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Abstract

The existing qualityvaluationof emulsions is typically based on subjective examination

of samples under the microscope by trained analysts. The major drawbacks of such
manual assessment include inddserver variability, intr@bserver variability, lack of
speed, poor accuracy arids also prone to ovgsrocessing. Other conventional droplet
analysis techniques such as laser diffraction and spectrosadpgh require time
consuming sample preparatjohave been verified as unreliable and introduce an
additional complexity to indusal processes. In order to overcome these challenges, a
novel automated approach based on image segmentation and machine learning is
investigated in this researdbr the quality evaluation and optimisation of industrial
emulsion processing.

Bright field micrographs were obtained during an industrial emulsificgiioness. Two

image segmentation techniques, Edge & Symmetry (EST) and Hist®3paed (HBT),

were applied to detect the oil droplets from the micrographs. These techniques were also
used to extract various morphological characteristitBexfroples. The most significant
predictorswere selected from these droplet characteridiicsdeveloping machine
learning models. The most efficient image segmentation technique was also identified.
The micrographs were grouped into four quabigsed categoriadertified as TAMU

(Target, Acceptable, Marginal and Unacceptable).

Supervised machine learning and deep learning models were developed for the TAMU
classification of unknown emulsion micrographs. A comparative study was performed
between manua@ndmachine éarningeclassificatiorusingAttribute AgreemenAnalysis.
Regression models were developed to predict the RPT (Remaining Processing Time)
required, at all stages of emulsification, to achieve the target characteristics. These
prediction models wernmtencedto avoid ovefprocessing in emulsion manufacturing.

HBT exhibited excellent potential in droplet detection and characterisation compared to
the EST approach. HBWas successful in detecting droplets with diameter as laa as

1 pum from emulsion sampldsavi ng di sper sed . phb emackinef r ac
learning classification models presented high accuracies ranging from 92% to 100%. The
deep learning models demonstrated lower accuracies from 44% to 89%. The results of
the comparative analysis showedaittlthe machine learning classification is superior to
manual classification with respect to speed (180 times faster), greater accuracy (10% to
40%) and repeatability. Theedictionmodels presented an adjustéddR 9 2 %.

Theentireautomated approach basen image segmentation and machine learniag
implemented as soft sensor. The soft sensor supports thetnes deployment of the
technique into an industrial environment. The proposed approach has the potential to
predict instantaneous product qtyaks well as the process time required to achieve the
desirable droplet characteristics. This will avoid epsycessing and wastagef
resources leading to more efficient and sustainable emulsion manufacturing.
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Chapter 1

Introduction
Emulsification is the process of breakidgrge oil globules into a homogenous
distribution of microscopic drdgts. Emulsions can be eithéwo-phase (single
emulsions) or mulphase (double emulsions) dispersions. A-phase oil in water (o/w)
emulsion is formed when diecomesiomogenously dispesd as tiny droplets in water.
This can be achieved lhygh shear homogenisatipwhere d forms the dispersed phase
and waterconstituteshe continuouphase of the emulsiditontul & Topuz,2015) Shear
stress is defined as the component of stress that acts parallel to a surface or a material
cross sectionEmulsions include a wide range of food, phacedicaland cosmetic
products such as skin care creams, lotions, hair products, visgnuips, medicinestc
(Bakry et al., 2016; Dao et al., 2018; Rodriguez et al., 201®y areapplied as delivery
vehicles for drugs, pesticidesdare also extensively usedemulsion based pain€ho
et al., 2015; Dokania & Joshi, 2015; George et al., 2018; A. K. Singh et al., 2009; Tasker

et al., 2018; Vasconcelos et al., 2Q18)

Quality evaluation, in emulsion manufacturing, has been identified as a challenging
task by food, pharntutical and chemiclaindustries. This can be attributed to the
increased time consumption, sultjgty and inconsistency ofexisting evaluation
techniques. The quality afiefinal emulsion product is highly dependent on its droplet
size distribution, which isn turn influenced by the operating conditions and process
parameters such as time, temperagiicg Amokrane et al., 2016; Qu et al., 2018; Zeaiter
et al., 2006) Manual evaluation of emulsion samples, by microscope asalysough
physical sampling and observing the samples under the microscope is one of the
techniques currently practiced in industri€ee productan beoverprocessed, in most

cases, due to the lack of an objectijumlity evaluation and decisienaking procedure.




Overprocessing is one of the potential challenges in high energy emulsificatiois as it
wasteful of energy and can cause an increase in droplet size (Tontul and Topuz, 2015).
This is due to several reasons including slow adsorption rake efitfaceactiveagent

used for binding the droplets, residence time of emulsification, high rate of droplet

coalescencanda high energy density (Jafat al 2007).

Other conventional techniques employed in the quality evaluation of emulsions
include laserbased scattering and diffraction methods, which are found to produce
unreliable droplet size measuremeatsl require time consuming sample preparation
(Abidin et al.2013, Maal3et al.2012, Honkaneet al.2010, Greavest al.2008) There
is a wice range of literature available stating the challenges and drawbacksofriret
techniques in emulsion quality evaluatiovhich are discussed later in this chapidre
existing offline techniques used for emulsion characterisation and quality évalaedt
detailed in Section 1.3. These include manual evaluation, spectroscopic methods and
computeraided image analysis techniques. Section dedcribes theexisting irine
droplet size monitoring techniquesvarious multiphase systemkhe image processing
software which have been used previously for both offline and inline droplet detection

is also detailed in these sections.

1.1 Scope of this research

This researcladdresseshe current issue of subjective, time consuming and unreliabl
quality evaluation practiced in emulsion manufacturing industries. Soft sensors, for
automated quality evaluation and process control, are one way of advancing the current
system(Sunet al., 2014) Soft sensors are inferential models developed to predict process
variables(both categoricabnd continuouslising measured variabléBhese soft sensors

can be integrated with emulsion processinghlwffline and inline, to develop enhanced




intelligent systems. The scope of this research is focused on the image processing of
optical micrographs (image taken from a microscope) as a techrimuemulsion
characterisation, which is followed by autonthtemulsion classification anthe
prediction ofremainingprocess timeln-process samples of a topical cream emulsion
product, acquired from a pharmaceutical manufacturing industry, has been used in this
study. An offline implementation of the automatedhniques, as a soft sensor, has been
validated. A future extension of this work is planned for the inline quality evaluation and

optimisation of industrial emulsification processes.

1.2 Aims and Objectives

The aim of this researchis to develop anovel automated techniqueor droplet
characterisatiorand quality evaluatignto overcome the current challenges faced by
emulsionmanufacturing industries. The new technique is targeted on charactéresing
oil dropletsefficiently duing emulsification classifyng in-process emulsion sampieso
quality categdes anddentifying the optimum processing time. Finallyferential models

will be employed topredict the anticipated extra processing time at all stages of the

emulsificaton processThe objectives of this research are focusedchieving this aim.

1.2.1 Objectives

The following are the objectives of the project
1 Conduct a literature revieuof:
o The existing droplet detection, characterisation and quality evaluation
techniquesn emulsion manufacturing to identify the current challenges.
0 Thestateof-the-art machine learningechniques applied fasision integrated
automated quality evaluation in manufacturing industimesuding food,

pharmaceutical and chemical




1.2.2

Develop an eficient image segmentatiorapproachsuitable for theautomated
characterisation of droplets from-gmocess emulsiomicrographs

Identify thedesirabledropletquality characteristicthrough statistical analysis and
establishthe completiortime of the emulsification procesise. when the droplet
attain thé targetcharacteristics

Categorise and label the emulsion samples, at specific processing stages, based on
theirdropletquality characteristics and industrial expert advice.

Develop supefised machine learning modets classify unknown emulsion
samplesnicrographs into the labelled categories

Evaluate manual versus machine learning classification approaches.
Developpredictionmodels tgredict thgprocessing timeequired by the emulsn,

at all stages of emulsificatiotg achieve the targetroplet characteristics

Validate the developed techniques using industrial data.

Potential Industrialmpact

The proposed approach hagnificant potential impact in a wide range of industries

including food, pharmaceutical, biomedical and chemical industries. Thentu

requirements demanded bgdustry 4.0, such as digitising traditional industries for

improving process and productatuation techniques, could be addressed by the new

automated approacMinimum human interventigrwith increased machine to machine

communication is the potential target of the proposed approach. Moreover, the current

technigues used in this area demaighificant use of personnel resources, time and

energy, resulting in increased cost of production. The proposed automated approach, in

this research, will have the potential to overcome these challenging demands leading to

more efficient and sustaable enulsion manufacturing




1.3 Overview of existing techniques for emulsion quality evaluation
1.3.1 Manual Evaluation

Manual evaluation of #process samples isie of thetechniquesurrently employed
in theindustrial quality evaluation of emulsiofSigure 1.1) During the emulsification
process, samples are taken from the stirring vessel (mixer). Analysts observe these
samples under the microscope to evaluate the qualityegbroduct andonfirm if it is
fully processed and meets the desirable characteristics.isSTdone in different ways
including manual counting of the oil dropletsdby subjectively judginghedistribution

of the dropletsbased on previous knowledge.

Physical Sampling & Quality Analysis

Evaluation
of
Product Quality

\
Mixed product

Is the product ready to go ? —

Is it time to stop processing ?

Figure 1.1. Schematic representation othe manual quality evaluation of emulsions.

Figure 1.1 shows the manual microscopic evaluation-pfacess emulsion samples,
performed by microscope analysts, to determine d¢oenpletion point of the
emulsification processSuch evaluationtechniques haveeen found highly subjective,
erroneous and time consuming in previous studBesgall et al, 2010; Gwyn et al., 1965;
Maald et al., 2012Boxall et al (Boxall et al., 2010have reportedan average difference

of 5.1%in the mean droplet size measuremagtiveen twanalystsln a similar study,




(MaalR et b, 2012)have found significant integinalyst and intr@analyst erors in the

droplet size and count measurement. Their study repariédo and £15% deviation
between four analysts in the measurement of average droplet size and count respectively.
In repeating the analysis with the same analysts, the deviation irr&seirements almost
doubled. Taresolve this problem of subjectivity manualmicroscopicevaluation the
previous studiefave suggestethe use ofautomag¢dimage processintechniques for

droplet size monitoring.

1.3.2 Other Conventional Methods

Vibrationalspectroscopic techniques such as-midared (MIR), near infrared (NIR) and
Raman spectroscopy using laser diffraction have been extensively applied in the quality
evaluation of food emulsior{8errueta et al., 2007; Kljusuric et al., 2015; P. Wang et al.,
2016) These techniques have been employed mainly for the analysis of emulsion
composition and to iwestigate areas such as adulteration in olive oil, process optimisation
in barley milk productiortc Laser diffraction techniques have demonstrated proficiency
in the development of chemometric analysis for emulsion quality evalu@msyue
Sendra et al., 2012; Geladi, 2008ne of the majorchallengesassociated with such
spectroscopitechniques is the requirementditute sampleso achieve a good spectra

(P. Wang et al., 2016This introducesdditionalcomplexity in industrial processes and
ensures such techniques are difficult to automaaser scattering had been the most
widely used techniquéor droplet size angbis apart from chemometric analgsin
emulsions from the 198(@Heffels et al., 1998; Sachweh et al., 1998)aser diffraction,

the particle/droplet size is measured in terms of the angular variation in the intensity of
light scattered when a laser beam passes through a dispsasamhe(P. Wang et al.,

2016; Y. Wang et al., 2004)




FBRM (FocusedBeamReflectanceMeasurement) is one of the mesipular laser back
scattering techniques applied for both particle and droplet size measis éamemterich

et al., 2018)The working principle of droplet/particle size measurement using FBRM is
shown inFigure 1.2 Thetwo-dimensionalbptical rdlectance measurement (ZDRM)

sensor (Figure 1.2, left) detects the dropfetarthe FBRM probe window through the
reflection of an intense laser beam. Hoeward BackwardRatio (FBR) sensor (Figure

1.2, centre) measures the spatial pattern of the b@sen scattered in both directions for
smaller particles/droplets with radius less than one tenth of the beam wavelength. The
average diameter of a group of particles/droplets is measured from the measured light
intensity ratio. The laser beam from theiggtical probe rotates at high speed, focusing

on the particles/droplets close to the sapphire window (Figure 1.2, right), and the light
scattered back by the particles/droplets. The particle/droplet sizes (chord length) are

calculated as the productthie rotational speed and the sampling time.
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Figure 1.2. Focused beam reflectance method (FBRM) fodroplet size distribution analysis: (left)
2D-ORM sensor, €entre) FBR sensor and (right) working principle of the FBRM probe (Emmerich
et al, 2018).

These laser based techniques have many advantages including the possibility of analysing
a wide range of particles from nanometres to micrometres, rapid measurement potential
and high sampléhroughput. However, there are certain limitations associated with such

techniques, whichare discussed byVankeirsbilck et al., 2002)These are time




consuming sample preparation, sample dilution and the influertbe pérticle surface

on the quality of the scattered light. Laser teqgbes were found incapable of delivering
reliable droplet size measurements in the pakidin etal., 2013) Many authors have
obtainedunsatisfactoryresults from analysing spherical droplets in dispersion systems
using laser scatterin@sreaves eal., 2008; Honkanen et al., 2010; Maal3 et al., 2012)
Regarding smaller droplets of diameter < 1 um, scattered light creates additional noise
which limits the spectraksolution Schusteet al. 2012) Recent studies in the literature,
regarding NIR and laser diffraction techniques, have found that image processing and
analysis of emulsion micrographs can give better insight into droplet size measurements

compared to thse techniques (Kljusurat al 2015,Abidin et al., 2013)

1.3.3 Offline Image Processing technegifor Droplet Detection

Emulsion stability studies haugeen performed using light microscopy in conjunction
with image processing and statistical analysisn the early 2% century(Freire et al.,
2005; Hosseini et al., 2015; Silva et al., 201Dhese studies have identified image
processing of optical micrographs as an efficient and cost effective method for the
analysis of various aspects of emulsioareltterisatiort-reireet al (2005) have analysed

the aging mechanism of perflurocarbon emulsions using image analgsisa 42 day
storage period andentified temperature as a key factor influencing the evolution of the

mean droplet size.

Similar studes of doplet size distributiost have also beerperformed for the
characterisation of double emulsiofScherze et al., 2005; Schuster et al., 2012a)
(Scherze et al., 200%)eveloped an automated imagealysismethodology foroptical
micrographsin the industrial preparation dbubleemulsionsto control the yield of the

inner continuous phas&he emulsion micrographsgere obtained using extended focal




imaging, a special module contained in the analysis soft{fak Imaging System)f

the optical microscopethey used Qlympus BX6). Extended focal imaging has the
ability to capture images diverse focus settings. The droplets of the external and internal
phases of the emulsion were detected from the micrographs with the tetpaairq
programmed using Optimas (Media Cyberneties)d the droplet characteristics were
obtained(Scherze et al., 2005The oil dropletsize distribution and the average pixel
intensity of each dropt were statistically analyseldue to the larger number and smaller
sizes< 1.5 um it was difficult to segrant the droplets in the internal phaas they
appeared as texture. Therefore, the droplets in the infg@maae were analysed based on
their roughness and brightness in terms of pixel intenEitg.relative brightness of the
droplets was calculated as the difference between average pixel intensity of the droplets,
weighted by area, and the average pixel intensity of the backgrolnedecrease in the
relative brightnessf the dropletavas studied over a storage period of 28 days. This is
shown in Figure 1.3The statistical evaluation dhe relative brightness was used to
determine the required level of fillingf oil droplets in theénner aqueoughase. The
results 6 the study showedtrongpositive correlation between relative brightnessd

filling level of the droplets. A controlled filling ofiroplets was achieved to obtain
optimum yield of the inner phasé the emulsior{Scherze et al., 2005)heir study also
found that the textural quality of the microscopic images can be improved by controlling

the process parameters and the formulation of the emulsion.
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Figure 1.3. Emulsion sample micrographa) after 8 days b) after 28 day¢Scherze et al., 2005)

The potential boptical imaging techniquesich aonfocalLaserScanningMicroscopy
(CLSM) combinedwith statistical analysis of droplet size datasinvestigatedn both
single and double emulsiong Bchusteet al (2013. The CLSM imaging technique had
previously proveneffective inthe analysis okingle emulsion system®lonk & Van
Aalst, 1993; Van Dalen, 2002y he study performebly Schusteet al (2012 addressed

the question of how accurately ttieoplet size distributionSD) of food enulsions can

be obtained fronCLSM images with minimunerror n the processing algorithms and
the application oferror correction methods. The images obtained from CLSM were
processed using Imagedftware and the distribution ofhe volume weighted droplet
diameter (ak) was analysed("https://imagej.net/\WWelcome,")Thar image processg

methodologyinvolvedthe following steps.

1. The images were thresholded through the red channel.

2. Converted into black and white binary images.

3. Noise removal was applied using the 6
4. 6Wat ershedd segmentation was applied

outer phases and also to sepacaterlappingdroplets.
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Finally, the droplets with circularity ranging from 0.7 to 1.00 were identifidte
circularity of a droplet iglp multiplied bythe ratio of the droplet area to the square of its
perimeter. A droplet with a circularity of 1.00 is a perfect cirBlehusteret al. (2012
suggeste@nalysing themaximumFeret diameter of the droplets, addition todroplet
area,in order tominimise the optical frame error. This mininss@e errorcreatedby
omitting larger dropletswith maximum Feret diameter less than or equal to the optical
frame lengthappearing at the edges of the optical frame. The maximum Feret diameter
is the longest distance between any two points alonggileeted droplet boundary aisd
applicable to nostircular shapesTheir study obtained improveDSD resultsusing
image proessing andraised thefuture possibility ofintegrating automated image
processing techniquewvith statistical analysis forthe investigation ofemulsion

agglomerateg§Schusteet al. , 2012.

In a similar study conducted by Hossestial. (2015),dropletdiameter measurements
were obtained byrocessing emulsion micrographs, using ImageJ software, which was
followed by statistical DSD analysi$he image processing and statistical analysis were

performed in three major steps

1. The image was converted into bingbtack and whiteland noise was reduced
using the 6despeckl ed function.

2. The identified droplets were analysed, in the image, to obtain their characteristics.

3. The droplet characteristics such as average droplet sizetamthsl deviation

were statistically analysed.

The average droplet size was measured in terntheo$urface area weighted mean
diameter @so), often referred to as Sauter mean diameegiven in Equation 1.The

Sauter mean diameter is a different way of examining the average droplet size, which

11



indicates the centre point of the frequency distribution in terms of the surface area and
not the numbeof the droplets. fer study of the evolution cdverage dropletize over

time for the most stable amlde most unstable emulsion samplesl®wnin Figure 14.
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N is the total droplet couin a micrograplandn; is the number of droplets with diameter,
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Figure 1.4. Changes inthe dszindex for the most stable and unstable O/W emulsion samples after 48
hours storage(Hosseiniet al 2015).

The emulsion samples were prepared with different emulsifier concentrations and were
stored at different teperaturesThe most unstable emulsitiad anincreasingaverage
droplet sizeover time, while the most stable emulsion showedh#ial decrease ithe
average droplet siznd therremainedsteady. Themulsion stabilitystudy by(Hosseini

et al., 2015)demorstrated that the analysis tife dsz index is effectivein finding the
optimum parameters of emulsion preparasgoich as homogenisation time and storage

temperature

12



Freireet al.(2005) and Silvat al. (2010) applied &et of image processing techniques
in ImageJ to obtain oildroplet characteristics from thaptical micrographs of O/W

emulsions as described below.

1. The original RGB image was subtracted from its background and converted into
8 bit greyscale.

2. The imagewas then thresholded and converted to binary.

3. Noise correction was performed using median filtering.

4. Erosion was applied to suppress the structures connected to the image border.

5. Morphological analysis was done by creating a mask over the identifiecdtopl

Droplet size parameters such as diameter, area, volume and stdadmtibn were
determined andtatistical analysi®f the parameteraszas conducted. The droplet size
distribution was analysealera period of 42 days. The results showed an increase in the
average droplet size of the emulsions due to coalesence ovawiiman increase in the

storage temperatuf€reire et al., 2005)

Theimage processintechniques, using Imagej, reported in the literature for emulsion
droplet analysi®iave commonly applied a general processing sequence. Daisad on
noise filtering thresholding converting to binary ansepeating the overlapped droplets
using watershed segmentation or erosidris is followed byanalysing the droplet
characteristics such as size and sh#&peire et al., 2005; Hosseini et al., 2015; Silva et
al.,, 2010) Other image processing techniques applied for droplet detection from
emulsion micrographs include Hough circle transform and edge detection algorithms
basedon Matlab(Maal3 et al., 2012; Panckow et al., 20Maal} et al. (2012) used a

circular edge detection algorithm for droplet size and count characteristaheir.

13



techniquecomprised othree steps for pattern identification. These includedhelation

of pre-filtered imagesvith search patternthe preselection of possible circle coordinates

in the imagedollowed by the classification ahe droplets in each imad®s an edge
detecton algorithm They recommended a future extension of their method for detecting
noncircular droplets. In summarnthe robustness of the image processing technique
plays a major role in the accuracy of droplet detectiodispersion systems. From the
extensive literature review conducted as part of this research, there have been no studies
reported to date, which have applied an intersityed droplet detecti@pproach fom-

process emulsion micrographs. The literature strongly suggests that boreldréasegl

techniques are more typically used for droplet detection.

1.3.4 Image Segmentation

Image segmentation is the primary step involved in any image analysis procedure. The
goal of image segmentation is to partition RegionOf Interest(ROI) in an image ito
meaningful objects/segmen{aly et al., 2011) The major applications of image
segmentation include medical imaging, object detection and recognition and image
classification. There are two &a types of image segmentation such as global
segmentation and local segmentatidnjna & Er, 2017) Global segmentation is useful

if the ROI is spread across the whole image and the latter one is applied if the ROl is a
speific part/region of the image.

Image segmentation approaches are generally classified into two major catggynas

& Er, 2017) These are the discontinuity detectimesed approach and similarity
detectionbased approach. The discontinuity approachitipars the ROI of an image
based on pixel intensity gradient, which detects the separation between the edges of the
ROI from the background. Edge detection is the most widely used techniqthes for

discontinuity approacfKumar et al., 2012)Similarity detection is aimed at identifying

14



similar regions of an image using Thresholding or Histogbased techniques, in which
identical pixel values are grouped togetlidaralick & Shapiro, 1985)This is also
known asa regionbased approach. The selection of the most appropriate image
segmentation approach depends on the properties of the image and tfBoRO&
Gupta, 2014; P. Singh & Chadha, 201Bhresholding techniques are the most suitable
for image segmentation iie ROI has indistinct edges, while edge detection techniques

work well with distinguishable edges.

1.4 Inline Droplet Size Monitoring

A precise understanding tfe droplet size distributionf emulsionshas beendentified

as the key factor to control amgptimise industrial processes in various fields of
applicationgPanckow et a] 2017) The potential of inline droplet size monitoringsing
automated image processing followed digtistical analysishas beennvestigatedn
various multphase system@oxall et al., 2010; Khalil et al., 2010; Maal3 et al., 2012;
Pacek, Moore, et al., 1994; Pacek, Nienow, et al., 1998se inline techniques have
been employedo identfy the process parameters that provittee optimaltarget

characteristic§Crawley & Malcolmson, 2004; Khalil et al., 2010; Maal3 et al., 2012)

The aim of (Khalil et al., 2010was to investigate the efficiency of couplimgaging
software with inlne hardware deviceto evaluate the evolution of droplet size in an
emulsification process. Theexperimentafixture forin-situ proaess monitoring involved

a video microscope probe submerged in a laboratory reastghown in Figure 1.5
(Khalil et al., 2010) A pulse generator was triggered by the video camera, which in turn
sets the back lighting suppliegl bight Emitting Diode (LED). The back lighting resulted

in capturing droplet shadows as black structuappearing on a white background. The

recorded video was ré&wved by a video grabber asdnt toa computer
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Figure 1.5 - Experimental setup for in-situ droplet size monitoring (Khalil et al., 2010)

The image acquisition was perforchim various steps. A 30 seconidieo sequence was
recordedperiodically,and 3@ frames were selected from each recording for automatic
image processing. In order to eliminate dupliad¢ectionof droplets, one out of five

frames were selected for analysis and a circular Hough transformation method was
appliedto detect the circutadroplets in the imagg$igure 1.6) The droplet size range
waslimitedto10090e m, si nce t he ac oeakbaeclyo w fdué€doect ne c t
a resolution of 2um per pixeland was f ound i naduetortret e a
accumulated detection of several droplets at the same Airaet of image processing
parameters were required filetection including the maximum and minimum radii of the

droplets in a frameélhe parameters were tuned by comparing imaggaredfrom three
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different runs of video sequencasd three sets of parameters were obtailbd mean
parameter values weohoseras the inputs fothe automated image analysiEhe study
by (Khalil et al., 2010)demonstratedhat it is possible to optimise an emulsification
process in a laboratory reactor usingimsitu experimental setip with softvare and
hardvaredevices coupledith automated image analysisftware However, their study

was limited to the detection afrcular droplets within a diameter range of&.Gn- 90

€ m
o - -
| | ™
| Lahr i ke S
» . ) . .
: - c L] e
~ .. . ° € e

DS aell O RC® s

Figure 1.6. Droplet detection using Hough circle transform: a) raw micrograph b) processed image
with detected droplets(Khalil et al., 2010)

A similar study was performed l§iMlaal’ et al., 2012)o overcome the errors caused by
manual droplet counting, physical sampling trelusage of ifficient image pocessing
techngues.t has been found that even minute changes in the sampling time can result in
substantial droplet size measurement errdigald et al. (2012) implemented an
automatedmage processing aratoplet detection techniquesed on edge detam in
MATLAB® . Thisalgorithm workedn two stagesthe firststage detectethe alges of

the droplets and created an output image, whichused in the secorstageto measure

the circular droplets The proposed algorithm Maald et al., 2012yas found to be

faster andnoreefficient in droplet detection andalysis compared to human analysis.

17



Their study recommended thptomisation of the image processing parametsed for

the droplet detectioin order to improve the speed and accuracythef computing
software The parameter djnisation was attainetdly performingseveralruns of the
image processing software txtract the characteristics of a few manuatharked
droplets in a number afages Their studyalso found that automated microgiap
analysisof dropletcounting,and characterisation is approxtely fifty times faster and

less erroneous compared to manual assessment.

In-situ droplet size measurements, in biofuel production systems, using photo optical
techniques have been performed using similar circular edge detection techniques
(Panckow et al., 2017Their study detectedircular dropletfrom O/W emulsions with

a dispersed phase fraction of 1% to 5% @sadanging from 70 to 110 um.HE detection

of droplets in production systems with an expected mearedrsipe < 10 pumis still

found challengingn the exising studies. In additigndroplet detection in xremely
concentrated emulsions, with a dispersed phase fraction greater than 10% tsib§%,
existing edge detection baseechniqus, was also identified as a challenge in the

literature(Bras et al., 2009; Maal} et al., 2012; Panckow et al., 2017)

1.5 Current Challenges in droplet detection from emulsion
micrographs
The existingimage processing studies inogtet characterisation and emulsion quality
evaluation have idetffied the following areas asurrent challenges.
1 Detection of droplets from highly concentrated emulsions with phase fraction
>15% @Braset al.2009, Maaldet al.2012).
9 Detection of smaller droplets <30m from production systems (Panckaw al.

2017).
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1 Detection of nortircular droplets from emulsion micrographMa@i et al.2012)
1 Implementation of atomateddroplet detectiontechniques with minimunuser
input parameter (Khalil et al.2010,Maal} et al.2012.
o To eliminatethe parametesptimisationstep
o To reduce the error induced by the variability in the parameter values
o Toenableautomation of theystem
With respect to the wrent challengesa novel automated approach msecessaryto
evaluate the quality of an emulsion prodeitectivelyduring the emulsification process.
This could potentially avoid ovegrrocessingleading to efficient utilisation of resources
such as tira, energy and raw materials. Such an approach could also minimise manual
intervention in the quality assessment procedure inufaaturing industries. However,
such techniquesave not been developé&mlovercome theresent challengesithin this

domain

1.6 Thesis Outline

The cevelopment of goft sensor, for the quality evaluation and optimisation of industrial
emulsion processings identified asthe major objective of this researchinferential
modelsdevelopedrom droplet characteristiosf in-processnicrographs are ongay of
addressing thisbjective.This thesisoutlinesthe approach agbted to develop the soft
sensor for improved emulsion processiidie development of aautomated image
segmentation technique capable of addressing the existing difficalgesulsion droplet
detection isdentified asthe initial focusof thisresearchThe new image segmentation
technigue is aimed at treutomateddetection of dropletrom emulsionmicrographs
duringits industrial processing. Thtechnique is also expected to extract various size,
shape, centroid and orientatiomaracteristicef each individual droplet in a micrograph.

The droplet characteristics form the input fee#s of the inferential models. The
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inferential models are developed using machine learning algorithms for two main
purposs, such as supervised classificationmprocesemulsion samples ammtediction
of the processing time required fohe completionof emulsification Structure ofthis

research thesis presented in Figure 1.7.

Chapter 2:
Machine Learning
- Chapter 4:
Chapter 1: Approaches for Image Sl e _ Autnmatped Dronlet
Introduction Classification and R o Characterisaﬁ:n
Industrial Process B
Evaluation

Chapter 7: Chapter & Chapter 5:
Predicting the Comparative Analysis B Supervised Machine
Emulsification of Manual and ' Learning for

T Machine Learning Emulsion Micrograph
Classification Classification

Chapter B:
Conclusions and
Future Work

Figure 1.7. Schematic representation of the thesistructure.

Chapter 1

Chapter 1 providea brief introductiorto emulsions andhe emulsification processt
reviews he techniques, which are currently employed, for the evaluation of emulsion
quality anddiscusseshdr challengesThis chapter alsdescribeshe scopgthe potenal

industral impact andhe aims and objectives this research

Chapter 2

An extensive literature reviews conducted orthe stateof-the-art machine learning
techniquesppliedfor image classification ahindustrial process evaluatiol discusses
thevarious unsupervised and sapvised learning techniques. This chapter also identifies

themachine éarning models suitabfer a proposed novel soft semrsapproach
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Chapter 3
This chapterprovidesan overview of theapproab undertakento develop a neel
technique forautomateddroplet characterisatiopnfrom micrographs followed by
emulsion process evaluatidhillustratesthe methodologiedevelopedor the following:
o0 In-process nerograph acquisition.
o Image processing and droplet detection.
o Statidical analysis of droplet characteristics.
o Supervised machine learning classification of micrographs.

o Remainingprocessing timgrediction

Chapter 4

This chapter discusses the results obtained from the image processing and droplet
characterisation techniques. Two different droplet detection techniques, abasdge

and an intensitpasedmethod, are developeohd the detected droplet characteristics are
compared using statistical analysSitie best image segmentation technigaéentified

for developing thénferential modelsThe statistical analysof the droplet characteristics

is alsocompletedor selecting thenost significantnodel predictors.

Chapter 5

This chapterpresents the machine learning classificatmodelsand their results. It

initially focuses orunsupervisedanachinelearningfor dimension reduction and pattern
identificationfollowed by supervisedlassification. The supervised classification study

isd med at di scriminating the dropl et c ha

categories of emul sion processing. Once
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product is expected to be stable and therefore, any further processing is idenbfred a
processing. The classification models are evaluated using\atidation approaches

and alsausing micrographs from independent emulsion batches.

Chapter 6

A comparative aalysis betweemanual and automatexdhssification of micrographs
conducted to evaluate the accuracy and precision of both techniques. Micrograph analysts
from the industal partner in this researcperformed the manual classification. A
machine éarning models used to perform the automated classification. The resilts

the comparison amrdiscussed

Chapter 7

This chaptempresentghe regression modeldevelopedto predict the processy time
required during emulsification, to achieve the target characteristibese prediction
models areéntendedto avoid ovetprocessing in emulsion manufacturinthe results

obtained fronthe predictionmodelsare compared and discussed.

Chapter 8

This chapter presentsdiscussiorof the conclusiongderivedfrom Chapters 4 to .7The
conclusons derived fromead chapterare relatecback to theinitial objectivesof this
researchit also discusses thatire possibilityof extending this worknto other domains
andreflectsideas to overcome the limitations encountered in this silldypotentialfor

reattime integrationis then finally discussed

22



1.7 Conclusions

The aim of this researcts to devdop a novel automated technique tlean potentially
replace theexisting traditional and automated techniques in emulsion quality evaluation
This chapterintroducedthe process of industrial emulsificatiot also reviewedthe
manual and other conventionglality evaluation techniques currenttieployedin
industrial emulsification processes atiteir limitations Potential @er-processingof
emulsionsdue to subjectivity and inconsistenof the existing traditional techniques are
identified as the major challenge¥he existing offline and inline image processing
techniques and the associated challenges are also disdnssbi chapter The
developmentof a novel soft sensor approadior improved droplet detedon,
characterisatioand process evaluation @mulsion production systems is identifiedaas

major requiremeno overcome the challenges

The objectives of this researahedefined tomeet Industry 4.0 requiremertsdevelop a

fast, accurate, objective and sustainable evaluation technique with minimal manual
intervention.This chaptealsooutlined the potential impact of the proposed approach
industrial emulsion manufacturingindly, an outline of the thesis structure is provided
with a brief introduction to the individual chapterBhe following chapter details an
extensive literature review of the machine learning techniques, which coagigbledfor

the automated approach posed in this research.

23



Chapter 2

Machine Learning Approaches for Image Classification and
Industrial Process Evaluation

2.1 Introduction

This chapterpresents a deled literature review ofthe various supervised and
unsuperviseanachinelearning techniquessed for image classificaticand regression
applications A review of theexisting studies, which have applistnilar techniques
integrated with image processing for quality evaluatiorprpcessindustries, isalso
presented in this chaptésection 2.3) This is followed bya review summary and
overview of the methodologies applied to meet the objectivésiotesearcl{section

2.4),

2.2 Machine Learning

Machine learning is an application Aftificial Intelligence(Al) that builds algorithms

with the ability to learn from data. These algorithms are-lim@ar statistical models,

which candetect complex relationshipgtween the depeent and independent variables

in the datgFriedmanret al 2001) The dependemnariable is called theesponse variable

and the independent variable® referred tas features or predars. Machine learning
techniques are classified into unsupervised and supervised techniques based on how they
learn.Unsupevised methods, which do not presume any previous knowledge of the data,
provide an unbiased interpretation of the data and therefore, are most commonly used for
exploratory data analysis and pattern recogni{®outros & Okey, 2005)Supervised
techniques, on the other hand, use trained data medeth predict the membership of

an unknown sample basedapriori knowledge and offer powerful classification models

(Berrueta et al., 7). Supervised techniques have a risk of overfitting, i.e., fitting the
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data perfectly even if there is no significant nelaship in the data. It is essential to

validate themodels using unseen data, i.e., data indepemdéhé training set

Thefollowing subsections (2.2.1 to 2.2.6) present a detadeww ofthe unsupervised
and supervised machine taag/deep learning techniqussitable for the classification

and regression problesencounteredh this research

2.2.1 PrincipalComponent Analysis

Principal Component AnalysigPCA), an unsupervisedpattern recognitionand
dimension reduction techniqubeas been extensively applied in the field of computer
vision as an efficient method for image data representation and classifi@tn the
early 20009Grané & Jach, 2014; Gunther et al., 2018; Yang & Wu, 2006A is a
multivariate data projection methdeveloped byPearson, 1901)t helps to reduce the
dimensiomlity andthe correlation of a multivariate feature spaddis is achieved by
projectingthe variation in the original multivariate data set across an equal number of
uncorrelated components onto an ortha@ubspacéNold et al., 1987)For example,

if PCA is applied on a multivariate featuspace witlp correlated variables, the resultant
vector will be a set op principal componentsz{, 2,..., z,) with zero correlationThe
Principal ComponentgPCs)are successivelyalculated by computing theigenvalues
and eigenvectorsased on the variana®variance matrix of the original datdackson,
1980, 2003)The PCs are ordered hierarchically on ¢inthogonalsubspacebased on
their proportionof explained varianceThe first principal component projects the
maximum variacein the original dataseind each successive component explains the

next highest percentage of the remaining variaihbe projection of maximum variance
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from an original set of three variables (X1, X2 and X3) on to the first principal

compnent,P is shown in Figure 2.(Wold et al., 1987)

X1

Figure 2.1. Projection of maximum variance of thethree-dimensional variable space to the first
principal component. The first principal component, P: is the line of best fit across the data points
(Wold et al., 1987)

A Scree plot represents a Pareto chart of the percentage of variance explained by each
PC. The significant principal components are selected based on the proportion of variance
explained. This reduces the dimensionality and correlation of the originableaspace.
Equation2.1shows how to apply PCA to a scaled set of original multivariate data matrix
and obtain the scores. ldentifying the systematic subspace and residual subspace of the

PCA latent spaces represented by Equation ZJackson 1980).

I+

L =) inmatrix terms ok scores Equation 2-1

+ B* Fou+By Foa=d Equation 2-2

Where X represents the original data matriéy is the mean ofX, U stands for the
eigenvector,z stands for the principal components,is the number of principal
components selectedhile ®representshe estimate oK and matrixE represents the

product sum of all the remaining principal components in the residual subspace.
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2.2.2 Linear Discriminant Analysis

LinearDiscriminantAnalysis (LDA) is a supervised machine learning mettedmonly

used for multilevel classification of a categorical respoanthopoulos et al., 2013)

An LDA modelis trained using a set of observatipopredictors and responséaken

from a multivariate data st build a classification model. Th&inedmodel is then used

to predct the category of unknown (new) data based priori knowledge(P. Wang et

al., 2016) This is a simple and very powerful methodwiltilevel classification{James

et al., 2013)

The stadard implementation of the model assumes a Gaussian distribution of its
independent variables and a new observation is classified ¢tatégorywith the closest
centroid (Friedmanet al. 2001) LDA assumes each iadendent variable has equal
variance andt is essentiato standardise the input ddta these models. LDA presents
low-dimensional clusters of the response data very well and in most cases, presents the
best classification results due to its simplicity and low varigfRcedmanet al 2001)

LDA estimates the centroid of the data poirits, each class, along with a common
covariance matrix, which gives tepread of the data. It creates discriminant functions as
hyperplanes, which forms the decision boundaries seperating phensesclasses. A
discriminant function is a linear combination of the components of the predictor variables,

X. This is represented by Equation Z2ida et al., 2012)

|
I L —|_1|£ o Equation 2-3

WhereW s the weight vectoandwois thebias term.
Figure 2.2 presents the geometgpresentation of a linear discriminant hyperplane for a

two-category case.
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Figure 2.2. The linear decision boundaryH, where g(x) = w'x + w = 0, separates the feature space
into two half-spacesR: (where g(x) > 0) andR2 (where g(x) < 0) (Duda et al., 2012)

In Figure 2.2, the orientation of the hyperplane is determined by the Waaod the
location of the surface is given by the bs The discriminant functiong(X), is
proportional to the signed distance from the feature veltdo, the hyperplane. The
distance from the origin to the hyperplane is givembiEWE .  wb>f0, the origin is on

the positive side of the hyperplane andgk O, it is on the negative side. The hyperplane
passes through the originvb= 0 (Duda et al., 2012)

There are situations in which LDA models can give poor performance. These include
complex nodinear classification problems, where linear decision boundaries are
insufficient to separate the respse classes and also in situations where there are too

many correlated predictor variabl@giedmanet al 2001).

2.2.3 Logistic Regression

Logistic regression modelgve categorical responses ame either binomial (two levels
of response variable such as 1 and 0) or multinomial (more than two letledsesponse

variable). These models are primarily designed for binomial classification probkems.

28



binomial logistic regression model predicte firobability of the class membership of the
response variable for one of the two response categories depending on the predictor

variablesgiven in Equations 2.4 and 2.5 respecti@yeiseitl & OhneMachado, 2002)

”' ¢ oy Equation 2-4

||— « ||- « Equation 2-5

Wherey stands for the response categargtands for the predictor variable getstands
for the model parameter vector éhévis the linear combination of the predictor var@abl
set.Binomial logistic regession models can hextended to multinomiahodels when
there are more than two respondadogistic regressiomne of the response categories
is nominated as a referencategory and thenembershipprobability of the other
categories is calculatday comparing thento that of thereference category. Suppose
there arek categories in the classification problelhone category iselected as the
reference, thethere arek-1 equationscreated to predict the membership probability of
eachobservatiorrelative to the reference categoryhe probability ofan olservation

falling in thej™ categonyis represented bquation 2.Puntanen, 2013)

Equation 2-6

Forj=1,2,.,k1)andi= 1,2 é ,whare nisthe number of independent observations
with p predictor variables Multinomial Logistic Regression(MLR) models use
maximum likelihood estimation to estimate the model paramebemigh a set number

of iterations until the model converges to a minimum final value.
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Logistic regression hasmaumber oflimitationscompared to linear discriminant analysis
(Friedmanet al 2001) Logistic regression models can be unstable under certain
circumstances.g. when there amore than twoesponse categorigéthe categories are
well separated and algp cases witha limited number of observationglames et al.,

2013)

2.2.4 Random Forest

RandomForest (RF)s a decision tree based machine learning maddely used for
classification and regressioDecision trees are created frdoootstrapsamples selected

from the model training dat&ach decision tree is made of internal nodes (nodes) and
terminal nodes called leaves. Nodes represent a test oricondit one or more
independent variables, which further branches into leaves based on the test outcome (yes
or no). The leaves of each node carry the final classification probability of the response
categories. The logicf@ decision tree is explained ngithewell-knownF i s hiressr 0 s
datasetThis dataset consists of three species of flowers which are setosa, versicolor and
virginica and four independent variables such as Sepal.Length, Sepal.Width, Petal.Length
and Petal.Width. A decision tree is fornfeaim the whole irs dataset as shown in Figure

2.3
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67%
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Figure 2.3. A decision tree model using Iris data in R.

The first box represents the true percentage of each species (0.33 each) in the dataset. The
first node condibn uses the indepenatevariable, Petal.Length. If the condition is true,

the tree branches to the terminal node/&awn in orangewhich has a probability of

1.00 for setosa and 0.0 for the other two species. If the condition istfedgeee branches

to the light grey coloured leaf, which has 0.5 probability for both versicolor and virginica.

The second node condition is formed using the variable, Petal.Width. If the condition is
true, i.e., if Petal..8 thewtgee dranocDes B the dagkgrdy P e
leaf, which has 0.91 probability for versicolor and 0.09 for virginica. If false, i.e., if
Petal.Length O 2.5 and Petal.Width O 1.8

a probability of .98 for virginica ah0.02 for versicolor.

RF generates a number of randomised decision trees, eadhicif makes predictions

based on the randomised conditions at each node, and finally aggregates the predictions
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(votes).The RF algorithm requires two maiumingparametes. These aréhe number of
decisiontrees fitree and the number of varialdsplit (mtry) at each node of the trees.
RF createsitree bootstrap samples from theining data setLeo Breiman, 1996a)
Bootstrapping is a techniquessedto generate random samples with repraent(Efron
and Tibshirani 1994)A decision tree is grown from eablootstrapsample choosing the
bestmtry on a random set of pdictorsat each nodeThe model accuracy is estimated
from the Out Of Bag (OOB) errpobtained through a technique callealghing(Leo
Breiman, 1996b)Whenbagging, the RF modektainsapproximately one third of the
trainingsamplesout of the bador validationand the remaining two third tfie samples
areused forconstructing the treeBagging is repeated on a random basis and the final
OOB estimate is calculated by aggregating all the individealsion tregoredictions.
The model predicts the outcome based on the majority votes frommttiees for
classificatio, while the model outcome is calculated as the averagdreé votesfor

regression

2.2.5 Neural Networks

Neural Networks (NNs) arenon-linear statistical models, which can be explained as a
two-stage classification or regression techni¢faeedman et al., 20017 basic neural
network model, such asVanilla NeuralNetwork (VNN), consists of an input layer, a
hidden layer and an outprtgsponséayer.Equation 2.7 represents the different layers of
a VNN. Derived featureslerivatives are created froimear combnations of the input
variables X, as represented ¥ in Equation 2.7 The activation function commonly
used to create the derivativesassigmoid function(Friedman et al., 2001 which
compresses the output value between 0 aitid hidden layer ithenformed as a linga

combination of theederivatives(Tk in Equation 2.7). The responsg,is modelled as a
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nontlinear function of the linear combinations&f. The number of units in each hidden
layer and the weights used to train the derivatives of the hiddendagead be tuned
according to the complexity of the data and the problem at hand (Friedman et al. 2001).
The basic principle behind the tuning of the weights of different layers of VNNs is based
on a feedforward and backpropagation technique, whiégmprovesthrough a series of

iterations.The network diagram representing a VNN is presented in Figuré@.4K-
class classification problerthere ard response unitsyf, k=1, €K) at the top layer of

the model with thé unit (Yx) modelling the probability of clads

Equation 2-7 (Friedman et al., 2001)

WhereX = (X1, Xz, &p) for p input variablesZ = (Z1, Z, .., Zv) for M units in the
hidden layerand Y = (Y1, Y2, &) for k responsesThe unknown parameters,
| & % andi | M) of a NN model are called weightShe output activation
function,"Q “Y of a K-class classification problem often employSaitmax function,
which estimates the probability of the, class(Equation 28). This is the function which
maps the weighted derivatives of the input variableah e output layer and predicts

the probability of an input image falling in each of the response categories.
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Figure 2.4. Schematic of a single hidden layer, feefbrward neural network (Friedman et al., 2001)

]
wk . ,
L . Equation 2-8 (Friedman et al., 2001)

The output obtained from the Softmax function is further analysed using a loss function
to evaluate the goodness of the classifidre error functionused to calculate the
losgdeviance ofa NN model is calledthe crossentropy function, which is commonly

used in multinomial logistic regression moddibe weightvaluesassigned to the input
variables in a NN modelre chosen internally in such a way as to reduce the model erro
and to improvahe performanceof the modelwith the training dataThe weights feed
forward through the hidden layer to the output layer to predict the response classes and
based on the deviance calculated by the eeos®py function, the model propagates the
information back to adjust the weights in the hidden laleis happens repeatedly until

the model error is minimised after a set level of iterations.

34



2.2.6 Convolutional Neural Networks

ConvolutionalNeuralNetworks(CNNs)are deep learning NNs which are widely used to
solve complex image classification problems. CNfde performmage processingnd
feature extractiofollowed by multilayer NN based classification or prediction. Some of
the most popular areas where CNNs are applied include face recognition, biometric
identification, vehicle detection, signature vieation etc.(Das et al., 2019; Jain et al.,
2019; C. Wang & Xi) Computersprocessand storeamagesas arrays of pixel values.
Colour images arstoredas three dimensional (3D) arrays and greyscale images are
storedastwo-dimensional2D) arrays or matriceA colour image ofesolution50 x 50
pixelsis stored as a 3D array of siz@ x 50 x 3pixels where 3 represents the RGB
channed. Agreysale mage of the santesolutionis stored as 2D arrayof size50 x 50
x 1 pixels The valueof each pixelin the arrayranges from 0 to 255 which represents
theintensityof that pixel CNNs are trained with the image pixel data given in a 2D (for
greyscde images) or 3D (for colour images) array format called tensors and it extracts
both low level and high level features of the objects in the image through a series of
hiddenlayers to predict the category of the imdlyeelsen, 2015)Thelayerscommonly
used in a CNN model are

1. Convolutional

2. Nortlinear

3. Pooling

4. Dropout

5. Flatten

6. Fully Connected
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1. Convolutional Layer

The Convolutional layer forms the first layer of a CNN modehis layeridentifies

the key features of th@put imagesandreduce the input feature spac® the key

pixel valuegweighted pixelof the identified features)he input imagenustbe of
square resolutioio perform convolution operatiorThe image is scanned using
filters, alsoknown as kernel® filter is an array of weights having the sadepth(1

for greyscale image and 3 for colour imageythe input image but with a smaller
width and height. For example, for a greyscale image of size 50 x 50 x 1, the size of
the filterused for convolutioan be 3 x 3 x Irigure 2.5 represents tkhenvolution
operationof an input image of size, 7 xusinga filter of size, 3 x 3esulting in an

output image of size 5x5

Figure 2.5. Convolutional Layer. a) Input image of size 7 x 7 and bfonvoluted output image of size

5x5.

Scanning starts from the top | eft corner
right every time until the whole imagepsocessedThe dride representthe number of

pixels a filter moves towards the righteach stemf convolution When the stride is 1,

the filter moves one pixel at a tim&t eachmove the filter scans a 2D area of the input
image which is of the same size as the filtdrmatrix dot product othe input array

values (a square matrigjd the filter valuess resulted from each scan. A summation of

the values obtained at each scan corresponds to each weightad fhirebutput image
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The size of the output image after convolution is calculated usingtireifa given in

Equation 2.9
|= Al % Equation 2-9

O represents the size of the output imagegpresentshe input image sizee(g.7 x 7),
F representshe filter size €.9.3 x 3) andSrepresents the stride this caseS=1). In
this example, the output image siater convolutionwill be 5 x 5.A technique called
padding can be used in cases where the dimension of the output matrix should be
maintainedhe same as the dimension of the input matrix. Padding is a method of adding
zeroegqas pixels of filler)to the edges of the input matrix in areyetrical mannefThe
value of padding depends on the size of the convolution filter as given in Equdiion 2

0 - Equation 2-10
P represents padding atddenotes the filter sizelhe default valudor padding in a
convolutional layer is zerowhich means no fillers are added to the input image
Convolutional layers produckaturemaps which represent the key features detected
from the image. A CNN model uses more than one convolutlayat and thefeature
maps from the previous lay@rms the input of the following layerThe filtersusedin
theinitial convolution layer of a CNN model are designed to detect low level features of
imagessud as edges and curves, wHaeerfilters areused to detect high level features

such aspecific objects.

2. NonlLinearDense Layer
This layer takes in the summed inpakgainedrom thefeaturemaps of the coralutional
layer connected to.iActivation functions are used in theense layer units of CNN to

understand the complex rdinearity in the input and to provide an optimised output
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through backpropagation of erroRectifiedLinearUnit (ReLU)is the most coommonly
used activation functiomn the denselayer of a CNN (Nair & Hinton, 2010) The
mathematical défition of ReLU is shown in Equation-2L1.

w | Ag@ho Equation2-11
x stands for the input feature map of the dense layer that is passed through the RelLU
function andy represents the outpftaturemap obtained from the dense layer after
activation using ReLU. ReLU is linear for all positive input values and zero for all

negative values.

3. Pooling Layer
This layer isadownsamplinglayer of CNN.It reduceghe input sizef the feature maps
filtered thraigh the convolutioal layers.Downsamplingreduce computation cost and
controls overfitting. This is achieved through pog. Max pooling is the most popular
technique used in CNN. The ingeatturemaps are filtered using filters efual size and
stride (usually2) and outputs the maximum value in editiered area of the imagas

shown in Figure 2.6
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Figure 2.6. Max pooling of a 4 x 4 data matrix down to 2 x 2.

4. Dropout Layer (DL)
A random set ofeaturemaps are dropped out in this layer. The DL layer is used during
thetraining stage of a CNNb reduce overfittingThis layer ensurethat the modelks not
tuned togpreciselyto the training data and performs better even after dropping out some

of thefeature maps
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5. Flatten Layer
This layer flattens the feature magbtained from the previous lay@nfo along vector.
The Flatten Layer is implemented just before the final layer, which is the Fully Connected

layer.

6. Fully Connected Layer

This is the final layer of a CNN model, which is connected to all the unite pfevious
layer. TheFully Connected (FC) laygrrocesses theutput of the previous layer, which
containsthe keyhigh-level features extracted from the input imateoughthe various
filtering layers. It then predicts the final response using aabinvétinctions which are
relevant to thelefined problemSoftmax is the most commonly used activation function
in the FC layefor image classification probleswith multiple response categoriékghis
function calculates the correlation of tiieaturemapswith the response categories and
classifies thenbased orthe highest correlatio he function assigns suitable weights to

the feature mapso that the probability of predicting the correct gatgincreases

2.3 Industrial Applications

Image processing techniques integrated withamine learninglassifiers have a long
history of success in product quality evaluation in a wide range of industries such as
automotive, electronics, medicalppharmaceutical, foodtc (Bertani et al., 2017; Du

& Sun, 2006; Gosselin et al., 2016; Jousse, 2008; Manak et al., 2018; Pfeil et al., 2018;
Venora et al., 2009; Zhang et al., 2018pwever, such techniques are currently under
investigatedin the area of industrial emulsificatiomhe literature has identified that
development ofundamental predictive models using peutate/droplet dataanbenefit

the optimisation of emulsification procesg¢B®yle Il et al., 2003; Jousse, 2008; Shi et
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al., 2006)Only alimited number oktudies have reported the applicatiorlagsification
or prediction modellingusing droplet datafor the quality evaluation of dispersion

systemgKljusuric et al., 2015; P. Wy et al., 2016)

Wang et al (2016) have provided aetailed review of variousupervised and
unsupervisedachire learning modelapplied for thejuality evaluation of olive oilising
chemical databtained through spectroscopical techniqUémir studyinvestigated the
authentication of olive oil by extracting a data matrix of its chemical constituents using
techniques such as midfrared (MIR), neatinfrared (NIR) and Raman spectroscopy.
They apfied chemometric analysis.e. thestatistical study of chemicabmposition to
identify quality parameterso differentiate olive oil samples from other edible aging
supervised and unsupervised classification technid@a and LDA were describeds
the two moseffectiveunsupervised and supervised methods usepbftdern recognition
and classification respectivelpCA, Herarchical Cluster Analysis (HCA) arttmeans
were identified as the most commonly used unsupervised methods for idergéytens

in a data set. PC#vas describedsthe moseffectiveof these thregechniquegWang et

al., 2016).

A similar classificaton study of barley milk samples, obtained by blending barley grain,
was conducted by Kljusuriet al. (2015) to find the optimum processing time in barley
milk production.The karley grain was blended for a total of 60 secdogsodiuce barley
milk, which is an emulsion.&nples were obtained 85 secondstervals The samples

at each stage of blemdj, were filtered to separate the grain from the milk and were
analysed using NIR spectazgpy. PCA was applied to the NIR absorbasgectral data
and the score plots were used to cladsifth the grain and the milk samples acquired at

15, 30, 45 and 68econds of blendingGrané & &ch, 2014) The PCA score plots
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followed the same trend ttie absorbance specpeesentinga good separation between

the samplesParticle/droplet size measurements, such as median diameter, Sauter mean
diameter and specific surface area, were obdiairseng laser diffractiorMicrographs of

the milk samples were alsxquiredto geta better insight into thdroplet size at each

stage of blendin@nd to confirm thdaser diffraction measuremeni&he droplets in the
dispersed phase of the barleylk samplesobtained at 15, 30, 45 and 60 seconds of
blending are showrin the micrographsf Figure 2.7 Their studyidentified45 seconds

asthe optimal blending time, as the droplets appeared to form aggregates atiarghat

according to the NIR, ®A, laser diffractiorandmicrographanalyses.

(c) (d)

Figure 2.7. Micrographs obtained from barley milk samples at a) 15 seconds b) 30 seconds c) 45
seconds and d) 60 seconds of blendini§ljusuric et al, 2015)

However it is noted thatheir studyuseda limited set obarley milksamples andid not

use anyndependensamples to validate their findinga addition, their PCA results were
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not extended to any supervised learning techniques to develop a predictive classification

model and to optimise the process on an industrial scale.

PCA isextensivelyapplied foridentifying patterns irdata inmanyareas like biostatistics

and chemomeits (Garcia & Filzmoser, 2015t is highly useful in chemomets, where
numerous variablesf very high collinearityare analysed. At the same time, PiSAIso
found to be ver effective in any manufacturing process industry, where a large number
of correlated variables are analysed for multivariate process cotdraoeduce the
dimensionality and correlation in the original feature sgEoairti et al., 1996; Kourti &
MacGregor, 1995, 1996(Kirby & Sirovich, 1990)first proved that human faces can be
effectively represented and reconstructed by PCA mod@lstk & Pentland, 1991)
presented thevell-establishedigenfaces method for faciecognition. Since then, PCA
has been widely accepted as one oftiest effective methods for faciatcognition

(Dagher & Nachar, 2006; Vaswani & Chellappa, 2006; Xudong &Man, 2006)

The PCA technique aids in reducing the dimensionality of the image data and at the same
time retains the maximum variability tife image features in a set of eigenvectors. In the
early years, conventional PCA based pattern recognition methods used to store the two
dimensional image data matrices into -@lmensional vectors and this made the
multidimensional vector space too latgecalculate the covariance matvien there is

alack of training samples. In order to improve the speed and accuracy of calculating the
covariance matrix and the eigenvectors, a two dimensional PCA (2DPCA) was proposed
(Jian et al., 2004)In 2DPCA, the original image data matmoes not need to be
transfomed into one dimensional vectors ancttwariance matrix and the corresponding

eigenvectors are calculated directly from the image data matrix.
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Applications of PCA in food science and technol@gg also widely discussed in the
literature(Grané & Jach, 2014)Robust classification models have been developed, in
the past, by performing supervised learning techniques such as Linear Discriminant

Analysis on a PCA transformed spdBertani et al., 2017; Venora et al., 2009)

A machinevision integra¢d LDA-Bayesiarclassification modelasinvestigated for the
automated quality evaluation of durum wh@atnora et al., 2009Yhe modekchieved
goodaccuracy in the classification of wheat kernels steschy and shrunken categories
Size, shape and intensity distribution features obtained from images of wheat kernels
were the predictors selected for developing the classification model. Image analysis
macros were developed for extracting the features of each kernel category, which were
automatically integrated with the classification model. A training set of 100 grain samples
were classified manually by inspectarsdLDA into four categories (starchy, shrunken,
vitreaous and piebald). The results were used to train an online Bayesisifial. The
Bayesian classifier, trained using the LDA results, classified a test set of 30 grain samples

that achieve®6.03% to 99.586 accuracy for the shrunken and starchy categories.

Bertanietal. (Bertani et al., 2017chieved a parthautomagdmultivariate classification

of hyperspectral micrographs of living cells using PCA followed by LDA. Cells from two
different polarizatios, M1 and M2,were selected as the classification categories. A
multi-dimensional data set of 26 different spectravel@engths was used to obtain the

cell micrographs. Using PCA, the high dimensional dataset was reduced to a set of 14
variables, which were selected as their LDA model predictors. Samples were obtained
from four differentdonors. A total of 60 sampl€30 from each category) from each cell
donor werghenused for cross validating thédC-LDA model Figure 2.& to 2.8dshows

the confusion matrix obtained from the-fildd crossvalidation conducted fothe
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individualdonors The confusion matrix obtained byossvalidatingthe model using the

240pooled samples from tHeur donors is presented in Figure 2.8e.

Figure 2.8. Confusion matrices from 10fold crossvalidation of the PC-LDA model. Each matrix is
the sum of 10 matrices from 10 test se{8ertani et al., 2017)

A classification accuracgf 98-100%was achieved fathe individual donorgBertaniet
al. (Bertani et al., 2017)Theclassificationaccuracy was reduced to 90% for tpeneral

prediction model using a pool of different donors.

Logistic regression modelfiave also beenwidely used for data classification and
prediction purposes ithe medical field for diagnostic and prognostic tagRseiseitl &
OhnoMachado, 2002)Logistic regression was the most poputtassificationmodel
with 28,500 publicationsn the arly 22 centurywhen ompared toother prediction

models such as artificial neural networksndarest neighbours, decision trees and
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