| S        | U            | R          | E          | The Effect of Post Activation Potentiation Exercises (Depth-<br>Jump vs. Countermovement Jumps) on Wingate Anaerobic |      |
|----------|--------------|------------|------------|----------------------------------------------------------------------------------------------------------------------|------|
| I        | U.SP         | R          | B          | Performance in Collegiate Athletes                                                                                   |      |
| @        | Д,           | Let K      | $\approx$  | Researcher: Rory Doyle                                                                                               | - Th |
| cience U | Indergraduat | e Research | Experience | Supervised by: Dr. Kris Beattie                                                                                      | 101  |
| har      | ring         | Disco      | very       | Department of Sport and Health Sciences, Athlone Institute of Technology, Athlone, Ireland                           | AN P |

## INTRODUCTION

- An effective warm-up to enhance anaerobic power is essential prior to a cycling event (1).
- Postactivation potentiation (PAP) is the change in characteristics of the skeletal muscle through force-time / -velocity which leads to an acute  $\uparrow$  in muscular power and strength (2).
- Plyometric exercises like the depth jump (DJ) and countermovement jump (CMJ) are used as methods of inducing PAP (3).
- The aim of this study was to compare the PAP effect of DJs and



### RESULTS

CMJs on cycling sprinting ability in a Wingate anaerobic test (WAnT) (See Fig.1)





Fig 1. DJ vs CMJ on the control (WAnT)

### **MATERIALS & METHODS**

A randomised crossover trial was conducted on 21 participants (mean ± SD, age 21.6 ± 1.07 years, body mass 75.2 ± 11.89 kg, and height  $176.5 \pm 8.8$  cm).

Fig 3. Percentage differences between experimental conditions vs CONT \*Denotes signifiant *difference (P* ≤0.05)

*Table 1.* Comparison between PPO, RPPO, FI and AC for all testing procedures (Mean  $\pm$  S.D)

|            | Peak Power Output<br>(W) |       |       | Relative Peak<br>Power (W/Kg) |       |       | Fatigue Index (%) |       |       | Anaerobic<br>Capacity(W) |        |        |
|------------|--------------------------|-------|-------|-------------------------------|-------|-------|-------------------|-------|-------|--------------------------|--------|--------|
|            | CMJ                      | DJ    | CON   | CMJ                           | DJ    | CON   | CMJ               | DJ    | CON   | CMJ                      | DJ     | CON    |
| Mean       | 799.7                    | 785.5 | 780.7 | 10.57                         | 10.35 | 10.26 | 50.02             | 49.06 | 48.29 | 3528.3                   | 3420.8 | 3375.2 |
| ±          | ±                        | ±     | ±     | ±                             | ±     | ±     | ±                 | ±     | ±     | ±                        | ±      | ±      |
| S.D.       | 188.9                    | 194.6 | 226.7 | 1.5                           | 1.53  | 2.09  | 6.05              | 6.81  | 6.27  | 855.82                   | 854.5  | 957.58 |
| DISCUSSION |                          |       |       |                               |       |       |                   |       |       |                          |        |        |

- A familiarisation session and three experimental protocols were carried out (control (CON), DJ and CMJ)
- Each participant performed a standardised 5-minute warm-up on the cycle ergometer (60-90rpm), followed by one of the three protocols (See Fig.2).
- Peak power output (PPO), relative peak power output (RPPO), anaerobic capacity (AC) and fatigue index (FI) were variables measured.
- Three independent repeated-measures ANOVAs with a Bonferroni post-hoc test were used on results obtained.
- Significance was set at P≤0.05.
- Microsoft Office Excel was used to calculate percentage differences and effect size using Cohen's d-test.



**References** 

Non-significant results were reported in this study (See Fig.3).

- Trivial ↑ were observed for both PAP conditions which can't be ignored as in anerobic sports marginal increases can change an outcome (4).
- A number of factors could be related to why non-significant findings were observed.
  - $\geq$  A key observation from this study was the use of a standardized PAP protocol throughout.
  - > PAP has been shown to affect individuals differently depending on their training status which impacts, the rest time and volume chosen (5; 2)

# CONCLUSION

- DJs & CMJs as a PAP exercise can  $\uparrow$  AC in WAnT.
- An unexpected finding was observed with the CMJ group producing a non significant but > PAP response than the DJ group.

Despite the non-significant findings, the results should not be disregarded as even a trivial effect size difference has been shown to be a determining factor in elite level sprinting activities. **Further research** is needed to extend these findings to elite level cyclist with the findings from this study providing coaches with a possible PAP protocol to  $\uparrow$  sprint cycling ability.

Individualisation of PAP protocols needs to be considered

Fig 2. Break down of testing protocol

# Connect & Discover

- 1. Martin, J.C., Davidson, C.J. and Pardyjak, E.R., 2007. Understanding sprint-cycling performance: the integration of muscle power, resistance, and modeling. International journal of sports physiology and performance, **2**(1), pp.5-21.
- 2. Tillin, N.A. and Bishop, D., 2009. Factors modulating post-activation potentiation and its effect on performance of subsequent explosive activities. Sports medicine, 39(2), pp.147-166.
- 3. Newton, R.U. and Dugan, E., 2002. Application of strength diagnosis. Strength & Conditioning Journal, 24(5), pp.50-59.
- 4. Drinkwater, E., 2008. Applications of confidence limits and effect sizes in sport research. The Open Sports Sciences Journal, 1(1).
- 5. Doma, K., Leicht, A.S., Schumann, M., Nagata, A., Senzaki, K. and Woods, C.E., 2019. Postactivation potentiation effect of overloaded cycling on subsequent cycling Windate performance. The Journal of sports medicine and physical fitness. 59(2), pp.217-222.