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Abstract: The inclusion of physiologically active molecules into a naturally occurring polymer
matrix can improve the degradation, absorption, and release profile of the drug, thus boosting the
therapeutic impact and potentially even reducing the frequency of administration. The human
body produces significant amounts of polysaccharide hyaluronic acid, which boasts exceptional
biocompatibility, biodegradability, and one-of-a-kind physicochemical features. In this review, we
will examine the clinical trials currently utilizing hyaluronic acid and address the bright future of
this versatile polymer, as well as summarize the numerous applications of hyaluronic acid in drug
delivery and immunomodulation.

Keywords: naturally-occurring polymers; polysaccharide; immunotherapies; bioactives; heteropolysac-
charides; drug-delivery

1. Introduction

Hyaluronic acid (HA) is a naturally occurring mucopolysaccharide that belongs to
a group of heteropolysaccharides referred to as glycosaminoglycans (GAGs) [1–3]. Mu-
copolysaccharides are long chain sugar molecules commonly found in mucus or joint
fluid in the body. Endogenous HA is found throughout the human body in the vitreous
humour, joints, umbilical cord, connective tissue, and skin. Naturally, occurring HA is
commonly isolated from sources such as rooster comb for industrial applications requiring
an animal source. However, it can also be synthesized using biotechnological processes
and recombinant DNA technologies in bacterial expression systems such as Lactococcus. A
species of bacteria that can naturally produce HA and therefore HA can be isolated from,
is Streptococcus. However, Streptococcus is a pathogen that produces several endotoxins,
rendering end-stage product isolation difficult. As a result, other approaches such as
cell-free HA synthesis or genetic engineering of microorganisms that do not create endo-
toxins have been developed [4]. This freely accessible natural polysaccharide has a wide
range of applications due to its unique physicochemical and bioactive properties, which
will be explored in depth throughout this review. Furthermore, HA is biocompatible and
biodegradable, making it a safe biomaterial for biomedical applications such as biomedical
engineering, as well as finding applications in the cosmetics industry, wound healing,
and drug delivery [5–7]. Through this review, we will first discuss the discovery of HA,
followed by an in-depth analysis of its physicochemical and bioactive properties, as well as
its synthesis and degradation, functionalization, and applications in drug delivery, wound
healing, and cancer therapeutics. In conclusion, we will review the potentially bright future
of HA, with a particular emphasis on ongoing as well as forthcoming clinical trials.
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2. Discovery of HA

Karl Meyer and his colleague John Palmer discovered HA in 1934 when they isolated
a previously unknown material from the bovine vitreous body. They named this novel
substance hyaluronic acid after discovering that it included two sugar molecules, one of
which was uronic acid. The “hyal” portion came from the word hyaloid which refers to
the vitreous body hence the combination was called hyaloid + uronic acid or hyaluronic
acid [8,9]. This previously unknown substance would go on to become one of the most
intriguing and extensively studied naturally occurring human polymers. HA was not used
commercially until 1942, when Endre Balazs submitted a patent to replace egg whites with
HA in baked goods [9,10]. However, it is not known if this patent was granted and the
authors have not been able to find a reference to HA being used as a suitable alternative
to egg white in baking. Subsequently, in the late 1950s, HA found its way into medical
applications when it was used to replace the vitreous humour of the human eye.

Although it was first identified as an acid and is frequently referred to as hyaluronic
acid, HA acts more similar to the salt, sodium hyaluronate, under physiological conditions.
Endre Balazs coined the name hyaluronan in 1986 [11], thereby capturing the different
forms HA might take while conforming to the international polysaccharide nomenclature-
the acid and the salt.

3. Physicochemical Properties of HA
3.1. Structure

HA is an anionic polymer consisting of disaccharides of D-glucuronic acid and N-
acetyl-D-glucosamine, which are linked by β (1, 4) and β (1, 3) glycosidic bonds as shown
in Figure 1 below.

Figure 1. Structure of a disaccharide of HA.

HA is renowned for its unusual viscoelastic properties, due to the interaction between
chains of hydrogen bonds. The HA macromolecule is best represented as a hydrated
spherical. In its most elongated conformation, HA exhibits its highest viscosity in an
aqueous solution. As the concentration of HA in aqueous solution increases, so does the
viscosity due to chain weaving and the formation of 3-dimensional matrices. This is the
basis of gelation, however, salts can be added as viscosity modifiers to facilitate the use of
high-concentration solutions, as demonstrated by Selyanin et al. [7].

HA is a polymer that is extremely hydrophilic. Each disaccharide contains a carboxylic
acid component that dissociates at physiological pH, enhancing the polyanionic nature of
the polysaccharide. Because of this polyanionic behavior, several metal ions can be coupled
to the hydration shell, resulting in a 1000-fold increase in volume and the formation
of 1000 weakly packed hydrated matrices [12]. This is the basis of HA’s physiological
functions, such as its rheological characteristics, elasticity, wound healing capacity, and
cell lubrication, and it also explains HA’s involvement as a structural component of the
ECM [13].
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3.2. Molecular Weight

The biological function of HA is mainly dependent on the polymer’s molecular weight
(MW) [14–17]. Table 1 below summarises the average molecular weights of HA from
different areas of the human body, however, this is not an exhaustive list as HA is ubiqui-
tous throughout the body. While it typically exists as a high molecular weight polymer,
of over 106 Daltons (Da) or 1000 Kilodaltons (kDa), it can be cleaved by an enzyme,
hyaluronidase, in the body to obtain molecules of much lower MWs. The biological func-
tions include control of tissue hydration, supramolecular assembly of proteoglycans in the
extracellular matrix, and multiple roles in receptor-mediated cell detachment, mitosis, and
migration [18,19].

Table 1. Summary of the molecular weights of endogenous HA.

Tissue Concentration
(µg/mL)

Molecular Weight
(kDa) References

Umbilical cord 4100 500 [20]
Synovial fluid 1400–3600 6000–7000 [21,22]

Dermis 200–500 >1000 [23,24]
Epidermis 100 >1000 [23,24]

Thoracic lymph 0.2–50 1400 [3,25,26]
Urine (excreted) 0.1–0.3 4–12 [27]

For both commercial and endogenous HA, the applications are dependent on molecu-
lar weight as illustrated in Figure 2 below. HA of an MW larger than 1000 kDa is primarily
useful in the surface hydration of cells and has applications in ophthalmology, wound
healing, and cosmetics [28]. Between 10 kDa and 1000 kDa, HA plays a vital role in wound
healing. HA between 100–250 kDa has a role in embryonic development and ovulation
and is necessary for successful ovulation and fertilisation in most mammals [29]. Finally,
oligosaccharides with an MW of ≤10 kDa are critical in promoting fibroblasts’ proliferation,
and angiogenesis, and are also implicated in tumour growth [30–32]. As indicated in
Figure 2, an MW of less than 10 kDa also finds application in the cosmetics industry as the
smaller size allows for deeper penetration and subsequent hydration of the skin layers [33].
It is in the cosmetics industry that the majority of the population has been introduced to
the unique physicochemical properties of HA, such as viscosity and lubrication via the
extraordinary ability of HA to bind water molecules, which has become a staple ingredient
in products such as serums and creams. Additionally, the viscoelastic properties of HA
have been utilised in cosmetic procedures such as dermal fillers as the viscoelasticity and
biodegradability lend themselves perfectly to a flexible, comfortable, biocompatible, and
biodegradable filler material for lips, cheeks, and jaws to name but a few [34]. These fillers
serve to replace lost volume and hydration from the skin and consist of cross-linked HA.
The crosslinkers utilised depend on the desired physical or biological response sought. The
water binding and viscoelastic properties of hyaluronic acid have also been exploited in the
area of micro-needles. Micro-needles are medical devices, of approximately a micron in size,
which penetrate the outermost layer of skin for the purpose of improving the transport of
therapeutic through the epidermis [35–37]. Extensive research has been conducted over the
past decade in micro-needle based drug delivery, and as a result, HA-based micro-needles
are used extensively in both the pharmaceutical and cosmetics industries. In this way, HA is
used as a dissolving microneedle, created through processes such as micro-molding which
is an economic method suitable for mass production. These HA-based microneedles can
facilitate the delivery of a variety of molecules such as adenosine and bioactive proteins for
the catalysis of collagen and elastin [35], and alendronate for osteoporosis [36], or insulin
for diabetes [37].
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Figure 2. Molecular weight-dependent applications of HA.

4. Endogenous Bioactive Properties
Receptor Interactions

HA interacts with various molecules and receptors and conducts numerous functions
throughout the extracellular matrix (ECM) via specific and non-specific interactions. Some
of the most commonly known receptors that HA interacts with are Neurocan, the receptor
for hyaluronan-mediated motility (RHAMM), GHAP (glial HA binding protein), CD44,
Aggrecan, and TSG6 (TNF-stimulated gene 6) [38,39]. The most biologically relevant
receptor is CD44 due to its multifunctional cell surface conjugated protein that is present
in an abundance of cell varieties. These cell surface binding proteins possess key residues
which allow for wrapping around and securing the HA polymer chain to the CD44 receptor.

HA has many functions within tissues correlated to its interactions with the primary
receptors CD44 and RHAMM. CD44 expression is a known activation marker that aids
in classifying memory and effector T cells. It can also assist in early T cell signaling
as it is bound to the lymphocyte-specific protein kinase [39]. CD44 also contributes to
cell adhesion interactions and proliferation as illustrated in Figure 3 below above [40].
Despite the binding of HA to CD44, it has been evidenced that HA degradation can trigger
inflammation through toll-like receptors such as TLR2 and TLR4 in macrophages and nerve
fiber cells [41]. Both TLR and HA are vital components of the innate immune system.
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Figure 3. The correspondence between RHAMM and CD44 following HA binding affects physiologi-
cal and cellular functions. The track denoted in green highlights extracellular signaling involving
CD44-HA mediated pathways. The blue track is for intracellular RHAMM signaling. Cell surface
RHAMM interacts with CD44, HA, and growth factor receptors (GFR) to activate protein tyrosine
kinase signaling cascades that activate the ERK1/2 MAP kinase cascade in a c-Src/FAK/ERK1/2
dependent manner (depicted in green track). In the absence of intracellular RHAMM, this signaling
can stimulate the transcription of mitogenic effectors to regulate a mitogenic response (cell prolifera-
tion/random motility). In the presence of intracellular RHAMM (blue track), MEK-1/p-ERK1/2 also
binds to a number of protein partners that allows activated RHAMM to enter the nucleus to regulate
functions of microtubule dynamics via centrosome structure/function, and cell cycle progression.
Activated RHAMM also controls the expression of genes involved in cell motility. Overall, the effect
of HA is pro-proliferation and the development of cellular infrastructure whilst providing critical
immune support.

5. Synthesis

HA is the only one of the mucopolysaccharides that are not synthesised by the Golgi
apparatus. Despite the relatively simple structure of HA, it possesses a range of physiologi-
cal roles in humans and animals. HA can be isolated from animal sources such as rooster
comb, or certain bacteria such as Streptococcus. However, purification from sources such as
these is difficult due to the inherent variability with animals and the presence of endotoxins
in Streptococcus species. The main sources of commercial HA for the industry are either
animal or microorganism derived.

5.1. Microbial Synthesis

For bacteria, such as the Streptococcus genus, three distinct genes are required to
synthesise HA- HasA, HasB, and HasC. In the initial stage of HA biosynthesis, glucose
is converted to glucose-6-phosphate via the enzyme hexokinase as illustrated in Figure 4
below. Glucose-6-phosphate is the most vital precursor in this biosynthesis pathway.
Following this initial stage, there are two distinct routes in which two building blocks are
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produced: glucuronic acid and N-acetyl glucosamine [42–45]. However, Streptococcus
are renowned for producing several endotoxins which would render the HA produced
unsuitable for human use. Additionally, the expensive growth media necessary and
difficulty in controlling the fermentation process make this genus less than ideal [4].

Figure 4. Microbial synthesis of hyaluronic acid in Streptococcus.

To overcome the issues with Streptococcus production of HA, researchers have been
investigating other strains which are generally regarded as safe (GRAS) and engineering
them for HA production. One such strain is Lactococcus lactis, which was engineered by
Sheng et al. using the HA biosynthesis operon and the lacF selectable marker [46].

5.2. Animal Synthesis

In vertebrates, there are three different has isozymes- has1, has2, and has3, which are
involved in HA synthesis during embryonic development [47], morphogenesis [48], wound
healing [49], aging and cancer progression [49]. The function of HA synthases is to lengthen
the polysaccharide by repeated addition of glucuronic acid and N-acetyl-D-glucosamine
groups as illustrated in Figure 5 below. These are then extruded into the cells through the
cell wall via ABC-transporters [50]. The different forms of has proteins possess other kinetic
profiles, which ultimately affect the size of the HA produced. Has1 and has2 proteins are
moderately active and implicated in the synthesis of high MW HA, whereas has3 proteins
are highly active and produce low MW HA [38].
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Figure 5. Animal synthesis of HA.

HA extracted from animal tissues such as rooster comb still remains an important
product due to the high molecular weights which can be recovered when isolating HA from
animals. However, the harsh extraction process often results in poor yield and polydisper-
sity of molecular weights [51]. This is due to the grinding, acid treatments, and organic
extractions which are necessary to extract the polysaccharide. Additionally, contaminant
proteins are a significant issue in the isolation of HA from animals. Cellular proteins such
as hyaluronidase, a HA-specific enzyme, may be bound to the polymer in animal tissues
and could potentially elicit an immune response in humans if not completely removed
from the end product. Similarly, there is the potential for nucleic acid contamination or the
spread of animal prions which could result in infectious disease spread [52]. Therefore,
the molecular weight advantage of animal extraction is offset by the high cost and labour-
intensive processes involved. Thus, biotechnological solutions are the preferred route of
commercial HA synthesis where possible.

6. Degradation

Endogenous human HA is primarily degraded by an enzyme family known as
hyaluronidases (HYAL, but may also be initiated by free radical degeneration. Free radical
degradation is a process by which free radicals, or pro-oxidants, cause oxidative stress
resulting in organic damage to molecules or cells. Free radical degradation, in particular,
has been implicated in HA degradation in aging and arthritis. It initiates degradation via
non-specific scission of the glycosidic bond [53], and the concentration of free radicals is
directly proportional to the degree of degradation of the HA molecule. The half-life of HA
in human tissue ranges from three to five minutes in blood to approximately 70 days in
the eye’s vitreous body [24,54]. This turnover rate is controlled by localised degradation or
uptake and hydrolysis via the lymph system.

Extracellularly, there are various ways in which larger molecules of HA can be de-
graded into smaller fragments. This is important as fragmented HA can be used as an
indicator of early disease in conditions such as arthritis, or a selection of molecular weights
for specific applications may be needed as detailed earlier. For instance, smaller HA frag-
ments are preferred for use in cancer treatments, as an antioxidant, or in cosmetics whereas
medium chain HA can be useful in wound repair and regeneration [55,56]. External or
extracellular methods include chemical degradation, physical force, free-radical cleavage,
pH, temperature, ultrasonic stresses, and, of course, enzymatic degradation.

Enzymatic Degradation

Enzymatic degradation is performed by HYAL, of which six have been identified in
humans- HYAL1, HYAL2, HYAL3, HYAL4, PH20, and HYALP1 [57]. The function of the
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hyaluronidases is to cleave the large molecule into smaller oligosaccharides. In contrast,
β-D-glucuronidase and β-N-acetyl hexosaminidase further degrade the fragments by
removing non-reducing sugars from the terminal ends [9]. The oligosaccharides and very
low molecular weight fragments produced by this enzymatic degradation have exhibited
angiogenic properties in numerous studies. They have also been identified in the disease
process of degenerative diseases such as arthritis [58–60]. This is in stark contrast to the
anti-angiogenic and anti-inflammatory properties displayed by high molecular weight
(HMW) HA.

The small fragments of HA modulate gene expression in many cell types. They could
invoke an inflammatory response through interaction with toll-like receptors (TLR) such
as TLR-2, TLR-4, and CD44, which induce NF-kB activation that, in turn, is responsible
for inflammatory mediator transcription such as TNF-α and Il-1β [61]. Despite this, there
is growing research into using these oligosaccharides of HA (<10 kDa) to modulate the
inflammatory response. Wang et al. demonstrated how these oligos could be used as an
agent for reconstructing cardiac function against myocardial infarction [62].

This fragmentation of HA also interferes with HA signaling. There is a working
hypothesis that HMW HA can cluster receptors on the cell membrane. In contrast, low
molecular weight (LMW) cannot gather the cell membrane proteins the same way; therefore,
signaling modulation differs from that induced by HMW in the same cells [63]. Thus, the
signaling capabilities of HA rely heavily upon fragmentation.

7. Modification to Improve Functionality

Native HA has found a broad range of applications in areas such as ophthalmology
and cosmetics due to its unique physicochemical characteristics. To further expand the
applications of this polysaccharide, it can be modified to allow for cross-linking and
engineering, to tailor the degradation profile in vivo, to improve cell attachment, or to
enable conjugation.

The relatively simple structure of HA allows for ease of modification of its two main
functional groups- the hydroxyl and the carboxyl groups. Additionally, further synthetic
modifications may be performed following the deacetylation of the acetamide group, which
can allow for the recovery of amino functionalities [64]. Regardless of the functional group
to be modified, there are two options for modification; crosslinking or conjugation. These
options are shown in Figure 6 below.

Conjugation is modification via the grafting of a molecule onto the HA chain by a
covalent bond, whereas crosslinking involves the formation of a matrix of polyfunctional
compounds which link chains of native or conjugated HA via two or more covalent
bonds [65,66]. Crosslinking can be performed on either native HA or conjugated HA. This
is of particular interest in the area of bioconjugation.

Bioconjugation is the act of conjugating peptides or proteins to a natural polymer to in-
crease efficacy. Previously, this was performed using polyethene glycol (PEG). PEGylation
was found to increase the effectiveness of drugs by reducing renal clearance, enzymatic
degradation, and immunogenicity in vivo. However, repeated injection of PEGylated lipo-
somes has been found to cause accelerated blood clearance and trigger hypersensitivity [67].
Thus, HA is now under investigation as a plausible alternative [68].

Conjugation allows for crosslinking with a variety of molecules to enable the improve-
ment of drug carrier systems with optimised properties. The crosslinking of HA allows for
fine-tuning of many characteristics, such as mechanical, rheological, and swelling proper-
ties, and protects the polymer from enzymatic degradation to allow for longer residence
time at the required treatment site. The process of bioconjugation and crosslinking has
found applications in medicine, aesthetics, and bioengineering to treat various ailments.
The different approaches and applications of functionalisation have been discussed in
great detail by Sanjay Tiwari and Pratap Bahadur (2019) [69], so only a brief overview of
hydroxyl and carboxyl group chemical modifications will be discussed in this review.
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Figure 6. Conjugation and crosslinking of HA.

7.1. Modification of HA via the Hydroxyl Group

The standard recognition by degradative enzymes is preserved by retaining the car-
boxyl group and modifying the hydroxyl groups. Each disaccharide unit of HA consists
of four hydroxyl groups, one amide group, and one carboxyl group. One of the most
highly marketed HA derivatives, butanediol-diglycidyl ether (BDDE) HA, is produced
in an alkaline aqueous solution through simple synthetic procedures [69]. Additionally,
divinyl sulfone (DVS) or ethylene sulfide can be used to form other ether derivatives in
water [70].

A novel HA drug delivery system targeting tumour cells was created when perform-
ing a dimethylaminopyridine (DMAP)-catalysed esterification reaction between butyric
anhydride and LMW sodium hyaluronate in dimethylformamide (DMF). Butyric acid has
been well reported as an inducer of cell differentiation and inhibitor of various human
tumour cells [71]. Other modification methods involve isourea coupling and periodate
oxidations. However, both of these methods are performed in harsh conditions and may
compromise the integrity and biocompatibility of the HA.

7.2. Modification of HA via the Carboxyl Group

The main modifications of the carboxylic group of HA are esterification, carbodi-
imide mediated, 1-ethyl-3-N, N-dimethylaminopropyl]-carbodiimide (EDC)/N-hydroxy
succinimide (NHS) modification, EDC/hydrazide modification and finally thiol modifi-
cation [72]. HA modified via esterification is usually performed by preparing quaternary
salt of HA followed by a reaction with an esterifying reagent. The higher the degree of
esterification obtained, the more insoluble the resulting derivative becomes. Two of the
best characterised esterified HA derivatives are ethyl and benzyl esters of HA, named
HYAFF® 7 and HYAFF® 11, respectively [73,74]. These derivatives were created for tissue
engineering applications.

Another option is carbodiimide-mediated modifications whereby the carbodiimide
activates the carboxyl group of the HA under acidic conditions. This activation allows for
nucleophilic attack of the carboxylate anion to produce O-acylisourea, which the nucle-
ophiles can capture. The most common nucleophilic agents are primary amines despite the
low percentage in the nucleophilic amine state at equilibrium [74]. One of the biggest pitfalls
of this method is forming the stable intermediate N-acyl urea from O-acylisourea, which
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can happen in seconds with viscous macromolecules, thus out-competing the exogenous
amines [75].

To combat this, a two-step procedure utilising EDC and NHS was created, which was
more efficient and increased the yield of modified products. However, the degree of substi-
tution is poor, generally below 20%. This is preferable to most biological investigations so
as not to interfere with CD44 interaction [76–79]. Following chemical conjugation, various
crosslinking methods can be employed to allow for use in multiple applications, from tissue
engineering to wound healing and aesthetics. Modifications of the carboxylic acid group
are summarized below.

7.3. Amidation

As previously mentioned, carbodiimide modifications are one of the most common
modifications performed, typically using EDC due to its water solubility. In this reaction
using EDC, the carboxylic acid moieties are activated by EDC, which forms an O-acyl
isourea intermediate. In the second step of the reaction, a nucleophilic attack of the amine
to the activated HA occurs, forming an amide bond as shown in Figure 7 below. However,
the formation of the stable N-acyl urea by-product may occur due to the reaction of the
O-acyl isourea with water [67]. If this occurs, no further reaction with the amine takes
place. For this reason, many researchers use catalysts such as 4-dimethylaminopyridine
(DMAP) in an attempt to push the reaction forward and reduce the amount of N-acyl urea
formed [80].

Figure 7. A typical scheme for amidation reaction of HA.

Other variations of this carbodiimide-mediated amidation exist also, such as using
biscarbodiimides as the reacting reagent itself rather than just an activator or adding NHS
to prevent the formation of the stable unreactive by-product N-acyl urea, all of these have
been discussed in detail by Schanté et al., 2011 [67].

7.4. Esterification

Alternatively, the carboxyl group of HA can undergo esterification via a variety of
methods such as using alkyl halides, tosylate activation, diazomethane, or epoxides. As
these methods have been described in detail by Schanté et al., 2011 [67] and Huang and
Chen, 2019 [81], only ester formation via epoxides as shown in Figure 8 below, will be
illustrated in this review.
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Figure 8. Esterification of HA via glycidyl methacrylate.

This reaction is performed in water and in this example, utilizes triethylamine as
a catalyst to synthesize methacrylated HA from glycidyl methacrylate. Due to the high
reactivity of the methacrylate and the many functional groups of HA, there is some concern
regarding the specificity of this type of reaction. However, Bencherif et al. (2008) suggest
that the reaction primarily occurs at the carboxylic acid but any esterification which does
occur at the hydroxyl groups is reversible [82].

8. Immunomodulation Properties

The principal function of the immune system is defence, either against foreign matter,
including pathogens or against disease, including cancer [83]. The immune system’s
complexity occurs when the immune response either fails to respond to a pathogen or
is over-exasperated. Interventions such as vaccines can improve response. Steroids or
anti-inflammatory medications can reduce hyper-inflammation. Inflammation is a key,
protective immunological function. If not appropriately controlled, it can cause harm
to the host and lead to pathologies. Inflammation is linked to several chronic diseases.
With increasing numbers of autoimmune conditions and infectious agents, molecules that
interact positively with the immune system are always in demand [84].

Bioactives are molecules that can interact with the immune system, in particular
cells of first-line defence, including monocytes or macrophages. Bioactives with immune-
modulatory activity are of particular interest as they can reduce inflammation without
affecting pathogen clearance. Physiochemical properties of bioactives are correlated to
activity. These properties include; the final form of the polymer (3D printed, hydrogel,
or solid), crosslinking density, and whether the material is synthetic or natural. It has
been reported that a high crosslinking density of biomaterials can promote inflammatory
macrophage responses [85,86]. In contrast, the opposite appears to be true in the case of
HA [87].

Immunity can be roughly categorised as innate or nonspecific or acquired or specific.
Innate immunity, a rapid response is the earliest line of defence against nonspecific invaders.
Included under the innate system are monocytes, macrophages, dendritic cells, and neu-
trophils. Acquired immunity is a slower response that develops after the initial exposure
and is reliant on B- and T-cells. After the initial exposure, the secondary response is rapid
and specific. Immune cells, both innate and adaptive, are integrated as they communicate
with each other through soluble mediators [88].

8.1. The Role of Hyaluronic Acid in Inflammation

HA is a significant component of the extracellular matrix (ECM), which becomes
fragmented during infection and tissue injury and is repaired when inflammation subsides.
During inflammation, HA turnover is disrupted and HA fragments collect extracellularly.
These fragments are linked to the proliferation of the inflammatory response, whereas the
full-length, high molecular mass HA is linked to the resolution of inflammation. While all
immune cells express the HA receptor CD44, under homeostatic circumstances only a few
bind HA. This, however, is altered when immune cells are activated [89].

In response to changes in cell sensitivity and signaling pathway regulation, the ex-
pression levels of inflammatory genes are modulated by complex mechanisms. Most likely
attributed to hyaluronidase activity, the chain length of high-molecular-weight HA reduces
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during inflammation [89]. HA absorption and fragmentation by macrophages may reduce
inflammation [89].

Toll-like receptors are a family of pattern recognition receptors, which distinguish
specific structures in pathogens. Plasma membranes express extracellular TLRs (TLR1,
TLR2, TLR4, TLR5, TLR6, and TLR10). Through their extracellular/luminar leucine-
rich repeats (LRRs) and cytosolic toll-like/interleukin-1 receptors, these molecules detect
infection-derived ligands (TIR). TLRs are expressed on macrophages, neutrophils, dendritic
cells (DCs), natural killer (NK) cells, mast cells, T and B lymphocytes, stromal cells, and
tumour cells [90].

Both low and high molecular weight HA stimulates TLR-4. Conversely, LMW HA
induces the activation of the NF-κB pathway which is associated with inflammation. HMW
HA prevents lipopolysaccharide (LPS) a bacterial endotoxin, and activation of macrophages
which is anti-inflammatory activity [91]. This contrasting activity demonstrates that the
molecular weight of HA has a huge influence on the mode of action and ultimately response.

8.2. The Importance of Molecular Weight in HA Immunomodulation

Considering the importance of physicochemical properties in relation to bioactivity,
it is surprising that there are currently very few investigations of the immunological
responses induced by HA of varying molecular weights. Studies have demonstrated that
antiangiogenic, immunosuppressive, and anti-inflammatory properties are seen in HA with
a molecular weight larger than 1000 kDa. In contrast, pro-inflammatory, pro-angiogenic,
and immunostimulatory characteristics are seen in medium- and low-molecular-weight
HA [92].

An interesting study by Lee et al. (2021) tested HA at molecular weights of 10 to
1500 kDa and concentrations of 10 and 100 µg/mL on LPS-stimulated macrophages
which are essentially inflamed [91]. They tested these parameters for the pro and anti-
inflammatory effects of HA. Nitric Oxide (NO) generation from LPS-stimulated macrophages
was used to measure HA-induced inflammation. They also evaluated the impact of dif-
ferent molecular weights of HA on M1 (Inflammatory) and M2 (anti-inflammatory) po-
larisation of macrophages. They also measured pro- and anti-inflammatory gene expres-
sion. Results demonstrated that various molecular weights of HA have distinct effects.
LPS-unstimulated and LPS-stimulated macrophages exhibited differential regulation of
inflammatory mediators, including cytokines and chemokines, based on the HA molecu-
lar weight. In the NO experiment with LPS-stimulated macrophages, HA demonstrated
molecular weight-dependent effects on macrophages. Low molecular weight HA (50 kDa)
increases iNOS levels significantly in LPS-stimulated chondrocytes. HA with a molecular
weight of 1000 kDa had no noticeable effect on iNOS in LPS-stimulated chondrocytes. HA
with a high molecular weight (5000 kDa) effectively decreases the iNOS increase generated
by LPS.

In addition, they evaluated the impact of various HA molecular weights on the
expression levels of certain immune gene expression levels in LPS-unstimulated and LPS-
stimulated macrophages. In response to LPS, macrophages will secrete inflammatory
mediators, such as IL-6 and TNF-α. Macrophages treated concurrently with LPS and
HA have the opposite effect, with TNF-α expression levels decreasing. Il-10 is a cytokine
associated with anti-inflammatory pathways. In unstimulated macrophages, HMW HA
significantly up-regulated IL-10 compared to other conditions tested again demonstrating
that HMW HA influences an anti-inflammatory phenotype [90].

8.3. Immunomodulatory Applications of HA

There is always a need to enhance the immune-boosting capabilities of vaccinations.
Efforts are being focused on enhancing the immunogenicity of viral vaccines through the
use of bio-adhesive delivery systems containing natural ingredients in order to counteract
the negative side effects of conventional adjuvants. These bio adhesives adhere to the
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surfaces of mucosal cells via receptor-mediated processes. HA is one of these natural
bio-adhesives that has the ability to stimulate an effective immune response.

In a study β-propiolactone (βPL), binary ethyleneimine (BEI), and hydrogen peroxide
(H2O2) were assessed for their inactivation potentials. Monitoring the humoral and cel-
lular immune response induced by rabies vaccinations adjuvanted with Staphylococcus
aureus-derived HA and BCG pure protein derivative (PPD). Results showed that both ad-
juvants may boost the release of anti-rabies total immunoglobulin G and pro-inflammatory
mediators in a progressive manner. HA adjuvanted rabies vaccination produced a greater
immunological response compared to PPD adjuvanted rabies vaccine [93]. This further
demonstrates that HA has a significant influence over immune response.

Mortality and morbidity linked with chronic obstructive pulmonary disease (COPD)
are on the rise globally. HA with a high molecular weight is a physiological component of
the lung extracellular matrix and possesses considerable anti-inflammatory and hydration
capabilities. Therefore, HA was administered in a pilot study of 41 patients. Significantly
shorter durations of non-invasive positive-pressure breathing (NIPPV) were seen in patients
treated with HA. Additionally, HA-treated individuals had reduced ventilator-measured
peak airway pressures and lower systemic inflammatory biomarkers. HA considerably
increased mucociliary transport in air–liquid interface cultures of primary bronchial cells
from COPD patients and healthy primary cells exposed to cigarette smoke extract, based
on simultaneous in-vitro assays [94].

Collectively, the research studying the impact of HA on immune system disorders,
namely inflammation, reveal that the molecular weight of the chemical is crucial. HA
with a greater molecular weight appears to have anti-inflammatory effects that might be
beneficial for a variety of inflammatory illnesses and needs to be explored further.

9. Medical Interventions

Through modification and functionalisation of this ubiquitous polymer, a broad range
of applications are possible as outlined in Figure 9 below. This section will discuss just
some of the many uses HA has found in areas of cancer drug delivery, topical drug delivery,
wound healing, inflammatory arthritis, and others.

Figure 9. Some of the many applications which utilize hyaluronic acid or HA derivatives.
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9.1. Targeted Drug Delivery of Cancer Therapeutics

The use of HA in drug delivery is a relatively new concept. It hinges on the actions
of receptors such as CD44 and RHAMM, which are responsible for the receptor-mediated
endocytosis of HA in vivo. This is particularly true in the case of cancer treatments, where it
has been shown that the cellular uptake and efficacy of tumour-targeted drugs are increased
when using HA delivery systems [95].

The targeted delivery of anticancer drugs is paramount given the indiscriminate
detrimental effects of the compounds on healthy and cancer cells. Efficient targeting
of these drugs allows for concentrated dosing at particular sites whilst preserving the
surrounding environment. CD44 activity is vital as a variant of this receptor (CD44v) is
overexpressed on the surface of many cancer cells, such as epithelial tumour cells, and
specifically binds HA [96]. This variant has been shown to have a higher affinity for HA
than the standard CD44 receptor (CD44s) [97,98].

This specificity allows for the function in targeted drug delivery of HA and its deriva-
tives, which can carry proteins, peptides, nucleic acids, and various anticancer drugs [99].
This action was demonstrated by using HA decorated liposomes via aminooxy coupling
reaction by Bartheldyová et al. (2018). The cells with upregulated expression of the CD44
receptors showed more significant interaction with the HA decorated liposomes, showing
promise for tumour targeting in the future [100].

HA can also be directly conjugated to a drug for delivery through endocytosis medi-
ated by the CD44 receptor, as shown by the conjugation of HA to paclitaxel, a taxane with
substantial toxicity issues but one which has been proven to improve patient outcomes
with squamous cell carcinoma [96]. This conjugation modulates toxicity issues and inhibits
the anti-angiogenic effects of taxanes.

9.2. Topical Drug Delivery for the Treatment of Skin Disorders

Alternatives to traditional steroid treatments for a variety of skin disorders have been
a key area of research in recent years. HA has been used as a topical drug delivery system
to treat various skin disorders. This route of administration has numerous benefits over
systemic therapies, including avoiding hepatic first-pass metabolism and improved patient
compliance. One marketed product of interest is Solarez®, a 3% diclofenac in 2.5% HA gel
for the topical treatment of actinic keratosis (AK), the third most common skin complaint
in the US [101,102]. AK has become synonymous with squamous cell carcinoma (SCC)
as the progression of AK into SCC is up to 16% per year on average [99,103], with some
dermatologists considering AK as SCC in situ [104].

Although the mode of action remains generally unclear, the presence of HA in the
topical formula enables deeper penetration of the drug and limits systemic absorption due
to the reservation of compounds within the epidermis. This effect is beneficial in treating
skin cancer when the use of highly cytotoxic drugs is indicated [105].

9.3. Topical Administration for Wound Healing

HA has also found significant use in wound repair, exploiting the physical charac-
teristics of this natural polysaccharide. Following an injury to the skin, HA is expressed
within the margin of the wound and is bound with CD44 for keratinocyte migration. HA
most likely has a significant role in mediating other wound healing processes such as
inflammation, granulation formation, re-epithelialisation, and transformation [106].

Endogenous HA can be found at each step of the wound healing process, and HAs
effect depends on the MW. LMW HA fragments have been implicated in triggering an
inflammatory response due to the affinity of the pieces for the CD44 receptor. This in-
teraction then triggers the activation of macrophages, pro-inflammatory cytokines, and
chemokines [107]. Hyalofill® is a wound care treatment that utilises an HA ester derivative
mentioned earlier, HYAFF®. When this conformable fibrous fleece (Hyalofill-F) or rope
(Hyalofill-R) comes into contact with exudate from the wound, it converts into a gel which
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maintains a moist environment necessary for the formulation of granulation tissue [108].
This product highlights the uses of exogenous HA in wound repair.

9.4. Therapeutic Applications in Inflammatory Arthritis

HA has contradictory roles in inflammation, with HMW HA being regarded as anti-
inflammatory and oligo-HA or very LMW HA being regarded as pro-inflammatory. There-
fore, HA cannot be considered as simply pro or anti-inflammatory. Instead, it is capable of
modulating inflammatory responses, which can stabilise the connective tissue matrix [109].

This moderating response has been used to treat degenerative knee arthritis via intra-
articular injections into the joint. Products such as Orthovisc® and Healon® are used for
lubrication and shock absorbing of the joints and have been shown to significantly reduce
pain and inflammation in the case of osteoarthritis [110]. Another instance where HA
has been used to treat arthritis is by Yang et al. (2019). They demonstrated the efficacy
of triterpene, a phytomedicine that could be enhanced by conjugation to HA function-
alised bilosomes administered intra-articularly [111]. In this instance, HA improved the
circulation and bioavailability of the drug.

9.5. Other Therapeutic Applications of Hyaluronic Acid

HA has also been shown to possess antioxidant properties. HMW has been shown to
protect against reactive oxygen species (ROS) [112]. Ocular HA drops consisting of HMW
HA have been prescribed to treat oxidative stress in patients with chronic dry eye [113].
LMW HA has been shown to stimulate vascular endothelial cell proliferation and migration.
Some report that LMW HA stimulates the expression of specific signaling molecules such
as ezrin, a necessary protein for cellular adhesion. In contrast, HMW HA displays anti-
angiogenic properties by inhibiting the proliferation and migration of endothelial cells.
However, these pathways are not well understood as a relatively recent study showed
that an injection of LMW HA inhibited tumour growth [114] rather than encouraged it as
once thought.

10. Future Directions
10.1. Drug Delivery in Periodontics

Due to the unique properties of HA, researchers have discovered numerous appli-
cations for drug delivery via this polysaccharide. One unique prospect is the use of HA
membranes for drug delivery, particularly in periodontics. Periodontal disease is a univer-
sal issue, with prevalence reported as high as 50% worldwide [115]. It is characterised as
a chronic state of inflammation caused by interactions between bacterial biofilm and the
host’s immune system. Current treatment methods consist of biofilm and calculus removal
via debridement followed by antimicrobial treatments such as chlorhexidine, tetracycline,
or metronidazole [116].

However, systemic antibiotic treatment has significantly been criticised due to the
ever-increasing battle against antimicrobial resistance (AMR). Because of AMR, a solution
for more localised administration of antibiotics is being sought. HA has been shown to have
anti-inflammatory properties at high molecular weights and therefore provides a bioactive
medium for the local delivery of antibiotics to treat periodontal pockets post-cleaning to
prevent periodontal infections. This research is now in clinical trials investigating the use
of HA for furcation or bone defects that occur due to periodontal disease [117].

10.2. Hyaluronic Acid as Nanocarriers

Another delivery application of HA currently under investigation is the delivery of
nanoparticles. Many materials used for nanocarriers are not fit for purpose due to the
inherent toxicity associated with these compounds, however, by coating the nanocarrier
in a biocompatible and bioactive substance, this toxicity can be shielded to enable the
delivery of the device to the targeted tissue. In this way, HA can be utilized for a variety
of applications, from HA-drug conjugates which exploit the functional groups of HA, to
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HA-based micelles, nanoparticles, and HA coatings for nanocarriers. Regardless of the
method selected, the common aim is to alleviate or modulate the toxicity associated with
the drug.

One example is the delivery of metallic quantum dots [118,119] which have found
excellent applications in biological imaging and tumour visualisation. However, they
are very likely to elicit a strong immune response and systemic toxicity. By shielding or
modulating the release of these quantum dots, the potential toxicity may be reduced or
staggered to reduce systemic damage.

Another application of this same technology is for the delivery of chemotherapy agents
for cancer patients to alleviate the systemic toxicity associated with cancer treatment [120].
A clinical trial that has not yet begun recruiting is investigating just this, with a focus on
the delivery of paclitaxel, a common chemotherapeutic agent. They have named this drug
delivery system ONCOFID-P-B and it is due to undergo, a phase III study in July 2022 [121].

The physicochemical properties of HA also lend themselves to coatings in nanomedicine
for a variety of reasons. Firstly, the hydrophilicity of HA enables the formation of a protein
repellant shield around the nanocarrier [122]. Additionally, the anionic nature of the poly-
mer enables the interactions of HA with cationic molecules such as polymers, lipids, and
surfactants, which ultimately results in nanostructures being formed [123]. The positive
charges of cationic nanocarriers have been described to be shielded by coating with HA,
either through electrostatic interactions or chemical conjugation, which is vitalfor enhanced
biosafety performance [124].

10.3. Injectable Hyaluronic Acid Hydrogels

Finally, an area that is quickly evolving is the area of injectable HA hydrogels. There
have been multiple clinical trials conducted on HA hydrogels in the treatment of osteoarthri-
tis with mixed results [125–127], but now the focus is moving to injectable HA drug carriers
for sustained delivery of anti-proliferative chemotherapeutic agents for the treatment of
inflammatory arthritis. Similar to nanoparticle delivery, toxicity is greatly modulated and
restrained to a precise area of treatment. In a study by Gao et al. (2022), sustained drug
delivery was achieved over a period of 4 weeks and the results showed a marked decrease
in joint size and interleukin-1β levels [128]. Although this method has not yet made it
to clinical trials, it can be postulated that this will be the next avenue explored for the
treatment of osteoarthritis with HA.

Injectable HA hydrogels are traditionally macroscopic hydrogels but there are several
disadvantages to these macrogels such as the ease in which they may obstruct blood
vessels. To overcome such issues, researchers have been looking at microgels, nanogels,
and cryogels as a suitable alternative to macroscopic injectable hydrogels.

Microgel forms of HA have various benefits over traditional HA hydrogels such
as increased surface area, and enhanced resilience to degradation of water dispersible
micro-gels over water soluble HA [129,130]. This enables the use of microgels for the
controlled and extended release of a variety of compounds [131]. Individual microgels can
be highly cross-linked to impart resistance to degradation and the physical and mechanical
properties of the resulting macro product can be fine-tuned via the degree of intermicrogel
cross-linking and dimensions of the microgels [132]. Additionally, characteristics such as
anti-microbial efficacy can be imparted on the particles by the cross-linking of HA with the
desired compound, such as epoxys [133]. One study by Sahiner et al. (2022) illustrated the
use of HA cross-linked with metal ions such as Gadolinium (Gd) and Fe(III) to produce
a contrast agent for magnetic resonance imaging (MRI). Their study showed improved
contrast capability in MRI imaging as well as excellent cytocompatibility when compared
with commercial Gd-based contrast agents [134].

Nanogels display similar characteristics in that they display longer blood residence
time, and enhanced solubility of pharmaceuticals [135]. This makes them ideal carriers
for biological molecules or drugs because the encapsulation in HA nanogels provides
improved delivery and targeting effects [136].
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Cryogels are unique in that they are formed at low temperatures, approximately
−20 ◦C, and have been shown to have shape-memory, an important characteristic for
injectable hydrogels. They have been used not only for drug delivery, but also for cartilage
repair as the highly interconnected pores allow for the unrestricted flow of nutrients and
matrix proteins [136].

The wide-ranging application of HA is primarily due to the many administration
routes that HA allows for and the list is ever-growing. From modulating the cytotoxic
effects of systemic drugs to providing lubrication and sustained release, the future is bright
for this unique polymer and there is still much to be unearthed.

11. Concluding Remarks

HA is a very unique polymer that has demonstrated value in applications ranging
from tissue engineering to drug delivery. The biophysical features of HA allow for a wide
range of applications since it can be used in hydrogels that imitate the properties of native
soft tissues or in the ECM. Because of its inherent propensity to bind water and reside in a
hydrated lattice, HA has a high compressive strength in vivo and can provide lubrication
to articulating surfaces, as highlighted throughout this review [137].

The abundance of potential active compounds with restrictions such as poor solubility
or stability is one of the key drivers for the future of HA, particularly in drug delivery.
Polymers such as HA serve as a bridge for these chemicals to overcome their clinical
usage constraints [138]. As previously stated, the border between pro-inflammatory and
anti-inflammatory HA decided by MW is a fuzzy region with contradictory results. The
transport of these active small molecules is one function of low MW HA (>25 kDa, 250 kDa),
as the size facilitates passage through tissues. HMW HA continues to be an issue with
biological barriers in the body, such as epithelial, enzymatic, or mucosal barriers, however
moderate MW HA may be able to pass this barrier [139]. Because of the numerous potentials
for post-modification of the HA molecule, such as hydrogels, superporous cryogels [140],
nanoparticles, or conjugates, cancer therapies remain a prominent field of research for HA
drug delivery.

The basic structure and properties of HA allow for modulation of these cytotoxic
compounds and can prevent widespread toxicity by targeted release, which is of particular
importance given the often-severe side effects associated with many cancer therapies, which
HA could modulate through active and passive targeting of tumor cells. Furthermore,
because CD44 is a critical receptor for the HA molecule, its amplification in tumor cells
allows for more targeted drug delivery. However, as with all-natural polysaccharides, there
are many obstacles to overcome such as ensuring stability and longevity in the body, high
hydrophilicity, and the difficulty in working with large native polysaccharides such as high
viscosity at low concentrations. Despite the various possibilities, these impediments are
most likely the reason why HA clinical studies are infrequent, and hence there is a market
gap to fully utilize HA.

This paper has illustrated the current applications of HA in a variety of domains;
however, there are many more possible routes to pursue. Because current research has
proven that HA is superior to other natural polysaccharides for drug delivery applications,
well-designed studies evaluating intracellular behavior, biocompatibility, and regulatory
aspects of HA should be prioritized.
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