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Abstract

Derivations of Group Algebras with Applications

This thesis is a study of derivations of group algebras. Derivations are
shown to be trivial for semisimple group algebras of abelian groups. The
derivations of a group algebra are classified in terms of the generators and
defining relations of the group. If RG is a group ring, where R is commutative
and S is a set of generators of G then necessary and sufficient conditions on
a map from S to RG are established, such that the map can be extended to
an R-derivation of RG. This theorem is utilised to construct a basis for the
vector space of derivations of abelian group algebras, dihedral group algebras
and quaternion group algebras.

Derivations of group algebras are considered as linear finite dynamical
systems and their associated directed graphs are studied. The motivation
for this comes from the fact that if DerpKGq and DerpKHq are not isomor-
phic as additive groups then KG and KH are not isomorphic as rings. It
is shown that if R and S are ring isomorphic, then there is a bijection from
DerpRq onto DerpSq such that corresponding derivations have isomorphic
associated digraphs. Therefore properties of the linear finite dynamical sys-
tem associated with a derivation can be used to distinguish between group
rings.

Derivations of a group algebra form a Lie algebra and it is shown that this
Lie algebra DerpKGq is a complete Lie algebra, when G is a finite abelian
group such that its Sylow p-subgroup is elementary abelian.

Derivations can be used to show that two group algebras are not iso-
morphic as rings. As an example dihedral and quaternion group algebras
are contrasted by showing that their respective derivation Lie algebras have
different dimension and centers of different dimension. The thesis concludes
by giving an alternative proof of Deskins’ Theorem using derivations.
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Chapter 1

Introduction

This thesis is an analysis of the structure and applications of derivations of �nite

group algebras. We are primarily motivated by the desire to better understand

the underlying structure of the group algebra but also by the application to error

correcting codes. These applications include the error correcting codes necessary for

applications where the signal is subject to heavy interference (a high noise channel)

and where there is a requirement to have low energy inputs for the transmitting

device. Such applications include transmitting data from o�shore wind and wave

energy devices and the software for wireless body area networks (WBANs) (also

known as body sensor networks (BSNs)). The WBAN application may be useful in

the software applications needed in designing portable biomedical diagnostics and

veterinary applications.

The codes used in these applications need to be particularly e�cient. This is

due both to the high levels of noise on the channel and due to the small size of

the devices comprising the WBAN. In particular, it is desirable that they have no

short cycles. Codes (in particular Low Density Parity Check Codes (LDPC) and

Convolution Codes) can be constructed algebraically using group algebras [30].

Functions, namely derivations, de�ned on a group algebra are examined. The
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motivation is to answer structural questions relating to group algebras and in par-

ticular: Does there exist a ring isomorphism between group algebras of two noniso-

morphic groups over the same �eld? This thesis will primarily be concerned with

�nite group algebras of positive characteristic. This focus is again motivated by

the application to error correcting codes. Particular attention will be given to �nite

modular group algebras. We start by discussing both key players, namely group

algebras and derivations.

Figure 1.1: Finite modular group algebras within the class of rings and vector
spaces

A group algebra can be considered as a ring, a vector space and a Lie algebra.

Let G be a group and letK be a �eld. Then we shall denote the group algebra

formed from K and G by KG . Considering group algebras as vector spaces has

proven useful in the study of linear block codes. As an example, in [28], linear

block codes have been generated from elements of group algebras of certain types

(zero divisors and units).

Derivations are additive group homomorphisms. However they are not ring

homomorphisms since they are in general not multiplicative. They do however,
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obey a di�erent multiplication rule known as Leibniz's rule. As such, derivations

are generalisations of the di�erentiation of real functions discovered by Leibniz and

Newton.

In their 2014 paper \Linear codes using skew polynomials with automorphisms

and derivations" [9] D. Boucher and F. Ulmer generalise codes as modules over skew

polynomial rings of automorphism type to those skew polynomial rings whose mul-

tiplication is de�ned using an automorphism and a derivation. Codes constructed

in this way have in some cases produced better distance bounds than that of other

codes of the same length and dimension. This means that they can detect and or

correct more errors in a transmission. They also introduce the notion of evalua-

tion codes using these rings. M. Boulagouaz and A. Leroy in \p�; � q-codes" [10]

introduce the notion of cyclicpf ptq; �; � q-codes, wheref ptq is an element of a skew

polynomial ring. The use of derivations in coding theory has thus far been restricted

to the setting of skew polynomial rings. A goal of this thesis is to better understand

derivations of group rings. As a consequence this opens up the possibility to apply

derivations to coding theory from a group rings perspective.

We begin our study of derivations of group algebras with some naive ques-

tions. Are there any derivations de�ned on group algebras? Assuming the set

of derivations of a particular group algebra is non-empty: Are all the derivations

of the group algebra inner derivations or do there exist outer derivations? What

structure and size does the set of derivations have? These questions ultimately

lead us to the central question of this thesis.

What, if anything can the set of derivations of a group algebra

tell us about the structure of the group algebra itself?
(1.1)

Chapter 2 introduces the notion of a group algebra and also de�nes a derivation of

a ring. The set of derivations of a ringR, is denoted byDerpRq. Theorem 2.2.5
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classi�es the derivations of group algebras in terms of the generators and de�ning

relations of the group. IfRG is a group ring, whereR is commutative andS is a

set of generators ofG then necessary and su�cient conditions on a map fromS to

RG are established, such that the map can be extended to anR-derivation of RG.

If the group is abelian then our focus is directed towords studying modular group

algebras. This is a consequence of the fact that the only derivation de�ned on a

semisimple group algebra of an abelian group is the zero map. The derivations of

�nite group algebras are constructed and listed in the commutative case and in

the case of dihedral groups. In the dihedral case, the inner derivations are also

classi�ed. Lastly, these results are applied to construct well known binary codes as

images of derivations of group algebras. The results in this chapter were published

in [12].

Derivations of a modular group algebraKG are the subject of Chapter 3. A

subring of KG that will prove useful in this and subsequent chapters, namely the

ring of constants,CpKG q is introduced. The connection between derivations and

homomorphisms is studied and the concept of a di�erential ideal is introduced.

The augmentation ideal� pG; H q is shown to be a di�erential ideal with respect

to a derivation if and only if the image of the subgroupH under the derivation is

contained in the augmentation ideal. As a consequence,H P CpKG q implies that

the augmentation ideal� pG; H qis a di�erential ideal. It is shown in Theorem 3.1.18

that a ring isomorphism from R to S induces an isomorphism of additive groups

betweenDerpRq and DerpSq. It is also shown in Section 3.1 that if two group

algebras overK are isomorphic asK -algebras, then their respective derivation

algebras are isomorphic as Lie algebras. These results provide a tool for gleaning

information about the structure of a group algebra from that of its derivation

algebra. As an example, if there are more derivations ofKG than of KH , then

KG and KH are not isomorphic as rings by Theorem 3.1.18.F2D8 is studied as
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an example of a modular group algebra. Its derivations, ideals and unit group are

found as well as the image of an element of the group algebra under conjugation

by units. It is shown that no outer derivation of KH becomes inner inKG , where

H is a subgroup ofG. This chapter concludes with a brief look at generating error

correcting codes from derivations of modular group algebras.

A derivation of a commutative group algebraKG is considered as a linear

�nite dynamical system (LFDS) in Chapter 4. The resulting LFDS corresponds to

a directed graph with the elements ofKG as vertices and an arc between each vertex

and its image under the derivation. As previously stated, the results of Chapter 3

provide a tool for gleaning information about the structure of a group algebra

from that of its derivation algebra. Counting derivations can be used to show that

group algebras are not isomorphic as rings. However, this may not always work

since for exampleF2pC4 � C4qand F2pC2 � C8qboth have 232 derivations. Therefore

we will seek to use other properties of the LFDSs associated with the derivations

of group algebras to distinguish between the nonisomorphic group algebras. The

maximum value of the preperiod of a LDFS is one such property and is used to show

that F2pC4 � C4q and F2pC2 � C8q are not ring isomorphic. When the derivation

is nilpotent, the maximum value of the preperiod corresponds to the nilpotency

index of the derivation.

The set of derivations of a commutative group algebra over a �nite �eld is

again the subject of Chapter 5. However, this chapter studies the Lie algebra

formed from this set of derivations by de�ning multiplication as the Lie commu-

tator. This Lie algebra is know as the derivation algebra. The motivation comes

from Theorem 3.1.20, which states that aK -algebra isomorphism between two

�nite group algebras implies that their derivation algebras are isomorphic as Lie

algebras. It is shown that the derivation algebra of a commutative group algebra

over a �nite �eld has trivial center. A Lie algebra that has trivial center and whose
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derivations are all inner is called complete. It is proven in Theorem 5.4.14 that

if K is a �nite �eld of characteristic p and G is a �nite abelian group such that

its Sylow p-subgroup is elementary abelian, then the derivation algebra ofKG is

complete.

A very interesting problem in group rings is whether the group ring determines

the group. This question is referred to as the Isomorphism Problem of Group Rings

[40]. The set of derivations of a group algebra can be trivial. For example the zero

map is the only derivation of the semisimple group algebraF2Cn , where n is an

odd integer. In contrast, by Theorem 2.3.4 of Chapter 2 the group algebraFpP

whereP is a �nite abelian p-group always has non trivial derivations. This simple

observation motivates the application of the results of Chapters 2 - 5 to the study

of the Isomorphism Problem within the following context: LetP and Q be �nite

p-groups andK the �eld with p elements. The Modular Isomorphism Problem asks

if the following statement is true:

KP � KQ ùñ P � Q:

The Modular Isomorphism Problem was solved for abelian groups in 1956 by De-

skins [14]. Chapter 6 begins by studying the derivation algebras ofF2t D2m � 1 and

F2t Q2m � 1 . These results are then used to prove thatF2t D2m � 1 and F2t Q2m � 1 are not

isomorphic asK -algebras or in fact as rings. Therefore these group algebras do not

provide a counterexample to the Modular Isomorphism Problem. The information

discovered about derivations of group algebras provided the tools necessary to give

an alternative proof of Deskins Theorem in Theorem 6.2.16.
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Chapter 2

Derivations of Group Algebras

and Codes

2.1 Introduction

Group rings and derivations of rings have both been studied for more than 60 years.

For a history of group rings see Polcino Milies and Sehgal [40] and for a survey

article on derivations see Ashraf, Ali, and Haetinger [3]. The results of Posner [41]

and Herstein [24] attracted particular attention. Prime, semiprime and 2-torsion

free rings were a focus of the resulting research.

Derivations ofC � -algebras have been studied by several authors. In [44], Sakai

proved that every derivation of a simpleC � -algebra becomes inner in its multiplier

algebra. Mathieu and Villena, in [36] study the structure of Lie derivations of

C � -algebras. In the 2000 paper Derivations on Group Algebras [19], Ghahramani,

Runde and Willis, examine the �rst cohomology space of the group algebraL1pGq,

where G is a locally compact group. The derivation problem asks whether ev-

ery derivation from L1pGq to M pGq is inner, whereG is a locally compact group

and M pGq is the multiplier algebra of L1pGq. It was solved in the a�rmative by
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Losert [34]. The 2017 preprint \Derivations of Group Algebras", [2] by Arutyunov,

Mishchenko and Shtern describes the outer derivations ofL1pGq.

Group rings have been used to construct new codes as well as to study existing

codes. In [28] Hurley and Hurley present techniques for constructing codes from

group rings. The codes constructed consist primarily of two types, zero-divisor

codes and unit-derived codes. The structure of group ring codes is examined in

[27]. The author gives a decomposition of a group ring code into twisted group

ring codes and proves the nonexistence of self-dual group ring codes in particular

cases.

Derivations have also been employed in coding theory. In [9] codes are con-

structed as modules over skew polynomial rings, where the multiplication is de�ned

by a derivation and an automorphism. In this chapter derivations of group algebras

and their application to coding theory are considered.

However, there has not been as much research into derivations of group alge-

bras with positive characteristic. Notable exceptions include Smith [49], Spiegel

[50], Ferrero, Giambruno and Polcino Milies [17] and Artemovych, Bovdi and Salim

[1]. In [17] the authors prove the following theorem.

Theorem 2.1.1. [17] Let R be a semiprime ring andG a torsion group such that

rG : ZpGqs   8 , where ZpGq denotes the center ofG. Suppose that eitherchar

R � 0 or for every characteristic p of R; p � opgq, for all g P G. Then every

R-derivation of RG is inner.

In this thesis we are particularly interested in �nite group algebras. This is

motivated in part by applications to error correcting codes. Theorems 2.1.1 and

2.3.1 direct our focus, in the commutative case, to the study of derivations of

modular (nonsemisimple) group algebras with positive characteristic.

Theorem 2.2.2 shows that whenK is an algebraic extension of a prime �eld
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all derivations of a K -algebra areK -derivations. If RG is a group ring, where

R is commutative andS is a set of generators ofG then necessary and su�cient

conditions on a mapf : S Ñ RG are established, in Theorem 2.2.5, such thatf

can be extended to anR-derivation of RG. Section 2.3 outlines some applications

of the results of Section 2.2. All derivations of �nite commutative group algebras

of positive characteristic are determined in Theorem 2.3.4. IfG is a �nite abelian

group andK a �nite �eld of positive characteristic p then the image of a minimum

set of generators of the Sylowp-subgroup of G under a derivation of KG can

be chosen arbitrarily, however this is not always the case in the noncommutative

setting. An inner derivation of a ring R mapsa P R to ba� ab, for some element

b P R. In the case of �nite dihedral group algebras of characteristic 2, a basis is

given for the space of derivations in Theorem 2.3.11 and also for those that are

inner in Theorem 2.3.13.

The extended binary Golayr24; 12; 8scode and the extended binary quadratic

residuer48; 24; 12s code are both presented as images of derivations of group alge-

bras in Section 2.3.3.

De�nition 2.1.2. Notation: N; Z and Q denote the natural numbers, the in-

tegers and the rational numbers, andFpn denotes the �nite �eld with pn ele-

ments. The group ringRG denotes the set of all formal linear combinations of

the form
°

gPG agg, of �nite support where ag PR, together with the operations of

addition (componentwise) and multiplication de�ned asp
°

gPG aggqp
°

hPG bhhq �
°

g;hPG agbhgh. We adopt the usual convention that empty sums are 0 and empty

products are 1.

De�nition 2.1.3. A derivation of a ring R is a mappingd: R Ñ R satisfying

dpa � bq � dpaq � dpbq; for all a; bPR: (2.1)

dpabq � dpaqb� adpbq; for all a; bPR: (2.2)
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Equation (2.2) is known as Leibniz's rule. WriteDerpRq for the set of derivations

of a ring R. Note that if R is a unital ring then dp1q � 0, sincedp1q � d
�
1p1q

�
�

dp1q1 � 1dp1q.

De�nition 2.1.4. Let d PDerpRqand r PR for a ring R. Then the mapr �d: R Ñ

R is de�ned asa ÞÑrdpaq for all a PR.

Lemma 2.1.5. Let Z be a central subring of a ringR. Then DerpRq together with

the action � is a Z-module.

De�nition 2.1.6. Let RG be a group ring. Then a derivationd: RG Ñ RG is an

R-derivation if dpRq � t 0u.

De�nition 2.1.7. Given a ring R and a; b P R, de�ne the Lie commutator ra; bs

� ab� ba. A derivation d on a ring R is inner if for all a PR we havedpaq � ba� ab

for somebPR. In this case we writed � db.

2.2 Derivations of Group Rings

In this section we establish necessary and su�cient conditions on a mapf : S Ñ

RG, such that f can be extended to anR-derivation of the group ring RG, where

S is a set of generators ofG and R is commutative. First, some identities and

preliminary results are presented.
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Lemma 2.2.1. Let d be a derivation of a ringR. Then

piq dp
m¹

i � 1

ai q �
m̧

i � 1

�

p
i � 1¹

j � 1

aj qdpai qp
m¹

j � i � 1

aj q

�

; for all ai in R: (2.3)

pii q dpamq �
m� 1¸

i � 0

ai dpaqapm� 1� i q; for all a PR and m PN: (2.4)

piii q
n� 1¸

i � 0

ai dpaqapn� 1� i q � 0; for all units a in R of order n: (2.5)

pivq dpakq � kak� 1dpaq; for all a PR which commute withdpaq and k PN:

(2.6)

pvq dpakq � kak� 1dpaq; for all units a PR which commute withdpaq and k PZ:

(2.7)

Proof. piq We will prove Equation 2.3 by induction onm.

Base case:m � 1. This is true asdpa1q �
° 1

i � 1 1dpa1q1.

Assume that dp
± m

i � 1 ai q �
° m

i � 1

�
p
± i � 1

j � 1 aj qdpai qp
± m

j � i � 1 aj q
	

. Then

dp
m� 1¹

i � 1

ai q � dp
m¹

i � 1

ai qam� 1 �
� m¹

i � 1

ai

	
dpam� 1q

�
m̧

i � 1

�
p

i � 1¹

j � 1

aj qdpai qp
m¹

j � i � 1

aj q
	

am� 1 �
� m¹

i � 1

ai

	
dpam� 1q

�
m� 1¸

i � 1

�
p

i � 1¹

j � 1

aj qdpai qp
m� 1¹

j � i � 1

aj q
	

:

Therefore Equation 2.3 holds for allm PN.

pii q Let ai � a in Equation 2.3. Then for all m PN

dpamq �
m̧

i � 1

�
p

i � 1¹

j � 1

aqdpaqp
m¹

j � i � 1

aq
	

�
m̧

i � 1

ai � 1dpaqapm� i q �
m� 1¸

i � 0

ai dpaqapm� 1� i q:
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piii q Setting m � n in Equation 2.4 implies

0 � dp1q � dpanq �
n� 1¸

i � 0

ai dpaqapn� 1� i q:

pivq Let a be an element ofR that commutes with dpaq. Then using Equation 2.4

dpakq �
k� 1¸

i � 0

ai dpaqapk� 1� i q �
k� 1¸

i � 0

ak� 1dpaq � kak� 1dpaq:

pvq Let a be a unit which commutes with dpaq. Then a� 1 is also a unit

which commutes withdpaqsincea� 1dpaq � a� 1dpaqaa� 1 � a� 1adpaqa� 1 � dpaqa� 1.

Therefore 0� dp1q � dpa� 1aq � dpa� 1qa� a� 1dpaqand sodpa� 1q � � a� 1dpaqa� 1 �

� a� 2dpaq. Moreover,a� 1 commutes withdpa� 1qsincea� 1dpa� 1q � a� 1p� a� 2dpaqq

� � a� 2dpaqa� 1 � dpa� 1qa� 1. Therefore for any positive integerk

dpa� kq � dppa� 1qkq � kpa� 1qk� 1dpa� 1q � kpa� k� 1qp� a� 2dpaqq � � kpa� k� 1qdpaq:

Furthermore, 0 � dp1q � dpa0q � 0a� 1dpaq and so Equation (2.7) holds for all

integersk.

The following Theorem shows that whenK is an algebraic extension of a prime

�eld all derivations of a K -algebra areK -derivations.

Theorem 2.2.2. Let A be a K -algebra whereK is an algebraic extension of a

prime �eld F and let d PDerpAq. Then dpK q � t 0u and d is a K -linear map.

Proof. Let d PDerpAq. If charpF q ¡ 0 then for bPF , dpbq � dp1 � 1 � � � � � 1q �

dp1q � dp1q � � � � � dp1q � bdp1q � b0 � 0, and sodpF q � 0. Let F � Q and let

a; b P Z with b ¡ 0. Note that 0 � dp0q � dp1 � 1q � dp1q � dp� 1q � 0 � dp� 1q,

so dp� 1q � 0. Then bdpa{bq � dpa{bq � � � � � dpa{bq � dpa{b� � � � � a{bq � dpaq �
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� dp1 � � � � � 1q � �p dp1q � � � � � dp1qq � 0. Thereforedpa{bq � 0, sodpF q � 0 for

all prime �elds F .

Let a be a nonzero element ofK and let mapxq �
° na

j � 0 baj x j P F rxs be the

minimal polynomial of a over F . a is a central unit in K and so Equation 2.7 of

Lemma 2.2.1 applies. Note that forbPF and � PK we havedpb� q � bdp� q, since

dpF q � 0. Thus applying a derivationd to mapaq � 0 and using Equation 2.7

0 � dp0q � dpmapaqq � dp
na¸

j � 0

baj aj q �
na¸

j � 0

baj dpaj q

�
na¸

j � 0

baj ja j � 1dpaq �
� na¸

j � 1

baj ja j � 1
	

dpaq � qpaqdpaq;

whereq is a polynomial in F rxs. Moreover, qpaq � 0 as this would contradict the

minimality of the degree ofmapxq. Thereforedpaq � 0, sinceqpaq is invertible as

it is a non zero element of the �eldK . HencedpK q � t 0u.

The K -linearity of d is immediate sinced is additive and if a P A and k P K

then dpkaq � dpkqa � kdpaq � 0 � kdpaq.

Corollary 2.2.3. Let K be an algebraic extension of a prime �eldF . Let G be

a torsion group such thatrG : ZpGqs   8 , where ZpGq denotes the center ofG.

Suppose that either charpK q � 0 or that charpK q � p ¡ 0, and p does not divide

the order of g, for all g PG. Then every derivation ofKG is inner.

Proof. By Theorem 2.2.2, every derivation ofKG is aK -derivation and since every

�eld is semiprime, Theorem 2.1.1 implies that every derivation ofKG is inner.

Note that in Corollary 2.2.3 if \derivation" is replaced by \ K -derivation" then

this is a special case of Theorem 2.1.1. Also the requirement thatK is algebraic

over F is necessary in Theorem 2.2.2 as the following example shows.

Example 2.2.4. Let Qptqbe a transcendental extension of the rationals (the �eld
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of rational functions of t). SinceQptq is a Q-algebra, Theorem 2.2.2 implies that

dpQq � t 0u for all derivations d of Qptq. However, by Proposition 5.2 of Chapter

VIII in [33], there exists a nonzero derivationd of Qptq, since Qptq is a �nitely

generated extension overQ that is not separable algebraic.

Theorem 2.2.5. Let G � x S | Ty be a group, whereS is a generating set andT a

set of relators. LetFS be the free group onS and � : FS Ñ G the homomorphism

of FS onto G. Let R be a commutative unital ring andf a map from S to RG.

Then

(i) f can be uniquely extended to a mapf � from FS to RG such that

f � puvq � f � puq� pvq � � puqf � pvq; for all u; v PFS; (2.8)

(ii) the map f from S to RG can be extended to anR-derivation of RG if and

only if f � ptq � 0, for all t PT,

(iii) if f can be extended to anR-derivation of RG, then this extension is unique.

Proof. Let f be a map fromS to RG. � is the identity map on S, so for s P S,

� ps� 1sq � � ps� 1q� psq � � ps� 1qs � � p1q � 1, so � ps� 1q � s� 1. Thus � is the

identity map on S Y S� 1.

(i) We wish to extendf to f � : FS Ñ RG, which satis�es Equation 2.8.

De�ne f � : FS Ñ RG as follows:

f � pwi q �

$
''''''&

''''''%

f pwi q if wi PS;

� wi f pw� 1
i qwi if wi PS� 1;

0 if wi � 1

(2.9)

14



and letting w �
± k

i � 1 wi , wherewi PS Y S� 1, de�ne

f � pwq �
k¸

i � 1

�
p

i � 1¹

j � 1

wj qf � pwi qp
k¹

j � i � 1

wj q
	

: (2.10)

Let 0 ¤ l ¤ k and u �
± l

i � 1 wi and v �
± k

i � l � 1 wi . Then by Equations 2.9

and 2.10

f � puvq �
k¸

i � 1

�
p

i � 1¹

j � 1

wj qf � pwi qp
k¹

j � i � 1

wj q
	

�
� l¸

i � 1

p
i � 1¹

j � 1

wj qf � pwi qp
l¹

j � i � 1

wj q
	 k¹

j � l � 1

wj

�
l¹

j � 1

wj

k¸

i � l � 1

p
i � 1¹

j � l � 1

wj qf � pwi qp
k¹

j � i � 1

wj q

� f � puq
k¹

j � l � 1

� pwj q �
l¹

j � 1

� pwj qf � pvq

� f � puq� pvq � � puqf � pvq:

Thereforef � de�ned by Equations 2.9 and 2.10 satis�es Equation 2.8.

If w is a word onS, denote the reduced word byw. In order for f � to be well

de�ned on FS we need to show thatf � pwq � f � pwq for all words w on S. Let u; v

be words onS and let a PS.

Then by Equation 2.9, f � paqa� 1 � af � pa� 1q � f paqa� 1 � aa� 1f paqa� 1 � 0.

Similarly, f � paqa� 1 � af � pa� 1q � 0 for all a P S� 1. Let a P S Y S� 1. Then by

Equation 2.10,f � paa� 1q � 0 and so by Equation 2.8

f � puaa� 1vq � f � puq� paa� 1vq � � puqf � paa� 1vq

� f � puq� pvq� � puqf � paa� 1q� pvq� � puaa� 1qf � pvq � f � puq� pvq� � puqf � pvq � f � puvq:

Therefore f � pwq � f � pwq for all words w on S. We now prove the uniqueness of
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f � .

Assume that there exists a mapf � : FS Ñ RG, distinct from f � which is also an

extension off and which also satis�es Equation 2.8. Let 1 be the identity element of

FS. Then f � p1q � f � p1p1qq � f � p1q1� 1f � p1q, which implies that f � p1q � 0 � f � p1q.

Let s PS. Then f � psq � f psq � f � psqand 0� f � ps� 1sq � f � ps� 1qs� s� 1f � psq. This

implies that f � ps� 1q � � s� 1f � psqs� 1 � f � ps� 1q. Therefore there exists an element

x of FS, of positive length c ¡ 1, such that f � pxq � f � pxq and f � pzq � f � pzq for

all words z in FS of length less thanc. Write x �
± c

i � 1 x i , where x i P S Y S� 1.

Thus f � p
± c� 1

i � 1 x i q � f � p
± c� 1

i � 1 x i q and f � pxcq � f � pxcq, since
± c� 1

i � 1 x i and xc are

both elements ofFS whose length is less thanc. Therefore by Equation 2.8

f � pxq � f � p
c� 1¹

i � 1

x i q� pxcq� � p
c� 1¹

i � 1

x i qf � pxcq � f � p
c� 1¹

i � 1

x i q� pxcq� � p
c� 1¹

i � 1

x i qf � pxcq � f � pxq:

This contradiction implies that f � is the unique extension off to FS, such that

f � puvq � f � puq� pvq � � puqf � pvq, for all u; v PFS. This proves(i) .

(ii) ConsideringS as a subset ofG, suppose that the mapf : S Ñ RG can

be extended to anR-derivation d of RG. Then for any s P S, dpsq � f psq and

0 � dps� 1sq � dps� 1qs � s� 1dpsq and so dps� 1q � � s� 1dpsqs� 1 � � s� 1f psqs� 1.

Thereforedpaq � f � paq, for all a P S Y S� 1 by Equation 2.9. Let t �
± m

i � 1 t i P T,

wheret i PS Y S� 1 for i � 1; 2; : : : ; m. Then by Equations 2.10 and 2.3

f � ptq �
m̧

i � 1

�
p

i � 1¹

j � 1

t j qf � pt i qp
m¹

j � i � 1

t j q
	

�
m̧

i � 1

�
p

i � 1¹

j � 1

t j qdpt i qp
m¹

j � i � 1

t j q
	

� dptq � 0:

This proves the implication in (ii) .

Conversely, assumef � ptq � 0, for all t P T. Let t P T. Then � ptq � 1 and

f � pt � 1q � 0, since 0� f � ptt � 1q � f � ptq� pt � 1q � � ptqf � pt � 1q � 0p1q � p 1qf � pt � 1q �
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f � pt � 1q. Let � P t1; � 1u. Then for all w PFS

f � pw� 1t � wq � f � pw� 1q� pt � wq � � pw� 1qf � pt � wq

� f � pw� 1q� pt � wq � � pw� 1qf � pt � q� pwq � � pw� 1t � qf � pwq

� f � pw� 1q� pwq � � pw� 1qf � pwq � f � pw� 1wq � 0:

(2.11)

Let N � x TFS y be the normal closure ofT. Any non-identity element n of N can

be written as
± k

i � 1 w� 1
i t � i

i wi , wherewi PFS, t i PT and � i P t� 1; 1u. Therefore by

Equations 2.10 and 2.11

f � pnq � f �
� k¹

i � 1

w� 1
i t � i

i wi

�

�
k¸

i � 1

�
� i � 1¹

j � 1

w� 1
j t � j

j wj

	
f � pw� 1

i t � i
i wi q�

� k¹

j � i � 1

w� 1
j t � j

j wj

	
� 0:

Also � pnq � 1, for all n P N and so for anyw P FS, f � pwnq � f � pwq� pnq �

� pwqf � pnq � f � pwq. Let g; h P G � x S | Ty �
FS

xTFS y
and let u; v be elements

of FS, such that g � � puq and h � � pvq. Extend f : S Ñ RG to f̂ : G Ñ RG

by de�ning f̂ pgq � f � puq. Then f̂ pghq � f � puvq � f � puq� pvq � � puqf � pvq �

f̂ pgqh � gf̂ phq. Suppose~f is also an extension off distinct from f̂ that satis�es

~f pghq � ~f pgqh � g ~f phq for all g; h P G. Let l : G Ñ N be the minimum length of

an element ofG, de�ned by lpgq � min t k | g �
± k

i � 1 gi ; gi P S Y S� 1u. Then

there exists anx P G of minimum length such that ~f pxq � f̂ pxq. For all s P S,

0 � ~f pss� 1q � ~f psqs� 1 � s ~f ps� 1q and ~f psq � f̂ psq. Thus ~f ps� 1q � � s� 1f̂ psqs� 1 �

� s� 1f psqs� 1 � f � ps� 1q � f̂ ps� 1q. Therefore ~f pgq � f̂ pgq for all g P G such that

lpgq   2 and sox can be written asx � yz, wherey; z P G such that lpyq   lpxq

and lpzq   lpxq. Then ~f pxq � ~f pyzq � ~f pyqz � y ~f pzq � f̂ pyqz � yf̂ pzq � f̂ pxq.

This contradiction implies that f̂ is the unique extension off such that f̂ pghq �

f̂ pgqh � gf̂ phqfor any g; h PG. Extend f̂ , R-linearly to RG and denote this unique
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extension also byf̂ . Let � �
¸

gPG

agg and � �
¸

hPG

bhh be elements ofRG, where

ag; bh PR. Then f̂ p� � � q � f̂ p� q � f̂ p� q as f̂ is an R-linear map. Moreover

f̂ p� q� � � f̂ p� q �
� ¸

gPG

agf̂ pgq
	� ¸

hPG

bhh
	

�
� ¸

gPG

agg
	� ¸

hPG

bh f̂ phq
	

�
¸

g;h

agbh f̂ pgqh �
¸

g;h

agbhgf̂ phq �
¸

g;h

agbhpf̂ pgqh � gf̂ phqq

�
¸

g;h

agbh f̂ pghq � f̂
� ¸

g;h

agbhgh
	

� f̂
� ¸

g

agg
¸

h

bhh
	

� f̂ p�� q:

Therefore the mapf̂ obeys Leibniz's rule for all products of elements ofRG and

so is anR-derivation of RG. This proves(ii) and (iii) .

Corollary 2.2.6. Let G � x S | Ty be a group, whereS is a generating set andT

a set of relators. LetFS be the free group onS and � : FS Ñ G the homomorphism

of FS onto G. Let K be an algebraic extension of a prime �eld andf a map from

S to KG . Then

(i) f can be uniquely extended to a mapf � from FS to KG that satis�es Equa-

tion 2.8,

(ii) f can be extended to a derivation ofKG if and only if f � ptq � 0, for all

t PT,

(iii) if f can be extended to a derivation ofKG , then this extension is unique.

Proof. By Theorem 2.2.2 all derivations ofKG are K -derivations and so the result

follows from Theorem 2.2.5.

Remark 2.2.7. The restriction that R be a commutative ring in Theorem 2.2.5

is necessary. To demonstrate this, letr1; r2 be noncommuting elements in a ring

R and let G be the in�nite cyclic group generated byS � t su, that is the free

group on S. Let f : S Ñ RG be the map de�ned by s ÞÑr1 and extend f to a
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map f � : G Ñ RG as in Theorem 2.2.5(i) . Assume that f can be extended to an

R-derivation d of RG. Then

dpsqr2s � sdpr2sq � r1r2s � sr2dpsq � r1r2s � sr2r1 � p r1r2 � r2r1qs:

However

dpsr2sq � r2dps2q � r2pr1s � sr1q � 2r2r1s:

Therefore the Leibniz rule does not apply sincedpsr2sq � dpsqr2s � sdpr2sq. This

contradicts the assumption thatf can be extended to anR-derivation of RG.

2.3 Applications

We will now apply the results of the previous sections to �nite commutative group

algebras in Section 2.3.1 and then to �nite dihedral group algebras in Section 2.3.2.

The study of �nite group algebras is motivated in part by applications to coding

theory which appear in Section 2.3.3, where the extended binary Golayr24; 12; 8s

code and the extended binary quadratic residuer48; 24; 12s code are presented as

images of derivations of group algebras.

2.3.1 Derivations of Commutative Group Algebras

The next result directs our study of derivations of commutative group algebras to

the nonsemisimple case.

Theorem 2.3.1. Let R be a commutative unital ring. LetH be a torsion central

subgroup of a groupG, where the order ofh is invertible in R, for all h PH . Then

dpRq � t 0u if and only if dpRH q � t 0u, for all d PDerpRGq.

Proof. Let d be any element ofDerpRGq. Assume that dpRq � t 0u. Let h be
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an element ofH of order s. Applying d to hs � 1 implies shs� 1dphq � 0 by

Equation 2.7 of Lemma 2.2.1. By assumptions is invertible in R and sos is also

invertible in RG. Therefore dphq � 0 for any d P DerpRGq. Let � �
¸

hPH

ahh be

any element ofRH . Then

dp� q � dp
¸

hPH

ahhq �
¸

hPH

dpahhq �
¸

hPH

ahdphq �
¸

hPH

ahp0q � 0;

by Leibniz's rule sincedpRq � t 0uand sodpRH q � t 0u. The converse is immediate.

Corollary 2.3.2. (i) Let G be a �nite abelian group andF either the rational

numbers or an algebraic extension of the rationals. ThenFG has no nonzero

derivations.

(ii) Let H be ap-regular subgroup of a �nite abelian groupG and F � Fpn . Then

all derivations of FG are FH -derivations.

Proof. For part (i) let H � G. In both casesF is a commutative unital ring and

H is a torsion central subgroup ofG, where the order ofh is invertible in F for all

h P H . Also dpF q � t 0u for all d P DerpFGq, by Theorem 2.2.2. Therefore the

results follow from Theorem 2.3.1.

Note that (i) of this Corollary also follows from Theorem 2.1.1.

Remark 2.3.3. In Theorem 2.3.1, the requirement that the subgroupH is central

is necessary. For example, there are 26 non zero derivations ofF3D8. Moreover the

27 derivations ofF3D8 are inner by Theorem 2.1.1 or Corollary 2.2.3.

In Theorem 2.3.4 we determine all derivations of �nite commutative group

algebras of positive characteristicp.
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Theorem 2.3.4. Let K be a �nite �eld of positive characteristic p. Let G � H � X

be a �nite abelian group, whereH is a p-regular group andX is a p-group with the

following presentation

X � x x1; : : : ; xn | xpm k

k � 1; rxk ; x ls � 1; for all k; l P t1; 2; : : : nuy;

wheren; mk PN. For i; j P t1; : : : ; nu, let f i : t x1; : : : ; xnu Ñ KG be de�ned by

f i px j q �

$
''&

''%

1 if i � j and

0 otherwise:

Then f i can be uniquely extended to a derivation ofKG denoted byBi . Moreover

DerpKG q is a vector space overK with basist gBi | g PG; i � 1; : : : ; nu.

Proof. By Corollary 2.3.2 (ii) all derivations of KG are KH -derivations. Let S �

t x1; : : : ; xnu and let f be any map fromS to KG . By Theorem 2.2.5f can be

uniquely extended to a mapf � : FS Ñ KG satisfying Equation 2.8. Moreover,f

can be extended to a derivation ofKG if and only if f � ptq � 0 for t P trxk ; x ls; xpm k

k |

k; l � 1; 2; : : : ; nu. Let a; bPS. Then

f � pa� 1b� 1abq � f � pa� 1qb� 1ab� a� 1f � pb� 1qab� a� 1b� 1f � paqb� a� 1b� 1af � pbq

� � a� 1f paqa� 1b� 1ab� a� 1b� 1f pbqb� 1ab� a� 1b� 1f paqb� a� 1b� 1af pbq

� � a� 1f paq � b� 1f pbq � a� 1f paq � b� 1f pbq � 0:

Thereforef � prxk ; x lsq � 0, for all k; l � 1; 2; : : : ; n. Also by Equation 2.10

f � pxpm k

k q �
pm k¸

i � 1

�
p

i � 1¹

j � 1

xkqf � pxkqp
pm k¹

j � i � 1

xkq
	

� pmk xppm k � 1q
k f � pxkq � 0;

sinceKG has characteristicp. Therefore any mapf : S Ñ KG can be uniquely

extended to a derivation ofKG . By Lemma 2.1.5DerpKG q is a vector space over

K . Let B � t gBi | g P G; i � 1; : : : ; nu. Any map f : S Ñ KG can be written
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as
° n

i � 1

°
gPG ki;g gf i , whereki;g P K . The extension off to a derivation of KG is

° n
i � 1

°
gPG ki;g gBi . Therefore any derivation ofKG can be written as aK -linear

combination of the elements ofB . Furthermore, if p
° n

i � 1

°
gPG ki;g gBi qpx j q � 0,

then
°

gPG kg;j g � 0, which implieskg;j � 0 for all g P G. Therefore the elements

of B are K -linearly independent and so form a basis ofDerpKG q.

Remark 2.3.5. Derivations of �nite commutative group algebrasFpn G are either

the zero derivation (in the semisimple case by Corollary 2.3.2(ii)) or can be decom-

posed as in Theorem 2.3.4 as the sum of derivations of the group algebras of the

cyclic direct factors ofG.

As we will see in the next section, derivations of noncommutative �nite group

algebras are more involved.

2.3.2 Derivations of Dihedral Group Algebras

Let n be an integer greater than 2 and letD2n denote the dihedral group with 2n

elements and presentationxx; y | xn � y2 � p xyq2 � 1y. This section classi�es the

derivations of the group algebraF2m D2n .

De�nition 2.3.6. Let RG be a group ring. Theaugmentation ideal of RG, denoted

by � pGq, is the kernel of the homomorphism fromRG to R de�ned by
°

gPG agg ÞÑ
°

gPG ag.

Lemma 2.3.7. [38, pp.113] The centre of the group algebraKG has as aK -basis

the set of all �nite conjugacy class sums.

Lemma 2.3.8. If n is even, ZpF2m D2nq, the center of F2m D2n is a subspace of

F2m D2n of dimension n
2 � 3 and a basist 1; x

n
2 ; x1 � x � 1; x2 � x � 2; : : : ; x

n
2 � 1 �

x �
n
2 � 1; y � x2y � x4y � � � � � xn� 2y; xy � x3y � x5y � � � � � xn� 1yu.

If n is odd, ZpF2m D2nq has dimension n� 3
2 and a basist 1; x1 � x � 1; x2 �

x � 2; : : : ; x
n� 1

2 � x
� n� 1

2 ; y � xy � x2y � � � � � xn� 1yu.
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Proof. If n is even the conjugacy classes ofD2n are as follows:t 1u, t x
n
2 u, t x i ; x � i u,

for i � 1; 2; : : : ; n
2 � 1, t y; x2y; x4y; : : : ; xn� 2yu and t xy; x3y; x5y; : : : ; xn� 1yu. If n is

odd the conjugacy classes ofD2n are as follows:t 1u, t x i ; x � i u, for i � 1; 2; : : : ; n� 1
2

and t y; xy; x2y; : : : ; xn� 1yu. The result follows from counting the conjugacy classes

and by Lemma 2.3.7.

Corollary 2.3.9. Let Cpyqand Cpxyqdenote respectively the centralisers ofy and

xy in F2m D2n . Then the following are bases forCpyq and Cpxyq.

Case (1): n is even

Bepyq � t 1; x
n
2 ; y; x

n
2 yu Y tpx i � x � i q; px i � x � i qy | i � 1; 2; : : : ; n

2 � 1u

Bepxyq � t 1; x
n
2 ; xy; x

n
2 xyu Y tpx i � x � i q; xpx i � x � i qy | i � 1; 2; : : : ; n

2 � 1u:

Case (2): n is odd

Bopyq � t 1; yu Y tpx i � x � i q; px i � x � i qy | i � 1; 2; : : : ; n� 1
2 u

Bopxyq � t 1; xyu Y tpx i � x � i q; xpx i � x � i qy | i � 1; 2; : : : ; n� 1
2 u:

Proof. Let g P D2n and denote by Orbpgyq the subset t g; gyu of D2n . The set

t Orbpgyq | g P Gu is a partition of D2n . The set of elements formed by taking the

partition sums forms a basisBepyq for Cpyq, when n is even andBopyq, when n is

odd. The map� : D2n Ñ D2n de�ned by y ÞÑxy and x ÞÑx is an automorphism

of D2n . Extend � F2m -linearly to an F2m -algebra automorphism ofF2m D2n .

Let c � a � by, wherea; bPF2m xxy. Assume thatc PCpyq. Then pa � byqy �

ypa � byq, which implies that ay � ya and by � yb and so a; b P ZpF2m D2nq.

Therefore� pcq PCpxyq, since

xy� pcq � xypa � bxyq � axy � bxyxy � p a � bxyqxy � � pcqxy:
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Conversely, assume� pcq � a � bxy PCpxyq. Then

ayxy � by � xypa � bxyq � p a � bxyqxy � axy � b:

This implies a � ay and b � by and soc P Cpyq. Thereforec P Cpyq if and only if

� pcq PCpxyq. Applying � to the basisBepyqgivesBepxyqand applying � to Bopyq

givesBopxyq.

De�nition 2.3.10. Given a derivation d of F2m D2n , denote it by d � dx1;y1, where

x1 � dpxq and y1 � dpyq. Note that dpxq and dpyq uniquely determine this deriva-

tion.

By Lemma 2.1.5,DerpF2m D2nq forms a vector space overF2m . The following

Theorem exhibits a basis forDerpF2m D2nq.

Theorem 2.3.11. If n is even,DerpF2m D2nq has dimension2n � 4 and a basis

t dx1;y1 | px1; y1q P tp�y; 0q; px!y; ! q | � PBepxyq; ! PBepyquu:

If n is odd, DerpF2m D2nq has dimension3n� 1
2 and a basis

 
dx1;y1 | px1; y1q P tppx i � x � i qy;0q; pp1 � xqy;1q; p0; yq;

pxpx i � x � i qy; xi � x � i q; p0; px i � x � i qyq | i � 1; : : : ; n� 1
2 u

(
:

Proof. The relators of D2n are y2, pxyq2 and xn . Therefore by Corollary 2.2.6,

f : t x; yu Ñ F2m D2n can be extended to a derivation ofF2m D2n if and only if

f � py2q � f � ppxyq2q � f � pxnq � 0. f � py2q � 0 if and only if f pyq PCpyq. Also

f � ppxyq2q � 0 if and only if f pxqy � xf pyq PCpxyq, sincef � ppxyq2q � f � pxyqxy �

xyf � pxyq and f � pxyq � f pxqy � xf pyq. We now treat the cases wheren is even

and n is odd separately.
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Case (1): n is even. f � pxnq � f � px
n
2 x

n
2 q � f � px

n
2 qx

n
2 � x

n
2 f � px

n
2 q � 0, for

all f pxq PF2m D2n , sincex
n
2 P ZpF2m D2nq. Therefore f : t x; yu Ñ F2m D2n can be

extended to a derivation ofF2m D2n if and only if f pyq PCpyqand f pxqy � xf pyq P

Cpxyq.

Let f pyq and f � pxyq be arbitrary elements ofCpyq and Cpxyq, respectively.

Write f pyq � 
 �
° n� 2

i � 1 r i ! i and f � pxyq � � �
° n� 2

i � 1 ki � i , wherer i ; ki P F2m , ! i P

Bepyq and � i PBepxyq. Then � � f � pxyq � f pxqy � x
 and sof pxq � �y � x
y .

Therefore

DerpF2m D2nq � t dp�y � x
y;
 qu � t dp
°

k i � i y�
°

r i x! i y;
°

r i ! i qu:

De�ne Be � t dp�y; 0q; dpx!y;! q | � P Bepxyq; ! P Bepyqu. Then Be is a spanning set

for DerpF2m D2nq, sincer1 � dpx1 ;y1q� r2 � dpx2 ;y2q � dpr 1x1 � r 2x2 ;r 1y1 � r 2y2q for r1; r2 PF2m

and x1; x2; y1; y2 P F2m D2n . We now show that the elements ofBe are linearly

independent. Assume

n� 2¸

i � 1

ki dp� i y;0q �
n� 2¸

i � 1

r i dpx! i y;! i q � dp
°

k i � i y�
°

r i x! i y;
°

r i ! i q � dp0;0q

This implies r i � ki � 0 for i � 1; 2; : : : ; n � 2. ThereforeDerpF2m D2nqhas a basis

Be � t dx1;y1 | px1; y1q P tp�y; 0q; px!y; ! q | � P Bepxyq; ! P Bepyquuand dimension

2n � 4.

Case (2): n is odd. Let f pxq � a � by, where a; b P F2m xxy. Assume that

f can be extended to a derivation ofDerpF2m D2nq. So f � pxnq � 0. Applying

Equation 2.10 gives

0 �
n¸

i � 1

�
p

i � 1¹

j � 1

xqf � pxqp
n¹

j � i � 1

xq
	

�
n� 1¸

t � 0

x tpa � byqxn� 1� t � naxn� 1 �
n� 1¸

t � 0

x2t � 1by:

Right multiplying this equation by x and using n � 1 (mod 2) and
° n� 1

t � 0 x2t �
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p
° n� 1

t � 0 x tq2 � n
° n� 1

t � 0 x t gives a �
° n� 1

t � 0 x tby � 0. This implies that a � 0 and

bP� pxxyq. Therefore there is a third condition whenn is odd, namelyf pxq � by,

wherebP � pxxyq.

Let f pyq � 
 P Cpyq and let f � pxyq � � P Cpxyq. Then � � f � pxyq �

f pxqy � x
 and sof pxq � �y � x
y . ThereforeDerpF2m D2nq � t dp�y � x
y;
 q | � P

Cpxyq; 
 P Cpyq; � � x
 P � pxxyqu. Write � and 
 as F2m -linear combinations

of Bopxyq and Bopyq respectively, that is

� � k11 � k2xy �

n � 1
2¸

i � 1

k3;i px i � x � i q �

n � 1
2¸

i � 1

k4;i xpx i � x � i qy;


 � r11 � r2y �

n � 1
2¸

i � 1

r3;i px i � x � i q �

n � 1
2¸

i � 1

r4;i px i � x � i qy and so

� � x
 � k11 � r1x � p k2 � r2qxy �

n � 1
2¸

i � 1

k3;i px i � x � i q

�

n � 1
2¸

i � 1

r3;i xpx i � x � i q �

n � 1
2¸

i � 1

pk4;i � r4;i qxpx i � x � i qy:

Then p� � x
 q P� pxxyq implies that k1 � r1; k2 � r2 and k4;i � r4;i , for

i � 1; 2; : : : ; n� 1
2 . ThereforeDerpF2m D2nq � t dp�y � x
y;
 qu, where

�y � x
y � r1p1 � xqy �

n � 1
2¸

i � 1

k3;i px i � x � i qy �

n � 1
2¸

i � 1

r3;i xpx i � x � i qy

and 
 � r11 � r2y �

n � 1
2¸

i � 1

r3;i px i � x � i q �

n � 1
2¸

i � 1

r4;i px i � x � i qy:

De�ne Bo � t dx1;y1u where px1; y1q P tpp1 � xqy;1q; ppx i � x � i qy;0q; pxpx i �

x � i qy; xi � x � i q; p0; yq; p0; px i � x � i qyq | i � 1; 2; : : : ; n� 1
2 u. Bo is a spanning set

for DerpF2m D2nq. The elements ofBo are linearly independent sincedp�y � x
y;
 q �

dp0;0q implies that r1 � r2 � r3;i � r4;i � k3;i � 0, for i � 1; 2; : : : ; n� 1
2 .

Therefore DerpF2m D2nq has a basisBo � t dx1;y1u where px1; y1q P tpp1 �
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xqy;1q; ppx i � x � i qy;0q; pxpx i � x � i qy; xi � x � i q; p0; yq; p0; px i � x � i qyq | i �

1; 2; : : : ; n� 1
2 u. Thus DerpF2m D2nq has dimension 3pn� 1

2 q � 2 � 3n� 1
2 .

Lemma 2.3.12. [42] Let a and c be elements of a ringR and let dc be the map

from R to R de�ned by dcpaq � r c; as � ca� ac for all a PR. Then

1. The Lie commutator is anti-symmetric, i.e. ra; bs � �r b; as.

2. The mapdc is an inner derivation for all c PR.

3. dc � 0 if and only if c PZpRq.

We now give a basis for the set of inner derivations ofF2m D2n .

Theorem 2.3.13. The set of inner derivations ofF2m D2n is an F2m -vector space

with dimension 3t n� 1
2 uand basis

 
db | bP tx i | i � 1; 2; : : : ; t n� 1

2 uu Y tx i y | i � 0; 1; : : : ; 2t n� 1
2 u� 1u

(
:

Proof. By Lemma 2.3.12 the Lie commutator is anti-symmetric and so it is sym-

metric in characteristic 2. Let a; b; c P F2m D2n . Then da� bpcq � dcpa � bq �

dcpaq � dcpbq � dapcq � dbpcq and so the inner derivations ofF2m D2n are closed un-

der addition. If k P F2m , then kdb � dkb and thus the inner derivations ofF2m D2n

form a vector subspace ofDerpF2m D2nq. Let B � t x i | i � 1; 2; : : : ; t n� 1
2 uu Y

t x i y | i � 0; 1; : : : ; 2t n� 1
2 u� 1u.

Case(1)n is even. Write n � 2c. By Lemma 2.3.8,ZpF2m D2nq is a pn
2 � 3q-

dimensional subspace ofF2m D2n with basisBZ � t 1; xc; x� x � 1; x2� x � 2; : : : ; xpc� 1q�

xpc� 1q;
° c� 1

i � 0 x2i y;
° c� 1

i � 0 x2i � 1yu. The union of the disjoint setsB and BZ is a basis

for F2m D2n .

Case(2)n is odd. Write n � 2c � 1. By Lemma 2.3.8,ZpF2m D2nq is a pn� 3
2 q-

dimensional subspace ofF2m D2n with basis BZ � t 1; x � x � 1; x2 � x � 2; : : : ; xc �

x � c;
° 2c

i � 0 x i yu. Again, the disjoint union of B and BZ is a basis forF2m D2n .
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Write a � za �
° 3t n � 1

2 u
i � 1 ai bi , where za P ZpF2m D2nq, ai P F2m and bi P B, for

i � 1; 2; : : : ; 3t n� 1
2 u. dc � 0 if and only if c PZpF2m D2nq and so

da � dza �
3t n � 1

2 u¸

i � 1

dai bi �
3t n � 1

2 u¸

i � 1

dai bi :

Therefore the sett db | b P Bu spans the set of inner derivations ofF2m D2n . More-

over, if
° 3t n � 1

2 u
i � 1 dai bi � d0 then

° 3t n � 1
2 u

i � 1 ai bi PZpF2m D2nq which implies that ai � 0,

for i � 1; 2; : : : ; 3t n� 1
2 uand so the sett db | bPBu forms a basis for the vector space

of inner derivations ofF2m D2n .

The derivation problem asks whether every derivation fromL1pGq to M pGq

is inner, whereG is a locally compact group andM pGq is the multiplier algebra

of L1pGq. It was solved by Losert [34]. We can ask a similar question for �nite

group algebras. LetKG be a group algebra where bothK and G are �nite. Are

all derivations of KG inner? Theorems 2.3.11 and 2.3.13 show that the dimension

of DerpF2m D2nq is greater than the dimension of the inner derivations ofF2m D2n

and so not all derivations ofF2m D2n are inner. However does there exist an algebra

A • KG such that all derivations of KG become inner inA? Theorem 2.3.15

answers this question.

De�nition 2.3.14. [42] Let R be a ring and � a derivation of R. The ring

Rrx; � s �

#
n¸

i � 0

ai x i | n PN; ai PR

+

, where addition is performed componentwise

and multiplication satis�es the relation xa � ax � � paq, for all a P R is called a

di�erential polynomial ring .

Theorem 2.3.15. Let G be a �nite group andKG be the group algebra over the

�nite �eld K . Let Ad �
KG rx; ds
px2 � 1q

, whered PDerpKG q and px2 � 1q is the 2-sided

ideal of KG rx; ds generated byx2 � 1. Then all derivations d of KG are inner on

Ad.
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Proof. Let Dx be the inner derivation of Ad induced by x, that is Dx : Ad Ñ

Ad, de�ned by a ÞÑxa � ax. By the multiplication relation of Ad de�ned in

De�nition 2.3.14, xa � ax � ax � dpaq � ax � dpaq. Therefore the restriction ofDx

to KG is equal tod.

2.3.3 Applications to Coding Theory

Example 2.3.16. Let C24 � x x | x24 � 1y and let d: F2C24 Ñ F2C24 be the

derivation de�ned by x ÞÑ1� x � x3 � x4 � x5 � x7 � x9 � x12 (by Theorem 2.3.4 this

uniquely de�nes a derivation). Then by Lemma 2.2.1,dpx2nq � 0 and dpx2n� 1q �

x2ndpxq, for n P t0; 1; : : : ; 11u. The image of the group algebra under this derivation

is a binary code of length 24 and dimension 12. A generator matrixG24 of this

code is given in Figure 2.1.

Figure 2.1: Generator matrix of the binaryr24; 12; 8scode de�ned by the derivation
d.

G24 �

�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

1 1 0 1 1 1 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 0 1 1 1 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 0 1 1 1 0 1 0 1 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 0 1 1 1 0 1 0 1 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 0 1 1 1 0 1 0 1 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 0 1 0 1 0 0 1 0
1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 0 1 0 1 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 0 1 0 1
0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 0 1
0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1
1 1 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1
0 1 1 1 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1

�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Permuting the columns ofG24 using the permutation

p6; 19; 12; 10; 11; 22; 8; 21; 15; 16; 18; 9; 24; 13; 20qp7; 23; 17; 14q

and then transforming it to reduced row echelon form produces the matrix given

29



as the generator of the extended binary Golay code in [25]. So the image ofF2C24

under the derivation is equivalent to the extended binary Golayr24; 12; 8s code. It

has minimum distance 8 and is a doubly even and self dual extremal code.

Figure 2.2: The right hand block of a generator matrix of the binaryr48; 24; 12s
code de�ned by the derivation� .

A �

�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

1 0 0 1 0 0 0 1 1 1 0 0 0 1 0 0 1 1 0 1 1 0 0 1
0 1 1 0 0 1 1 0 1 1 0 0 1 0 0 0 1 1 1 0 0 0 1 0
0 1 0 0 0 0 1 0 1 0 1 1 1 0 0 1 1 1 0 1 0 1 0 0
1 0 0 0 1 0 0 0 0 1 1 1 0 1 1 0 1 1 1 0 0 0 0 1
0 0 0 1 0 0 0 0 1 0 1 0 1 1 1 0 0 1 1 1 0 1 0 1
0 1 0 0 0 1 0 0 1 1 0 1 0 1 0 1 0 1 0 1 1 0 1 0
0 1 1 0 0 0 1 0 1 1 1 0 0 0 1 1 0 1 1 1 1 1 1 1
1 0 0 0 0 0 0 0 1 1 1 1 0 0 0 1 1 0 0 0 1 1 1 1
1 1 1 0 1 1 1 1 1 0 1 1 0 1 0 0 1 1 1 0 0 1 0 0
1 1 0 1 0 1 1 1 0 0 1 1 0 0 0 0 0 1 0 1 1 0 0 0
0 0 1 1 1 0 1 1 1 1 1 0 1 1 0 1 0 0 1 1 1 0 0 1
0 0 1 1 0 1 0 1 1 1 0 0 1 1 0 0 0 0 0 1 0 1 1 0
0 1 1 0 1 0 0 0 0 0 1 1 0 0 1 1 1 0 1 0 1 1 0 0
1 0 0 1 1 1 0 0 1 0 1 1 0 1 1 1 1 1 0 1 1 1 0 0
0 0 0 1 1 0 1 0 0 0 0 0 1 1 0 0 1 1 1 0 1 0 1 1
0 0 1 0 0 1 1 1 0 0 1 0 1 1 0 1 1 1 1 1 0 1 1 1
1 1 1 1 0 0 0 1 1 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1
1 1 1 1 1 1 1 0 1 1 0 0 0 1 1 1 0 1 0 0 0 1 1 0
0 1 0 1 1 0 1 0 1 0 1 0 1 0 1 1 0 0 1 0 0 0 1 0
1 0 1 0 1 1 1 0 0 1 1 1 0 1 0 1 0 0 0 0 1 0 0 0
1 0 0 0 0 1 1 1 0 1 1 0 1 1 1 0 0 0 0 1 0 0 0 1
0 0 1 0 1 0 1 1 1 0 0 1 1 1 0 1 0 1 0 0 0 0 1 0
0 1 0 0 0 1 1 1 0 0 0 1 0 0 1 1 0 1 1 0 0 1 1 0
1 0 0 1 1 0 1 1 0 0 1 0 0 0 1 1 1 0 0 0 1 0 0 1

�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Example 2.3.17. Let C48 � x x | x48 � 1y and � : F2C48 Ñ F2C48 be the derivation

de�ned by

x ÞÑ1 � x24 � x27 � x31 � x32 � x33 � x37 � x40 � x41 � x43 � x44 � x47:

Again by Theorem 2.3.4 this uniquely de�nes a derivation ofF2C48. The image

of the group algebra under this derivation is a binaryr48; 24; 12s doubly even self
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dual code (veri�ed using GAP 4.8.6 [18]). It is equivalent to the extended binary

quadratic residue code of length 48 [26]. A generator matrix for this code is given

by the block matrix rI 24 | As, whereI 24 is the identity of the ring of 24� 24 matrices

over F2 and A is the matrix given in Figure 2.2.
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Chapter 3

Derivations of Modular Group

Algebras and Codes

In this chapter we examine the derivations of a modular group algebraKG and

briey discuss an application to the theory of error correcting codes. The ring

of constants,CpKG q is introduced. This subring ofKG will prove useful in this

and subsequent chapters. Necessary and su�cient conditions on a subgroupH of

G are given such that the augmentation ideal� pG; H q is a di�erential ideal. An

implication of this result is that, H being contained within the ring of constants is

a su�cient condition for the augmentation ideal � pG; H qto be a di�erential ideal.

It is shown in Theorem 3.1.18 that if� : R Ñ S is a ring isomorphism, then

� : DerpRq Ñ DerpSq de�ned by d ÞÑ� � d � � � 1 is an isomorphism of addi-

tive groups. If KG and KH are isomorphic asK -algebras, thenDerpKG q and

DerpKH q are isomorphic as Lie algebras. An ideal ofKG generated by constants

of KG is shown in Corollary 3.1.16 to be a di�erential ideal for all derivations of

KG .

Section 3.2 examines the modular group algebraF2D8. A basis for its deriva-

tion algebra is given and those derivations that are inner are identi�ed. Table 3.1
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combined with Lemma 3.2.22 gives all conjugates of elements ofD8 by units of

F2D8. Summing these gives the conjugates of all elements ofF2D8 by units of

F2D8. The ideals of F2D8 are shown in Figure 3.1 and for speci�c ideals, the

derivations that map the ideal to itself are identi�ed. A presentation of the unit

group of F2D8 is also given.

The existence of an algebraA such that outer derivations ofKG become inner

on A, is discussed briey in Section 3.3. It is shown in Lemma 3.3.3 that no outer

derivation of KH becomes inner inKG , where H is a subgroup ofG. A list of

theorems from linear algebra that are used in the subsequent section and chapters

is given in Section 3.4. The �nal section of this chapter looks at generating error

correcting codes from derivations of modular group algebras.

3.1 Derivations, Ideals and Homomorphisms

De�nition 3.1.1. Let R be a ring andH a subgroup of a groupG. The augmen-

tation ideal denoted by� RpG; H q or � pG; H q is the left ideal ofRG generated by

the set t h � 1 | h P H u. That is, � RpG; H q �
" ¸

hPH

� hph � 1q | � h P RG
*

.

� pG; Gq is denoted by� pGq.

Lemma 3.1.2. [40] Let S be a set of generators of a subgroupH of a group G.

Then, the sett s� 1 | s PSu is a set of generators of� pG; H qas a left ideal ofRG.

De�nition 3.1.3. Denote by T � t qi | i P I u a complete set of representatives of

left cosets ofH in G. The identity element is always chosen as the representative

of H .

Proposition 3.1.4. [40] Let R be a ring andH a subgroup of a groupG. Then

the setBH � t qph � 1q |q PT ; h PH; h � 1u is a basis of� RpG; H q over R.
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Lemma 3.1.5. [40] Let R be a ring and letH be a subgroup of a groupG. Then

the ideal � pG; H q is a two-sided ideal ofRG if and only if H is a normal subgroup

of G.

Proposition 3.1.6. [40] Let H be a normal subgroup of a groupG. Then

1. The canonical group homomorphism : G Ñ G{H can be extended to an

epimorphism : RG Ñ RpG{H q such that 
� ¸

gPG

agg



�
¸

gPG

ag pgq

2. kerp q � � pG; H q

3.
RG

� pG; H q
� RpG{H q

De�nition 3.1.7. A di�erential ring is a unital ring R together with a distin-

guished derivationd of R, and is denoted by the pairpR; dq.

De�nition 3.1.8. Let pA; dqbe a di�erential ring. Then a (left / right / two-sided)

ideal I of A is a di�erential ideal of pA; dq, if dpaq PI , for all a P I , i.e. dpI q € I .

Also, I is a di�erential (left / right / two-sided) ideal of A, if dpI q € I , for all

d PDerpAq.

Lemma 3.1.9. Let I be a di�erential two-sided ideal of a di�erential ring pA; dq.

Then d: A{I Ñ A{I de�ned by dpa � I q � dpaq � I is a derivation of A{I and is

independent of the choice of representative in the coset.

De�nition 3.1.10. Let pA; dqand pB; dqbe di�erential rings. A di�erential homo-

morphism � from pA; dq to pB; dq is a ring homomorphism which commutes with

the derivations. That is, � � d � d � � .

Lemma 3.1.11. Let I be a di�erential two-sided ideal of a ringA. Then the

homomorphism� : A Ñ A{I de�ned by a ÞÑa � I is a di�erential homomorphism

from pA; dq to pA{I; dq for all d PDerpAq.
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Proof. Let d P DerpAq and let d: A{I Ñ A{I be de�ned by dpa � I q � dpaq � I ,

wherea PA. Then by Lemma 3.1.9,d PDerpA{I q and

pd � � qa � dpa � I q � dpaq � I � p � � dqpaq:

Lemma 3.1.12. Let I and I a both be (left / right / two-sided) ideals of a �nite

unital ring R such that I a is the principal ideal generated by the elementa and

I a € I . Then for any d PDerpRq, dpI aq € I if and only if dpaq PI .

Proof. Let d P DerpRq. Assume that dpI aq € I . Then dpaq P I since a P I a.

Conversely, assume thatdpaq P I . Let � P I a and write � �
° n

i � 1 r i asi where

r i ; si PR, for i � 1; 2; : : : ; n and n is a positive integer. Then

dp� q �
n¸

i � 1

dpr i asi q �
n¸

i � 1

�
dpr i qasi � r i dpaqsi � r i adpsi q

�
:

If I a and I are left ideals, then it can be assumed thatsi � 1 and sodpsi q � 0.

Also, dpr i qa P I , sincea P I a € I and r i dpaq PI , since it is assumed thatdpaq PI .

Therefore dp� q �
n¸

i � 1

�
dpr i qa � r i dpaq

�
P I , since it is a sum of elements ofI .

Likewise, if I a and I are right ideals, then then it can be assumed thatr i � 1.

Also, adpsi q PI and dpaqsi P I and sodp� q �
n¸

i � 1

�
dpaqsi � adpsi q

�
P I . Finally,

if I a and I are two-sided ideals, thendp� q PI , sincedpr i qasi ; r i dpaqsi and r i adpsi q

are all in I . Therefore in each casedp� q PI and sodpI aq € I .

Lemma 3.1.13. Let I be the (left / right / two-sided) ideal of a �nite unital ring

R generated by the elementsa1; a2; : : : ; an . Then dpI q € I if and only if dpaj q PI

for all j � 1; 2; : : : ; n.

Proof. Let I aj be the principal ideal ofR generated byaj with the same sidedness

as I . Then I � I a1 � I a2 � � � � � I an . Assume thatdpI q € I . For all j � 1; 2; : : : ; n,

aj P I and sodpaj q PI . Conversely, assume thatdpaj q PI for all j � 1; 2; : : : ; n.
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Then dpI aj q € I , for all j by Lemma 3.1.12. Let� P I and write � �
° n

j � 1 � j ,

where� j PI aj . Then dp� j q PI for all j � 1; 2; : : : ; n and so

dp� q � d

�
n¸

j � 1

� j

�

�
n¸

j � 1

dp� j q PI:

Corollary 3.1.14. Let H be a subgroup of a �nite groupG, let K be a �nite �eld

and let d PDerpKG q. Then � pG; H q is a di�erential ideal of pKG; dq if and only

if dpH q € � pG; H q.

Proof. Let d P DerpKG q. � pG; H q is a left ideal of KG generated by the set

t h � 1 | h P H u. Therefore by Lemma 3.1.13,� pG; H q is a di�erential ideal of

pKG; dq if and only if dph � 1q � dphq P� pG; H q, for all h PH .

De�nition 3.1.15. Let d be a derivation of a unital ringR and let � be a subset

of DerpRq. Then the subring ofR de�ned by C� � t c PR | dpcq � 0 for all d P � u

is called thering of constants of� . If � is a set with one elementd then C� will

be denoted byCd and if � � DerpRq then C� will be denoted byCpRqand is then

called the ring of constants ofR.

Corollary 3.1.16. Let K be a �nite �eld and let G be a �nite group. Let I be a

(left / right / two-sided) ideal of KG generated by a subset of the ring of constants,

CpKG q. Then I is a di�erential ideal of KG .

Proof. Let I be a (left / right / two-sided) ideal of KG generated byC € CpKG q.

The dpCq � 0 P I , for all d P DerpKG q. ThereforeI is a di�erential ideal of KG ,

by Lemma 3.1.13.

Corollary 3.1.17. Let G be a �nite group and letK be a �nite �eld. Let H be a

subgroup ofG such thatH € CpKG q, the ring of constants ofKG . Then � pG; H q

is a di�erential ideal of KG .
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Proof. � pG; H q is a left ideal of KG generated by the sett h � 1 | h P H u. The

result now follows by Corollary 3.1.16.

Theorem 3.1.18. Let R and S be rings and let� : R Ñ S be a ring isomorphism.

Let � : DerpRq Ñ DerpSqbe de�ned byd ÞÑ� � d� � � 1. Then � is an isomorphism

of additive groups.

Proof. Let d P DerpRq. � pdq � � � d � � � 1 is an additive map since it is the

composition of additive maps. Let�; � PR and let a � � p� q and b � � p� q. Then

� pdqpabq � � � d � � � 1pabq � �
�
dp�� q

�
� �

�
dp� q� � �d p� q

�

� �
�
dp� q�

�
� �

�
�d p� q

�
� �

�
dp� q

�
� p� q � � p� q�

�
dp� q

�

� �
�
dp� q

�
b� a�

�
dp� q

�
� � pdqpaqb� a� pdqpbq:

Therefore, � pdq satis�es Equations 2.1 and 2.2 and so is a derivation ofS. The

map � � 1 : DerpSq Ñ DerpRq de�ned by D ÞÑ� � 1 � D � � is a two-sided inverse of

� and so� is a bijection. Let d1 PDerpRq. Then

� pd � d1qp� q � � pd � d1qpaq � � pdpaq � d1paqq

� � pdpaqq � � pd1paqq � � pdqp� q � � pd1qp� q:

Therefore� preserves the additive group structure ofDerpRqand so is an additive

group isomorphism.

Lemma 3.1.19. Let p be a prime number, letFp be the �eld with p elements and

let K be a �nite �eld of characteristic p. Let G and H be �nite p-groups and let

� : KG Ñ KH be a ring isomorphism. Then� is an Fp-algebra isomorphism.

Proof. � is a ring isomorphism and so is bijective. Let� be an arbitrary element

of KH and let a � � � 1p� q. Denote the multiplicative identity of KG and KH as

37



eG and eH respectively. Then

� peGq� � � peGaq � � paq � � paeGq � �� peGq:

Therefore� peGq � eH . Also for any k PFp

� pkeGq �
k¸

i � 1

� peGq �
k¸

i � 1

eH � keH :

Therefore � pkeGaq � � pkeGq� paq � keH � paq � k� paq and so � is an Fp-linear

map.

Theorem 3.1.20. Let � : R Ñ S be aK -algebra isomorphism. Then� : DerpRq Ñ

DerpSq, de�ned by d ÞÑ� � d � � � 1 is a Lie algebra isomorphism.

Proof. Let d; D P DerpRq and let k P K . By Theorem 3.1.18,� pdq is a derivation

of S and � is an additive map. Therefore

� pkdq � � � kd � � � 1 � k� � d � � � 1 � k� pdq;

r� pdq; � pDqs � r � � d � � � 1; � � D � � � 1s � � � d � D � � � 1 � � � D � d � � � 1

� � � r d; Ds � � � 1 � � prd; Dsq:

Therefore� is a lie algebra homomorphism.� is a bijection by Theorem 3.1.18.

Theorem 3.1.21. Let I be a di�erential two-sided ideal of a unital ringR and

let d P DerpRq. Let d: R{I Ñ R{I be de�ned bydpa � I q � dpaq � I . Then

� : DerpRq Ñ DerpR{I q de�ned by d ÞÑd is a Lie algebra homomorphism.

Proof. d P DerpR{I q for all d P DerpRq by Lemma 3.1.9. The homomorphism

� : R Ñ R{I de�ned by a ÞÑa � I is di�erential by Lemma 3.1.11. Let d; D P
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DerpRq, let k PK and let a PR. Then

� pd � Dqpa � I q � p d � Dqpaq � I � dpaq � I � Dpaq � I

� � pdqpa � I q � � pDqpa � I q;

� pkdqpa � I q � kdpaq � I � kpdpaq � I q � k� pdqpa � I q; and

r� pdq; � pDqspa � I q � � pdqp� pDqpa � I qq � � pDqp� pdqpa � I qq

� � pdqpDpaq � I q � � pDqpdpaq � I qq

� dDpaq � I � Ddpaq � I

� r d; Dspaq � I � � prd; Dsqpa � I q:

Therefore� is a Lie algebra homomorphism.

Corollary 3.1.22. Let K be a �nite �eld and let N be a normal subgroup of

a �nite group G such that dpN q € I � � pG; N q for all d P DerpKG q. Then

� : DerpKG q Ñ DerpKG {I q de�ned by d ÞÑd is a Lie algebra homomorphism.

Proof. I is a two-sided ideal ofKG by Lemma 3.1.5 and is a di�erential ideal for

all d PDerpKG qby Corollary 3.1.14. Therefore� is a Lie algebra homomorphism

by Theorem 3.1.21.

3.2 An Example: F2D 8

Let D8 be the dihedral group of order 8 with presentation

D8 � x x; y | y2 � x4 � p xyq2 � 1y.

Let x̂ � 1 � x � x2 � x3.

Remark 3.2.1. The group algebraF2D8 is purely modular in the sense that it has

no nontrivial idempotents. This is a consequence of the following theorem and the

fact that jD8j � 23.
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Theorem 3.2.2. [48, pp. 378] If RG is the group ring of a �nite group over a

commutative unital ring R such that every prime divisor of the order ofG is a

non-unit of R and R has no nontrivial idempotents thenRG has no nontrivial

idempotents.

Remark 3.2.3. The conjugacy classes ofD8 are: t 1u, t x2u, t x; x3u, t y; x2yu,

t xy; x3yu. Note that conjugation either �xes an element ofD8 or it multiplies it

by x2.

Remark 3.2.4. Letting n � 4 in Lemma 2.3.8 implies the setBZ � t 1; x2; xp1�

x2q; p1 � x2qy; xp1 � x2qyu, is a basis forZpF2D8q, the centre ofF2D8.

Lemma 3.2.5. Let I be the two-sided ideal generated by the element1 � x2 of

F2D8. Then I � � pD8; xx2yqand is a central nilpotent ideal of index 2 with the set

tp1 � x2q; xp1 � x2q; yp1 � x2q; xyp1 � x2quas a basis.

Proof. p1 � x2q is central and so by De�nition 3.1.1, I � � pD8; xx2yq. T �

t 1; x; y; xyu is a complete set of representatives of left cosets ofxx2y in D8.

By Proposition 3.1.4,B � tp 1 � x2q; xp1 � x2q; p1 � x2qy; xp1 � x2qyu is a basis

for � pD8; xx2yq. For any b P B, b P ZpF2D8q such that b2 � 0 and so� pD8; xx2yq

is a central nilpotent ideal of index 2.

Lemma 3.2.6. [38, pp.114] LetG be a group andK a �eld.

1. If F is an extension �eld ofK , then ZpFGq � F b K ZpKG q

2. If R is a subring ofK and if M is a maximal ideal ofR, then under the natural

homomorphismRG Ñ pR{M qG the centreZpRGq maps ontoZppR{M qGq.

De�nition 3.2.7. Let A be a subset of a ringR. The centraliser of A in R,

denotedCpA; Rq is t r PR | ra � ar; @a PAu.
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Remark 3.2.8. By letting n � 4 in Lemma 2.3.9 we get the following bases for

Cpy;F2D8q and Cpxy; F2D8q respectively:

Bepyq � t 1; x2; y; x2y; px � x3q; px � x3qyu (3.1)

Bepxyq � t 1; x2; xy; x3y; px � x3q; p1 � x2qyu: (3.2)

Remark 3.2.9. Bepyq contains units and sodim
�
Cpy;F2D8q X � pD8q

�
¤ 5. Let

B � t 1� x2; 1� y; 1� x2y; px � x3q; px � x3qyu and let ci PF2 for i P t0; 1; 2; 3; 4u.

Then

0 � c0p1 � x2q � c1p1 � yq � c2p1 � x2yq � c3px � x3q � c4px � x3qy

� p c0 � c1 � c2q1 � c0x2 � c1y � c2x2y � c3px � x3q � c4px � x3qy:

Thus ci � 0, for i P t0; 1; 2; 3; 4usinceBepyqis a linearly independent set. Therefore

B is also a linearly independent set. Each element ofB commutes with y and has

augmentation 0. Thus theF2-span ofB is a 5-dimensional subspace contained in

Cpy;F2D8q X � pD8q. ThereforeB is a basis forCpy;F2D8q X � pD8q.

Likewise the sett 1 � x2; 1 � xy; 1 � x3y; px � x3q; p1 � x2qyu is a basis for

Cpxy; F2D8q X � pD8q.

3.2.1 Derivations

Let x1 and y1 denote respectively the image ofx and y under a given derivation.

Letting n � 4 in Theorem 2.3.11 gives the following basis forDerpF2D8q of size

12:

B � t dx1;y1 | px1; y1q P tp�y; 0q; px!y; ! q | � PBepxyq; ! PBepyquu; (3.3)

Remark 3.2.10. Let d P DerpF2D8q. Then d is a linear combination of elements
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of B in Equation (3.3). Therefore an element� of Cpxy; F2D8q and an element


of Cpy;F2D8q de�nes the derivation d by dpxq � p � � x
 qy and dpyq � 
 .

Remark 3.2.11. Write x1 �
3¸

i � 0

1¸

j � 0

ai;j x i yj and y1 �
3¸

i � 0

1¸

j � 0

bi;j x i yj . Then by

Equations (3.1) - (3.3):

1. b1;0 � b3;0 and b1;1 � b3;1

2. a0;0 � a2;0 and a3;1 � a1;1 � b0;0 � b2;0.

Remark 3.2.12. By Theorem 2.3.4, there are 216 derivations of the commutative

group algebraF2pC4 � C2q, whereCn denotes the cyclic group of ordern.

Lemma 3.2.13. Let D8 � x x; y | y2 � x4 � p xyq2 � 1y and let d P DerpF2D8q.

Write x1 � dpxq � a � by wherea; bP F2xxy. Then x1 and x commute if and only

if b is an element of the idealp1 � x2q of F2xxy.

Proof. Write x1 � dpxq � a � by wherea; bPF2xxy. Then

x1x � xx 1 � ax � byx � xa � xby � ax � ax � bx3y � bxy � bxp1 � x2qy:

Therefore, x1 and x commute if and only if b P Annp1 � x2q in F2xxy. Con-

sidering the group algebraF2xxy, the ideal p1 � x2q € Annp1 � x2q, since 1� x2 is

central and p1� x2q2 � 0. Conversely, letc � c0 � c1x � c2x2 � c3x3 PAnnp1� x2q.

Then

0 � p 1 � x2qpc0 � c1x � c2x2 � c3x3q � p c0 � c2qp1 � x2q � p c1 � c3qxp1 � x2q:

That is, c0 � c2 and c1 � c3 and soc � p c0 � c1xqp1� x2q. Therefore,Annp1� x2q €

p1 � x2q and soAnnp1 � x2q � p 1 � x2q. Thus, x1 and x commute if and only if b

is in the ideal p1 � x2q of F2xxy.
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The following basis for the vector space of inner derivations ofF2D8 is provided

by letting n � 4 in Theorem 2.3.13:

 
db | bP tx; y; xyu

(
: (3.4)

3.2.2 Conjugation by Units

Remark 3.2.14. [42, pp.71] Replacing the usual multiplication of an associative

algebraA by the Lie commutator ra1; a2s yields a nonassociative algebra which is

a Lie algebra.

De�nition 3.2.15. Let D denote the Lie algebra ofF2D8 formed by de�ning

ra; bs � ab� ba, for all a; bP F2D8. Also, denote byD1 � r F2D8; F2D8s the set of

all Lie commutators of elements ofF2D8.

Remark 3.2.16. By Remark 3.2.3, group conjugation inD8 either �xes an element

of D8 or it multiplies it by x2. For any g; h PD8, rg; hs � gh � hg � hpgh � gq � 0

or hgp1 � x2q. The Lie bracket is bilinear and soD1 is contained in p1 � x2q �

� pD8; xx2yq, which by Lemma 3.2.5 is a central nilpotent ideal of index 2.

We will now consider conjugation of an element ofF2D8 by units of F2D8.

De�nition 3.2.17. Let u be a unit of a group algebraKG and a an element of

KG . Then the conjugation of a by u, is the elementu� 1au and is denoted byau.

Lemma 3.2.18. a2 is central for any elementa of F2D8.

Proof. Write a �
° 8

i � 1 ai gi , whereai PF2 and gi PD8. Then

a2 �

�
8¸

i � 1

ai gi

� �
8¸

j � 1

aj gj

�

�
8¸

i;j � 1

ai aj gi gj �
¸

i   j

ai aj pgi gj � gj gi q �
¸

i � j

a2
i g2

i :
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These last 2 sums are central elements since

¸

i   j

ai aj pgi gj � gj gi q �
¸

i   j

ai aj rgi ; gj s P� pD8; xx2yq € ZpF2D8q; by Remark 3.2.16

and g2
i P t1; x2u € ZpF2D8q:

Therefore,a2 is the sum of 2 central elements and so is itself central.

Remark 3.2.19. The units of F2D8 are the elements of augmentation 1.

Lemma 3.2.20. Let u be a unit ofF2D8. Then u� 1 � u� z wherez P � pD8; xx2yq.

Proof. Write u� 1 � u � z, for somez PF2D8. Then 1 � upu � zq � u2 � uz and so

uz � u2 � 1. We know that u2 is central by Lemma 3.2.18 and has augmentation 1.

By Remark 3.2.4 the setBZ � t 1; x2; xp1� x2q; p1� x2qy; xp1� x2qyu, is a basis for

ZpF2D8q, the centre ofF2D8. Therefore, by Lemma 3.2.5 we can writeu2 � e � i ,

where e � 1 or x2 (e � 1 � x2, since it has augmentation 1) andi P � pD8; xx2yq.

This implies that 1� u2 � i or p1� x2q � i and souz � 1� u2 P� pD8; xx2yq. Thus,

z P � pD8; xx2yqsinceu is a unit.

Lemma 3.2.21. Let u be a unit ofF2D8 and i P � pD8; xx2yq. Then, u � i is also

a unit of F2D8 and pu � iq� 1 � u� 1 � i .

Proof. Let � : F2D8 Ñ F2 be the augmentation map. Then� pu � iq � � puq � � piq �

1 � 0 � 1. Thereforeu � i is a unit. By Lemma 3.2.20,u� 1 � u � z for some

z P� pD8; xx2yqand so

pu � iqpu� 1 � iq � uu� 1 � ui � iu � 1 � i 2 � 1 � ui � ipu � zq � 0 � 1 � r u; is � iz:

However, i � r p1 � x2q for some r P F2D8 (by Lemma 3.2.5) and soru; is �

p1� x2qru; r s � 0 by Remark 3.2.16. Alsoiz � 0, since� pD8; xx2yq2 � 0. Therefore

u� 1 � i is the inverse of the unitu � i .
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Lemma 3.2.22. Let u be a unit ofF2D8 and i P � pD8; xx2yq. Then au� i � au, for

all a PF2D8.

Proof. Let g be an element ofD8. Then,

gu� i � p u � iq� 1gpu � iq � p u� 1 � iqpgu � giq � u� 1gu � u� 1gi � igu � igi:

Write u� 1 � u � z, for somez P� pD8; xx2yqand i � r p1 � x2q for somer PF2D8.

u� 1gi � igu � ugi � zgi � igu � p 1 � x2qpugr � rguq

sincezgi � 0 as both z and i are in � pD8; xx2yq. Write r � r c � rn , where r c is

the sum of elements in the support ofr that commute with g and rn is the sum of

elements in the support ofr that do not commute with g. Then

p1 � x2qpugr � rguq � p 1 � x2qpugrc � r cguq � p 1 � x2qpugrn � rnguq

� p 1 � x2qpugrc � grcuq � p 1 � x2qpugrn � x2grnuq

� p 1 � x2qpugrc � grcu � ugrn � grnuq

� p 1 � x2qpru; grcs � r u; grnsq � 0;

by Remark 3.2.16. Moreover,igi � 0 as � pD8; xx2yq2 � 0. Therefore,gu� i � gu,

for any i P � pD8; xx2yq.

Write a �
° 8

j � 1 ai gi , whereai PF2 and gi PD8. Then

au� i �
8¸

j � 1

ai gu� i
i �

8¸

j � 1

ai gu
i � au:
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De�nition 3.2.23. De�ne

U{I � t 1; x; y; xy; 1 � x � y; 1 � x � xy; 1 � y � xy; x � y � xy u:

Then U{I is a set of representatives of the units ofF2D8 mod the ideal I �

� pD8; xx2yq, sinceF2D8{ � pD8; xx2yq � F2pD8{xx2yqby Proposition 3.1.6.

Table 3.1 lists the image of the elements ofD8 under conjugation by the units

of U{I . In the table � is the element 1� x2.

Remark 3.2.24. Table 3.1 combined with Lemma 3.2.22 gives all conjugates of

elements ofD8 by units of F2D8. Partial sums of the entries in each row of Table 3.1

give all conjugates of elements ofF2D8 by units of F2D8. Therefore there are 8

inner automorphisms ofF2D8. The exponent of the inner automorphism group of

F2D8 is 2. This has also been veri�ed using GAP [18] and can also be calculated

using Table 3.1. Therefore the inner automorphism group ofF2D8 is C3
2 .
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Example 3.2.25 uses Table 3.1 to compute the conjugation of an element of

F2D8 by a unit of F2D8.

Example 3.2.25. let a � 1 � x2y � x3y; v � x � x2 � y and u � 1 � x � y be

elements ofF2D8. Then v � u � 1� x2 and so by Lemma 3.2.22av � au. Therefore

using Table 3.1

av � au � 1u � p x2yqu � p x3yqu � 1 � y � p 1 � x2qpx � xyq � x3y � p 1 � x2qpx � yq

� 1 � y � x3y � p 1 � x2qpy � xyq � 1 � xy � x2y:

Lemma 3.2.26. Let z be a central element of a unital ringR and let d PDerpRq.

Then dpzq is also be central inR.

Proof. Let a PR and let z be any central element ofR. Then

dpaqz � adpzq � dpazq � dpzaq � dpzqa � zdpaq � dpzqa � dpaqz:

Therefore, dpaqz � adpzq � dpzqa � dpaqz and subtracting dpaqz from both sides

givesadpzq � dpzqa.

3.2.3 The Ideals of F2D 8

De�nition 3.2.27. Let RG be a group ring. Denote byĜ the group ring element

de�ned by Ĝ �
°

gPG g.

De�nition 3.2.28. Let S and T be sets of elements of the group ringRG. De�ne

pS; Tq � tp s; tq |s PS and t PTu.

De�nition 3.2.29. Let R be a a �nite ring. Then a two sided idealI of R generated

by the subsetA € R is the set all �nite sums of the formras, wherer; s; P R and

a PA.

48



Remark 3.2.30. Let � P F2xxy. Consider � as an element ofF2D8. Then � P

� pD8; xx2yqif and only if suppp� q contains an even number of both even and odd

powers ofx.

De�nition 3.2.31. De�ne b � 1 � p 1 � xqp1 � yq.

Lemma 3.2.32. The set t 1 � b; 1 � x2; xp1 � x2q; yp1 � x2q; yxp1 � x2quis a

basis for the two-sided idealI � p 1 � bq � � pD8; xx2yqof F2D8.

Proof. It is �rst shown that p1 � gqp1 � bq P� pD8; xx2yqfor all g PD8. Let g � x i

for i P t0; 1; 2; 3u. Then

p1 � gqp1 � bq � p 1 � x i qp1 � xqp1 � yq � p 1 � x � x i � x i � 1qp1 � yq P� pD8; xx2yq;

by Remark 3.2.30. Letg � x i y for i P t0; 1; 2; 3u. Then

p1 � gqp1 � bq � p 1 � x i yqp1 � x � y � xyq

� 1 � x � y � xy � x i y � x i � 1y � x i � x i � 1

� p 1 � x � x i � x i � 1qp1 � yq P� pD8; xx2yq; by Remark 3.2.30:

Thereforep1� gqp1� bq P� pD8; xx2yq, for all g PD8 and sogp1� bq � p 1� bq � z1,

wherez1 P � pD8; xx2yq. Also, p1 � bqp1 � gq � p 1 � gqp1 � bq � r 1 � b;1 � gs and

so p1 � bqp1 � gq P� pD8; xx2yq, by Remark 3.2.16. Thusp1 � bqg � p 1 � bq � z2,

wherez2 P� pD8; xx2yq. By Lemma 3.2.5, the setB � tp 1 � x2q; xp1 � x2q; yp1 �

x2q; yxp1 � x2quis a basis for� pD8; xx2yq. Thus the principal ideal generated by

1 � b is contained in theF2-linear span oft 1 � bu
”

B . Thereforet 1 � bu
”

B is a

basis forI � p 1 � bq � � pD8; xx2yq.

Remark 3.2.33. By Proposition 3.1.4,B1 � t 1 � x; 1 � x2; 1 � x3; 1 � y; 1 �

xy; 1� x2y; 1� x3yu is a basis for� pD8q. Let P be the invertible matrix shown in
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Equation (3.5). Then multiplication by P � 1 changes the basis for� pD8q from B1

to B2, whereB2 � t 1� xy; 1� y; 1� b; 1� x2; xp1� x2q; yp1� x2q; xyp1� x2qu.

P �

�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

0 0 1 0 1 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 1 1 0 0 1 0

1 0 1 0 0 0 1

0 0 0 0 0 1 0

0 0 0 0 0 0 1

�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

and P � 1 �

�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

1 0 1 0 1 0 1

1 0 1 1 0 1 0

1 0 1 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

: (3.5)

De�nition 3.2.34. The classical involution of KG , denoted byf is a map from

KG to KG de�ned by p
°

gPG aggqf ÞÑ
°

gPG agg� 1.

Lemma 3.2.35. The sett 1� y; 1� b; p1� x2q; xp1� x2q; yp1� x2q; xyp1� x2qu

is a basis for the two-sided idealI � p 1 � yq of F2D8.

Proof. p1 � xqp1 � yq � 1 � b and x3p1 � yqxy � 1 � y � 1 � x2. Therefore the

5-dimensional idealp1 � bq � � pD8; xx2yq is contained in the idealp1 � yq. If

1 � y P p1 � bq � � pD8; xx2yq, then y � b � z, where z P ZpF2D8q. This is a

contradiction sincey � b � x � xy RZpF2D8qand so 1� y R p1 � bq � � pD8; xx2yq.

It is now shown that 1� x R p1 � yq and so the dimension ofp1 � yq is 6.

Assume by way of contradiction that 1� x P p1 � yq. Note that for r1; r2 P

F2xxy; pr1 � r2yqp1 � yq � p r1 � r2qp1 � yq. Let r; s; t PF2xxy. Then

rp1 � yqps � tyq � rps � ty � sf y � t f q � rps � t f q � rpsf � tqy:

Therefore elements of the idealp1� yqare sums of elements of the formrps� t f q �
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r psf � tqy. Thus for some nonnegative integern

1 � x � 0y �
n¸

i � 0

r i psi � t f
i q �

n¸

i � 0

r i psf
i � t i qy

�
n¸

i � 0

r i psi � t f
i � sf

i � t i q; since
n¸

i � 0

r i psf
i � t i q � 0:

However, � � � f P � pD8; xx2yqfor all � P F2D8. Therefore 1� x P � pD8; xx2yq.

This is a contradiction by Lemma 3.2.5 and so 1� x R p1 � yq.

By Remark 3.2.33,� pD8qis a 7-dimensional ideal with basisB2 � t 1� xy; 1�

y; 1� b; 1� x2; xp1� x2q; yp1� x2q; xyp1� x2qu. Thereforep1� yqis a 6-dimensional

ideal with basist 1 � y; 1 � b; 1 � x2; xp1 � x2q; yp1 � x2q; xyp1 � x2qu.

Remark 3.2.36. All Ideals of F2D8 are �nitely generated.

Lemma 3.2.37. � pD8; xx2yqis a di�erential two-sided ideal of F2D8.

Proof. xx2y is a normal subgroup ofD8 and so� pD8; xx2yqis a two-sided ideal of

F2D8 by Lemma 3.1.5. Letd PDerpF2D8q. Then by Lemma 3.1.13,� pD8; xx2yq �

p1 � x2q is a di�erential ideal of pF2D8; dq if and only if dp1 � x2q P� pD8; xx2yq.

However,dp1� x2q � dpx2q � r dpxq; xs P� pD8; xx2yqby Remark 3.2.16. Therefore,

� pD8; xx2yqis a di�erential ideal of pF2D8; dq for all derivations d on F2D8.

Corollary 3.2.38. Let d P DerpF2D8q and let I � � pD8; xx2yq. De�ne d :

F2D8{I Ñ F2D8{I by dpa � I q � dpaq � I . Then � : DerpF2D8q Ñ DerpF2D8{I q

de�ned by d ÞÑd is a Lie algebra homomorphism.

Proof. I is a di�erential two-sided ideal ofF2D8 by Lemma 3.2.37. The result now

follows from Theorem 3.1.21.

Remark 3.2.39. Let � : DerpF2D8q Ñ DerpF2D8{I qbe the map de�ned in Corol-

lary 3.2.38. By Remark 3.2.10,d P DerpF2D8q is de�ned by an element � P

Cpxy; F2D8qand an element
 PCpy;F2D8q. Thus by the Leibniz rule,dpF2D8q €
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I if and only if dpyq � 
 P I and dpxq � p � � x
 qy P I . Therefored is in the kernel

of � if and only if 
 P I and � P I . By Lemma 3.2.5,I is a 4-dimensional ideal of

F2D8. Therefore the kernel of� is an 8-dimensional vector space and so the image of

� is a 4-dimensional vector space since by Theorem 2.3.11,dimpDerpF2D8qq � 12.

By Proposition 3.1.6,F2D8{I � F2pD8{xx2yq � F2pC2 � C2q and soDerpF2D8{I q

is an 8-dimensional vector space by Theorem 2.3.4. Therefore� is not onto.

Lemma 3.2.40. Let I be the two-sided ideal ofF2D8 generated by the element

1� y. Then I is a di�erential ideal of pF2D8; dq if and only if dpyq PI . Also, there

are 211 derivations d of F2D8 such thatI is a di�erential ideal of pF2D8; dq.

Proof. Let d be the derivation of F2D8 de�ned by � P Cpxy; F2D8q and 
 P

Cpy;F2D8q. By Lemma 3.1.13,I is a di�erential ideal of pF2D8; dq if and only if

dp1 � yq � dpyq � 
 P I and so
 P I X Cpy;F2D8q.

By Remark 3.2.8,Bepyq � t 1; x2; y; x2y; px � x3q; px � x3qyu is a basis for

Cpy;F2D8q. The set B � t 1; 1 � x2; 1 � y; 1 � x2y; px � x3q; px � x3qyu is also

a basis forCpy;F2D8q, sincespanpBq � spanpBepyqqand B also has size 6. 1RI

but the other elements ofB are in I by Lemma 3.2.35 and soCpy;F2D8q X I is a

5-dimensional subspace ofF2D8.

Therefore � can be any element ofCpxy; F2D8q, which by Remark 3.2.8 is a

6-dimensional subspace ofF2D8. Also, 
 can be any element ofCpy;F2D8q X I

which is a 5-dimensional subspace ofF2D8. Thus there are 211 derivations ofF2D8

that correspond to I being a di�erential ideal.

Remark 3.2.41. By Proposition 3.1.4, the sett 1 � x; 1 � x2; 1 � x3; yp1 �

xq; yp1 � x2q; yp1 � x3quis a basis for the ideal� pD8; xxyq. Let r P F2xxy. Then

p1 � xqry � ry � ryx 3 � ryp1 � x3q and so� pD8; xxyqis in fact a two-sided ideal

of F2D8 of dimension 6.
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Lemma 3.2.42. There are 210 derivations d of F2D8 such thatp1 � xq is a di�er-

ential ideal of pF2D8; dq.

Proof. Let d be the derivation of F2D8 de�ned by � P Cpxy; F2D8q and 
 P

Cpy;F2D8q. Let I � p 1 � xq. Then by Lemma 3.1.13,dpI q € I if and only if

dp1 � xq � dpxq � p � � x
 qy P I .

Assume that I is a di�erential ideal with respect to d and sop� � x
 q PI .


 PCpy;F2D8qand so by Remark 3.2.8,x
 � w0x � w1x3 � w2xy � w3x3y� w4p1�

x2q � w5p1 � x2qy, for somewi PF2. Let � � w0 � w1p1 � x � x3q � w2xy � w3x3y.

By Remark 3.2.8, the setBepxyq � t 1; x2; xy; x3y; px � x3q; p1 � x2qyu is a

basis forCpxy; F2D8q. Therefore � P Cpxy; F2D8q. Also, � � x
 � p w0 � w1qp1 �

xq � w4p1 � x2q � w5p1 � x2qy and so is an element ofI . Let z � � � � . Then

p� � x
 q � p z � � � x
 q PI and soz PCpxy; F2D8qXI . Therefore for any element


 of Cpy;F2D8q, � � � � z, wherez PCpxy; F2D8q X I .

It is now shown that Cpxy; F2D8q X I � � pD8; xx2yq. By Remark 3.2.9,t 1 �

x2; 1 � xy; 1 � x3y; px � x3q; p1 � x2qyu is a basis forCpxy; F2D8q X � pD8q.

Assume by way of contradiction that 1� xy P I . Then 1� x �p 1� xyqx � 1� y P I

and so p1 � yq € I . Appending 1� xy to the basis given in Lemma 3.2.35 for

p1 � yq gives the basisB2 given for � pD8q in Remark 3.2.33. ThereforeI �

� pD8q and so by Remark 3.2.41, 6� dimpI q � dimp� pD8qq � 7, a contradiction.

Therefore 1� xy RI and so the dimension ofCpxy; F2D8q XI is less than 5 and so

Cpxy; F2D8q X I � � pD8; xx2yq.

Let 
 be any element of the 6-dimensional subspaceCpy;F2D8q and let z

be any element of the 4-dimensional subspace� pD8; xx2yq. Then � � � � z P

Cpxy; F2D8q and � � x
 � z � � � x
 P I , since both z and � � x
 are in I .

Therefore there are 210 derivations of F2D8 such that I is a di�erential ideal.

Lemma 3.2.43. There are 210 derivations d of F2D8 for which the augmentation

53



ideal � pD8q is a di�erential ideal of pF2D8; dq.

Proof. Let d be the derivation of F2D8 de�ned by � P Cpxy; F2D8q and 
 P

Cpy;F2D8q. The augmentation map is a ring homomorphism and so� pD8q is a

di�erential ideal with respect to d if and only if dpxq and dpyq are both in � pD8q.

However,dpxq � p � � x
 qy and dpyq � 
 are both in � pD8qif and only if � and 


are both in � pD8q. By Remark 3.2.9,Cpxy; F2D8qX� pD8qand Cpy;F2D8qX� pD8q

are both 5-dimensional subspaces ofF2D8. Therefore there are 210 derivations of

F2D8 such that � pD8q is a di�erential ideal.

Figure 3.1 shows the lattice of all two-sided ideals ofF2D8. The inclusions

were computed in GAP [18].
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F2D 8

J � � pD 8q

p1 � yx qp1 � yq p1 � x q

p1 � yx qp1 � x q � p 1 � x 2q

p1 � yx qp1 � x qp1 � yqp1 � x q p1 � x 2q

p1 � yx qp1 � x 2q � x̂

p1 � yx qp1 � x 2qp1 � yqp1 � x 2q x̂ � p 1 � x q3

D̂ 8

p0q

Figure 3.1: The lattice of two-sided ideals ofF2D8
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3.2.4 The Unit Group of F2D 8

De�nition 3.2.44. An ideal I of a ring is a nil ideal if each of its elements is

nilpotent, i.e. for all a P I , an � 0 for some natural numbern.

De�nition 3.2.45. An ideal I of a ring is anilpotent ideal if there exists a natural

number n such that I n � p 0q.

Theorem 3.2.46. [40, pp. 110] LetR be an Artinian ring. Then the Jacobson

radical J is a nilpotent ideal ofR and every nil ideal is nilpotent.

Lemma 3.2.47. Let I be a proper ideal ofF2D8. Then 1� I is a normal subgroup

of the unit group ofF2D8.

Proof. The units of F2D8 are the elements of augmentation 1 and soUpF2D8q �

1� � pD8q. Therefore� pD8qis the unique maximal ideal ofF2D8 and soJ � � pD8q.

By Theorem 3.2.46,J is nilpotent. Let n be the index of nilpotency ofJ . Then

I n � 0 for all proper idealsI of F2D8, sinceI € J .

Let a and bbe elements of the idealI . Then p1� aqp1� bq � 1� a� b� abP1� I .

Therefore 1� I is closed under multiplication. The inverse of the unit 1� b is given

by p1 � bq� 1 �
n� 1¸

m� 0

bm P1 � I since

�
n� 1¸

m� 0

bm

�

p1 � bq � p 1 � bq

�
n� 1¸

m� 0

bm

�

� 1 � bn � 1:

Therefore 1� I is closed under inversion and so 1� I is a subgroup ofUpF2D8q.

Also, 1� I is a normal subgroup since for alli P I and j PJ

p1 � j qp1 � iqp1 � j q� 1 � p 1 � j qp1 � j q� 1 � p 1 � j qpiqp1 � j q� 1

� 1 � p 1 � j qpiqp1 � j q� 1 P1 � I:
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Lemma 3.2.48. Let D8 � x x; y | x4 � y2 � p xyq2 � 1y and b � 1 � p 1� xqp1� yq.

The following is a presentation of the unit group ofF2D8, denoted byUpF2D8q:

UpF2D8q �
� �

pxby � x bbyyq � x yy
	

� x x2y � x x2 � x̂y



� x xyy

�
� �

pC4 � C2q � C2

	
� C2 � C2



� C2;

where the actions of the semidirect products are:

by � p b3qpbbyq; pbbyqy � bby; bxy � p bqpbbyqpx2qpx2 � x̂q;

pbbyqxy � bby; yxy � yx2; px2qxy � x2; px2 � x̂qxy � x2 � x̂:

Proof. Let � � 1� x2. By Lemma 3.2.47, 1�p � q is a normal subgroup ofUpF2D8q.

By Lemma 3.2.5, � pD8; xx2yq � p� q and is a central nilpotent ideal of index 2

with the set S � t �; x�; y�; xy� u as a basis. Letr; t P � pD8; xx2yq. Then

p1 � rqp1 � tq � 1 � r � t and so the set 1� S � t 1 � s | s PSu generates 1� p � q.

Also, 1� p � q is an elementary abelian 2-group and so 1� p � q � C4
2 .

Let I � p 1� bq� � pD8; xx2yq. By Lemma 3.2.32, the sett 1� b; �; x�; y�; xy� u

is a basis for the 5-dimensional idealI and by Lemma 3.2.35y R 1 � I . By

Lemma 3.2.47, 1� I is a normal subgroup ofUpF2D8q of order 25. b P 1 � I and

bR1�p � q, which is a normal subgroup of 1� I of order 24 and so 1� I is generated

by t b; 1 � �; 1 � x�; 1 � y�; 1 � xy� u. It is an abelian group as� pD8; xx2yqis

central. Also

b2 � p x � y � xyqpx � y � xyq � 1 � D̂8 � p 1 � � qp1 � x� qp1 � y� qp1 � xy� q:

The order of b is 4 sinceb3 � b� D̂8 and b4 � b2 � D̂8 � 1. by � p x � y � xyqy �
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1 � x � xy and so

bby � p byq2 � p 1 � x � xyqp1 � x � xyq

� 1 � x � xy � x � x2 � x2y � xy � y � 1 � x2 � x2y � y

� 1 � � � y� � p 1 � � qp1 � y� q PZpF2D8q:

Therefore 1� I � x by � x bbyy � x 1 � � y � x 1 � x� y � C4 � C3
2 .

By Lemma 3.2.35, the sett 1 � y; 1 � b; �; x�; y�; xy� u is a basis for the

ideal p1 � yq. Therefore 1� p 1 � yq is a normal subgroup ofUpF2D8q of order 26

generated by the sett y; b; 1� �; 1� x�; 1� y�; 1� xy� u. 1�p 1� yqis the product

of the normal subgroup 1� I and xyy. y does not commute withb and 1� I and

xyy have trivial intersection. Thus 1� p 1 � yq � 1 � I � x yy. Also, by � p b3qpbbyq.

bby; 1 � � and 1� x� are central and so

1 � p 1 � yq �
�
xby � x bbyy � x 1 � � y � x 1 � x� y

�
� x yy

�
�

pxby � x bbyyq � x yy
	

� x 1 � � y � x 1 � x� y:

By Remark 3.2.33, the sett 1 � xy; 1 � y; 1 � b; �; x�; y�; xy� u is a basis for

� pD8q. 1�p 1� yqand xxyy have trivial intersection. ThereforeUpF2D8qis a group

of order 27 generated by the sett xy; y; b; 1 � �; 1 � x�; 1 � y�; 1 � xy� u. Thus

UpF2D8q is the product of the normal subgroup 1� p 1 � yq and xxyy.

UpF2D8q �
� �

pxby � x bbyyq � x yy
	

� x 1 � � y � x 1 � x� y



� x xyy

�
� �

pC4 � C2q � C2

	
� C2 � C2



� C2:

By Table 3.1,bxy � x3 � xy � x2y. Also pbqpbbyqp1� � qp1� x� q � p 1� D̂8qbyp1� x̂q �

byp1� x̂ � D̂8q � byp1� x̂yq � p x3 � y � x3yqp1� x̂yq � x3 � x̂y � y � x̂ � x3y � x̂ �

x3 � xy � x2y. Therefore,bxy � p bqpbbyqp1� � qp1� x� q. Also yxy � xy2xy � yp1� � q
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and bby; 1 � � and 1� x� are central and so commute withxy.

Remark 3.2.49. The structure of the unit group of the group algebraF2k D8 was

found in [13].

3.3 Do Outer Derivations Become Inner?

In Theorem 2.3.15 it was shown that there exists an algebraA • KG such that all

derivations of KG become inner inA. In this section we show that derivations of

KH do not become inner onKG , whereH is a subgroup ofG.

Let d be a derivation ofA that is not inner. Does there exist an algebraB • A

such that the derivation d becomes inner when extended toB? That is, does there

exist an elementb of B such that db � d on A? A necessary condition ondb is that

dbpAq € A.

Lemma 3.3.1. Let R be a commutative ring. Then a derivation ofR is inner if

and only if it is the zero map.

Proof. let a P R and let d be an inner derivation ofR. Then dpaq � ba� ab � 0,

for somebPR. If d is the zero map thendpaq � 0a � a0.

De�nition 3.3.2. A derivation of a ring is calledouter if it is not an inner deriva-

tion.

Theorem 3.3.3. Let H be a subgroup of the groupG and let R be a unital ring.

Then there are no outerR-derivations of RH that become inner onRG.

Proof. Let g P G and h P H . Then gh P H ðñ g P H and hg P H ðñ g P H .

Therefore rg; hs � gh � hg P RH ðñ r g; hs � 0 or g P H . Let Gh � t g P G |

rg; hs PRH u � H Y t g PG | rg; hs � 0u.

59



Let b P RG and write b �
¸

gPG

bgg. Assume that the restriction ofdb to RH is

an R-derivation of RH . Then dbpRH q is contained inRH and so for anyh P H ,

rb; hs �
¸

gPGh

bgrg; hs �
¸

gRGh

bgrg; hs PRH .
¸

gPGh

bgrg; hs PRH and so
¸

gRGh

bgrg; hs P

RH . However
¸

gRGh

bgrg; hs is anR-linear combination of elements ofG that are not

in H and so
¸

gRGh

bgrg; hs � 0. Therefore

rb; hs �
¸

gPGh

bgrg; hs �
¸

gPH

bgrg; hs �
� ¸

gPH

bgg; h
�

� r �; h s;

where � �
¸

hPH

bhh P RH . By assumption the restriction of db to RH is an R-

derivation of RH . Therefore for anyr PR and h PH

brh � rhb � r b; rhs � dbprhq � rdbphq � r rb; hs � rbh � rhb:

Thus br � rb and so
¸

gPG

bgrg � br � rb �
¸

gPG

rbgg. Thereforebg commutes with r

for all g P G and so in particular bg commutes with r for all g P H which implies

that �r � r� for all r PR. Therefored� is an R-derivation of RH .

Let a PRH and write a �
¸

hPH

ahh. Then

dbpaq � db

� ¸

hPH

ahh
�

�
¸

hPH

ahdbphq �
¸

hPH

ahd� phq � d�

� ¸

hPH

ahh
�

� d� paq:

Therefore the restriction ofdb to RH is an inner derivation ofRH and so no outer

R-derivations of RH become inner onRG.

The following lemma and example show that althoughR-derivations of group

rings do not become inner on larger group rings, derivation of ideals of group rings

can become inner on the group ring.

Lemma 3.3.4. Let L � p 1 � yq be the two-sided ideal ofF2D8 generated by the
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element1 � y. Let b P F2D8. Then the restriction of db to L denoteddbæL is not

inner on L if and only if x Psupppbq.

Proof. Let I � p 1 � x2q be the two-sided ideal ofF2D8 generated by the element

1� x2. By Lemma 3.2.5,I is a central nilpotent ideal of index 2 with the following

set as a basis:B I � tp 1 � x2q; xp1 � x2q; yp1 � x2q; yxp1 � x2qu. Let BL �

B I Y tp1 � yq; p1 � yqxu. Then by Lemma 3.2.35,BL is a basis forL • I .

L � I ` F2p1� yq ` F2p1� yqx and note that rp1� yq; p1� yqxs � p 1� yqp1� yqx �

p1 � yqxp1 � yq � 0 � p 1 � yqpx � yx3q � x � x3 � yx � yx3 and so

rL; L s � r I ` F2p1 � yq ` F2p1 � yqx; I ` F2p1 � yq ` F2p1 � yqxs

� r F2p1 � yq ` F2p1 � yqx; F2p1 � yq ` F2p1 � yqxs

� t 0u Y tr1 � y; p1 � yqxsu Y tr1 � y; p1 � yqxsu � t 0; x � x3 � yx � yx3u:

Let a P L and b P F2D8. Then dbpaq P L since L is a two-sided ideal of

F2D8 and sodbæL is a derivation of L. BL can be extended to a basis forF2D8

by appending the elements 1 andx. Write b � b01 � b1x � b2l for somel P L and

b0; b1; b2 PF2 and a � a0p1� yq � a1p1� yqx � a2pzqwherez PI and a0; a1; a2 PF2.

Then

dbpaq � r b01 � b1x � b2l; as � r b01; as � r b1x; as � r b2l; as � r b1x; as � r b2l; as;

whererb2l; as P rL; L s. Also if a RI then

rx; as � r x; a0p1 � yqs � r x; a1p1 � yqxs � r x; a2zs

� a0xp1 � yq � a0p1 � yqx � a1xp1 � yqx � a1p1 � yqx2

� a0yxp1 � x2q � a1yp1 � x2q R rL; L s:

Therefore if x P supppbq and a RI then dbpaq R rL; L s and sodb is not inner on L.
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Conversely, ifx Rsupppbq then b1 � 0 and sodb � db01� b2 l � db2 l , which is an inner

derivation of L.

Example 3.3.5. Let L � p 1 � yq be the two-sided ideal ofF2D8 generated by the

element 1� y. The map dx : F2D8 Ñ F2D8, de�ned by c ÞÑxc � cx for all c PF2D8

is an inner derivation ofF2D8. Also for all l P L, dxplq � xl � lx P L sinceL is

a two-sided ideal and so the mapdxæL is a derivation of L. However,dxæL is not

inner asdxp1� yq � dxpyq � yxp1� x2q R rL; L s � t 0; x � x3 � yx � yx3u. Therefore

dxæL is a non-inner derivation ofL � p 1 � yq that becomes inner onF2D8.

This example raises an interesting question: IfI is a proper ideal ofKG , does

every derivation of I become inner onKG ?

3.4 Some Linear Algebra Results

This section contains known results from linear algebra and is included for later

reference. It may be skipped if desired by the reader.

A derivation of a group algebra is a linear transformation, by Corollary 3.5.1.

We wish to study the structure of these derivations and so we will employ some

theorems from linear algebra to better understand how these derivations transform

a group algebra. This section contains the main results used namely the primary

decomposition theorem and the cyclic decomposition theorem. Both of these theo-

rems allow us to decompose the group algebra, considered as a vector space, into a

direct sum of derivation-invariant subspaces. These decompositions can be used to

write the matrix representing the derivation in rational canonical form. Moreover,

if the eigenvalues all lie in the �eld, then a Jordan form can also be achieved. In the

case where the matrix cannot be written in Jordan form, it is still possible to write

it in generalised Jordan form. We begin with some de�nitions and preliminary
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results. Throughout this section we letT be a linear transformation on a vector

spaceV.

Theorem 3.4.1. [52, pp. 17] Let V be a �nite-dimensional vector space and

let T : V Ñ W be a linear transformation. ThendimpkerpTqq � dimpIm pTqq �

dimpVq.

De�nition 3.4.2. [52, pp. 111] TheT-annihilator of a vector v P V denoted

mT;vpxq is the unique monic polynomial of least degree such thatmT;vpTqpvq � 0.

De�nition 3.4.3. [52, pp. 112] Theminimum polynomial of T denotedmT pxq is

the unique monic polynomial of least degree such thatmT pTqpvq � 0 for all v PV.

Lemma 3.4.4. [52, pp. 112] Let V be a vector space and letT : V Ñ V be a

linear transformation. Let v1; : : : ; vk P V with T-annihilators pi pxq � mT;vi pxq for

i � 1; : : : ; k and suppose thatp1pxq; : : : ; pkpxq are pairwise relatively prime. Then

v � v1 � � � � � vk has T-annihilator polynomial mT;vpxq � p1pxq: : : pkpxq.

Theorem 3.4.5. [52, pp. 113] LetV be a �nite-dimensional vector space and let

T : V Ñ V be a linear transformation. Then there is a vectorv P V such that the

T-annihilator mT;vpxq of v is equal to the minimum polynomialmT pxq of T.

De�nition 3.4.6. [52, pp. 114] Let A be a square matrix. Thecharacteris-

tic polynomial cA pxq of A is the polynomial cA pxq � detpxI � Aq. Let V be a

�nite-dimensional vector space and letT : V Ñ V be a linear transformation. Fur-

thermore, let B be any basis ofV and let A be the matrix of T with respect to

the basisB, that is, A � r TsB. Then the characteristic polynomial cT pxq is the

polynomial cT pxq � detpxI � Aq.

De�nition 3.4.7. [52, pp. 115] Letf pxq � xn � an� 1xn� 1 � � � � � a0 be a monic

polynomial in Frxs of degreen ¥ 1. The companion matrix Cpf pxqqof f pxq is the
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n � n matrix

Cpf pxqq �

�

�
�
�
�
�
�
�
�
�
�
�
�

� an� 1 1 0 : : : 0

� an� 2 0 1 : : : 0
:::

: : :

� a1 0 0 : : : 1

� a0 0 0 : : : 0

�

�
�
�
�
�
�
�
�
�
�
�
�

:

Theorem 3.4.8. [52, pp. 115] Letf pxq � xn � an� 1xn� 1 � � � � � a0 be a monic

polynomial and letA � Cpf pxqqbe its companion matrix. LetV � Fn for any

�eld F and let T � TA : V Ñ V be the linear transformationTpvq � Av. Let v �

r0 0 : : : 0 1s| be thenth standard basis vector. Then the subspaceW of V de�ned

by W � t gpTqpvq |gpxq PFrxsuis V. Furthermore, mT pxq � mT;vpxq � f pxq.

Remark 3.4.9. [52, pp. 116] The characteristic polynomial of the companion

matrix of a monic polynomial f pxq is equal to f pxq. That is, cCpf pxqqpxq � f pxq.

De�nition 3.4.10. [52, pp. 117] LetT : V Ñ V be a linear transformation. A

subspaceW of V is T-invariant if TpWq € W, i.e., if Tpwq PW for every w PW.

Remark 3.4.11. The restriction of a linear transformation T to a T-invariant

subspaceW of V is a linear transformation, denotedTæW .

De�nition 3.4.12. [52, pp. 117] LetT : V Ñ V be a linear transformation. Let

B � t v1; : : : ; vku be a set of vectors inV. The T-span of B is the subspace

W �

#
k¸

i � 1

pi pTqpvi q |pi pxq PFrxs

+

:

In this situation B is said to T-generate W.

The image (range) of a linear transformation, denotedIm pTq is a T-invariant

subspace ofV. Let v P Im pTq. Then v � Tw for somew PV and soTv � TpTwq P
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Im pTq. In fact, for eachk PN we have thatTkpVq is a T-invariant subspace ofV.

This gives us a non-ascending sequence ofT-invariant subspaces:

V • TpVq • T2pVq • : : :

SinceV is �nite-dimensional this sequence must eventually stabilise. That is, there

is a positive integerm such that T j pVq � TmpVq for all j ¥ m. We will refer to

the imageTmpVq as thegeneralised range spaceof T and denote it by R8 pTq [22,

pp. 411].

Remark 3.4.13. The fact that this non-ascending sequence ofT-invariant sub-

spaces must eventually stabilise, means that the restriction ofT to R8 pTq, denoted

by TæR8 pT q is an isomorphism.

Lemma 3.4.14. [52, pp. 117] LetT : V Ñ V be a linear transformation and let

ppxq PFrxs be any polynomial. ThenkerpppTqq � t v P V | ppTqpvq � 0u is a

T-invariant subspace ofV.

In particular, letting ppTq � Tk for k � 1; 2; : : : in Lemma 3.4.14 gives us a

non-descending chain ofT-invariant subspaces:

0 € kerpTq € kerpT2q € : : :

Again, sinceV is �nite-dimensional this sequence must eventually stabilise. That

is, there is a positive integerm such that kerpT j q � kerpTmq for all j ¥ m. We

will refer to kerpTmq as the generalised null spaceof T and denote it by N8 (T)

[22, pp. 411].

Theorem 3.4.15. [22, pp. 412] LetT : V Ñ V be a linear transformation. Then

V � R8 pTq ` N8 pTq:
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Theorem 3.4.16. [52, pp. 119] LetV be a �nite-dimensional vector space and

let T : V Ñ V be a linear transformation. ThenmT pxq divides cT pxq and every

irreducible factor of cT pxq is an irreducible factor ofmT pxq.

Corollary 3.4.17. [52, pp. 119] A vector spaceV is T-generated by a single

element if and only ifmT pxq � cT pxq.

De�nition 3.4.18. [52, pp. 123] LetT : V Ñ V be a linear transformation. Then

V � W1 ` � � � ` Wk is a T-invariant direct sum if V � W1 ` � � � ` Wk is the direct

sum of W1; : : : ; Wk and eachWi is a T-invariant subspace. IfV � W1 ` W2 is a

T-invariant direct sum decomposition, thenW2 is called aT-invariant complement

of W1.

We now state the Primary Decomposition Theorem, which allows a decompo-

sition of a vector space into a direct sum ofT-invariant subspaces.

Theorem 3.4.19 (Primary Decomposition Theorem). [52, pp. 125] LetV be a vec-

tor space and letT : V Ñ V be a linear transformation. LetmT pxq � p1pxq: : : pkpxq

be the minimum polynomial ofT, where thepi are pairwise relatively prime poly-

nomials. Let Wi � kerppi pTqqfor i � 1; : : : ; k. Then eachWi is a T-invariant

subspace andV � W1 ` � � � ` Wk .

Let V � W1 ` � � � ` Wk be the T-invariant direct sum decomposition given by

Theorem 3.4.19. LetUi be a T-invariant subspace ofWi , for i � 1; : : : ; k. Then

U � U1 ` � � � ` Uk is a T-invariant subspace of V, and everyT-invariant subspace

of V arises in this way [52, pp. 126].

Theorem 3.4.20. [52, pp. 129-130] LetV be a �nite-dimensional vector space

and let T : V Ñ V be a linear transformation. Let w1 P V be any vector with

mT;w1 pxq � mT pxq and let W1 be the subspace ofV, T-generated byw1. Then W1

has aT-invariant complement W2, i.e., there is a T-invariant subspaceW2 of V

such thatV � W1 ` W2.
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De�nition 3.4.21. Let V be a �nite-dimensional vector space and letT : V Ñ V

be a linear transformation. An ordered setC � t w1; : : : ; wku is a rational canonical

T-generating setof V if the following conditions are satis�ed:

1. V � W1 ` � � � ` Wk whereWi is the subspace ofV that is T-generated bywi

2. pi pxqis divisible by pi � 1pxqfor i � 1; : : : ; k � 1, wherepi pxq � mT;w i pxqis the

T-annihilator of wi

We now state the Cyclic Decomposition Theorem.

Theorem 3.4.22 (Cyclic Decomposition Theorem). [52, pp. 132] LetV be a �nite-

dimensional vector space and letT : V Ñ V be a linear transformation. ThenV

has a rational canonicalT-generating setC � t w1; : : : ; wku. If C 1 � t w1
1; : : : ; w1

lu

is any rational canonical T-generating set ofV , then k � l and p1
i pxq � pi pxq for

i � 1; : : : ; k, wherep1
i pxq � mT;w1

i
pxq and pi pxq � mT;w i pxq.

De�nition 3.4.23. An n � n matrix M is in rational canonical form if it is a block

diagonal matrix of the form

M �

�

�
�
�
�
�
�
�
�

Cpp1pxqq

Cpp2pxqq
: : :

Cppkpxqq

�

�
�
�
�
�
�
�
�

whereCppi pxqqdenotes the companion matrix ofpi pxq, for some sequence of poly-

nomialsp1pxq; p2pxq; : : : ; pkpxqwith pi pxqdivisible by pi � 1pxqfor i � 1; 2; : : : ; k � 1.

De�nition 3.4.24. If T has rational canonical form as in De�nition 3.4.23, then the

sequence of polynomialsp1pxq; p2pxq; : : : ; pkpxq are called theelementary divisors

of T.

Theorem 3.4.25. [52, pp. 134]
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1. Let V be a �nite-dimensional vector space and letT : V Ñ V be a linear

transformation. Then V has a basisB such that rTsB � M is in rational

canonical form. Furthermore, M is unique.

2. Let A be ann� n matrix. Then A is similar to a unique matrix M in rational

canonical form.

Corollary 3.4.26. [52, pp. 135] LetT have elementary divisorst p1pxq; : : : ; pkpxqu.

Then mT pxq � p1pxq and cT pxq � p1pxqp2pxq: : : pkpxq.

De�nition 3.4.27. [52, pp. 137] Ak � k matrix is called aJordan blockassociated

with the eigenvalue� if it has the form

�

�
�
�
�
�
�
�
�
�
�
�
�

� 1

� 1
: : :

: : :

� 1

�

�

�
�
�
�
�
�
�
�
�
�
�
�

A matrix J is said to be inJordan canonical form if J is a block diagonal matrix

with each Ji a Jordan block.

J �

�

�
�
�
�
�
�
�
�

J1

J2

: : :

Jl

�

�
�
�
�
�
�
�
�

Theorem 3.4.28. [52, pp. 138]

1. Let V be a �nite-dimensional vector space over a �eldF and let T : V Ñ V

be a linear transformation. Suppose that the characteristic polynomial ofT

68



factors into a product of linear factors, cT pxq � p x � a1qe1 : : : px � amqem .

Then V has a basisB with rTsB � J a matrix in Jordan canonical form. J

is unique up to the order of the blocks.

2. Let A be an n � n matrix over a �eld F. Suppose thatcA pxq the charac-

teristic polynomial of A, factors into a product of linear factors, cA pxq �

px � a1qe1 : : : px � amqem . Then A is similar to a matrix J in Jordan canoni-

cal form. J is unique up to the order of the blocks.

When cT pxq does not factor into a product of linear factors we do not get a

Jordan canonical form. However, there are generalisations of De�nition 3.4.27 and

Theorem 3.4.28 that can be used in this case.

De�nition 3.4.29. A kl � kl matrix is called a generalised Jordan blockif it has

the form �

�
�
�
�
�
�
�
�
�
�
�
�

C N

C N
:: :

: : :

C N

C

�

�
�
�
�
�
�
�
�
�
�
�
�

where there are k blocks of thel � l matrix C � Cpppxqqalong the diagonal andN

is a matrix with an entry of 1 in row l column 1 and all other entries being zero. A

matrix Ĵ is said to be ingeneralised Jordan canonical formif Ĵ is a block diagonal

matrix with each Ĵi a generalised Jordan block.

Ĵ �

�

�
�
�
�
�
�
�
�

Ĵ1

Ĵ2

: : :

Ĵl

�

�
�
�
�
�
�
�
�

:
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Theorem 3.4.30. [52, pp. 140]

1. Let V be a �nite-dimensional vector space over a �eldF and let cT pxq factor

as cT pxq � p1pxqe1 : : : pmpxqem for irreducible polynomialsp1pxq; : : : ; pmpxq.

Then V has a basisB with rVsB � Ĵ a matrix in generalised Jordan canonical

form. Ĵ is unique up to the order of the generalised Jordan blocks.

2. Let A be an n � n matrix over a �eld F and let cA pxq factor as cA pxq �

p1pxqe1 : : : pmpxqem , for irreducible polynomialsp1pxq; : : : ; pmpxq. Then A is

similar to a matrix Ĵ in generalised Jordan canonical form.Ĵ is unique up

to the order of the generalised Jordan blocks.

3.5 Error Correcting Codes from Derivations

In this section we will consider derivations of group ringsKG , whereK is a �nite

�eld and G is a �nite abelian group. Let d P DerpKG q. The next lemma shows

that d is a kerd-module homomorphism and so it is also aK -linear transformation.

Lemma 3.5.1. Let R be a ring. Then d is a Cd-module homomorphism for all

d PDerpRq.

Proof. Let d P DerpRq, let c P Cd and let a P R. d is an additive group homomor-

phism. dpcq � 0 sodpcaq � dpcqa � cdpaq � cdpaq.

Remark 3.5.2. Note that d is also aCpRq-module homomorphism for alld P

DerpRq.

De�nition 3.5.3. Given a derivation d: KG Ñ KG , de�ne dn : KG Ñ KG to

be the composition ofd with itself n times. That is, for all a in KG , dnpaq �

dpdp: : : dpaq: : : qqlooooooooomooooooooon
n times

.
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Remark 3.5.4. Let d be a derivation ofKG . Then dn is aK -linear transformation

(K -module homomorphism) for all positive integersn.

Given a derivation d on a group algebraKG , the Primary Decomposition

Theorem (Theorem 3.4.19) gives a way of producingd-invariant subspaces ofKG .

Example 3.5.5. Let d be a derivation of a group algebraKG . Let mdpxq �

p1pxq: : : pkpxqbe the minimum polynomial ofd, which factors as a product of pair-

wise relatively prime polynomialspi . Moreover, letWi � kerppi pdqqfor i � 1; : : : ; k.

Then applying The Primary Decomposition Theorem (Theorem 3.4.19) we get that

each Wi is a d-invariant subspace andKG has the vector space decomposition

V � W1 ` � � � ` Wk .

In particular, By Theorem 3.4.15

KG � R8 pdq ` N8 pdq:

Remark 3.5.6. [25, pp. 41, 47] A linear block code over a �nite �eldK is a

subspace of the vector spaceV of orderedn-tuples overK for some positive integer

n. In particular, if d: V Ñ V then the generalised range space ofd, R8 pdq is a

linear block code overK .

De�nition 3.5.7. A q-ary rn; k; � s code is a code of lengthn, dimension k and

minimum distance� over a �eld of order q.

We will now consider particular derivations of the group ringF3C6 whereC6

is the cyclic group of order 6 with presentationxx | x6 � 1y. For a derivation

d on F3C6 we can choose any element ofF3C6 to be the image ofx under d, by

Theorem 2.3.4.

Example 3.5.8. Let C6 � x x | x6 � 1y and let d be the derivationd: F3C6 Ñ F3C6

de�ned by x ÞÑ1. This is the classical derivative map overF3. It is an F3-linear
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map or linear transformation and so can be represented by a 6� 6 matrix over F3.

We will denote this matrix by rdsB, whereB � t 1; x; x2; x3; x4; x5u is a basis for

F3C6. Note that

rdsB

�

1 0 0 0 0 0

� |

�
�

0 0 0 0 0 0

� |

;

rdsB

�

0 1 0 0 0 0

� |

�
�

1 0 0 0 0 0

� |

;

rdsB

�

0 0 1 0 0 0

� |

�
�

0 2 0 0 0 0

� |

;

rdsB

�

0 0 0 1 0 0

� |

�
�

0 0 0 0 0 0

� |

;

rdsB

�

0 0 0 0 1 0

� |

�
�

0 0 0 1 0 0

� |

;

rdsB

�

0 0 0 0 0 1

� |

�
�

0 0 0 0 2 0

� |

:

In summary, rdsB

�

a0 a1 a2 a3 a4 a5

� |

�
�

a1 2a2 0 a4 2a5 0

� |

, for any ai P F3.

Thus the matrix rdsB is given by

rdsB �

�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

0 1 0 0 0 0

0 0 2 0 0 0

0 0 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 2

0 0 0 0 0 0

�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

:
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The matrix rdsB acts on column vectors from the left. For example, letu be the

column vector representing 1� 2x4. Then the column vector representing the image

of 1 � 2x4 under the derivation d is given by

rdsBu �

�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

0 1 0 0 0 0

0 0 2 0 0 0

0 0 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 2

0 0 0 0 0 0

�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

1

0

0

0

2

0

�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

0

0

0

2

0

0

�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

:

Example 3.5.9. Let d be the derivationd: F3C6 Ñ F3C6 de�ned by x ÞÑ1� x2 �

2x5. Let B � t 1; x; x2; x3; x4; x5u. Then B is a basis forF3C6. It can be shown

by performing the computation as in Example 3.5.8 that the matrix representing

d is given by

rdsB �

�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

0 1 0 0 0 0

0 0 2 0 0 0

0 0 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 2

0 0 0 0 0 0

�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

0 0 0 0 0 2

0 0 0 0 0 0

0 1 0 0 0 0

0 0 2 0 0 0

0 0 0 0 0 0

0 0 0 0 1 0

�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

0 0 1 0 0 0

0 0 0 0 0 0

0 0 0 0 2 0

0 0 0 0 0 1

0 0 0 0 0 0

0 2 0 0 0 0

�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

0 1 1 0 0 2

0 0 2 0 0 0

0 1 0 0 2 0

0 0 2 0 1 1

0 0 0 0 0 2

0 2 0 0 1 0

�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

:

The minimal and characteristic polynomials ofd were calculated using the com-

puter algebra system Sage [43] and are as follows:mdpxq � p x � 1qpx � 2qpx3q

and cdpxq � p x � 1qpx � 2qpx4q. Let � �
5¸

i � 0

ai x i P F3C6 and so � can be writ-

ten as the vectorra0; a1; a2; a3; a4; a5s| with respect to B. Applying mdpxq gives

prds5
B � 2rds3

Bqra0; a1; a2; a3; a4; a5s| � 0. Using the Primary Decomposition Theo-

rem (Theorem 3.4.19),F3C6 � E2 ` E1 ` N8 pdq, where E � is the 1-dimensional
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eigenspace associated with the eigenvalue� and N8 pdq is the d invariant subspace

associated with the factorx3, that is N8 pdq � kerpd3q. The minimal polynomial

factors into a product of linear factors and so by Theorem 3.4.28, we can �nd a basis

B1 such that rdsB1 is in Jordan canonical form. We will now look at each eigenvalue

separately. Firstly consider the eigenvalue 2. Letd2 denote the restriction ofd to

E2. E2 is a d-invariant subspace ofF3C6 and sod2 is a linear transformation on

the 1-dimensional subspaceE2 such that p2pd2qpE2q � 0, wherep2pxq � p x � 1q.

Thereforemd2 pxq � cd2 pxq � p x � 1q and so the Jordan block associated with the

eigenvalue 2 isr2s. Likewise the Jordan block associated with the eigenvalue 1 isr1s.

Let dR denote the restriction ofd to R8 pdq. Then mdR pxq � cdR pxq � p x � 1qpx � 2q

and so by Theorem 3.4.28

rdRsB �

�

�
�

2 0

0 1

�

�
�

where the basisB is given by B � t v2; v1u and v� is the eigenvector associated

with the eigenvalue� . v1 �
�

1 2 1 2 1 2

� |

and v2 �
�

0 2 2 0 1 1

� |

.

We now turn our attention to the generalised nullspaceN8 pdq= kerpd8 q. Let

dN denote the restriction of d to N8 pdq. We have mdN pxq � x3 and cdN pxq �

x4. N8 pdq is not dN -generated by a single vector. Thus we can use the Cyclic

Decomposition Theorem (Theorem 3.4.22) and Corollary 3.4.26 to writeN8 pdq �

N1 ` N2, whereN i is the subspace that isdN -generated bywi for i � 1; 2. We have

that mdN ;w1 pxq � x3 and mdN ;w2 pxq � x. w1 �
�

0 0 1 0 0 1

� |

dN -generatesN1 and

w2 �
�

1 0 0 0 0 0

� |

dN -generatesN2.

We now have a basisB1 � t v2; v1; rds2
B1w1; rdsB1w1; w1; w2u and can write the
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matrix rdsB1 in Jordan canonical form

rdsB1 � P � 1rdsBP �

�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

2 0 0 0 0 0

0 1 0 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 0

0 0 0 0 0 0

�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

; where P �

�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

0 1 2 0 0 1

1 2 0 2 0 0

1 1 0 0 1 0

0 2 2 0 0 0

2 1 0 2 0 0

2 2 0 0 1 0

�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

:

R8 pdq is a 2 dimensional subspace ofF3C6 over F3. A generator matrix for

the ternary codeR8 pdq is G �

�

�
�

v1

v2

�

�
� �

�

�
�

1 2 1 2 1 2

0 1 1 0 2 2

�

�
� . The codewords (elements)

of R8 pdq are

r000000s; r121212s; r212121s; r011022s; r102201s; r220110s; r022011s; r110220s; r201102s:

The minimum distance of this code is 4 by inspection and soR8 pdq is a 3-ary

r6; 2; 4s code. It is an optimal code as the Griesmer bound for a linear code of

length 6 and dimension 2 overF3 is 4 [21].

Remark 3.5.10. Let KG be a �nite group algebra, let d P DerpKG q and let B

be some listing of the elements ofG. Then the generalised null space ofrdsB is not

a good code since the multiplicative identity 1, is a vector of weight one that is

mapped to 0 on the �rst iteration and so 1PN8 pdq. ThereforeN8 pdqis a rn; m; 1s

code, wherem is the algebraic multiplicity of the eigenvalue zero.

Example 3.5.11. Let d be the derivation d: F3C6 Ñ F3C6 de�ned by x ÞÑ1 �

x � 0x2 � x3 � x4 � x5. Let B � t 1; x; x2; x3; x4; x5u. Then the matrix over F3
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representingd with respect to B is given by

rdsB �

�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

0 1 0 0 0 0

0 0 2 0 0 0

0 0 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 2

0 0 0 0 0 0

�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

0 0 0 0 0 0

0 1 0 0 0 0

0 0 2 0 0 0

0 0 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 2

�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

0 0 0 0 1 0

0 0 0 0 0 2

0 0 0 0 0 0

0 1 0 0 0 0

0 0 2 0 0 0

0 0 0 0 0 0

�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

0 0 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 2

0 0 0 0 0 0

0 1 0 0 0 0

0 0 2 0 0 0

�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

0 0 2 0 0 0

0 0 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 2

0 0 0 0 0 0

0 1 0 0 0 0

�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

0 1 2 0 1 0

0 1 2 0 1 2

0 0 2 0 1 2

0 1 0 0 1 2

0 1 2 0 1 2

0 1 2 0 0 2

�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

:

The minimal and characteristic polynomials ofd were calculated using the

computer algebra system Sage. They were found to bemdpxq � x3px2 � 1q and

cdpxq � x4px2 � 1q. Using Theorem 3.4.15 we getF3C6 � kerpd3q ` kerpd2 � 1q �

R8 pdq ` N8 pdq. The matrix rdsB does not have a Jordan canonical form as the

polynomial x2 � 1 is irreducible overF3. However, Theorem 3.4.30 states that we

can �nd a basisB1 such that rdsB1 is in generalised Jordan canonical form. We will

now look at each summand separately. Firstly considerR8 pdq. Let dR denote the

restriction of d to R8 pdq. mdR pxq � cdR pxq � x2 � 1 and so by Theorem 3.4.30 and

De�nitions 3.4.29 and 3.4.7 the generalised Jordan block associated withR8 pdq is

rdRsB � r CpcdR pxqqs � rCpx2 � 1qs �

�

�
�

0 1

2 0

�

�
�
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where the basisB is given by B � t dv; vu and v is any vector of F3C6 that d-

generatesR8 pdq according to De�nition 3.4.12. An example of such a vectorv is
�

0 1 0 0 1 0

� |

.

We now turn our attention to N8 pdq. Let dN denote the restriction of d

to N8 pdq. We have mdN pxq � x3 and cdN pxq � x4. Therefore N8 pdq is not

d-generated by a single vector. By the Cyclic Decomposition Theorem (Theo-

rem 3.4.22) N8 pdq � N1 ` N2, where N i is the subspace that isd-generated

by wi for i � 1; 2. By Theorem 3.4.22,mD;w 1 pxq � x3 and mD;w 2 pxq � x.

w1 �
�

0 1 2 0 2 1

� |

and w2 �
�

1 0 0 0 0 0

� |

are 2 such vectors.

ThereforeB1 � t Dv; v; D 2w1; Dw1; w1; w2u is a basis forF3C6 such that rdsB1

is in generalised Jordan canonical form

rdsB1 � P � 1rdsBP �

�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

0 1 0 0 0 0

2 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 0

0 0 0 0 0 0

�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

where P �

�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

2 0 1 1 0 1

2 1 0 0 1 0

1 0 0 2 2 0

2 0 2 2 0 0

2 1 0 0 2 0

1 0 0 1 1 0

�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

:

R8 pdq is a 2 dimensional subspace ofF3C6 over F3 and so has 9 elements.

rdRsB �

�

�
�

0 1

2 0

�

�
� ; whereB � t dv; vu and v �

�

0 1 0 0 1 0

� |

:

Therefore the orbit of dv and dv � v under d are respectively

�

1 0

� |

Ñ
�

0 2

� |

Ñ
�

2 0

� |

Ñ
�

0 1

� |

Ñ
�

1 0

� |

and
�

1 1

� |

Ñ
�

1 2

� |

Ñ
�

2 2

� |

Ñ
�

2 1

� |

Ñ
�

1 1

� |

:
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Therefore the graph ofR8 pdq consists of two 4-cycles and the �xed point 0. The

matrix rdN sB1 is nilpotent with an index of nilpotency of 3. This shows that after 3

iterations of d the group algebra has been mapped ontoR8 pdq. That is d3pF3C6q �

R8 pdq. The codewords (elements) ofR8 pdq are

r000000s; r112112s; r010010s; r221221s; r020020s; r211211s; r102102s; r122122s; r201201s:

The minimum distance of this code is 2 by inspection and soR8 pdq is a 3-ary

r6; 2; 2s code.

In both this Example and Example 3.5.9 the generalised range spaceR8 pdq

is a d-invariant subspace ofF3C6. However, by varying the derivation used, the

minimum distance decreased from 4 to 2.

Example 3.5.12. Let d be the derivation d: F3C6 Ñ F3C6 de�ned by x ÞÑ1 �

x � 2x2 � x3 � x4 � x5 where C6 � x x | x6 � 1y. Note that we have changed

only the coe�cient of the x2 term in the image of x under d from the one used

in Example 3.5.11. The matrix representing theF3-linear transformation d with

respect to the basisB � t 1; x; x2; x3; x4; x5u is

rdsB �

�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

0 1 2 0 1 1

0 1 2 0 1 2

0 2 2 0 1 2

0 1 1 0 1 2

0 1 2 0 1 2

0 1 2 0 2 2

�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

:

Using the method detailed in the previous examples a change of basis matrix
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P is obtained andrdsB can be written in Jordan canonical form.

P �

�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

1 1 1 0 0 1

1 2 0 0 1 0

0 1 0 1 0 0

1 1 2 0 0 0

1 2 0 0 2 0

0 1 0 2 0 0

�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

and P� 1rdsBP �

�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

2 0 0 0 0 0

0 1 0 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 0

0 0 0 0 0 0

�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

:

R8 pdq is a 2 dimensional subspace ofF3C6. A graph with the elements of

R8 pdq as vertices andpu; vq as a directed edge ifrdsBu � v is given in Figure 3.2.

The codewords (elements) ofR8 pdq are

r000000s; r110110s; r220220s; r121121s; r201201s; r011011s; r212212s; r022022s; r102102s:

The minimum distance of this code is 4 by inspection and soR8 pdqis a 3-aryr6; 2; 4s

code. Let a � 1 � x � x3 � x4 pr110110sqand b � 2 � x2 � 2x3 � x5 pr201201sq.

Then a and b are both elements ofR8 pdq, however their productab � x � 2x2 �

x4 � 2x5 pr012012sqis not an element ofR8 pdq. This shows that in generalR8 pdq

is not closed under multiplication.

022022 102102 110110 220220 011011 201201

000000 121121 212212

Figure 3.2: The subgraph of the graph� induced by R8 pdq in Example 3.5.12,
where� is the graph with the elements ofF3C6 as vertices andpu; vq is a directed
edge ifDu � v.
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Chapter 4

Graphs Of Derivations

In this chapter the directed graphs of derivations of group algebras are explored,

that is, a derivation of a group algebra is considered as a linear �nite dynamical

system (LFDS). The motivation for this comes from Theorem 3.1.18, which tells

us that if DerpKG q and DerpKH q are not isomorphic as additive groups then

KG and KH are not isomorphic as rings. It is shown in Theorem 4.1.8 that

if � : R Ñ S is a ring isomorphism, then there is a bijection fromDerpRq onto

DerpSq such that corresponding derivations have isomorphic associated digraphs.

Therefore properties of the LFDS associated with a derivation can be used to

distinguish between group rings. The groups considered in this chapter are abelian.

In Section 4.1 the preperiod ofDerpF2Gq is shown to be less than or equal to the

size of the groupG. Also, whenG � C2 � C2, this bound is attained.

The digraph of a particular element ofDerpF2pC2 � C2qqis studied and it

is shown to contain a 7-cycle. The digraphs ofDerpF2C4q are partitioned by

conjugacy class in Table 4.1. Also, permutations ofF2C4 are exhibited such that

conjugation by these permutations give a way of permuting between any pair of

derivations ofF2C4 whose matrix representations with respect to a basis are similar.

By way of contrast it is shown that no digraph of a derivation ofF2C4 contains a
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7-cycle. Therefore by examining the properties of the digraphs ofF2pC2 � C2qand

F2C4, it has been shown that the group algebras are not isomorphic as rings.

It is shown in Section 4.4 that an involution of a group algebraKG permutes

DerpKG q, however in the case whenKG is not commutative it is not an element

of Aut pKG q. The automorphism group ofF2pC2 � C2q and the size of the auto-

morphism group ofF2pC4 � C4q are given in Section 4.5 as well as the unit group

of F2pC4 � C4q.

By Theorem 3.1.18, ifKG and KH are isomorphic as rings thenjDerpKG qj �

jDerpKH qj. Thus counting derivations can be used to distinguish between group

algebras. The smallest example where counting derivations does not su�ce is for

F2pC4 � C4qand F2pC2 � C8q, wherejDerpF2pC4 � C4qqj � jDerpF2pC2 � C8qqj � 232.

Therefore other properties ofDerpKG q and DerpKH q will need to be employed.

The maximum nilpotency index is one property of the derivations of a group algebra

that is investigated. It is shown in Lemma 4.6.5 that the maximum nilpotency

index for DerpF2n C2m q is 2m� 1 � 1. Maximum nilpotency index is then used to

distinguish betweenF2pC4 � C4q and F2pC2 � C8q. It is shown that the maximum

nilpotency index of F2pC4 � C4q is 8, whereas the maximum nilpotency index of

F2pC2 � C8q is at least 13.

4.1 Digraphs and Finite Dynamical Systems

De�nition 4.1.1. [23] A �nite dynamical system (FDS) is a pair pX; f q, whereX

is a �nite set and f is a function from X to X .

De�nition 4.1.2. Let pX; f q be an FDS and letx P X . Then the orbit of x is

de�ned to be Opxq � t f npxq |n � 0; 1; : : : u, wheref 0pxq � x.

De�nition 4.1.3. [23] A linear �nite dynamical system (LFDS) is an FDS, pV; f q,
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whereV is a �nite dimensional vector space over a �nite �eldK and f is aK -linear

map from V to V.

De�nition 4.1.4. [23] Let pX; f qand pY; gqbe �nite dynamical systems. AnFDS-

morphism is a map � : X Ñ Y such that � � f � g � � . Therefore we have the

following commuting diagram:

X Y

X Y

f

�

g

�

pX; f q is isomorphic to pY; gq if there exists a bijective FDS-morphism fromX to

Y.

De�nition 4.1.5. A directed graphor digraph is an ordered pair� � p Vp� q; Ep� qq,

whereVp� q is a set whose elements are called vertices andEp� q is a set of ordered

pairs on the setVp� q, called directed edges or arcs.

A linear �nite dynamical system, pV; f q has an associated digraph denoted

� pf q, whereVp� pf qq � t v | v PVu and Ep� pf qq � tp v; f pvqq |v PVu.

In order to study the dynamics of an FDS we seek a description of the set of

orbits, t Opxq | x P X u. That is, we are looking for a description of the digraph

associated with the FDS.

De�nition 4.1.6. Let � 1 � p Vp� 1q; Ep� 1qqand � 2 � p Vp� 2q; Ep� 2qqbe digraphs.

An isomorphism � between� 1 and � 2 is a bijection from Vp� 1q onto Vp� 2q such

that pa; bq PEp� 1q if and only if p� paq; � pbqq PEp� 2q. Note that the direction of

the arcs is preserved.

Remark 4.1.7. [23] Isomorphic �nite dynamical systems have isomorphic associ-

ated digraphs.
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Theorem 4.1.8. Let R and S be �nite rings and let � : R Ñ S be a ring isomor-

phism. Then there is a bijection� from DerpRq onto DerpSq such that � p� pdqq

and � pdq are isomorphic digraphs, for alld PDerpRq.

Proof. By Theorem 3.1.18,� : DerpRq Ñ DerpSq de�ned by d ÞÑ� � d � � � 1 is a

bijection. By De�nition 4.1.4, � : R Ñ S is an FDS-isomorphism frompR; dq to

pS; � pdqq, for all d P DerpRq. Therefore by Remark 4.1.7,� pdq and � p� pdqqare

isomorphic digraphs, for alld PDerpRq.

De�nition 4.1.9. [23] Let pX; f qand pY; gqbe FDS. De�ne the sum ofpX; f qand

pY; gq, denoted bypX; f q � p Y; gq, to be the FDS pX \ Y; f \ gq, whereX \ Y is

the disjoint union of the setsX and Y and f \ g: X \ Y Ñ X \ Y de�ned by

pf \ gqpaq �

$
''&

''%

f paq if a PX;

gpaq if a PY:

De�nition 4.1.10. Let � 1 and � 2 be graphs. De�ne the sum of� 1 and � 2, denoted

� 1 � � 2 to be the graph with vertex setVp� 1q \ Vp� 2qand edge setEp� 1q \ Ep� 2q.

Remark 4.1.11. Let pX; f q and pY; gq be FDS. The digraph of the sum ofpX; f q

and pY; gq is the sum of the digraphs ofpX; f q and pY; gq. That is � pf \ gq �

� pf q � � pgq.

De�nition 4.1.12. [23] Let pX; f qand pY; gqbe FDS. De�ne the product ofpX; f q

and pY; gq, denoted bypX; f q � p Y; gq, to be the FDSpX � Y; f � gq, whereX � Y

is the cartesian product of the setsX and Y, and pf � gqpx; yq � p f pxq; gpyqq.

De�nition 4.1.13. [20] Let v0 and vl be vertices of a graph or digraph,� . Then a

path from v0 to vl , of length l is a sequencev0; v1; : : : ; vl of vertices of� such that

pvi ; vi � 1q PEp� q, for i � 0; 1; : : : ; l � 1. A weak path is a sequencev0; v1; : : : ; vl of

vertices of a directed graph� such that either pvi ; vi � 1qor pvi � 1; vi q is an arc in � ,

for i � 0; 1; : : : ; l � 1.
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De�nition 4.1.14. [20] A digraph is said to bestrongly connectedif there is a

path between any pair of vertices andweakly connectedif there is a weak path

between any pair of vertices. An induced strongly / weakly connected subgraph

of � that is maximal with respect to inclusion of vertices is called astrong / weak

componentof the digraph.

De�nition 4.1.15. Let v be a vertex of a digraph� . The out degreeof v, denoted

Outpvq, is the number of arcs whose �rst coordinate isv, that is Outpvq � jtpv; aq P

Ep� q |a P Vp� quj. Similarily, the in degreeof v, denotedIn pvq, is the number of

arcs whose second coordinate isv.

De�nition 4.1.16. [20] A cycle is a strongly connected digraph such thatIn pvq �

Outpvq � 1, for every vertex v.

De�nition 4.1.17. The circumferenceof a digraph � is the length of the longest

cycle in the graph and is denoted by� p� q.

De�nition 4.1.18. Let pV; f q be an FDS. An elementt P V is called aterminal

elementof the FDS if f ptq � t and for all v PV; f npvq � t for some positive integer

n.

De�nition 4.1.19. [23] An FDSpV; f qis called atree if it has a terminal element,t.

For a treepV; f q, de�ne the heightof anyv PV as the least nonnegative integerhpvq

such that f hpvqpvq � t. De�ne the height of the tree ashpVq � maxt hpvq |v PVu.

Remark 4.1.20. Let the FDS, pV; f qbe a tree. The associated digraph,� pf qwill

also be referred to as a tree. Note that using the terminology from graph theory it

would be called a directed rooted tree (in-tree) with an added loop (an arc from a

vertex to itself) at the root (terminal vertex).

De�nition 4.1.21. [23] The order of a polynomial f P K rX s denoted ordpf q is

the least positive integerr such that f pX qdivides X r � 1. In [23] it was also noted
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that if f is irreducible and such thatf p0q � 0 and ordpf q � e, for any s PN, then

ordpf sq � ept , wherep � charpK q and t is the smallest integer satisfyingpt ¥ s.

De�nition 4.1.22. Let n be a positive integer andV an n-dimensional vector

space over a �eldK with B � t b1; b2; : : : ; bnu a basis forV . Let d: V Ñ V be a

K -linear map. Then de�ne

rdsB �

�

�
�
�
�
�
�
�
�

a1;1 a1;2 : : : a1;n

a2;1 a2;2 : : : a2;n

:::
:::

: : :
:::

an;1 an;2 : : : an;n

�

�
�
�
�
�
�
�
�

; wheredpbj q �
n¸

i � 1

ai;j bi :

De�nition 4.1.23. Let V be a vector space. Then a mapN : V Ñ V is nilpotent

if N m is the zero map for some positive integerm. The least such integerm is

called thenilpotency index of N .

De�nition 4.1.24. [23] Let V be a �nite dimensional vector space over a �eldK .

Then a nilpotent map N : V Ñ V is a pure nilpotent map if the nilpotency index

of N is equal to the dimension of the generalised null spaceN8 . This implies that

the dimension of the kernel ofN is 1 and that there exists a basisB of V such that

the matrix rN sB has 1's in the superdiagonal (the diagonal just above the main

diagonal) and 0's in all other positions.

De�nition 4.1.25. Let G be a �nite group and let K be a �nite �eld. Let d be

a derivation of KG , with associated digraph� pdq. Denote by � pDerpKG qqthe

length of the longest cycle contained in the digraphs� pdq for any derivation d of

KG . That is, � pDerpKG qq � maxt � p� pdqq |d PDerpKG qu.

De�nition 4.1.26. By the results of [23], the associated digraph of a LFDS is the

product of a tree and a sum of cycles. Therefore the orbit of any vertexv terminates

with a cycle, the length of this cycle is called theperiod of v and is denoted by
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perpvq. The length of the shortest path fromv to any vertex in the terminating

cycle is called thepreperiod of v and is denoted bypperpvq. Figure 4.1 illustrates an

example of a vertex (vertex 0) with period 4 and preperiod 3. Letd be a derivation

of a group algebraKG . Then the period (preperiod) ofd, denotedperpdq(pperpdq)

is the maximum of the periods (preperiods) of the vertices of� pdq. Moreover, the

period (preperiod) ofDerpKG q, denotedperpDerpKG qq(pperpDerpKG qq) is the

maximum of the periods (preperiods) of the derivations ofKG .

0 1 2 3 4

56

Figure 4.1: The vertex 0 has preperiod 3 and period 4

Lemma 4.1.27. Let G be a group. Then the preperiod ofDerpF2Gq is less than

or equal tojGj.

Proof. Let d P DerpF2Gq. Then by [23], � pdq � � pN q � � pBq, where � pN q is a

tree and � pBq is a sum of cycles. The preperiod ofDerpF2Gq is the height of the

tree � pN q. By Theorems 2 and 3 of [23] the preperiod ofDerpF2Gqis less than or

equal to jGj.

Remark 4.1.28. The preperiod ofDerpF2pC2 � C2qqattains the bound established

in Lemma 4.1.27 as the following example shows.

Example 4.1.29. Let d � yBx � B y be a derivation of F2pC2 � C2q. Then by

Lemma 4.1.27, the preperiod ofDerpF2pC2 � C2qq ¤4. However, the preperiod of

d is equal to 4, sincexy ÞÑ1 � x ÞÑy ÞÑ1 ÞÑ0.
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4.2 The Digraph of a derivation of F2pC2 � C2q

In this section we look at the digraph of a particular elementd of DerpF2pC2 � C2qq.

It is shown that the digraph of d, denoted� pdq, contains a cycle of length 7. This

property of the digraph � pdq is used in Section 4.3 to contrast with the properties

of the digraphs of the elements ofDerpF2C4q.

The following Theorems from [23] will be used in this section. LetV be a

�nite dimensional vector space.

De�nition 4.2.1. A nilpotent linear transformation T : V Ñ V is pure nilpotent

when its nilpotency index is equal to the dimension ofV.

Theorem 4.2.2. [23] Let u: V Ñ V be a pure nilpotent map and letn be the

dimension of V. The digraph of u is a tree of heightn with terminal point zero.

Each nonzero vector of the kernel belongs to a branch of heightn of the tree. All

points with heightn are sources and all the points of height less thann have in

degreeq.

Theorem 4.2.3. [23] The graph of a nilpotent map is a product of pure trees

whose heights correspond to the size of the blocks in the Jordan canonical form of

the matrix representing the map.

Theorem 4.2.4. [23] Let pE; f q be a bijective FDS. Letcf pxq � P r 1
1 P r 2

2 : : : P r s
s

be the characteristic polynomial off , where the polynomialsPi are irredudible and

pairwise relatively prime. Then the graph off is the product of the graphs associated

with eachP r i
i . For each i , there is an additional decomposition of each preceding

block into graphs of elementary components (rational decomposition).

De�nition 4.2.5. The order of a polynomialg denoted ordpgq, is de�ned to be

the least positive integerr such that gpxq divides xr � 1.
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Theorem 4.2.6. [23] Let K be a �nite �eld of characteristic p with q elements.

Let V be a vector space overK of �nite dimension n. Let T : V Ñ V be a bijective

linear map. Suppose that the minimal polynomial ofT is f � gs, where g is an

irreducible polynomial of degreem. Then the cycle structure of the graph off is

given by:

� pTq � 1 �
s¸

i � 1

qmi � qmpi � 1q

r i
Cr i ;

where1 is the 0-cycle, Cr i is a cycle of lengthr i and r i � ordpgi q.

Theorem 4.2.7. [23] Let pV; f q be a LFDS. Then the digraph off is equal to the

product of a tree, corresponding to the nilpotent part of f, by the cycles corresponding

to the bijective part of f.

Example 4.2.8. Let C2 � C2 � x x; y | x2 � y2 � r x; ys � 1y. Let d be the

derivation of F2pC2 � C2q de�ned by x ÞÑ1 � y � xy and y ÞÑxy. Then dp1q � 0

and dpxyq � dpxqy � xdpyq � p 1 � y � xyqy � xpxyq � y � 1 � x � y � 1 � x. We

now determine� pdq, the digraph of d. d is an F2-linear transformation and so we

can representd as a 4� 4 matrix over F2. C2 � C2 � t 1; x; y; xyu is a basis for

F2pC2 � C2q. For i � 1; 2; 3; 4, let vi be the column vector of length 4 overF2 with

1 in position i and 0 in the other 3 positions. We use the following correspondence:

1 Ø v1 �

�

�
�
�
�
�
�
�
�

1

0

0

0

�

�
�
�
�
�
�
�
�

x Ø v2 �

�

�
�
�
�
�
�
�
�

0

1

0

0

�

�
�
�
�
�
�
�
�

y Ø v3 �

�

�
�
�
�
�
�
�
�

0

0

1

0

�

�
�
�
�
�
�
�
�

xy Ø v4 �

�

�
�
�
�
�
�
�
�

0

0

0

1

�

�
�
�
�
�
�
�
�

:

Let B � t vi | i � 1; 2; 3; 4u. Then B is a basis for the vector spaceF4
2 and so by
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De�nition 4.1.22

rdsB �

�

�
�
�
�
�
�
�
�

0 1 0 1

0 0 0 1

0 1 0 0

0 1 1 0

�

�
�
�
�
�
�
�
�

:

The characteristic polynomialcdpX q and the minimal polynomial mdpX q of

rdsB were found using the computer algebra system SAGE [43] to be:

cdpX q � mdpX q � X pX 3 � X � 1q: (4.1)

Applying the Primary Decomposition Theorem 3.4.19 tod we can write the

vector spaceF2pC2 � C2qas a direct sum ofd-invariant subspaces. That is,F2pC2 �

C2q � N8 ` R8 , where N8 � kerpdq and R8 � kerpd3 � d � I q, where I is the

identity map on F2pC2 � C2q. Let dN and dR denote the restriction ofd to N8 and

R8 respectively.

We �rst look at N8 . N8 � kerpdq and so the nilpotency index ofdN is 1.

Moreover, let � � a01 � a1x � a2y � a3xy PF2pC2 � C2q. Then

dp� q � dpa01 � a1x � a2y � a3xyq � a1p1 � y � xyq � a2pxyq � a3p1 � xq

� p a1 � a3qp1q � a3x � a1y � p a1 � a2qxy:

Thereforedp� q � 0 if and only if a1 � a2 � a3 � 0, that is, dp� q � 0 if and only

if � � 0 or 1. Thus the dimension ofN8 � kerpdq is 1. This implies that the

nilpotency index ofdN is equal to the dimension ofN8 and so by De�nition 4.1.24,

dN is a pure nilpotent map. Therefore by Theorem 4.2.2, the digraph ofdN , � pdN q

is a tree of height 1 and terminal vertex 0.� pdN q, the digraph of dN is drawn in

Figure 4.2.
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Figure 4.2: � pdN q, the digraph of dN

We now look at R8 . R8 � kerpd3 � d � I q and so the minimal polynomial

of dR is mdR pX q � X 3 � X � 1. Neither 0 nor 1 is a root ofX 3 � X � 1 and

so X 3 � X � 1 is irreducible overF2. Also ordpX 3 � X � 1q was computed using

SAGE [43] to be 7. Therefore by Theorem 4.2.6 the digraph ofdR is given by

� pdRq � 1 � C7, where 1 is the loop at the node 0 andC7 is a 7-cycle.� pdRq, the

digraph of dR is drawn in Figure 4.3.

0 1 � x

1 � y � xy 1 � x � xy x � y � xy

x � y1 � yxy

Figure 4.3: � pdRq, the digraph of dR

By Theorem 4.2.7 the digraph of the derivationd, � pdqis the product of � pdRq

with � pdN q, that is, � pdq � � pdRq � � pdN q and is illustrated in Figure 4.4. The

vertex pa; bq corresponds with the elementa � b of F2pC2 � C2q.

4.3 Digraphs of the Derivations of F2C4

In this section we look at the digraph of the elements ofDerpF2C4q. It is shown that

none of the digraphs contain a cycle of length 7. Therefore the digraph� pdq illus-

trated in Figure 4.4 is not isomorphic to the digraph of any element ofDerpF2C4q.

The elements ofDerpF2C4q are partitioned by conjugacy class and the associated
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p0; 0q

p0; 1q

p1 � x; 0q

pxy; 1q

p1 � y � xy; 0q

p1 � x; 1q

p1 � x � xy; 0q

p1 � y � xy; 1q

px � y � xy; 0q

p1 � x � xy; 1q

px � y; 0q

px � y � xy; 1q

p1 � y; 0q

px � y; 1q

pxy; 0q

p1 � y; 1q

Figure 4.4: � pdq, the digraph of d

digraphs are drawn in Figures 4.5 - 4.10. Also, permutations ofF2C4 are exhibited

such that conjugation by these permutations, maps any derivation ofF2C4 to any

similar derivation of F2C4, that is the matrices representing the derivations are

similar.

Example 4.3.1. Let C4 � x z | z4 � 1y. Let D be any derivation ofF2C4 and let

Dpzq � a01 � a1z � a2z2 � a3z3. Recall that for any derivation of a group algebra,

Dp1q � 0. D is an F2-linear transformation and so we can representD as a 4� 4

matrix over F2. For i � 1; 2; 3; 4, let vi be the column vector of length 4 over

F2 with a 1 in position i and a 0 in the other 3 positions. We use the following

correspondence:

1 Ø v1 z Ø v2 z2 Ø v3 z3 Ø v4:

Let B � t vi | i � 1; 2; 3; 4u. Then B is a basis for the vector spaceF4
2 and so by
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De�nition 4.1.22

rDsB �

�

�
�
�
�
�
�
�
�

0 a0 0 a2

0 a1 0 a3

0 a2 0 a0

0 a3 0 a1

�

�
�
�
�
�
�
�
�

: (4.2)

At least 2 of the 4 columns contain all zeros and sodimpN8 q ¥ 2, for all

D P DerpF2C4q. Therefore by Theorem 3.4.15dimpR8 q ¤ 2 and so there are not

enough elements inR8 to form a 7-cycle. Therefore the digraph� pDq cannot

contain a 7-cycle for anyD P DerpF2C4q. Let d be the derivation ofF2pC2 � C2q

de�ned in Example 4.2.8. Then� pdqcontains a 7-cycle and so it is not isomorphic

to � pDq, for any D P DerpF2C4q. Therefore by Theorem 4.1.8,F2pC2 � C2q and

F2C4 are not isomorphic as rings.

Remark 4.3.2. Derivations and their associated digraphs have been used to show

that two modular group algebras are not ring isomorphic. This has the potential

to be a useful tool.

De�nition 4.3.3. Let n be a positive integer and letA and B be n � n matrices

over a �eld K . Then B is aconjugateof A, if there exists an invertiblen � n matrix

P over K , such that B � P � 1AP . The conjugacy classes partition the set ofn � n

matrices over a �eld K . Matrices that are in the same conjugacy class are called

similar.

Remark 4.3.4. Let V be a �nite dimensional vector space over a �nite �eldK

and let f : V Ñ V be a K -linear map. Then f can be represented by a matrix

over the �eld K which is dependant on the chosen basis. A change of basis ma-

trix represents a bijectiveK -linear map and will induce an isomorphism of �nite

dynamical systems [23]. Thus by Remark 4.1.7 similar matrices have isomorphic

associated digraphs.
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Remark 4.3.5. Let G be a �nite group of order n and K a �nite �eld. Let

d PDerpKG qand let P be a bijectiveK -linear map from KG to KG . Let B be a

basis for the vector spaceK n and de�ne rDsB � r P � 1sB rdsB rPsB . By Remark 4.3.4

similar matrices have isomorphic associated digraphs. However, as Example 4.3.6

shows the matrixrDsB may not represent a derivation ofKG , with respect to the

basisB .

Example 4.3.6. Let C4 � x z | z4 � 1y and let B be the basis forF4
2 as in

Example 4.3.1. Moreover, let

M �

�

�
�
�
�
�
�
�
�

0 a0 0 a2

0 a1 0 a3

0 a2 0 a0

0 a3 0 a1

�

�
�
�
�
�
�
�
�

; rPsB �

�

�
�
�
�
�
�
�
�

1 1 0 1

0 1 0 0

0 1 1 0

0 0 0 1

�

�
�
�
�
�
�
�
�

; rdsB �

�

�
�
�
�
�
�
�
�

0 0 0 0

0 0 0 1

0 0 0 0

0 1 0 0

�

�
�
�
�
�
�
�
�

and rDsB �

�

�
�
�
�
�
�
�
�

0 1 0 1

0 0 0 1

0 0 0 1

0 1 0 0

�

�
�
�
�
�
�
�
�

where ai P F2 for i � 0; 1; 2; 3. By Equation 4.2 any derivation ofF2C4 is repre-

sented by the matrix M for someai P F2. Note that d is the derivation of F2C4

de�ned by dpzq � z3. The matrix rP � 1sB rdsB rPsB was computed using SAGE [43]

to be the matrix rDsB listed above. Note thatM � r DsB for any ai PF2. Therefore

rDsB does not represent a derivation ofF2C4 with respect to the basisB .

Remark 4.3.7. As stated in Example 4.3.6 any derivation ofF2C4 is represented

by the matrix M for someai PF2. The product of 2 such matrices is given by:

M 1M 2 �

�

�
�
�
�
�
�
�
�

0 a0 0 a2

0 a1 0 a3

0 a2 0 a0

0 a3 0 a1

�

�
�
�
�
�
�
�
�

�

�
�
�
�
�
�
�
�

0 b0 0 b2

0 b1 0 b3

0 b2 0 b0

0 b3 0 b1

�

�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�

0 a0b1 � a2b3 0 a0b3 � a2b1

0 a1b1 � a3b3 0 a1b3 � a3b1

0 a0b3 � a2b1 0 a0b1 � a2b3

0 a1b3 � a3b1 0 a1b1 � a3b3

�

�
�
�
�
�
�
�
�

:

The product M 1M 2 represents the derivation ofF2C4 de�ned by z ÞÑ pa0b1 � a2b3q�

pa1b1 � a3b3qz � p a0b3 � a2b1qz2 � p a1b3 � a3b1qz3. ThereforeDerpF2C4q is closed
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under composition. However as Example 4.3.8 shows,DerpRq is not closed under

composition for a general ringR. It would be interesting to �nd all KG such that

DerpKG q is closed under multiplication. In such casesDerpKG q would form a

K -algebra.

Example 4.3.8. Let C4 � C4 � x x; y | x4 � y4 � r x; ys � 1y. Let Bx be the

derivation of F2pC4 � C4q de�ned by x ÞÑ1; y ÞÑ0. Similarly Let By be the

derivation of F2pC4 � C4q de�ned by x ÞÑ0; y ÞÑ1. Then

pBx � Byqpxyq � B xpxq � 1; and

pBx � Byqpxqy � xpBx � Byqpyq � 0 � 0 � 0:

ThereforepBx � Byq RDerpF2pC4 � C4qq, since it does not obey Leibniz's rule.

Remark 4.3.9. Let R be a unital ring. Then althoughDerpRqis not closed under

composition it does form a Lie algebra. This is the subject of Chapter 5.

De�nition 4.3.10. Let n and m be positive integers and letp be a prime number.

Denote byM pn; pmq the ring of n � n matrices overFpm and by GLpn; pmq be the

set of invertible elements ofM pn; pmq.

De�nition 4.3.11. Let A P M pn; pmq. De�ne CpAq to be the centraliser of A in

M pn; pmq. That is, CpAq � t M PM pn; pmq |MA � AM u.

Example 4.3.12. Let C4 � x z | z4 � 1y. By Theorem 2.3.4 a derivation ofF2C4

is de�ned by dpzq. We now consider conjugating the matrix representation ofd

by elements ofGL4pF2q. Table 4.1 shows the partition ofDerpF2C4q according to

conjugacy class. The contents of Table 4.1 were computed using SAGE [43].

Let d P DerpF2C4q. By De�nition 4.3.11, M � 1rdsB M � r dsB , for all M P

CprdsB qXGLp4; 2q. Moreover, letP be an element ofGLp4; 2q, such that P � 1rdsB P

� r DsB , for some D P DerpF2C4q. Then pMP q� 1rdsB pMP q � r DsB , for all
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class dpzq cdpX q mdpX q

1 0 X 4 X

2 z3; 1 � z3; z2 � z3; 1 � z2 � z3 X 2pX � 1q2 X pX � 1q2

3 1; z2 X 4 X 2

4 z; 1 � z; z � z2; 1 � z � z2 X 2pX � 1q2 X pX � 1q

5 1 � z2; z � z3; 1 � z � z2 � z3 X 4 X 2

6 1 � z � z3; z � z2 � z3 X 4 X 3

Table 4.1: The elements ofDerpF2C4q partitioned by conjugacy class

M P CprdsB q X GLp4; 2q. Let T be a right transversal ofCprdsB q X GLp4; 2q

in GLp4; 2q. Then conjugatingrdsB by an element ofT may not result in a matrix

which represents a derivation with respect to the basisB . This was highlighted

in Example 4.3.6. The non zero derivations ofF2C4 form 5 conjugacy classes. In

Table 4.2 a representativerds is chosen for each of the 5 classes. For each represen-

tative and for every other derivationD in the same conjugacy class, a matrixP is

given such thatP conjugatesrds to rDs.

The digraphs associated with the derivations in each conjugacy class are illus-

trated in Figures 4.5 - 4.10.

0

1 1 � z z
1 � z2

� z3
z2 � z3

1 � z

� z3
z � z3

z � z2

� z3

1 � z�

z2 � z3
z � z2

1 � z

� z2
1 � z2z2z3

1 � z3

Figure 4.5: The digraph of the derivation in class 1 of Table 4.1
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class d P1 P � 1
1 rdsP1 P2 P � 1

2 rdsP2

2

�

�
�

0 0 0 0
0 0 0 1
0 0 0 0
0 1 0 0

�

�
�

�

�
�

1 0 0 1
0 1 0 0
0 1 1 0
0 0 0 1

�

�
�

�

�
�

0 1 0 0
0 0 0 1
0 0 0 1
0 1 0 0

�

�
�

�

�
�

1 1 0 0
0 1 0 0
0 0 1 1
0 0 0 1

�

�
�

�

�
�

0 0 0 1
0 0 0 1
0 1 0 0
0 1 0 0

�

�
�

�

�
�

1 1 0 1
0 1 0 0
0 1 1 1
0 0 0 1

�

�
�

�

�
�

0 1 0 1
0 0 0 1
0 1 0 1
0 1 0 0

�

�
�

3

�

�
�

0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

�

�
�

�

�
�

0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1

�

�
�

�

�
�

0 0 0 1
0 0 0 0
0 1 0 0
0 0 0 0

�

�
�

4

�

�
�

0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1

�

�
�

�

�
�

1 0 0 1
0 1 0 0
0 1 1 0
0 0 0 1

�

�
�

�

�
�

0 0 0 1
0 1 0 0
0 1 0 0
0 0 0 1

�

�
�

�

�
�

1 1 0 0
0 1 0 0
0 0 1 1
0 0 0 1

�

�
�

�

�
�

0 1 0 0
0 1 0 0
0 0 0 1
0 0 0 1

�

�
�

�

�
�

1 1 0 1
0 1 0 0
0 1 1 1
0 0 0 1

�

�
�

�

�
�

0 1 0 1
0 1 0 0
0 1 0 1
0 0 0 1

�

�
�

5

�

�
�

0 1 0 1
0 0 0 0
0 1 0 1
0 0 0 0

�

�
�

�

�
�

0 1 1 0
1 1 0 1
0 0 0 1
1 0 0 0

�

�
�

�

�
�

0 0 0 0
0 1 0 1
0 0 0 0
0 1 0 1

�

�
�

�

�
�

1 0 1 1
1 0 0 1
0 0 0 1
1 1 0 0

�

�
�

�

�
�

0 1 0 1
0 1 0 1
0 1 0 1
0 1 0 1

�

�
�

6

�

�
�

0 1 0 0
0 1 0 1
0 0 0 1
0 1 0 1

�

�
�

�

�
�

1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

�

�
�

�

�
�

0 0 0 1
0 1 0 1
0 1 0 0
0 1 0 1

�

�
�

Table 4.2: Derivations of the same class exhibited as conjugates
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Figure 4.6: The digraph of the 4 derivations in class 2 of Table 4.1

Figure 4.7: The digraph of the 2 derivations in class 3 of Table 4.1

Figure 4.8: The digraph of the 4 derivations in class 4 of Table 4.1
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Figure 4.9: The digraph of the 3 derivations in class 5 of Table 4.1

Figure 4.10: The digraph of the 2 derivations in class 6 of Table 4.1

Example 4.3.13. In Example 4.3.12 the graphs were computed using GAP [18].

In this example we show how the graphs of the derivations ofF2C4 de�ned by

ds;t pzq � s � z � tz2, for s; t P F2 can be determined using the Invariant Factor
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Decomposition Algorithm [16, p. 480]. By Example 4.3.6

rds;t s �

�

�
�
�
�
�
�
�
�

0 s 0 t

0 1 0 0

0 t 0 s

0 0 0 1

�

�
�
�
�
�
�
�
�

Let F2rxs be the polynomial ring over the indeterminatex and let I be the iden-

tity element of M 4pF2q, the full ring of 4 � 4 matrices overF2. We now perform

elementary row and column operations onxI � r ds;t s to transform xI � r ds;t s into

the unique matrix of the form

�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

1
: : :

1

f 1pxq
: : :

f mpxq

�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
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such that f i pxq PF2rxs for i � 1; 2; : : : m and f 1pxq | f 2pxq | � � � | f mpxq.

xI � r ds;t s �

�

�
�
�
�
�
�
�
�

x s 0 t

0 x � 1 0 0

0 t x s

0 0 0 x � 1

�

�
�
�
�
�
�
�
�

r 1 � r 2 � r 3ÞÑr 2ÝÝÝÝÝÝÝÝÑ

�

�
�
�
�
�
�
�
�

x s 0 t

x x � s � t � 1 x s � t

0 t x s

0 0 0 x � 1

�

�
�
�
�
�
�
�
�

c2 � c3 � c4ÞÑc2ÝÝÝÝÝÝÝÝÑ

�

�
�
�
�
�
�
�
�

x s � t 0 t

x 1 x s � t

0 x � s � t x s

0 x � 1 0 x � 1

�

�
�
�
�
�
�
�
�

r 1Ø r 2ÝÝÝÝÑ
c1Ø c2

�

�
�
�
�
�
�
�
�

1 x x s � t

s � t x 0 t

x � s � t 0 x s

x � 1 0 0 x � 1

�

�
�
�
�
�
�
�
�

r 2 � r 3ÞÑr 3ÝÝÝÝÝÝÝÝÝÝÑ
r 1 � r 2 � r 3 � r 4ÞÑr 4

�

�
�
�
�
�
�
�
�

1 x x s � t

s � t x 0 t

x x x s � t

0 0 0 x � 1

�

�
�
�
�
�
�
�
�

ps� tqr 1 � r 2ÞÑr 2ÝÝÝÝÝÝÝÝÝÑ
xr 1 � r 3ÞÑr 3

�

�
�
�
�
�
�
�
�

1 x x s � t

0 ps � t � 1qx ps � tqx s

0 x2 � x x 2 � x ps � tqpx � 1q

0 0 0 x � 1

�

�
�
�
�
�
�
�
�

c2 � c3ÞÑc2ÝÝÝÝÝÝÑ

�

�
�
�
�
�
�
�
�

1 0 x s � t

0 x ps � tqx s

0 0 x2 � x ps � tqpx � 1q

0 0 0 x � 1

�

�
�
�
�
�
�
�
�

r 2 � r 4ÞÑr 2ÝÝÝÝÝÝÑ
c2 � c4ÞÑc4

�

�
�
�
�
�
�
�
�

1 0 x s � t

0 x ps � tqx s � 1

0 0 x2 � x ps � tqpx � 1q

0 0 0 x � 1

�

�
�
�
�
�
�
�
�

:

Notice that the entries of the last 2 matrices are the same except for the entry

in row 2 column 4, one of which is a 1 and the other a zero. Therefore we can

transform xI � r ds;t s to

�

�
�
�
�
�
�
�
�

1 0 x s � t

0 x ps � tqx 1

0 0 x2 � x ps � tqpx � 1q

0 0 0 x � 1

�

�
�
�
�
�
�
�
�

c4ÞÑc2 ; c2ÞÑc3ÝÝÝÝÝÝÝÝÑ
c3ÞÑc4

�

�
�
�
�
�
�
�
�

1 s � t 0 x

0 1 x ps � tqx

0 ps � tqpx � 1q 0 x2 � x

0 x � 1 0 0

�

�
�
�
�
�
�
�
�

Note the entry in row 3 column 2. It is either 0 (if s � t � 0) or performing the
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row operation r3 � r4 ÞÑr3 leaves the matrix unchanged except for changing the

entry in row 3 column 2 to a 0. Therefore we can transformxI � r ds;t s to

�

�
�
�
�
�
�
�
�

1 s � t 0 x

0 1 x ps � tqx

0 0 0 x2 � x

0 x � 1 0 0

�

�
�
�
�
�
�
�
�

px� 1qr 2 � r 4ÞÑr 4ÝÝÝÝÝÝÝÝÝÑ

�

�
�
�
�
�
�
�
�

1 s � t 0 x

0 1 x ps � tqx

0 0 0 x2 � x

0 0 x2 � x ps � tqpx2 � xq

�

�
�
�
�
�
�
�
�

r 3Ø r 4ÝÝÝÝÑ

�

�
�
�
�
�
�
�
�

1 s � t 0 x

0 1 x ps � tqx

0 0 x2 � x ps � tqpx2 � xq

0 0 0 x2 � x

�

�
�
�
�
�
�
�
�

ÝÑ

�

�
�
�
�
�
�
�
�

1 0 0 0

0 1 0 0

0 0 x2 � x 0

0 0 0 x2 � x

�

�
�
�
�
�
�
�
�

:

Therefore f 1pxq � f 2pxq � xpx � 1q. The polynomials f 1 and f 2 are called the

invariant factors of rds;t s. The elementary factors ofrds;t s are the set of factors of

the invariant factors of rds;t s [16, p. 494]. That is the set of elementary factors of

ds;t is t x; x; px � 1q; px � 1qu. rds;t shas a Jordan formJ , since the eigenvalues 0 and

1 are in the �eld. Therefore the Jordan blocks ofJ are r0s; r0s; r1s and r1s. Thus

by [23] the derivationsds;t are the derivations in class 4 of Example 4.3.12 and the

graph associated with these derivations is illustrated in Figure 4.8.

Remark 4.3.14. The ring of constants of a unital ringR was de�ned in De�ni-

tion 3.1.15. Let C4 � x z | z4 � 1y. Then the ring of constants ofF2C4 is given by

CpF2C4q � t 0; 1; z2; 1 � z2u.

Lemma 4.3.15. Let C4 � x z | z4 � 1y and let c P CpF2C4q � t 0; 1; z2; 1 � z2u.

Furthermore, let � c : C4 Ñ F2C4 be the map de�ned by1 ÞÑ1; z ÞÑz � c; z2 ÞÑz2

and z3 ÞÑz2pz � cq. Extend � c, F2-linearly to F2C4 and denote this function also

by � c. Then

(i) � c is a permutation of F2C4 of order 2.
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(ii) � c � d � � c is a derivation of F2C4, whered is the derivation of F2C4 de�ned

by dpzq � z.

(iii) Every derivation of F2C4 whose associated digraph is isomorphic to� pdq is

of the form � c � d � � c, for somec PCpF2C4q.

Proof. (i) CpF2C4q is the subspace ofF2C4 with basis t 1; z2u. � c is the identity

map on CpF2C4q, since it is anF2-linear mapping which is the identity on a basis

for CpF2C4q. Therefore� cpcq � c and � cpz2cq � z2c. Thus

� 2
cpzq � � cpz � cq � � cpzq � � cpcq � z � c � c � z and

� 2
cpz3q � � cpz2pz � cqq � � cpz3q � � cpz2cq � z3 � z2c � z2c � z3:

Therefore� c is a permutation of F2C4 of order 2.

(ii) Let D � � c � d� � c. Then Dpzq � � c � d� � cpzq � � c � dpz� cq � � cpzq � z� c. By

Theorem 2.3.4 there is a unique derivation ofF2C4 which mapsz to z � c. D is an

F2-linear map since it is the composition ofF2-linear maps. If i � 0 (mod 2), then

Dpzi q � � c � d � � cpzi q � � c � dpzi q � 0 � iz i � 1Dpzq. If i � 1 (mod 2), thenDpzi q �

� c � d � � cpzi q � � c � dpzi � zi � 1cq � � cpzi q � zi � 1pz � cq � iz i � 1Dpzq. Therefore

Dpzi � j q � p i � j qzi � j � 1Dpzq � iz i � 1Dpzqzj � zi jz j � 1Dpzq � Dpzi qzj � zi Dpzj q, for

all integers i and j . Let � �
3¸

i � 0

ai zi and � �
3¸

i � 0

bi zi . Then

Dp�� q �
3¸

i � 0

3¸

j � 0

ai bj Dpzi � j q �
3¸

i � 0

3¸

j � 0

ai bj pDpzi qzj � zi Dpzj qq � Dp� q� � �D p� q:

ThereforeD is the unique derivation ofF2C4 which mapsz to z � c.

(iii) The derivations of F2C4 that have an associated digraph isomorphic to� pdq

are the 4 derivations of class 4 in Table 4.1. They are the derivations� c � d � � c for

c P CpF2C4q. In Table 4.2, on the �rst row of class 4 the matrixP1 represents� z2

and P2 represents� 1. The matrix P1 on the second row represents� 1� z2 .
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Remark 4.3.16. Similarly it can be shown that conjugation by� c permutes the

derivations of class 2 of Table 4.1.

Lemma 4.3.17. Let C4 � x z | z4 � 1y and let � : C4 Ñ F2C4 be the map de�ned

by 1 ÞÑ1; z ÞÑz3; z2 ÞÑz2 and z3 ÞÑz. Extend � F2-linearly to F2C4 and denote

this function also by� . Then � is a permutation ofF2C4 of order 2 and fork PF2,

conjugation by� permutes the derivationsd and � of F2C4, de�ned by dpzq � 1� kẑ

and � pzq � z2 � kẑ.

Proof. � 2 is the identity map on F2C4, since it is an F2-linear map that is the

identity map on a basis forF2C4, namely the elements of the groupC4. Therefore

� is a permutation of F2C4 of order 2.

Let k P F2, let d be the derivation of F2C4 de�ned by dpzq � 1 � kẑ and let

D � � � d� � . We will now show that D � � , by showing that D is anF2-linear map

that agrees with � on a basis forF2C4, namely C4. D is an F2-linear map since it

is the composition ofF2-linear maps. Note that � pkẑq � kẑ and so

for i � 0 (mod 2); Dpzi q � � � d � � pzi q � � � dpzi q � 0 � iz i � 1pz2 � kẑq � � pzi q

and for i � 1 (mod 2); Dpzi q � � � d � � pzi q � � � dpzi � 2q � � ppi � 2qzi � 1p1 � kẑqq

� � pzi � 1p1 � kẑqq � � pzi � 1 � kẑq � zi � 1 � kẑ � zi � 1pz2 � kẑq � iz i � 1� pzq � � pzi q:

ThereforeD � � � d� � � � , the unique derivation ofF2C4 which mapsz to z2 � kẑ.

This implies that d � � � � � � . Therefore conjugation by� permutes the derivations

d and � of F2C4.

Lemma 4.3.18. Let C4 � x z | z4 � 1y and let  : C4 Ñ F2C4 be the map de�ned

by 1 ÞÑ1 � z � z3; z ÞÑz3; z2 ÞÑ1 and z3 ÞÑ1 � z � z2. Extend  , F2-linearly to

F2C4 and denote this function also by . Let d; D and � be the derivations ofF2C4

de�ned by dpzq � 1 � z2, Dpzq � z � z3 and � pzq � ẑ. Then  is a permutation of

F2C4 of order 3. Moreover,D �  � d �  2 and � �  2 � d �  .
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Proof. The proof follows along the same lines as those of Lemmas 4.3.15 and 4.3.17

and is omitted.

Remark 4.3.19. The conjugacy classes of the derivations ofF2C4 are given in

Table 4.1. In Table 4.2 classes 2 and 4 have the same 3 permutation matricesP1

and P2 (note that there are 2P1 matrices as there are 2 rows in the table for these

classes). These matrices represent� c, wherec Pz2; 1; 1 � z2. Therefore the maps� c

of Lemma 4.3.15 permute the derivations of Class 2 and 4 by conjugation. The map

� of Lemma 4.3.17 permute the derivations of Class 3 and 6 by conjugation. The

maps and  2 of Lemma 4.3.18 permute the derivations of Class 5 by conjugation.

Therefore conjugation by these maps gives a way of permuting any pair of similar

derivations of F2C4.

4.4 Permutations of Derivations

By Theorem 3.1.20, conjugation by� P Aut pKG q is a permutation on DerpKG q.

The converse of this statement is not true. If conjugation by a map� : KG Ñ KG

permutesDerpKG q, then � does not have to be an algebra automorphism ofKG .

The permutations � c of Lemma 4.3.15 are not additive and so are not algebra

automorphisms ofF2C4. Example 4.4.2 presents another interesting example of a

map � RAut pKG q such that conjugation by � permutesDerpKG q.

De�nition 4.4.1. An involution is de�ned to be an anti-automorphism of order

2 of a ring. Let � be an involution on the group algebraKG . Then for �; � PKG

1. � p� � � q � � p� q � � p� q,

2. � p� p� qq � � ,

3. � p�� q � � p� q� p� q.
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Example 4.4.2. Let K be a �nite �eld and G a �nite non commutative group.

Further, let � be an involution of the group algebraKG and let g1 and g2 be

non commuting elements ofG. Then since� is bijective, � pg1g2q � � pg2g1q and

so � pg2q� pg1q � � pg1q� pg2q. Therefore � is not an automorphism ofKG since

� pg1g2q � � pg2q� pg1q � � pg1q� pg2q � � pg2g1q. We now show that D � � � 1 � d � �

is a derivation of KG wheneverd is a derivation of KG . Let d P DerpKG q and

�; � PKG . Write � �
°

gPG agg and � �
°

hPG bhh. Then since� � 1 � � ,

Dp�� q � � � d � � p�� q � � � d
�
� p� q� p� q

�
� �

�
d
�
� p� q

�
� p� q � � p� qd

�
� p� q

� 	

� �
�

d
�
� p� q

�
� p� q

	
� �

�
� p� qd

�
� p� q

� 	

� � 2p� q
�
� � d � � p� q

�
�

�
� � d � � p� q

�
� 2p� q � �D p� q � Dp� q�:

ThereforeD is a derivation of KG . We have shown that conjugation by an invo-

lution � is a permutation onDerpKG q and � RAut pKG q.

In particular, the classical involution� of KG , de�ned by
°

gPG agg ÞÑ
°

gPG agg� 1

is an example of an involution.� does permuteDerpKG q, however in the case when

KG is not commutative it is not an element ofAut pKG q.

4.5 Automorphisms of Small Group Algebras

Lemma 4.5.1. Let KG � F2pC2 � C2q, whereC2 � C2 � x x; y | x2 � y2 � r x; ys �

1y. Let � pa;i;b;j q: KG Ñ KG be theF2-linear extension of the map fromG into KG

de�ned by

1 ÞÑ1; x ÞÑa � i Ĝ; y ÞÑb� j Ĝ and xy ÞÑab� p i � j qĜ;
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where a P tx; y; xyu, b P tx; y; xyuztau and i; j P F2. Then � pa;i;b;j q are the

automorphisms ofKG and Aut pKG q � S4, the symmetric group on4 objects.

Proof. Let UpKG q denote the unit group ofKG . Then any automorphism ofKG

is anF2-linear extension of a map fromG into UpKG q, such that 0ÞÑ0 and 1ÞÑ1.

The units of KG are the elements of augmentation 1 and sot 1; x; y; xy; 1� Ĝ; x�

Ĝ; y � Ĝ; xy � Ĝu is the set of elements ofUpKG q. Let � be an automorphism of

KG . Then � is an F2-linear extension of a map de�ned by

1 ÞÑ1; x ÞÑu; y ÞÑv and xy ÞÑuv;

where u; v P UpKG q. However � is a bijection and sou � 1, v � 1 and u � v.

Therefore writeu � 1� z1 and v � 1� z2, wherez1 and z2 are distinct elements of

� pGqzt0u. Therefore

� pĜq � � p1q � � pxq � � pyq � � pxyq � 1 � 1 � z1 � 1 � z2 � p 1 � z1qp1 � z2q � z1z2:

� pĜq � 0, since� p0q � 0. Ĝ P annp� pGqqand z2 � 0, for all z P � pGq. Thus

z1 � Ĝ, z2 � Ĝ and z2 � z1 � Ĝ. This implies that u � a � i Ĝ and v � b� j Ĝ, for

somea P tx; y; xyu, bP tx; y; xyuztau and i; j PF2 and so� � � pa;i;b;j q.

Note that � pĜq � Ĝ, since for someg; h PG such that g � h and i; j PF2,

z1z2 � p 1 � uqp1 � vq � p 1 � g � i Ĝqp1 � h � j Ĝq

� 1 � h � j Ĝ � g � gh � j Ĝ � i Ĝ � i Ĝ � 0 � 1 � g � h � gh � Ĝ:

Let a P tx; y; xyu, bP tx; y; xyuztauand i; j PF2 and let � � � pa;i;b;j q. We now

show that � PAut pKG q. Let � be the augmentation map ofKG . Then � p� q � � 2,

for any � P KG . Moreover,KG is commutative and so� pghq � � pgq� phq, for any
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g; h PG. Let �; � PKG and write � �
°

gPG agg and � �
°

hPG bhh. Then

� p�� q � � p
¸

gPG

¸

hPG

agbhghq �
¸

gPG

¸

hPG

agbh � pghq

�
¸

gPG

¸

hPG

agbh � pgq� phq �
¸

gPG

ag� pgq
¸

hPG

bh � phq � � p� q� p� q:

Therefore� is an algebra endomomorphism.

We will now show that � is invertible and has order less than or equal to 4.

Recall that � pĜq � Ĝ. There are 2 cases which we shall treat separately.

Case 1.a � x, b � y and ab� xy.

There are 2 subcases. The �rst isa � y and the second isa � xy.

Case 1(a). Leta � y and i; j P F2. Then b � xy, sinceb � y and if b � x, then

ab� xy. The order of � pa;i;b;j q is 3, since

� 3
pa;i;b;j qpxq � � 2

pa;i;b;j qpy � i Ĝq � � pa;i;b;j qpxy � p i � j qĜq � ab� x and

� 3
pa;i;b;j qpyq � � 2

pa;i;b;j qpxy � j Ĝq � � pa;i;b;j qpx � i Ĝq � y:

Case 1(b). a � xy and i; j P F2. Then b � x, sinceb � y. The order of � pa;i;b;j q is

3, since

� 3
pa;i;b;j qpxq � � 2

pa;i;b;j qpxy � i Ĝq � � pa;i;b;j qpy � j Ĝq � x and

� 3
pa;i;b;j qpyq � � 2

pa;i;b;j qpx � j Ĝq � � pa;i;b;j qpxy � p i � j qĜq � y:

Therefore the order of� pa;i;b;j q is 3 in Case 1.

Case 2. Eithera � x or b � y or ab� xy.

Case 2(a)a � x: Then � 2
pa;i;b;j qpxq � � pa;i;b;j qpx � i Ĝq � x.

Case 2(b)a � x and b � y: Thus a � xy and soab � x. Therefore � 2
pa;i;b;j qpxq �

� pa;i;b;j qpxy � i Ĝq � x � j Ĝ.

Case 2(c)a � x, b � y and ab� xy: Thus a � y and b � x. Therefore� 2
pa;i;b;j qpxq �
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� pa;i;b;j qpy � i Ĝq � x � p i � j qĜ.

Therefore � 2
pa;i;b;j qpxq � x � lĜ, for somel P F2. Likewise it can be shown that

� 2
pa;i;b;j qpyq � y � mĜ, for somem PF2 and so� 4

pa;i;b;j q is the identity map.

Therefore� pa;i;b;j q is invertible and thus is an automorphisim ofKG . There are

6 elementsa � i Ĝ and 4 elementsb� j Ĝ, wherea P tx; y; xyu, bP tx; y; xyuztau

and i; j PF2. Thus Aut pKG q is a group of order 24 such that the maximum order

of an element is 4. ThereforeAut pKG q � S4, the symmetric group on 4 objects

[18].

Example 4.5.2. Let KG � F2pC2� C2q, whereC2� C2 � x x; y | x2 � y2 � r x; ys �

1y. There are 28 derivations ofKG by Theorem 2.3.4. Theorem 3.1.20 implies that

the elements ofAut pKG q permute the derivations ofKG by conjugation. In this

example, the graph isomorphism classes of the derivations ofKG are determined

and categorised by preperiod length. Letd be a derivation ofKG and let mdpX q �

X m f pX q, wheref p0q � 0 be the minimal polynomial ofd. Then the preperiod ofd

is m [23]. The 28 derivations ofKG are partitioned into subsets via conjugation by

automorphisms ofKG . The associated digraph of a representative of each subset

is also determined. [43] was used to perform these computations and the results

are summarised in Table 4.3.

class representative pper jclassj cdpX q mdpX q

1 0 1 1 X 4 X

2 xyBy 1 36 X 2pX � 1q2 X pX � 1q2

3 yBy 1 28 X 2pX � 1q2 X pX � 1q

4 xyBx � yBy 1 56 X pX � 1qpX 2 � X � 1q X pX � 1qpX 2 � X � 1q

5 xyBx � p y � xyqBy 1 24 X pX 3 � X � 1q X pX 3 � X � 1q

6 py � xyqBy 2 9 X 4 X 2

7 xBy 2 12 X 4 X 2

8 xyBx � xBy 2 48 X 2pX � 1q2 X 2pX � 1q2

9 px � y � xyqBy 3 18 X 4 X 3

10 yBx � B y 4 24 X 4 X 4

Table 4.3: The conjugacy classes of the derivations ofF2pC2 � C2q
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0

Figure 4.11: The digraph of the derivation in class 1 of Table 4.3

0

Figure 4.12: The digraph of the derivations in class 2 of Table 4.3

0

Figure 4.13: The digraph of the derivations in class 3 of Table 4.3

0

Figure 4.14: The digraph of the derivations in class 4 of Table 4.3
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0

Figure 4.15: The digraph of the derivations in class 5 of Table 4.3

0

Figure 4.16: The digraph of the derivations in class 6 of Table 4.3

0

Figure 4.17: The digraph of the derivations in class 7 of Table 4.3

0

Figure 4.18: The digraph of the derivations in class 8 of Table 4.3
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0

Figure 4.19: The digraph of the derivations in class 9 of Table 4.3

0

Figure 4.20: The digraph of the derivations in class 10 of Table 4.3

It can be seen from Figures 4.11 - 4.20, thatperpDerpF2pC2 � C2qqq � 7 and

pperpDerpF2pC2 � C2qqq � 4.

Lemma 4.5.3. Let KG � F2pC4 � C4q, whereC4 � C4 � x x; y | x4 � y4 � r x; ys �

1y. Then B � tp 1� x2q; xp1� x2q; yp1� x2q; xyp1� x2q; p1� y2q; xp1� y2q; yp1�

y2q; xyp1� y2q; p1� x2qp1� y2q; xp1� x2qp1� y2q; yp1� x2qp1� y2q; xyp1� x2qp1� y2qu

is a basis for the kernel of the Frobenius endomorphism of F2pC4� C4q. Moreover,

as vector spaces,KG � V ` ker  , whereV is the F2-linear span oft 1; x; y; xyu.

Proof. Let  : F2pC4 � C4q Ñ F2pC4 � C4qbe the Frobenius endomorphism de�ned

by  p� q � � 2. Write � �
° 3

i � 0

° 3
j � 0 ai;j x i yj . Then

� 2 �
¸

i Pt0;2u

¸

j Pt0;2u

ai;j �
¸

i Pt1;3u

¸

j Pt0;2u

ai;j x2 �
¸

i Pt0;2u

¸

j Pt1;3u

ai;j y2 �
¸

i Pt1;3u

¸

j Pt1;3u

ai;j x2y2:
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This implies that � 2 � 0 if and only if

¸

i Pt0;2u

¸

j Pt0;2u

ai;j � 0;
¸

i Pt1;3u

¸

j Pt0;2u

ai;j � 0;
¸

i Pt0;2u

¸

j Pt1;3u

ai;j � 0 and
¸

i Pt1;3u

¸

j Pt1;3u

ai;j � 0:

Thereforekerp q has dimension equal to 12.

Let B � tp 1� x2q; xp1� x2q; yp1� x2q; xyp1� x2q; p1� y2q; xp1� y2q; yp1� y2q;

xyp1� y2q; p1� x2qp1� y2q; xp1� x2qp1� y2q; yp1� x2qp1� y2q; xyp1� x2qp1� y2qu.

b2 � 0 for all b P B and so theF2-linear span ofB is contained inkerp q. Let bi

be the i th element ofB in the above listing. Assume that �
° 12

i � 1 ki bi � 0 for

someki PF2.

x2y2 P supppbj q ðñ j � 9, x3y2 P supppbj q ðñ j � 10, x2y3 P

supppbj q ðñ j � 11 and x3y3 P supppbj q ðñ j � 12. Thereforek9 �

k10 � k11 � k12 � 0 and so it can be assumed that �
° 8

i � 1 ki bi � 0.

y2 P suppp q ðñ k5 � 1, xy2 P suppp q ðñ k6 � 1, y3 P suppp q ðñ

k7 � 1 and xy3 Psuppp q ðñ k8 � 1. Thereforek5 � k6 � k7 � k8 � 0 and so it

can be assumed that �
° 4

i � 1 ki bi � 0.

1 P suppp q ðñ k1 � 1, x P suppp q ðñ k2 � 1, y P suppp q ðñ k3 � 1

and xy P suppp q ðñ k4 � 1. Therefore k1 � k2 � k3 � k4 � 0 and so
° 12

i � 1 ki bi � 0 if and only if ki � 0 for i � 1; 2; : : : ; 12.

ThereforeB is a linearly independent set of elements ofkerp q of size 12 and

so B is a basis forkerp q.

Let B2 � t 1; x; y; xyu. B2 € G and so B2 is a linearly independent set.

Denote byV the F2-linear span ofB2. Let v PV and write v � c11� c2x� c3y� c4xy,

whereci PF2. Then v2 � c11 � c2x2 � c3y2 � c4x2y2 and sov Pkerp q if and only

if ci � 0 for i � 1; 2; 3 and 4. Therefore extendingB by the set t 1; x; y; xyu gives

a basis forKG and so as vector spaces,KG � V ` ker  .
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Corollary 4.5.4. Let KG � F2pC4 � C4q, where C4 � C4 � x x; y | x4 � y4 �

rx; ys � 1y and let w � 1 � x � y � xy. Let  : F2pC4 � C4q Ñ F2pC4 � C4q be the

Frobenius endomorphism de�ned by p� q � � 2. Then annpw2q � ker  .

Proof. Let V be the F2-linear span oft 1; x; y; xyu. By Lemma 4.5.3 any element

� of KG can be written as v1 � v2p1 � x2q � v3p1 � y2q � v4p1 � x2qp1 � y2q,

where vi P V for i � 1; 2; 3 and 4. Let v1 � c11 � c2x � c3y � c4xy. Then

�w 2 � v1w2 � p c11 � c2x � c3y � c4xyqw2. Note that w3 � Ĝ and so the set

t w2; xw2; yw2; xyw2u is linearly independent. Therefore�w 2 � 0 if and only if

ci � 0 for i � 1; 2; 3 and 4. Thusannpw2q � ker  .

Lemma 4.5.5. The unit group ofF2pC4 � C4q, denotedUpF2pC4 � C4qqis isomor-

phic to C9
2 � C3

4 .

Proof. The map � : F2pC4 � C4q Ñ F2pC4 � C4q de�ned by � ÞÑ� 4 is the augmen-

tation map. Therefore the units ofF2pC4 � C4q are the elements of augmentation

1 and so there are 215 units in F2pC4 � C4q. The unit group has exponent 4 and so

UpF2pC4 � C4qq � Cn
2 � Cm

4 , for some positive integersm and n.

Let  : F2pC4 � C4q Ñ F2pC4 � C4q be the Frobenius endomorphism de�ned

by  p� q � � 2. Let V be the F2-linear span oft 1; x; y; xyu. By Lemma 4.5.3

KG � V ` ker  and so any unit ofKG can be written asv � z, where v is an

element ofV of augmentation 1 andz Pker  . pv � zq2 � v2 � z2 � v2 and so the

units of order dividing 2 are the 212 elements 1� z such that z Pkerp q. Cn
2 � Cm

4

has 2n� 2m elements, 2n� m of which have order dividing 2 and son � 2m � 15 and

n � m � 12. Solving these equations simultaneously givesn � 9 and m � 3.

Lemma 4.5.6. Let KG � F2pC4 � C4q, whereC4 � C4 � x x; y | x4 � y4 � r x; ys �

1y. Let  be the algebra endomorphism fromKG into KG de�ned by � ÞÑ� 2. Let

u P tx; y; xyu, v P tx; y; xyuztuu, w � 1� x � y � xy and let r; s Pkerp q. De�ne

113



� pu;m;r;v;n;s q: KG Ñ KG to be theF2-linear extension of the map fromG into KG

de�ned by x i yj ÞÑ pu � mw � rqi pv � nw � sqj , for i; j � 0; 1; 2; 3 and m; n P F2.

Then � is an algebra automorphism ofKG if and only if � � � pu;m;r;v;n;s q, for some

u; m; r; v; n and s.

Proof. Let � be an algebra automorphism ofKG and let UpKG q denote the

unit group of KG . Then � is a permutation of UpKG q such that � p1q � 1.

Let � �
° 3

i � 0

° 3
j � 0 ai;j x i yj . � is multiplicative and F2-linear and so � p� q �

° 3
i � 0

° 3
i � 0 ai;j � pxqi � pyqj . Thus � is determined by� pxq and � pyq. Moreover, since

� is an automorphism it preserves the order of a unit, that is, the order of� p� q is

equal to the order of� for all � PUpKG q.

Let w � 1 � x � y � xy. By the proof of Lemma 4.5.5, any unit ofKG can

be written as u � mw � r , for someu P t1; x; y; xyu, m P F2 and r P kerp q.

Therefore� pxq � u � mw � r and � pyq � v � nw � s, for someu; v P t1; x; y; xyu,

m; n PF2 and r; s Pkerp q. w2 � 1 � x2 � y2 � x2y2 and so

� pw2q � � p1q � � pxq2 � � pyq2 � � pxq2� pyq2

� 1 � u2 � mw2 � v2 � nw2 � p u2 � mw2qpv2 � nw2q

� 1 � u2 � mw2 � v2 � nw2 � u2v2 � nu2w2 � mv2w2 � mnw4

� 1 � u2 � mw2 � v2 � nw2 � u2v2 � nw2 � mw2 � 0

� 1 � u2 � v2 � u2v2 � p 1 � u2qp1 � v2q;

sinceu2w2 � v2w2 � w2.

w2 � 0 and so � pw2q � 0 which implies that u � 1, v � 1 and u � v.

Therefore � � � pu;m;r;v;n;s q, for someu P tx; y; xyu, v P tx; y; xyuztuu, m; n P F2

and r; s Pkerp q. Note that for � � � pu;m;r;v;n;s q

� pw2q � 1 � u2 � v2 � u2v2 � w2: (4.3)
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Conversely, let� � � pu;m;r;v;n;s q, for someu P tx; y; xyu, v P tx; y; xyuztuu,

m; n P F2 and r; s P kerp q. Let g � x i yj and h � x lyk be elements of the group

G. Then

� pghq � � px i � lyj � kq � � pxqi � l � pyqj � k � � pxqi � pyqj � pxql � pyqk � � pgq� phq:

Let � �
°

gPG agg and � �
°

hPG bhh. Then

� p�� q � �
� ¸

gPG

¸

hPG

agbhgh
	

�
¸

gPG

¸

hPG

agbh � pghq �
¸

gPG

¸

hPG

agbh � pgq� phq

�
¸

gPG

ag� pgq
¸

hPG

bh � phq � � p� q� p� q:

Therefore� is a ring endomorphism ofKG .

Let � be any element ofKG . It is now shown that � p� q � 0 if and only if

� � 0 and hence� is bijective. Let V be theF2-linear span of the sett 1; x; y; xyu.

Let v P V and write v � c11 � c2x � c3y � c4xy, where ci P F2. Then since

w � 1 � u � v � uv

� pvq � c11 � c2pu � mwq � c3pv � nwq � c4pu � mwqpv � nwq (mod ker  q

� c11 � c2u � c3v � c4uv � p c2m � c3n � c4nu � c4mvqw (mod ker  q

� c11 � c2u � c3v � c4uv

� p c2m � c3n � c4nu � c4mvqp1 � u � v � uvq (mod ker  q

� p c1 � c2m � c3nq1 � p c2 � c2m � c3nqu � p c3 � c2m � c3nqv

� p c4 � c2m � c3nquv � c4nuw � c4mvw (mod ker  q:

Assume that � pvq � 0 (mod ker  q. Then c4pnuqw � c4pmvqw � 0, sinceu2 P

supppuwq, u2 Rsupppvwq, v2 Psupppvwqand v2 Rsupppuwq. Thus c4n � c4m � 0.

There are 2 cases, the �rst isc4 � 0 and the second ism � n � 0.
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Case 1. c4 � 0. The coe�cient of uv equals 0 and soc2m � c3n � 0 and so

� pvq � c11 � c2u � c3v (mod ker  ) and soc1 � c2 � c3 � c4 � 0, since 1; u and v

are distinct elements ofG and so are linearly independent.

Case 2.m � n � 0. Then � pvq � c11 � c2u � c3v � c4uv (mod ker  ) and so again

c1 � c2 � c3 � c4 � 0. Therefore� pvq Pker  if and only if v � 0. Thus V is a

� -invariant subspace ofKG .

By Lemma 4.5.3,� can be written as� � v1 � v2p1� x2q � v3p1� y2q � v4p1�

x2qp1 � y2q, wherevi PV for i � 1; 2; 3 and 4. Assume that� p� q � 0. Then using

Equation 4.3, 0� � p� q� pw2q � � p�w 2q � � pv1w2q � � pv1q� pw2q � � pv1qw2 and so

� pv1q Pannpw2q. By Corollary 4.5.4,annpw2q � ker  , hence� pv1q Pker  and so

v1 � 0. Therefore� � v2p1 � x2q � v3p1 � y2q � v4p1 � x2qp1 � y2q and so

0 � � p� q� pp1 � x2qq � � p� p1 � x2qq � � pv3p1 � y2qp1 � x2qq � � pv3w2q � � pv3qw2

and 0 � � p� q� pp1 � y2qq � � p� p1 � y2qq � � pv2w2q � � pv2qw2:

Therefore � pv2q and � pv3q Pannpw2q � ker  , hencev2 � v3 � 0. Thus � � v4w2

and 0 � � p� q � � pv4w2q � � pv4qw2 which implies � pv4q Pannpw2q � ker  , hence

v4 � 0. Therefore� p� q � 0 if and only if � � 0. Thus � is a bijection and so it is

an algebra automorphism ofKG .

Lemma 4.5.7. Let KG � F2pC4 � C4q, whereC4 � C4 � x x; y | x4 � y4 � r x; ys �

1y. Let  be the Frobenius endomorphism fromKG into KG de�ned by � ÞÑ� 2

and let � be a map fromKG to KG . Then � is an algebra automorphism ofKG

if and only if

1. � æG is a group isomorphism and

2. � is the K -linear extension of� æG and

3. � æker p q is injective.
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Proof. Let � be a map fromKG to KG . Assume that� æG is a group isomorphism,

that � is the K -linear extension of� æG and also that � æker p q is injective. Let

� �
°

gPG agg and � �
°

hPG bhh be elements ofKG . Then

� p�� q � �
� ¸

gPG

¸

hPG

agbhgh
	

�
¸

gPG

¸

hPG

agbh � pghq �
¸

gPG

¸

hPG

agbh � pgq� phq

�
¸

gPG

ag� pgq
¸

hPG

bh � phq � �
� ¸

gPG

agg
	

�
� ¸

hPG

bhh
	

� � p� q� p� q:

Therefore� is a algebra endomorphism. This implies that� pkq � k for all k PF2.

Let V be the F2-linear span of the sett 1; x; y; xyu. By Lemma 4.5.3, as

vector spacesKG � V ` kerp q. � maps units to units and so for anyg P G,

we can write � pgq � vg � zg, where vg is an element ofV of augmentation 1 and

zg Pkerp q.

Let v PV and write v � c11 � c2x � c3y � c4xy, whereci PF2. Then

� pvq � c1� p1q � c2� pxq � c3� pyq � c4� pxyq

� c11 � c2vx � c3vy � c4vxy (mod kerp qq:

Suppose� pvq Pkerp q. Then c11� c2vx � c3vy � c4vxvy � 0. The elements 1; vx ; vy

and vxy all have augmentation 1 and so an even number of theci 's are equal to 1.

Case 1. None of theci 's are equal to 1. That is,c1 � c2 � c3 � c4 � 0.

Case 2. Two of theci 's are equal to 1. Thereforevg � vh � 0, for 2 distinct elements

g; h of t 1; x; y; xyu. Thus � pg2q � v2
g � v2

h � � ph2q, however this contradicts the

assumption that � æG is a group isomorphism and so this case does not occur.

Case 3. All four of theci 's are equal to 1. Then 1� vx � vy � vxy � 0. Let

w � 1 � x � y � xy. Then w2 is a nonzero element ofkerp q and � pw2q � 0, since

� p0q � 0 and � æker p q is injective. Therefore 0� � pw2q � 1 � v2
x � v2

y � v2
xy and so

1 � vx � vy � vxy � 0. Thus this case does not occur.
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Therefore the only solution ofc11� c2vx � c3vy � c4vxvy � 0 is c1 � c2 � c3 � c4 � 0

and so� pvq Pkerp q implies v � 0. Thus V is a � -invariant subspace ofKG .

Let � be any element ofKG and write � � v � z, wherev PV and z Pkerp q.

Assume that� p� q � 0. Then 0� � p� q � � pvq� � pzqwhich implies that � pvq � � pzq.

Therefore� pvq Pkerp q, since� pvq2 � � pzq2 � � pz2q � � p0q � 0 which implies that

v � 0. Thus � � z P kerp q, which implies that � � 0, since� æker p q is injective.

Therefore � is an algebra endomorphism with kernel equal tot 0u and so � is an

algebra automorphism ofKG .

Conversely, assume� is an algebra automorphism ofKG . Then by de�nition

� is a K -linear extension of� æG and � æker p q is injective. Also � pghq � � pgq� phq for

any g; h PG, since� is an algebra automorphism.

Remark 4.5.8. The size ofkerp q was calculated using [18] to be 212. Therefore

by Lemma 4.5.6Aut pF2pC4 � C4qqhas size 3p2qp212qp2qp2qp212q � 3p227q.

4.6 Distinguishing Group Algebras using Digraphs

Example 4.6.1. In this example the derivations ofF2C2 are listed. Let C2 � x xy.

By Theorem 2.3.4 the derivations ofF2C2 are :

x ÞÑ0; x ÞÑ1; x ÞÑx; x ÞÑ1 � x

The derivations are represented below by 2� 2 matrices overF2 with respect to

the basisB � t 1; xu:

�
0 0
0 0

�
;

�
0 1
0 0

�
;

�
0 0
0 1

�
;

�
0 1
0 1

�
: (4.4)

�
0 1
0 1

� �
1
1

�
�

�
1
1

�
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is the matrix representation ofdp1 � xq � 1 � x, whered P DerpF2C2q such that

dpxq � 1 � x. There is only one nonzero nilpotent derivation ofF2C2, namely the

derivation de�ned by x ÞÑ1 and its index of nilpotency is 2.

De�nition 4.6.2. Let r0sn be the n � n matrix, where each entry is zero and let

rEsn be the n � n matrix, where each entry is one.

Example 4.6.3. Let K be the �nite �eld with 2 elements. Let G � x x | x4 � 1y

and let B � t 1; x; 1� x2; xp1� x2qube a basis ofKG . Let H be the subgroup ofG

generated byx2 and let �B � t H; xH u be a basis ofK pG{H q. In this example the

derivations of KG are listed as 2� 2 block matrices, with respect to the basisB.

Each block is a 2� 2 matrix over K . By Corollary 3.1.17,� pG; H q is a di�erential

ideal of pKG; dq, for all derivations d of KG . Therefore by Lemma 3.1.11 any

derivation D of KG has the form:

rDsB �

�

�
�

rds�B r0s2

A rds�B

�

�
� ;

whered PDerpF2pG{H qqand sords�B is one of the matrices listed in Equation 4.4

and A is a 2� 2 matrix over K . Moreover, sincedp1q � 0, the �rst column of

rDsB is all zeros and soA is also one of the matrices listed in Equation 4.4, that

is, A � r � s�B, for some� PDerpF2C2q.

De�nition 4.6.4. An n � n matrix M is calledcirculant if it is of the form:

M �

�

�
�
�
�
�
�
�
�
�
�
�
�

a0 a1 a2 : : : an� 1

an� 1 a0 a1 : : : an� 2

an� 2 an� 1 a0 : : : an� 3

:::
:::

:::
: : :

:::

a1 a2 a3 : : : a0

�

�
�
�
�
�
�
�
�
�
�
�
�

:
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Lemma 4.6.5. Let K be the �nite �eld of characteristic 2 and let G � x x |

x2m
� 1y, where m is a positive integer. Then the maximum nilpotency index for

a derivation of KG is 2m� 1 � 1.

Proof. Let B � t 1; x2; : : : ; x2m � 2; x; x3; : : : ; x2m � 1u. Then B is a basis ofKG .

The �rst 2 m� 1 elements ofB in the above listing are in the ring of constants of

KG . By Lemma 2.2.1,dpxk� 2q � x2dpxkq, for any integer k and so any derivation

D of KG has the form:

rDsB �

�

�
�

r0s2m � 1 A

r0s2m � 1 B

�

�
� ;

whereA and B are 2m� 1 � 2m� 1 circulant matrices overK .

rDs2
B �

�

�
�

r0s2m � 1 A

r0s2m � 1 B

�

�
�

�

�
�

r0s2m � 1 A

r0s2m � 1 B

�

�
� �

�

�
�

r0s2m � 1 AB

r0s2m � 1 B 2

�

�
� ; and

rDsn
B �

�

�
�

r0s2m � 1 AB n� 1

r0s2m � 1 B n

�

�
� ; for all positive integersn:

ThereforeD is nilpotent if and only if B is nilpotent. Let H � x yy be the cyclic

group of order 2m� 1. By [29] there is a bijective ring homomorphism between

KH and the ring of 2m� 1 � 2m� 1 circulant matrices overK . ThereforeA and B

correspond respectively to elements�; � P KH . AssumeD is nilpotent. Then B

and hence� is also nilpotent. Let  : KH Ñ KH be the Frobenius endomorphism

and let � : KH Ñ K be the augmentation map.H is a 2-group of exponent 2m� 1

and K is a �eld of characteristic 2 and so m� 1 : KH Ñ K such that  m� 1 �

 m� 1 � � , since for any� �
°

hPH ahh PKH

 m� 1p� q �  m� 1p
¸

hPH

ahhq �
¸

hPH

 m� 1pahq m� 1phq �  m� 1p
¸

hPH

ahq �  m� 1 � � p� q:
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� is a ring endomorphism and so maps nilpotent elements to nilpotent elements.

Since the image of� is a �eld, � maps nilpotent elements to 0 and so m� 1p� q � 0

for all nilpotent elements � . Therefore the elements of the augmentation ideal of

KH are the nilpotent elements ofKH . The augmentation ideal ofKH is the ideal

generated byp1� yqand so� � bp1� yq, for somebPKH . Thus � 2m � 1
�  m� 1p� q �

p m� 1 � � qp� q � 0 and �� 2m � 1 � 1 � �b 2m � 1 � 1p1� yq2m � 1 � 1 � �b 2m � 1 � 1ŷ � kŷ, where

k � � p�b 2m � 1 � 1q P K . By Section 3.1 of [29] and De�nition 4.6.2,B 2m � 1 � 1 �

krEs2m � 1 . Therefore

rDs2m � 1

B �

�

�
�

r0s2m � 1 AB 2m � 1 � 1

r0s2m � 1 B 2m � 1

�

�
� �

�

�
�

r0s2m � 1 krEs2m � 1

r0s2m � 1 r0s2m � 1

�

�
� :

Choosing� � 1 and � � p 1 � yq implies k � 1 and so in this caserDs2m � 1

B � 0.

Also

rDs2m � 1 � 1
B �

�

�
�

r0s2m � 1 A

r0s2m � 1 B

�

�
�

�

�
�

r0s2m � 1 krEs2m � 1

r0s2m � 1 r0s2m � 1

�

�
� �

�

�
�

r0s2m � 1 r0s2m � 1

r0s2m � 1 r0s2m � 1

�

�
� :

De�nition 4.6.6. Let V be a �nite dimensional vector space over a �nite �eld

K and let pV; f q and pV; gq be LFDS. De�ne pV; f q � pV; gq to be the LFDS pV �

V; f � gq, whereV � V is the cartesian product of the vector spaceV with itself and

f � g: V � V Ñ V � V, de�ned by pf � gqpu; vq � p f puq; gpuq � f pvqq. Also de�ne

the associated digraphs similarly, that is,� f � � g � � f � g.

Lemma 4.6.7. Let K be the �nite �eld with 2 elements and letG � x x | x4 � 1y.

Let H be the subgroup ofG generated byx2 and let D be aK -linear map from KG

to KG . Then
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(i) D PDerpKG qif and only if rDsB �

�

�
�

rds�B r0s2

r� s�B rds�B

�

�
� , whered; � PDerpK pG{H qq,

B � t 1; x; 1 � x2; xp1 � x2quand �B � t H; xH u.

(ii) For any D P DerpKG q, � D � � d � � � , where d and � are the derivations of

DerpK pG{H qqde�ned by part piq.

Proof. (i ) Let D PDerpKG q and let B � t 1; x; 1 � x2; xp1 � x2qu. Then

rDsB �

�

�
�

A1 A2

A3 A4

�

�
� ; whereA1; : : : ; A4 are 2� 2 matrices overK:

By Corollary 3.1.17, � pG; H q is a di�erential ideal of pKG; D q, for all derivations

D of KG . By Proposition 3.1.6, KG
� pG;H q � K pG{H q. Therefore by Lemma 3.1.11,

A1 � r ds�B, for somed PDerpK pG{H qqandA2 � r 0s2, the 2� 2 matrix whose entries

are all zeros. Moreover,p1 � x2q PCpKG qand soDp� p1 � x2qq � Dp� qp1 � x2q for

all � P KG and soA4 � A1. Lastly, sincedp1q � 0, the �rst column of rDsB is all

zeros and soA3 is also one of the matrices listed in Equation 4.4 and soA3 � r � s�B,

for some� PDerpK pG{H qq.

Conversely, letT be aK -linear map from KG to KG such that

rTsB �

�

�
�

rds�B r0s2

r� s�B rds�B

�

�
� ;

where d; � P DerpK pG{H qq, B � t 1; x; 1 � x2; xp1 � x2quand �B � t H; xH u.

Then by Example 4.6.1

rds�B �
�
0 a0

0 a1

�
and r� s�B �

�
0 a2

0 a3

�
; for someai PK and sorTsB �

�

�
�
�

0 a0 0 0
0 a1 0 0
0 a2 0 a0

0 a3 0 a1

�

�
�
� :
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Let D be the derivation ofKG de�ned by Dpxq � a0 � a1x � a2p1� x2q� a3xp1� x2q.

Then Dp1q � Dp1 � x2q � 0 and Dpxp1 � x2qq � Dpxqp1 � x2q � a0p1 � x2q �

a1xp1 � x2q. Therefore

rDsB �

�

�
�
�

0 a0 0 0
0 a1 0 0
0 a2 0 a0

0 a3 0 a1

�

�
�
� and soT PDerpKG q, sinceT � D: (4.5)

(ii ) Let V be the subspace ofKG with basis t 1; xu. Let � : KG Ñ V � V,

that is, � is a map fromKG to the Cartesian product of the vector spaceV with

itself. B � t 1; x; 1 � x2; xp1 � x2qu is a basis ofKG and so any � P KG

can be written uniquely as� � r � sp1 � x2q, where r; s P V. De�ne � by

r � sp1 � x2q ÞÑ pr; sq. Therefore � is a bijection from the vertex set of� D to

the vertex set of � d� � . It is now shown that � is a graph isomorphism, that is,

� is bijection between vertex set of� D to the vertex set of � d� � that preserves

adjacency. Dp� q � Dpr � sp1 � x2qq � Dprq � Dpsqp1 � x2q. By Equation 4.5

Dprq � dprq � � prqp1 � x2q and Dpsq � dpsq � � psqp1 � x2q. Therefore

Dp� q � dprq� � prqp1� x2q� dpsqp1� x2q� � psqp1� x2q2 � dprq�
�
� prq� dpsq

�
p1� x2q:

Therefore � pDp� qq � pdprq; � prq � dpsqq. By De�nition 4.6.6, � p� q � p r; sq is

adjacent to pdprq; � prq � dpsqqin � d� � and so� preserves adjacency and thus is a

graph isomorphism.

De�nition 4.6.8. Let CMnpK q be the vector space ofn � n circulant matrices

over a �eld K . De�ne g: CMnpK q Ñ CMnpK q by gpCqi;j �

$
''&

''%

Ci;j if j ¡ i

0 otherwise.
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That is gpCq is given by the following upper triangular matrix:

gpCq �

�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

0 an� 1 an� 2 an� 3 : : : a2 a1

0 0 an� 1 an� 2 : : : a3 a2

0 0 0 an� 1 : : : a4 a3

:::
:::

:::
: : :

: : :
: : :

:::

0 0 0 0 : : : 0 an� 1

0 0 0 0 : : : 0 0

�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

; whereC �

�

�
�
�
�
�
�
�
�
�
�
�
�

a0 an� 1 an� 2 : : : a1

a1 a0 an� 1 : : : a2

a2 a1 a0 : : : a3

:::
:::

:::
: : :

:::

an� 1 an� 2 an� 3 : : : a0

�

�
�
�
�
�
�
�
�
�
�
�
�

:

Further if M is a block matrix consisting of blocksM i for i � 1; 2; : : : ; mpnq, such

that M i P CMnpK q for each i . Then de�ne gpM q to be the block matrix whose

blocks aregpM i q keeping the positions unchanged. That is:

gpM q �

�

�
�
�
�
�
�
�
�

gpM 1q gpM 2q : : : gpMmq

gpMm� 1q gpMm� 2q : : : gpM 2mq
:::

:::
:::

gpM pn� 1qm� 1q gpM pn� 1qm� 2q : : : gpM nm q

�

�
�
�
�
�
�
�
�

; where

M �

�

�
�
�
�
�
�
�
�

M 1 M 2 : : : Mm

Mm� 1 Mm� 2 : : : M2m

:::
:::

:::

M pn� 1qm� 1 M pn� 1qm� 2 : : : Mnm

�

�
�
�
�
�
�
�
�

:

De�nition 4.6.9. Let � 1 and � 2 be graphs. A mappingf : Vp� 1q Ñ Vp� 2q is a

homomorphism of graphsif f puq and f pvq are adjacent in � 2, wheneveru and v

are adjacent in� 1.

De�nition 4.6.10. Let � 2 be a subgraph of a graph� 1. A retraction is a homo-

morphism f from Vp� 1q Ñ Vp� 2q such that the restriction, f æVp� 2q of f to Vp� 2q

is the identity map.
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Example 4.6.11. Let K be the �nite �eld with 2 elements and let G � x x; y | x2 �

y2 � r x; ys � 1y. Let B � t 1; x; y; xyu and let d be an arbitrary derivation of KG .

Then by Theorem 2.3.4,d � aBx � bBy, for somea �
°

gPG agg and b �
°

gPG bgg

where ag; bg P K , for all g P G. Therefore dp1q � 0, dpxq � a, dpyq � b and

dpxyq � ay � bx and so

rdsB �

�

�
�
�
�
�
�
�
�

0 a1 b1 ay � bx

0 ax bx axy � b1

0 ay by a1 � bxy

0 axy bxy ax � by

�

�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�

0 a1 0 ay

0 ax 0 axy

0 ay 0 a1

0 axy 0 ax

�

�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�

0 0 b1 bx

0 0 bx b1

0 0 by bxy

0 0 bxy by

�

�
�
�
�
�
�
�
�

�

�

�
�

rd1s�B rd2s�B

rd2s�B rd1s�B

�

�
� �

�

�
�

r0s2 c1

r0s2 c2

�

�
� ;

whered1; d2 P DerpF2xxyq, �B � t 1; xu and c1 and c2 are 2� 2 circulant matrices

over F2.

Lemma 4.6.12. [31][pp. 8] Let d be a derivation of a not necessarily associative

algebraA and let a; bPA. Then

dmpabq �
m̧

i � 0

�
m
i



dm� i paqdi pbq; for any positive integerm: (4.6)

The following result is a direct consequence of the discussion in [31][pp. 186].

Lemma 4.6.13. Let p be a prime number and letK be a �nite �eld of characteristic

p. Let G be a group and letd be a derivation ofKG . Then dpk
is a derivation of

KG for all positive integersk.

Remark 4.6.14. Let G and H be �nite abelian p-groups and letK be the �nite

�eld with p elements. Suppose thatKG and KH are isomorphic as rings. Then

KG and KH have the same dimension asK -algebras and sojGj � jH j. By
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Theorem 2.3.4, the vector space of derivations ofKG has dimensionnjGj, where

n is the minimum number of generators ofG. By Theorem 3.1.18,DerpKG q and

DerpKH qare isomorphic as additive groups and so have the same dimension. This

simple counting argument can sometimes be used to show that group algebras are

not isomorphic as rings. For examplejDerpF2C4qj � 24 whereasjDerpF2pC2 �

C2qqj � 28 and so by Theorem 3.1.18 or Theorem 4.1.8,F2C4 and F2pC2 � C2q

are not isomorphic as rings. The smallest example such that the above argument

fails to distinguish between non-isomorphic group algebras is when the groups are

C4 � C4 and C2 � C8 and the �eld K has 2 elements. Example 4.6.18 shows that

these two group algebras are non-isomorphic using the graphs of their derivations.

De�nition 4.6.15. De�ne the map f : M 4pF2q Ñ M 4pF2q by

A � p ai;j q ÞÑ

�

�
�
�
�
�
�
�
�

0 0 0a3;2

0 0 0a4;2

0 0 0 0

0 0 0 0

�

�
�
�
�
�
�
�
�

De�nition 4.6.16. De�ne the map g: M 4pF2q Ñ M 4pF2q by

A � p ai;j q ÞÑ

�

�
�
�
�
�
�
�
�

0 0 0a2;3

0 0 0 0

0 0 0a4;3

0 0 0 0

�

�
�
�
�
�
�
�
�

Lemma 4.6.17. Let K be the �nite �eld with 2 elements and letG � x x; y | x4 �

y4 � r x; ys � 1y. Let D be a derivation ofKG . Then D is nilpotent if and only if

D 8 � 0.

Proof. Assume that D is a nilpotent derivation of KG . It can be shown thatB �

t 1, x, y, xy, p1� x2q, xp1� x2q, yp1� x2q, xyp1� x2q, p1� y2q, xp1� y2q, yp1� y2q,
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xyp1� y2q, p1� x2qp1� y2q, xp1� x2qp1� y2q, yp1� x2qp1� y2q, xyp1� x2qp1� y2qu,

is a basis forKG . Let H � x x2; y2y and further choose �B � t H , xH , yH , xyH u

as a basis ofK pG{H q. Let bi be the i th element ofB in the above listing. Then

by Theorem 2.3.4,D � rBx � sBy for somer �
° 16

i � 1 r i bi and s �
° 16

i � 1 si bi where

r i ; si PK , for i � 1; 2; : : : ; 16. Therefore

Dp1q � 0;

Dpxq � r �
16¸

i � 1

r i bi ;

Dpyq � s �
16¸

i � 1

si bi ; and

Dpxyq � Dpxqy � xD pyq � ry � sx �
16¸

i � 1

r i bi y �
16¸

i � 1

si bi x:

Multiplying r by y and writing the product as a linear combination of the elements

of B implies

16¸

i � 1

r i bi y � r3 � r4x � r1y � r2xy �
�
r7 � r8x � r5y � r6xy

�
p1 � x2q

�
�
pr11 � r3q � p r12 � r4qx � r9y � r10xy

�
p1 � y2q

�
�
pr15 � r7q � p r16 � r8qx � p r13qy � p r14qxy

�
p1 � x2qp1 � y2q:

Multiplying s by x and writing the product as a linear combination of the elements

of B implies

16¸

i � 1

si bi x � s2 � s1x � s4y � s3xy �
�
ps6 � s2q � s5x � p s8 � s4qy � s7xy

�
p1 � x2q

�
�
s10 � s9x � s12y � s11xy

�
p1 � y2q

�
�
ps14 � s10q � s13x � p s16 � s12qy � s15xy

�
p1 � x2qp1 � y2q:

Therefore sincep1 � x2q; p1 � y2qand p1 � x2qp1 � y2qare in CpKG qand since
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