebraF,Dg is purely modular in the sense that it has
no nontrivial idempotents. This is a consequence of the following theorem and the

fact that jDgj 2.
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Theorem 3.2.2. [48, pp. 378] IfRG is the group ring of a nite group over a
commutative unital ring R such that every prime divisor of the order oG is a
non-unit of R and R has no nontrivial idempotents thenRG has no nontrivial

idempotents.

Remark 3.2.3. The conjugacy classes dDg are: tiu, tx2u, tx; x3u, ty; x2yu,
txy; x3yu. Note that conjugation either xes an element ofDg or it multiplies it

by x?.

Remark 3.2.4. Letting n 4 in Lemma 2.3.8 implies the seB; t 1; x?; xpl
x?q pl  x%qy; xpl  X2qyy, is a basis forZ pF,Dgq the centre of F,Ds.

Lemma 3.2.5. Let | be the two-sided ideal generated by the elemdnt x? of

F.Dg. Then | g; xx?ygand is a central nilpotent ideal of index 2 with the set

tpl x?q xpl x2g ypl x2q xypl x2quas a basis.

Proof. pl  x?qis central and so by De nition 3.1.1, | g xx?yq T

tl; x; y; xyuis a complete set of representatives of left cosets wf?y in Dsg.
By Proposition 3.1.4,B tp 1 x2g xpl x?q pl x%qy; xpl x2qyuis a basis
for pDg;xx?yq For any bPB, bPZpF,Dggsuch thatl? 0 and so pDg; xx%yq

is a central nilpotent ideal of index 2. O

Lemma 3.2.6. [38, pp.114] LetG be a group andK a eld.

1. If Fis an extension eld ofK, thenZpFGgq Fbyx ZpKG(q

2. If Ris a subring ofK and if M is a maximal ideal ofR, then under the natural
homomorphismRG N pR{M oG the centre ZpRGq maps ontoZ pfR{M oGq
O

De nition 3.2.7. Let A be a subset of a ringR. The centraliser of A in R,

denotedCpA;Rqistr PR |ra ar, @PAu
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Remark 3.2.8. By letting n 4 in Lemma 2.3.9 we get the following bases for

Cpy; FoaDggand Cxy; FoDgqrespectively:

Beya t 1, x% y; X%y; ;¢ x°g x xPqyu (3.1)
Bepxyq t 1, x% xy; X%;  x%g pl  X°oyu (3.2)

Remark 3.2.9. Bgpyqcontains units and sodim Cpy;F,Dgg X pDggq @ 5. Let
B t1 x%1 vy;1 x?%; x x3g x x3guandletc PF,fori P t0;1;2;3;4u.
Then

0 cpl x°g cpl yg cpl xyg cx  x°q cpx xioy
P C GOl GX® cy GXy X x°q Xy

Thusc O, fori P t0; 1; 2; 3; 4usinceBepyqis a linearly independent set. Therefore
B is also a linearly independent set. Each element Bf commutes withy and has
augmentation 0. Thus theF,-span ofB is a 5-dimensional subspace contained in

Cpy;F.Dgg X pDgqg ThereforeB is a basis forCpy; F,Dgq X  pDsg

Likewise the settl x2; 1 xy; 1 x3%; x x3g pl x?qyuis a basis for
Cxy; F2Dgq X pDgg
3.2.1 Derivations

Let x* and y! denote respectively the image of and y under a given derivation.
Letting n 4 in Theorem 2.3.11 gives the following basis f@er pF,Dgq of size
12:

B t deyt| XiyQPtpy; Og xly;! q| PBepxyg ! PBepyquu (3.3)

Remark 3.2.10. Let d PDerpF,Dgg Then d is a linear combination of elements
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of B in Equation (3.3). Therefore an element of Cpxy; F,Dggand an element

of Cpy; F.Dgqde nes the derivationd by dpxg p X oy and dpyq

3 1 3 1

Remark 3.2.11. Write x* ~ ~ a;x'y' andy® ~ ~ hyx'y}. Then by
i 0j 0 i 0j 0

Equations (3.1) - (3.3):

1. by bgoandby;  bsy
2. a0 @&oandag: a1 lyo o

Remark 3.2.12. By Theorem 2.3.4, there are ¥ derivations of the commutative

group algebraF,pCs C,q whereC, denotes the cyclic group of orden.

Lemma 3.2.13. LetDg x x;y |y? x* pxy¢ 1lyand letd P DerpF.Dgg
Write x! dmxq a bywherea;bP Foxxy. Then x!and x commute if and only

if bis an element of the ideapl  x2q of Foxxy.
Proof. Write x! dmxq a bywherea;bPF,xxy. Then

1

xXx xx! ax byx xa xby ax ax bxXy bxy bxpl x%q:
Therefore, x* and x commute if and only ifb P Annpl  x?qin Fyxxy. Con-

sidering the group algebraF,xxy, the idealpl  x?g € Annpl  x2q since 1 X2 is

centralandpl x?¢f 0. Conversely, letc ¢ cix ©x? cx® PAnnpl x2q

Then

2

0 pl Xgme X GX* CX°g P& Cad Xx°q pc GAL X°q

Thatis, ¢ Candc; czandsoc pcy cxgd x2g Therefore,Annpl x2q €
pl  x2gand soAnnpl  x2q p1l x?g Thus, x*and x commute if and only ifb

is in the idealpl  x2qof Foxxy. O
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The following basis for the vector space of inner derivations BfDg is provided

by letting n 4 in Theorem 2.3.13:

dy | bP tX; y; xyu(: (3.4)

3.2.2 Conjugation by Units

Remark 3.2.14. [42, pp.71] Replacing the usual multiplication of an associative
algebraA by the Lie commutator ra;; a,s yields a nonassociative algebra which is

a Lie algebra.

De nition 3.2.15. Let D denote the Lie algebra ofF,Dg formed by de ning
ra;bs ab ba for all a;bP F,Dg. Also, denote byD! r F,Dg; FyDgsthe set of

all Lie commutators of elements of,Ds.

Remark 3.2.16. By Remark 3.2.3, group conjugation irDg either xes an element
of Dg or it multiplies it by x2. For any g;hPDg, rg;hs gh hg hpy" gq O
or hgol x?g The Lie bracket is bilinear and soD?'is contained inpl  x2q

g; xx2yq which by Lemma 3.2.5 is a central nilpotent ideal of index 2.

We will now consider conjugation of an element d¥,Dg by units of F,Ds.

De nition 3.2.17. Let u be a unit of a group algebraKG and a an element of

KG. Then the conjugation of a by u, is the elementu ‘au and is denoted bya".

Lemma 3.2.18. a? is central for any elementa of F,Ds.

o

Proof. Write a IS 180, wherea; PF, and g PDg. Then

ag ag " aagg  aapig Ggq  agh

i1 j 1 i1 i i
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These last 2 sums are central elements since

" aapsg GGq  aarg;gsP pgxx’yq€ZpF,Dgq by Remark 3.2.16
i i

and g? P t1; x°u € ZpF,Dgq

Therefore, a2 is the sum of 2 central elements and so is itself central. O
Remark 3.2.19. The units of F,Dg are the elements of augmentation 1.

Lemma 3.2.20. Let u be a unit ofF,Dg. Thenu * u zwherezP pDg;xx%yq

Proof. Write u *  u z, for somez PF,Dg. Then1 upu zq u? uzand so
uz u? 1. We know that u? is central by Lemma 3.2.18 and has augmentation 1.
By Remark 3.2.4theseB; t 1; x%; xpl x?q pl x2qy; xpl x?qyu, is a basis for
ZpF,Dgq the centre of F,Dg. Therefore, by Lemma 3.2.5 we can write?> e i,
wheree 1lorx?(e 1 x2 since it has augmentation 1) and P Dg; xx?yq
Thisimpliesthat1 u? iorpl x?q iandsouz 1 u?P pDg;xx?yq Thus,

z P pDg;xx?ygsinceu is a unit. O

Lemma 3.2.21. Let u be a unit of F,Dg andi P pDg;xx?yq Then, u i is also

aunitof FDgandpu ig! ut .

Proof. Let : F,Dg N F, be the augmentation map. Thenpu iq pug [q
1 0 1. Thereforeu i is a unit. By Lemma 3.2.20,u ! u z for some

zP pDg;xx?ygand so

1 1

pu  iqu iq uu uiiu iZ 1 u ipp zqg O 1 rulis iz
However, i rpl  x2qg for somer P F,Dg (by Lemma 3.2.5) and soru;is
pl x2qu;rs 0by Remark 3.2.16. Alsaz 0, since pDg;xx?y¢ 0. Therefore

u ! iisthe inverse of the unitu i. O
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Lemma 3.2.22. Let u be a unit of F,Dg andi P Dg;xx2yq Thena' ' aY, for

allaP FoDs.
Proof. Let g be an element oDg. Then,

1 1 1

g pu igqlgou ig pu ig@u gig u “gu u “gi igu igi

Write u ¥ u z, forsomez P pDg;xx?yqandi rpl x?qfor somer PF,Dg.

ulgi igu wugi zgi igu p1l x3qugr rguq
sincezgi 0 as bothz andi are in pDg;xx?yq Write r r. r,, wherer. is
the sum of elements in the support of that commute with g andr,, is the sum of

elements in the support ofr that do not commute with g. Then

Pl x’qugr rgug pl x*qugrc regug pl  x*qugr,  ragug
pl x’gmgr. greug pl Xx’qugr,  x°grouq
pl xquugrc greu ugrn grouq
pl x%gpu;gres ru;grasq O;

by Remark 3.2.16. Moreoverigi 0 as pDg;x?y¢ 0. Therefore,g" ' g",

foranyi P pDg;xx%yq

Write a 18 180, wherea; PF, and g PDg. Then

8 8
! ag' ' ag a:
i1 i1
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De nition 3.2.23. De ne

U{l t Lxy xy;1 x vy;1 x xy;1 y Xy; X Yy Xyu:

Then U{l is a set of representatives of the units oF,Dg mod the ideal |

g; xx%yq sinceF,Dg{ Dg;xx%yq FopDg{xx?yqby Proposition 3.1.6.

Table 3.1 lists the image of the elements @g under conjugation by the units

of U{l. In the table is the element 1 x2.

Remark 3.2.24. Table 3.1 combined with Lemma 3.2.22 gives all conjugates of
elements oD g by units of F,Dg. Partial sums of the entries in each row of Table 3.1
give all conjugates of elements df,Dg by units of F,Dg. Therefore there are 8
inner automorphisms ofF,Dg. The exponent of the inner automorphism group of
F,Dg is 2. This has also been veri ed using GAP [18] and can also be calculated

using Table 3.1. Therefore the inner automorphism group &Dg is C3.
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8Q°dd X T alaym ‘8ge4jo suun ayr Aq uonebnluod tapun 8o abewl ayl :T'S 9|geL
bA > AXx|bAx xd Ax|bAk xd Ax | bAx xd A | A X[ X| A X |T| £
bA xd Ax | bAx xd A |bA xd AXx|bAx xd  AX| A X | X| AN X | T| 4 10
bA xd Ax |bAx > Ax|bA >xd AXx| bAx xd A | A X | X| A X |T| & x 10
bA > Ax| bAx xd K |[bA xd Ax |[bAx xd Ax| A& X | X[ A X |T| 4«40
ReX A Ax KX X 2X eX T A0
Ax KX KX A X 2X X T D
Ax A KX A x eX 2X X T D
ReX KX Ax A X ZX X T 0
ReX KX AX A X 2X X T! 8adb
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Example 3.2.25 uses Table 3.1 to compute the conjugation of an element of

F.Dg by a unit of FoDs.

Example 3.2.25. leta 1 x% x3%;v x x> yandu 1 x vybe
elements ofF,Dg. Thenv  u 1 x?andsobylLemma 3.2.22" a'. Therefore

using Table 3.1

a’ a' 1" pxyd pxPyd' 1 y pl xgx xyq X% pl xgx yq
1 y x}% pl XPqy xyq 1 xy x3:

Lemma 3.2.26. Let z be a central element of a unital ringR and letd P DerpRq

Then dqis also be central inR.

Proof. Let aPR and let z be any central element oR. Then

dpacg admeq dpazgq dzag dzep zdmq dmer  dpacg:

Therefore,dpagg  admq dmop dpag and subtracting dpacg from both sides
givesadmq dEc. m

3.2.3 The ldeals of F,;Dg

De nition 3.2.27.  Let RG be a group ring. Denote by& the group ring element

o

denedby G 0.

De nition 3.2.28. Let S and T be sets of elements of the group rinBG. De ne
S;Tq tps;tq|sPSandtPTu.

De nition 3.2.29. Let R be aa nitering. Then atwo sided ideall of R generated
by the subsetA € R is the set all nite sums of the formras, wherer;s; PR and

aPA.
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Remark 3.2.30. Let P Fyxxy. Consider as an element ofF,Dg. Then P
g; xx2yqif and only if suppp gcontains an even number of both even and odd

powers ofXx.
De nition 3.2.31. Deneb 1 pl xgd vyg

Lemma 3.2.32. The settl b; 1 x? xpl x?qg ypl x?q yxpl x2quis a
basis for the two-sided idedl p1 bqg P g; xx?yqof F,Ds.

Proof. Itis rst shownthat pl ggd bgP pDg;xx?yqgfor allgPDg. Letg X!
fori P t0; 1;2;3u. Then

pl ggd by pl x'gi xgd yq pl x x x 'gd yqP pDg; xx?yq

by Remark 3.2.30. Letg x'y fori P t0;1;2;3u. Then

L oggl by pl xygd x y xyq
1 x y xy xy x'ly x x'1?

pl x x' x 'gd ygqP pDg;xx’yq by Remark 3.2.30

Thereforepl ggd bgP pDg;xx?yq forallgPDgandsogpl bg pl bg z,
wherez; P g, xx?yq Also,pl bgd gq pl1 ggd bg r1 b;1 gsand
sopl bgd ggP pDs;xx?yq by Remark 3.2.16. Thuspl hg pl1 by 2z,
wherez, P pDg;xx?yq By Lemma 3.2.5,the seB tp 1 x?g xpl x2qg ypl

x?q yxpl x2quis a basis for pDg;xx?yq Thus the principal ideal generated by
1 Dbis contained in theF,-linear span oft1 bu” B. Thereforetl bu” B isa

basis forl p1 by  pDg;xx%yq O

Remark 3.2.33. By Proposition 3.1.4,B; t 1 x; 1 x% 1 x31 y;1

xy; 1 x2%y; 1 x3yuis a basis for pDgqg Let P be the invertible matrix shown in
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Equation (3.5). Then multiplication by P ! changes the basis for pDgqfrom B,
to B,,whereB, t 1 xy; 1 y;1 b;1 x? xpl x?q ypl x2g xypl x2qu

0010100 1010101
0001000 1011010
0000100 1010000

P 0110010 and P' 0100000: (3.5)
1010001 0010000
0000010 0000010
0000001 0000001

De nition 3.2.34.  The classical involution of KG, denoted byf is a map from

KG to KG dened by p joca,9d PN o agg ™.

Lemma 3.2.35. Thesettl y; 1 b;pl x2g xpl x2g ypl x2g xypl x2qu
is a basis for the two-sided idedl p 1 yqof F,Ds.

Proof. pl xgd yq 1 bandx®l ygxy 1 y 1 x2 Therefore the
5-dimensional idealpl bg Dg; xx%yqis contained in the idealpl yqg |If
1 yPA Iy g, xx’yq theny b z, wherez P ZpF,Dgq This is a
contradiction sincey b x xy RRZpF,Dggqandsol yR@A Ibg D g; Xx2y(q

It is now shownthatl x R@A ygand so the dimension ofil yqis 6.

Assume by way of contradiction that 1 x P A yqg Note that for ry;r, P

Foxxy,prs  raygd  yq pri rogd  yg Letr;s;t PFaxxy. Then
rol ygs tyg rs ty s’y t'g rs t'qg rp’  toy:

Therefore elements of the idegll yqgare sums of elements of the formps  tf g
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res’  tgy. Thus for some nonnegative integen

n n
1 x Oy  rps thg  ornpl oy
i 0 i 0
n n
rnps t sl tig since il tig O
i 0 i 0
However, "' P pDg;xx?yqfor all PF,Dg. Therefore 1 x P pDg;xx%yq

This is a contradiction by Lemma 3.2.5andso 1 xR@Ad vyg

By Remark 3.2.33, pDggis a 7-dimensional ideal with basi®, t 1 xy; 1
y; 1 b;1 x? xpl x?qg ypl x2g xypl x2qu Thereforepl ygis a 6-dimensional
ideal with basistl y; 1 b;1 x?% xpl x?qg ypl x%g xypl x2qu O

Remark 3.2.36. All Ideals of F,Dg are nitely generated.

Lemma 3.2.37. Dsg;xx?yqis a di erential two-sided ideal of F,Ds.

Proof. xx?y is a normal subgroup ofDg and so pDg; xx?yqis a two-sided ideal of
F,Dg by Lemma 3.1.5. Letd PDerpF,Dgg Then by Lemma 3.1.13, pDg; xx2yq

pl  x2qis a dierential ideal of pF,Dg;dqgif and only if dpl  x?q P pDg; Xx?yq
However,dol x2gq dmx?q rdmgxs P pDg; xx?yqby Remark 3.2.16. Therefore,

Dg; xx2yqis a di erential ideal of pF,Dg; dqfor all derivations d on F,Dg. ]

Corollary 3.2.38. Let d P DerpF,Dgqg and let | g;xx?yq Dene d :
F,Dg{l N F,Dg{l bydp 1q dpag |. Then : DerpF,Dgq N DerpF.Dgf{lq

de ned by d PNd is a Lie algebra homomorphism.

Proof. | is a di erential two-sided ideal of F,Dg by Lemma 3.2.37. The result now

follows from Theorem 3.1.21. ]

Remark 3.2.39. Let : Derpr,Dgq N DerpF.Dg{l gbe the map de ned in Corol-
lary 3.2.38. By Remark 3.2.10d P DerpF,Dgq is de ned by an element P

Cmxy; F,Dggand an element P Cpy;F,Dgg Thus by the Leibniz rule,dpF,Dgq €

51



| if and only if dpyq Pl anddmxq p x ay PIl. Thereforedis in the kernel

of ifandonlyif Pl and PI.ByLemma 3.2.5, is a 4-dimensional ideal of

F,Dg. Therefore the kernel of is an 8-dimensional vector space and so the image of
is a 4-dimensional vector space since by Theorem 2.3.dimpDerpF,Dgqq  12.

By Proposition 3.1.6,F,Dg{l  F,Dg{xx?yq F,pC, C,gand soDerpF,Dg{lq

is an 8-dimensional vector space by Theorem 2.3.4. Thereforas not onto.

Lemma 3.2.40. Let | be the two-sided ideal oF,Dg generated by the element
1 vy. Thenl is a dierential ideal of pF,Dg; dqif and only if dpyg PI. Also, there

are 2'* derivations d of F,Dg such thatl is a di erential ideal of pF,Dg;dg

Proof. Let d be the derivation of F,Dg de ned by P Cpxy; FoDgq and P
Cpy;F:Dgg By Lemma 3.1.13,1 is a dierential ideal of pg~,Dg; dq if and only if
dol yq dpyq Pl andso Pl X Cpy;F.Dgg

By Remark 3.2.8,Bepyq t 1; x2; y; x?y; x  x3g x  x3gyuis a basis for
Cpy;FoDgg ThesetB t 1,1 x4 1 y; 1 x%y; x  x3g x x3ogyuis also
a basis forCpy; F,Dgq sincespanBq spanBepyqgand B also has size 6. RI
but the other elements ofB are inl by Lemma 3.2.35 and s&py; F,Dgq X1 is a

5-dimensional subspace d¥,Dsg.

Therefore can be any element ofCxy; FoDgqg which by Remark 3.2.8 is a
6-dimensional subspace df,Dg. Also, can be any element ofCpy;F,Dgq X1
which is a 5-dimensional subspace &,Dg. Thus there are 2! derivations of F,Dg

that correspond tol being a di erential ideal. O

Remark 3.2.41. By Proposition 3.1.4, the settl x; 1 x2% 1 x3; ypl
xq ypl  x?q ypl x3quis a basis for the ideal pDg;xxyq Let r PF,xxy. Then
pb xgy ry ryx® rypl x3gand so pDg;xxyqis in fact a two-sided ideal

of F,Dg of dimension 6.
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Lemma 3.2.42. There are 2'° derivations d of F,Dg such thatpl xqis a di er-

ential ideal of pF,Dg; dg

Proof. Let d be the derivation of F,Dg dened by P Cpxy; F,Dgg and P
Cpy;FoDgg Letl p1 xg Then by Lemma 3.1.13,dd g € | if and only if
dopl xgq dxg p x oy PI.
Assume that!l is a di erential ideal with respect tod and sop x q PI.

P Cpy; F.Dggand so by Remark 3.2.8x WoX  Wix3 Woxy wsx3y w,pl
x2q wspl x2qy, for somew; PF,. Let Wo wipl X X3q woxy  wsxPy.
By Remark 3.2.8, the setBexyq t 1; x2; xy; x%y; x x3g pl  Xx?qyuis a
basis forCpxy; F,Dgg Therefore P Cpxy; F,Dgg Also, X pw wgagd
xq wspl x2g wspl x2qy and so is an element of. Let z . Then
p X q pz X qPI and soz PCpxy; F,Dgg Xl . Therefore for any element

of Cpy; F,Dsq z, wherez PCxy; FoDgq X1 .

It is now shown that Cpxy; F,Dgq XI g; xx%yq By Remark 3.2.9,t1
x% 1 xy; 1 x3%; x x%g pl  x?qyuis a basis forCpxy; FoDgg X pDgg
Assume by way of contradictionthat1 xy Pl. Thenl x p1 xyx 1 yPI
and sopl yq € 1. Appending 1 xy to the basis given in Lemma 3.2.35 for
pl  yq gives the basisB, given for pDgqin Remark 3.2.33. Thereforel

pDgqand so by Remark 3.2.41, 6 dimp g dimp gqq 7, a contradiction.

Therefore 1 xy RI and so the dimension oCxy; F,Dgq X1 is less than 5 and so
Cpxy; F2Deg X1 pDg; xx%yq

Let be any element of the 6-dimensional subspacgpy;F,Dgqg and let z
be any element of the 4-dimensional subspacepDg;xx?yq Then z P
Cpxy; FoDgg and X z x P11, since bothz and X areinl.

Therefore there are ¥ derivations of F,Dg such that | is a di erential ideal. O
Lemma 3.2.43. There are 2'° derivations d of F,Dg for which the augmentation
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ideal pDgqis a dierential ideal of pF,Dg; dg

Proof. Let d be the derivation of F,Dg dened by P Cmxy;F,Dggand P
Cpy;F.Dgg The augmentation map is a ring homomorphism and so pDgqis a
di erential ideal with respect to d if and only if dpxgand dpygare both in  pDgg
However,dxxq p X oy and dpyq are bothin pDggif and only if and

are bothin pDgg By Remark 3.2.9,Cpxy; FoDggX pDgqgandCpy;F,DggX pDgq
are both 5-dimensional subspaces &:Dg. Therefore there are ¥ derivations of

F,Dg such that pDgqis a di erential ideal. O

Figure 3.1 shows the lattice of all two-sided ideals d¥,Dg. The inclusions

were computed in GAP [18].
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Figure 3.1: The lattice of two-sided ideals oF,Dg
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3.2.4 The Unit Group of FyDg

De nition 3.2.44. An ideal | of a ring is anil ideal if each of its elements is

nilpotent, i.e. for allaPl, a" 0 for some natural numbem.

De nition 3.2.45. Anideal | of aring is anilpotent ideal if there exists a natural

number n such that1" p Og

Theorem 3.2.46. [40, pp. 110] LetR be an Artinian ring. Then the Jacobson

radical J is a nilpotent ideal of R and every nil ideal is nilpotent.

Lemma 3.2.47. Let| be a proper ideal oF,Dg. Then 1 1 is a normal subgroup

of the unit group ofF,Dsg.

Proof. The units of F,Dg are the elements of augmentation 1 and SdpF,Dgq
1 mDgqg Therefore pDggis the uniqgue maximal ideal oF,Dg and soJ D gq
By Theorem 3.2.46,J is nilpotent. Let n be the index of nilpotency ofJ. Then

I" O for all proper idealsl of F,Dg, sincel € J.

Letaandbbe elements of the idedl. Thenpl agd bg 1 a b abP1l I.

Therefore 1 1 is closed under multiplication. The inverse of the unit 1 bis given
n 1

bypl byl ~ B"P1 | since
m 0
rll Ql
b" pl bg pl bg ol 1 0 L
m 0 m 0

Therefore 1 1 is closed under inversion and so 11 is a subgroup ofUpF,Dgqg

Also, 1 1 is a normal subgroup since for alil Pl andj PJ

1

Pl jgd igd jg' pl jod jg’ pl joapgd jq
1pl jogpgd jg'P1l I
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Lemma 3.2.48. LetDg x x;y |x* y? pxy¢d 1lyandb 1 p1l xgd vyg

The following is a presentation of the unit group df,Dg, denoted byUpF,Dgqg

UpF2Deq pby x bByg xyy xx*% xx* Ry X xyy

FC4 Czq CZ Cz Cz Cz;

where the actions of the semidirect products are:

b pbgbdg pdd  bY; bBY pbgpHopiox®  Rg
g  bB: vy oyx% plg¥ x% G RqY x2 R

Proof. Let 1 x2 By Lemma 3.2.47, 1p qis a normal subgroup ofJpF,Dgq
By Lemma 3.2.5, g;xx?yq p gand is a central nilpotent ideal of index 2
with the set S t ; x: y: xy uas a basis. Letr;t P pDg;xx?yq Then
pL rgd tg 1 r tandsothesetl S t 1 s|sPSugenerateslp ¢

Also, 1 p qis an elementary abelian 2-groupandso b q Cj.

Letl p1 by pDg;xx?yq ByLemma3.2.32,thesetl b; ;x;y;Xxy u
is a basis for the 5-dimensional ideal and by Lemma 3.2.35y R1 |. By
Lemma 3.2.47, 1 | is a normal subgroup ofUupF,Dgqof order 2. bP1 | and
bR1 p ¢ which is a normal subgroup of 1 | of order 2 and so 1 1| is generated
bytb; 1 ;1 x; 1 y; 1 xy u ltisan abelian group as pDg; xx?yqis

central. Also

P px y xyax y xyqg 1 D pl gd xgd ygd xyg

The order ofbis 4 since® b Dgandl* B D 1.by px y xywy
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1 x xy andso

by pbyf pl x xygd x xyq

2 2 2

Xy xy y 1 x* X% vy

1 y pl q9d y qPZpDsq

1 x Xy X X

Therefore 1 | xby xbdy x1 y x1 xy C, C3

By Lemma 3.2.35, the setl y; 1 b; ; x; y; Xy uis a basis for the
idealpl yg Therefore 1 p1 yqgis a normal subgroup ofUpF,Dgq of order 2
generated by thesety; b;1 ;1 x; 1 y; 1 xy ulpl yqisthe product
of the normal subgroup 1 | and xyy. y does not commute withband 1 | and
xyy have trivial intersection. Thus1 p1 yq 1 | xyy. Also,b p BPqbldg

by:1 and 1 x are central and so

1 pl yq xoy xbdy x1 y x1 xy xyy
pby xbbByg xyy x1 y x1 xvy

By Remark 3.2.33, the setl xy; 1 y; 1 b; ; X;y; Xy uis a basis for

s 1 p 1 ygandxxyy have trivial intersection. ThereforeUpF,Dgqis a group
of order 2 generated by the setxy; y; b;1 ;1 x; 1 y; 1 Xy u Thus
UpF,Dgqis the product of the normal subgroup 1p 1 ygand xxyy.

UpF.Deq  py xbbyg xyy x1 y x1 xy xxyy

ICC4 Czq Cz C2 CZ C2:

By Table 3.1,B5Y x3 xy x2y. Alsopogblgd qd x q pl Dsd’pl Rq
bl ® Deq Bl fyq px® y xygd yq x* fy y & X% R
x3 xy x2. Therefore,0Y p bgb¥gd qgd x g Alsoy® xy?xy ypl g
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and bg; 1 and 1 x are central and so commute withxy. ]

Remark 3.2.49. The structure of the unit group of the group algebra=xDg was
found in [13].

3.3 Do Outer Derivations Become Inner?

In Theorem 2.3.15 it was shown that there exists an algebra+ KG such that all
derivations of KG become inner inA. In this section we show that derivations of

KH do not become inner orKG, whereH is a subgroup ofG.

Let d be a derivation ofA that is not inner. Does there exist an algebr®& « A
such that the derivation d becomes inner when extended 8? That is, does there

exist an elementb of B such thatd, donA? A necessary condition oml, is that

Lemma 3.3.1. Let R be a commutative ring. Then a derivation oR is inner if

and only if it is the zero map.

Proof. let a PR and let d be an inner derivation ofR. Thendpg ba ab O,

for somebPR. If dis the zero map thendpaq 0Oa aO0. ]

De nition 3.3.2. A derivation of a ring is calledouter if it is not an inner deriva-

tion.

Theorem 3.3.3. Let H be a subgroup of the grou@ and letR be a unital ring.

Then there are no outerR-derivations of RH that become inner onRG.

Proof. LetgPGandh PH. ThenghPH & gPH andhgPH & gPH.
Thereforerg;hs gh hgPRH & r g;hs OorgPH. LetG, t gPG|
rg;hs PRHu HYtgPG|rg;hs Ou
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Let bPRG and write b~ hyg. Assume that the restriction ofd, to RH is
gPG
an R-derivation of RH. Then dypRH qis contained inRH and so for anyh PH,

rb;hs  byrg;hs T kyrg;hs PRH. © hbyrg;hs PRH and so ~  hyrg;hs P
gPGh gRGh gPGh gRGh
RH. However  Ikyrg; hsis anR-linear combination of elements oG that are not
gRGh
in H and so~ hyrg;hs 0. Therefore
gRGh

rb;hs * byrgihs T byrgihs T kygh roshs

gPGh gPH gPH

where " bh PRH. By assumption the restriction ofd, to RH is an R-

hPH
derivation of RH. Therefore for anyr PR andh PH

brh  rhb r b;rhs dyprhq rdyphq rrb;hs  rbh rhb:

Thusbr rbandso’ hrg br rb ~ rbyg. Thereforeh, commutes withr
gPG gPG
for all g P G and so in particular by commutes withr for all g PH which implies

that r r for all r PR. Therefored is an R-derivation of RH.

LetaPRH and writea ~ ayh. Then
hPH

dBg dy  ah  andhg  adphg d  ah  dpag

hPH hPH hPH hPH

Therefore the restriction ofdy, to RH is an inner derivation ofRH and so no outer

R-derivations of RH become inner orRG. O

The following lemma and example show that althougR-derivations of group
rings do not become inner on larger group rings, derivation of ideals of group rings

can become inner on the group ring.

Lemma 3.3.4. LetL p1l yqbe the two-sided ideal oF,Dg generated by the
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elementl vy. Let bPF,;Dg. Then the restriction of dy to L denoteddysg is not

inner on L if and only if x Psuppdg

Proof. Let | p 1 x2qbe the two-sided ideal ofF,Dg generated by the element
1 x2. By Lemma 3.2.5,| is a central nilpotent ideal of index 2 with the following
set as a basis:B, tp 1 x2g xpl x2g ypl x°g yxpl x°qu Let B

B, Ytpl vyg plL yogxu Then by Lemma 3.2.35,B_ is a basis forL « 1I.

L I" Fpl yq Fppl yox and note thatrpl ygpl yoxks pl ygd yo

Pl yxpl yqg 0 pl ygx yxg x x* yx yx®andso

rlils rl ™ Fopl ygq™ Fopl  yogl - Fopl  ygq Fopl  yoxs
rFopl yq™ Fopl yox; Fopl  yq™ Fopl  yoxs

t ouYtrl y;pl yoxsuYtrl y:pl yoxsu tO;x x°

yx  yxiu

Let a PL and b P F,Dg. Then dypaq PL sincel is a two-sided ideal of
F.Dg and sodyag is a derivation ofL. B, can be extended to a basis foF,Dg

by appending the elements 1 and. Write b Iyl Ibyx byl for somel PL and

;b PF,anda  apl yg a;pl yox  aeqwherez Pl and ag; a;;a, PFs.
Then

doprg rhpyl bix bylias rkyl;as rbx;as rbyl;as rbxas r bl as

whererbyl;as P L;Ls Also if aRI then

rx;as rx;appl ygs rx;a;pl  YOXS r X;azs

aoxpl ygq aopl yx axpl yx apl yo®
agyxpl x°q ayypl x*qREL;Ls

Therefore ifx Psuppdgand a Rl then dypag R L; L sand sod, is not inner onL.
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Conversely, ifx Rsuppdgqthenly 0 and sod, dyi b, Oy, Which is an inner

derivation of L. ]

Example 3.3.5. LetL p1 ygbe the two-sided ideal oF,Dg generated by the
element1 y. The mapd,: F.Dg N F,Dg, de ned by c PNxc cx for all c PF,Dg
is an inner derivation of F,Dg. Also for all | PL, dqdq xlI Ix PL sincel is
a two-sided ideal and so the maplag is a derivation of L. However,d,ag is not
innerasdypl yg dypyq yxpl x?qRE;Ls t Ox x® yx yx3u Therefore

d«ag is a non-inner derivation ofL p 1 yqthat becomes inner orF;Dg.

This example raises an interesting question: If is a proper ideal ofKG, does

every derivation ofl become inner orKG ?

3.4 Some Linear Algebra Results

This section contains known results from linear algebra and is included for later

reference. It may be skipped if desired by the reader.

A derivation of a group algebra is a linear transformation, by Corollary 3.5.1.
We wish to study the structure of these derivations and so we will employ some
theorems from linear algebra to better understand how these derivations transform
a group algebra. This section contains the main results used namely the primary
decomposition theorem and the cyclic decomposition theorem. Both of these theo-
rems allow us to decompose the group algebra, considered as a vector space, into a
direct sum of derivation-invariant subspaces. These decompositions can be used to
write the matrix representing the derivation in rational canonical form. Moreover,
if the eigenvalues all lie in the eld, then a Jordan form can also be achieved. In the
case where the matrix cannot be written in Jordan form, it is still possible to write

it in generalised Jordan form. We begin with some de nitions and preliminary
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results. Throughout this section we letfT be a linear transformation on a vector

spaceV.

Theorem 3.4.1. [52, pp. 17] LetV be a nite-dimensional vector space and

let T: V N W be a linear transformation. ThendimpkerpTqq dimpmprqq
dimpvg

De nition 3.4.2. [52, pp. 111] TheT-annihilator of a vectorv P V denoted

m+.,[Xqis the unique monic polynomial of least degree such thatr.,prqwqg O.

De nition 3.4.3.  [52, pp. 112] Theminimum polynomial of T denotedm+pxqis

the unique monic polynomial of least degree such thatrprqwqg O forallvPV.

Lemma 3.4.4. [52, pp. 112] Let V be a vector space and 1@t: V N V be a

vV Vv Vi has T-annihilator polynomialm+.,jxq  p1Xq: :: pcXa

Theorem 3.4.5. [52, pp. 113] LetV be a nite-dimensional vector space and let
T:V N V be a linear transformation. Then there is a vectov PV such that the

T-annihilator mt.,pxq of v is equal to the minimum polynomiamrpxqof T.

De nition 3.4.6. [52, pp. 114] LetA be a square matrix. Thecharacteris-
tic polynomial capxqg of A is the polynomial capxq detaxl Aqg Let V be a
nite-dimensional vector space and lefl : V N V be a linear transformation. Fur-
thermore, let B be any basis ofV and let A be the matrix of T with respect to

the basisB, that is, A r Ts. Then the characteristic polynomial crpxq is the

polynomial crpxq detxl  Ag

De nition 3.4.7. [52, pp. 115] Letf xg x" a, x" ! ap be a monic

polynomial in Frxs of degreen ¥ 1. The companion matrix Cgf pxgqof f pxqis the

63



n n matrix

a, 110:::0
a, »01:::0
Crf mqq o
a 00:::1
a 00:::0
Theorem 3.4.8. [52, pp. 115] Letfmxg x" a, x" 1 ap be a monic

polynomial and letA  Cpf pxqqbe its companion matrix. LetV  F" for any
eld Fand letT Ta:V N V be the linear transformationTpvq Av. Let v
r0 0 ::: 0 19 be then" standard basis vector. Then the subspad¢ of V de ned

byW t gpTrqmwg |gpxq PFrxsuis V. Furthermore, mrxq mr.yXq fXqg

Remark 3.4.9. [52, pp. 116] The characteristic polynomial of the companion

matrix of a monic polynomial f pxqis equal tof pxg That is, Ccy wqd®q f Xg

De nition 3.4.10.  [52, pp. 117] LetT:V N V be a linear transformation. A
subspaceW of V is T-invariant if TpWqg € W, i.e., if Tpnvg PW for everyw PW.

Remark 3.4.11. The restriction of a linear transformation T to a T-invariant

subspaceW of V is a linear transformation, denotedT &g, .

De nition 3.4.12. [52, pp. 117] LetT:V N V be a linear transformation. Let

# +
k

W pplramiq|ppxg PFrxs

i1

In this situation B is said to T-generate W.

The image (range) of a linear transformation, denotetin pT qis a T -invariant

subspace o¥. Letv PImplrg Thenv Twforsomew PV andsoTv TpTrwqP
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Imprqg In fact, for eachk PN we have thatTXpV qis a T-invariant subspace oV .

This gives us a non-ascending sequencelofnvariant subspaces:

Ve TpVqe T?pVqe :::

SinceV is nite-dimensional this sequence must eventually stabilise. That is, there
is a positive integerm such that T'pvgq T™pvgfor all j ¥ m. We will refer to
the imageT™pV gas thegeneralised range spacef T and denote it by Rg pT q[22,
pp. 411].

Remark 3.4.13. The fact that this non-ascending sequence df-invariant sub-
spaces must eventually stabilise, means that the restriction @fto Rg pT g denoted

by Tag, 5rq IS @n isomorphism.

Lemma 3.4.14. [52, pp. 117] LetT: V N V be a linear transformation and let
ppxq P Frxs be any polynomial. ThenkerpopTgqg tv PV | ppTqwg Ouis a

T-invariant subspace ofV.

In particular, letting ppTq TX for k  1;2;::: in Lemma 3.4.14 gives us a

non-descending chain of -invariant subspaces:

0€ kerpTq € kerpT?q € :::

Again, sinceV is nite-dimensional this sequence must eventually stabilise. That
is, there is a positive integem such that kerpT!q  kerpT™qgfor all j ¥ m. We
will refer to kerpl g as the generalised null spac®f T and denote it by Ng (T)

[22, pp. 411].

Theorem 3.4.15. [22, pp. 412] LetT: V N V be a linear transformation. Then

V. Rgplq Ngprg
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Theorem 3.4.16. [52, pp. 119] LetV be a nite-dimensional vector space and
let T: V N V be a linear transformation. Thenmypxq divides crpxq and every

irreducible factor of crpxqis an irreducible factor of mtpxq

Corollary 3.4.17. [52, pp. 119] A vector space/ is T-generated by a single

element if and only ifmtxq crxg

De nition 3.4.18.  [52, pp. 123] LetT: V N V be a linear transformation. Then

V. W;  WisaT-invariant direct sum if V.= W;~ W is the direct

T-invariant direct sum decomposition, thenW, is called aT -invariant complement

of W;i.

We now state the Primary Decomposition Theorem, which allows a decompo-

sition of a vector space into a direct sum of -invariant subspaces.

Theorem 3.4.19 (Primary Decomposition Theorem) [52, pp. 125] LetV be a vec-
tor space and lefT : V N V be a linear transformation. Letmrpxq p:iXq: : : pcXq
be the minimum polynomial ofT, where thep; are pairwise relatively prime poly-
nomials. LetW; kerppiprqqfor i  1;:::;k. Then eachW; is a T-invariant

subspace and/ W;  W,.

LetV  W; W be theT-invariant direct sum decompaosition given by
Theorem 3.4.19. LetU; be aT-invariant subspace ofWw;, for i 1;:::;k. Then
U U, U isaT-invariant subspace of V, and everyl -invariant subspace

of V arises in this way [52, pp. 126].

Theorem 3.4.20. [52, pp. 129-130] LetV be a nite-dimensional vector space
and let T:V N V be a linear transformation. Letw; PV be any vector with
Mr.w, [ Xq mrxgand let W; be the subspace of, T-generated byw;. Then W,
has aT-invariant complementW,, i.e., there is a T-invariant subspaceW, of V

such thatV. =~ W;~ W,.
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De nition 3.4.21. Let V be a nite-dimensional vector space and leT: V N V

T-generating setof V if the following conditions are satis ed:

1.V W; ° W, whereW, is the subspace o¥ that is T-generated byw;

2. pipxqis divisible by p; ;xqgfori  1;:::;k 1, wherepixq mr., Xqis the

T-annihilator of w;

We now state the Cyclic Decomposition Theorem.

Theorem 3.4.22 (Cyclic Decomposition Theorem) [52, pp. 132] LetV be a nite-
dimensional vector space and Ief : V N V be a linear transformation. ThenV
has a rational canonicalT-generating setC t wy;:::;weu If C1 t whiii;wlu
is any rational canonical T-generating set ofV, thenk | and pixq pipxq for
i 1;:::;k, wherep'xq MrwiXgand pipxq  Mrw, [Xg

De nition 3.4.23.  Ann n matrix M is in rational canonical form if it is a block

diagonal matrix of the form

Cpoixqq
Cppz2ixqq

Cppkxaq
where Cppjpxggdenotes the companion matrix ofpxg for some sequence of poly-
nomials p; X poXq : : & s pexqwith pixqgdivisible by p; jpxqfori  1,2;:::;k 1.

De nition 3.4.24. If T has rational canonical form as in De nition 3.4.23, then the

sequence of polynomialg; xq ppxq : : :; ppxqg are called theelementary divisors

of T.
Theorem 3.4.25. [52, pp. 134]
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1. Let V be a nite-dimensional vector space and leT: V N V be a linear
transformation. Then V has a basisB such thatrTs M is in rational

canonical form. Furthermore, M is unique.

2. Let A be ann n matrix. Then A is similar to a unique matrixM in rational

canonical form.

Corollary 3.4.26. [52, pp. 135] LetT have elementary divisorsp,pxq : : @ ; p«pxqu
Thenmrpxq pixgand crxq  poXop2pXq: X g

De nition 3.4.27.  [52, pp. 137] Ak k matrix is called aJordan blockassociated

with the eigenvalue if it has the form

A matrix J is said to be inJordan canonical formif J is a block diagonal matrix

with each J; a Jordan block.

J2

Theorem 3.4.28. [52, pp. 138]

1. Let V be a nite-dimensional vector space over a eld and letT:V N V

be a linear transformation. Suppose that the characteristic polynomial &f
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factors into a product of linear factors,crxq px aft:::ipx andf.
Then V has a basiB with rTss J a matrix in Jordan canonical form. J

is unique up to the order of the blocks.

2. Let A be ann n matrix over a eld F. Suppose thatcapxqg the charac-
teristic polynomial of A, factors into a product of linear factors, caxq
X afriiipx  amfm. Then A is similar to a matrix J in Jordan canoni-

cal form. J is unique up to the order of the blocks.

When crpxq does not factor into a product of linear factors we do not get a
Jordan canonical form. However, there are generalisations of De nition 3.4.27 and

Theorem 3.4.28 that can be used in this case.

De nition 3.4.29. A kl kIl matrix is called a generalised Jordan blockf it has

the form
CN

CN

CN
C

where there are k blocks of thé | matrix C  Cpppxqggalong the diagonal andN
is a matrix with an entry of 1 in row | column 1 and all other entries being zero. A
matrix J'is said to be ingeneralised Jordan canonical fornif J'is a block diagonal

matrix with each Ji a generalised Jordan block.

Ji
Y
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Theorem 3.4.30. [52, pp. 140]

1. Let V be a nite-dimensional vector space over a eldr and let ¢y pxqfactor

ascrpxq  puXdt il pmpxd™ for irreducible polynomialspipxq:::; pmXG
ThenV has a basi8 with r'Vss  J' a matrix in generalised Jordan canonical

form. J'is unique up to the order of the generalised Jordan blocks.

2. Let A be ann n matrix over a eld F and let capxq factor as capxq

pPLpX ! pmpXd™, for irreducible polynomialsp;xq:::;pmXag Then A is
similar to a matrix J' in generalised Jordan canonical form.J" is unique up

to the order of the generalised Jordan blocks.

3.5 Error Correcting Codes from Derivations

In this section we will consider derivations of group ring&G, whereK is a nite
eld and G is a nite abelian group. Letd P DerpgKG g The next lemma shows

that dis akerg-module homomorphism and so it is also K -linear transformation.

Lemma 3.5.1. Let R be a ring. Thend is a G-module homomorphism for all

d PDerpRq

Proof. Let d PDerpRq let cPG and leta PR. dis an additive group homomor-
phism. dpcqg O sodpecag dpoccp  cdpaq  cdpag m

Remark 3.5.2. Note that d is also aCiRgmodule homomorphism for alld P
DerpRg

De nition 3.5.3.  Given a derivationd: KG N KG, dene d": KG N KG to
be the composition ofd with itself n times. That is, for all a in KG, d"paq

HEhocSBBmdd®oooooon

n times
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Remark 3.5.4. Let dbe a derivation ofKG. Thend" is aK -linear transformation

(K -module homomorphism) for all positive integers.

Given a derivation d on a group algebraKG, the Primary Decomposition

Theorem (Theorem 3.4.19) gives a way of producirdjinvariant subspaces oKG.

Example 3.5.5. Let d be a derivation of a group algebraKG. Let mgpq
p1pXg: : : pcpxgbe the minimum polynomial ofd, which factors as a product of pair-
wise relatively prime polynomialsy;. Moreover, letW;  kerpoipdgofori  1;:::;k.
Then applying The Primary Decomposition Theorem (Theorem 3.4.19) we get that
eachW; is a d-invariant subspace andKG has the vector space decomposition

vV W, T W

In particular, By Theorem 3.4.15

KG Rgpdg™ Ngpdg

Remark 3.5.6. [25, pp. 41, 47] A linear block code over a nite eldK is a
subspace of the vector spacé of orderedn-tuples overK for some positive integer
n. In particular, if d: V N V then the generalised range space df Rg pdq is a

linear block code oveK .

De nition 3.5.7. A gary rn;k; scode is a code of lengtm, dimensionk and

minimum distance over a eld of order q.

We will now consider particular derivations of the group ring=3Cs where Cq
is the cyclic group of order 6 with presentatiorxx | x®  1y. For a derivation
d on F3C¢ we can choose any element &f;Cs to be the image ofx under d, by

Theorem 2.3.4.

Example 3.5.8. LetCs x x| x® 1yand letd be the derivationd: F3C¢ N F5Cqg

de ned by x PN1. This is the classical derivative map oveFs. It is an Fs-linear
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map or linear transformation and so can be represented by a 6 matrix over Fs.
We will denote this matrix by rdss, whereB t 1; x; x2; x3; x*, x®uis a basis for

F3;Cs. Note that
| |

rds 100000 000000

I I
rds 010000 100000 ;

| |
rds 001000 020000 ;

I I
rds 000100 000000

| |
rds 000010 000100 ;

| |
rds 000001 000020 :

| |
In summary, rds a, a; a, as a4 as a; 2a,0ay2a; 0 , for any a P Fs.

Thus the matrix rds; is given by

010000
002000
0o00O0O0O
rdss :
000010
000002

000000
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The matrix rdss acts on column vectors from the left. For example, leti be the
column vector representing 1 2x*. Then the column vector representing the image

of 1 2x* under the derivationd is given by

010000

002000

000000
rdssu

000010

000002

o N O O O Bk
o O N O O O

000000

Example 3.5.9. Let d be the derivationd: F3C¢ N F3Cg de ned by x PN1  x2
2x°. Let B t 1, x; x%; x3; x* x°u. Then B is a basis forF;Cg. It can be shown

by performing the computation as in Example 3.5.8 that the matrix representing

d is given by
010000 000002 001000 011002
002000 000000 000000 002000
q 000000 010000 000020 010020
i 000010 002000 000001 002011.
000002 000000 000000 000002
000000 000010 020000 020010

The minimal and characteristic polynomials ofd were calculated using the com-
puter algebra system Sage [43] and are as follomsiyxq px 1gx  2qx3q
5

and cgpxq px 1lgx 2gx“*g Let aix' P F3Cg and so can be writ-

i 0
ten as the vectorrag; a;; ay; as; as; asd with respect to B. Applying mgpxq gives
pds  2rdsqrg; as; as; as; au; as9 0. Using the Primary Decomposition Theo-

rem (Theorem 3.4.19),FsCs E,  E; Ngpdg whereE is the 1-dimensional
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eigenspace associated with the eigenvalueand Ng pdqis the d invariant subspace
associated with the factorx®, that is Ng pdq  kerpd®gq The minimal polynomial
factors into a product of linear factors and so by Theorem 3.4.28, we can nd a basis
B!such that rdss: is in Jordan canonical form. We will now look at each eigenvalue
separately. Firstly consider the eigenvalue 2. Lad, denote the restriction ofd to
E,. E, is ad-invariant subspace ofF3Cg and sod, is a linear transformation on
the 1-dimensional subspac&, such that p,pd.qfE.q O, wherep,xq px 1g
Thereforemgy, Xq ¢4,/ Xq px 1gand so the Jordan block associated with the
eigenvalue 2 ig2s Likewise the Jordan block associated with the eigenvalue Iris
Let dr denote the restriction ofd to Rg pdg Thenmg, Xg Cy.Xq pX 1gx 29

and so by Theorem 3.4.28

20
rdr
01

where the basisB is given byB t v,;vauand v is the eigenvector associated
I I

with the eigenvalue . v; 121212 andv, 022011 .

We now turn our attention to the generalised nullspac®g pdg= kerpd® g Let
dy denote the restriction ofd to Ngpdg We have mg, xq  x3® and cg, pXq
x%. Ng pdq is not dy-generated by a single vector. Thus we can use the Cyclic
Decomposition Theorem (Theorem 3.4.22) and Corollary 3.4.26 to writég pdq
N:  N,, whereN; is the subspace that igl\ -generated byvvli fori 1;2. We have

that mq,, .w, [XQ x® and My, w, X X. Wy 001001 dy-generatesN; and
|
Wo 100000 dy-generatesN,.

We now have a basiB! t v,;vy;rdsg:wi; rdssiws; wi; wou and can write the
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matrix rdss: in Jordan canonical form

200000 012001
010000 120200
000100 110010
rdss: P lrdsgP : where P :
000010 022000
000000 210200
000000 220010

Rg pdqis a 2 dimensional subspace ¢#;:Cq over F3. A generator matrix for

_ Vi 121212
the ternary codeRg pdqis G . The codewords (elements)

Va 011022
of Rg pdg are

r00000G; r121213r21212%r011023 r10220% r22011G r02201%r11022G; r201102

The minimum distance of this code is 4 by inspection and 9®g pdqis a 3-ary
r6; 2;4s code. It is an optimal code as the Griesmer bound for a linear code of

length 6 and dimension 2 oveF; is 4 [21].

Remark 3.5.10. Let KG be a nite group algebra, letd P DerpKGgand let B
be some listing of the elements d&. Then the generalised null space ofls; is not
a good code since the multiplicative identity 1, is a vector of weight one that is
mapped to 0 on the rst iteration and so 1P Ng pdg ThereforeNg pdgis arn; m; 1s

code, wherem is the algebraic multiplicity of the eigenvalue zero.

Example 3.5.11. Let d be the derivationd: F3Cs N F3Cg de ned by x PN1

X Ox2 x® x* x5 LetB t 1; x; x%; x% x* x°u. Then the matrix over Fs
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010000 000000 000010
002000 010000 000002
000000 002000 000000
000010 000000 010000
000002 000010 002000
00000O0 000002 000000
00000O0 002000 012010
000010 000000O0 012012
000002 000010 002012
00000O0 000002 010012.
010000 000000 012012
002000 010000 012002

representingd with respect to B is given by

The minimal and characteristic polynomials ofd were calculated using the

computer algebra system Sage. They were found to beypxq x°mx2? 1gand

caXq  x*px® kerpdq * kerpd® 19

Rg pdg ° Ng pdg The matrix rdss does not have a Jordan canonical form as the

1g Using Theorem 3.4.15 we gd¥3;Cq
polynomial x> 1 is irreducible overF;. However, Theorem 3.4.30 states that we
can nd a basisB!such that rdss: is in generalised Jordan canonical form. We will
now look at each summand separately. Firstly considétg pdg Let dz denote the

restriction of d to Rg pdg mg,Xq ¢4, Xq x> 1 and so by Theorem 3.4.30 and

De nitions 3.4.29 and 3.4.7 the generalised Jordan block associated wif pdqis

01
rdrSs I Cpoe,pxqgs rCp<®  1gs
20
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where the basisB is given by B t dv;w and v is any vector of F3Cg that d-

generatesRg pdg according to De nition 3.4.12. An example of such a vectov is
|

010010 -

We now turn our attention to Ngpdg Let dy denote the restriction ofd
to Ngpdg We have mg, xq X3 and ¢y, Xxq  x* Therefore Ng pdg is not
d-generated by a single vector. By the Cyclic Decomposition Theorem (Theo-
rem 3.4.22)Ngpdg N3 Nj, where N; is the subspace that isd-generated
by w; for i 1;2. By Theorem 3.4.22,mp,,,Xq  x3 and mp,,,Xq  X.
Wy 012021| and w; 100000I are 2 such vectors.

ThereforeB! t Dv;v;D?w;; Dwy; Wy, Wou is a basis forF3Cg such that rdss:

is in generalised Jordan canonical form

010000 201101
200000 210010
000100 100220
rdss: P lrdsgsP where P :
000010 202200
000000 210020
000000 100110

Rg pdqis a 2 dimensional subspace &%:Cs over F3 and so has 9 elements.

01 |
rdr : whereB t dv;wandv 010010 :
20

Therefore the orbit ofdv and dv v under d are respectively

| | | | |

10 N o2 N 20 N o1 N 10 and
| | | | |

112 N 12 N 22 N 21 N 11
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Therefore the graph ofRg pdq consists of two 4-cycles and the xed point 0. The
matrix rdy Ss: is nilpotent with an index of nilpotency of 3. This shows that after 3
iterations of d the group algebra has been mapped onRs pdg That is d*pF3Ceq

Rg pdg The codewords (elements) oRg pdq are

r00000G; r112112 r01001G;r22122% r02002@;r21121%r102103 r122122r20120%

The minimum distance of this code is 2 by inspection and $®g pdqis a 3-ary

ré; 2; 2s code.

In both this Example and Example 3.5.9 the generalised range spate pdq
is a d-invariant subspace ofF;Cs. However, by varying the derivation used, the

minimum distance decreased from 4 to 2.

Example 3.5.12. Let d be the derivationd: F3Cs N F3Cg de ned by x pPN1

x 22 x® x* x>whereCs x x| x® 1y. Note that we have changed
only the coe cient of the x? term in the image ofx under d from the one used
in Example 3.5.11. The matrix representing the=s3-linear transformation d with

respect to the basiB t 1; x; x?%; x3; x% x%uis

012011
012012
022012
rdss :
011012
012012

012022

Using the method detailed in the previous examples a change of basis matrix
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P is obtained andrdss can be written in Jordan canonical form.

111001 200000
120010 010000
010100 000100
P and P lrdsP ;
112000 000010
120020 0000O0O0
010200 000000

Rg pdg is a 2 dimensional subspace d¥;:Cs. A graph with the elements of
Rg pdg as vertices andu; vqas a directed edge ifdssu v is given in Figure 3.2.

The codewords (elements) dRg pdg are

r00000G; r11011G;r22022@,r12112%r20120%r01101%r212212 r022022 r102102

The minimum distance of this code is 4 by inspection and & pdqis a 3-aryr6; 2; 4s
code. Leta 1 x x® x%pr10118gandb 2 x? 2x3 x° pr0120%q
Then a and b are both elements oRg pdg however their productab x  2x?

x4 2x° p012012qis not an element ofRg pdg This shows that in generalRg pdq

is not closed under multiplication.

0000030

)

g.’.

@’

Figure 3.2: The subgraph of the graph induced by Rg pdg in Example 3.5.12,
where is the graph with the elements oF3;Cg as vertices andw; vqis a directed
edge ifDu v.



Chapter 4

Graphs Of Derivations

In this chapter the directed graphs of derivations of group algebras are explored,
that is, a derivation of a group algebra is considered as a linear nite dynamical
system (LFDS). The motivation for this comes from Theorem 3.1.18, which tells
us that if DerpKG q and DerKH q are not isomorphic as additive groups then
KG and KH are not isomorphic as rings. It is shown in Theorem 4.1.8 that
if :R N Sis a ring isomorphism, then there is a bijection fronDerpRq onto
DerpSqg such that corresponding derivations have isomorphic associated digraphs.
Therefore properties of the LFDS associated with a derivation can be used to
distinguish between group rings. The groups considered in this chapter are abelian.
In Section 4.1 the preperiod oDerp-,Gqis shown to be less than or equal to the

size of the groupG. Also, whenG C, C,, this bound is attained.

The digraph of a particular element ofDerpg-,pC,  C,qqgis studied and it
is shown to contain a 7-cycle. The digraphs oberp-,C,q are partitioned by
conjugacy class in Table 4.1. Also, permutations d¢¥,C, are exhibited such that
conjugation by these permutations give a way of permuting between any pair of
derivations of F,C, whose matrix representations with respect to a basis are similar.

By way of contrast it is shown that no digraph of a derivation ofF,C, contains a
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7-cycle. Therefore by examining the properties of the digraphs B§pC, C,qgand

F,C4, it has been shown that the group algebras are not isomorphic as rings.

It is shown in Section 4.4 that an involution of a group algebr& G permutes
DerKG g however in the case whelKG is not commutative it is not an element
of AutpKG g The automorphism group ofF,pC,  C,qand the size of the auto-
morphism group ofF,pC, C,qare given in Section 4.5 as well as the unit group

of FopCs  Cug

By Theorem 3.1.18, itKG and KH are isomorphic as rings thefjDer gKG g
jDerpKH g. Thus counting derivations can be used to distinguish between group
algebras. The smallest example where counting derivations does not su ce is for
FopCs CsgandFopC,  Cgq wherejDerpFopCs  Cuqq  jDerpFopC, Cgqd  2°2
Therefore other properties oDerpgK G gand DerpgKH g will need to be employed.
The maximum nilpotency index is one property of the derivations of a group algebra
that is investigated. It is shown in Lemma 4.6.5 that the maximum nilpotency
index for DerpFx Comqis 2" 1 1. Maximum nilpotency index is then used to
distinguish betweenF,pC; Csgand Fo,pC,  Cgq It is shown that the maximum
nilpotency index of F,pCs  C4qis 8, whereas the maximum nilpotency index of

Fo,pC,  Cgqis at least 13.

4.1 Digraphs and Finite Dynamical Systems

De nition 4.1.1.  [23] A nite dynamical system (FDS) is a pair pX;f g whereX

is a nite set and f is a function from X to X.

De nition 4.1.2. Let pX;f gbe an FDS and letx P X. Then the orbit of x is

denedtobeOmqg t f"mxq|n 0;1;:::u wheref°xq x.

De nition 4.1.3.  [23] Alinear nite dynamical system (LFDS) is an FDS, pV;fq
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whereV is a nite dimensional vector space over a nite eldK andf is aK -linear

map fromV to V.

De nition 4.1.4.  [23] LetpX;f gand pY; ggbe nite dynamical systems. AnFDS-
morphismis a map : X N Y such that f g . Therefore we have the

following commuting diagram:

— Y
lo

— Y

X X

pX;f qis isomorphic to pY; gqif there exists a bijective FDS-morphism fromX to
Y.

De nition 4.1.5. A directed graphor digraphis an ordered pair p Vp GEp qq
whereVp qis a set whose elements are called vertices alBg gis a set of ordered

pairs on the setVp q called directed edges or arcs.

A linear nite dynamical system, pV;fq has an associated digraph denoted

pf g whereVp gfgqg tv|vPVuandEp gfgq tpv;fpvgq v PVu

In order to study the dynamics of an FDS we seek a description of the set of
orbits, tOpxq | x P Xu. That is, we are looking for a description of the digraph

associated with the FDS.

De nition 4.1.6. Let ; pVp 1GEp 1qgand , p Vp g Ep »qgbe digraphs.
An isomorphism between ; and , is a bijection from Vp 1gonto Vp »qsuch
that pa;bg PEp 1qif and only if p pag pogq PEp . Note that the direction of

the arcs is preserved.

Remark 4.1.7. [23] Isomorphic nite dynamical systems have isomorphic associ-

ated digraphs.
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Theorem 4.1.8. Let R and S be nite rings and let : R N S be a ring isomor-
phism. Then there is a bijection from DerpRqonto DerpSqg such that p pdqq
and pdqgare isomorphic digraphs, for alld PDerpRg

Proof. By Theorem 3.1.18, : DerpRq N DerpSqde ned by d PN d lisa
bijection. By De nition 4.1.4, :R N S is an FDS-isomorphism frompR; dq to
pS; pdgq for all d P DerpRqg Therefore by Remark 4.1.7, pdgand p pdggare
isomorphic digraphs, for alld P DerpRg O

De nition 4.1.9.  [23] LetpX;f gqand pY; ggbe FDS. De ne the sum ofpX;f gand
pY; gy denoted bypX;f g pY; o to be the FDSpX \ Y;f\ gg whereX \ Y is
the disjoint ugion of the setsX andY andf \ g: X \ Y N X\ Y dened by

Lgcfpaq if aPX;
pf\ gamq
Y%gpaq if aPY:

De nition 4.1.10. Let ;and ; be graphs. De ne the sumof ; and ,, denoted

1 2 to be the graph with vertex setVp 1q\ Vp ,qand edge seEp :q\ Ep »q

Remark 4.1.11. Let pX;f gand pY;ggbe FDS. The digraph of the sum ofX;f q
and pY; gqis the sum of the digraphs ofpX;f gand pY;gy Thatis @ \ gq
fa  pag

De nition 4.1.12.  [23] LetpX;f qand pY; ggbe FDS. De ne the product ofpX;f g
and pY; g denoted bypX;f q pY; o to be the FDSpX  Y;f gg whereX Y
is the cartesian product of the setX andY, andp ggx;yq pfmXggpyaq

De nition 4.1.13.  [20] Letvy and v, be vertices of a graph or digraph, . Then a
path from v, to v, of length | is a sequencep; vy;:::; Vv of vertices of such that
pvi;vi 1 PEp g fori 0;1;:::;1 1. A weakpath is a sequence;vy;:::;V of
vertices of a directed graph such that eitherpv;;v; qor pv; 1;viqis an arcin

fori O:1;::::1 1.
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De nition 4.1.14.  [20] A digraph is said to bestrongly connectedif there is a
path between any pair of vertices andveakly connectedf there is a weak path
between any pair of vertices. An induced strongly / weakly connected subgraph
of that is maximal with respect to inclusion of vertices is called atrong / weak

componentof the digraph.

De nition 4.1.15. Let v be a vertex of a digraph . The out degreeof v, denoted
Outpvg is the number of arcs whose rst coordinate ig, that is Outpvq jtpv;aq P
Ep gl|aPVp qy. Similarily, the in degreeof v, denotedIn pvg is the number of

arcs whose second coordinate vs

De nition 4.1.16.  [20] A cycleis a strongly connected digraph such thaltn pvq

Outpvg 1, for every vertex v.

De nition 4.1.17.  The circumference of a digraph is the length of the longest

cycle in the graph and is denoted by p g

De nition 4.1.18. Let pv;fgbe an FDS. An elementt PV is called aterminal
elementof the FDS iff gq tandforallvPV; f"pvg t for some positive integer

n.

De nition 4.1.19.  [23] An FDSpV;f qis called atree if it has a terminal element,t.
For atreepV;fqg de ne the heightof anyv PV as the least nonnegative integdnp/q

such that f "™9pvg  t. De ne the height of the tree ashpvq maxthpvg |v PVu.

Remark 4.1.20. Letthe FDS, pv;fgbe a tree. The associated digraph, pf gwill
also be referred to as a tree. Note that using the terminology from graph theory it
would be called a directed rooted tree (in-tree) with an added loop (an arc from a

vertex to itself) at the root (terminal vertex).

De nition 4.1.21.  [23] The order of a polynomialf P K rX s denotedordpf qis

the least positive integer such thatf pX gdivides X" 1. In [23] it was also noted
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that if f is irreducible and such thatf f0g O andordgf g e, for any s PN, then

ordgf 5q ep, wherep charpgk qandt is the smallest integer satisfying' ¥ s.

De nition 4.1.22. Let n be a positive integer andV an n-dimensional vector
space over a eldK with B t by;b;:::;bua basis forV. Let d: V N V be a

K -linear map. Then de ne

A Ag2 <o Qg

A1 Az i A :

rdss ,  wheredihq = a;h:

an;l an;2 Ll an;n

De nition 4.1.23. Let V be a vector space. Then amapl : V N V is nilpotent
if N™ is the zero map for some positive integan. The least such integem is

called the nilpotency indexof N.

De nition 4.1.24.  [23] LetV be a nite dimensional vector space over a elK .
Then a nilpotent map N : V N V is a pure nilpotent mapif the nilpotency index
of N is equal to the dimension of the generalised null spabk . This implies that
the dimension of the kernel oN is 1 and that there exists a basi8 of V such that
the matrix rNs has 1's in the superdiagonal (the diagonal just above the main

diagonal) and O's in all other positions.

De nition 4.1.25. Let G be a nite group and let K be a nite eld. Let d be
a derivation of KG, with associated digraph pdg Denote by pDerpKG qqthe
length of the longest cycle contained in the digraphs pdq for any derivation d of

KG. Thatis, mperpKGqgq maxt p pdqq |d PDerpgKGqu

De nition 4.1.26. By the results of [23], the associated digraph of a LFDS is the
product of a tree and a sum of cycles. Therefore the orbit of any vertexerminates

with a cycle, the length of this cycle is called theperiod of v and is denoted by
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perpvg The length of the shortest path fromv to any vertex in the terminating
cycle is called thepreperiod of v and is denoted bypperpvg Figure 4.1 illustrates an
example of a vertex (vertex 0) with period 4 and preperiod 3. Lat be a derivation
of a group algebraKG . Then the period (preperiod) ofd, denotedperpdq (ppernpdg
is the maximum of the periods (preperiods) of the vertices ofpdg Moreover, the
period (preperiod) ofDer K G g denoted perpDer gKG qq(ppenDer K G qq is the

maximum of the periods (preperiods) of the derivations dkG .

7

O—O—0O

Figure 4.1: The vertex 0 has preperiod 3 and period 4

Lemma 4.1.27. Let G be a group. Then the preperiod dDerpF,Gqis less than

or equal t0jG;j.

Proof. Let d P Derp=,Gg Then by [23], pdq PN g B g where pNqis a
tree and pPBqis a sum of cycles. The preperiod dderpF,Gqis the height of the
tree pNg By Theorems 2 and 3 of [23] the preperiod &erp-,Gqis less than or
equal t0jGj. ]

Remark 4.1.28. The preperiod ofDerpF,pC, C,qagattains the bound established

in Lemma 4.1.27 as the following example shows.

Example 4.1.29. Letd yB. B be a derivation of F,pC, C,q Then by
Lemma 4.1.27, the preperiod oDerpF,pC, C,qq @4. However, the preperiod of
d is equal to 4, sincexy PN1  x PRy PN1 PNO.
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4.2 The Digraph of a derivation of FopCo  Coq

In this section we look at the digraph of a particular elementl of DerpF,pC, C»,qq
It is shown that the digraph of d, denoted pdg contains a cycle of length 7. This
property of the digraph pdgis used in Section 4.3 to contrast with the properties

of the digraphs of the elements ober pgF,C4q

The following Theorems from [23] will be used in this section. Le¥ be a

nite dimensional vector space.

De nition 4.2.1. A nilpotent linear transformation T: V N V is pure nilpotent

when its nilpotency index is equal to the dimension o¥ .

Theorem 4.2.2. [23] Letu: V N V be a pure nilpotent map and let be the
dimension of V. The digraph ofu is a tree of heightn with terminal point zero.
Each nonzero vector of the kernel belongs to a branch of heightf the tree. All
points with heightn are sources and all the points of height less thanhave in

degreeq.

Theorem 4.2.3. [23] The graph of a nilpotent map is a product of pure trees
whose heights correspond to the size of the blocks in the Jordan canonical form of

the matrix representing the map.

Theorem 4.2.4. [23] Let (E;f q be a bijective FDS. Letcipxq  P{*Pj2:::P{s
be the characteristic polynomial of , where the polynomiald®; are irredudible and
pairwise relatively prime. Then the graph of is the product of the graphs associated
with eachP/". For eachi, there is an additional decomposition of each preceding

block into graphs of elementary components (rational decomposition).

De nition 4.2.5. The order of a polynomialg denoted ordpyg, is de ned to be

the least positive integerr such that gpxg dividesx" 1.
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Theorem 4.2.6. [23] Let K be a nite eld of characteristic p with g elements.
Let V be a vector space ovef of nite dimension n. Let T: V N V be a bijective
linear map. Suppose that the minimal polynomial of is f g% whereg is an
irreducible polynomial of degreen. Then the cycle structure of the graph of is
given by: .

prgq 1 1qmlr—?mplqcn;

where1 is the O-cycle, C,, is a cycle of lengthr; andr;  ordpy'g

Theorem 4.2.7. [23] Let pv;fqbe a LFDS. Then the digraph of is equal to the
product of a tree, corresponding to the nilpotent part of f, by the cycles corresponding

to the bijective part of f.

Example 4.2.8. LetC, C, xx;y |x* y? rxyys 1y Let d be the
derivation of FopC, Coqdened by x PN1 y xy andy PNxy. Thendplg O
anddxyq dmxoy xdpyg pl y xyqy xXxxyq y 1 x y 1 x. We
now determine pdg the digraph ofd. d is an F,-linear transformation and so we
can representd as a4 4 matrix overF,. C, C, t 1, x; y; Xyuis a basis for
F,pC, C,g Fori 1;2;3;4, letv; be the column vector of length 4 oveF, with

1 in positioni and 0 in the other 3 positions. We use the following correspondence:

190 v, XD Vv, y@d v Xy @ Vg

o O O
o O +» O
S » O O
O O O

LetB t vi|i 1;2;3;4u. Then B is a basis for the vector spac€&; and so by
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De nition 4.1.22

0101
0001
rdss :
0100

0110

The characteristic polynomial cypX g and the minimal polynomial mgpX q of

rdss were found using the computer algebra system SAGE [43] to be:

PXq mgpXq XpX® X 1g (4.1)

Applying the Primary Decomposition Theorem 3.4.19 tal we can write the
vector spaceF,pC, Cyqas a direct sum ofd-invariant subspaces. That isfF,pC,
C,qg Ng = Rg, whereNg kerpdg and Rg kerpd® d Iqg wherel is the
identity map on F,pC, C,g Let dy and dg denote the restriction ofd to Ng and

Rg respectively.

We rst look at Ng. Ng kerpdg and so the nilpotency index ofdy is 1.

Moreover, let al ax ay axxyPF,pC, C,g Then

dp g dpal aix ay asxyq apl y Xxyq aXyq aspl xq
pa aqdq asx ay pa axy:

Thereforedp g Oifandonlyifa;, a, a3 O,thatis,dp q O ifand only
if 0 or 1. Thus the dimension ofNg kerpdgis 1. This implies that the
nilpotency index ofdy is equal to the dimension oNg and so by De nition 4.1.24,
dy is a pure nilpotent map. Therefore by Theorem 4.2.2, the digraph of,, pdnQ
is a tree of height 1 and terminal vertex 0. pdy g the digraph of dy is drawn in

Figure 4.2.
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O—CD)

Figure 4.2 pdy g the digraph of dy

We now look atRg. Rg  kerpd® d Iqgand so the minimal polynomial
of dr is mg,pXq X3* X 1. Neither O nor 1 is a root ofX® X 1 and
soX® X 1isirreducible overF,. Also ordpX® X 1gwas computed using
SAGE [43] to be 7. Therefore by Theorem 4.2.6 the digraph df is given by

pdrg 1 C-, where 1 is the loop at the node 0 an@; is a 7-cycle. pdrq the
digraph of dr is drawn in Figure 4.3.

D C
“o—O—0)

Figure 4.3: pdrqg the digraph of dg

By Theorem 4.2.7 the digraph of the derivatiord, pdqis the product of pdrq
with  pdyg thatis, pdg pdrQ pdy g and is illustrated in Figure 4.4. The

vertex pa; bg corresponds with the elemenat bof Fo,pC, Cog

4.3 Digraphs of the Derivations of FoCy

In this section we look at the digraph of the elements der pF,C4q It is shown that
none of the digraphs contain a cycle of length 7. Therefore the digraphdqillus-
trated in Figure 4.4 is not isomorphic to the digraph of any element dder pF,C4q

The elements ofDer pF,C4q are partitioned by conjugacy class and the associated
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Figure 4.4: g the digraph ofd

digraphs are drawn in Figures 4.5 - 4.10. Also, permutations 65C, are exhibited
such that conjugation by these permutations, maps any derivation d¢¥,C, to any
similar derivation of F,C,, that is the matrices representing the derivations are

similar.

Example 4.3.1. LetC, x z|z* 1y. Let D be any derivation of F,C, and let
Dmq al az ayz?2 azz®. Recall that for any derivation of a group algebra,
Dplg O. D is anF,-linear transformation and so we can represe as a4 4
matrix over F,. For i 1,2;3;4, let v; be the column vector of length 4 over
F, with a 1 in position i and a 0 in the other 3 positions. We use the following

correspondence:

10v, z@v, Z°@vs Z°0 v

LetB t vi|i 1;2;3;4u. Then B is a basis for the vector spac€&; and so by
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De nition 4.1.22
Oayg 0a
Oa; 0a3
IDss : (4.2)
O0a, 0ag

Oaz 0

At least 2 of the 4 columns contain all zeros and sdimpNg q ¥ 2, for all
D PDerpg-,C4q Therefore by Theorem 3.4.18limpRg q @ 2 and so there are not
enough elements inRRg to form a 7-cycle. Therefore the digraph pDqg cannot
contain a 7-cycle for anyD P DerpF,C4q Let d be the derivation of F,pC, Cyq
de ned in Example 4.2.8. Then pdgcontains a 7-cycle and so it is not isomorphic
to g for any D P DerpF,C40 Therefore by Theorem 4.1.8F,pC, C,gand

F,C,4 are not isomorphic as rings.

Remark 4.3.2. Derivations and their associated digraphs have been used to show
that two modular group algebras are not ring isomorphic. This has the potential

to be a useful tool.

De nition 4.3.3.  Let n be a positive integer and letA and B ben n matrices
over a eld K. Then B is aconjugateof A, if there exists an invertiblen n matrix
P overK, suchthatB P AP. The conjugacy classes partition the set af n
matrices over a eld K. Matrices that are in the same conjugacy class are called

similar.

Remark 4.3.4. Let V be a nite dimensional vector space over a nite eldK
and letf: V N V be aK-linear map. Thenf can be represented by a matrix
over the eld K which is dependant on the chosen basis. A change of basis ma-
trix represents a bijectiveK -linear map and will induce an isomorphism of nite
dynamical systems [23]. Thus by Remark 4.1.7 similar matrices have isomorphic

associated digraphs.
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Remark 4.3.5. Let G be a nite group of order n and K a nite eld. Let

d PDerpKG gand let P be a bijectiveK -linear map fromKG to KG. Let B be a
basis for the vector spac& " anddenerDss r P !srdssrPs. By Remark 4.3.4
similar matrices have isomorphic associated digraphs. However, as Example 4.3.6
shows the matrixrDss may not represent a derivation olKG, with respect to the

basisB.

Example 4.3.6. Let C, xz | z* 1y and let B be the basis forF; as in

Example 4.3.1. Moreover, let

Oay 0a 1101 0000 0101

Oa; Oa3 0100 0001 0001
M ; IPs . rdss andrDs

Oa, 04 0110 0000 0001

Oaz; 0a; 0001 0100 0100

wherea, PF, fori 0;1;2;3. By Equation 4.2 any derivation ofF,C, is repre-
sented by the matrix M for somea P F,. Note that d is the derivation of F,Cy
de ned by dzq z3. The matrix rP ssrdssrPss was computed using SAGE [43]
to be the matrix rDs; listed above. Note thatM r Ds for any a PF,. Therefore

rDs; does not represent a derivation ofF,C, with respect to the basisB.

Remark 4.3.7. As stated in Example 4.3.6 any derivation of,C, is represented

by the matrix M for somea PF,. The product of 2 such matrices is given by:

Oapl0a, ObyOb Oaghy axh; Oaghs axhy

Oa; Oas Ob, Obs Oayly agh; Oayb;  agh
MM,

0Oa0a O0bOk Oaph; aby Oaghy  agbs

Oaz0a; Ob;0Dby Oajhs azhy Oaily  azhy

The product MM, represents the derivation of,C, de ned by z PN pgb,  a,bsq
Py azhsz p aghs  abyg? p ashs  azbig®. Therefore DerpF,Caqis closed
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under composition. However as Example 4.3.8 shoviBerpRqis not closed under
composition for a general rindR. It would be interesting to nd all KG such that
DerpKG g is closed under multiplication. In such caseBerpKG qwould form a

K -algebra.

Example 4.38. LetC4, C, xx;y|x* y* rxys 1y Let B be the
derivation of F,pCs Csqdened by x PN1y PNO. Similarly Let B be the
derivation of F,pC, Csqde ned by x PNO;y PN1. Then

pR Bygxyq Bymxq 1; and
pB Byoxay xpR Bygqyq O O O

ThereforepR Byq RDerpF,pCs  Csqq since it does not obey Leibniz's rule.

Remark 4.3.9. Let R be a unital ring. Then althoughDerpRgis not closed under

composition it does form a Lie algebra. This is the subject of Chapter 5.

De nition 4.3.10. Let n and m be positive integers and lep be a prime number.
Denote by M m; p™qthe ring of n - n matrices overFpn and by GLm; p™qbe the

set of invertible elements oM m; p"g

De nition 4.3.11. Let APMm;p™g De ne CpAqto be the centraliser of A in
Mm;p™g Thatis, C/Aq t M PMm;p™q |[MA AMu

Example 4.3.12. LetC, x z|z* 1y. By Theorem 2.3.4 a derivation ofF,C,
is de ned by dmg We now consider conjugating the matrix representation of
by elements ofGL 4pF,q Table 4.1 shows the partition ofDerp-,C4q according to

conjugacy class. The contents of Table 4.1 were computed using SAGE [43].

Let d P DerpF,C,q By De nition 4.3.11, M rdsM r ds, for all M P
Cpidss qXGL p4; 20 Moreover, letP be an element of5L p4; 2q such thatP rdss P
r Ds, for someD P DerpgF,C4,q Then pMPq rdgspMPq r Dss, for all
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class dzq CapX g mgpX g
1 0 X4 X
2 | z% 1 z% 722 Z% 22 22| X’pX 1 | XX IF
3 2 X4 X?
4 z, 1 z;, z z% 1 z 72 | X?’X 1| XpX 19
5 1 2% z 2% 1 z 22 78 X4 X?
6 1 z 2% z z? Z° X4 X3

Table 4.1. The elements oDer pg-,C,4q partitioned by conjugacy class

M P Cpdssqg XGLp4, 20 Let T be a right transversal of Cprdss g X GLp4; 29

in GLp4; 20 Then conjugatingrdss by an element ofT may not result in a matrix

which represents a derivation with respect to the basiB. This was highlighted

in Example 4.3.6. The non zero derivations df,C,4 form 5 conjugacy classes. In

Table 4.2 a representativedsis chosen for each of the 5 classes. For each represen-

tative and for every other derivationD in the same conjugacy class, a matriR is

given such thatP conjugatesrdsto rDs

The digraphs associated with the derivations in each conjugacy class are illus-

trated in Figures 4.5 - 4.10.

Figure 4.5: The digraph of the derivation in class 1 of Table 4.1
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Table 4.2: Derivations of the same class exhibited as conjugates
96



Figure 4.6: The digraph of the 4 derivations in class 2 of Table 4.1

Figure 4.7. The digraph of the 2 derivations in class 3 of Table 4.1

Figure 4.8: The digraph of the 4 derivations in class 4 of Table 4.1
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Figure 4.9: The digraph of the 3 derivations in class 5 of Table 4.1

Figure 4.10: The digraph of the 2 derivations in class 6 of Table 4.1

Example 4.3.13. In Example 4.3.12 the graphs were computed using GAP [18].
In this example we show how the graphs of the derivations &f,C, de ned by

dstfzq s z tz? for s;t P F, can be determined using the Invariant Factor
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Decomposition Algorithm [16, p. 480]. By Example 4.3.6

0sOt

0100
rds;tS

0tOs

0001

Let Forxs be the polynomial ring over the indeterminatex and let | be the iden-
tity element of M4pF.q the full ring of 4 4 matrices overF,. We now perform
elementary row and column operations oml r ds;Sto transform x| r dsSinto

the unique matrix of the form

fixq

fmXq
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such that f;pxq PFarxsfori 1;2;:::mand fipxq |fopxq | | fmXG

X s 0 t X s 0 t
XI 1 dgtS Ox 10 0 WRAR]T 2 XX s t 1lxs t
O t x s 0 t X S
0O 0 Ox 1 0 0 ox 1
X s t 0 t 1 XXs t
SRR X 1 xs t PR s t x0 t .
Ox s tx s adc v 5 tOX S f1 2 ra rapfs
0 x 1 O0x 1 x 1 00x 1
1 xxs t 1 X X s t
s tx0 t o, OB t lKps tog s
x xxs t U9 %2 x o x2 x g tgx 1q
0 00x 1 0o o 0 < 1
10 X s t 10 X s t

AR OXxps tox S AR Oxps tox s 1
00x2 x p tgx 1g 2 *"™ 00x2 x B tgx 1q
00 0 x 1 00 0 x 1

Notice that the entries of the last 2 matrices are the same except for the entry
in row 2 column 4, one of which is a 1 and the other a zero. Therefore we can

transform xI r dstSto

10 X s t 1 s t 0 X
Oxp t 1 Gooeoipfts O 1 X Bt
00x> x p tgx 1q =7 Ops tgx 190 x2 X
00 O x 1 0 x 1 0O O

Note the entry in row 3 column 2. It is either O (ifs t 0) or performing the
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row operationrs rs PNrs leaves the matrix unchanged except for changing the

entry in row 3 column 2 to a 0. Therefore we can transforml r ds;Sto

1s tO0 x 1s t O X
0 1 xp tx W“ 0 1 X Bt
0 0 0x?* x 0 0 0 X2 X
Ox 10 O 0 0 x> xp tgx? xq
1s t O X 10 O 0
SR 01 X Bt q 01 O 0
0 0 x2 xps tgx? xq 00x2 x O
0 0 0 X% X 00 0 x* X

Thereforefixq foxq xmX 1g The polynomialsf; and f, are called the
invariant factors of rdssS The elementary factors ofrds.S are the set of factors of
the invariant factors of rdsS [16, p. 494]. That is the set of elementary factors of
dst IStX;x; X 1 1qu rdsishas a Jordan formJ, since the eigenvalues 0 and
1 are in the eld. Therefore the Jordan blocks ofl are r0s rOs rls and rls Thus
by [23] the derivationsds.; are the derivations in class 4 of Example 4.3.12 and the

graph associated with these derivations is illustrated in Figure 4.8.

Remark 4.3.14. The ring of constants of a unital ringR was de ned in De ni-
tion 3.1.15. LetC, x z|z* 1y. Then the ring of constants ofF,C, is given by
CF,Ci,q t 0 1; 2% 1 7%

Lemma 4.3.15. LetC, xz|z* 1yandletcPCF,Ciq tO; 1; 22,1 Z%u
Furthermore, let .: C, N F,C, be the map de ned byl PN1; z PRz ¢; z2 bRz?
and z8 PNz’ cq Extend ., F.-linearly to F,C, and denote this function also

by .. Then

(i) ¢ is a permutation of F,C, of order 2.
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(i) . d . is a derivation of F,C4, whered is the derivation of F,C, de ned

by dpzq z.

(i) Every derivation of F,C, whose associated digraph is isomorphic topdq is

of the form . d , for somecP CF,C4q

Proof. (i) QoF,C,qis the subspace ofF,C, with basist1;z?u. . is the identity
map on GaF,C4q since it is anF,-linear mapping which is the identity on a basis

for QpF,C,q Therefore pog cand e?cq  z%c. Thus

wq 2 o =g g z ¢ ¢ zand

3 2 2 3

gFZSCI cIOZZDZ cqq cpZ3q cpzch z z°c z°c Z°:

Therefore . is a permutation of F,C4 of order 2.

(i) LetD c d ¢ ThenDpq d 2 dw cg ®q z c By
Theorem 2.3.4 there is a unique derivation d¥,C4 which mapsztoz c¢. D is an
F,-linear map since it is the composition of,-linear maps. Ifi 0 (mod 2), then
Dw'g .. d ®'q . dw'g O iz' 'Dmg Ifi 1 (mod 2),thenD'q
c d g . de Z 'cq g Z' ‘m cq iz' 'Dmg Therefore
D' 'q pi j@ ! 'Dpq 3i2‘ "D Z‘?;'z" 'Dreq D' Z'Dpelq for

all integersi andj. Let " aZ and " hZ. Then
i 0 i 0

3 3 3 3
Dp g ~  ahDmE' 'q =~ ahpp'¢ zZDEay Dpg Dpg
i 0j O i 0j O
ThereforeD is the unique derivation ofF,C4 which mapszto z c.
(i) The derivations of F,C,4 that have an associated digraph isomorphic to pdq
are the 4 derivations of class 4 in Table 4.1. They are the derivations d . for
c PCF,C4g In Table 4.2, on the rst row of class 4 the matrixP; represents ,-

and P, represents ;. The matrix P, on the second row represents; ,2. O
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Remark 4.3.16. Similarly it can be shown that conjugation by . permutes the

derivations of class 2 of Table 4.1.

Lemma 4.3.17. LetC, xz|z* 1yandlet : Cs, N F,C, be the map de ned
by 1 PN1; z PNz3; z2 PNz? and z° bNz. Extend F.-linearly to F,C, and denote
this function also by . Then is a permutation of F,C, of order 2 and fork PF,,
conjugation by permutes the derivationsl and of F,C4, de ned bydmezq 1 k2

and mq 2z? k2.

Proof. 2 is the identity map on F,C,, since it is an F,-linear map that is the
identity map on a basis forF,C4, namely the elements of the grou|©,. Therefore

is a permutation of F,C,4 of order 2.
Let kK PF,, let d be the derivation of F,C4 dened by dpzqg 1 k2 and let
D d . We will now show that D , by showing thatD is anF,-linear map
that agrees with on a basis forF,C4, namely C4. D is an F,-linear map since it
is the composition ofF,-linear maps. Note that gk2q k2 and so

o1

fori 0 (mod 2) Dre'q d 'q de'q 0 iz' 'm® k2q g

i 2

and fori 1 (mod 2) Dz'q d m'q d' 29 pp 20 pl  k2qq

'l k2qq @ ' k2q Z ' k2 Z 'm? k2q iz' 'mq g

ThereforeD d , the unique derivation ofF,C, which mapsz to z2 k2.
This implies that d . Therefore conjugation by permutes the derivations
dand of F,C,. O

Lemma 4.3.18. LetCs xz|z* 1lyandlet :C, N F,C, be the map de ned
bylbNL z 2% zPbRz3; z2PNlandz® N1 z Zz2 Extend , F.-linearly to
F,C,; and denote this function also by . Let d;D and be the derivations of,C4
dened bydmg 1 z? Dmqg z z®and g 2. Then is a permutation of

F,C, of order 3. Moreover,D d 2and 2. d
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Proof. The proof follows along the same lines as those of Lemmas 4.3.15 and 4.3.17

and is omitted. 0

Remark 4.3.19. The conjugacy classes of the derivations &f,C, are given in
Table 4.1. In Table 4.2 classes 2 and 4 have the same 3 permutation matri€gs
and P, (note that there are 2P; matrices as there are 2 rows in the table for these
classes). These matrices represent wherec Pz2;1;1 z2. Therefore the maps
of Lemma 4.3.15 permute the derivations of Class 2 and 4 by conjugation. The map
of Lemma 4.3.17 permute the derivations of Class 3 and 6 by conjugation. The
maps and 2 of Lemma 4.3.18 permute the derivations of Class 5 by conjugation.
Therefore conjugation by these maps gives a way of permuting any pair of similar

derivations of F»,C,.

4.4 Permutations of Derivations

By Theorem 3.1.20, conjugation by P AutpgKG qis a permutation onDerpKG g
The converse of this statement is not true. If conjugation by a map: KG N KG
permutesDerKG g then does not have to be an algebra automorphism &G .
The permutations . of Lemma 4.3.15 are not additive and so are not algebra
automorphisms ofF,C,4. Example 4.4.2 presents another interesting example of a

map RAutKG gsuch that conjugation by permutesDerXG g

De nition 4.4.1.  An involution is de ned to be an anti-automorphism of order

2 of aring. Let be an involution on the group algebraKG. Then for ; PKG
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Example 4.4.2. Let K be a nite eld and G a nite non commutative group.
Further, let be an involution of the group algebraKG and let g, and g, be
non commuting elements ofG. Then since is bijective, pg:0.q P0:q and
SO PRg Pnhq Po:1q PG Therefore is not an automorphism of KG since

P01 G20 P29 P39 PoLg P34 P We now show thatD 1 d

is a derivation of KG wheneverd is a derivation of KG. Let d P DerpKG g and

o o

;  PKG. Write orc 80 and hee Bhh. Then since * |

Dp ¢ d p g d pgpq d pgpg po pq
d pgpgq pod pq

g d pg d pqg®aq Dpgqg Dpaq:
ThereforeD is a derivation of KG. We have shown that conjugation by an invo-

lution is a permutation onDerpgKGgand RAutpKGq

o

In particular, the classical involution ofKG, de nedby ;a9 PN opG 999 1
is an example of an involution. does permuteDer pKG g however in the case when
KG is not commutative it is not an element ofAut KG g

4.5 Automorphisms of Small Group Algebras

Lemma 4.5.1. LetKG F,pC, C,q whereC, C, x Xy |Xx? y? r Xx;ys
1y. Let minjq: KG N KG be theF,-linear extension of the map fronG into KG

de ned by

1pNL; xPRa iG; ybpRb j& and xybRab pi job;

105



wherea P tx; y; xyu, b P tx; y; xyuztau and i;j P F,. Then gipjq are the

automorphisms ofKG and AutpgKGq S, the symmetric group or4 objects.

Proof. Let UK G gdenote the unit group ofKG. Then any automorphism ofKG
is an Fp-linear extension of a map fronG into UpK G ¢ such that 0 PNO and 1pN1.
The units of KG are the elements of augmentation 1 and gd; x; y; xy; 1 G; x
G;y G; xy Guisthe set of elements o0UpKG g Let be an automorphism of

KG. Then is anF,-linear extension of a map de ned by
1pNL; xPNu; ypPRv and xy PRuv;

whereu;v PUKGqg However is a bijection and sou 1,v  1andu .
Therefore writeu 1 z;andv 1 2z, wherez; and z, are distinct elements of

pGgztOu. Therefore

)59 plg m™q g myq 1 1 z 1 2z pl zgd 29 712

p5q O, since Pq 0. G Pannp pGqgandz2 0, for all z P pGg Thus
z27 6,z Gandz, 2z G. Thisimpliesthatu a iGandv b jG, for

somea P tx; y; xyu, bP tx; y; xyuztauandi;j PF, and so miith;j g

Note that p3q G, since for somey;h PG such thatg h andi;j PF»,

2122 p1l ugd vg pl g iGgd h jGqg
1 h j6 g gh j6 i6 i6 0 1 g h gh 6

Leta P tx; y; xyu, bP tx; y; xyuztauandi;j PF, and let miib;j g We now
show that PAutpKGqg Let be the augmentation map oKG. Then pq 2,

forany PKG. Moreover,KG is commutative and so pghg  pggq phg for any
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o o

g;hPG. Let ; PKG and write gpc 9g9 and npa hN. Then

P g p  abghg ~  ah mhg

gPG hPG gPG hPG
"7 aghhpaphg o agpg bhphg papg
gPG hPG gPG hPG

Therefore is an algebra endomomorphism.

We will now show that is invertible and has order less than or equal to 4.
Recall that p5q &. There are 2 cases which we shall treat separately.
Casel.a x,b yandab xy.

There are 2 subcases. The rstig Yy and the second ia  xy.
Case 1(a). Leta yandi;j PF,. Thenb xy, sinceb yandifb x, then

ab xy. The order of ;p;jqis 3, since

Sibi ™0 Ainig® 160 minigxy pi jobq ab xand
b ¥ i PY 160 v dX  iGQ Y

Case 1(b).a xy andi;j PF,. Thenb x, sinceb y. The order of ;p;jqiS

3, since

i X0 i Y 160 mini 1Gq x and
ga;i;b;j qu Sa;i;b;j qp( J Gq pesi;bij qp(y P i J Céq y.

Therefore the order of .ip;jqis 3 in Case 1.

Case 2. Eithera xorb yorab xy.

Case 2(a)a x: Then 2....Xq  minjg® iGq X

Case 2(b)a xandb y: Thusa xy and soab x. Therefore fﬂ;i;b;j 4%d

mivi @y 1G9 x jG.
Case 2(c)a x,b yandab xy: Thusa yandb x. Therefore sa;i;b;j 4%
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j 6.

|G, for somel P F,. Likewise it can be shown that

mivid  1Gq X pi
Therefore 7., XA X

2ibig¥d Y mG, for somem PF, and so % .

is the identity map.
Therefore ;ip;j q is invertible and thus is an automorphisim oKG. There are
6 elementsa iG and 4 elementd G, wherea P tx; y; xyu, bP tx; y; xyuztau
andi;j PF,. Thus AutpgKG qis a group of order 24 such that the maximum order
of an element is 4. TherefordutpgKGq S, the symmetric group on 4 objects

[18]. O

Example 45.2. LetKG Fo,pC, C,qwhereC, C, X Xy |Xx?> y? r Xx;ys

1ly. There are 2 derivations of KG by Theorem 2.3.4. Theorem 3.1.20 implies that
the elements ofAut K G q permute the derivations ofKG by conjugation. In this
example, the graph isomorphism classes of the derivationsk& are determined
and categorised by preperiod length. Led be a derivation ofKG and let mgpX q

X™f pX g wheref g 0 be the minimal polynomial ofd. Then the preperiod ofd
ism [23]. The 2 derivations of KG are partitioned into subsets via conjugation by
automorphisms ofKG. The associated digraph of a representative of each subset
is also determined. [43] was used to perform these computations and the results

are summarised in Table 4.3.

class representative pper | jclass capX g mgpX q
1 0 1 1 X4 X
2 xyB, 1 36 X?pX 1 XpX 1
3 yB 1 28 X2pX 1P XpX 1q
4 xyB yB 1 56 | XpX 1gX? X 19| XpX 1gX? X 1q
5 [ xyB py xydqB 1 24 XpXx3 X 1q XpXx3 X 1q
6 y xyqB 2 9 X4 X?
7 xB, 2 12 X4 X?
8 xyB. xB 2 48 X2pX 1P X2pX 1
9 X Yy xydB 3 18 X4 X3
10 yB By 4 24 X4 X4

Table 4.3: The conjugacy classes of the derivations BfpC,
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Figure 4.11: The digraph of the derivation in class 1 of Table 4.3

o

Figure 4.12: The digraph of the derivations in class 2 of Table 4.3

VERVE,

Figure 4.13: The digraph of the derivations in class 3 of Table 4.3

N Va Va

Figure 4.14: The digraph of the derivations in class 4 of Table 4.3
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Figure 4.15: The digraph of the derivations in class 5 of Table 4.3

Figure 4.16: The digraph of the derivations in class 6 of Table 4.3

O\?j/o\ij/ 4

Figure 4.17: The digraph of the derivations in class 7 of Table 4.3
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Figure 4.18: The digraph of the derivations in class 8 of Table 4.3
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Figure 4.19: The digraph of the derivations in class 9 of Table 4.3
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Figure 4.20: The digraph of the derivations in class 10 of Table 4.3

It can be seen from Figures 4.11 - 4.20, thagerpDerpg-,pC, C,qqq 7 and
ppemDerp-pC,  Cqqq 4.

Lemma 4.5.3. LetKG F,pCs; C,q whereC, C, x Xy |x* y* r xys
ly. ThenB tp 1 x°g xpl x°qg ypl x*qg xypl x’g pl y®g xpl y°g ypl
y?g xypl y’gpl x*qd y’g xpl x’gqd y®g ypl x*gqd y’g xypl x*gd y?qu
is a basis for the kernel of the Frobenius endomorphismof F,pC4 C40 Moreover,

as vector spacesKG V' ker , whereV is the F,-linear span oft1; x; y; xyu.

Proof. Let :F,pCs CasqN FopCs Cagbe the Frobenius endomorphism de ned

by pqg 2 Write 2o D oayxlyl. Then
2 ® ® 2 2 2\,2.
& g X a;y ai;j X7y~
iPtO;2uj Pt0O;2u iPt1;3uj Pt0O;2u iPt0;2uj Pt1;3u iPt1;3uj Pt1;3u
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This implies that 2 0 if and only if

a; O a; 0 a; 0 and a; O
iPt0;2uj Pt0;2u iPt1;3uj Pt0;2u iPt0;2uj Pt1;3u iPt1;3uj Pt1;3u

Thereforekerp ghas dimension equal to 12.

LetB tp 1 xq xpl x*q ypl x*g xypl x*g pl y*g xpl y*q ypl y?qg
xypl y*q pl x*gd y*g xpl x*gd y*q ypl x*qd y*q xypl x°gd y*qu
> 0 for all bPB and so theF,-linear span ofB is contained inkerp g Let b
be the i element ofB in the above listing. Assume that o 2 ki 0 for

somek; PF,.

x?y? P supphq & ] 9, x°%? P supphgq & ] 10, x%y® P
supphg & | 11 and x3%y® P supphgq & ] 12. Thereforekq

o

kio ki ko 0 and so it can be assumed that ® kih 0.

y>Psuppp g & ks 1,xy?Psupmpq & ks 1,y*Psupmp g &
k; landxy®Psupmp q & ks 1. Thereforeks ks k; ks Oandsoit

can be assumed that t kb 0.

1Psuppg i ky 1, xPsuppgd k, 1, yPsupppg d ks 1

and xy P supp q & Ky 1. Thereforek; ks Ks Ky 0 and so
2 kb Oifandonlyifk, Ofori 1,2;:::;12.

ThereforeB is a linearly independent set of elements d&ferp qof size 12 and

soB is a basis forkerp g

Let B, t 1; x; y; xyu B, € G and soB, is a linearly independent set.
Denote byV the F,-linear span ofB,. Letv PV andwritev  c;1 X Gy C4Xy,
wherec PF,. ThenVv? ¢1 ©x? cy? cx?y? and sov Pkerp qif and only
if g Ofori 1;2;3 and 4. Therefore extendind® by the settl; x; y; xyugives

a basis forKG and so as vector space&KG V ° ker . ]
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Corollary 4.5.4. Let KG  F,pCs C4g whereCs, Cp x Xy | x*  y*
rx;ys lyandletw 1 x y xy.Llet :F,pCs CusqN FpCs Cauqbe the

Frobenius endomorphism dened byp g 2. Then annpwv?q  ker

Proof. Let V be theF,-linear span oftl; x; y; xyu. By Lemma 4.5.3 any element
of KG can be written asv; vopl  x2g vspl y?g w,pl  x?gd  y?q
wherev, PV for i 1;2;3 and 4. Letv; al X gy c&xy. Then
w2 viw? pcl ox cy cxygnv? Note that w2 G and so the set
tw?; xw?; yw?; xyw?u is linearly independent. Thereforew 2 0 if and only if

¢ Ofori 1;2;3 and 4. Thusannpn?q ker . ]

Lemma 4.5.5. The unit group of F,pCs C4q denotedUpF,pC;  C4qqis isomor-
phic to CJ C3.

Proof. The map : F,pCs Caq N FopCs Ciqdened by PN #is the augmen-
tation map. Therefore the units of F,pCs Csgare the elements of augmentation
1 and so there are ¥ units in F,pCs  C4g The unit group has exponent 4 and so

UpFpCs  Cyqq CZ CJ1, for some positive integersn and n.

Let :F,pCs Caq N F,pCs Caqbe the Frobenius endomorphism de ned
by pq 2. Let V be the Fp-linear span oft1; x; y; xyu By Lemma 4.5.3
KG V' ker and so any unit ofKG can be written asv  z, wherev is an
element ofV of augmentation 1 andz Pker . pv z¢f Vv? z? v? and so the
units of order dividing 2 are the 22 elements 1 z such thatz Pkerp ¢ C§ CJ
has 2 2™ elements, 2 ™ of which have order dividing 2 and sm 2m 15 and

n m 12. Solving these equations simultaneously gives 9andm 3. [

Lemma 4.5.6. LetKG F,pCs; C,q whereC, C, x Xy |x* y* r xys
ly. Let be the algebra endomorphism froiG into KG de ned by PN 2. Let

uPtx; y; xyu vPtx; y; xyuztuuyw 1 x y xyandletr;s Pkerp g De ne
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wmrvins - KG N KG to be theF,-linear extension of the map fronG into KG
dened byx'yl PNp mw rdpr nw sq, fori;j 0;1;23andm;n PF.,.
Then is an algebra automorphism oKG if and only if mmirvins g fOF Some

um;r;v;n ands.

Proof. Let be an algebra automorphism olKG and let UKG q denote the
unit group of KG. Then is a permutation of UIKGq such that plg 1.

o o

Let S 13 0@ X'yl is multiplicative and F,-linear and so p q

i30 foai;j mxd pyd. Thus is determined by pxgand pyg Moreover, since

is an automorphism it preserves the order of a unit, that is, the order ofp qis

equal to the order of forall PUXKGQg

Letw 1 x y xy. By the proof of Lemma 4.5.5, any unit olKG can
be written asu mw r, for someu P t1; x; y; xyu m PF, andr Pkerp g
Therefore xq u mw rand pyg v nw s, for someu;v P tl; X; y; Xyu,

m;n PF, andr;s Pkerp g w? 1 x? y? x2y?and so

pv’g  plg  Xof e o pyef

1 v mw? v¢ nw? pu® mwigp? nwiq

1 uv> mw? vZ nw? ud? niw? mvaw? mnw?
1 v mw? vZ nw? udv? nw? mw? 0

1 u® v¢ ud? pl ugdl Vg

sinceuw? vaw? w2

w? 0 and so pv?g O which implies thatu 1,v 1 andu .

Therefore mminvins g fOF someu P tx; y; xyu, v P tx; y; xyuztuu, m;n PF;
andr;s Pkerp g Note that for AEmEVNS g
pvlg 1w Vi ouAv wA (4.3)
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Conversely, let mmnvins g fOF someu P tx; y; xyu, v P tX; y; Xyuztuy,
m;n PF, andr;s Pkerp g Letg x'y andh x'y* be elements of the group

G. Then

pphg 'y *g mxd 'pd ¢ xd pd xd o pog phg

o o]

Let opG 890 and np hh. Then

p g abgh " abmhg ~  agh pogphg

gPG hPG gPG hPG gPG hPG

ag Wy bophg papg

gPG hPG

Therefore is a ring endomorphism oKG.

Let be any element ofKG. It is now shown that p q O if and only if
0 and hence is bijective. LetV be theF,-linear span of the setl; x; y; xyu.
Let v PV and write v al o©Xx Gy oxy, whereg P F,. Then since

w 1 u v uv

Pvg ¢l o mwg Gy nwg cpu mwgy  nwg(mod ker q
il U GV cuv pom g ¢hu o egmvagv (mod ker g
il cu GV  cuv
pcm cn gnu o ogmvgd u v ouvg(mod ker ¢
pc M cNndgl pc; &M cGNQU pCc; CM  chov

pc C©m cnquv cnhuw  csmvw (mod ker g

Assume that pyg O (modker g Then csmugyv  cpmvgw 0, sinceu? P
suppouwg U? Rsuppovwa, v2 P suppovwg and v2 Rsuppuwg Thus csn esm - 0.

There are 2 cases, the rstix; 0 and the secondisn n 0.
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Case 1. ¢4 0. The coe cient of uv equals 0 and sac,;m 3N 0 and so
Pvg ¢l cu cv(modker )andsoc; ¢ ¢ ¢ O, since luandv

are distinct elements ofG and so are linearly independent.

Case2.m n 0. Then pvg 1 cu cv  cguv (mod ker ) and so again

CC G € ¢ 0. Therefore prq Pker ifandonlyifv 0. ThusV is a

-invariant subspace oKG.

By Lemma 4.5.3, can bewrittenas v; V,pl x?q vspl y?q wvspl

x?qd  y?g wherev; PV fori 1;2;3 and 4. Assume that p q 0. Then using

Equation 43,0 pqgpv’g pw?g paw’g  pvig v’ pvigw? and so
pv1g Pannpw?g By Corollary 4.5.4,annpwv?q  ker , hence pviq Pker and so

vi 0. Therefore  v,pl x?q wvspl y?q wvspl x%gd  y?qand so

0 papd x’qq ppl x’qq pepl ygd  x?qq pew’q pragw?
and0 pagpd y’qq ppl yqq powlq  poogvd

Therefore pv.qand pvsq Pannpnv®g ker , hencev, vz 0. Thus VW2
and0 pq puw?q  paow? which implies pvsg Pannpv®g  ker |, hence
Vv, 0. Therefore p g 0 if and only if 0. Thus is a bijection and so it is

an algebra automorphism oKG. a

Lemma 4.5.7. Let KG F,pCs Cisq whereC, C, x Xy |x* y* r x;ys
ly. Let be the Frobenius endomorphism frorKG into KG de ned by PN 2
and let be a map fromKG to KG. Then is an algebra automorphism oKG
if and only if

1. & is a group isomorphism and

2. is the K-linear extension of & and

3. Rerp q IS Injective.

116



Proof. Let be a map fromKG to KG. Assume that ag is a group isomorphism,
that is the K-linear extension of & and also that &, 4 is injective. Let

o o

gpc 899 and npe hh be elements oKG. Then

p g abgh " ahpmhg ~  agh pogphg

gPG hPG gPG hPG gPG hPG
a; g by phy " a9  bh pqgpg
gPG hPG gPG hPG

Therefore is a algebra endomorphism. This implies thatgkq k for all k PF».

Let V be the F,-linear span of the settl; x; y; xyu. By Lemma 4.5.3, as
vector spacesKG V ° kerp ¢ maps units to units and so for anyg P G,
we can write pgq Vg Zg, Wherevy is an element ofV of augmentation 1 and

zy Pkerp q

LetvPV and writev ¢l X Gy Xy, whereg PF,. Then

g ¢ plg G Xq C g G (Xyq

gl v  GVYy Gy (modkerp qq

Suppose pvg Pkerp ¢ Thencil cve Gy Gy 0. The elements 1vy; vy
and vy, all have augmentation 1 and so an even number of tlegs are equal to 1.
Case 1. None of thes's are equal to 1. Thatis,c;, ¢ ¢ ¢ O.

Case 2. Two of thec's are equal to 1. Thereforery v, 0, for 2 distinct elements
g;hof tLx;y;xyu Thus po*q Vv Vj ph?g however this contradicts the
assumption that ag is a group isomorphism and so this case does not occur.
Case 3. All four of theg's are equal to 1. Then 1 vy, vy Vy 0. Let
w 1 x y xy.Thenw?is anonzero element okerp gqand pw?q O, since

g O0and &, qis injective. Therefore 0 pv°g 1 Vi Vv Vi and so

1 v Vv Vg 0. Thus this case does not occur.
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Therefore the only solution ofc;1  Govy Cgvy  CaVkVy 0Oisc, G ¢ ¢ O
and so pvq Pkerp gimpliesv 0. ThusV is a -invariant subspace oKG.

Let be any element oKG and write v z,wherev PV andz Pkerp g
Assumethat pg 0. ThenO0O pq pq Eqwhichimpliesthat pvg g
Therefore pvq Pkerp ¢ since v ®¢ ®2qg g O which implies that
v 0. Thus z Pkerp g which implies that 0, since &, IS injective.
Therefore is an algebra endomorphism with kernel equal toOu and so is an

algebra automorphism oKG.

Conversely, assume is an algebra automorphism oKG. Then by de nition
is aK -linear extension of &g and &, 4 is injective. Also pghg  pgq phqfor

any g;h PG, since is an algebra automorphism. ]

Remark 4.5.8. The size ofkerp gwas calculated using [18] to be'2. Therefore
by Lemma 4.5.6AutpF,pCs  Cygghas size B2qR*%qRqRqR*?q  3m2%'g
4.6 Distinguishing Group Algebras using Digraphs

Example 4.6.1. In this example the derivations ofF,C, are listed. LetC, x xy.

By Theorem 2.3.4 the derivations of,C, are :
x PNO; x PNL; x bRx; x PN1 X

The derivations are represented below by 2 2 matrices overF, with respect to

the basisB t 1; xu

00 01, 00, O1

00’ 00' 01' O01° (4.4)
01 1 1
01 1 1



is the matrix representation ofdpl xq 1 X, whered P Derpg~,C,q such that
dxqg 1 x. There is only one nonzero nilpotent derivation oF,C,, namely the

derivation de ned by x PN1 and its index of nilpotency is 2.

De nition 4.6.2.  Let r0s, be then n matrix, where each entry is zero and let

rEs, be then n matrix, where each entry is one.

Example 4.6.3. Let K be the nite eld with 2 elements. Let G x x | x* 1y
andletB t 1;x; 1 x? xpl x2qube a basis 0KG. Let H be the subgroup ofG
generated byx? and let B t H; xH ube a basis oK pG{H g In this example the
derivations of KG are listed as 2 2 block matrices, with respect to the basi8.
Each block is a 2 2 matrix over K. By Corollary 3.1.17, pG;Hqis a di erential
ideal of pKG;dq for all derivations d of KG. Therefore by Lemma 3.1.11 any
derivation D of KG has the form:

rds; ro
Ds g Vg ;

A rds

whered P Der p,pG{H qgand sords; is one of the matrices listed in Equation 4.4
and A is a 2 2 matrix over K. Moreover, sincedplq 0, the rst column of
rDs is all zeros and s is also one of the matrices listed in Equation 4.4, that

is,A r s, forsome PDerpg-,Cyqg

De nition 4.6.4. An n n matrix M is calledcirculant if it is of the form:

dp A aA::idn 1
Ay 1 Qo a1 :iidy 2
M @ 28 18 118y 3

=51 dy az ...
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Lemma 4.6.5. Let K be the nite eld of characteristic 2 and letG x x |
x?" 1y, wherem is a positive integer. Then the maximum nilpotency index for

a derivation of KG is2™ 1 1.

Proof. Let B t 1; x2; :::: x2" 2; x; x3; :::: X" lu. Then B is a basis ofKG.
The rst 2™ 1 elements ofB in the above listing are in the ring of constants of
KG. By Lemma 2.2.1,dx* 2q x2dpx*q for any integerk and so any derivation

D of KG has the form:

rosm 1 A
Ds l ;

ros,m 1+ B

whereA andB are 2" 1 2™ 1 circulant matrices overK .

rOS,m A rOSm A rOSm AB

D 2 2 2 ; and
rsm 1 B rOsm 1 B rOsm 1 B2
rOsm + AB" 1 o

D ;  for all positive integersn:
rOSZm 1 Bn

Therefore D is nilpotent if and only if B is nilpotent. Let H X yy be the cyclic
group of order ' 1. By [29] there is a bijective ring homomorphism between
KH and the ring of 2" 1 2™ 1 circulant matrices overK . Therefore A and B
correspond respectively to elements P KH . AssumeD is nilpotent. Then B
and hence is also nilpotent. Let : KH N KH be the Frobenius endomorphism
and let : KH N K be the augmentation map.H is a 2-group of exponent 2 *

and K is a eld of characteristic 2 and so ™ *: KH N K such that ™ !

o

m 1 since for any ner anh PKH
"lpg ™ ahg T Mlpg™'hg " ag ™' pg
hPH hPH hPH
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is a ring endomorphism and so maps nilpotent elements to nilpotent elements.
Since the image of is a eld, maps nilpotent elementsto 0 andso™ p q O
for all nilpotent elements . Therefore the elements of the augmentation ideal of
KH are the nilpotent elements oKH . The augmentation ideal ofKH is the ideal
generated bypl ygandso  bpl yq for somebPKH . Thus 2" ° m 1nq
pm™1 gpgq Oand 2" '1 b 'lm yg" 'l b2 'y k¢ where
k pb?" ' 1g PK. By Section 3.1 of [29] and De nition 4.6.2,82" * 1

KrEsm 1. Therefore

m rOSZm 1 AB am 1 rOSZm 1 krESZm 1
A

fOsm 1+ B2"° OSm 1 r0Sm 1

Choosing 1 and pl ygimpliesk 1 and so in this caseDs3’ 0.
Also
rsm 1 A rOsm 1 KIESm 1 rOsm 1 10Sm 1

rD %m 1 1
s 1 B MOSm 1 rOSm 1 r0Sm 1 r0Sm 1

]

De nition 4.6.6. Let V be a nite dimensional vector space over a nite eld
K and let pv;fgand pv;ggbe LFDS. De ne pv;fq pV;gto be the LFDS pv

V;f gg whereV V is the cartesian product of the vector spac¥ with itself and
f g:V VNV V,denedbypg gqu;vq pfpuggmg fprgq Also de ne

the associated digraphs similarly, that is, 1 f g

Lemma 4.6.7. Let K be the nite eld with 2 elements and letG x x | x* 1y.
Let H be the subgroup o generated byk? and letD be aK -linear map from KG
to KG. Then
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. : . rdss | r0s
(i) D PDergKGgqifandonlyifrDs , Whered; PDerpK pG{HQqq

r s (rdss
Bt1l x 1 x% xpl x?quandB t H; xHu.

(i) For any D PDeriKGg »p d , Wwhered and are the derivations of

DerK pG{H qqde ned by partpg

Proof. (i) Let D PDergKGqgand letB t 1; x; 1 x? xpl x2qu Then

AilA; .
rDs X whereA;:::;A, are 2 2 matrices overK:

As|A,

By Corollary 3.1.17, pG;HQqis a di erential ideal of pKG; D g, for all derivations

D of KG. By Proposition 3.1.6, F‘;C;‘Hq K pG{Hg Therefore by Lemma 3.1.11,

A; r ds, forsomed PDerK pG{HggandA, r 0s, the 2 2 matrix whose entries

are all zeros. Moreoverpl x?q PCKGgand soDp pl x?qq Dp gqd x2qgfor
all PKG and soA; A;. Lastly, sincedpglg O, the rst column of rDs; is all
zeros and s@\; is also one of the matrices listed in Equation 4.4 and $9; r S,

for some PDerK pG{Hqq

Conversely, letT be aK -linear map fromKG to KG such that

rds; | ros,
mss * ,

I s |rdss

whered; PDerpgKpG{HqqB t 1, x; 1 x?% xpl x?quandB t H; xHu.
Then by Example 4.6.1

0ag0 O
rdss 82‘; andr s 822 - for somea; PK and sorTs 82; 882
Oaz 0
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Let D be the derivation ofKG dened by Dpxq ag a;x axpl Xx?q aszxpl x2q
Then Dplg Dpl x?q OandDmpl x?qq Dmxgd x?q agpl x2q

aixpl  x?qg Therefore

0a0O0
0a; 00
Oa, 0y
Oaz; 0

Ds and soT PDerpgKGq sinceT D: (4.5)

(i) Let V be the subspace oKG with basistl; xu. Let :KG N V 'V,
thatis, is a map fromKG to the Cartesian product of the vector spac& with
itself. Bt 1, x; 1 x?% xpl x?quis a basis ofKG and so any P KG
can be written uniquely as r spl x?q wherer;s PV. Dene by
r spl  x2q PNpsq Therefore is a bijection from the vertex set of p to
the vertex set of 4 . It is now shown that is a graph isomorphism, that is,

is bijection between vertex set of p to the vertex set of 4 that preserves
adjacency. Dp g Dp spl x?qqg Dpg Dpsgd x°g By Equation 4.5
Dpg duog pgd x2gandDpsq dpsq  psgd x?g Therefore

Dpq dog pgd x°q dpsgd x°g psgd x°d  dog prq dpsqpl x°q

Therefore pDp qq pdprg prg dpsgqg By Denition 4.6.6, p g pr;sqis
adjacenttopdprg prq dpsggin 4 and so preserves adjacency and thus is a

graph isomorphism. m

De nition 4.6.8.  Let CMypK g be the vector space of ¢n circulant matrices
i &Cy ifj il
over a eld K. Dene g: CM,Kq N CM, K gqby gpCq;
%0 otherwise.
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That is gpCqis given by the following upper triangular matrix:

Oay 18y 28, 3 @& &
Q ap 18n 2::1 A
0 0 ay 184 2.1 a3 @
Ay do ap 1l
0 O 0 a, 1::: a4 a3
gCa .o

; whereC a @ a4 .i:ag

0O O O O :::0a41
0 O 0 0O :::0 O

G 18n 28, 3::1Q

Further if M is a block matrix consisting of blockdM; fori 1;2;:::; mmqg such
that M; P CM,pK q for eachi. Then de ne gpM g to be the block matrix whose

blocks aregpMq keeping the positions unchanged. That is:

oM 1q ogM2q il gMmQ
giMm 14 gMm 20 il giMamQ

gM q - where
gpv'pn 1lgn 1qgfdv|pn 1gn 2q:::gn\/|nmq
M; M, My
Mn 1 Mm 2 i Moy
M ) . )

De nition 4.6.9. Let , and , be graphs. A mappingf : Vp 1 N Vp »qis a
homomorphism of graphsf f pug and f pvq are adjacent in ,, wheneveru and v

are adjacent in ;.

De nition 4.6.10. Let , be a subgraph of a graph ;. A retraction is a homo-
morphism f from Vp 1q N Vp »qsuch that the restriction, f &p ,q Of f t0 Vp 2q

is the identity map.
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Example 4.6.11. Let K be the nite eld with 2 elements and letG x X;y | x?

y2 rx;ys 1y. LetB t 1; x; y; xyuand letd be an arbitrary derivation of KG .
Then by Theorem 2.3.4d aB; bB, for somea o oG 99 and b 0 opc B0
where ag;l; P K, for all g P G. Thereforedplq O, dxq a, dgyg band

dxyqg ay bxand so

Oa b a by 0a O0a 00 b b

Oac b oay by 0 a;, Oay 00b b
rdss

anq,al bxy anoal Ooqlh(y

Oay by ax b 0a,y 0 a 00by b

rd; s rd>Ss r0s, ¢

rd,s; rdiss r0s, ¢,

whered;;d, PDerpF,xxyqg B t 1; xuand ¢; and ¢, are 2 2 circulant matrices

over F,.

Lemma 4.6.12. [31][pp. 8] Letd be a derivation of a not necessarily associative

algebraA and leta;bPA. Then
d"pabg rln d™ 'pacpipbg  for any positive integerm: (4.6)
i 0
The following result is a direct consequence of the discussion in [31][pp. 186].

Lemma 4.6.13. Let p be a prime number and leK be a nite eld of characteristic
p. Let G be a group and letd be a derivation ofKG. Then d® is a derivation of

KG for all positive integersk.

Remark 4.6.14. Let G and H be nite abelian p-groups and letK be the nite
eld with p elements. Suppose thaKG and KH are isomorphic as rings. Then

KG and KH have the same dimension aX -algebras and sgGj jHj. By
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Theorem 2.3.4, the vector space of derivations &G has dimensionnjGj, where

n is the minimum number of generators o6. By Theorem 3.1.18 DerpKG gand
DerpKH gare isomorphic as additive groups and so have the same dimension. This
simple counting argument can sometimes be used to show that group algebras are
not isomorphic as rings. For examplgDerp-,C,4q 2* whereasjDer pF,pC,

C,qdq 22 and so by Theorem 3.1.18 or Theorem 4.1.§,C, and F,pC, C,q
are not isomorphic as rings. The smallest example such that the above argument
fails to distinguish between non-isomorphic group algebras is when the groups are
Cs CsandC, Cgandthe eld K has 2 elements. Example 4.6.18 shows that

these two group algebras are non-isomorphic using the graphs of their derivations.

De nition 4.6.15. De ne the map f : M,pF,q N M,pF,q by

0008.3;2
~ 00084;2

A pa;qPN
000 O

000 O
De nition 4.6.16.  De ne the map g: M4pF.q N M 4pF,q by

000&2;3
000 O

A pa;qPN
00 Oaus
000 O
Lemma 4.6.17. Let K be the nite eld with 2 elements and letG x x;y | x*
y* r x;ys 1ly. Let D be a derivation ofKG. Then D is nilpotent if and only if

D& O

Proof. Assume thatD is a nilpotent derivation of KG. It can be shown thatB
tLx,y, xy, b x*gxpl x*gypl x*qxypl x*gpl y*gxpl y?qypl y*q
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xypl y’qpl x*gd y?gxpl x*gd y’qypl x*gd y*q xypl x*gd  y*qu
is a basis forKG. Let H x x2?;y?y and further chooseB t H, xH, yH, xyHu
as a basis oK pG{Hq Let b be thei™ element ofB in the above listing. Then

by Theorem 2.3.4D rB, sB, for somer '° rib and's 1° sib where

ri;si PK, fori 1;2;::::16. Therefore

Dplg O
Dxq r  rib;

Dpyg s sh; and

16 16
Dxyq Dmxay xDpyq ry sx  riby  shx

i1 i1
Multiplying r by y and writing the product as a linear combination of the elements
of B implies

16

2 2
riby rs 14X ryy  roxy r; rgX sy TreXy pl Xx°q

i1

rin s priz rax roy rioXy pl yzq
Pis 170 Pris rgX prisy pruky pb x’qd  y’g

Multiplying s by x and writing the product as a linear combination of the elements
of B implies
16
shX S; SiX Siy SeXy  [Bs S0 SsX PSs Suy  Sxy pl o x°q
i1
S0 SoX Sy Suxy pl o y’q

B14 S100 S13X P S1s S0y SisXy pl quri yzq

Therefore sincepl  x?gpl y?qandpl x2gd  y2gare in QK G gand since
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