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Abstract 

 
The existing quality evaluation of emulsions is typically based on subjective examination 

of samples under the microscope by trained analysts. The major drawbacks of such 

manual assessment include inter-observer variability, intra-observer variability, lack of 

speed, poor accuracy and it is also prone to over-processing. Other conventional droplet 

analysis techniques such as laser diffraction and spectroscopy, which require time-

consuming sample preparation, have been verified as unreliable and introduce an 

additional complexity to industrial processes. In order to overcome these challenges, a 

novel automated approach based on image segmentation and machine learning is 

investigated in this research for the quality evaluation and optimisation of industrial 

emulsion processing.  

Bright field micrographs were obtained during an industrial emulsification process. Two 

image segmentation techniques, Edge & Symmetry (EST) and Histogram-Based (HBT), 

were applied to detect the oil droplets from the micrographs. These techniques were also 

used to extract various morphological characteristics of the droplets. The most significant 

predictors were selected from these droplet characteristics for developing machine 

learning models. The most efficient image segmentation technique was also identified. 

The micrographs were grouped into four quality-based categories identified as TAMU 

(Target, Acceptable, Marginal and Unacceptable).  

Supervised machine learning and deep learning models were developed for the TAMU 

classification of unknown emulsion micrographs. A comparative study was performed 

between manual and machine learning classification using Attribute Agreement Analysis. 

Regression models were developed to predict the RPT (Remaining Processing Time) 

required, at all stages of emulsification, to achieve the target characteristics. These 

prediction models were intended to avoid over-processing in emulsion manufacturing. 

HBT exhibited excellent potential in droplet detection and characterisation compared to 

the EST approach. HBT was successful in detecting droplets with diameter as low as ca. 

1 µm from emulsion samples having dispersed phase fraction å 50%. The machine 

learning classification models presented high accuracies ranging from 92% to 100%. The 

deep learning models demonstrated lower accuracies from 44% to 89%. The results of 

the comparative analysis showed that the machine learning classification is superior to 

manual classification with respect to speed (180 times faster), greater accuracy (10% to 

40%) and repeatability. The prediction models presented an adjusted R2 å 92%.  

The entire automated approach based on image segmentation and machine learning was 

implemented as a soft sensor. The soft sensor supports the real-time deployment of the 

technique into an industrial environment. The proposed approach has the potential to 

predict instantaneous product quality as well as the process time required to achieve the 

desirable droplet characteristics. This will avoid over-processing and wastage of 

resources leading to more efficient and sustainable emulsion manufacturing. 
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Chapter 1  

Introduction 
 

Emulsification is the process of breaking large oil globules into a homogenous 

distribution of microscopic droplets. Emulsions can be either two-phase (single 

emulsions) or multiphase (double emulsions) dispersions. A two-phase oil in water (o/w) 

emulsion is formed when oil becomes homogenously dispersed as tiny droplets in water. 

This can be achieved by high shear homogenisation, where oil forms the dispersed phase 

and water constitutes the continuous phase of the emulsion (Tontul & Topuz, 2015). Shear 

stress is defined as the component of stress that acts parallel to a surface or a material 

cross section. Emulsions include a wide range of food, pharmaceutical and cosmetic 

products such as skin care creams, lotions, hair products, vitamin syrups, medicines etc. 

(Bakry et al., 2016; Dao et al., 2018; Rodriguez et al., 2016). They are applied as delivery 

vehicles for drugs, pesticides and are also extensively used in emulsion based paints (Cho 

et al., 2015; Dokania & Joshi, 2015; George et al., 2018; A. K. Singh et al., 2009; Tasker 

et al., 2018; Vasconcelos et al., 2018). 

Quality evaluation, in emulsion manufacturing, has been identified as a challenging 

task by food, pharmaceutical and chemical industries. This can be attributed to the 

increased time consumption, subjectivity and inconsistency of existing evaluation 

techniques. The quality of the final emulsion product is highly dependent on its droplet 

size distribution, which is in turn influenced by the operating conditions and process 

parameters such as time, temperature etc. (Amokrane et al., 2016; Qu et al., 2018; Zeaiter 

et al., 2006). Manual evaluation of emulsion samples, by microscope analysts, through 

physical sampling and observing the samples under the microscope is one of the 

techniques currently practiced in industries. The product can be over-processed, in most 

cases, due to the lack of an objective quality evaluation and decision-making procedure. 
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Over-processing is one of the potential challenges in high energy emulsification as it is 

wasteful of energy and can cause an increase in droplet size (Tontul and Topuz, 2015). 

This is due to several reasons including slow adsorption rate of the surface-active agent 

used for binding the droplets, residence time of emulsification, high rate of droplet 

coalescence and a high energy density (Jafari et al. 2007). 

Other conventional techniques employed in the quality evaluation of emulsions 

include laser-based scattering and diffraction methods, which are found to produce 

unreliable droplet size measurements and require time consuming sample preparation 

(Abidin et al. 2013, Maaß  et al. 2012, Honkanen et al. 2010, Greaves et al. 2008). There 

is a wide range of literature available stating the challenges and drawbacks of the current 

techniques in emulsion quality evaluation, which are discussed later in this chapter. The 

existing offline techniques used for emulsion characterisation and quality evaluation are 

detailed in Section 1.3. These include manual evaluation, spectroscopic methods and 

computer-aided image analysis techniques. Section 1.4 describes the existing inline 

droplet size monitoring techniques in various multiphase systems. The image processing 

software, which have been used previously for both offline and inline droplet detection, 

is also detailed in these sections.  

1.1 Scope of this research 

This research addresses the current issue of subjective, time consuming and unreliable 

quality evaluation practiced in emulsion manufacturing industries. Soft sensors, for 

automated quality evaluation and process control, are one way of advancing the current 

system (Sun et al., 2014). Soft sensors are inferential models developed to predict process 

variables (both categorical and continuous) using measured variables. These soft sensors 

can be integrated with emulsion processing, both offline and inline, to develop enhanced 
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intelligent systems. The scope of this research is focused on the image processing of 

optical micrographs (image taken from a microscope) as a technique, for emulsion 

characterisation, which is followed by automated emulsion classification and the 

prediction of remaining process time. In-process samples of a topical cream emulsion 

product, acquired from a pharmaceutical manufacturing industry, has been used in this 

study. An offline implementation of the automated techniques, as a soft sensor, has been 

validated. A future extension of this work is planned for the inline quality evaluation and 

optimisation of industrial emulsification processes. 

1.2 Aims and Objectives 

The aim of this research is to develop a novel automated technique, for droplet 

characterisation and quality evaluation, to overcome the current challenges faced by 

emulsion manufacturing industries.  The new technique is targeted on characterising the 

oil droplets efficiently during emulsification, classifying in-process emulsion samples into 

quality categories and identifying the optimum processing time. Finally, inferential models 

will be employed to predict the anticipated extra processing time at all stages of the 

emulsification process. The objectives of this research are focused on achieving this aim. 

1.2.1 Objectives 

The following are the objectives of the project: 

¶ Conduct a literature review of: 

o The existing droplet detection, characterisation and quality evaluation 

techniques in emulsion manufacturing to identify the current challenges. 

o The state-of-the-art machine learning techniques applied for vision integrated 

automated quality evaluation in manufacturing industries including food, 

pharmaceutical and chemical. 
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¶ Develop an efficient image segmentation approach suitable for the automated 

characterisation of droplets from in-process emulsion micrographs. 

¶ Identify the desirable droplet quality characteristics through statistical analysis and 

establish the completion time of the emulsification process, i.e. when the droplets 

attain their target characteristics. 

¶ Categorise and label the emulsion samples, at specific processing stages, based on 

their droplet quality characteristics and industrial expert advice. 

¶ Develop supervised machine learning models to classify unknown emulsion 

samples/micrographs into the labelled categories.  

¶ Evaluate manual versus machine learning classification approaches. 

¶ Develop prediction models to predict the processing time required by the emulsion, 

at all stages of emulsification, to achieve the target droplet characteristics. 

¶ Validate the developed techniques using industrial data. 

1.2.2 Potential Industrial Impact 

The proposed approach has significant potential impact in a wide range of industries 

including food, pharmaceutical, biomedical and chemical industries. The current 

requirements demanded by Industry 4.0, such as digitising traditional industries for 

improving process and product evaluation techniques, could be addressed by the new 

automated approach. Minimum human intervention, with increased machine to machine 

communication is the potential target of the proposed approach. Moreover, the current 

techniques used in this area demand significant use of personnel resources, time and 

energy, resulting in increased cost of production. The proposed automated approach, in 

this research, will have the potential to overcome these challenging demands leading to 

more efficient and sustainable emulsion manufacturing.  
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1.3 Overview of existing techniques for emulsion quality evaluation 

1.3.1 Manual Evaluation 

Manual evaluation of in-process samples is one of the techniques currently employed 

in the industrial quality evaluation of emulsions (Figure 1.1). During the emulsification 

process, samples are taken from the stirring vessel (mixer). Analysts observe these 

samples under the microscope to evaluate the quality of the product and confirm if it is 

fully processed and meets the desirable characteristics. This is done in different ways, 

including manual counting of the oil droplets and by subjectively judging the distribution 

of the droplets, based on previous knowledge. 

 

Figure 1.1. Schematic representation of the manual quality evaluation of emulsions. 

 

Figure 1.1 shows the manual microscopic evaluation of in-process emulsion samples, 

performed by microscope analysts, to determine the completion point of the 

emulsification process. Such evaluation techniques have been found highly subjective, 

erroneous and time consuming in previous studies (Boxall et al., 2010; Gwyn et al., 1965; 

Maaß  et al., 2012). Boxall et al. (Boxall et al., 2010) have reported an average difference 

of 5.1% in the mean droplet size measurement between two analysts. In a similar study, 
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(Maaß  et al., 2012) have found significant inter-analyst and intra-analyst errors in the 

droplet size and count measurement. Their study reported a ±5% and ±15% deviation 

between four analysts in the measurement of average droplet size and count respectively. 

In repeating the analysis with the same analysts, the deviation in the measurements almost 

doubled. To resolve this problem of subjectivity in manual microscopic evaluation, the 

previous studies have suggested the use of automated image processing techniques for 

droplet size monitoring.  

1.3.2 Other Conventional Methods 

Vibrational spectroscopic techniques such as mid-infrared (MIR), near infrared (NIR) and 

Raman spectroscopy using laser diffraction have been extensively applied in the quality 

evaluation of food emulsions (Berrueta et al., 2007; Kljusuric et al., 2015; P. Wang et al., 

2016). These techniques have been employed mainly for the analysis of emulsion 

composition and to investigate areas such as adulteration in olive oil, process optimisation 

in barley milk production etc. Laser diffraction techniques have demonstrated proficiency 

in the development of chemometric analysis for emulsion quality evaluation (Bosque-

Sendra et al., 2012; Geladi, 2003). One of the major challenges associated with such 

spectroscopic techniques is the requirement to dilute samples to achieve a good spectra 

(P. Wang et al., 2016). This introduces additional complexity in industrial processes and 

ensures such techniques are difficult to automate. Laser scattering had been the most 

widely used technique for droplet size analysis, apart from chemometric analysis, in 

emulsions from the 1990s (Heffels et al., 1998; Sachweh et al., 1998). In laser diffraction, 

the particle/droplet size is measured in terms of the angular variation in the intensity of 

light scattered when a laser beam passes through a dispersion sample (P. Wang et al., 

2016; Y. Wang et al., 2004).  
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FBRM (Focused Beam Reflectance Measurement) is one of the most popular laser back 

scattering techniques applied for both particle and droplet size measurements (Emmerich 

et al., 2018). The working principle of droplet/particle size measurement using FBRM is 

shown in Figure 1.2. The two-dimensional optical reflectance measurement (2D-ORM) 

sensor (Figure 1.2, left) detects the droplets near the FBRM probe window through the 

reflection of an intense laser beam. The Forward-Backward Ratio (FBR) sensor (Figure 

1.2, centre) measures the spatial pattern of the laser beam scattered in both directions for 

smaller particles/droplets with radius less than one tenth of the beam wavelength. The 

average diameter of a group of particles/droplets is measured from the measured light 

intensity ratio. The laser beam from the cylindrical probe rotates at high speed, focusing 

on the particles/droplets close to the sapphire window (Figure 1.2, right), and the light is 

scattered back by the particles/droplets. The particle/droplet sizes (chord length) are 

calculated as the product of the rotational speed and the sampling time. 

 

 

Figure 1.2. Focused beam reflectance method (FBRM) for droplet size distribution analysis: (left) 

2D-ORM sensor, (centre) FBR sensor and (right) working principle of the FBRM probe (Emmerich 

et al., 2018). 

 

These laser based techniques have many advantages including the possibility of analysing 

a wide range of particles from nanometres to micrometres, rapid measurement potential 

and high sample throughput. However, there are certain limitations associated with such 

techniques, which are discussed by (Vankeirsbilck et al., 2002). These are time-
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consuming sample preparation, sample dilution and the influence of the particle surface 

on the quality of the scattered light. Laser techniques were found incapable of delivering 

reliable droplet size measurements in the past (Abidin et al., 2013).  Many authors have 

obtained unsatisfactory results from analysing spherical droplets in dispersion systems 

using laser scattering (Greaves et al., 2008; Honkanen et al., 2010; Maaß  et al., 2012). 

Regarding smaller droplets of diameter < 1 µm, scattered light creates additional noise 

which limits the spectral resolution (Schuster et al. 2012). Recent studies in the literature, 

regarding NIR and laser diffraction techniques, have found that image processing and 

analysis of emulsion micrographs can give better insight into droplet size measurements 

compared to these techniques (Kljusuric et al. 2015, Abidin et al., 2013). 

 

1.3.3 Offline Image Processing techniques for Droplet Detection 

Emulsion stability studies have been performed using light microscopy in conjunction 

with image processing and statistical analysis from the early 21st century (Freire et al., 

2005; Hosseini et al., 2015; Silva et al., 2010). These studies have identified image 

processing of optical micrographs as an efficient and cost effective method for the 

analysis of various aspects of emulsion characterisation. Freire et al. (2005) have analysed 

the aging mechanism of perflurocarbon emulsions using image analysis over a 42 day 

storage period and identified temperature as a key factor influencing the evolution of the 

mean droplet size. 

Similar studies of droplet size distributions have also been performed for the 

characterisation of double emulsions (Scherze et al., 2005; Schuster et al., 2012a). 

(Scherze et al., 2005) developed an automated image analysis methodology for optical 

micrographs, in the industrial preparation of double emulsions, to control the yield of the 

inner continuous phase. The emulsion micrographs were obtained using extended focal 
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imaging, a special module contained in the analysis software (Soft Imaging System) of 

the optical microscope they used (Olympus BX61). Extended focal imaging has the 

ability to capture images at diverse focus settings. The droplets of the external and internal 

phases of the emulsion were detected from the micrographs with the help of a macro, 

programmed using Optimas (Media Cybernetics), and the droplet characteristics were 

obtained (Scherze et al., 2005). The oil droplet size distribution and the average pixel 

intensity of each droplet were statistically analysed. Due to the larger number and smaller 

sizes < 1.5 µm, it was difficult to segment the droplets in the internal phase, as they 

appeared as texture. Therefore, the droplets in the internal phase were analysed based on 

their roughness and brightness in terms of pixel intensity. The relative brightness of the 

droplets was calculated as the difference between average pixel intensity of the droplets, 

weighted by area, and the average pixel intensity of the background. The decrease in the 

relative brightness of the droplets was studied over a storage period of 28 days. This is 

shown in Figure 1.3. The statistical evaluation of the relative brightness was used to 

determine the required level of filling of oil droplets in the inner aqueous phase. The 

results of the study showed strong positive correlation between relative brightness and 

filling level of the droplets. A controlled filling of droplets was achieved to obtain 

optimum yield of the inner phase of the emulsion (Scherze et al., 2005). Their study also 

found that the textural quality of the microscopic images can be improved by controlling 

the process parameters and the formulation of the emulsion. 
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Figure 1.3. Emulsion sample micrograph a) after 8 days b) after 28 days (Scherze et al., 2005). 

 

The potential of optical imaging techniques such as Confocal Laser Scanning Microscopy 

(CLSM) combined with statistical analysis of droplet size data was investigated in both 

single and double emulsions by Schuster et al. (2012). The CLSM imaging technique had 

previously proven effective in the analysis of single emulsion systems (Blonk & Van 

Aalst, 1993; Van Dalen, 2002). The study performed by Schuster et al. (2012) addressed 

the question of how accurately the droplet size distribution (DSD) of food emulsions can 

be obtained from CLSM images with minimum error in the processing algorithms and 

the application of error correction methods. The images obtained from CLSM were 

processed using ImageJ software  and the distribution of the volume weighted droplet 

diameter (d43) was analysed ("https://imagej.net/Welcome,"). Their image processing 

methodology involved the following steps.  

1. The images were thresholded through the red channel. 

2. Converted into black and white binary images. 

3. Noise removal was applied using the ódespeckleô function. 

4. óWatershedô segmentation was applied to recreate the border between inner and 

outer phases and also to separate overlapping droplets. 
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Finally, the droplets with circularity ranging from 0.7 to 1.00 were identified. The 

circularity of a droplet is 4p multiplied by the ratio of the droplet area to the square of its 

perimeter. A droplet with a circularity of 1.00 is a perfect circle. Schuster et al. (2012) 

suggested analysing the maximum Feret diameter of the droplets, in addition to droplet 

area, in order to minimise the optical frame error. This minimises the error created by 

omitting larger droplets, with maximum Feret diameter less than or equal to the optical 

frame length, appearing at the edges of the optical frame. The maximum Feret diameter 

is the longest distance between any two points along the selected droplet boundary and is 

applicable to non-circular shapes. Their study obtained improved DSD results using 

image processing and raised the future possibility of integrating automated image 

processing techniques with statistical analysis for the investigation of emulsion 

agglomerates (Schuster et al. , 2012). 

In a similar study conducted by Hosseini et al. (2015), droplet diameter measurements 

were obtained by processing emulsion micrographs, using ImageJ software, which was 

followed by statistical DSD analysis. The image processing and statistical analysis were 

performed in three major steps: 

1. The image was converted into binary (black and white) and noise was reduced 

using the ódespeckleô function. 

2. The identified droplets were analysed, in the image, to obtain their characteristics. 

3. The droplet characteristics such as average droplet size and standard deviation 

were statistically analysed. 

The average droplet size was measured in terms of the surface area weighted mean 

diameter (d32), often referred to as Sauter mean diameter as given in Equation 1.1. The 

Sauter mean diameter is a different way of examining the average droplet size, which 
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indicates the centre point of the frequency distribution in terms of the surface area and 

not the number of the droplets. Their study of the evolution of average droplet size over 

time for the most stable and the most unstable emulsion samples is shown in Figure 1.4. 

▀  
В ▪░▀░
╝
░

В ▪░▀░
╝
░

       Equation 1-1 

N is the total droplet count in a micrograph and ni is the number of droplets with diameter, 

di. 

                               

 

Figure 1.4. Changes in the d32 index for the most stable and unstable O/W emulsion samples after 48 

hours storage (Hosseini et al. 2015). 

 

The emulsion samples were prepared with different emulsifier concentrations and were 

stored at different temperatures. The most unstable emulsion had an increasing average 

droplet size over time, while the most stable emulsion showed an initial decrease in the 

average droplet size and then remained steady. The emulsion stability study by (Hosseini 

et al., 2015) demonstrated that the analysis of the d32 index is effective in finding the 

optimum parameters of emulsion preparation such as homogenisation time and storage 

temperature. 
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Freire et al. (2005) and Silva et al. (2010) applied a set of image processing techniques, 

in ImageJ, to obtain oil droplet characteristics from the optical micrographs of O/W 

emulsions as described below. 

1. The original RGB image was subtracted from its background and converted into 

8 bit greyscale.  

2. The image was then thresholded and converted to binary. 

3. Noise correction was performed using median filtering. 

4. Erosion was applied to suppress the structures connected to the image border. 

5. Morphological analysis was done by creating a mask over the identified droplets. 

 

Droplet size parameters such as diameter, area, volume and standard deviation were 

determined and statistical analysis of the parameters was conducted. The droplet size 

distribution was analysed over a period of 42 days. The  results showed an increase in the 

average droplet size of the emulsions due to coalesence over time, with an increase in the 

storage temperature (Freire et al., 2005).  

The image processing techniques, using Imagej, reported in the literature for emulsion 

droplet analysis have commonly applied a general processing sequence. This is based on 

noise filtering, thresholding, converting to binary and seperating the overlapped droplets 

using watershed segmentation or erosion. This is followed by analysing the droplet 

characteristics such as size and shape (Freire et al., 2005; Hosseini et al., 2015; Silva et 

al., 2010).  Other image processing techniques applied for droplet detection from 

emulsion micrographs include Hough circle transform and edge detection algorithms 

based on Matlab (Maaß  et al., 2012; Panckow et al., 2017). Maaß  et al. (2012) used a 

circular edge detection algorithm for droplet size and count characteristation. Their 
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technique comprised of three steps for pattern identification. These include the correlation 

of pre-filtered images with search patterns, the pre-selection of possible circle coordinates 

in the images followed by the classification of the droplets in each image by an edge 

detection algorithm. They recommended a future extension of their method for detecting 

non-circular droplets. In summary, the robustness of the image processing technique 

plays a major role in the accuracy of droplet detection in dispersion systems. From the 

extensive literature review conducted as part of this research, there have been no studies 

reported to date, which have applied an intensity-based droplet detection approach for in-

process emulsion micrographs. The literature strongly suggests that border/edge based 

techniques are more typically used for droplet detection. 

1.3.4 Image Segmentation 

Image segmentation is the primary step involved in any image analysis procedure. The 

goal of image segmentation is to partition the Region Of Interest (ROI) in an image into 

meaningful objects/segments (Aly et al., 2011). The major applications of image 

segmentation include medical imaging, object detection and recognition and image 

classification. There are two basic types of image segmentation such as global 

segmentation and local segmentation (Anjna & Er, 2017). Global segmentation is useful 

if the ROI is spread across the whole image and the latter one is applied if the ROI is a 

specific part/region of the image.  

Image segmentation approaches are generally classified into two major categories (Anjna 

& Er, 2017). These are the discontinuity detection-based approach and similarity 

detection-based approach. The discontinuity approach partitions the ROI of an image 

based on pixel intensity gradient, which detects the separation between the edges of the 

ROI from the background. Edge detection is the most widely used technique for the 

discontinuity approach (Kumar et al., 2012). Similarity detection is aimed at identifying 
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similar regions of an image using Thresholding or Histogram-based techniques, in which 

identical pixel values are grouped together (Haralick & Shapiro, 1985). This is also 

known as a region-based approach. The selection of the most appropriate image 

segmentation approach depends on the properties of the image and the ROI (Bora & 

Gupta, 2014; P. Singh & Chadha, 2013). Thresholding techniques are the most suitable 

for image segmentation if the ROI has indistinct edges, while edge detection techniques 

work well with distinguishable edges. 

 

1.4 Inline Droplet Size Monitoring  

A precise understanding of the droplet size distribution of emulsions has been identified 

as the key factor to control and optimise industrial processes in various fields of 

applications (Panckow et al., 2017). The potential of inline droplet size monitoring, using 

automated image processing followed by statistical analysis, has been investigated in 

various multiphase systems (Boxall et al., 2010; Khalil et al., 2010; Maaß  et al., 2012; 

Pacek, Moore, et al., 1994; Pacek, Nienow, et al., 1994). These inline techniques have 

been employed to identify the process parameters that provide the optimal target 

characteristics (Crawley & Malcolmson, 2004; Khalil et al., 2010; Maaß  et al., 2012). 

The aim of (Khalil et al., 2010) was to investigate the efficiency of coupling imaging 

software with inline hardware devices to evaluate the evolution of droplet size in an 

emulsification process. Their experimental fixture for in-situ process monitoring involved 

a video microscope probe submerged in a laboratory reactor as shown in Figure 1.5 

(Khalil et al., 2010). A pulse generator was triggered by the video camera, which in turn 

sets the back lighting supplied by Light Emitting Diode (LED). The back lighting resulted 

in capturing droplet shadows as black structures, appearing on a white background. The 

recorded video was retrieved by a video grabber and sent to a computer. 
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Figure 1.5 - Experimental set-up for in-situ droplet size monitoring (Khalil et al., 2010). 

 

 

The image acquisition was performed in various steps. A 30 second video sequence was 

recorded periodically, and 300 frames were selected from each recording for automatic 

image processing. In order to eliminate duplicate detection of droplets, one out of five 

frames were selected for analysis and a circular Hough transformation method was 

applied to detect the circular droplets in the images (Figure 1.6). The droplet size range 

was limited to 10-90 ɛm, since the accuracy of detection was weak below 10 ɛm, due to 

a resolution of 2 µm per pixel and was found inaccurate above 90 ɛm, due to the 

accumulated detection of several droplets at the same time. A set of image processing 

parameters were required for detection including the maximum and minimum radii of the 

droplets in a frame. The parameters were tuned by comparing images acquired from three 
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different runs of video sequences and three sets of parameters were obtained. The mean 

parameter values were chosen as the inputs for the automated image analysis. The study 

by (Khalil et al., 2010) demonstrated that it is possible to optimise an emulsification 

process in a laboratory reactor using an in-situ experimental set-up with software and 

hardware devices coupled with automated image analysis software. However, their study 

was limited to the detection of circular droplets within a diameter range of 10 ɛm - 90 

ɛm.  

 

 

Figure 1.6. Droplet detection using Hough circle transform: a) raw micrograph b) processed image 

with detected droplets (Khalil et al., 2010). 

 

A similar study was performed by (Maaß  et al., 2012)  to overcome the errors caused by 

manual droplet counting, physical sampling and the usage of inefficient image processing 

techniques. It has been found that even minute changes in the sampling time can result in 

substantial droplet size measurement errors. Maaß et al. (2012) implemented an 

automated image processing and droplet detection technique based on edge detection in 

MATLAB® . This algorithm worked in two stages, the first stage detected the edges of 

the droplets and created an output image, which was used in the second stage to measure 

the circular droplets. The proposed algorithm by (Maaß  et al., 2012) was found to be 

faster and more efficient in droplet detection and analysis compared to human analysis. 
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Their study recommended the optimisation of the image processing parameters used for 

the droplet detection in order to improve the speed and accuracy of the computing 

software. The parameter optimisation was attained by performing several runs of the 

image processing software to extract the characteristics of a few manually marked 

droplets in a number of images. Their study also found that automated micrograph 

analysis of droplet counting, and characterisation is approximately fifty times faster and 

less erroneous compared to manual assessment.  

In-situ droplet size measurements, in biofuel production systems, using photo optical 

techniques have been performed using similar circular edge detection techniques 

(Panckow et al., 2017). Their study detected circular droplets from O/W emulsions with 

a dispersed phase fraction of 1% to 5% and d32 ranging from 70 to 110 µm. The detection 

of droplets in production systems with an expected mean droplet size < 10 µm is still 

found challenging in the existing studies. In addition, droplet detection in extremely 

concentrated emulsions, with a dispersed phase fraction greater than 10% to 15%, using 

existing edge detection based techniques, was also identified as a challenge in the 

literature (Brás et al., 2009; Maaß  et al., 2012; Panckow et al., 2017). 

 

1.5 Current Challenges in droplet detection from emulsion 

micrographs 

The existing image processing studies in droplet characterisation and emulsion quality 

evaluation have identified the following areas as current challenges. 

¶ Detection of droplets from highly concentrated emulsions with phase fraction 

>15% (Brás et al. 2009, Maaß  et al. 2012). 

¶ Detection of smaller droplets <10 µm from production systems (Panckow et al. 

2017). 
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¶ Detection of non-circular droplets from emulsion micrographs (Maaß  et al. 2012). 

¶ Implementation of automated droplet detection techniques with minimum user 

input parameters (Khalil et al. 2010, Maaß  et al. 2012). 

o To eliminate the parameter optimisation step. 

o To reduce the error induced by the variability in the parameter values.  

o To enable automation of the system. 

With respect to the current challenges, a novel automated approach is necessary to 

evaluate the quality of an emulsion product effectively during the emulsification process. 

This could potentially avoid over-processing, leading to efficient utilisation of resources 

such as time, energy and raw materials. Such an approach could also minimise manual 

intervention in the quality assessment procedure in manufacturing industries. However, 

such techniques have not been developed to overcome the present challenges within this 

domain. 

1.6 Thesis Outline 

The development of a soft sensor, for the quality evaluation and optimisation of industrial 

emulsion processing, is identified as the major objective of this research. Inferential 

models developed from droplet characteristics of in-process micrographs are one way of 

addressing this objective. This thesis outlines the approach adopted to develop the soft 

sensor for improved emulsion processing. The development of an automated image 

segmentation technique capable of addressing the existing difficulties in emulsion droplet 

detection is identified as the initial focus of this research. The new image segmentation 

technique is aimed at the automated detection of droplets from emulsion micrographs 

during its industrial processing. This technique is also expected to extract various size, 

shape, centroid and orientation characteristics of each individual droplet in a micrograph. 

The droplet characteristics form the input features of the inferential models. The 
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inferential models are developed using machine learning algorithms for two main 

purposes, such as supervised classification of in-process emulsion samples and prediction 

of the processing time required for the completion of emulsification. Structure of this 

research thesis is presented in Figure 1.7. 

 

 

 

Figure 1.7. Schematic representation of the thesis structure. 

 

Chapter 1 

 

Chapter 1 provides a brief introduction to emulsions and the emulsification process. It 

reviews the techniques, which are currently employed, for the evaluation of emulsion 

quality and discusses their challenges. This chapter also describes the scope, the potential 

industrial impact and the aims and objectives of this research. 

 

Chapter 2 

An extensive literature review is conducted on the state-of-the-art machine learning 

techniques applied for image classification and industrial process evaluation. It discusses 

the various unsupervised and supervised learning techniques. This chapter also identifies 

the machine learning models suitable for a proposed novel soft sensor approach.  
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Chapter 3 

This chapter provides an overview of the approach undertaken to develop a novel 

technique for automated droplet characterisation, from micrographs, followed by 

emulsion process evaluation. It illustrates the methodologies developed for the following: 

o In-process micrograph acquisition. 

o Image processing and droplet detection. 

o Statistical analysis of droplet characteristics. 

o Supervised machine learning classification of micrographs. 

o Remaining processing time prediction. 

 

Chapter 4 

This chapter discusses the results obtained from the image processing and droplet 

characterisation techniques. Two different droplet detection techniques, an edge-based 

and an intensity-based method, are developed and the detected droplet characteristics are 

compared using statistical analysis. The best image segmentation technique is identified 

for developing the inferential models. The statistical analysis of the droplet characteristics 

is also completed for selecting the most significant model predictors. 

 

Chapter 5 

This chapter presents the machine learning classification models and their results. It 

initially focuses on unsupervised machine learning for dimension reduction and pattern 

identification followed by supervised classification. The supervised classification study 

is aimed at discriminating the droplet characteristics from óUnacceptableô to óTargetô 

categories of emulsion processing. Once the óTargetô characteristics are achieved, the 
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product is expected to be stable and therefore, any further processing is identified as over-

processing. The classification models are evaluated using cross-validation approaches 

and also using micrographs from independent emulsion batches.  

 

Chapter 6 

A comparative analysis between manual and automated classification of micrographs is 

conducted to evaluate the accuracy and precision of both techniques. Micrograph analysts 

from the industrial partner in this research performed the manual classification. A 

machine learning model is used to perform the automated classification. The results of 

the comparison are discussed. 

 

Chapter 7 

This chapter presents the regression models developed to predict the processing time 

required, during emulsification, to achieve the target characteristics. These prediction 

models are intended to avoid over-processing in emulsion manufacturing. The results 

obtained from the prediction models are compared and discussed. 

 

Chapter 8 

This chapter presents a discussion of the conclusions derived from Chapters 4 to 7. The 

conclusions derived from each chapter are related back to the initial objectives of this 

research. It also discusses the future possibility of extending this work into other domains 

and reflects ideas to overcome the limitations encountered in this study. The potential for 

real-time integration is then finally discussed. 
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1.7 Conclusions 

The aim of this research is to develop a novel automated technique that can potentially 

replace the existing traditional and automated techniques in emulsion quality evaluation. 

This chapter introduced the process of industrial emulsification. It also reviewed the 

manual and other conventional quality evaluation techniques currently deployed in 

industrial emulsification processes and their limitations. Potential over-processing of 

emulsions due to subjectivity and inconsistency of the existing traditional techniques are 

identified as the major challenges. The existing offline and inline image processing 

techniques and the associated challenges are also discussed in this chapter. The 

development of a novel soft sensor approach for improved droplet detection, 

characterisation and process evaluation in emulsion production systems is identified as a 

major requirement to overcome the challenges.  

The objectives of this research are defined to meet Industry 4.0 requirements to develop a 

fast, accurate, objective and sustainable evaluation technique with minimal manual 

intervention. This chapter also outlined the potential impact of the proposed approach in 

industrial emulsion manufacturing. Finally, an outline of the thesis structure is provided 

with a brief introduction to the individual chapters. The following chapter details an 

extensive literature review of the machine learning techniques, which could be applied for 

the automated approach proposed in this research.   
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Chapter 2   

Machine Learning Approaches for Image Classification and 
Industrial Process Evaluation 

2.1 Introduction 

 

This chapter presents a detailed literature review of the various supervised and 

unsupervised machine learning techniques used for image classification and regression 

applications. A review of the existing studies, which have applied similar techniques 

integrated with image processing for quality evaluation in process industries, is also 

presented in this chapter (section 2.3). This is followed by a review summary and 

overview of the methodologies applied to meet the objectives of this research (section 

2.4).  

2.2 Machine Learning 

Machine learning is an application of Artificial Intelligence (AI)  that builds algorithms 

with the ability to learn from data. These algorithms are non-linear statistical models, 

which can detect complex relationships between the dependent and independent variables 

in the data (Friedman et al. 2001). The dependent variable is called the response variable 

and the independent variables are referred to as features or predictors. Machine learning 

techniques are classified into unsupervised and supervised techniques based on how they 

learn. Unsupervised methods, which do not presume any previous knowledge of the data, 

provide an unbiased interpretation of the data and therefore, are most commonly used for 

exploratory data analysis and pattern recognition (Boutros & Okey, 2005). Supervised 

techniques, on the other hand, use trained data models, which predict the membership of 

an unknown sample based on a priori  knowledge and offer powerful classification models 

(Berrueta et al., 2007). Supervised techniques have a risk of overfitting, i.e., fitting the 
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data perfectly even if there is no significant relationship in the data. It is essential to 

validate the models using unseen data, i.e., data independent of the training set.  

 

The following subsections (2.2.1 to 2.2.6) present a detailed review of the unsupervised 

and supervised machine learning/deep learning techniques suitable for the classification 

and regression problems encountered in this research.  

 

2.2.1 Principal Component Analysis 

Principal Component Analysis (PCA), an unsupervised pattern recognition and 

dimension reduction technique, has been extensively applied in the field of computer 

vision as an efficient method for image data representation and classification from the 

early 2000s (Grané & Jach, 2014; Günther et al., 2018; Yang & Wu, 2006). PCA is a 

multivariate data projection method developed by (Pearson, 1901). It helps to reduce the 

dimensionality and the correlation of a multivariate feature space. This is achieved by 

projecting the variation in the original multivariate data set across an equal number of 

uncorrelated components onto an orthogonal subspace (Wold et al., 1987). For example, 

if PCA is applied on a multivariate feature space with p correlated variables, the resultant 

vector will be a set of p principal components (z1, z2,..., zp) with zero correlation. The 

Principal Components (PCs) are successively calculated by computing the eigenvalues 

and eigenvectors based on the variance-covariance matrix of the original data (Jackson, 

1980, 2003). The PCs are ordered hierarchically on the orthogonal subspace, based on 

their proportion of explained variance. The first principal component projects the 

maximum variance in the original dataset and each successive component explains the 

next highest percentage of the remaining variance. The projection of maximum variance 
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from an original set of three variables (X1, X2 and X3) on to the first principal 

component, P1 is shown in Figure 2.1 (Wold et al., 1987).  

                              

Figure 2.1. Projection of maximum variance of the three-dimensional variable space to the first 

principal component. The first principal component, P1 is the line of best fit across the data points 

(Wold et al., 1987) 

 

 

A Scree plot represents a Pareto chart of the percentage of variance explained by each 

PC. The significant principal components are selected based on the proportion of variance 

explained. This reduces the dimensionality and correlation of the original variable space. 

Equation 2.1 shows how to apply PCA to a scaled set of original multivariate data matrix 

and obtain the z scores. Identifying the systematic subspace and residual subspace of the 

PCA latent space is represented by Equation 2.2 (Jackson 1980). 

            ╧ ╧ ╤◑      in matrix terms of z scores                   Equation 2-1 

                         ╧ В ╤░
╪
░ ◑░ + В ╤░

▪
░╪ ◑░ = ╧ ╔                         Equation 2-2 

 

Where X represents the original data matrix, ὢ  is the mean of X, U stands for the 

eigenvector, z stands for the principal components, a is the number of principal 

components selected, while ὢ represents the estimate of X and matrix E represents the 

product sum of all the remaining principal components in the residual subspace.  
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2.2.2 Linear Discriminant Analysis 

Linear Discriminant Analysis (LDA) is a supervised machine learning method commonly 

used for multi-level classification of a categorical response (Xanthopoulos et al., 2013). 

An LDA model is trained using a set of observations, of predictors and responses, taken 

from a multivariate data set to build a classification model. The trained model is then used 

to predict the category of unknown (new) data based on a priori  knowledge (P. Wang et 

al., 2016). This is a simple and very powerful method of multilevel classification (James 

et al., 2013).  

The standard implementation of the model assumes a Gaussian distribution of its 

independent variables and a new observation is classified to the category with the closest 

centroid (Friedman et al. 2001). LDA assumes each independent variable has equal 

variance and it is essential to standardise the input data for these models. LDA presents 

low-dimensional clusters of the response data very well and in most cases, presents the 

best classification results due to its simplicity and low variance (Friedman et al. 2001). 

LDA estimates the centroid of the data points, for each class, along with a common 

covariance matrix, which gives the spread of the data. It creates discriminant functions as 

hyperplanes, which forms the decision boundaries seperating the response classes. A 

discriminant function is a linear combination of the components of the predictor variables, 

X. This is represented by Equation 2.3 (Duda et al., 2012) . 

▌╧ ╦╣ ╧  ◌            Equation 2-3 

 

Where W is the weight vector and w0 is the bias term. 

 

Figure 2.2 presents the geometric representation of a linear discriminant hyperplane for a 

two-category case. 
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Figure 2.2. The linear decision boundary H, where g(x) = wTx + w0 = 0, separates the feature space 

into two half-spaces R1 (where g(x) > 0) and R2 (where g(x) < 0) (Duda et al., 2012). 

 

In Figure 2.2, the orientation of the hyperplane is determined by the vector W and the 

location of the surface is given by the bias w0. The discriminant function, g(X), is 

proportional to the signed distance from the feature vector, X to the hyperplane. The 

distance from the origin to the hyperplane is given by w0 /ƐwƐ. If  w0 > 0, the origin is on 

the positive side of the hyperplane and if w0 < 0, it is on the negative side.  The hyperplane 

passes through the origin if w0 = 0 (Duda et al., 2012) . 

There are situations in which LDA models can give poor performance. These include 

complex non-linear classification problems, where linear decision boundaries are 

insufficient to separate the response classes and also in situations where there are too 

many correlated predictor variables (Friedman et al. 2001) . 

2.2.3 Logistic Regression 

Logistic regression models have categorical responses and are either binomial (two levels 

of response variable such as 1 and 0) or multinomial (more than two levels of the response 

variable). These models are primarily designed for binomial classification problems. A 
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binomial logistic regression model predicts the probability of the class membership of the 

response variable for one of the two response categories depending on the predictor 

variables given in Equations 2.4 and 2.5 respectively (Dreiseitl & Ohno-Machado, 2002). 

╟◐  
▄ Ȣθ●

             Equation 2-4                      

╟◐  ╟◐     Equation 2-5                    

 

Where y stands for the response category, x stands for the predictor variable set,  θstands 

for the model parameter vector and Ȣθὼ is the linear combination of the predictor variable 

set. Binomial logistic regression models can be extended to multinomial models when 

there are more than two responses. In logistic regression, one of the response categories 

is nominated as a reference category and the membership probability of the other 

categories is calculated by comparing them to that of the reference category. Suppose 

there are k categories in the classification problem. If one category is selected as the 

reference, then there are k-1 equations created to predict the membership probability of 

each observation relative to the reference category.  The probability of an observation 

falling in the j th category is represented by Equation 2.6 (Puntanen, 2013). 

 

╟▒●░  
Ễ

 В Ễ
                    Equation 2-6 

 

For j = 1, 2, .., (k-1) and i = 1,2,é, n, where n is the number of independent observations 

with p predictor variables. Multinomial Logistic Regression (MLR) models use 

maximum likelihood estimation to estimate the model parameters, through a set number 

of iterations, until the model converges to a minimum final value. 
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Logistic regression has a number of limitations compared to linear discriminant analysis 

(Friedman et al. 2001). Logistic regression models can be unstable under certain 

circumstances e.g. when there are more than two response categories, if the categories are 

well separated and also in cases with a limited number of observations (James et al., 

2013). 

 

2.2.4 Random Forest 

Random Forest (RF) is a decision tree based machine learning model, widely used for 

classification and regression. Decision trees are created from bootstrap samples selected 

from the model training data. Each decision tree is made of internal nodes (nodes) and 

terminal nodes called leaves. Nodes represent a test or condition on one or more 

independent variables, which further branches into leaves based on the test outcome (yes 

or no). The leaves of each node carry the final classification probability of the response 

categories. The logic of a decision tree is explained using the well-known Fisherôs iris 

dataset. This dataset consists of three species of flowers which are setosa, versicolor and 

virginica and four independent variables such as Sepal.Length, Sepal.Width, Petal.Length 

and Petal.Width. A decision tree is formed from the whole iris dataset as shown in Figure 

2.3.  
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Figure 2.3. A decision tree model using Iris data in R. 

 

The first box represents the true percentage of each species (0.33 each) in the dataset. The 

first node condition uses the independent variable, Petal.Length. If the condition is true, 

the tree branches to the terminal node/leaf shown in orange, which has a probability of 

1.00 for setosa and 0.0 for the other two species. If the condition is false, the tree branches 

to the light grey coloured leaf, which has 0.5 probability for both versicolor and virginica. 

The second node condition is formed using the variable, Petal.Width. If the condition is 

true, i.e., if Petal.Length Ó 2.5 and Petal.Width < 1.8, the tree branches to the dark grey 

leaf, which has 0.91 probability for versicolor and 0.09 for virginica. If false, i.e., if 

Petal.Length Ó 2.5 and Petal.Width Ó 1.8, the tree branches to the green node, which has 

a probability of .98 for virginica and 0.02 for versicolor. 

 

RF generates a number of randomised decision trees, each of which makes predictions 

based on the randomised conditions at each node, and finally aggregates the predictions 
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(votes). The RF algorithm requires two main tuning parameters. These are the number of 

decision trees (ntree) and the number of variables split (mtry) at each node of the trees. 

RF creates ntree bootstrap samples from the training data set (Leo Breiman, 1996a). 

Bootstrapping is a technique used to generate random samples with replacement (Efron 

and Tibshirani 1994). A decision tree is grown from each bootstrap sample choosing the 

best mtry on a random set of predictors at each node. The model accuracy is estimated 

from the Out Of Bag (OOB) error, obtained through a technique called bagging (Leo 

Breiman, 1996b). When bagging, the RF model retains approximately one third of the 

training samples out of the bag for validation and the remaining two third of the samples 

are used for constructing the trees. Bagging is repeated on a random basis and the final 

OOB estimate is calculated by aggregating all the individual decision tree predictions. 

The model predicts the outcome based on the majority votes from the ntrees for 

classification, while the model outcome is calculated as the average of ntree votes for 

regression. 

2.2.5 Neural Networks 

 

Neural Networks (NNs) are non-linear statistical models, which can be explained as a 

two-stage classification or regression technique (Friedman et al., 2001). A basic neural 

network model, such as a Vanilla Neural Network (VNN), consists of an input layer, a 

hidden layer and an output/response layer. Equation 2.7 represents the different layers of 

a VNN. Derived features/derivatives are created from linear combinations of the input 

variables, X, as represented by Zm in Equation 2.7. The activation function commonly 

used to create the derivatives is a sigmoid function (Friedman et al., 2001), which 

compresses the output value between 0 and 1. The hidden layer is then formed as a linear 

combination of these derivatives (Tk in Equation 2.7). The response, Y, is modelled as a 
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non-linear function of the linear combinations of Zm. The number of units in each hidden 

layer and the weights used to train the derivatives of the hidden layer can all be tuned 

according to the complexity of the data and the problem at hand (Friedman et al. 2001). 

The basic principle behind the tuning of the weights of different layers of VNNs is based 

on a feed-forward and back-propagation technique, which improves through a series of 

iterations. The network diagram representing a VNN is presented in Figure 2.4. For a K-

class classification problem, there are K response units (Yk, k= 1,é, K) at the top layer of 

the model with the kth unit (Yk) modelling the probability of class k.  

 

 

 

Equation 2-7 (Friedman et al., 2001) 

 

 

 

Where X = (X1, X2, é, Xp) for p input variables, Z = (Z1, Z2, .., ZM) for M units in the 

hidden layer and Y = (Y1, Y2, é, Yk) for k responses. The unknown parameters, 

‌ ȟ‌ ȟȣ  and ‍ ,‍ȟȣ) of a NN model are called weights. The output activation 

function, Ὣ Ὕ of a K-class classification problem often employs a Softmax function, 

which estimates the probability of the Kth class (Equation 2-8). This is the function which 

maps the weighted derivatives of the input variables with the output layer and predicts 

the probability of an input image falling in each of the response categories. 

 

 

ᾀ  ʎ‌ ‌ ὢȟά ρȟȣȟὓ 
 

Ὕ  ‍ ‍ὤ ȟὯ ρȟȣȟὑ 
 

ὣ  Ὢ ὢ  Ὣ ὝȟὯ ρȟȣȟὑ 
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Figure 2.4. Schematic of a single hidden layer, feed-forward neural network (Friedman et al., 2001). 

 

▌▓╣  
▄╣▓

В ▄╣■╚
■

      Equation 2-8 (Friedman et al., 2001) 

 

The output obtained from the Softmax function is further analysed using a loss function 

to evaluate the goodness of the classifier. The error function, used to calculate the 

loss/deviance of a NN model, is called the cross-entropy function, which is commonly 

used in multinomial logistic regression models. The weight values assigned to the input 

variables in a NN model are chosen internally in such a way as to reduce the model error 

and to improve the performance of the model with the training data. The weights feed 

forward through the hidden layer to the output layer to predict the response classes and 

based on the deviance calculated by the cross-entropy function, the model propagates the 

information back to adjust the weights in the hidden layer. This happens repeatedly until 

the model error is minimised after a set level of iterations.  
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2.2.6 Convolutional Neural Networks 

Convolutional Neural Networks (CNNs) are deep learning NNs which are widely used to 

solve complex image classification problems. CNNs can perform image processing and 

feature extraction followed by multi-layer NN based classification or prediction. Some of 

the most popular areas where CNNs are applied include face recognition, biometric 

identification, vehicle detection, signature verification etc. (Das et al., 2019; Jain et al., 

2019; C. Wang & Xi). Computers process and store images as arrays of pixel values. 

Colour images are stored as three dimensional (3D) arrays and greyscale images are 

stored as two-dimensional (2D) arrays or matrices. A colour image of resolution 50 x 50 

pixels is stored as a 3D array of size 50 x 50 x 3 pixels, where 3 represents the RGB 

channels. A greyscale image of the same resolution is stored as a 2D array of size 50 x 50 

x 1 pixels. The value of each pixel, in the array, ranges from 0 to 255, which represents 

the intensity of that pixel. CNNs are trained with the image pixel data given in a 2D (for 

greyscale images) or 3D (for colour images) array format called tensors and it extracts 

both low level and high level features of the objects in the image through a series of 

hidden layers to predict the category of the image (Nielsen, 2015). The layers commonly 

used in a CNN model are: 

1. Convolutional 

2. Non-linear 

3. Pooling 

4. Dropout 

5. Flatten 

6. Fully Connected 
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1. Convolutional Layer 

The Convolutional layer forms the first layer of a CNN model. This layer identifies 

the key features of the input images and reduces the input feature space to the key 

pixel values (weighted pixels of the identified features). The input image must be of 

square resolution to perform convolution operation. The image is scanned using 

filters, also known as kernels. A filter is an array of weights having the same depth (1 

for greyscale image and 3 for colour image) as the input image but with a smaller 

width and height. For example, for a greyscale image of size 50 x 50 x 1, the size of 

the filter used for convolution can be 3 x 3 x 1. Figure 2.5 represents the convolution 

operation of an input image of size, 7 x 7 using a filter of size, 3 x 3 resulting in an 

output image of size 5 x 5. 

 

Figure 2.5. Convolutional Layer. a) Input image of size 7 x 7 and b) Convoluted output image of size 

5x5. 

Scanning starts from the top left corner of the input image and slides ónô strides to the 

right every time until the whole image is processed. The stride represents the number of 

pixels a filter moves towards the right in each step of convolution. When the stride is 1, 

the filter moves one pixel at a time. At each move, the filter scans a 2D area of the input 

image, which is of the same size as the filter. A matrix dot product of the input array 

values (a square matrix) and the filter values is resulted from each scan. A summation of 

the values obtained at each scan corresponds to each weighted pixel in the output image. 
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The size of the output image after convolution is calculated using the formula given in 

Equation 2.9. 

╞ ╝
╕

╢
               Equation 2-9 

O represents the size of the output image, N represents the input image size (e.g. 7 x 7), 

F represents the filter size (e.g. 3 x 3) and S represents the stride (in this case, S = 1). In 

this example, the output image size, after convolution, will be 5 x 5. A technique called 

padding can be used in cases where the dimension of the output matrix should be 

maintained the same as the dimension of the input matrix. Padding is a method of adding 

zeroes (as pixels of filler) to the edges of the input matrix in a symmetrical manner. The 

value of padding depends on the size of the convolution filter as given in Equation 2-10. 

ὖ  
╕

  Equation 2-10 

P represents padding and F denotes the filter size. The default value for padding in a 

convolutional layer is zero, which means no fillers are added to the input image. 

Convolutional layers produce feature maps which represent the key features detected 

from the image. A CNN model uses more than one convolutional layer and the feature 

maps from the previous layer forms the input of the following layer. The filters used in 

the initial convolution layer of a CNN model are designed to detect low level features of 

images, such as edges and curves, while later filters are used to detect high level features 

such as specific objects. 

 

2. Non-Linear/Dense Layer 

This layer takes in the summed inputs obtained from the feature maps of the convolutional 

layer connected to it. Activation functions are used in the dense layer units of CNN to 

understand the complex non-linearity in the input and to provide an optimised output 
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through backpropagation of errors. Rectified Linear Unit (ReLU) is the most commonly 

used activation function in the dense layer of a CNN (Nair & Hinton, 2010). The 

mathematical definition of ReLU is shown in Equation 2-11. 

ώ ÍÁØπȟὼ   Equation 2-11 

x stands for the input feature map of the dense layer that is passed through the ReLU 

function and y represents the output feature map obtained from the dense layer after 

activation using ReLU. ReLU is linear for all positive input values and zero for all 

negative values. 

 

3. Pooling Layer 

This layer is a down sampling layer of CNN. It reduces the input size of the feature maps 

filtered through the convolutional layers. Downsampling reduces computation cost and 

controls overfitting. This is achieved through pooling. Max pooling is the most popular 

technique used in CNN. The input feature maps are filtered using filters of equal size and 

stride (usually 2) and outputs the maximum value in each filtered area of the image as 

shown in Figure 2.6. 

 

Figure 2.6. Max pooling of a 4 x 4 data matrix down to 2 x 2. 

 

4. Dropout Layer (DL) 

A random set of feature maps are dropped out in this layer. The DL layer is used during 

the training stage of a CNN to reduce overfitting. This layer ensures that the model is not 

tuned too precisely to the training data and performs better even after dropping out some 

of the feature maps.  
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5. Flatten Layer 

This layer flattens the feature map, obtained from the previous layer, into a long vector. 

The Flatten Layer is implemented just before the final layer, which is the Fully Connected 

layer. 

 

6. Fully Connected Layer 

This is the final layer of a CNN model, which is connected to all the units of the previous 

layer. The Fully Connected (FC) layer processes the output of the previous layer, which 

contains the key high-level features extracted from the input image, through the various 

filtering layers. It then predicts the final response using activation functions which are 

relevant to the defined problem. Softmax is the most commonly used activation function 

in the FC layer for image classification problems with multiple response categories. This 

function calculates the correlation of the feature maps with the response categories and 

classifies them based on the highest correlation. The function assigns suitable weights to 

the feature maps, so that the probability of predicting the correct category increases. 

 

2.3 Industrial Applications 

Image processing techniques integrated with machine learning classifiers have a long 

history of success in product quality evaluation in a wide range of industries such as 

automotive, electronics, medical, biopharmaceutical, food etc. (Bertani et al., 2017; Du 

& Sun, 2006; Gosselin et al., 2016; Jousse, 2008; Manak et al., 2018; Pfeil et al., 2018; 

Venora et al., 2009; Zhang et al., 2018). However, such techniques are currently under 

investigated in the area of industrial emulsification. The literature has identified that 

development of fundamental predictive models using particulate/droplet data can benefit 

the optimisation of emulsification processes (Doyle III et al., 2003; Jousse, 2008; Shi et 
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al., 2006). Only a limited number of studies have reported the application of classification 

or prediction modelling, using droplet data, for the quality evaluation of dispersion 

systems (Kljusuric et al., 2015; P. Wang et al., 2016).  

 

Wang et al. (2016) have provided a detailed review of various supervised and 

unsupervised machine learning models applied for the quality evaluation of olive oil using 

chemical data obtained through spectroscopical techniques. Their study investigated the 

authentication of olive oil by extracting a data matrix of its chemical constituents using 

techniques such as mid-infrared (MIR), near-infrared (NIR) and Raman spectroscopy. 

They applied chemometric analysis, i.e. the statistical study of chemical composition to 

identify quality parameters, to differentiate olive oil samples from other edible oils using 

supervised and unsupervised classification techniques. PCA and LDA were described as 

the two most effective unsupervised and supervised methods used for pattern recognition 

and classification respectively. PCA, Hierarchical Cluster Analysis (HCA) and K-means 

were identified as the most commonly used unsupervised methods for identifying patterns 

in a data set. PCA was described as the most effective of these three techniques (Wang et 

al., 2016). 

 

A similar classification study of barley milk samples, obtained by blending barley grain, 

was conducted by Kljusuric et al. (2015) to find the optimum processing time in barley 

milk production. The barley grain was blended for a total of 60 seconds to produce barley 

milk, which is an emulsion. Samples were obtained at 15 seconds intervals. The samples, 

at each stage of blending, were filtered to separate the grain from the milk and were 

analysed using NIR spectroscopy. PCA was applied to the NIR absorbance spectral data 

and the score plots were used to classify both the grain and the milk samples acquired at 

15, 30, 45 and 60 seconds of blending (Grané & Jach, 2014). The PCA score plots 
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followed the same trend of the absorbance spectra presenting a good separation between 

the samples. Particle/droplet size measurements, such as median diameter, Sauter mean 

diameter and specific surface area, were obtained using laser diffraction. Micrographs of 

the milk samples were also acquired to get a better insight into the droplet size at each 

stage of blending and to confirm the laser diffraction measurements. The droplets in the 

dispersed phase of the barley milk samples, obtained at 15, 30, 45 and 60 seconds of 

blending, are shown in the micrographs of Figure 2.7. Their study identified 45 seconds 

as the optimal blending time, as the droplets appeared to form aggregates after that time 

according to the NIR, PCA, laser diffraction and micrograph analyses.  

 

Figure 2.7. Micrographs obtained from barley milk samples at a) 15 seconds b) 30 seconds c) 45 

seconds and d) 60 seconds of blending (Kljusuric et al., 2015). 

 

However, it is noted that their study used a limited set of barley milk samples and did not 

use any independent samples to validate their findings. In addition, their PCA results were 
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not extended to any supervised learning techniques to develop a predictive classification 

model and to optimise the process on an industrial scale.  

 

PCA is extensively applied for identifying patterns in data in many areas like biostatistics 

and chemometrics (Garcia & Filzmoser, 2015). It is highly useful in chemometrics, where 

numerous variables, of very high collinearity, are analysed. At the same time, PCA is also 

found to be very effective in any manufacturing process industry, where a large number 

of correlated variables are analysed for multivariate process control, to reduce the 

dimensionality and correlation in the original feature space (Kourti et al., 1996; Kourti & 

MacGregor, 1995, 1996). (Kirby & Sirovich, 1990) first proved that human faces can be 

effectively represented and reconstructed by PCA models. (Turk & Pentland, 1991) 

presented the well-established Eigenfaces method for facial recognition. Since then, PCA 

has been widely accepted as one of the most effective methods for facial recognition 

(Dagher & Nachar, 2006; Vaswani & Chellappa, 2006; Xudong & Kin-Man, 2006).  

The PCA technique aids in reducing the dimensionality of the image data and at the same 

time retains the maximum variability of the image features in a set of eigenvectors. In the 

early years, conventional PCA based pattern recognition methods used to store the two 

dimensional image data matrices into one-dimensional vectors and this made the 

multidimensional vector space too large to calculate the covariance matrix when there is 

a lack of training samples. In order to improve the speed and accuracy of calculating the 

covariance matrix and the eigenvectors, a two dimensional PCA (2DPCA) was proposed 

(Jian et al., 2004). In 2DPCA, the original image data matrix does not need to be 

transfomed into one dimensional vectors and the covariance matrix and the corresponding 

eigenvectors are calculated directly from the image data matrix.  
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Applications of PCA in food science and technology are also widely discussed in the 

literature (Grané & Jach, 2014).  Robust classification models have been developed, in 

the past, by performing supervised learning techniques such as Linear Discriminant 

Analysis on a PCA transformed space (Bertani et al., 2017; Venora et al., 2009).  

A machine vision integrated LDA-Bayesian classification model was investigated for the 

automated quality evaluation of durum wheat (Venora et al., 2009). The model achieved 

good accuracy in the classification of wheat kernels into starchy and shrunken categories. 

Size, shape and intensity distribution features obtained from images of wheat kernels 

were the predictors selected for developing the classification model. Image analysis 

macros were developed for extracting the features of each kernel category, which were 

automatically integrated with the classification model. A training set of 100 grain samples 

were classified manually by inspectors and LDA into four categories (starchy, shrunken, 

vitreaous and piebald). The results were used to train an online Bayesian classifier. The 

Bayesian classifier, trained using the LDA results, classified a test set of 30 grain samples 

that achieved 96.03% to 99.58% accuracy for the shrunken and starchy categories. 

 

Bertani et al. (Bertani et al., 2017) achieved a partly-automated multivariate classification 

of hyperspectral micrographs of living cells using PCA followed by LDA. Cells from two 

different polarizations, M1 and M2, were selected as the classification categories. A 

multi-dimensional data set of 26 different spectral wavelengths was used to obtain the 

cell micrographs. Using PCA, the high dimensional dataset was reduced to a set of 14 

variables, which were selected as their LDA model predictors. Samples were obtained 

from four different donors. A total of 60 samples (30 from each category) from each cell 

donor were then used for cross validating their PC-LDA model. Figure 2.8a to 2.8d shows 

the confusion matrix obtained from the 10-fold cross-validation conducted for the 
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individual donors. The confusion matrix obtained by cross-validating the model using the 

240 pooled samples from the four donors is presented in Figure 2.8e. 

 

 

Figure 2.8. Confusion matrices from 10-fold cross-validation of the PC-LDA model. Each matrix is 

the sum of 10 matrices from 10 test sets (Bertani et al., 2017).  

 

A classification accuracy of 98-100% was achieved for the individual donors (Bertani et 

al. (Bertani et al., 2017). The classification accuracy was reduced to 90% for the general 

prediction model using a pool of different donors.  

 

Logistic regression models have also been widely used for data classification and 

prediction purposes in the medical field for diagnostic and prognostic tasks (Dreiseitl & 

Ohno-Machado, 2002). Logistic regression was the most popular classification model 

with 28,500 publications in the early 21st century when compared to other prediction 

models such as artificial neural networks, k-nearest neighbours, decision trees and 




























































































































































































































































































































