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The term ‘Industry 4.0’ appeared for the first time in 2011 and saw the

introduction of many cutting-edge technologies such as Cyber-Physical

Systems (CPS), Internet of Things (IoT), and Digital Twins (DT). World

leading scholar Warren G. Bennis was quoted in 2016 as follows

This quote clearly sums all the expectations and beliefs regarding the

implementation of Industry 4.0. Materializing the concept of Industry 4.0

has created a number of global efforts such as Europe’s Industry 4.0 [1],

America’s Advanced Manufacturing [2], China’s Made in China 2025 [3],

Japan’s Super smart society [4], etc. Smart factories realize

manufacturing processes with the aid of artificial intelligence (AI), the

latest novel sensors, and use of robotics.

When you link the terms ‘AI’ with ‘robotics’ in industrial context, what

comes to mind is a well-known case of robotic manipulation known as

“Pick and Place”. Improving robotic manipulation “Pick and Place” with

the help of advanced learning techniques has been a focus of the research

community for some time now.

The main research focus of this study is making an agent learn robotic

manipulation of Pick and Place using reinforcement learning in absence

of vision sensors . An industrial setup can lack vision system due to

multiple reasons such as :

❖ High cost

❖ Less space availability

❖ High vibrations

❖ Large amount of dust

❖Wash-up from water jets

Reinforcement learning (RL) addresses this task by performing sequential

decision-making through a policy learned during the process of

maximizing an expected reward.

In this study we deploy model-free off-policy TD algorithm : Q-learning

and on-policy TD algorithm SARSA. A comparative analysis was

conducted in order to find the most suitable learning approach.

The approaches presented in this study address the problem of pick and

place in a smart production line, where a number of variable-shaped

objects are moving on a conveyor belt at different positions and

orientation, and where the belt may assume different speeds as shown in

Figure 2. The conveyor belt is equipped with ray-type infrared proximity

sensors which detect the object and signal the robotic arm to operate.

The approach is divided into four different phases, first being ‘Initial

Phase’, second being ‘Pre-Pick Phase’, third being ‘Pick Phase’ & last

one being ‘Place Phase’. The cycle of these four phases can be easily

perceived through Figure 3.

Elements that are being learned in our this non-visual approach are:

• Various XYZ Coordinates for Pick and Place

• Different positions and orientations of Objects on the Belt

• Multiple Speed options of the Belt

• Different Shapes of the Objects

The Virtual Robot Experimentation Platform (V-REP) is a 3D robotic
simulator with an integrated development and coding support [5]. Open
Motion Planning Library (OMPL) [6] proved to be the best approach as it
provided us with a high degree of customization.

The Q-learning and SARSA RL agents described in the previous section

were extensively trained and evaluated in our experimentation phase as

shown in the Figure 2. Performance comparison of Q-Learning agent and

SARSA agent is shown in Table 1 and Figure 4 accordingly.

In this paper, we have presented an approach to address the problem of

industrial robotic pick and place in a non-visual environment. We

formulated the problem as an MDP for which Reinforcement Learning

provides a very extensive framework for dealing with such tasks. We

deployed both model-free off-policy temporal difference RL algorithm

(Q-Learning) and on-policy temporal difference RL algorithm (SARSA).

We trained and tested Q-learning and SARSA agents on different shaped

objects at different position alignments moving at different speeds.

So, for future work, we plan to address these limitations by using a

camera, and deploying deep reinforcement learning to handle the state

and action complexity. In order to increase the efficiency, a hybrid

approach combining on-policy and off-policy algorithms such as

backward Q-learning is also being worked on. We also plan to explore the

possibility of deploying a multi-query planner for motion planning

instead of a single-query planner in order to have multiple options

computed on the run, hence increasing the chances of higher efficiency.
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Test Case Q-Learning 
Success rate

SARSA 
Success rate

Test Case 1 93% 82%

Test Case 2 95% 81%

Test Case 3 99% 80%

Test Case 4 83% 77%

Test Case 5 97% 81%
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