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ABSTRACT

The objective o f  this project is to investigate and develop suitable surface treatment 

methods applicable to bio-medical devices. In particular, attention is focused on 

incorporating the electro-etching procedure into the manufacturing process for 

cardiovascular stents. The project aims to replace the currently preferred chemical 

etching procedure with electro-etching. At present, the surface treatment processes 

incorporates: chemical etching followed by ultrasonic agitation in a purified water bath, 

and by electro-polishing.

The Taguchi Method is applied to identify the optimum parameter settings in the electro

etching process. These parameters include: time, temperature, potential difference 

between electrodes, acidity level o f electrolyte and the amount o f  agitation applied to the 

electrolyte by stirring. The experimental equipment employed to determine the optimum 

electro-etching parameters include: low-noise DC power supply, fumehood, electro

etching unit with electrodes and ultrasonic bath.

The optimised electro-etching process has been incorporated into a manufacturing 

production line with great success. The overall duration o f ultrasonic agitation during the 

entire manufacturing process o f stents is decreased by 37% using the electro-etching. 

Exposure to ultrasonic waves decreases the subsequent fatigue life o f  the delivered 

product. Therefore the reduction in exposure to ultrasonic waves by 83.3% is o f  

considerably benefit.

A comparison study between the surface finish obtained using the chemical and the new 

electro-etching processes has been completed using Scanning Electron Microscope and 

Atomic Force Microscope. This study shows dimensional variation o f ±0.00559 mm 

between struts thicknesses o f stents treated by the two methods, while similar roughness 

values (Ra=0.23(J,m) are computed. The electro-etched stents have passed all visual and 

dimensional inspection procedures.

The research presented in this thesis clearly demonstrates and quantifies that the electro

etching process generates similar surface finish to the chemical process o f etching.
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Chapter 1 General Introduction

Chapter 1

General Introduction

1.1. Project Outline

The work presented in this thesis has been carried out and submitted in satisfaction of 

the requirements for the Master o f  Engineering Science at the HETAC (Higher 

Education and Training Awards Council). The development o f novel electrochemistry 

techniques for a medical device is presented with the title “The Application o f Electro- 

Etching in the Manufacturing Process for Cardiovascular Stents”.

Currently, electropolishing is the principal method o f surface finishing employed in the 

stent manufacturing industry. Very little work has been published on the optimisation of 

the process for stent polishing or indeed investigation into other suitable processes. 

Some stent manufacturers have attempted to investigate electropolishing, but this is very 

much proprietary work and is not available in the public domain.

The overall objective o f the project was to determine the optimum descaling treatment 

after the laser cutting procedure o f the bio-medical devices with respect o f its utilisation 

on implantable devices. Given the wide variety o f uses o f medical grade steels and the 

considerable differences o f environments that these are subjected to, this investigation 

has concentrated on the use o f the metal as a vascular implant, in particular vascular
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1.2 Overview of Thesis

In this thesis, the scientific basis o f the work carried out is outlined in Chapter 2. 

Definitions o f biomaterials and their properties are provided with emphasis being given 

to stainless steel, the prime material o f interest for the coronary stent industry. The 

importance o f the etching process in providing the necessary surface finishing prior to 

electropolishing is emphasised and the differences between electro-etching and chemical 

etching processes are provided.

Chapter 3 provides a very extensive literature review on both the electropolishing and 

passivation o f stainless steel materials. Both will be described, as these are primary 

surface improvement techniques for stent devices. Effects o f alloying and different 

theories explaining the advantages and disadvantages o f alloying elements will be 

presented. Nitrogen and molybdenum alloying elements will be discussed because these 

two elements give a strong improvement in the stable passive film.

The novelty of the work presented in this thesis is illustrated by lack o f published

research in an electrochemistry method o f  descaling, i.e., electro-etching. Chapter 4 

describes the equipment used to carry out the work presented in this thesis. The design 

of a custom electro-etching unit, used for experiments, is described.

Chapter 5 describes some experiments carried out on coupons o f 316L steel and

subsequently on 316L stainless steel stents. Design o f Experiments or Taguchi 

evaluation method o f different parameters involved in electro-etching has been 

employed for a better understanding o f driven corrosion. The Fixture optimisation and a 

new alloy used in stent industry will be presented.

Chapter 6 describes the experiment and verification results and the operational 

qualification from electro-etching carried out on 15 mm GMIT stents.

Chapter 7 outlines the conclusions that can be made from this work and some future 

research recommendations are proposed.
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Chapter 2

Background Information 

For 

Surface Finishing of Biomaterials 

2.1. Introduction

Metals, biomaterials and particularly stainless steel will be presented in this chapter. 

The importance o f passivity and ultra-finishing method o f electropolishing is 

highlighted and explained. This chapter, as well as Chapter 4, will consider 

passivation and electropolishing as deliberate (selective) and controlled removal o f  

metal in an electrolyte.

An extensive description o f 316L stainless steel is presented due to its unique 

popularity in the Biomedical Industry.

2.2. Biomaterials

One commonly used definition o f biomaterials is any material that is used to replace 

or restore function to a body tissue and is continuously or intermittently in contact 

with body fluids [1]. It is widely perceived that there will be significant advances in 

the development and use o f  biomaterials in the near future. In fact, many believe that 

biomaterials will soon become the dominant focus o f materials research and that 

significant economic expansion will flow from this research. The very breadth o f this 

field precludes a comprehensive, in-depth projection in all areas o f  biomaterials, 

which currently include orthopaedic, cardiovascular, neurological, drug delivery, and 

other applications [2]. Projected future applications include the use o f  microrobotic 

devices for disease detection, drug delivery, and neurological applications, for 

example. Gene therapy is also identified as an alternative approach to many o f  these 

same clinical problems [3].
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B iom aterials science exam ines the m echanical, physical, and chem ical properties o f  

m aterials as w ell as the com plex host responses to in troduced bulk  m aterial and 

m aterial surfaces, and as a discipline, is a relatively  new  field,

Today biom aterials help  people to  w alk  w ithout pain  using artificial jo in ts , and 

people w ith  defective hearts to lead norm al live w ith  peacem akers and artificial heart 

valves. It is now  estim ated that one in  25 people have an im plant, the m ajority  o f  

w hom  have benefited  from  an  increased length  and quality  o f  life [4],

The first requirem ent for any m aterial to be p laced  in  the body is tha t it should  be 

biocom patible and not cause any adverse reaction  in  the body  [5], The m aterial m ust 

w ithstand the body environm ent and not degrade to  the  poin t tha t it cannot function 

in the body as intended. For exam ple, m etals used  in the cardiovascular system  m ust 

be non-throm bogenic, and in  general, the m ore electronegative the m etal w ith  respect 

to blood, the less throm bogenic the m etal w ill be. This m eans that w hen it is 

introduced into hum an body, the m aterial w ill exhibit a m in im al response from  the 

body. B iocom patib ility  is the ability  o f  the m aterial or device to perform  in its 

intended function w ith  an appropriate host response. In reality  there are very  few  

m aterials that satisfy these requirem ents. N ext, the biom aterials should possess 

adequate physical and m echanical properties to  serve as rep lacem ent or 

reinforcem ent for hum an body tissues.

Currently, m edical device designers are lim ited to  a relatively  sm all num ber o f  off- 

the-shelf m aterials that w ere no t orig inally  designed  to  be used in  m edical im plants. 

The developm ent o f  new  biom aterials requires a  better understanding  o f  the 

m echanism s that control cell-m aterials interactions. The new  m aterials w ill provide 

both  carefully tailored  physico-m echanical and chem ical p roperties as w ell as 

biologically  functional interfaces w ith  living cells. As such im proved m aterials 

becom e available, the replacem ent o f  w hole organs by synthetic substitu tes becom es 

a real possibility .

M ost biom aterials used for im plants are com m on m aterials fam iliar to the average 

m aterial engineer or scientist and Table 2.1 illustrates som e o f  the m aterials

-4-
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com m only used  in  the m anufacture o f  m edical im plants and devices. The m aterials 

are draw n from  a  num ber o f  classes, i.e. polym ers, resins, natural and synthetic 

products, m etals, ceram ics, and com posites. E ach  m aterial and  class o f  m aterial has a 

particular com bination o f  properties determ ined by  its com position  and production 

m ethod, and each  set o f  properties produces both  benefits and lim itations. D epending 

on the application, these m aterials serve as p ro tective barriers, decorative purpose, 

filter m em branes, load bearing m em bers, jo in ts , etc.

Type of material Specific example
B iostable polym ers 

and resins
Poliurethanes, silicone rubber, Teflon®, D acron  “, nylon, 

polym ethylm ethacrylate
B iodegradable

polym ers
Poly(lactic acid), po ly(glycolic  acid), polydioxanone

N atural and sem i
synthetic products

T reated porcine grafts, bovine pericardium , processed 
ce llu lo se ,jtrocessed  collagen

M etals
316 and 316L stainless steel, Vitallium®, titanium  alloys, 

C o-C r alloy, C o-C r-M o, Ti-6A1-4V

Ceram ics
A lum inum  oxides, calcium  alum inates, titan ium  oxides, 

pyrolytic carbon, Bioglass®, hydroxyapatite

Com posites
A patite com posites, carbon  coated m etals, carbon 

reinforced  polym ers

Table 2.1 M aterials commonly used in the M anufacture o f  M edical Implants and

Devices [7]

2.3. Stainless steels

C urrently, stainless steels by defin ition  are iron-base alloys that contain  a  m inim um  

o f  approxim ately  11 % chrom ium , the am ount needed to prevent the form ation o f  

rust. F ew  stainless steels contain m ore than  30%  chrom ium  or less than  50%  iron. 

They achieve their stainless characteristics th rough  the form ation o f  an invisible and 

adherent chrom ium -rich oxide surface film . This oxide form s and heals itse lf in  the 

presence o f  oxygen. O ther elem ents added  to  im prove particular characteristics 

include nickel, m olybdenum , copper, titanium , alum inium , silicon, niobium , 

nitrogen, sulfur, and selenium . C arbon is norm ally  p resen t in  am ounts ranging from  

less th an  0.03%  to over 1.0% in  certain  m artensitic  grades.
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2.3.1. Classification of Stainless Steels

E uropean standard E N  10088-1 presents the list o f  stainless steels w hile  E N  10088 -  

2 and E N  10088 -  3 describe the technical conditions for delivery  o f  sem i -  finished 

general purpose stainless steel.

In the U nited  States, w rought grades o f  stainless steels are generally  designated by 

the A m erican Iron and Steel Institute (A ISI) num bering system , the U nified 

N um bering  System  (U N S), or the proprietary  nam e o f  the alloy. In addition, 

designation system s have been  established by  m ost o f  the m ajor industrial nations 

[16]. O f  the tw o institutional num bering  system s used, A IS I is the o lder and m ore 

w idely used. M ost o f  the grades have a three-digit designation; the 200 and 300 

series are generally  austenitic stainless steels, w hereas the 400 series are either 

ferritic or m artensitic. Som e o f  the grades have a one- or tw o-letter suffix that 

indicates a particular m odification o f  the com position  [17].

Stainless steels can be divided into five fam ilies. Four are based  on the characteristic 

crystallographic structure/m icrostructure o f  the alloys in  the fam ily: ferritic, 

m artensitic, austenitic or duplex (austenitic plus ferritic). The fifth  fam ily, the 

precipitation-hardenable alloys, is based on the type o f  heat treatm ent used, rather 

than  m icro structure. Figure 2.1 provides a useful sum m ary o f  som e o f  the 

com positional and property linkages in  the stainless steel fam ily. Table 2.2 depicts 

the m ain  characteristics o f  these stainless steel classes.
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Fig, 2.1 Compositional and property linkage in the steel fam ily o f  alloys [15].
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Stainless steel 

families
Ferritic Austenitic Martensitic

Precipitation- 

hardenable (PH)
Duplex

Characteristics

- body centred cubic (bcc) 
crystal;
- magnetic;
- can not be hardened by 
heat treatment;
- not high strength;
- yield strength: 275 to 
350 MPa;
- limited fabricability; 
Advantages:
- resistance to chlorides; 
stess corrosion cracking 
and atmospheric corrosion
- 11->30% Cr;
- very low carbon content

- the largest stainless steel 
family (number o f  alloys 
and usage);
- can not be hardened by 
heat treatment;
- not magnetic;
- face-centred cubic (fee);
- excellent ductility, 
formability and 
toughness;
- can be substantially 
hardened by cold work;
- N i is ch ief element used 
to stabilise austenite;

can be subdivided:
a) chromium-nickel 

alloys
b) chromium- 

manganese-nitrogen 
alloys

c) -typical tensile yield  
strength 
200->275M Pa

- magnetic;
- heat-treated structure
- body-centred-tetragonal 
(bet);
- similar to iron cast alloys 
that are austenised, 
hardened by quenching 
and then tempered;
- in annealed condition -  
tensile yield strength is 
about 275MPa;
- most commonly is 
AISI410;
- 12%Cr; 1%C
- Hardness - 20—>40 HRC;
- Molybdenum and Nickel 
ccan be added to improve 
corrosion and toughness 
proprieties.

- chromium-nickel grade 
that can be hardened by an 
aging treatment;
- grades classified as 
austenitic, semiaustenitic 
or martensitic;
- cold work is sometimes 
used to facilitate the aging 
reaction;
- various alloying 
elements are used to 
achieve aging;
- these alloys can attain 
high tensile stength up to 
1700MPa;
- good ductility and 
toughness;
- moderate to good  
corrosion resistance
- better combination o f  
strength and corrosion 
resistance;
- better combination o f  
strength and corrosion 
resistance is achieved than 
with the austenitic alloys;

- chromium-nickel- 
molybdenum alloys that 
are blanced to contain a 
mixture o f  austenite and 
ferrite;
- magnetic;
- improved stress 
corrosion crack resitance 
compared with austenitic 
stainless steel,
- improved toughness and 
ductility compared with 
the ferritic stainless steel;
- yield strength -  550 to 
690 MPa;
- original alloy in this 
family was predominantly 
ferritic;
- addition o f  nitrogen 
increases the amount o f  
austenite to nearly50%;
- nitrogen improves 
welded corrosion 
proprieties, chloride 
corrosion resistance and 
toughness.

Table 2.2 Characteristics o f  stainless steel fam ilies

C
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2.3.2 Selection of Stainless Steels for Biomedical Industry

The selection o f  stainless steel m ay be based on corrosion resistance, fabrication 

characteristics, availability, m echanical properties in  specific tem perature ranges, and 

product cost. H ow ever, corrosion resistance and m echan ical proprieties are usually  

the m ost im portant factors in selecting a grade for a given application.

C haracteristics to  be considered in selecting the p roper type o f  stainless steel for a 

specific application include:

•  C orrosion resistance

• R esistance to oxidation and sulfidation

• Strength and ductility  at am bient and service tem peratures

• Suitability  for in tended  fabrication techniques

•  Suitability for in tended cleaning procedures

•  Stability  o f  properties in  service

•  Toughness

• R esistance to abrasion and erosion

• Surface fin ish  and/or reflex iv ity

•  Sharpness, or reten tion  o f  cutting  edge

•  R igidity

W hile several types o f  stainless steels are available for im plant use, in practice the 

m ost com m on is 316 austenitic stainless steel. The austenitic grades are used for 

b iom edical applications as they are essentially  non-m agnetic  w hich is a critical 

requirem ent.

The corrosion resistance o f  stainless steel can be im proved by electropolishing. 

A nother m ethod o f  im proving corrosion resistance is the developm ent o f  a protective 

film by passivation  o f  the steel [5].

In order to control m icro structure and properties, a num ber o f  alloying elem ents are 

added to the basic iron-chrom ium , iron-chrom ium -carbon, and iron-chrom ium -nickel
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system s; these alloying elem ents include m anganese, silicon, m olybdenum , niobium , 

titanium , and nitrogen. The Schaeffler diagram  (Figure 2.2) has becom e know n as 

the “roadm ap” o f  stainless steel [17].

Type 316L is used m ost w idely  in  applications in  w h ich  the im plan t is tem porary, 

although it is also used  for som e perm anent im plants. The com position and 

m echanical proprieties are g iven in Table 2.2.

The effects o f  alloying are im portant w hen variations in  steels are under 

consideration. Iron exists in  tw o d ifferent crystal structures [18], bu t there are two 

structure transitions as the structure transform s from  the high-tem perature body- 

centred cubic (bcc) 5-ferrite at 1390 °C to the face-centred  cubic (fee) y-austenite, 

w hich in  turn  transform s to  bcc a -fe rrite  at 910 °C.

C hrom ium , w hich is the key elem ent in the corrosion resistance o f  stainless steel, is a 

ferrite form er. C arbon is an austenite stabiliser. N ickel is added to  steel to  stabilise 

the austenite phase. For 316L, the m inim um  com bined  content o f  these elem ents is 

23% ; the m inim um  chrom ium  content is 16%, and the m inim um  nickel content is 

7%. M olybdenum  is added in  am ounts o f  2 to 3%  to strengthen  the protective surface 

film  in saline and acidic environm ents and to increase resistance to  pitting. 

M olybdenum  in  am ounts above 3%  can reduce the corrosion resistance to  strongly 

oxidizing environm ents and can result in  the form ation  o f  som e ferrite. Carbon 

content should not exceed 0.08% . The greatest corrosion resistance is obtained w hen 

the carbon is in  solid  solution and w hen there is a hom ogenous single-phase 

structure.

Figure 2.2 Schaeffler constitution diagram fo r  stainless steels [17].
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The corrosion resistance o f  stainless steels governs its continued use as an  im plant 

m aterial. The perform ance o f  its passive layer d ictates its good biocom patibility .

To broadly  describe the effect o f  com position on m icrostructure in  a w ide range o f  

stainless steels, the concept o f  chrom ium  and nickel equivalents was developed to  

norm alise the effect o f  these alloying additions on m icrostructural evolution, relative 

to the  effects o f  chrom ium  and nickel. P lotting  the chrom ium  and nickel equivalents 

on opposing axes o f  the Schaeffer diagram  provides a graphic depiction o f  the 

relationship betw een com position  and m icrostructure for stainless steels. The 

com positional ranges o f  the ferritic, m artensitic, austenitic and duplex alloys have 

been  superim posed on  this diagram .

2.3.3 Physical Properties of Stainless Steel

Physical properties im portan t for successful im plem entation  o f  stainless steels 

include density  and m odulus o f  elasticity, therm al properties -  including m elting 

range, coefficient o f  therm al expansion, therm al conductiv ity , heat-transfer 

coefficient, and specific heat -  m agnetic  properties (prim arily  m agnetic 

perm eability), and electrical resistivity.

Density - 7.5 to 8.0 kg /m 3.

The modulus o f  elasticity - The elastic m odulus varies little w ith  stainless steel 

com position and has values o f  the sam e order (193 G Pa to  207 GPa) for all grades.

The coefficient o f  thermal expansion (CTE) is the change in  unit o f  length (or 

volum e) accom panying a un it change o f  tem perature, at a specified  tem perature «17 

jam/m x K).

- 10-
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The heat-transfer coefficient refers to  the am ount o f  hea t tha t passes through a un it 

area o f  a m edium  or system  in a unit tim e w hen the tem peratu re  d ifference betw een 

the boundaries o f  the system  is 1 degree -  from  14.6 to  21 W /m  xK.

Specific heat is the quantity  o f  heat required  to  change by one degree the 

tem perature o f  a body o f  m aterial o f  unit m ass -  460  to 500 J/kgxK .

Magnetic Proprieties. M agnetic behaviour o f  stain less steels varies considerably, 

ranging from  param agnetic  (nonm agnetic) in fu lly  austenitic  grades, to hard  or 

perm anent m agnetic behaviour in  the hardened m artensitic  grades, to soft m agnetic 

proprieties in ferritic stainless steels.

Electrical resistivity is the electrical resistance o ffered  by a  m aterial to the flow  o f  

current, tim es the cross -  sectional area o f  current flow  and per unit length  o f  current 

path  - 600 to  800 nQ xm .

2.4. Metals as Biomaterials

The earliest attem pts at repairing the hum an body probably  w ent unrecorded. There 

are a num ber o f  historical accounts o f  the developm ent o f  the use o f  m etals in  the 

hum an body [8, 9]. There are a num ber o f  historical accounts o f  the developm ent o f  

the use o f  m etals in  the hum an body. The first record  o f  m etal im plantation discusses 

the repair o f  a cleft plate  w ith  a gold plate by Petronius in  1565. In  1886, H ansm ann 

used m etal plates for internal fixation [10]. These p lates, w hich w ere n ickel-plated 

steel, had holes through w hich  screw s w ere inserted  in to  the bone.

It was difficult in  early  tim es to  determ ine w hether the infection  and inflam m ation 

w ere due to  the m etal o f  to  o ther factors. The developm ent o f  aseptic techniques by 

B aron Joseph L ister in  the 1860s m ade it possib le to determ ine the m ost suitable 

m etals for use as im plants. A s the success o f  surgery increased, it becam e clear that 

the m etals w ere an im portant lim iting factor. The m etals tested  fo r im plant use 

included platinum , gold, silver, lead, zinc, alum inium , copper, and m agnesium  [1]. 

All o f  these w ere found to  be m alleable. M agnesium  w as found to  be very  reactive in
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the body. Steel p lates coated w ith gold or nickel cam e into use. The need  for strong 

and corrosion-resistant m etals becam e apparent. S tainless steels w ere in troduced as 

im plants in  1926, and cobalt-chrom ium -m olybdenum -carbon alloys w ere first used 

in  1936 [11]. T itanium  w as determ ined to  be inert in  the body but titan ium  and 

titanium  alloy w ere n o t in troduced until the 1960s and cam e into increased use in  the 

1970s. Tantalum , w hich  w as studied in  the early  1950s, does show  som e tissue 

reaction [12].

B iom aterials research was prom oted by the founding  o f  the Society for B iom aterials 

in 1974 and by increased in terest am ong other m edical and scientific societies. M ore 

em phasis w as p laced on standards and specifications, and the A m erican  Society for 

Testing and M aterials (A STM ) established C om m ittee F-4  on M edical M aterials and 

D evices in 1964 [13].

C om m only used  m etallic biom aterials belong  to  one o f  the three good corrosion 

resistant alloy system s: iron-chrom ium -nickel alloys (austenitic stainless steels), 

titanium  and its alloys as w ell as cobalt-chrom ium  based  alloys. O ther m etals that 

find  m iscellaneous uses in  surgery include tantalum , som e precious m etal alloys such 

as platinum  and a recent special case is the one presented  by  shape m em ory  alloys. 

The chem ical com positions and m echanical proprieties o f  these m etals are 

recom m ended by  A ST M  [13] and are g iven in  Table 2.3. This table is obtained from  

The A m erican Society  o f  M etals [5] now  know n as A S M  International and is based 

on w ork com pleted by  A m erican Iron and Steel Institute.

M etals and alloys used  as im plants undergo an active-passive transition; therefore, 

corrosion resistance results from  the grow th o f  a protective surface film . These 

m etals are in the passive state w ith a protective surface oxide film  w hen used as 

im plants and are h ighly  corrosion resistan t in  saline environm ents. The m etals 

currently used for surgical im plants include all m etals m entioned  above in  Table 2.2.



M etal or  
alloy

Chemical Composition [%] Mechanical Proprieties

C Ti Cr Fe Co Ni Mo Other
Yield

strength
[MPa]

Ultimate 
Tensile 

Strength 
UTS [MPa]

Elongation 
at Rupture 

A [%]

Modulus of 
Elasticity 
E [GPa]

AISI type 
316 SS

0.08max N/A 18.5 Balance N/A 12.0 3.0
0.75Si; 

0.03P; 0.03 S
207 517 40 -

AISI type 
316L SS

0.03 N/A 16—>18 Balance N/A 10—>14 2—>3
2.0Mn;

0.045P;1.0Si
6 8 9 ° 862]) 12° 2 0 0 °

Cast Co_Cr 
alloy

0.36max N/A 28.5
0.75ma

X
Balance 2.5max 6.0 1.0 max Si 450 655 8 248

Wrought 
Co-Cr alloy

0.15max N/A 20.0 3.0max Balance 2.5 max N/A 15.3 W 379 896 - 242

Unalloyed
Titanium

0.1 Balance N/A 0.30 N/A N/A N/A
0.012H; 

0 .1 3 0 ,0.07N
4852) 5502) 152) 1102)

Ti-6A1-4V 0.08 Balance N/A 025 N/A N/A N/A
0.6A1; 4.0V; 

0.0125H
830 895 10 124

Unalloyed
Tantalum

0.01 0.01 N/A 0.01 N/A N/A 0.01
Balance Ta, 

0.001H
140—>345 205—>480 - -

MP35N N/A N/A 20.0 N/A 35.0 35.0 10.0 N/A 240—>655 795—>1000 - 228

Legend:
1) A ISI 316 SS cold work;
2) T itanium , grade 4;
N /A  -  N ot A pplicable

Table 2.3 Chemical composition and mechanical proprieties 
o f  metals and alloys currently used as surgical implants [6]
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The m etals and alloys m ost frequently  used as im plant m aterials w ill be discussed in 

term s o f  m etallurgical factors and elem ents o f  alloying. For exam ple for a better 

understanding is im portan t to note tha t sm all changes in  alloying additions o f  certain  

elem ents can result in  significant changes in  corrosion behaviour (see C hapter no. 3, 

L iterature R eview , section 3.2.2).

One o f  the m ost recen t and significant m etallic  card iovascular product is the 

cardiovascular stent [14], w hich is used to provide support to b locked  blood vessels 

that have been opened by a balloon catheter. This p roduct w as developed in  response 

to the lim itations o f  balloon angioplasty, w hich  resu lted  in  a substantial num ber o f  

repeated blockages in  the sam e area. It is in teresting to  note that 316L stainless steel, 

w hose use has dim inished in  orthopaedic applications, is currently  w idely  used in 

cardiovascular stents. In the annealed condition its ductility  can reach  the flexibility  

and expandability  required  for a stent. Its excellent corrosion resistance m akes it an 

ideal candidate m aterial for stent devices.

A ll o f  the m etallic m aterials used in  im plants fall into the category o f  passive m etals,

i.e., they  ow e their corrosion resistance to  the presence o f  a stable oxide layer on 

their surface. These oxide layers, w hich  form  naturally , p ro tect the m etal from  the 

corrosive environm ent o f  surrounding body  fluids and tissues. The passivation  layer 

form ed on different m etals contain d ifferent elem ents and com positions, e.g., 

stainless steels and C o-C r alloys are p ro tected  by chrom ium  oxide layer, Cr2 C>3 , 

w hereas titan ium  and its alloys are p ro tected  by titanium  oxide layer, TiC>2 . The 

im portant point about the passivity  and corrosion  resistance o f  m etals is the nature o f 

the conditions that w ill cause breakdow n o f  the oxide film , w hich w ill result in 

corrosion. Surface passiv ity  is an essential requirem ent, but surface fin ish  can also 

effect perform ance, w ith  highly po lished  surface perform ing  better in  term s o f 

corrosion wear. Passivation  o f  m etals is d iscussed  in  detail in  section 2.4, w ith 

em phasis being placed on stainless steel m aterials. Passivation  o f  stent devices is 

enhanced by nitric acid passivation, and is an essential stage in  the final processing 

o f  the device before it is sterilised and packaged.

M etals used as biom aterials m ust either be noble, e.g., gold, or corrosion resistan t to 

the body environm ent i.e. passive. M any types o f  corrosion have been observed on

- 14-
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biom aterials used  in  the body, including general corrosion, p itting  and crevice 

corrosion, stress-corrosion cracking, corrosion fatigue and in tergranular corrosion. 

Corrosion and its d ifferent form s are described fu lly  in  section 2.9. N one o f  the 

above m entioned corrosion form s, w ith  the exception  o f  general corrosion, can be 

tolerated in  surgical im plants.

2.5. Passivation

A ccording w ith  Shreir et. al. [19], “passiv ity  is a state o f  low  corrosion  rate brought 

about under a h igh  anodic driving force, or po ten tial, by the presence o f  an interfacial 

solid film , usually  an oxide” .

In A STM  A 380 passivation is “rem oval o f  exogenous iron  or iron  com pounds from  

the surface o f  a stainless steel by m eans o f  a chem ical dissolution, m ost typically  by 

a treatm ent w ith  an acid solution that w ill rem ove the surface contam ination but w ill 

not significantly  affect the stainless steel i ts e lf ’. In  addition, it also describes 

passivation as “the chem ical treatm ent o f  a stainless steel w ith  a m ild  oxidant, such 

as a n itric acid solution, for the purpose o f  enhancing the spontaneous form ation o f  

the protective passive film ” . From  a  m anufacturing poin t o f  view , chem ical 

passivation is attractive in term s o f  sim plicity  and being relatively  inexpensive.

Some norm ally  active m etals and alloys ex ist that, under particu lar environm ental 

conditions, lose their chem ical reactiv ity  and becom e essentially  inert. This passive 

behaviour term ed  passivity , is d isplayed by chrom ium , iron nickel, titanium  and 

m any o ther alloys.

“In practical term s, the passivation process rem oves free-iron contam ination left 

behind on the surface o f  stainless steel as a resu lt o f  m achining and fabricating 

processes. These contam inants are poten tia l corrosion sites. It is also argued that the 

passivation process dissolves surface sulfides that m ay be present as a result o f  the 

use o f  alloying elem ents, and these inclusions can act as preferential sites for 

corrosion” W .M . Carrol and H ow ley [20].
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2.6. Electro-etching

E lectrochem ichal etching is the deliberate (selective) and controlled  rem oval o f  an 

electrically  conducting (or sem iconducting) m aterial in  an electrolyte [20],

A  typical set-up for a electrochem ical e tching is presented  in  F igure 2.3. This set-up 

is sim ilar w ith  an  electropolishing unit.

Fig. 2.3 Schematic Electro-etching Installation

The purpose for practising electrochem ical etching is to  control surface roughening 

in  order to prom ote a better and clean surface p rio r to  electro-polishing.

Etching o f  the m aterial m ay be carried  out either chem ically  under open-circuit 

conditions (i.e. controlled  “corrosion”) or it m ay be electrochem ically  driven by 

applying a potential. It requires no pow er supply or auxiliary electrodes; the 

electrolyte conditions are chosen such that the species to  be rem oved is dissolved at a 

reasonable rate, courtesy o f  a sim ultaneous cathodic process.

Taking the case o f  the d issolution o f  a m etal M , the anodic process in  reaction (2.1) 

is supported by suitable electroreduction (2.2):

M - w e ' - M ' *  (2 .1 )

- 16-
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X  + n e - t x r  (2.2)

To give an overall etching process:

M  + X -> M "+ + X ”’ (2.3)

Thus, the e tchant m ust perm it active d isso lu tion  o f  M  to M n+  w hile supplying a 

cathodic reactan t X. In  the general case, both  M n+ and X n+  m ay  affect the rate o f  

etching, i.e. the progress o f  reaction (2.3).

Figure 2.4 -A  strut o f  a stent before and after etching(x50 by Microscope)

A nodic etching requires that the m etal be driven to  an appropiate poten tia l (positive 

o f  its open-circu it value), by m eans o f  a pow er supply  and a suitable inert cathode 

such that reaction  (1) proceeds at the desired  rate.

The process conditions m ust be chosen  carefully  and controlled  w ith in  lim its to 

perm it the etching to be sufficiently  selective both chem ically  and physically , e.g. it 

m ay be requ ired  to  etch one m etal rather than  another, one m etallurgical phase rather 

than a w hole m atrix  or an oxide rather than  a  m etal or sem iconductor.

2.7. Electropolishing

Eletropolishing techniques utilise the anodic potential and current to  aid  d issolution 

in  order to  prom ote the polish ing  process. The solutions have the same basic
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constitu tion w ith  three m echanistic requirem ents -  ox idan t (A), contam inater (B) and 

diffusion layer prom oter (C) -  but, by using anodic currents, less concentrated  acid 

solutions can be used and an additional variable for process flex ib ility  and control is 

available [19].

The electrochem ical characteristics o f  electropolishing can be seen by  referring to a 

typical po larisation  (potential versus current density) diagram  as show n in Figure. 

2.5. The aim  is to provide a “polish ing  p lateau” at constan t curren t over a substantial 

range o f  potential, but the value o f  that constant current can be fairly  critical. Thus in 

Figure 2 .5a the m etal is passivated  and in Figure 2 .5c it d issolves under solution 

diffusion control, neither condition giving effective electropolishing.

>

Log I
(a)

Log I 
lb) (c)

Figure 2.5 Anodic polarisation (potential-current density) curves fo r  nickel in (a) 

diluted sulphuric acid, (b) cold 10 M olar sidphuric acid, and (c) hot and agitated 10

M olar sulphuric acid [19]

R eferring to Figure 2.5c, the initial rise in  current corresponds to  sim ple m etal 

d issolution and for m ulti-grained m etals can be used to  electro-etch  the surface.

O n a typical set-up for electropolishing the m etal part to  be fin ished  is connected on 

anode (+) -  see Figure 2.6. The D irect C urrent com es from  R ectifier through 

electrical w ires. The C athode (-) m ay be different shaped o f  m etallic  plates.

The am ount o f  m etal rem oved is dependent upon: electro lyte (liqu id  from  bath), 

tem perature o f  electrolyte, tim e o f  exposure, current density  and the particu lar alloy 

being electropolished.
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Figure 2.6 Electropolishing main set-up

Electropolishing literally  d issects the m etal crystal atom  by atom , w ith  rap id  attack 

on the h igh current density  areas and lesser attack on the low  curren t density  areas. 

The resu lt is overall reduction  o f  the surface profile  w ith  sim ultaneous sm oothing 

and brighten ing  o f  the m etal surface. “In general, e lectropolish ing  w ill im prove the 

surface fin ish  o f  a part by  tw o fo lds” [19]. A fter e lectropolishing any k ind o f  

scratches w ill be  rem oved or attenuated (see F igure 2.7).

Figure 2.7 Electropolished p a r t during and after electropolishing
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The advantages o f  electropolishing include:

•  Surface Sm oothness

•  H ydrogen rem oval

• Im proving C orrosion R esistance

•  Surface B rightening

• Stress R elieving

“Electropolishing is a critical surface treatm ent tha t helps assure the successful 

corrosion-resistant perform ance o f  stainless steels used as im plant m ateria l” [21].

2.8 Electro-etching vs. Chemical Etching and Electropolishing

Several electrochem ical m ethods are em ployed in  the b io-m edical industry because 

o f  their ability to  m anufacture o f  surface-finish m etal articles, fabrications and 

com ponents w hich are d ifficult or im possible to  produce by  trad itional w orkshop 

techniques Pletcher, [24].

A less technical descrip tion o f  the electropolishing w ould  be "reverse plating". 

E lectropolishing is norm ally  used  to rem ove a very th in  layer o f  m aterial on  the 

surface o f  a m etal part or com ponent. P letcher considered that “the process is o f  

interest because o f  its ability  to enhance the m aterial properties o f  a w ork piece in 

addition  to changing its physical d im ensions” .

The m echanism  o f  electropolishing is thought to involve bo th  selective anodic 

d issolution (the potential d istribution w ill favour corrosion o f  the surface at peaks 

rather in troughs) and oxide film  form ation. E lectropolish ing  leads to extrem ely 

reflective surfaces w hich, unlike m echanically  polished  surfaces, are stress-free. 

B efore the process can be carried  out successfully , how ever, the surface m ust already 

be sm ooth  since m acroroughness cannot be rem oved [24].
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2.8.1 Factors involved in surface finish

M any o f  the factors w hich  influence the rate o f  d isso lu tion  also affect the m anner in 

w hich  m etal is rem oved from  the anode, and hence they  partly  determ ine the surface 

finish. O f  these factors, the anode potential and current density  p lay  a m ajor part.

Fig. 2.8 Ideal current density-cell voltage curve

In  order to  understand m ore about electro-polishing and electro-etching, plots o f  

anode potential, cathode poten tia l and cell voltage on current density, for different 

process variables, are obtained and studied. O f  these, the p lo t o f  cell voltage versus 

current density  gives m ore inform ation on the critical effects o f  the process variables 

required to obtain a good polished  surface. B asically , the electro lytic cell consists o f  

the specim en anode, cathode and a suitable electrolyte that is usually  agitated.

A n ideal curve o f  cell voltage versus current density  is show n in Fig. 2.8. The 

d istinct regions o f  the curve are: A -B  w hich is the reg ion  o f  etching, B -C is the 

unstable region w here periodic oscillation o f  current is seen. C-D  is the polishing 

region w here the polishing occurs a t constant current density  usually  called “lim iting 

current density” , D -E is the reg ion  w here slow  gas evolution w ith  p itting occurs and
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E-F is the region o f  po lish ing  w ith  rapid gas evolution. A  study o f  a good polishing 

process involves understanding the influence o f  variables on the cell vo ltage-curren t 

density  relationship, particu larly  on lim iting current density.

A m ong the electro-polishing variables, som e are considered as prim ary  variables, as 

their influence is m uch m ore significant than  those o f  the secondary variables 

m entioned. The prim ary variables are electrolyte tem perature, stirring o f  electrolyte, 

concentration o f  electrolyte, surface roughness, electrode distance, polishing tim e, 

v iscosity  o f  the electro lyte and cell voltage.

The effect o f  the secondary variab le  is very  sm all and it w ill no t be explained in  this 

thesis.

2.9. Stent Devices

A ccording to M irriam -W ebster D icrionary [22], a stent is “a short narrow  m etal or 

p lastic tube that is inserted  into the lum en o f  an  anatom ical vessel (as an artery or a 

bile duct) especially  to keep a form erly b locked passagew ay open”. It can be 

considered that the stents are scaffolds w hich are im planted at the disease site and act 

to support the vascular d isease and m ain tain  an open  vessel.

Stents are classified as uretral, renal, fem oral artery, coronary, colonic, biliary, 

carotidic and duodenal according to FD A  (U nited  States Food and D rug 

A dm inistration) [23]. A lso a stent can be biodegradable inside hum an body.

The five m ost im portant m echanical characteristics o f  a stent are:

1. A  stent m ust have expandability . This can also be expressed in term s o f  a 

h igh ratio  betw een  collapsed and expanded d iam eter to  allow  for the sm allest 

diam eter o f  the arterial system  to be navigated.

2. The w all th ickness should  be as sm all as possib le to  offer the low est profile 

after deploym ent.

3. The post im plant m etal surface should be as sm all as possib le because surface 

area determ ines the degree o f  throm bus form ation.
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4. B ecause the degree o f  residual elasticity  o f  an artery follow ing balloon 

dilatation cannot be anticipated, the c ircum ferential strength o f  a stent m ust 

have a w ide m argin  o f  excess to prevent collapse after deploym ent.

5. R adiopacity  is essential for precise m anipu lation  and positioning under 

fluoroscopy.

2.10. Conclusion

This chapter presents in form ation  regarding b iom edical m aterials as w ell as their 

chem ical and physical properties. A lso, an im portan t part is dedicated  to  m etals, 

particularly  to  stainless steel. E lectropolishing and passivation  o f  m etals w ere 

reported as m ethods o f  enhancing biocom patibility.

A ustenitic stainless steel 316L w as found to  be m ost used  in  b iom edical industry. For 

th is reason the finishing m ethod o f  electropolishing w as explained. It w as considered 

that electropolishing increases properties o f  passivation  for a stent. V ery little w ork 

has been published  on  the optim isation o f  the process for stents polishing or indeed 

investigation into o ther suitable processes. C hapter 5 w ill p resent an optim isation 

m ethod for stent descaling, w hich  further w ill im prove the electropolishing m ethod 

o f  finishing.
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Chapter 3

Literature Review

3.1. Introduction

This chapter presents published aspects regarding the connection between corrosion and 

surface finishing o f  steel. The overall aim  o f  this chapter is to present the passivation 

and polishing o f  stainless steel in the current literature. In regard to the w ide variety o f 

uses o f m edical grade steels, this investigation has concentrated on the use o f  m etal as 

vascular implant.

Electropolishing and passivation will be described considering as being the m ain two 

m ethods for im proving surface properties o f  an im planted stent. Passivation will be 

presented in term s o f  its effect on corrosion resistance o f  the alloy. The outer layer o f  the 

metal, i.e. the oxide layer which im proves passivation will be also presented. 

E lectropolishing increases significantly the corrosion resistance o f  the alloy and 

subsequent treatm ents, i.e. heat treatm ent; seem to have a small effect on this 

improvement.

Effect o f  alloying and different theories explaining the advantages and disadvantages o f  

different elem ents o f  alloying will be presented. N itrogen and m olybdenum  alloying 

elem ents will be discussed because these two elem ents give a strong im provem ent in the 

stable passive film. N itrogen is beneficial to austenitic stainless steels in that it enhances 

pitting resistance, retards the form ation o f  the chrom ium -m olybdenum  phase, and 

strengthens the steel. There are well known synergetic properties o f  the nitrogen and 

m olybdenum  elem ents in stainless steel com position. M olybdenum  is especially 

effective in increasing resistance to the initiation o f  pitting and crevice corrosion.
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3.2.1. Passivation

Trepanier et. al. [25] have studied the corrosion behaviour and surface characteristics o f 

laser-cut nitinol stents in a num ber o f  conditions, including electropolished, air aged, 

heat treated and passivated. The passivation was perform ed on electropolished stents, 

using a 10% nitric acid solution at room  tem perature. The passivated samples 

demonstrated superior corrosion resistance to both electropolished and heat treated 

samples.

As m ethods for evaluating corrosion resistance, T repanier used anodic polarisation tests. 

The potentiodynam ic experim ents were carried out using a potentiostat EG&G Princeton 

Applied Research, model 273. The test was conducted in H ank’s solution, i.e. a m ixture 

o f  NaCl; CaCl2; KC1; N a H C 0 3; Glucose; M gCl2 2H 20 ;  N a2H P 0 4; KH2P 0 4 ; 

M g S 0 4.7H20 . This solution was used to sim ulate the body fluid at 37°C.

Scanning Electron M icroscopy (SEM) w as used to study topography o f  surface 

treatm ents before and after the corrosion test. A lso an A uger Electron Spectroscopy 

(AES) analysis was perform ed on samples before and after the corrosion experiment. 

Their AES survey spectra (100-200 eV) have been recorded from two different spots. 

Then, combined AES analysis and Argon ion sputter etching to  evaluate the oxide layer 

thickness and the distributions o f  each element.

Results showed that electropolishing, heat treatm ent, air aging and nitric acid passivation 

o f  nitinol im prove the corrosion behaviour o f  the alloy. They concluded that surface 

topography analyses by SEM and oxide layer thickness m easurem ents by AES provided 

relations between surface physicochem ical properties and corrosion behaviours. SEM  

m icrographs indicated that the surface condition plays an im portant role in nitinol stent 

corrosion resistance.
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Later O ’Brien et al [26] found a passivation treatm ent, using 20%  nitric acid at 80°C for 

20 min for m echanically polished nitinol wire. A significant im provem ent in corrosion 

resistance, m easured using potentiodynam ic polarisation m ethods, has been 

demonstrated for both w ire samples and typical stent com ponents. Also they concluded 

that there are variations between different wire suppliers and different sizes, but all 

showed significant improvem ents due to the passivation. Surface analysis confirm s the 

bulk o f  the oxide to be T i02, with some NiO. Enrichm ent o f  N iO  at the outer surface is 

prim arily evident after heat treatm ent but the passivation subsequently reduces this. Heat 

treatm ent does increase the oxide thickness, but subsequent passivation does not 

significantly change this. Improvements in corrosion behaviour after passivation are 

therefore prim arily attributed to a reduction in the surface N i or N iO  content and an 

increase in the surface T i02 content, rather than related to oxide thickness.

A lso their study showed that removal o f  nickel from  surface has been confirm ed by 

chemical analysis o f  passivation solution. The im provem ent in corrosion resistance 

appears to be proportional to the quantity o f  nickel rem oved. Upon im m ersion in saline 

solution, nickel release decreases with tim e, while passivation reduces the release o f 

nickel over extended periods, when com pared to heat treated surfaces. The benefit o f  the 

passivation is still evident after extended periods o f  im m ersion as dem onstrated by 

corrosion resistance measurem ents.

M arkworth et. al. [27] presented the m ain strategies for controlling the im provem ent o f 

corrosion resistance o f  a metal surface in contact w ith aqueous m edium . It has been 

proved that corrosion resistance can, in principle, be improved by im posing conditions 

that cause the otherwise chem ically active surface to be passivated. For non-noble 

m etals, m aintenance o f  a state o f  passivation is crucial to the prevention o f  corrosion. 

Consequently, the active regime o f  anodic potential (i.e. that w ithin which the metal 

surface is chem ically active with respect to its environm ent) m ust be avoided. They use 

several control strategies for their investigation in order to rem ove a corroding metal 

surface from an active state and placing it in one characterized by a level o f  complete 

passivation, or at least a significantly improved level o f  passivation. This is
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accom plished with a non-linear model proposed by Sato [28] for passivation o f a metal 

surface exposed to an aqueous environm ent. M arkw orth et. al. [27] have reported that a 

strategy, based on feedback control o f  the tw o-dim ensional m odel, is shown to result in 

a significantly increased levels o f  passivation, and therefore in correspondingly 

improved corrosion resistance. The other two m odels in Sato sim ulation are: the classic 

linear feedback theory applied and an extension o f  the first model by addition o f  a third 

state variable. The last one is capable o f  yielding com plete passivation. The classic 

linear feedback theory is shown to be unstable in the sense o f  passivation o f  a 

chem ically active surface.

Corrosion resistance o f  stainless steels depends, am ong other param eters, on the surface 

state [29]. D ifferent types o f  surface treatm ents for stainless steels have been developed 

to increase the corrosion resistance. Som e o f  the treatm ents are: pickling, bright 

annealing, polishing and passivation in nitric acid. The prim ary aim o f  the surface 

treatm ents is to enhance the protective passive film by changing its com position, 

structure and thickness.

Several authors have studied the passivation treatm ents o f stainless steel. The treatm ent 

improves the corrosion resistance o f  standard austenitic stainless steels [27; 28]. W ith 

regard to 316L stainless steel, W allinder et. al. [29] have reported the effects o f  surface 

finish, nitric passivation and ageing in air on corrosion resistance. The m ethods o f  

investigation were EIS (Electrochem ical Im pedance Spectroscopy), potentiodynam ic 

polarisation m easurem ents and XPS (X-ray Photoelectron Spectroscopy). In their study, 

the effect o f  surface finish, nitric acid passivation and ageing in air have been 

investigation w ith respect o f  the corrosion resistance o f  the material in 0.5%  H2SO4.

The observation from EIS, potentiodynam ic polarisation m easurem ents and XPS 

analysis have led to the following conclusions:

• A  significantly increased corrosion resistance is achieved through a nitric acid 

passivation treatment;

• The im proved corrosion resistance can be attributed to a high Cr content in the 

passive film  and an increased film thickness due to the passivation;
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•  A  smooth surface finish increases the corrosion resistance;

•  The effectiveness o f  nitric acid passivation treatm ent depends strongly on the 

nitric acid concentration, passivation tim e and tem perature;

•  The nitric acid concentration, passivation tim e and tem perature have a larger 

influence on the passive film thickness than on the Cr content in the film;

•  A geing in am bient air m ay cause changes in the passive film and influence the 

corrosion resistance. A geing after passivation leads to an increased corrosion 

resistance whereas before passivation has a little effect.

A lthough there is substantial evidence in the literature that the effect o f  acid treatm ent is 

positive, it is not clear what process occurs during the treatm ent, and the origin o f  the 

im provem ent o f  the corrosion resistance is not well established. Som e authors have 

suggested that the improvem ent is the result o f  chrom ium  enrichm ent in the passive film 

[30; 31], or is related to the chrom ium  content and any other com ponent from passive 

film [40], Other authors have proposed that imm ersion in nitric acid rem oves sulphides 

inclusions o f  stainless steel and thus elim inates preferential sites for corrosion attack 

[32].

3.2.2. Effect of alloying elements on passivation behaviour of stainless steel

Various authors have proposed different theories explaining the advantages and 

disadvantages o f  different elem ents o f  alloying, M arcus et.al. [33] investigated the 

effects o f  nitrogen on austenitic stainless steel. There is a general consensus in the 

literature that nitrogen increases the corrosion resistance o f  m olybdenum -containing 

austenitic stainless steels. A num ber o f  explanations have been proposed to understand 

these observations; the m ost w idely recognised o f  which suggests that reaction o f 

elemental nitrogen with protons at the passive film /electrolyte interface causes an 

increase o f  the local pH  and, therefore, a decrease in pitting corrosion [34]. The detailed 

m echanism  o f  the inhibitory effect o f  nitrogen on corrosion o f  these stainless steels is 

not well understood and the m olybdenum  in addition to nitrogen has complicated 

interpretation o f  the data. It had been proposed that there are synergistic effects between
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nitrogen and m olybdenum  that lead to an increased corrosion resistance o f  the 

m olybdenum  containing steels.

Protection against corrosion is in great part governed by the ability o f  the material to 

form a thin, passive layer at the alloy/electrolyte interface and XPS has been employed 

to probe the com position o f  the near-surface region o f  stainless steels at different stages 

o f  the corrosion process. Clayton and co-workers have used XPS to investigate passive 

films on m olybdenum -containing austenitic stainless steels in w hich nitrogen has been 

added either via bulk addition or surface nitriding [34],

The nitrogen-containing steels were found to have im proved resistance to corrosion 

when compared to those not containing nitrogen. It w as observed w ith XPS that 

m olybdenum  and nitrogen were enriched in the passive film s in addition to chromium, 

the latter which has been shown in num erous studies to be the prim ary alloy elem ent 

found in passive films on austenitic stainless steels. The authors propose that the 

observed nitrogen enrichm ent leads to form ation o f  a relatively stable, interstitial nitride 

phase at the surface o f the stainless steel. In the case o f  the electrochem ically nitrided 

steels, the authors suggest that active dissolution o f the m aterial is dim inished due to the 

presence o f  strongly bonded, m ixed interstitial nitrides which, because o f  their stability, 

act as a kinetic barrier to dissolution o f  the alloy and, furtherm ore, support a passive film 

containing enriched levels o f  m olybdenum  and chromium.

Kraack [35] investigated the influence o f  m olybdenum  present in stainless steel. He 

concluded that alloying with m olybdenum  led to a further im provem ent o f the pitting 

corrosion resistance. The breakdown potential in 5 M olar N aCl was increased. Anodic 

polarisation curves in 1 M olar HC1 showed that the passivation ability o f  the steel films 

increased m arkedly with increasing o f  M olybdenum  content.

Both o f  these elements (nitrogen and m olybdenum ) have previously been shown to be 

beneficial for the form ation o f  stable passive films on austenitic stainless steels. As 

discussed earlier, developm ent o f  an understanding o f  the role o f  nitrogen in the
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corrosion behaviour o f  austenitic stainless steels has been im peded by the fact that the 

alloys investigated contain significant amounts o f  m olybdenum  and, therefore, the 

observed differences in corrosion from nitrogen-free steels m ay be due to synergistic 

effects between m olybdenum  and nitrogen in-stead o f  nitrogen alone.

3.2.3. Electropolishing

Electropolishing is based on the principle o f  anode m etal dissolution in the electrolyte, 

described by Faraday’s law. Good surface brightness and stress-free surface can be 

obtained by electropolishing [36]. Electropolishing stream lines the m icroscopic surface 

o f  a m etal object by rem oving m etal from surface o f  the object through an 

electrochemical process sim ilar to, but the reverse of, electroplating. In electropolishing, 

the m etal is rem oved ion by ion from the surface o f  the m etal object in question.

E lectrochem istry and the fundam ental principles o f  electrolysis (Faraday's Law) replace 

traditional m echanical finishing techniques, including grinding, m illing, blasting and 

buffing as the final finish. Sm oothness o f  the metal surface is a prim ary and very 

advantageous effect o f  electropolishing. During the process, a film o f  varying thickness 

covers the surfaces o f  the metal. This film is thickest over m icrodepressions and thinnest 

over m icroprojections. Electrical resistance is at a m inim um  w herever the film is 

thinnest, resulting in the greatest rate o f  m etallic dissolution. Electropolishing selectively 

rem oves m icroscopic high points or "peaks" m uch faster than the corresponding rate o f 

attack on the corresponding m icro-depressions or "valleys".

Other authors had explained electropolishing techniques that use anodic potentials and 

currents to aid dissolution and passivation and thus to prom ote the polishing process in 

solution akin to those used in chemical polishing.

Figure 3.1 shows two SEM  pictures o f  an electropolished and m echanically polished 

nitinol surface. In general, electropolishing will improve the surface finish o f  a part, i.e. 

roughness, by two folds [37],
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Figure 3.1 Comparison o f  electropolished (left) and mechanically polished (right) 

Nitinol (1000 magnification at SEM)

The electropolishing o f  stents is a w ell-established industrial process w idely em ployed 

by the biomedical industry. One o f  the reason for choosing this process is that the stent 

is an intricate surface. However, the m echanism  by which a metal surface becom es 

polished under anodic dissolution conditions is not clear. The original work o f  Jaquet 

[38] indicated that a “viscous” layer was formed on the metal surface during 

electropolishing. The occurrence o f  m ass transfer-controlled dissolution appears to be a 

prerequisite for electropolishing [39], although the actual m echanism s for elim ination o f 

micro- and m acro-irregularities m ay be different [40]. In fact, the rate o f  anodic 

dissolution appears to be entirely determ ined by m ass transfer [41]. Their opinion is that 

during electropolishing a salt layer is probably present on electrode surface. In the case 

o f  nickel in sulphuric acid, an underlayer o f  oxide or contam inated oxide appears to 

exist, but m ore recent work on electropolishing in non-aqueous m edia indicates that 

electropolishing can be carried out in conditions where no oxide layer is present, i.e. in 

an active dissolution potential region [41].

It is know n that the corrosion behaviour o f  stainless steels depends directly on the 

com position, structure and thickness o f passive films on their surface. On this basis, it 

can be assum ed that additional chem ical, electrochem ical, therm al and other treatm ents 

o f  stainless steel surfaces, which lead to changes o f  these characteristics o f  the natural 

oxide films, can affect the corrosion resistance o f  these m aterials. It is assum ed that the
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chrom ium -enriched surface films form ed on stainless steel can m aintain the stability o f  

the steel [42]. In respect o f  this it is o f  special interest to  study the changes which occur 

in the chemical com position and m orphology o f  the natural passive films on stainless 

steel surfaces when they are subjected to chem ical and other treatm ents aimed to 

enhance the concentration o f  chromium and chrom ium  oxides, respectively.

Investigations for increasing corrosion resistance were perform ed and described also by 

Stoychev et. al.[43]. They had concluded that form ation o f  chrom ium -enriched surface 

films on the stainless steels 1.4301 and 316L as a result o f  chemical treatm ent in 

chrom ium -based solutions, alter (decrease) substantially their corrosion resistance in 

strongly acid media. The observed C r3+ enrichment, on the one hand, and the decrease in 

corrosion resistance o f the steels, on the other hand, perm its assum ing that the oxide film 

consists o f  two layers. In agreem ent w ith the bilayer m odel proposed by A trens [44], the 

lower part o f  the oxide layer represents a uniform  m odified passive film and the upper 

one is a porous Cr3+ enriched film. This layer is an island-like structure, which perm its 

direct attack (dissolution) o f  the Fe3+ oxides present in the lower thinner m odified 

passive film and consequently an accelerated corrosion o f  the steel.

Trepanier [25] has studied the influence o f  different surface treatm ents on the corrosion 

resistance o f  N itinol stents. Treated samples with sm ooth and uniform  surface have a 

higher corrosion resistance than non treated ones which possess a very porous oxide 

layer. The best results o f  corrosion behaviour were observed for stents w ith the thinnest 

oxide layer. Sim ilar results were obtained by Sohm ura on the reliability o f  thin oxide for 

im provem ent o f  corrosion resistance o f  N iTi [46]. This final conclusion has im portant 

im plications for the final step for fabrication o f  stent implants. It is proven that 

electropolishing increases significantly the corrosion resistance o f  the alloy and that 

subsequent treatm ents (heat treatm ent and passivation) seem to have a small effect on 

this improvement. M oreover, the idea o f  additional steps m ay increase the final cost o f  

stents.

-32-



Chapter 3 Literature Review

Recent theoretical results concerning the m echanism  o f  m ass-transport-lim ited 

electropolishing are sum m arised by M atlosz [46], The underlying physical bases for 

both salt-film and acceptor m odels were considered w ith em phasis on the differences in 

their alternating-current im pedance behaviour. M ass transport lim itations for anodic 

dissolution are generally believed to be responsible for electropolishing, and this view  is 

supported by the observation in num erous experim ental system s o f  polishing for anodic 

dissolution along a lim iting-current plateau. Levelling behaviour for anodic dissolution 

at the lim iting current can be interpreted as the preferential dissolution o f  protrusions on 

the order o f  the diffusion layer due to their greater accessibility for diffuse transport. 

Unlike other authors such as Grimm [47], M atlosz interprets brightening o f  the surface 

as a result o f  m ass-transport control, but on a sm aller scale w here diffusion is essentially 

isotropic and independent o f  the crystallographic orientation and grain structure o f  the 

m etallic surface.

W hether or not anodic dissolution is m ass-transport controlled depends on the 

experim ental system. Unlike the cathodic lim iting-current plateau in electrodeposition, 

which is the inevitable result o f  the depletion o f  metal cations in the diffusion layer near 

the electrode surface, anodic lim iting-current plateaus do not necessarily appear with 

increasing overpotential in all cases since the surface concentration o f  dissolving metal 

ions w ill generally rise w ith increasing anodic current. M ass-transport-lim ited anodic 

dissolution requires therefore the presence o f  an additional m echanistic step, such as the 

precipitation o f  a salt film. This film limits the surface concentration to  the saturation 

value o f  the metal cations.

It is o f considerable scientific and technological interest to be able to determ ine clearly 

which o f  the possible m echanism s is at w ork in a given polishing system in order to 

understand the chem istry involved and the role o f the various operating parameters. For 

this purpose, several studies o f  salt-film  and acceptor system s have been undertaken in 

the past decade, including theoretical work on the shapes and sizes o f  the characteristic 

loops o f  the impedance diagram s m easured along the lim iting current plateau.
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The tw o models discussed by Sohm ura [45] have been studied theoretically in some 

detail over the past several years and represent special lim iting cases o f  the salt-film  and 

acceptor approaches. The first, the duplex salt-film  m odel proposed by Grimm  et al [47], 

attempts to characterize the role o f  compact and porous layers in the frequency response 

o f  complex precipitate films. The second, the adsorbate-acceptor m echanism  proposed 

by M atlosz et. al. [48], exam ines the role o f  adsorbed interm ediates and acceptor- 

m olecule transport in the behaviour o f  polishing system s in the absence o f  films. Both 

types o f  m echanism  have been observed and studied in experim ental polishing systems.

N anoscopic AFM  studies concerning electropolishing stainless steel were developed by 

Vignal et. al. [49]. It has been shown that under certain experim ental conditions, a 

regular netw ork o f  hexagonal cells can be observed at the surface o f  these alloys. Its 

origin is tentatively attributed to an electroconvection process occurring at the metal -  

electrolyte interface. It is understood that in the case o f  stainless steel there is not much 

work developed at the nanoscopic scale.

For certain conditions, i.e. physical and chem ical, the electropolished surface o f  pure 

metal or a m etallic alloy shows particular patterns such stripes and hexagonal networks. 

The m echanism  o f  form ation depends on the sam ple/solution system considered and 

m ost o f  them  can be not yet clarified. Stripes have been observed on electropolished 

samples in different conditions. Orientation and periodicity o f  such pattern depends on 

grains orientation and polishing conditions. Stripes can be obtained after 

crystallographic etching o f  stainless steel in perchloric acid based electrolytes [50].

Vignal et. al. [49] have shown that these patterns (hexagons) are observed for bath 

tem peratures betw een 0 and 10°C, perchloric acid contents below 10 vol%  and in 

absence o f  bath agitation. The hexagonal cells observed could be understood as prints o f 

convective cells which would be localised in a resistive sub-layer o f  hundred nanom eters 

thickness in the viscous layer [50].
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It can be distinguish anodic levelling o f  sm oothing from anodic brightening [51], as a 

fundamental aspect o f  electropolishing,. The form er refers to  the elim ination o f  surface 

roughness o f heights larger then l|j,m, the latter to the elim ination o f  surface roughness 

sm aller than 1p.m. Surface brightening thus results from the elim ination o f  surface 

roughness com parable to the wave length o f  light. O ther authors introduced the term s o f 

m acrosm oothing and brightening for anodic levelling and anodic brightening, 

respectively [52].

Hryniewich, [53] has reported a m ethod for electropolishing o f  intricate shapes o f  a 

workpiece. In spite o f  good uniform ity o f  reaction throughout the work-piece for 

electropolishing, there are some limitations on the quality o f  finish. W ith regards to 

stents, these lim itations are in closed areas, i.e. places w ere laser beam  is cutting the end 

parts o f the struts. H ryniew ich investigated the differences o f  current distribution in 

intricate areas. These theoretical and test investigations o f  electropolishing can suggest a 

conclusion that there is a big decrease in current density inside the shape. This results in 

particular difficulties for the uniform  polishing out o f  the com plex shape.

3.2.4. Centre of Excellence

The leading society for solid-state and electrochem ical science and technology is The 

Electrochem ical Society. This organisation has 8,000 scientists and engineers in over 75 

countries worldw ide w ho hold individual m em bership, as well as roughly 100 

corporations and laboratories who hold contributing m em bership. M ain publications o f 

this society are “Electrochem ical and Solid-State Letters” and “The Journal o f  The 

Electrochem ical Society” . As subjects we can identify: corrosion, passivation, and 

anodic films; electrochem ical/chem ical deposition and etching as well as physical and 

analytical electrochem istry.
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The Surface Engineering A ssociation provides the m ost im portant aspects o f  surface 

engineering industry. The SEA bring together resources as well as technical and 

industrial expertise. O ther related associations are: M etal Finishing A ssociation and 

British Surface Treatm ent Suppliers Associations. A lso SEA offers a com plete package 

o f  activities that include: consultation w ith health, safety and environm ental specialists 

at international level and links w ith academ ic institutions for education, training and new 

technology.

3.3. Conclusion

Corrosion resistance o f the stainless steel can be attributed to high chrom ium  content in 

the passive film. Passivation and electropolishing as finishing m ethods have been 

presented in different circumstances. The effect o f  im proving fatigue through polishing 

was described. Surface brightening thus results from  the elim ination o f  surface 

roughness com parable to the w ave length o f  light. In spite o f  good uniform ity o f  reaction 

throughout the w ork-piece for electropolishing, there are som e lim itations on the quality 

o f finish. In general, electropolishing w ill im prove the surface finish o f  a part, i.e. 

roughness by two tim es but is in connection with quality o f  surface finishing.

Effects and different theories explaining the advantages and disadvantages o f  alloying 

have been presented. M olybdenum  and nitrogen have been presented as elem ents o f 

alloying. Both o f  these elem ents have been shown to be beneficial for the formation o f 

stable passive film s on austenitic stainless steels. There is a general consensus in the 

literature that nitrogen increases the corrosion resistance o f  m olybdenum -containing 

austenitic stainless steels. It had been proposed that there are synergistic effects between 

nitrogen and m olybdenum  that lead to  an increased corrosion resistance o f the 

molybdenum  containing steels such as 316L. It has been reported and concluded that 

alloying o f  stainless steel w ith m olybdenum  led to a further im provem ent o f  the pitting 

corrosion resistance. Both o f  these elem ents (nitrogen and m olybdenum ) have 

previously been shown to be beneficial for the form ation o f  stable passive films on 

austenitic stainless steels.
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Chapter 4

Description of Electrochemistry Equipment

4.1 Introduction

This chapter reports the experim ental testing  apparatus used  during the course o f  the 

project. A s outlined in  C hapter 2 and C hapter 3, the  aim  o f  the w ork to be carried  out 

in this p ro ject is to im prove the process o f  electropolish ing  and cleaning o f  laser cut 

stents, i.e. etching.

4.2. Bench-top testing

A ll tests and experim ents w ere perform ed on a bench-top  provided  w ith  a fum e- 

hood, see F igure 4.1. The fum e-hood is specially  designed  to ex tract acid  or any 

other vapours. The ex traction  flow  can  reach  lm 3/sec., bu t usually  it was used  at 

approxim ate 0.5 m  /sec.

Figure 4.1 Bench-top layout fo r  electrochemistry in Biomedical Industry
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4.3 Electro-etching and Electropolishing

Figure 4.2 p resen t the current m anufacturing process fo r a  stent.

Figure4.2. Steps in current manufacturing process fo r  stents

Currently, H F cleaning (see F igure 4.2) is run  w ith  a large am ount o f  u ltrasonic 

w aves and usage o f  hydrofluoric acid.

The purpose o f  the electroetching process is to  clean  stainless steel stents. A t present, 

after laser cutting, stents are cleaned in a  solution (m ixture o f  acid and detergent) and 

in ultrasonic waves. H ydrofluoric and N itric  acid  so lu tion  then etches the stents. The 

duration o f  u ltrasonic w aves is about 30 m inutes. It is believed that decreasing these 

waves will im prove the fatigue resistance o f  the stents

The purpose o f  electrochem ical etching is to  control surface roughening and 

contam ination o f  the entire surface in  order to  prom ote a sm ooth  and clean surface, 

prior to  electro-polishing.

E lectro-etching (see Fig. 4.3) has been  considered  as an  alternative to H F cleaning. It 

is proposed to replace the H F cleaning stage by electroetch ing  due to  its advantages.

Figure 4.3 Steps in proposed manufacturing process fo r  stents



Chapter 4 Description o f  Electrochemistry Equipment

4.3.1 Description of Electro-etching Equipment

The electro etching station consists o f  the fo llow ing  com ponents:

4.3.1.1 P lastic stand for location o f  the beak ers : This stand is used to  accurately  

locate all the beakers used in  the electro  etching process (poin t 4 in  F igure

4.4).

4.3.1.2 E lectro  etching beaker: This 1.5 litre Pyrex beaker is used  to hold the 

electrolyte (point 1 in Figure 4.4). It also has a  lid, w hich  is acid resistan t and 

locates the cathode (tw o stainless steel plates) and the anode (a copper 

locator/contact plate and titanium  fixture).

4.3.1.3 P rim ary rinse b a th : This 1.0 litre Pyrex  beaker is used  to rinse any acid drag 

out w hich  m ay be on  the titan ium  fix ture after electro e tching (point 3 in 

F igure 4.4).

4.3 .1 .4  Secondary rinse b a th : This 1.5 litre P yrex  beaker is used as a secondary rinse

to com pletely rem ove any rem ain ing  traces o f  acid and dirt (point 5 in  Figure

4.4).

4.3.1.5 U ltrasonic b a th : The ultrasonics are the final stage for the rem oval o f  any 

rem aining m etal by-products from  laser cutting and dirt from  the electro 

etched stents (point 6 in  F igure 4.4). To do th is, the stents are p u t in  a small 

glass vessel that is filled w ith  a  de-ionised w ater and isopropyl alcohol 

solution.

4.3.1.6 DC pow er supp ly : This is used fo r delivering the desired voltage and current 

needed to perform  the electro e tching cleaning process (point 7 in  F igure 4.4).

4 .3.1.7 M agnetic stirring system : This is located  beneath the beakers. T hey are used 

to stir the flu id  in the beakers w hen  necessary  (point 2 in  F igure 4.4).
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4.3.1.8 H eating elem ent for electro etching beaker: This heating elem ent is used  to 

attain  a  desired  tem perature for the electro-etch ing  bath  (po in t 2 and po in t 8

in F igure 4.4).

Figure 4.4 Bench-top set-up fo r  electro-etching

In  figure 4.4 the follow ing can be identified:

1 - E lectro etching beaker 5 -  Secondary rinse bath
2 - H eating elem ent for electro etching beaker 6 - U ltrasonic bath
3 - P rim ary rinse bath 7 - D C  pow er supply
4 - P lastic stand 8 -  H eater controller

4.4 Conclusion

This chapter presents the m ain  com ponents for cleaning and electropo lish  stents 

under the fum ehood. A  short descrip tion o f  their function  has been  given.
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Chapter 5

Experimental Results 

5.1 Introduction

This chapter reports experim ental results perform ed on coupons and stents. D esign o f  

E xperim ents has a direct applicability  in  the op tim isation  o f  the c leaning  process o f  

the stents. The Taguchi m ethod is presented  for electroetch ing  o f  coupons and a 

given stent design.

F ixture optim isation  is presented as a im provem ent o f  the descaling m ethod. A 

special subchapter reports the electroetching and electropolish ing  o f  a new  m etal 

used in S tent Industry.

5.2 Design of Experiment. Taguchi Method in Electro-etching

Taguchi M ethods for design o f  experim ents (D O E) w ere em ployed as quantifying 

m ethod for th is process. W ith  the Taguchi approach, m any statistical design efforts 

are sim plified or elim inated. It in troduces a very  direct w ay to  exam ine m any factors 

at a  tim e. Taguchi recom m ends the use o f  orthogonal arrays for constructing control 

factor and noise factor m atrices in  experim ental design [54],

Coupons o f  316L w ere used to determ ine the am ount o f  m ass rem oval involved in 

the electroetching process. The dim ensions considered  for coupons are 

lm m x lm m x 0 .2 m m . This experim ent has been  run  three tim es w ith  the same 

param eters.

The m ain  key variables (factors) th a t were considered: tim e, tem perature, cell 

voltage, concentration and stirring o f  electrolyte. A lso  investigated  w as the relation 

betw een (i) tim e and tem perature and (ii) cell voltage and concentration. These
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param eters have been  chosen because are m ore controllable than  the other 

param eters and it has been assum ed that these param eters have a stronger influence 

on the process. Table 5.1 is a array distribu tion  o f  this set-up o f  param eters in  two 

levels as defined by  the  Taguchi M ethod.

Exp. # Time [s] Temp [C] TimexTemp Cell Voltage 

JV1
Cone [M] Cell Volt x 

Oonr:
Stirring

1 180 22.2 1 3.0 3 1 No
2 180 60.5 1 3.0 3 2 Yes
3 180 22.2 2 3.5 4 2 No
4 180 60.5 2 3.5 4 1 Yes
5 360 22.2 2 3.0 4 1 Yes
6 360 60.5 2 3.0 4 2 No
7 360 22.2 1 3.5 3 2 Yes
8 360 60.5 1 3.5 3 1 No

Table 5.1 -  Parameters and levels in D OE

The results after electro-etching Taguchi experim ents can be quantify ing  using 

am ount o f  m ass rem oval and roughness o f  surface.

Surface roughness w as defined by  A S M  H andbook [55] as fine irregularities in the 

surface texture o f  a  m aterial, usually  including those resu lting  from  the inherent 

action o f  a p roduction  process. Surface roughness is usually  reported  as the 

arithm etic roughness average, Ra, and is given in  m icrom eters see fig. 5.1.

Figure 5.1 The schematic profile o f  a rough surface

In figure 5.1 the fo llow ing can be defined:

1 N
R a -  arithm etic roughness average ( Ra = —  V IZ, -  Z ave ); 5.1

N  i 1 1
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R<, -  the roo t m ean  square roughness: ( Rq =  (z, -  Z avg f  ) 5.2
V N  i

w here N  is the num ber o f  m easurem ents, Zj is the  heigh t a t position  i, and Z avg is the

1 i=1
average heigh t ( Z OTff = —r ^ Z , ) .

i= n

The roughness and m ass percentage change has been  used  as input data for this 

Taguchi experim ent. The m ean analysis using A nova T M  -  2.0 softw are is show n in  

G raph R esponse for roughness (Fig. 5.2) and fo r m ass varia tion  (Fig. 5.3) 

respectively.

Table 5.2 show s the  initial results o f  m ass and surface roughness varia tion  during the 

electro-etching.

Results from  A tom ic Force M icroscopy are p lotted in A ppend ix l.
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Experim. # ml [g]* m2 [g]* Am [g] Am [%] Ra [fj.m] Rq M

1
0.1717 0.1636 0.0081 4.7175 0.140 0.170

0.1608 0.1532 0.0076 4.7264 0.150 0.190

0.1465 0.1392 0.0073 4.9829 0.160 0.220

2
0.1504 0.1354 0.0150 9.9734 0.210 0.270

0.1554 0.1472 0.0082 5.2767 0.120 0.150

0.1556 0.1402 0.0154 9.8972 0.160 0.210

3
0.1437 0.1218 0.0219 15.2401 0.260 0.330

0.1447 0.1236 0.0211 14.5819 0.210 0.260

0.1458 0.1267 0.0191 13.1001 0.270 0.330

4
0.1665 0.1223 0.0442 26.5465 0.490 0.610

0.1541 0.1108 0.0433 28.0986 0.330 0.390

0.1626 0.1178 0.0448 27.5523 0.360 0.440

5
0.1467 0.1279 0.0188 12.8153 0.230 0.290

0.1529 0.1333 0.0196 12.8188 0.250 0.320

0.1707 0.1502 0.0205 12.0094 0.270 0.330

6
0.1648 0.1410 0.0238 14.4417 0.240 0.310

0.1676 0.1512 0.0164 9.7852 0.210 0.270

0.1662 0.1420 0.0242 14.5608 0.330 0.420

7
0.1764 0.1252 0.0512 29.0249 0.340 0.430

0.1683 0.1024 0.0659 39.1563 0.390 0.480

0.1695 0.1065 0.0630 37.1681 0.390 0.480

8
0.1621 0.1014 0.0607 37.4460 0.520 0.660

0.1593 0.0990 0.0603 37.8531 0.320 0.410

0.1467 0.1047 0.0420 28.6299 0.280 0.350

Raw

material

0.132 0.161

0.129 0.157

*Note: A ccuracy  o f  the w eight balance is ±0.0001 g

Table 5.2 -  Initial results from  experiments (for Roughness, see Appendix 1)

were:

m i -  initial m ass o f  coupon; m 2 -  m ass after electro-etching;

Am -  m ass varia tion  ( Am = ml -  m 2 );
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Am [%] - m ass percentage change ( m%  = -------------x 100% );
ml

R a -  see equation 5.1 

Rq -  see equation 5.2.

M o n  Analysis

. m il l  I  ̂ | |

TIME [51 TIME [32 C 6 U V 0 1  C 6 U V 0 2  CONC [M l CONO [M2 TEMI» (01 TEMP [C2 STIRRINI STIRHÌN2

Figure 5.2 Delta Roughness M ean Analysis -  from  Anova  - TM

Mono Analysis

Figure 5.3 Mean Analysis o f  Delta m a ss-fro m  Anova -  TM

The F igure 5.4 show s a typical aspect o f  a stainless steel surface using  SEM  

m icroscopy.

- 4 5 -
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Figure 5 .4 -  Surface etched by 4 M olar at 360 seconds - I k  magnification (316L)

A  cleaner surface can  be achieved w hen  there  is a b igger am ount o f  m etal solved 

during electroetching. It can be concluded from  F igure 5.2 and Figure 5.3 that the 

param eters are: T im e2, V oltage2, C o n c e n tra tio n , T em perature2, S tirring l.

5.3 Experimental data of electro-etching stents

Electro-etching experim ents used  a set-up as show n in  F igure 4.4 w ith  a 15 m m  stent 

defined by  a  pattern  show n in F igure 5.5. A  concentration  o f  3.5 M olar Sulphuric 

A cid w as used  as electrolyte. Figure 5.6 presents data on  the decrease in  strut 

thickness by increasing the tim e o f  exposure in  electrolyte. This figure plots tim e 

versus physical dim ensions (mm). It can be noticed that the last position  (pos. 10) 

presents the dim ensions o f  strut th ickness after chem ical descaling.

Fig 5.5 -  D esigned stent used fo r  electroetching
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D"S'strut ■"Ul strut

1(935) 27CB) 3(75s) 4(0CB) 5(95s) 6(85s) 7(90b) B(SOb) S(95s) 1Q(GtbtìCéJ

cfescdrg)
7InB[s3

Figure 5 .6 -  Dimensional comparison between struts o f  electroetched  

batches (pos. 1 to 9) and H F  cleaning process (pos. 10)

A n acceptable com prom ise o f  stent strut dim ensions w ith in  specifications, and 

adequate m etal rem oval to  give a  c lean  surface, is the object o f  the process.

A ll ten  experim ents and results can be seen in  Table 5.3. A lso  th is table gives

inform ation about the cleaning stage o f  the stents.

No.
Crt Batch # Etching

Time "S" strut "U" strut Obs.

Average Range Average Range
1 2 3 4 5 6 7 8

1 LB167/11/01 60s 0.08052 0.01422 0.10160 0.01397
One of them, 

unacceptable, 2 very 
clean.

2 LB 167/11/02 70s 0.07899 0.01803 0.10084 0.01346 Almost acceptable!

3 LB 167/11/06 75s 0.07874 0.01397 0.09906 0.01295 Cleaned. Only one point 
of crud inside sur.

4 LB 167/11/03 80s 0.07899 0.01829 0.10008 0.01524 Clean and acceptable! 
Very good!

5 LB167/11/04 85s 0.07823 0.01448 0.09779 0.01473 crud inside surface, to be 
repeaded

6 LB167/11/05 85s 0.07671 0.01143 0.09830 0.01803 Excellent! OK! Very clean!
7 LB167/11/10 90s 0.07772 0.01499 0.09855 0.01372 not cleaned, to be repet it
8 LB167/11/11 90s 0.07747 0.01346 0.09804 0.01346 Very clean! OK!
9 LB167/11/12 95s 0.07518 0.02057 0.09525 0.01803 Very, very clean!
10 LB167/14/13 N/A 0.08077 0.02032 0.10135 0.01676 HF etched

Table 5.3 -  Etching characteristics o f  15 mm G M IT stent
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5.3.1 Discussion

P osition  8 and 9 from  Table 5.3 w ere passed  after v isual inspection  and also 

dim ensional inspection. It has been proven that there is no difference in surface 

quality  or tex ture betw een these descaling processes. The first conclusion  is that 

chem ical etching is a step that can be easily replaced by  electro-etching.

It has been proven  that there are no disadvantages in  the electro-etch ing  process and 

that electro-etching is sim ilar w ith  H F cleaning w ithout the associated  loss o f  fatigue 

life.

B ased on fact that electro-etching is using  com patible chem icals to  electropolishing it 

can be easily in tegrated  in  m anufacturing.

5.4 Electro-etching on stents using Design of Experiment

As part o f  pre-validation testing a Taguchi O rthogonal array  experim ent was 

perform ed. This D O E  w as to  identify  the optim um  settings o f  the m ain  param eters 

and to  give an  overview  o f  the influence o f  these param eters on  the outcom e o f  the 

electro-etching process. F rom  this the optim um  settings w ere defined.

Five param eters tha t are m ost in fluential on  this process w ere used  in  a tw o level 

(low  and high) array to analyse the process. The m ost suitable orthogonal array that 

defines this experim ent w as a tw o level L8.

The five param eters are: Tem perature; T im e; V oltage; A cid  C oncentration  and Iron 

Content.
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Expt. No.
Tem perature

[°C]

Tim e

[Seconds]

V oltage

[Volts]
C ol.4

A cid

C ontent

[M olar]

Iron Content 

[g/L]
C ol.7

1 25 180 3 1 3 0 1

2 25 180 3 2 4 2 2

3 25 200 3.5 1 3 2 2

4 25 200 3.5 2 4 0 1

5 35 180 3.5 1 4 0 2

6 35 180 3.5 2 3 2 1

7 35 200 3 1 4 2 1

8 35 200 3 2 3 0 2

N O TE: C olum n four and seven are blank.

Table 5.4 Design o f  Experiment fo r  electro-etching stents

Eight experim ents w ere carried  out on stents w ith  sim ilar settings and the results w ill 

be detailed and confirm ed in  C hapter 6.

5.4.1 Pre-Validation Testing for Optimum Etch Time

The Taguchi experim ent w as perform ed on the G M IT  stent. This gave all the 

optim um  settings for electro etching this particular stent. T im e is the only variable 

that needs to  be adjusted to achieve clean electro-etched stents o f  other sizes and 

designs. T im e is easily controlled  and m easured by the operator. A  series o f  

experim ents w ere perform ed on each stent size at optim um  operating conditions to 

determ ine an estim ated optim um  tim e for each stent size.

N O TE: The tim es m ay vary  slightly depending on sm all variations in the acid and 

iron concentrations.

5.4.2 Robustness of Electro Etching Process

The optim ized  process is now  tested  for robustness to variations w hich  m ay occur in 

a m anufacturing envirom ent. The param eters o f  tim e, voltage, tem perature, acid 

content and m etal conten t have all been identified as influential on  the outcom e o f
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the electro-etching process. It has been discerned tha t vo ltage, tem perature, and tim e 

are all variables that are controllable and therefore can  be kep t w ith in  a  very close 

to lerance o f  their desired values. A cid  content and iron  conten t are m ore d ifficult to 

quantify, as evaporation and electrolytic drag out can alter the acid content and each 

batch  o f  etched stents w ill increase the iron content. It is im portan t then  to ensure 

that the process w ill perform  satisfactorily  i f  there are changes in these param eters 

and also to determ ine at w hat stage does a variation  from  the target value produce an 

undesirable result.

To ensure the robustness o f  the electro-etching process, experim ents w ill consider 

that w ill represent the w orst-case scenarios in  term s o f  deviation  from  the desired 

target value o f  the acid and iron content. This w ill consist o f  tw o experim ents that 

are outlined in  Table 5.5. R epresentative stents from  the range o f  G M IT designs w ill 

be electro-etched to  include the extrem es in  the process.

T im e Tem perature

[°C]

V oltage

[V]

Iron  C ontent A cid  Content 

[M olar]

E xperim ent la * 25 3 H igh 4.5-5.0M

E xperim ent 2a * 25 3 L ow 3.0-3.5M

^D eterm ined Dy stent size.

Table 5.5 Set-up fo r  worst case scenario

The stents w ere dim ensionally  inspected. E ach stent w as m easured after electro

etching as w ell as after electropolishing. V isual inspection  o f  the overall surface o f  

the stent is required.

5.4.3 Acceptance Criteria

• The process m ust give equivalent results (after v isual and dim ensional 

inspection) to the H F cleaning (chem ical etching) for all stents currently  

being processed.

• E lectro-etching m ust give equivalent results as for stents that were H F 

cleaned.
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Fig. 5.7  Cut surface from  a stent: before (left) and  after electro-etching (x50 by

Microscope)

Fig. 5.8 A BiodivYsio Stent before and after electro-etching (xlO  by Microscope)

Fig. 5.9 Two views o f  etched surfaces on a BiodivYsio Stent (x80 by SEM)

Fig. 5.10 - Struts after laser cutting (left) and struts after etching by rod

-51 -
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Figure 5.11 -  Inner surface after etching by rod  

These experim ents w ere perform ed to dem onstrate the robustness o f  the bench  top 

electro etching process. It has been  determ ined that o f  all the param eters involved in  

the electro-etching process, acid concentration and iron  conten t are the ones that are 

m ost difficult to  control. In  light o f  this som e experim ents w ere run  to evaluate the 

robustness o f  the electro etching process i f  acid  content and iron  conten t stray from  

their desired target values.

A ll param eters w ere left a t the target values fo r the stents tested, except for acid and 

iron content. These w ere set to values o f  low  and high. Setting these values at low  

and h igh m im ics the w orst case scenario for the electro etching process should  these 

param eters stray from  their target value.

5.4.4 Performing the Experiments

A fter being etched the stents w ere v isually  and d im ensionally  inspected. From  these 

m easurem ents the effectiveness o f  the electro etching process was established. The 

experim ents are outlined  in the Table 5.4.

5.4.5 Results

The results from  the experim ents can be seen in Table 5.6 for V isual Inspection and 

Table 5.7 for P rocess Capability , respectively.
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Stent Size Visual Inspection Results *

High Iron and A cid Low Iron and A cid

7 mm 0.9 B atch # B4 0.9 B atch # B5

15mm 0.9 B atch # B3 0.9 B atch # B7

28m m 0.9 B atch  # B2 0.7 B atch # B6

15mm 0.7 B atch # B 1 0,7 B atch # B8

*0.0—̂ 1 .0 - 1 .0  being best.

Table 5.6 Visual Inspection Results

Stent Size Process C apability  (CP)

High Iron and A cid Low Iron and Acid

7mm * B atch # B4 * B atch # B5

15mm 1.78 B atch # B 3 1.83 B atch # B 7

28m m 1.46 B atch # B 2 1.39 B atch # B 6

15mm 1.97 B a tc h #  B1 2 .12  B atch # B 8

* N o t possib le to m easure

Table 5.7  Process Capability (Cp) Results

5.4.6 Conclusion

From  visual inspection  results (Table 5.6) it can be seen, even w ith  large variations 

from  target (in  the acid  and iron content) o f  the e lectro-etching process, that there is 

very  little effect on the overall cleanliness o f  the stents, This is h ighly  desirable as it 

shows a robust process that w ill perform  w ell even  i f  unw anted noise (variations 

from  target values o f  acid  and iron content) is introduced.

From  Table 5.6, 0.7 m eans that the process is acceptable and there is residue in  less 

than three areas that w ill be rem oved during the electropolish ing  process.

A lso the high Cp - Process Capability  - value (Table 5.7) that has been obtained from  

m easuring the stents on  the an autom ated dim ensional inspection system  has
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confirm ed that the process is robust. E ven  large varia tions in  the acid and iron 

content does not lead to  a drastic deterioration in  the sten t dim ensions after e lectro 

etching.

It can be concluded that the daily  testing o f  the e lectro ly te  for acid  and iron  content 

for the electro etching baths, w ill keep the process runn ing  efficiently  w ithout any 

concern o f  poorly  cleaned stents or rem oval o f  excess m eta l from  the struts.

5.5 Fixture Optimisation

It is w idely know n w ith in  the industry that the design  o f  a new  type o f  hook for 

holding the stent w ill im prove overall process o f  descaling and electropolishing. In  

the biom edical industry  hooks are a special fix ture m ade to  have good electrical 

contact betw een anode and stent. Their function  is to keep  a good and strong contact 

betw een anode and objects to be polished. A lso these w ires are designed to keep the 

stent in  position. C om m only used m aterials for hooks are N ickel, N itinol, P latinum  

and Titanium . N orm al hooks are sim ple loops o f  w ire. It w as decided to design  a new  

shape w ith  m ore uniform  spread o f  current in  the entire volum e o f  stent. A fter 

evaluating different geom etries the helical shape was eventually selected (see Figure 

5.12). A fter a  g iven num ber o f  usages N itino l w ire becom es p itted  as show n in the 

righ t part o f  F igure 5.12.

Figure 5.12 H elix hook optimisation (Nitinol wire). P itted and new hook (right

picture)

Other hook  shapes w ere m ade from  w ire in  square and  “v” shape (see figure 5.13). 

A lso a  solid  square design w as investigated.
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Figure 5.13 Different shapes used in hook optimisation

To achieve a uniform  process, e lectropolishing w ith  hooks is perform ed by  rotating 

the stent upside-dow n at the m iddle o f  the process. This operation o f  ro ta tion  can be 

avoided i f  the shape o f  the hook is in  contact along the entire inside surface o f  the 

stent.

A  solid  rod o f  titan ium  w as adopted because th is m etal does n o t in teract in  the 

etching and electropolishing bath. A lso, a uniform  spread o f  current along the entire 

stent was considered. Table 5.8 show s the differences the betw een bottom  and top o f  

the m ain  com ponents for a particular stent design.

Bottom-Top Comparison of electro-etched stent (on steel rod)

Average Range

Crt
no.

Symmetrical S 

[in]

Flat

[in]

Arrow
[in]

Symmetrical S 
[in]

Flat
[in]

Arrow
[in]

Bottom Top Bottom Top Bottom Top Bottom Top Bottom Top Bottom Top

1 0 00290 0.00293 0.00375 0.00375 0.00382 0.00377 0.00053 0.00055 0.00046 0.00045 0.00045 0.00066

2 0.00303 0.00295 0.00386 0.00380 0.00388 0.00383 0.00050 0.00065 0.00055 0.00050 0.00054 0 00046

3 0.00318 0.00308 0.00395 0.00390 0.00405 0.00396 0.00044 0.00035 0.00041 0.00041 0.00044 000049

4 0.00291 0.00295 0.00374 0.00370 0.00382 0.00377 0.00057 0.00063 0.00045 0.00039 0.00059 0.00056

5 0.00296 0.00297 0.00378 0.00376 0.00384 0.00383 0.00043 0.00050 0.00045 0.00057 0.00055 0.00057

Table 5 .8 -  Dimensional comparison between strut thicknesses
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This table show s a com parison betw een one side (bottom ) and the other side (top) 

thickness o f  strut dim ensions, i.e. Sym m etrical S, F la t and A rrow . It can be 

concluded that there is no m ajor dim ensional d ifference along the stent.

5.6 New Alloys Used in Stent Industry

L-605 is a corrosion- and heat-resistant C o-C r-W  alloy w hose original application 

was in gas turbines com ponents such as blades, ro tors, com bustion  cham bers, and 

afterburner parts [56] and [57]. It is frequently  used  in  the annealed condition, bu t 

can be hardened by cold  w orking and suitable aging treatm ents. A t am bient 

tem peratures, L-605 has good corrosion resistance to m arine environm ents, acids and 

body fluids. This corrosion  resistance m akes L-605 an  attractive m aterial for som e 

biom edical com ponents.

The published literature on the m anufacture o f  L-605 for card iovascular stents 

appears lim ited though it is know n that L-605 is in  use for stent applications. O ther 

niche biom edical applications for L-605 include heart valves and bone drill bits.

H ere w ill be presented  som e Scanning E lectron  M icroscopy im ages w ith  different 

m agnifications o f  the electropolished L-605 stents. Polished  surface and m irror 

aspect can be observed also using a v isual m icroscope (see F igure 5.14). As 

reference it w as show n in Figure 5.15 a polished  stainless steel stent.
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Figure 5 .1 4 -  D ifferent parameters o f  electropolishing on L605 stents (SEM  and
Microscope)

- 5 7 -
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Fig 5.15 Electropolished surfaces o f  a 316L BiodivYsio design(x80 magnification)

A reas o f  investigation to  consider are:

• Form ation  and depth  o f  heat affected zones during laser cutting,

• Changes in  m icrostructure due to the  therm al expansion  experienced, for 

exam ple d isso lu tion  and precipitation o f  carbides or o ther phases.

• If  a heat affected zone is form ed, is it rem oved  by  electro-polishing?

• W hat are the optim um  electropolishing param eters for achieving the desired 

surface fin ish  and surface m icrostructure?

V arious recipes for e lectropolishing o f  cobalt alloys exist. The chem icals from  the 

open literature tend  to  be those used for m etallography, rather than  com m ercial 

electropolishing o f  com ponents. For cobalt superalloys, one recom m ended recipe is 

[57]: 900 m l distilled  H 2O; 100 m l H 2SO 4 (95-97% ); 4-6 V  D C ; tim e from  seconds to 

m inutes w ith  a stainless steel cathode.

5.6.1 Conclusion

W ork carried out for electropolishing cobalt-base alloy  L605 w as also presented. It is 

believed that this alloy w ith  its proprieties o f  corrosion  and radiopacity  could 

represent a future alternative to  actual 316L  Stainless Steel.
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5.7 Conclusion

B ench-top testing  o f  electro-etching and E lectrochem istry  set-up fo r B iom edical 

Industry w as presented. Experim ents on  coupons and  G M IT stent design w ere 

carried out fo r surface fin ishing im provem ent. Param eters and their influence in  

achieving a  better surface fin ishing w ere discussed.

E lectro-etching w as presented  as a cleaning m ethod  fo r 316L  Stainless Steel. It w as 

found tha t chem ical e tching easily  could  be rep laced  by  electro-etching as a m ethod 

o f  cleaning. T his rep lacem ent can be a good step fo rw ard  for a future in tegrated  un it 

o f  stent m anufacturing  (from  laser-cut stent to  electro-polishing),
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Chapter 6

Operational Qualification 

for 

Manufacturing Environment 

6.1 Introduction

As part o f  the O perational Q ualification, a Taguchi orthogonal array  experim ent w as 

perform ed. This D O E  w ill identify  the optim um  settings o f  the m ain  param eters and 

w ill give an overview  o f  the influence o f  these param eters on the outcom e o f  the 

electro-etching process. The optim um  settings w ill be defined. Process capability  

(Cp) factor w ill prove tha t the process o f  electro-etch ing  is reliable.

6.2 Background experiment

This experim ent has been  run  three tim es w ith  the sam e param eters. The m ain  key 

variables that w ere considered were: tim e, tem perature, cell voltage, concentration 

and iron content o f  electrolyte. A t the sam e tim e it has been  assum ed that there are 

interactions betw een param eters such as tim e and tem perature; cell voltage and 

concentration. These param eters have been  chosen because they  are m ore 

controllable then  o ther param eters and it has been assum ed that these param eters 

have a stronger influence on the process. Table 6.2 is a array d istribution o f  this set

up o f  param eters in  tw o levels as defined by  the Taguchi M ethod. The D O E w as 

perform ed to  identify  the optim um  setting o f  the m ost influential factors involved in 

the electro etching process.

These factors w ere identified  as:

•  Tem perature

•  Cell V oltage

- 6 0 -
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• Iron Content

• A cid C oncentration

•  Time

A tw o level L8 O rthogonal A rray w as chosen as the m ost suitable m atrix  to fully 

capture the experim ental space (Table 6.1).

Expt. No.
Temperature

[°C]

Time

[Seconds]

Voltage

[Volts]
Col.4

Acid Content 

[Molar]

Metal Content 

[g/L]
Col.7

1 25 180 3 1 3 0 1

2 25 180 3 2 4 2 2

3 25 200 3.5 1 3 2 2

4 25 200 3.5 2 4 0 1

5 35 180 3.5 1 4 0 2

6 35 180 3.5 2 3 2 1

7 35 200 3 1 4 2 1

8 35 200 3 2 3 0 2

Table 6.1 Two Level L8 Orthogonal Array

The experim ents consisted  o f  running a batch  o f  five stents to the factors settings 

dictated by  the L8 O rthogonal Array. There w ere 8 experim ents in  total. The 

m ethods used  to  identify  the results o f  each experim ent on the stents w as as follows:

• Stent m ass before and after electro etching.

• Stent inspected on the Sm artscope (D im ensional inspection m achine).

•  V isually  inspected all five stents after each  experim ent.

W eighing o f  the stents determ ined the am ount o f  m etal rem oval per experim ent. The 

greater the am ount o f  m etal rem oved the cleaner the stents bu t conversely, a large 

am ount o f  m etal rem oval can reduce stru t dim ensions below  acceptable lim its. A n 

acceptable com prom ise o f  stent strut dim ensions w ith in  specifications, and adequate 

m etal rem oval to give a clean surface, is the ob ject o f  the process. R esults o f  m ass 

rem oval can be seen in  Table 6.2.
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Inspection on the Sm artscope accurately recorded  the stent dim ensions. A s stated 

above, the strut dim ensions need to be w ith in  a certain  subassem bly spectrum . Cp 

(Process C apability) w ill be used to determ ine w hich  o f  the experim ents is m ost 

efficient. A n acceptable result is one that is in  statistical control and w hose output 

falls w ithin the upper specification lim its and the low er specification lim its. The 

larger the Cp value the better the process. R esults for th is can be seen in Table 6.3.

A ll stents w ere v isually  inspected to ensure that they  have the desired cleanliness 

after the electro etching process. D efects such as pitting, h igh  m etal rem oval rates 

and burnt struts w ere also recorded. O bservations from  the v isual inspection w ere 

rated from  0 .0 -»1 .0  (1.0 being best). This rating  w as also used  to determ ine w hich 

o f  the experim ents w as m ost efficient. These results can be seen in  Table 6.4.

6.3 Results

The results o f  the d ifferent procedures used  to  m easure the outcom e that the 

experim ents have on the etched stents can be seen in  the fo llow ing tables.

These results are used  to determ ine w h ich  o f  the factors are m ost influential on the 

electro etching process and also w hat setting o f  these factors w ill achieve the best- 

cleaned stent.
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Run 1

Exp 1 Exp 2 Exp 3 Exp 4 Exp 5 Exp 6 Exp 7 Exp 8

Mass before 0.1032 0.0998 0.1021 0.1 0.1046 0.0904 0.0993 0.1022
etching [g] 
Mass after 0.0767 0.0769 0.073 0.0775 0.074 0.0465 0.0725 0.0805
etching [g]

Difference [g] 0.0265 0.0229 0.0291 0.0225 0.0306 0.0439 0.0268 0.0217

Run 2

Mass before 0.0997 0.0997 0.0982 0.1007 0.0997 0.093 0.0994 0.1016
etching [g] 
Mass after 0.078 0.0852 0.0662 0.0863 0.0683 0.0568 0.07 0.0717
etching [g]

Difference [g] 0.0217 0.0145 0.032 0.0144 0.0314 0.0362 0.0294 0.0299

Run 3

Mass before 0.1057 0.0987 0.0994 0.1015 0.1026 0.0905 0.1002 0.1067

etching [g] 
Mass after 0.0826 0.0794 0.0719 0.0763 0.0821 0.0516 0.0743 0.0718

etching [g]

Difference [g] 0.0231 0.0193 0.0275 0.0252 0.0205 0.0389 0.0259 0.0349

Average 0.023766 0.0189 0.029533 0.0207 0.0275 0.03966 0.027366 0.028833

Difference [g]

Table 6.2 M ass removal on different runs [g]

-63-
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Process Capability (CP)
Run 1 Run 2 Run 3 Average

Experiment 1
Symmetrical S 1.81 1.73 1.57 1.703333

Flat 1.51 1.84 1.37 1.573333
Arrow 1.32 1.18 1.3 1.266667

1.514444
Experiment 2
Symmetrical S 1.63 1.86 1.64 1.71

Flat 1.56 1.66 1.72 1.646667
Arrow 1.28 1.33 1.32 1.31

1.555556
Experiment 3
Symmetrical S 1.48 1.4 1.9 1.593333

Flat 1.5 1.54 1.73 1.59
Arrow 1.21 1.26 1.28 1.25

1.477778
Experiment 4
Symmetrical S 1.13 1.22 1.53 1.293333

Flat 0.97 1.26 1.14 1.123333
Arrow 1.32 1.06 0.96 1.113333

1.176667
Experiment 5
Symmetrical S 1.64 1.65 1.6 1.63

Flat 1.46 1.46 1.6 1.506667
Arrow 1.19 1.14 1.28 1.203333

1.446667
Experiment 6
Symmetrical S 1.3 1.38 1.11 1.263333

Flat 1.17 1.19 1.31 1.223333
Arrow 1.16 1.22 1.35 1.243333

1.243333
Experiment 7
Symmetrical S 1.78 1.5 1.54 1.606667

Flat 1.6 1.41 1.56 1.523333
Arrow 1.24 1.25 1.3 1.263333

1.464444
Experiment 8
Symmetrical S 1.71 1.73 1.62 1.686667

Flat 1.46 1.6 1.53 1.53
Arrow 1.37 1.38 1.41 1.386667

1.534444

Table 6.3 Smartscope results fo r  Process Capability (Cp)
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Run No Pitting
Burnt

Struts
Am

[%]

Average 

Am [%]

Excess

Metal

Removal

Comment Rating*

Exp 1

Run 1
No No

25.68

23.10 Yes
Clean Stents. A little too 

much metal removed.
0.5Run 2 21.77

Run 3 21.85

Exp 2

Run 1
No No

22.95

19.01 No Clean Stents. Good Result 0.9Run 2 14.54

Run 3 19.55

Exp3

Run 1
Yes Yes

28.50

29.58 Yes
One burnt stent and quite a 

lot of pitting and metal 
removal.

0.1Run 2 32.59

Run 3 27.67

Exp 4

Run 1
Yes No

22.50

20.54 No Pitting on these Stents 0.2Run 2 14.30

Run 3 24.83

Exp 5

Run 1
Yes Yes

29.25

26.91 Yes
There was a lot of metal 

removal from all three runs. 
Struts were burnt and pitted.

0.1Run 2 31.49

Run 3 19.98

Exp 6

Run 1
No No

48.56

43.49 Yes
Too much metal removal. 

Bad result.
0.1Run 2 38.92

Run 3 42.98

Exp 7

Run 1
No No

26.99

28.67 Yes
Good Result. A little too 

much metal removal.
0.7Run 2 29.58

Run 3 29.43

Exp 8

Run 1
No No

32.71

31.62 Yes
Quite a lot of metal removal.

Stents were clean. No 
pitting or burning of struts.

0.3Run 2 29.43

Run 3 32.71

* R ating 0 .0—y 1.0 (1.0 being  best)

Table 6.4 Visual Inspection



File: DOE15MM.ANV Friday, April 18, 2003, 09:59:39

Experiment: 1 5 m m O C  Data: DOE Analysis

Experimental Layout

More:

Labels for Group 1

More:

Label Factor Name Level 1 Level 2

1 A Temperature (°C) 25 35

2 B Time (seconds) 180 200

3 C Voltage (Volts) 3 3.5

4 D

5 E Acid Content (Molar) 3 . 4
6 F Metal Content (grams/liter) o 2
7 G

Experimental data
Data type is Non-Classified
Signal-to-Noise ratio is Larger the Better

Group 1 Rep. 1 2

1 1.5144 0.5000

2 1.5556 0.9000

3 1.4778 0.1000

4 1.1767 0.2000

5 1.4467 0.1000

6 1.2433 0.1000

7 1.4644 0.7000

8 1.5344 0.3000

Table 6.5 Input data for cp
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Responses
File: DOE15MM.ANV Friday, April 18, 2003, 10:04:14

Experiment: 1 5 m m O C  Data: DOE Analysis
More: More:

0
0

<D
"Cl 0 3 
+->•a oMa
£ o

o
0
0

Mean Analysis

-a
3
S
Sf

-2.5
-3

-3.5
-4

-4.5
-5

-5.5
-6

-6.5
-7

-7.5
-8

-8.5
-9

-9.5
-10

-10.5
-11

-11.5
-12

-12.5
-13

-13.5
-14

-14.5
-15

-15.5
-16

Signal/Noise Analysis

Table 6.6 Response signal for Mean analysis and Signal/noise for cp
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Experimental Layout
File: DOE15MMW.ANV Friday, April 18, 2003,10:00:13

Experiment: 15 mm OC Data: DOE Analysis
More: More:

Labels for Group 1

Label
---- -------------------------—-----------—------------ ----------

Factor Name
------------------------

Level 1 Level 2

1 A Temperature (°C) 25 35

2 B Time (seconds) 180 200

3 C Voltage (Volts) 3 3.5

4 D

5 E Acid Content (Molar) 3 4

6 F Metal Content (grams/liter) o 2

7 G

Group 1 OA

A B C D E F G

1 1 1 1 1 1 1 1

2 1 1 1 2 2 2 2

3 1 2 2 1 1 2 2

4 1 2 2 2 2 1 1

5 2 1 2 1 2 1 2

6 2 1 2 2 1 2 1

7 2 2 1 1 2 2 1

8 2 2 1 2 1 1 2

Experimental data
Data type is Non-Classified
Signal-to-Noise ratio is Smaller the Better

Group 1 Rep. 1 2 3

1 25.6800 21.7700 21.8500

2 22.9500 14.5400 19.5500

3 28.5000 32.5900 27.6700

4 22.5000 14.3000 24.8300

5 29.2500 31.4900 19.9800

6 48.5600 38.9200 42.9800

7 26.9900 29.5800 29.4300

8 32.7100 29.4300 32.7100

Table 6.7 Input data for mass removal
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Responses
File: DOE15MMW.ANV Friday, April 18, 2003, 10:03:33

Experiment: 1 5 m m O C  Data: DOE Analysis
More: More:

Mean Analysis

SignaUNolse Analysis

Table 6.8 Response signal for Mean analysis and Signal/noise for mass removal
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6.4 Processing of Results

The values of the Smartscope measurements (Cp) and visual inspection (rating 0.0- 

1.0) were entered into the ANOVA software and from this the optimum settings for 

the experiments were determined.

The experimental layout for this DOE can be seen in Table 6.5 and respectively 6.7 

for mass removal.

The optimum settings for the experiments can be seen in the response graphs (Table 

6.6 and table 6.8 for Cp and visually inspection respectively table 6.9 and 6.10 for 

mass removal).

From this it can be determined that the optimum settings for a given stent design are:

Factor Setting
Temperature (°C) 25
Time (seconds) 180
Voltage (Volts) 3

Acid Content (Molar) 4
Iron Content (grams/liter) 2

Table 6.9 Optimum Settings for the 15 mm GMIT stent using electro-etching method

of cleaning
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6.5 Verification o f  Results

A verification run was performed with 15mm GMIT stents and it was found that a 

clean surface visually and an excellent Cp value was achieved. It has been confirmed 

that the experiment was successful and that these parameters are the ones for electro

etching. Results of this experiment can be seen in Tables 6.10 and 6.11.

Pitting Burnt
Struts

Excessive 
Metal Removal

Comment Rating*

Verification
Experiment No No No Very clean. 

Excellent result. 1.0

• Rating 0.0-1.0 (1.0 being best)

Table 6.10 Visual Inspection of Verification Experiment

Process Capability (CP)

Verification Experiment
Symmetrical S 1.93

Flat 1.54

Arrow 1.74

Overall Average 1.736

Table 6.11 Cp of Verification Experiment
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Chapter 7

Conclusions and Recommendations

7.1. Conclusions

Electrochemical surface treatment, namely electro-etching was found to have no effect 

on surface texture of 316L stent. It was found that electro-etching has identically effects 

in comparison with Chemical Etching.

Duration of ultrasonic waves was considerable decreased by using electro-etching. This 

means that overall time process of stent manufacturing is decreased. A comparison 

between metal removal in both processes shows that there is no significant difference.

An important part of the thesis was focused in controlling the process of dissolution by 

using different parameters and their interaction in a defined range.

The electro-etched stent has passed after visual inspection and also dimensional 

inspection. It has been prove that there is no difference in surface quality between these 

descaling processes. First conclusion is that chemical etching is a step that can be easily 

replaced by electro-etching.

Analyses using Scanning Electron Microscopy and Atomic Force Microscopy were 

employed to prove that new processes such as electro-etching could be easily replace 

processes that are longer and can damage the struts of the stent. There was very little, if 

any, differences found in the optical appearance and roughness values between stents 

with the optimum electro-etching conditions found by an industry standard 

electrochemical finish.
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7.2. Recommendations

1. Fatigue testing should be carried out on the stent devices with the different 

parameters to establish any differences in life-time of an electro-etched stent 

comparing with chemical etched stent results.

2. Corrosion testing should be carried out on the stent devices cleaned with 

different electro-etching parameters to establish any differences in pitting 

potential.

3. Further SEM examinations should be carried out on failed 316L and L605 

fatigue and corrosion fatigue specimens, to establish any mechanisms of failure.
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IMPROVED SURFACE QUALITY AND CORROSION RESISTANCE OF 
LASER CUT BIO-MEDICAL DEVICES BY THE OPTIMISATION OF 
SURFACE TREATMENT TECHNIQUES

1. Introduction

Several electrochemical methods are employed in the bio-medical industry because of 
their ability to manufacture of surface-finish metal articles, fabrications and components 
which are difficult or impossible to produce by traditional workshop techniques1. 
Electropolishing is a process by which metal is removed from a work piece by passage of 
electric current while the work is submerged in a specially-designed solution. The 
process is essentially the reverse of electroplating. In a plating system, metal ions are 
deposited from the solution onto the work piece; in an electropolishing system, the work 
piece itself is dissolved, adding metal ions to the solution.
The principle of differential rates of metal removal is important to the concept of 
deburring accomplished by electropolishing. Fine burrs become very high current density 
areas and are, subsequently, rapidly dissolved. Low current density areas receive lesser 
amounts of current and may show negligible metal removal.

2. Finishing Methods

a. Electrochemical Etching

Fig, 1 Schematic Electro-etching and Electro-polishing Installation

Electrochemichal etching is the deliberate (selective) and controlled removal of an 
electrically conducting (or semiconducting) material in an electrolyte.
The purpose for practiseing electrochemichal etching is to control surface roughening in 
order to promote a better and clean surface prior to electro-polishing.

Etching of the material may be carried out either chemically under open-circuit 
conditions (i.e. controlled “corrosion”) or it may be electrochemically driven by applying

- 90 -
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a potential. It requires no power supply or auxiliary electrodes; the electrolyte conditions 
are chosen such that the species to be removed is dissolved at a reasonable rate, courtesy 
of a simutaneous cathodic process.

Taking the case of the dissolution of a metal M, the anodic process in reaction (1) is 
supported by suitable electroreduction (2):

M - «e'->M"+ (1)

X + nc->Xn' (2)

To give an overall etching process:

M + X—»M”+ + X"' (3)

Thus, the etchant must permit active dissolution of M to Mn+ while supplying a cathodic 
reactant X. In the general case, both Mn+ and Xn+ may affect the rate of etching, i.e. the

Fig. 2 - A strut of a stent before and after etching (by Microscope)

Anodic etching requires that the metal be driven to a convenient potential (positive of its 
open-circuit value), by means of a power supply and a suitable inert cathode such that 
reaction (1) proceeds at the desired rate.
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The process conditions must be chosen carefully and controlled within limits to permit 
the etching to be sufficiently selective both chemically and physically, e.g. it may be 
required to etch one metal rather than another, one metallurgical phase rather than a 
whole matrix or an oxide rather than a metal or semiconductor.

Fig. 3 Cutted surface from a stent; before and after polishing (by Microscope)

Fig. 4 A Large Vessel Stent before and after etching

Fig. 5 Etched surfaces on a Large Vessel Stent (by SEM)
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b. Electropolishing

Electropolishing is the electrolytic removal of metal in a highly ionic solution by means 
of an electrical potential and current. A less technical description of the process would be 
"reverse plating". Electropolishing is normally used to remove a very thin layer of 
material on the surface of a metal part or component. The process is of interest because of 
its ability to enhance the material properties of a work piece in addition to changing its 
physical dimensions.
The mechanism of electropolishing is thought to involve both selective anodic dissolution 
(the potenitial distribution will favour corrosion of the surface at peaks rather in troughs) 
and oxide film formation. Electropolishing leads to extremely reflective surfaces which, 
unlike mechanically polished surfaces, are stress-free. Before the process can be carried 
out successfully, however, the surface must already be smooth since macroroughness 
cannot be removed1.

3. Factors involved in surface finish

Many of the factors which influence the rate of dissolution also affect the manner in 
which metal is removed from the anode, and hence they partly determine the surface 
finish. Of these factors, the anode potential and current density play a major part. Their 
role can be studied form polarisation curves.

Fig.6 Ideal current density-cell voltage curve

In order to understand more about electro-polishing, plots of anode potential, cathode 
potential, cell voltage on current density for different process variables are generally 
obtained and studied. Of these, the plot of cell voltage versus current density gives more 
information to know the critical effects of the process variables required to obtain a good 
polished surface. Basically, the electrolytic cell consists of specimen anode, cathode and 
a suitable electrolyte that is usually agitated.
An ideal curve of cell voltage versus current density is shown in fig. 6. The distinct 
regions of the curve are: A-B which is the region of etching, B-C is the unstable region 
where periodic oscillation of current is seen. C-D is the polishing region where the
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polishing occurs at constant current density usually called “limiting current density”, D-E 
is the region where slow gas evolution with pitting occurs and E-F is the region of 
polishing with rapid gas evolution. A study of good polishing process involves 
understanding of the influence of variables on the cell voltage-current density 
relationship, particularly on limiting current density.
Among the electro-polishing variables some are considered as primary variables as their 
influence is much more significant than that of the secondary variables mentioned. 
Considering the importance of the primary variables, the present paper discusses in detail 
the effect of primary variables on limiting current density to obtain a good polished 
surface.

Fig. 7 Electropolished surfaces o f a Large Vessel Stent

3.1 Effect of Process Variables on Current Density-Voltage Relationship 

Electrolyte (bath) temperature

As the temperature of the bath rises, its resistance decreases and the potential required to 
produce the limiting current density decreases2.

Stirring of Electrolyte

Stirring the electrolyte during polishing increases the limiting current density and also the 
specimen is polished better if it is moved through the solution at a moderate and steady 
speed. It is interesting to note that stirring the electrolyte is expected to disturb the 
viscous iayer thereby will aid the movement of the ions form the specimen anode into the 
electrolyte towards the cathode and may improve the quality of the polishing. From these 
observations it has been concluded that the electro-polishing process is a diffusion 
controlled process3.

Concentration of electrolyte

An increase in concentration of the electrolyte increases the limiting current density at a 
given voltage. Honeycombe and Hughans [4] have reported that, during electro-polishing 
of copper specimens using orthophosphoric acid electrolyte at room temperature, limiting
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current density of 0.04 A/cm2, whereas, at higher and lower values of limiting current the 
polishing quality is not good.

Surface Roughness

The contour of the specimen surface is assumed to have peaks and valleys and current 
density ant the peaks is higher than in the valley[3]. It has been reported that the 
smoothening during polishing occurs due to the difference on concentration gradient in 
the viscous layer over the peaks and valleys. At peaks, the layer is thin and the 
concentration gradient is higher while in the valley the layer is thicker and the 
concentration gradient is lower. Thus the surface is smoothened due to the preferential 
attack on the peaks.

Electrode distance

During electropolishing and etching, distance between electrodes (anode and cathode) 
plays a vital role to identify the optimum limiting current density value (horisontal plateu 
in the current density-voltage curve).

Polishing Time

Generally, polishing time decreases with decrease in roughness of the specimen surface. 
But lack of concentration gradient and uniform current density on a fine surface results in 
a relative slow increase in metal ion concentration around the anode. Thus the 
establisment of a polishing condition on a very smooth surface requires more time than 
that of a rough surface.

Viscosity of the Electrolyte

Viscosity of the electrolyte varies in the presence of moderators such as glycerol etc., 
which significantly affect the limiting current density, consequently polishing. Hickling 
and Higgins[3] have observed that limiting current density is inversly proportional to the 
viscosity of the electrolyte.

Cell voltage

The selected supply voltage for good polishing should be well within the voltage range 
obtain from the current density-voltage curve corresponding to the limiting current 
density of the polishing region (horizontal plateau).

In addition to the primary variables, secondary variables also play a role in obtaining 
good polishing surface. The main secondary parameters are: ratio of anode to cathode 
surface area, surface area of the cathode, surface area or the anode, orientation of the 
anode and cathode in bath, type of electrode, depth of sample below solution surface, 
washing procedure and age (repeated usage) of the electrolyte. The ratio of anode to 
cathode surface area should be less than 0.5. Considering the orientation of the two
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electrodes in the bath, it is suggested that the electrode surface preferably should be 
parallel to each other to facilitate polishing.

4. Experimental data of etching

EXPERIMENTAL DATA

0.00440

0.00430

0.00420

0.00410

0.00400
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0.00380
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0.00360 -
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0.00320 ■
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_n

1 min. 1m 
10sec

1m 1m 1m 1m 1m 1m 1m
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N/A

9  Sym S -  Average 
■  Flat - Ave 
□  A rro w -A ve

Table 1 -  Average Comparation between batches at different parameters
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No.
Crt Batch # Type of 

stent Pcs Etched Etching
Time

Prepolish.
Inspection Symetrical S Flat Arrow Obs.

Dim
insp

Wall
thick Average Range Average Range Average Range

1 2 3 4 5 6 7 8 10 11 12 13 14 15 16
1 LB167/11/01 15 mmOC 2 Yes 1 min. Yes No 0.00317 0.00056 0.00400 0.00055 0.00406 0.00055 One of them, unacceptable, 2 very clean.
2 LB167/11/02 15 mmOC 2 Yes 1m 10sec Yes No 0.00311 0.00071 0.00397 0.00053 0.00402 0.00083 Almost acceptable!
3 LB 167/11/06 15 mmOC 2 Yes 1m 15sec Yes No 0.00310 0.00055 0.00390 0.00051 0.00391 0.00058 Cleaned. Only one point of crud inside sur.
4 LB 167/11/03 15 mmOC 2 Yes 1m 20sec Yes No 0.00311 0.00072 0.00394 0.00060 0.00394 0.00079 Clean and acceptable! Very good!
5 LB 167/11/04 15 mmOC 2 Yes 1m 25sec Yes No 0.00308 0.00057 0.00385 0.00058 0.00384 0.00059 crud inside surface, to be repeaded
6 LB 167/11/05 15 mmOC 2 Yes 1m 25sec Yes No 0.00302 0.00045 0.00387 0.00071 0.00382 0.00064 Excellent! OK! Very clean!
7 LB167/11/10 15 mmOC 2 Yes 1m 30sec Yes No 0.00306 0.00059 0.00388 0.00054 0.00385 0.00069 not cleaned, to be repet it
8 LB167/11/11 15 mmOC 2 Yes 1m 30sec Yes No 0.00305 0.00053 0.00386 0.00053 0.00384 0.00060 Very clean! OK!
9 LB 167/11/12 15 mmOC 2 Yes 1m 35sec Yes No 0.00296 0.00081 0.00375 0.00071 0.00369 0.00076 Very, very clean!
10 LB 167/14/13 15 mmOC 5 No N/A No No 0.00318 0.00080 0.00399 0.00066 0.00426 0.00062 HF etched

Table 2 -  Etching characteristics of 15 mm Open Cell stents

5. Conclusions

a. Chemical etching is a step which easily can be replaced by electro-etching.
b. There are no disadvantages in electro-etching.
c. Electro-etching can be easily integrated in manufacturing.
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