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Abstract
This paper proposes a Fuzzy-logic Threat Classification (FTC) model as the basis of a method to auto-detect three different 
confidentiality levels for videos streamed from heterogeneous, mobile devices via web edge servers, possibly part of a Content 
Distribution Network (CDN). The FTC consists of three parallel Fuzzy Inference Systems (FIS) corresponding to device, 
network, and type of video application, for the real-time, intelligent selection of an appropriate confidentiality level for a 
specific end-user. After selection of the level, an encryption module implements the corresponding form of encryption. In 
tests to demonstrate the concept, there were three increasing confidentiality levels, namely (1) low-level with no encryption, 
(2) Medium level with an in-house cipher [variant of eXclusive OR (XOR)], named P-XOR (XOR with additional rounds of 
permutation) applied to Selective Encryption (SE) and (3) high level with the Advanced Encryption Standard again for SE 
of compressed video syntax components. Results were obtained by considering realistic specifications of multiple digital 
devices, networks, and differing real-time streaming applications. Visual analysis of encrypted test video clips established that 
the FTC outputs an appropriate privacy level by reason of the implemented FISs. Absolute encryption times across the privacy 
levels were distinguished by their real-time response level, which is proportionate to the required degree of confidentiality.

Keywords Classification model · CDN · Edge servers · Fuzzy rule-based system · HEVC and H.264/AVC codecs · 
Confidentiality levels · Selective encryption

1 Introduction

Video chat, video-on-demand, group video conferencing, 
and video clip access are some of the applications available 
to stream over un-trusted networks. Apart from publically 
available video clips, people taking up these applications 
require mechanisms to exchange video in a confidential 

manner, as do companies to protect their content. However, 
it may be wasteful of resources, in terms of bandwidth and 
computational overhead or latency, in all cases, to apply the 
same level of encryption. Therefore, the intention of this 
paper is to provide a means of distinguishing between differ-
ent classes of real-time video streaming in terms of the level 
of encryption that should be applied to them. Because the 
classification should be performed in real-time and because 
it depends on more than one factor, such as type of network 
and streaming device, artificial intelligence is appropriate. 
Given the characteristics of this problem, Fuzzy-logic Threat 
Classification (FTC) seems to be particularly appropriate.

This paper considers three classes of video traffic: (1) 
public Real-Time (streaming) Application (RTA) (such as 
streaming of video clips on YouTube and other similar sites), 
which may require no encryption because the material is 
anyway publicly available; (2) protected RTA (such as group 
conferences), which may allow a relaxation of the confi-
dentiality protection in the interests of reduced latency and 
allowing participation by all; and (3) private RTAs [such as 
personal videos chats and Video-on-Demand (VoD)], for 
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which private users might want a guarantee of full confi-
dentiality, as might commercial operators to protect their 
content from copying; these video traffic classes are no 
definitive but serve to illustrate the concept of this paper, 
which is to employ computational intelligence, namely fuzzy 
logic, to decide, automatically and in real-time, which of the 
three confidentiality levels (i.e., low, medium, and high) a 
particular streaming session falls into. This decision is made, 
in the paper, not only according to the application, but also 
according to the devices receiving the video streams and the 
network characteristics, particularly at the bottleneck link.

One way that the video may reach end-users is, via a cloud, 
over a Content Distribution Network (CDN) to edge servers 
(Fan et al. 2018), where cached content may be held in the 
case of VoD and video clip streams. Some companies pro-
vide privacy related solutions to the CDNs with access control 
and encryption over streaming videos (Kollective Technology 
2018). However, there remains a need to consider whether all 
types of streaming videos require encryption or only specific 
ones (Cui et al. 2018). Despite existing solutions, the follow-
ing questions can still arise in CDN privacy configuration:

Q1  Do all types of streamed video require the same level 
of confidentiality?

Q2  Would a confidentiality threat classification model be 
helpful for personal, semi-personal, and impersonal 
video streaming?

Q3  How can a specific confidentiality level for a streamed 
video be determined in real-time for a particular end-
user, in terms of their mobile device and their wireless 
access network?

This research work provides a solution for the aforemen-
tioned questions by designing and implementing a Fuzzy 
Threat Classification (FTC) model. In the implementation, 
to reduce further encryption computational overhead, a 
lightweight Selective Encryption (SE) scheme (Lookabaugh 
and Sicker 2004) is applied. SE allows sufficient encryption 
to be put in place (Furht et al. 2005) to so distort the video 
stream that it is no longer useful to somebody lacking the 
decryption key. The selected compression syntax compo-
nents are encrypted either with the Advanced Encryption 
Standard (AES) (National Institute of Standards and Tech-
nology 2001) or with an in-house variant of the eXclusive 
OR (XOR) cipher, named P-XOR (XOR with additional 
rounds of permutation). In experiments, these encryption 
schemes are applied to either H.264/AVC or HEVC (two 
current standardized codecs0 encoded videos.

In addition, as previously mentioned, at the lowest pri-
vacy level no encryption is applied. SE does not in any case 
encrypt all of the video stream but only sufficient compo-
nents of the compressed video bitstream so that an attempt 
at decoding (if that is possible without crashing the decoder, 

depending on the form of the SE) results in a highly dis-
torted video (Shahid and Puech 2014). Thus, by only select-
ing some syntax components of the video stream, SE already 
results in some computational savings. However, except for 
particular applications, such as military or security surveil-
lance, the overhead of complete encryption of all video is not 
required and can actually pose a security risk if intermediate 
processing is required (because of the risk of key exposure). 
The proposed FTC model is the basis of a method to deter-
mine the appropriate privacy level for each end-user stream-
ing session, which is then provided in real-time through SE. 
To the authors’ best knowledge, this proposed solution is 
innovatory and can provide a practical solution to the pri-
vacy threat problems of streaming videos via CDNs or by 
another means to achieve real-time delivery. The research 
contribution is summarized as follows. The paper:

• Develops an FTC to auto-detect the privacy level for 
streaming video, which could also be applicable to mul-
timedia sources in general such as streamed audio.

• Sets the fuzzy rules to select the privacy level in real-
time.

• Uses actual specifications of digital devices, networks, 
and real-time applications to test the FTC-based method.

• Implements SE using a standard encryption algorithm 
AES or lightweight cipher P-XOR to provide privacy for 
a particular end-user.

• Presents an evaluation of the FTC model with the visual 
results of applying each privacy level to the benchmark 
videos. (Diffie-Hellman key exchange algorithm allows 
rapid session-wise key management, avoiding of man-in-
the-middle-attacks on encryption keys.)

• Verifies, through video structural distortion and entropy 
analysis upon the benchmark videos, the strength of the 
ciphers against inference attacks. Timing results show 
the efficiency of implemented ciphers for the real-time 
streaming of privacy-preserved videos.

The remainder of this paper is organized as follows. Sec-
tion 2 comments upon recent contributions to the research 
literature around this subject, while also discussing the 
research background from fuzzy rule-based systems, while 
setting the context of video streaming, and video SE. Then, 
Sect. 3 presents a higher-level view of the method, while 
Sect. 4 provides detailed descriptions of: the Fuzzy Inference 
Systems (FISs); the adopted SE scheme; together with the 
means of encryption, including the in-house P-XOR cipher. 
After that, Sect. 5 describes the results of applying the FTC 
with the various FISs (Mamdani and Assilian 1975). It also 
reveals promising visual results for the videos tested. Finally, 
Sect. 6 rounds off by considering the implications for those 
planning privacy provision for their video content streamed 
over an CDN or by means of another method of real-time 
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video streaming, which could include within an Internet-of-
Things (IoT), especially if the P-XOR cipher if employed.

2  Related studies and context

This section considers recent research literature around this 
paper’s topic. The section additionally includes discussion 
of the research literature on fuzzy logic systems and SE for 
compressed videos. There is also consideration of the cur-
rent context of video streaming.

2.1  Related studies

Prior work into security threat classification has focused on 
security models, which are then expressed through access 
control policies linked to authorization methods. A recent 
review of those models can be found in the chapter (Badva 
et al. 2016). In the chapter, 20 different security models 
are covered, including well-known models such as the 
Bell–LaPadula but more recent models such as the Non-
Interference Model. Though these models build-in a degree 
of flexibility, they do not necessarily use artificial intelli-
gence or act in a dynamic manner, as occurs in the proposal 
of this paper. The reader will also find other overviews of 
security issues in the book of which Badva et al. (2016) is 
a chapter. The reader can additionally build up their knowl-
edge further of very recent, developments in the ever-grow-
ing security field by reference to the massive compendium of 
chapters in Gupta et al. (2018), with an emphasis on emerg-
ing security applied to applications such as cloud computing, 
smartphones, wireless and mobile ad hoc networks, and IoT. 
Two chapters in particular are relevant to the current paper in 
that they seek to anticipate threats to network infrastructure 
and software products. Thus, in the chapter of Garg et al. 
(2018), dependencies between network nodes are analyzed 
to find how multiple vulnerabilities within a network can 
lead to attacks on a target node. The method of doing that, 
elucidated in the chapter, is through attack graph theory. 
Then in the chapter (Biswas and Patra 2018), the authors 
accept that vulnerabilities in software systems will exist but, 
to avoid the economic impact, if these are exploited, mitiga-
tion strategies are proposed, along with a focus on identify-
ing potential critical vulnerabilities. It is worth remarking, 
that fuzzy logic is also well-suited to risk assessment of new 
software developments, providing indices of risk severity in 
Hsieh et al. (2018). Returning, to the collection of chapters, 
an interesting chapter also, from the point of view of the 
current paper (Singh et al. 2018), which details a method 
of trust computation in the context of Flying Ad Hoc Net-
works (FANETs), i.e., networks of cooperating drones. Trust 
management is necessary because the nodes within FANETs 
have limited resources.

One area of recent interest, where security is a principal 
concern, is that of the IoT and, in particular, the applica-
tion of IoT to emerging smart cities (Plageras et al. 2017). 
The reason for this concern is that IoT devices are vulner-
able (Rouse 2015) because of their resource constraints yet 
they offer an entry point to the conventional Internet. For 
example, in Hernandez-Ramos et al. (2015), the authors 
provide a layered framework for managing IoT security 
within a smart city. The IoT devices are intended to be the 
well-known ARM microcontrollers. However, the means of 
security management appears to be relatively conventional, 
based, as it is, around software managers.

The IoT is intimately connected to cloud computing, as 
cloud platforms provide a way of processing the data gar-
nered by the IoT devices. The survey (Stergiou et al. 2018) 
considers past work on integrating the emerging IoT and 
cloud platforms with an emphasis on security issues. For 
example, the relative advantages of AES encryption and 
Rivest–Shamir–Adelson (RSA) asymmetric encryption in 
respect to the IoT, clouds, and the integration of the two 
are listed. It is apparent that AES block-based encryption is 
a relatively lightweight form of encryption, more suitable 
for the IoT, though it is by no means as lightweight as the 
XOR–based encryption algorithms considered elsewhere 
in the current paper. Because, RSA asymmetric encryption 
normally relies on a Public Key Infrastructure (PKI), which 
provides a hierarchy of servers to be present for the purpose 
of public key authentication, it is more suitable for cloud 
computing. Besides, RSA encryption is only normally used 
at the key exchange stage to encrypt the symmetric keys later 
used to encrypt a data stream.

In an IoT environment, security issues are indeed impor-
tant to consider (Shifa et al. 2016) due to the resource-con-
strained nature of the devices utilized. In terms of confi-
dentiality or privacy protection, Shifa et al. (2019) recently 
proposed lightweight encryption for multimedia content, 
reflecting the discussion in the previous paragraph. In terms 
of authentication, Tewari and Gupta (2017) have proposed 
a lightweight authentication protocol. However, in Wang 
et al. (2018) that protocol was apparently itself shown to 
be vulnerable to a key disclosure attack by virtue of the bit-
wise operations required of the IoT devices, RFID tags, as 
the number of bitwise rotation operations possible was lim-
ited to just 96. Going beyond authentication, the authos of 
Memos et al. (2018) consider an IoT Smart City framework 
for a set of multiple components that constitute security: that 
is authentication, access control, confidentiality, privacy, 
secure middleware, policy enforcement, mobile security, and 
trust. The application is, like the current paper, video sur-
veillance, with compression by the HEVC codec, one of the 
codecs used herein. For video encryption, the authors con-
sider SE, similar to that previously published by the authors 
of the current paper (Asghar and Ghanbari 2013; Asghar 
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et al. 2015). However, in the current paper, SE is employed 
by us with a light-weight cipher as an alternative to the 
underlying AES previously used in our past publications, to 
account for the resource constraint of potential devices and 
a need for real-time operation. Thus, SE avoids the over-
head of full-encryption but beyond that AES for the SE is 
relatively heavyweight, as it includes successive rounds of 
bit manipulations, even though, with current computational 
capabilities, it is secure against brute-force attacks. Thus, 
a light-weight cipher reduces the computational overhead.

There remain potential vulnerabilities within an IoT envi-
ronment. For example, at the authentication stage, two-factor 
authentication requires the user to have something that they 
know and something that they possess. For example, this 
might be a password and a smart card. The work in Reddy 
et al. (2019) echoes widespread disquiet with two-factor 
authentication, e.g., Kan (2019), by demonstrating that two 
recent two-factor protocols, Qi and Chen (2017) and Lu et al. 
(2016), are vulnerable to a number of attacks. For example, 
Qi and Chen (2017) is said to: lack user anonymity; be prone 
to user impersonation attacks; be vulnerable to ephemeral 
leakage attacks; and that an insider with access to the server 
can breach the authentication process. Instead, Reddy et al. 
(2019) provides a three-factor authentication protocol that 
is one that utilizes a third set of biometric credentials (or 
credentials associated with the user’s environment such 
as ambient noise). After cryptanalysis of the protocol, the 
multiple gains of the proposed three-factor authentication 
are demonstrated by comparison with two-factor schemes 
in the literature.

2.2  Fuzzy logic systems

Fuzzy logic describes the fuzziness or lack of precision in 
data with the help of fuzzy sets. Fuzzy-based classifiers are 
developed on the basis of membership functions and FIS 
rules. FIS rules, which themselves reflecting common sense, 
allow effective reasoning, akin to that of an expert in the 
field (Zadeh 2015). Fuzzy-based classifiers utilize math-
ematical principles as a means of knowledge representa-
tion and the degree of membership. Therefore, one can say 
that they lean towards numerical processing of data. Such 
classifiers are developed with multi-valued logical values, 
rather than binary values, as fuzzy logic uses a continuum 
of logical values between 0 (false) and 1 (true). A FIS is 
constructed based upon linguistic variables, as would be 
employed by an expert in the field, together with eliciting 
from an expert the fuzzy rules that operate on the linguis-
tic variables. A fuzzy inference engine is constructed by 
means of composition of those fuzzy rules. After the FIS 
has been applied, the process of defuzzification converts the 
still fuzzy output to crisp or non-fuzzy output. Thus, it is 
necessary to specify rules of defuzzification. The simplicity 

in the implementation process for a fuzzy rule-based system, 
even with numerous parameters of digital devices, network 
characteristics and the requirements of real-time applica-
tions, made it an effective way for us to develop a classifier.

Device capability enters into our FIS, and in an IoT real-
time interconnections between heterogeneous and ubiquitous 
devices has been one of the most important concerns (Li 
et al. 2015a). Collotta and Pau (2015) implemented fuzzy 
logic to determine the sleeping time of the devices according 
to the battery level and to the ratio of throughput to workload 
in the smart home for efficient power management.

Fuzzy system engineering has also been adopted for con-
fidential data transfer over a shared network. Gandotra et al. 
(2017) presented a fuzzy system for the better performance 
of supervised algorithms to automatically detect malware. 
Ashfaq et al. (2017) considered intrusion detection systems 
and presented semi-supervised learning algorithms, using 
a divide-and-conquer approach and then categorizing the 
intrusion threat according to the magnitude of the fuzziness. 
Their future work involves detecting multi-type attacks, with 
the help of fuzzy logic. Similarly, Mudia and Chavan (2015) 
proposed a fuzzy-based automatic image-encryption system 
for secret sharing on the Internet. Recently, Cuka et al. 2019 
compared two fuzzy-based systems for the selection of IoT 
nodes in the context of opportunistic networks (ones in 
which nodes are only connected temporarily). They found 
that there was a trade-off between the two fuzzy systems 
compared in terms of complexity and the suitability of the 
selection. Notice that similarly, the proposed system in this 
paper also involves an element of selection, as it uses a hier-
archical fuzzy-based systems for the selection of privacy 
levels for the real-time delivery of multimedia.

Elsewhere, fuzzy logic is particularly useful when a 
dynamic response is required, as it can react in real-time 
and requires reduced training, as it can take into account 
the reactions of the user themselves. For example, in Ribino 
and Lodato (2019), the user’s physiological signs, that is 
heart rate and variability in the fuzzy model. In addition, 
another input is gathered through a mobile device carried 
by the user, namely the acoustic noise level. The fuzzy 
modelling then permits an individual’s at-risk level to be 
assessed, without the need for the individual themselves to 
report a problem during a dangerous event. Likewise the 
authors (Rainer et al. 2018), a robotic museum tour guide, 
which makes expressive oral presentations at given positions 
on its route, is dynamically trained through fuzzy models. 
The training is controlled by feedback from members of the 
public participating on a tour in terms of what went well and 
what was less successful during the presentations. Adjust-
ments to the fuzzy rules depend on the age and cultural 
attributes of the robotic guide’s audience.

Fuzzy logic has, in fact, been used in CDNs for perfor-
mance improvement. For example, Chen and Liao 2010 
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presented a fuzzy-based decision system for multimedia-
content request routing in a CDN to decrease the drop rate 
and improve the network utilization. Roy et al. 2015 also 
used fuzzy concepts to dynamic select edge servers and load 
balance CDNs associated with a cloud. In the scheme, an 
edge server is found that is nearest to the end-user’s loca-
tion and has the lowest response time and load. However, it 
must be said that the current paper is the first time that fuzzy 
logic is proposed to allow CDNs to select a privacy level 
for the end-users by considering multiple selection inputs 
for each FIS.

2.3  Video streaming context

According to CISCO predictions, extrapolating from cur-
rent network statistics, video streaming will take up 82% 
of the total network traffic by the year 2020 (Cisco 2018). 
From the security point-of-view it is possible to distinguish 
as least three classes of video traffic that will contribute to 
this increase. Each of these classes has different confiden-
tiality requirements (or more widely privacy levels when 
one considers other aspects of personal security), which is 
as well, because, as shown in this paper, encrypting video 
potentially has costs in terms of a bitrate overhead and the 
computational overhead. For resource-challenged mobile 
devices communicating over bandwidth-limited wireless 
connections or networks, these costs may be significant and 
may affect the commercial competitiveness of an RTA, if 
there is a choice between rival versions of an application.

In fact, CDNs can stream to end users many kinds of 
video (Stocker et al. 2017), ranging from personal to public 
videos. For example, there is: video chatting; video confer-
encing (Webex, webcast, webinars); VoD; social media live 
chats (Facebook live, Instagram live and so on); social media 
stored videos; live Internet TV; and stored media streaming 
applications, such as from Netflix, YouTube, Twitch, Hulu. 
Amazon Prime and so on. Banks of transcoders in a cloud 
may be employed to format video so that in (say) a video 
call, the video is compatible between different codecs. CDN 
operators have a heavy responsibility for maintaining the 
privacy of individuals in their personal and semi-personal 
video communication. To ensure the confidentiality of CDN 
transmission, encryption is an effective procedure (Long 
et al. 2018). While the implementation of encryption over 
streaming videos is a challenging task, because of the trade-
off between encryption bitrate overhead and efficient trans-
mission over CDNs and on to their end-users. There is also 
a storage cost, for pre-stored video in particular, if a type 
of HTTP Adaptive Streaming (HAS) (Bentaleb et al. 2018) 
is used, because there are typically five or more versions 
of a video clip or TV program at different quality levels, 
according to network congestion levels (Seufert et al. 2015). 
Implementation of full encryption for real-time streaming of 

video may not be practical due to the computational cost of 
encryption leading to latency, especially if high-resolution 
video, typically 1080 progressive (p) video, is streamed.

2.4  Selective encryption within video encoders

Codecs play a vital role in video streaming, as few networks 
have sufficient available bandwidth to support uncompressed 
streaming. In terms of codecs, the H.264/Advanced Video 
Coding (AVC) (Wiegand et al. 2003) codec remains widely 
deployed on streaming servers (such as those of YouTube), 
due to its ease of software deployment and the range of sup-
ported hardware for rapid compression and decompression. 
More recently, the High Efficiency Video Coding (HEVC) 
codec (Sullivan et al. 2012) provides a 30–45% improve-
ment in the compression ratio over H.264/AVC. However, 
hardware has been slow to support HEVC (Ram and Panwar 
2017), possibly due to the complexity of a full implementa-
tion. This is the main reason that, since its release in 2013, 
HEVC has not been adopted as widely as H.264/AVC. How-
ever, there is growing awareness of its potential (Li et al. 
2015b). Due to the involvement of hardware companies like 
AMD, ARM, Intel and NVIDIA, HEVC hardware support 
is expected to be available within 1–2 years’ time. Further-
more, owing to the rapid adaptation of CDNs like those of 
Amazon, Google, Hulu and Netflix, HEVC is expected to 
be used by major content distributors. Both YouTube and 
Netflix have already stated that they intend to implement 
it within months (Reddit 2018). Therefore, HEVC is con-
sidered to be a strong contender in the future (Ohm and 
Sullivan 2013). Though in this paper, standardized codecs 
are utilized because these are highly favored by commercial 
companies, it is possible, if standardization is not an issue, 
to replace the frequency transform that is an essential stage 
in hybrid image codecs by a fuzzy transform. Typical fre-
quency transforms are the Discrete Cosine Transform or the 
Discrete Wavelet Transform, as employed in the JPEG series 
of still-image codecs. For example, in Martino and Sessa 
(2018), a multi-level fuzzy transform is shown to be compet-
itive in time with JPEG compression, though decoded image 
quality currently is not competitive. In Martino and Sessa 
(2018), the authors consider their multi-level scheme has 
the ability, through built-in quality thresholding, to become 
quality competitive.

Selective encryption (SE) as applied herein takes advan-
tage of entropy coding. Entropy engines comprise the last 
stage of hybrid video codecs, being used to remove any 
remaining statistical redundancy (Ghanbari 2003). H.264/
Advanced Video Coding (AVC) and its Scalable Video 
Coding (SVC) extension (Schwarz et al. 2007) utilize the 
same alternative two entropy coding modes, i.e., Context 
Adaptive Variable Length Coding (CAVLC) (Chen et al. 
2006) and Context Adaptive Binary Arithmetic Coding 

Author's personal copy



 A. Shifa et al.

1 3

(CABAC) (Marpe et al. 2003). Within H.264/AVC either 
CABAC or CAVLC entropy engine can be selected, as the 
two coders support a trade-off between compression effi-
ciency and computational complexity (Wang et al. 2013). 
The HEVC CABAC encoder is a somewhat modified ver-
sion of the H.264/AVC CABAC coder but there is no alter-
native CAVLC coder. Thus, HEVC is confined to CABAC 
coding, which achieves about 15% greater compression 
than CAVLC but is significantly more complex.

SE itself is commonly integrated within a codec (Furht 
et al. 2005), particularly as encrypting video before com-
pression usually removes any exploitable redundancy. SE 
considers the most significant information (as regards dis-
tortion) with a choice of different stages of a hybrid codec, 
such as on the original pixels, the transform coefficients, 
the quantization indexes and the bit-planes for the encryp-
tion (Massoudi et al. 2008). By leaving encryption to the 
last stage of such an encoder, SE is less likely to upset 
the compression achieved in earlier stages of encoding. 
Entropy-integrated SE for the standardized H.264/AVC, 
H.264/SVC, and HEVC codecs with the CABAC engine 
has already been proposed by various researchers, that is 
Shahid et al. (2011), Asghar and Ghanbari (2013), and 
Shahid and Puech (2014), respectively. SE is applied spe-
cifically to encrypt a set of entropy bins, the bits output as 
part of entropy coding, that pass through the bypass mode. 
The bypass mode is the coding mode that does not use 
context modelling to vary the coding rate. The reason for 
this design is so as to achieve a similar bit rate in the statis-
tical sense to that without encryption and also to maintain 
decoder format compliance (Asghar and Ghanbari 2013; 
Shahid and Puech 2014). As codec standardization is con-
trolled by the format of the compressed bitstream entering 
a decoder, it is important to ensure the encrypted bitstream 
does not break the detailed specification of a conformant 
bitstream.

One should mention, that an alternative to SE is 
Region-of-Interest (ROI) encryption in which some parts 
of a video are protected to reduce the encryption over-
head and computational complexity (Farajallah et al. 2015; 
Peng et al. 2013). However, ROI encryption is application 
specific, while SE potentially offers a more general solu-
tion. Besides, SE provides format complaint encrypted 
bitstream at the decoder, compared to either full or com-
plete encryption of the video stream or ROI encryption. 
Decoder format compatibility allows video to be processed 
at intermediate points in a network, e.g., through transcod-
ing, without the need for the decryption key to be available 
at those points. Additionally, SE can support interoper-
ability (Asghar et al. 2017) in which multiple encryptions 
of the same video stream are transported. Furthemore, it 
has a potential role in consumer electronics applications 
(Lookabaugh and Sicker 2004). Thus, applying encryption 

at the entropy coding stage minimizes the problems of full 
and ROI encryption, which is why that form of encryption 
is chosen for this paper.

In the proposed FTC-based method, SE is applied with 
two alternative ciphers: (1) AES in Cipher Feed Back mode 
(CFB) mode (National Institute of Standards and Technology 
2001), and the in-house P-XOR. Both encrypt bits selected 
from the entropy-coded bitstream, which is coded with the 
CABAC entropy coder. The proposed FTC method resolves 
the key problem tackled in this paper, which is choosing 
an appropriate cipher to match the differing confidentiality 
requirements of end-users and/or content providers.

3  Overall method

The overall FTC for the proposed video streaming method 
is comprised of the following two components.

Classifier This is developed through Fuzzy sets, rules and 
the inference system for real-time detection of confidential-
ity requirements for end-users.

Encryption module SE is applied over streamed videos 
through either P-XOR or AES-CFB encryption.

The FTC method itself can be understood through the 
flow chart given in Fig. 1, with the classifier extending to the 
‘Input Video’ box and the encryption module being below 
that box.

3.1  Classifier overview

In the Fuzzy Classifier, a total of three FISs were designed 
and implemented in two layers. Three layer-1 processes 
are shown in Fig. 1. Thus, layer-1 comprises of three FISs 
operating in parallel; these are (1) Device Specifications 
(DS′) with input variables: Energy (battery time), Storage, 
and Screen-size of each device; (2) Network Specifications 
(NS′), with input variables being Bandwidth, Throughput, 
and Channel-Quality (bit-error rate); and (3) Real-time 
Application (RA′) with input variables being confidential 
(personal), protected (semi-personal) and public (imper-
sonal). These three Layer-1 FISs have twelve crisp (non-
fuzzy) inputs (three for each FIS) and each FIS produces a 
single crisp output.

Layer-1’s three outputs become the crisp inputs for the 
layer-2 FIS, as is apparent from Fig. 2, which shows the 
layering more clearly than Fig. 1. In Layer-2, the active FIS 
is Privacy Level (PL′), which produces three types of out-
puts, i.e., low, medium and high privacy requirements for the 
streaming videos. The single crisp output (after defuzzifica-
tion) from layer-2 will decide on the confidentiality level of 
the encryption module.

Author's personal copy



Fuzzy‑logic threat classification for multi‑level selective encryption over real‑time video…

1 3

3.2  Encryption module overview

The encryption module performs SE on compressed H.264/
AVC or HEVC streamed videos. In Fig. 1, depending on the 
determination of the type of encryption, one of the three 
encryption packages is chosen (no-encryption, P-XOR 
encryption, or AES encryption in Fig. 1). Depending on 
that choice, selected syntax or parameter elements from the 
compression process are encrypted according to the chosen 
form of encryption.

Because entropy coding is the last compression stage of a 
hybrid encoder such as H.264/AVC or HEVC, the bin-strings 
(sequences of bits output by an entropy coder) selected at 
this stage are quickly encrypted and do not greatly disturb 
the compression ratio of the encoders. That is to say the 

bitrate is not significantly increased as a result of encryp-
tion. The entropy engine used by the two codecs, i.e., H.264/
AVC or HEVC for better compression, is known as Context 
Adaptive Binary Arithmetic Coding (CABAC) (Sze and 
Budagavi 2013). Some CABAC bin-strings are selected to 
be encrypted in the SE process. The form of encryption is 
according to the choice of the FTC.

In general, the steps by the CABAC coder are: (1) Binari-
zation, (2) Context Modeling (CM), and (3) Binary Arithme-
tic Coding (BAC). In the initial binarization, all non-binary 
syntax elements are converted to bin-strings. A bin is a bit 
position in each bin-string that is passed to a coding mode 
decision module (Asghar and Ghanbari 2013). There are 
two types of BAC coding mode decision: one coding mode 
is BAC-regular and the other is called BAC-bypass coding 

Fig. 1  FTC-based method
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mode. After passing to BAC-regular coding, bins are trans-
ferred to the next step, which is CM based on the prob-
ability distribution of that bin. After that, the BAC-regular 
engine performs coding. When the bins are passed to BAC-
bypass coding mode then the CM step is skipped and the 
bins directly move towards the BAC engine for coding. This 
process of CABAC entropy coder is shown in Fig. 3. Notice 

that only the by-passed bins (given in the green-colored box) 
are used for applying SE because, as previously mentioned, 
CM is thereby not affected and, hence, the prediction sta-
tistics are not affected. These bins are the arithmetic sign 
information of the Motion Vector Differences (MVDs) and 
the sign of the residual transform coefficients (TC) levels 
(known as texture in the coding community) or some other 

Fig. 2  Functionality of the 
fuzzy classifier
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Fig. 3  Process of selecting CABAC bin-strings for SE
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less significant bits, which are also thought to be uniformly 
distributed.

In summary, in the proposed FTC’s encryption module, 
the arithmetic signs of MVDs and the residual TCs at dif-
ferent levels are chosen for SE. The SE of these selected 
bin-strings has already been shown to be format compliant 
and compression-friendly for real-time applications (Asghar 
et al. 2015). For further details about the chosen bin-strings 
for SE, refer to the papers Asghar and Ghanbari 2013 and 
Shahid and Puech 2014.

4  Detailed description of the method

In this Section, the high-level overview of the two compo-
nents of the method are now described in more detail.

4.1  Classifier: detailed description

The description of the classifier module is now broken down 
into its constituent parts, namely the fuzzy sets employed; 
the mathematical model for those sets; their representation 
as membership functions; and lastly, their implementation 
as IF–THEN rules, along with the means of defuzzification.

4.1.1  Fuzzy sets employed

To construct the rules for the FIS: DS′, three types of devices 
were considered, namely mobile or smart phones, tablets, 
and laptops. As an illustration, the actual specifications of 
devices used for the implementation of FIS: DS′ are given in 
Table 1. For Network specifications, three types of network 
connectivity for transmission, i.e., 2G, 3G/4G and LTE/5G 
were considered. While for RTAs, three types of inputs were 
considered: Private RTA (e.g., personal videos chats, and 
VoD); Protected RTA (e.g., group conferences); and Public 
RTA (publically-available video clips on YouTube and other 
platforms). The final PL selection has three inputs coming 
from layer-1 and produces three outputs (i.e., low, medium 
and high for each streamed video).

Therefore, for the implementation of the Classifier, there 
were four main fuzzy sets with their linguistic variables (i.e. 
DS′, NS′, RA′ and PL′), three layer 1 sets and one layer 2 
set, along with twelve subsets (three for each set). A com-
bination of fuzzy subsets from each Layer-1 fuzzy set (DS′, 
NS′, RA′) are used for the final Layer-2 decision. Usually 
a fuzzy set is defined as A = {y: p(y)}. The fuzzy sets are 
now given below.

1. Device Specifications (DS) for particular device selec-
tion

  DS′ = {y: y are the device specification parameters}
  DS′ = {Energy (E), Storage (S), Screen Size (Ss)}
  where each subset E, S, Ss = {Fair (F), Good(G), 

Excellent (Ex)}
2. Network Specifications (NS) for checking transmission 

compatibility
  NS′ = {y: y are the Network specification parameters}
  NS′ = {Bandwidth (B), Throughput(T), Channel-

Quality(Q)}
  where each subset B, T, Q = {Fair (F), Good(G), 

Excellent (Ex)}
3. Real-time Applications (RA)
  RA′ = {y: y are the real-time application parameters}
  RA′ = {Private (Pr), Protected(Po), Public(Pb)}
  where each subset Pb, Po, Pr = {Fair (F), Good(G), 

Excellent (Ex)}

The fuzzy set and the term set defined for the layer 2 
linguistic varaible PL′ are given below:

4. Privacy Level (PL)
  PL′ = {y: y are the output parameters}
  PL′ = { Low(L), Medium (M), High (H)}

4.1.2  Mathematical model of fuzzy sets

Letting Ư be the Universe of Discourse, the proposed fuzzy 
sets are then represented as:

Table 1  Devices with their 
specifications

Device type Device names Energy (battery 
time in hours)

Storage (in GB) Screen diagonal 
size (in inches)

Mobile phones iPhone-4 6 64 3.5
iPhone 6 10 128 5.5
iPhone 7 15 256 5.5

Tablets Apple ipad-5 10 64 9.7
Samsung tab 7 plus 6 32 7

Laptops HP-15-AY540 6 1024 15.6
Dell-XPS 13 6 512 13.3
Dell-XPS 17 10 512 17
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where the μDS′(y ), μNS′(y ) and μAS′(y ) are the degrees of 
membership of y , assuming values in the range 0–1. Thus, 
one can say that

and the fuzzy subsets are:

The following are representations of the fuzzy sets, when 
Ư is a finite and discrete form of data:

The subset E′ of DS′ is represented as:

The values of elements belonging to E′ are computed in 
Eq. (11). Thus, one arrives at Eqs. (12), (13), and (14).

The equations for other sets and subsets are represented 
as: 

(1)DS� = {(y,�DS� (y)) |y ∈ U�},

(2)NS� = {(y,�NS� (y)) |y ∈ U�},

(3)AS� = {(y,�RA� (y)) |y ∈ U�},

(4)PL� = {(y,�PL� (y)) |y ∈ U�},

(5){�DS}(y),�NS}(y),�RA}(y)�PL}(y)} ∈ [0, 1]

(6){�E� (y),�S� (y),�Ss� (y)} ∈ [0, 1],

(7){�E� (y),�T� (y),�Q� (y)} ∈ [0, 1],

(8){�Pr� (y),�Po� (y),�Pb� (y)} ∈ [0, 1].

(9)DS� =

{
�DS�(y1)

y1
+

�DS�(y2)

y2
+

�DS�(y3)

y3
…

}

(10)DS� =

n∑

i=1

(
�DS�(yi)

yi

)

(11)E� =

{
�E�(y1)

y1
+

�E�(y2)

y2
+

�E�(y3)

y3
…

}

(12)E� =

n∑

i=1

(
�E�(yi)

yi

)
,

(13)S� =

n∑

i=1

(
�S�(yi)

yi

)
,

(14)Ss� =

n∑

i=1

(
�Ss�(yi)

yi

)

The cardinality of the fuzzy sets is:

Then, the subsets of the layer 1 sets are represented as:

In each fuzzy set, one has all finite subsets with specific 
ranges, which can be written as: 

(15)

NS� =

{
�NS�(y1)

y1
+

�NS�(y2)

y2
+

�NS�(y3)

y3
…

}

=

n∑

i=1

(
�NS�(yi)

yi

)

(16)B� =

n∑

i=1

(
�B�(yi)

yi

)
,

(17)Q� =

n∑

i=1

(
�Q�(yi)

yi

)
,

(18)T} =

n∑

i=1

(
�T�(yi)

yi

)
,

(19)

RA� =

{
�RA�(y1)

y1
+

�RA�(y2)

y2
+

�RA�(y3)

y3
…

}

=

n∑

i=1

(
�RA�(yi)

yi

)

(20)Pb� =

n∑

i=1

(
�Pb�(yi)

yi

)
,

(21)Po� =

n∑

i=1

(
�Po�(yi)

yi

)
,

(22)Pr� =

n∑

i=1

(
�Pr�(yi)

yi

)

(23)

PL� =

{
�PL�(y1)

y1
+

�PL�(y2)

y2
+

�PL�(y3)

y3
…

}
=

n∑

i=1

(
�PL�(yi)

yi

)

(24)||DS
�|| = ||NS

�|| = ||RA
�|| = ||PL

�||

(25)E, S, Ss ⊆ DS′

(26)B, T, Q ⊆ NS′

(27)Pb, Po, Pr ⊆ RA′
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The degree of truth in fuzzy logic is presented through 
membership functions denoted with a dot notation, (∙). 

(28)|E| = |S| = |Ss|

(29)|B| = |T| = |Q|

(30)|Pb| = |Po| = |Pr|

4.1.3  Membership functions

Membership functions represent the fuzzy sets. To get accurate 
results, a combination of triangular and trapozidal membership 
functions were used in the Classifier (Pedrycz 1994). The char-
acteristics of these two types of membership function of these 
two types of function are represented grapphically in Fig. 4, 
with the guiding equations given by (32) and (33).

Then, Tables 2, 3, 4, 5, 6, 7, 8 show the degrees of mem-
bership functions with associated fuzzy rules for Layer-1 and 
Layer-2 linguistic variables. In summary, the number of com-
puted fuzzy rules is:

(31)�DS� (⋅), �NS� (⋅), �RA� (⋅), �PL� (⋅) ∈ [0, 1]

(34)No. of Rules = mv,

Fig. 4  Characteristics of triangular and trapozoidal membership functions

Table 2  Computed values for the fuzzy subsets of fuzzy set DS′

Energy 
(in 
hours)

Storage (GB) Screen size 
(inches)

Term set Degree of 
member-
ship

6–10 512, 1024 13.3, 15.6, 17 Excellent (Ex) 0.7–1
2–7 32, 64, 128 7, 9.7, 10 Good (G) 0.3–0.7
0–3 8, 16 4, 5.5, 6 Fair (F) 0–0.3

Table 3  Layer-1 fuzzy rules for 
DS′ (D1 = laptop, D2 = tablet, 
D3 = mobile/smartphone)

Rule # E S Ss Device type Rule # E S Ss Device type Rule # E S Ss Device type

1 Ex Ex Ex D1 10 G Ex Ex D1 19 F Ex Ex D1
2 Ex Ex G D2 11 G Ex G D2 20 F Ex G D2
3 Ex Ex F D3 12 G Ex F D3 21 F Ex F D3
4 Ex G Ex D1 13 G G Ex D1 22 F G Ex D1
5 Ex G G D2 14 G G G D2 23 F G G D2
6 Ex G F D3 15 G G F D3 24 F G F D3
7 Ex F Ex D1 16 G F Ex D1 25 F F Ex D1
8 Ex F G D2 17 G F G D2 26 F F G D2
9 Ex F F D3 18 G F F D3 27 F F F D3
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Table 4  Computed values of the 
fuzzy subsets of fuzzy set NS′

Bandwidth 
(Mhz)

Throughput (kbps) Channel-quality (BER 
ratio) (%)

Term set Degree of 
member-
ship

14 120,40 86–95 Excellent (Ex) 0.7–1
12 8,10 70–85 Good (G) 0.3–0.7
10 2,4,6 61–70 Fair (F) 0–0.3

Table 5  Layer-1 fuzzy rules for NS′ (Ntw1 = LTE, 5G, Ntw2 = 3G,4G, Ntw3 = 2G)

Rule # B T Q Network type Rule # B T Q Network type Rule # B T Q Network type

1 Ex Ex Ex Ntw1 10 G Ex Ex Ntw1 19 F Ex Ex Ntw1
2 Ex Ex G Ntw2 11 G Ex G Ntw2 20 F Ex G Ntw2
3 Ex Ex F Ntw3 12 G Ex F Ntw3 21 F Ex F Ntw3
4 Ex G Ex Ntw1 13 G G Ex Ntw1 22 F G Ex Ntw1
5 Ex G G Ntw2 14 G G G Ntw2 23 F G G Ntw2
6 Ex G F Ntw3 15 G G F Ntw3 24 F G F Ntw3
7 Ex F Ex Ntw1 16 G F Ex Ntw1 25 F F Ex Ntw1
8 Ex F G Ntw2 17 G F G Ntw2 26 F F G Ntw2
9 Ex F F Ntw3 18 G F F Ntw3 27 F F F Ntw3

Table 6  Computed values of the fuzzy subset of fuzzy set RA′

Real-time applications Term set Degree of 
member-
ship

Private (Personal Video calls, Facebook Live, Instagram Live, VoD, Webcasting etc.) Excellent (Ex) 0.7–1
Protected (Group Conferencing (Webex, Webinars, training videos) Live TV etc.) Good (G) 0.3–0.7
Public (YouTube, Netflix, Vimeo, Twitch, Hulu, Daily motion etc.) Fair (F) 0–0.3

Table 7  Layer-1 fuzzy rules 
for RA′ (A1 = personal videos 
sharing, A2 = group video 
sharing, A3 = public videos)

Rule # Pb Po Pr Applica-
tion type

Rule # Pb Po Pr Applica-
tion type

Rule # Pb Po Pr Appli-
cation 
type

1 Ex Ex Ex A1 10 G Ex Ex A1 19 F Ex Ex A1
2 Ex Ex G A2 11 G Ex G A2 20 F Ex G A2
3 Ex Ex F A3 12 G Ex F A3 21 F Ex F A3
4 Ex G Ex A1 13 G G Ex A1 22 F G Ex A1
5 Ex G G A2 14 G G G A2 23 F G G A2
6 Ex G F A3 15 G G F A3 24 F G F A3
7 Ex F Ex A1 16 G F Ex A1 25 F F Ex A1
8 Ex F G A2 17 G F G A2 26 F F G A2
9 Ex F F A3 18 G F F A3 27 F F F A3
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where m represents the number of membership functions 
and v represents the number of linguistic variables. There 
are three variables in each fuzzy set with three membership 
functions. Therefore, each fuzzy set in the Classifier has the 
following number of rules: 

4.1.4  IF–THEN rule implementation and defuzzification

The Classifier implements the rules in qualitative rea-
soning mode. Thus, the input–output relationship of the 
system is expressed as a collection of fuzzy IF–THEN 
rules. The following are a few examples of the rules for 
detecting an appropriate confidentiality or privacy level.

Layer-1 Fuzzy Rules for DS′, NS′ and RA′ Fuzzy Sets

(Device Specifications)
1. IF (E IS G) AND (S IS Ex) AND (SS IS F) THEN select device 

D3 (Table 3: Rule # 13)
(Network Specifications)
2. IF (B IS F) AND (T IS G) AND (Q IS Ex) THEN select network 

NTW1 (Table 5: Rule # 22)
(Real-Time Application)
3. IF (Pb IS F) AND (Po IS Ex) AND (Pr IS G) THEN select appli-

cation A2 (Table 7: Rule # 20)

Layer-2 Fuzzy Rules for PL′ Fuzzy Set (from Table 8)

1. IF (DS IS D1) AND (NS IS Ntw1) AND (RA IS A1) THEN High 
PL Required

2. IF (DS IS D2) AND (NS IS Ntw1) AND (RA IS A2) THEN 
Medium PL required)

3. IF (DS IS D3) AND (NS IS Ntw2) AND (RA IS A3) THEN Low 
PL Required

(35)No. of Rules = 33 = 27

All FISs use the defuzzification technique known as 
center of mass/gravity. In this rounding off technique, the 
fuzzy centroid is calculated as a final defuzzified value. 
Mathematically, the overall Layer 1 and Layer 2 defuzzi-
fied output  On is represented as:

where n represents the 1, 2, 3, 4 outputs of the four FISs, i 
repesents the fuzzy set, and μy′ = μDS′,μNS′,μRA′ or μPL′.

We now pass-on to a detailed description of the second 
of the two modules of the proposed method.

4.2  Encryption module: detailed description

This section elaborates the implemented encryption mod-
ule, which will perform SE on the compressed H.264/AVC 
or HEVC streamed videos. Previous Sect. 3.2 outlined 
how it is within the entropy coding stage of one of those 
hybrid codecs that the parameters are selected for encryp-
tion, leaving the remainder of the compressed video stream 
unencrypted. The inclusion of the encrypted parameters 
within their original positions in the compressed video bit-
stream has two main consequences: (1) a watchable ver-
sion of the original video should not be obtainable through 
decompression or decoding without access to the encryp-
tion key and subsequent decryption; and (2) because selec-
tive encryption of the parameters is performed, rather than 
full encryption; the bitrate overhead should be statistically 
unchanged, provided suitable parameters are chosen, i.e., 
ones that have a uniform distribution. Justification of the 
parameters selected can be found in Asghar and Ghanbari 
(2013) and Shahid and Puech (2014), as previously men-
tion in Sect. 3.2.

(36)On =
∫ �y�(i).idi

∫ �y�(i).idi
,

Table 8  Layer-2 Fuzzy Rules for PL′

Rule # DS′ NS′ RA′ PL′ Rule # DS′ NS′ RA′ PL′ Rule # DS′ NS′ RA′ PL′

1 D1 Ntw1 A1 High 10 D2 Ntw1 A1 High 19 D3 Ntw1 A1 High
2 D1 Ntw1 A2 Medium 11 D2 Ntw1 A2 Medium 20 D3 Ntw1 A2 Medium
3 D1 Ntw1 A3 Low 12 D2 Ntw1 A3 Low 21 D3 Ntw1 A3 Low
4 D1 Ntw2 A1 High 13 D2 Ntw2 A1 High 22 D3 Ntw2 A1 High
5 D1 Ntw2 A2 Medium 14 D2 Ntw2 A2 Medium 23 D3 Ntw2 A2 Medium
6 D1 Ntw2 A3 Low 15 D2 Ntw2 A3 Low 24 D3 Ntw2 A3 Low
7 D1 Ntw3 A1 High 16 D2 Ntw3 A1 High 25 D3 Ntw3 A1 High
8 D1 Ntw3 A2 Medium 17 D2 Ntw3 A2 Medium 26 D3 Ntw3 A2 Medium
9 D1 Ntw3 A3 Low 18 D2 Ntw3 A3 Low 27 D3 Ntw3 A3 Low
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Pseudo-code of simulation performed for Encryption module 
Input: Video, Privacy Level (High, Medium ,Low) 
Output: Privacy Protected Video  
switch (PL`) 

case  Low_PL`: 
break; 
case  Medium_ PL`: 
     if (Signs-MVD && residual_Coeff) 

                                DH-Key_Exchange();  
               MVD.Enc_P-XOR();    
    Texture.Enc_P-XOR(); 

End if 
break; 
case  High_PL`: 

if (Signs-MVD && residual_Coeff) 
                  DH-Key_Exchange(); 
                  MVD.Enc_AES();    

Texture.Enc_AES(); 
End if 

 break; 
End Switch 

//Diffie-Hellman Key Exchange Method 
int DH-Key_Exchange()  
Input: Public_key1, Publick_key2, Private_Key1, Private_Key2 

long int P=Public_Key1;   
long int Q=Public_Key2;  
long int a=Private_Key1; 
long Int b= Private_Key2; 
X=Q^a modP; 
Y=Q^b modP; 
temp = X;  
X= Y; 
Y=temp; 
Ka=Y^a modP; 
Kb=X^b modP; 
c=ka=kb; 

Return (c);  
Output: Secret-key (c) 

// P-XOR buffer Encryption/Decryption 
int Enc_P-XOR( ) //Encryption 
Input: Video, Initialization Vector (iv), Secret-key, key-size 
=128; 

unsigned char *input= Sign_MVD, Signs_Texture;   
int offset1 >= 8, offset2 >= 8; 
while (1) 
   offset1 = Random no. ranging from 1 to 8; 
   offset2 = Random no. ranging from 1 to 8; 
    uiSign = uiSign >> offset1; 
    uiSign = uiSign ^ Secret_Key; 
    uiSign = uiSign >> offset2; 
End while 

Output: Video bit-stream 

//AES-CFB buffer Encryption/Decryption (mbedTLSLibrary) 

int Enc_AES( )
Input: inputvideo, Initialization Vector (iv), Secret-key, key-size 
=128; 

#if defined(CIPHER_MODE_CFB)  

int aes_SecKey(aes_Process *prc, const unsigned char* Secret-
key, unsigned int key-size) 

if (key-size =128) 
   prc->rounds  = 10;  
   aes_encrypt_cfb(); 
   break; 
int aes_encrypt_cfb(aes_Process *prc, int mode-type, size_t l-size, 
size_t *iv_off, unsigned char iv, const unsigned char *inputvideo, 
unsigned char *outvid ) 
   int i; 
    size_t s = *iv_off; 

if(mode-type == ENCRYPT_AES) 
while (l-size -- ) 

if(s == 0 ) 
aes_encrypt_cfb (prc, ENCRYPT_AES, iv, iv ); 
iv[l] = *output++ = (unsigned char)( iv[s] ^ 
*inputvideo++ ); 

                     s = ( s + 1 ) & 0x0F; 
End if 

End while  
End Else  

   *iv_off = s; 
End if 

Else 
while(l-size -- ) 

if( s == 0 ) 
aes_encrypt_cfb (prc, ENCRYPT_AES, iv, iv); 

            c = *input++; 
            *outvid++ = (unsigned char) ( i ^ iv[s] ); 
             iv[s] = (unsigned char) i; 
             n = ( s + 1 ) & 0x0F; 

End if 
End while 

  End Else 
return(0); 

Output: Video bit-stream 

Fig. 5  Implementation of the encryption module
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4.2.1  Encryption algorithms

Descriptions of the in-house encryption algorithm P-XOR 
and also the standardized encryption algorithm AES with 
CFB mode are now given in this section. As a point of ref-
erence, the complete pseudo-code of the FTC encryption 
module is given in Fig. 5.

4.2.1.1 P‑XOR cipher Basically all symmetric ciphers work 
on three principles, i.e., Substitution, Permutation and XOR. 
Because the substitution process (in ciphers such as AES) is 
computationally demanding, it is not included in P-XOR. 
However, XOR is actually a weak candidate for encryption. 
Because of this shortcoming, permutation is also performed 
on a byte-wise basis. P-XOR consists of an initial permuta-
tion round, followed by a single XOR, and then by a final 
permutation round. This means that it is relatively simple 
to compute in hardware, making it appropriate for real-time 
streaming applications.

In P-XOR, permutation is performed by means of a right 
shift (bit-wise) operator (≫) to cyclically shift the bit pat-
terns of input data bits (128 bits at a time) to the right by a 
given offset number. Two random offset numbers, each con-
tained in a different byte, are set in the algorithm for bit-wise 
permutation of each input in each of the two permutation 
rounds. After the first permutation, XOR uses the exclusive 
disjunction ⊕ operation between the input bits for SE and 
the 128-bit key. By choosing a 128-bit encryption/decryp-
tion key, with a key space greater than  2100, the same as that 
of the AES mode selected, the risk of a brute force attack 
is reduced. After that a second permutation is performed. 
Decryption is performed by first reversing the second per-
mutation. As XOR is a self-inverse, the next decryption 
step is XORing the cipher text with the cipher key, followed 
by the third decryption step, which is reversing the initial 
permutation.

P-XOR is particularly suitable for IoT devices (Li et al. 
2015a), which typically are resource-challenged. Noura et al. 
(2018) proposed a one-round cipher (implemented on static 
images) for an IoT in which the substitution and permuta-
tion principle were selected for the encryption. However, 
as mentioned above, substitution is usually more compute 
demanding than the XOR operation. Because, shuffling or 
permutation is one of the basic encryption principles, image 
encryption algorithms have certainly incorporated that step 
(Gao and Chen 2008; Zhang and Liu 2011). However, those 
based on shuffling alone are vulnerable to attack (Arroyo 
et al. 2009; Wang and He 2011). It is for that reason that 
the in-house P-XOR is reserved for medium level confiden-
tiality, in the sense that lightweight ciphers must trade-off 
between real-time operation and complete invulnerability.

4.2.1.2 Advanced encryption standard AES (also known 
as Rijndael) has been widely deployed as an encryption 
standard since 2000 (National Institute of Standards and 
Technology 2001). Until the present, AES is considered a 
very secure cipher and, hence, is extensively utilized for 
confidentiality in cyber-physical systems (Saifurrab and 
Mirza 2016). AES is a symmetric key block cipher, using a 
128-bit key for 10 rounds, a 192-bit key for 12 rounds, or a 
256-bit key for 14 rounds of operation. AES processes data 
in the form of states which are defined as a 4 × 4 matrix. In 
AES, every round comprises four stages/phases: (1) Byte-
substitution, (2) Mix Columns, (3) Shift Rows and (4) Add 
Round Key.

CFB is one of the modes of operation used for AES 
encryption. In CFB mode, AES can be utilized as a stream 
cipher and operated on a bit/byte level (Furht et al. 2005; 
Stallings 2010). In CFB mode, values of plaintext are 
encrypted and transferred one at a time. CFB mode is cho-
sen for implementation in the FTC model due to its self-
synchronization nature and its aforementioned suitability 
for real-time video streaming sessions (Asghar et al. 2015). 
CFB uses an initialization vector (iv) for the initial block. 
However, there is no need to keep the iv secret. In CFB, the 
previously encrypted ciphertext block becomes the input 
and it is XORed with the current plaintext block resulting 
in the ‘current’ ciphertext block as output. In this mode, if 
iv is changed for some plaintext blocks then the resulting 
ciphertext will be different for each block. However, notice 
that chaining dependency occurs in CFB, as each ciphertext 
block depends on the current plaintext block and all the pre-
ceding plaintext blocks.

In the FTC-Encryption module, these two symmetric 
ciphers encrypt the data-bits as a stream cipher with an 128-
bit encryption key. The encryption key is specific to each 
end-user video streaming session. To secure the key, herein, 
it is generated and distributed through the Diffie-Hellman 
key exchange method (Rescorla 1999) to avoid man-in-the-
middle-attacks when transferring secret keys. This is the 
same method availed of for transfer of the P-XOR key and 
its two permutation values.

5  Results and discussion

In order to evaluate the performance of the FTC model, both 
the Classifier and Encryption modules are put into practice 
in this section. First the Classifier operates to select the 
appropriate privacy level to process the video bit-streams 
for multimedia transmission over CDNs. The Classifier was 
implemented with four FIS in total (Sect. 3.1) and details of 
these implementations are given in Sect. 4.1.

In the encryption module, the two ciphers, i.e., P-XOR 
and AES were applied in the selective encryption process 
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to test videos in order to validate the confidentiality of the 
output. Detailed results are given in Sect. 4.2.

5.1  Fuzzy inference system

In this paper, the Mamdani model is used for the imple-
mentation of the fuzzy inference process of the Classifier. 
Results were generated with the Fuzzy Logic Toolbox™ in 
MATLAB R2018b version (R2018b 2018). As mentioned in 
the methodology (Sect. 3.1), we have implemented four FISs 
in two layers with four fuzzy sets (DS′, NS′, RA′ and PL′). 
Every fuzzy set has three fuzzy subsets (refer to Sect. 3.1 
for details). Layer-1 FISs produced three outputs, which are 
considered crisp inputs for the final FIS:PL′. The FIS:PL′ 
output one of the three privacy levels, which is the funda-
mental input to the FTC encryption module, which then 
encrypts each video to the desired level of confidentiality or 
privacy as they pass through edge servers.

The implemented membership functions for the Classi-
fier (refer back to Fig. 3) are shown in graphical form in 
Fig. 6. Figure 7 is an example of applying the fuzzy if … 

then rules, shown in Fig. 7 in graphical form. The output 
surfaces for PL′, available as output from the Matlab Tool-
box are illustrated in Fig. 8. By examining these surfaces, 
it can be clearly established that the real-time application 
(RA′) input is the key input in determining the appropriate 
privacy level, which the encryption module then applies.

5.2  Experimentation on videos with level‑wise 
encryption

Benchmark YUV videos of different resolutions and char-
acteristics (motion, texture) were selected for the validation 
tests. The tested videos were Vidyo1 (HD), Four People 
(HD) and Crew (4CIF), which were downloaded from Xiph.
org (2018), an on-line repository. The characteristics of each 
video are given in Table 9.

The FTC encryption module was simulated with code in 
the C/C++ programming languages within video encoder 
JSVM (2018) (for base layer H.264/AVC, as that layer cor-
responds to non-scalable H.264/AVC). Likewise, for H.265/
HEVC, HM version 16.18 (HM (16.18) 2018) was used. The 

Fig. 6  Implementation of the 
Classifier membership functions
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Fig. 7  Implementation of 27 rules for the final output of the Privacy Level (PL′) FIS

Fig. 8  3D fuzzy model surface views of the Privacy Level (PL′)
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experiments were performed on YUV videos with chroma 
sampling at 4:2:0 and the frame structure as IBBP… Group 
of Pictures (GoP) with an intra-refresh period of length 
16. The Quantization Parameter (QP) was set to 32, in a 
range from 0 to 51. A total of 100 frames of each video 
were encoded for the experiments. All experiments were 
performed on a 64-bit operating system with a 2.30 GHz 
Core i5-6200U processor and 8 GB RAM. The experiments 
were performed over nine videos having varying character-
istics of color, motion activity pixel resolution, as well as 
varying camera shots, such as the use of zooms. In this way, 
it is possible to judge any video content dependency in the 
SE methods. A summary of the videos is given in Table 9 
with details of file size, video frame pixel resolution, and 
frame display rates.

As previously mentioned, encryption was applied to the 
arithmetical signs of MVDs and to the arithmetical signs 
of residual TC with P-XOR and AES in the JSVM and 
HM video encoders at the CABAC entropy coding stage. 
AES-CFB was implemented through the mbedTLSLibrary 
(Anson 2018).

Figures 9 and 10 show the visual results from apply-
ing appropriate privacy level ciphers for H.264/AVC and 
H.265/HEVC encoded video. In Figs. 9 and 10, parts (a, b, 
c) depict the application of the low privacy level. That is 
to say the videos were encoded without applying encryp-
tion. In Figs. 9 and 10, parts (a1, b1, c1) depict the applica-
tion of a medium privacy level, i.e., videos were selectively 
encrypted by using the P-XOR cipher, and parts (a2, b2, 
c2) depict the application of a high privacy level, i.e., vid-
eos were selectively encrypted by means of the AES-CFB 
cipher. The results given in Figs. 9 and 10 show better visual 
confidentiality through the distortion achieved for medium 
and high PL′ with the P-XOR and AES-CFB ciphers.

In Table 10, the Peak Signal-to-Noise Ratio (PSNR), 
valid as a metric when making comparisons between dif-
ferent representations of the same video (Huynh-Thu and 
Ghanbari 2012), is applied to each of the test videos for each 
privacy level, with both H.264/AVC and HEVC encoding. 

The PSNR is used to measure the maximum possible abso-
lute difference between the input YUV bit-stream and the 
encrypted bit-stream in decibels (dB) and calculated by (37). 
The PSNR value is directly proportional to the relative video 
quality; a higher PSNR means better quality.

where MSE is the Mean Square Error between the input 
video and the video after distortion has been introduced, 
with y being the bits per pixel. From Table 10, it is apparent 
that for either codec, the luminance image (Y) PSNR value 
is always considerably lower at the medium level privacy 
level and lower still at the high level privacy level. If the 
luminance frames alone were viewed alone, at the recorded 
dBs, the video clips would certainly be unwatchable. The 
chrominance images (U and V) do not display such large 
dips in their distortion. However, in general they follow the 
same trend as the luminance. Though at the higher dBs of 
the U and V sequences, it is possible that viewed in isola-
tion some indication of the content would be possible, it 
is unlikely that there could be a satisfactory viewing expe-
rience if one of the U or V sequences were looked at in 
isolation.

As an alternative video quality metric, the Structural Sim-
ilarity (SSIM) index (Chen and Bovik 2011), though simi-
lar to PSNR in being an objective measure, seeks to reflect 
the Human Visual System in the way that subjective tests 
do. Unlike subjective tests, SSIM results are reproducible 
and avoid the cost of assembling a panel of suitable view-
ers. SSIM scored very highly in the Video Quality Experts 
Group (VCEG) tests (Winkler 2005), which explains why it 

(37)PSNR = 10.log10
(2y − 1)2

MSE
,

Table 9  Summary of 
experimental videos

Sr. no. Video File size (kB) (YUV) Resolution 
(W × H) (pixels)

Frame rate (fps)

1. Suzie 5569 176 × 144 25
2. Akiyo 11,138 176 × 144 25
3. Stefan 13,365 352 × 288 30
4. Mother-daughter (MD) 44,550 352 × 288 30
5. Crew 178,200 704 × 576 30
6. Four people 811,350 1280 × 720 60
7. Vidyo1 895,950 1280 × 720 60
8. Life 2,505,493 1920 × 1080 120
9. Jockey 1,822,500 1920 × 1080 120

Fig. 9  Visual results of PL selection applied to a Akiyo b Crew c 
MD d Four People e Vidyo1 f Jockey and g Life when encoded with 
H.264/AVC. a–c Low-level privacy (no encryption). a1–g1 Medium-
level privacy (encryption with P-XOR) and a2–g2 high-level privacy 
(encryption with AES-CFB)

◂
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frequently appears, along with PSNR, in comparative qual-
ity studies. The quality range of SSIM is from 0 to 1, with 
1 representing the same video sequence when compared to 
the pre-compressed version.

However, in Figs. 11 and 12 SSIM index plots also show 
that the test videos are drastically changed when SE with 
either P-XOR or AES-CFB for the medium and high pri-
vacy levels, whichever of the two standard encoders was 
first applied. The SSIM plots confirm that both types of 
encryption algorithms destroy the structure of the videos 
which makes attempts by an attacker to reconstruct the vid-
eos difficult without decryption of the parameters selectively 
encrypted. From Figs. 11 and 12, it is also apparent that 

for the same video sequence the SSIM quality tends to be 
lower for H.264/AVC than for HEVC, even after encryp-
tion. This might have been expected given, as previously 
remarked upon, the reported tests such as in Sullivan et al. 
2012 that show greater video quality for the same data rate 
after decoding. The relative privacy levels are confirmed by 
the quality levels, as P-XOR encrypted videos have better 
relative video quality (compared to the YUV version) than 
AES-CFB encrypted videos. Particularly, for the HEVC 
results, the active Stefan video of a tennis player results in 
more privacy after encryption by the SSIM measure. How-
ever, the effect is not always consistent between the two 
codecs. For example, Akiyo, which is largely static results 
in less privacy by the SSIM metric when HEVC is applied 
compared to when H.264/AVC is used to encode the video 
sequence. H.264/AVC is a macroblock-based codec, which 
means that planar areas are always broken into the same-
sized macroblocks and then encoded. However, HEVC 
decomposes a video frame into a quadtree, which means that 

Fig. 10  Visual results of PL selection applied to a Akiyo b Crew c 
MD d Four People e Vidyo1 f Jockey and g Life when encoded with 
HEVC. a–c Low-level privacy (no encryption). a1–g1 Medium-
level privacy (encryption with P-XOR) and a2–g2 high-level privacy 
(encryption with AES-CFB)

◂

Table 10  Comparative PSNR for specific PL′ over H.264/AVC and HEVC encoding

Sr# Video H.264/AVC HEVC

Low PL′ (no 
encryption) 
{Y,U,V}

Medium PL′ (SE 
with P-XOR) 
{Y,U,V}

High PL′ (SE 
with AES-CFB) 
{Y,U,V}

Low PL′ (no 
encryption) 
{Y,U,V}

Medium PL′ (SE 
with P-XOR) 
{Y,U,V}

High PL′ (SE 
with AES-CFB) 
{Y,U,V}

1. Suzie {38.6, 42.4, 41.9} {9.5,20.3,23.5} {8.3,29.6,24.9} {35.2,43.1,43.0} {12.5,26.1,23.8} {10.5,28.1,21.7}
2. Akiyo {39.2, 45.6, 45.2} {8.7,16.3, 19.6} {6.0,11.2,16.0} {37.2,40.1,41.6} {17.1,16.2,20.2} {12.2,14.9,22.0}
3. Stefan {40.3,43.5,43.9} {9.0,15.1,18.7} {7.0,16.2,17.0} {31.8,37.0,37.2} {12.6,19.7,19.8} {9.1,18.9,18.3}
4. MD {36.6, 41.9, 43.1} {8.9,14.8,20.2} {7.3, 21.2, 19.9} {37.5,43.0,43.9} {6.3,19.3,20.3} {5.6,16.6,26.9}
5. Crew {34.5,40.3,40.0} {10.5,26.7,22.1} {9.3,25.5,19.6} {35.1,41.3,41.0} {17.3,22.5,19.7} {14.0,16.4,19.8}
6. Four People {39.5,44.9,44.5} {8.3,28.0,29.0} {6.8,20.2,26.4} {36.1,38.8,40.0} {9.0, 23.8, 27.9} {7.1,18.0,18.3}
7. Vidyo1 {39.5,44.9,44.5} {10.1,26.7,24.6} {7.9,21.8,27.0} {40.8,46.4,45.3} {12.0,25.8,27.9} {11.9,17.4,19.7}
8. Jockey {38.1,41.0,41.5} {9.5,26.0,22.5} {8.2,17.7, 18.2} {39.7,42.5,42.8} {13.9,23.4,21.4} {11.1,16.2,14.2}
9. Life {34.7,38.9,39.4} {9.0,12.2,13.7} {8.9,21.7,20.8] {35.6,41.2,41.3} {8.4,14.8,19.1} {7.7,19.4,13.6}

Fig. 11  Comparative SSIMs for 
different PL′ after H.264/AVC 
video encoding
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planar areas can be encoded as one if the texture characteris-
tics are largely similar. This may explain the relative effects 
between the two codecs in terms of subsequent encryption 
according to the content. However, these second-order vari-
ations are subordinate to the ordering of the privacy levels 
and the general behavior of the two codecs.

5.2.1  Structural distortion analysis

SE applied in a correct way disturbs the structure of a video 
clip. Therefore, apart from visual distortion testing, struc-
tural distortion analysis of applied SE with either P-XOR or 
AES-CFB over the two encoders was examined. This was 

tackled through a 3 × 3 Laplacian edge detection (Shivaku-
mara et al. 2011), as changes to edges indicate changes to 
the structure of each video frame. The ratio (R) (Shahid and 
Puech 2014) for detection of edges can be calculated through 
the following equation:

where E(x, y),E�(z, y) represents the pixel values of the edges 
detected in a binary version of the video frames for original 
and encrypted images, respectively. The detected edges of 
all three privacy levels are shown in Figs. 13 and 14. The 

(38)R =

∑n

x,y=1
�E(x, y) − E�(x, y)�

∑n

x,y=1
�E(x, y) + E�(x, y)�

,

Fig. 12  Comparative SSIMs for 
different PL′ after HEVC video 
encoding

Fig. 13  The comparative visual impact of low, medium and high level privacy for the Crew video after applying the Laplacian edge detector
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comparative results show that the medium and high privacy 
videos are distorted in a way that an interceptor cannot easily 
acquire useful information from the encrypted video clips.

5.2.2  Entropy analysis

Pixels within video frames are highly correlated with neigh-
boring pixels in the vertical, horizontal, and diagonal direc-
tions. If all pixels in encrypted video frames have the same 
gray level or the same intensity of color components, a frame 
image will present the minimal entropy (randomness) value, 
and the information cannot be retrieved through that video 
frame. After the application of SE, the pixel values were 
truncated to a maximum 255 and a minimum 0 in frames. 
This introduces the spread of dark or quite bright colours 
throughout the video frames (as shown in Figs. 9 and 10). 
The entropy analysis has been performed to validate the SE 
over encrypted video at each privacy level. Entropy is cal-
culated as:

where g is the gray level value and its probability is p(g). 
Figure 15 graphically represents the comparative pixel ran-
domness with P-XOR or AES-CFB encryption with either 
H.264/AVC or HEVC encoding of Crew, Four People and 
Vidyo1 test videos. Though there are differences between 
the patterns for both codecs, a detailed analysis of these are 
beyond the scope of the current paper. Whichever codec 

(39)H(g) = −

2N−1∑

i=0

p(g) log2 (g)

(H.264/AVC or HEVC) is applied, the entropy is reduced 
after the application of P-XOR. After applying AES, in gen-
eral, there are further reductions in entropy.

5.2.3  Computational analysis for real‑time streaming

The total execution times taken by the proposed FTC 
encryption module are illustrated in Fig. 16. Notice that 
the vertical axes’ scales are different between the two 
plots of Fig. 16 as plot (b) is larger by a factor of  104, 
as indicated on the chart. The comparative results show 
that H.264/AVC is much faster in terms of computation 
compared to HEVC, as the execution time is directly pro-
portional to the computational complexity. Importantly, 
the encryption times depend on the privacy level, with a 
higher privacy level resulting in a longer execution time. 
This demonstrates the trade-off between increased privacy 
and increased computation time. For real-time streaming, 
increased computation time at the encoder, when added to 
that of network latency may be harmful. Increased compu-
tation time also results in increased energy consumption, 
which is important for battery-powered mobile devices. In 
that respect, the increased computation time of Jockey and 
Life is a reflection of the greater pixel resolution and YUV 
file size of those video sequences (refer to Table 9). How-
ever, from the relative timings between Jockey and Life, 
there is also a content-dependency to the encoding times.

The results of Fig. 17 depict the higher compression 
achieved with HEVC compared to that of H.264/AVC (for 
100 frames encoded with either H.264/AVC or HEVC). 

Fig. 14  The comparative visual impact of low, medium and high level privacy for the Four People video after applying the Laplacian edge detec-
tor
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Thus, for high resolution video compression, HEVC is 
more suitable than H.264/AVC. This is particularly appar-
ent for the higher resolutions of the Jockey and Life (refer to 
Table 9). The content dependency aspect of the achievable 
compression is also more apparent when comparing higher 
resolution Jockey and Life. Additionally, for comparative 
crypto-encoding time analysis, the Absolute Encryption 

Time (AET) for each implemented PL′ (high = AES-CFB 
encryption, medium = P-XOR encryption, low = No encryp-
tion) over H.264/AVC and HEVC video encoders is given in 
Table 11. The AET is calculated as:

(40)AET = Execution time−Encoding time

Fig. 15  Entropy analysis of privacy level wise encryption applied to a Crew, b Four People, and c Vidyo1, with the horizontal axis being ranged 
across the pixel values (0–255) and the vertical axis recording the entropy value
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The results verify that P-XOR provides sufficient level 
of security with lower complexity in comparison to AES-
CFB, as the AETs are always lower for P-XOR compared 
to AES-CFB.

6  Conclusions

Interception is the most common attack on transmitted vid-
eos, particularly those sourced via CDNs, and encryption 
is the solution of service providers. Full encryption applied 

Fig. 16  Comparative execution 
times when encrypting after 
encoding with a H.264/AVC b 
HEVC codecs
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to any type of streamed videos results in a greater compu-
tational cost and latency. Therefore, the important thing to 
focus on is that, while all types of streamed video (except 
publically available video) require privacy, what level of 
confidentiality or privacy can be maintained with minimal 
computation in a real-time environment. This paper pro-
posed a Threat Classification Model using fuzzy logic for 
real-time detection of an appropriate privacy level for trans-
mitted videos. In this model, firstly, the Classifier module 
works with four Fuzzy Inference Systems and outputs an 
appropriate privacy level for a given end-user. Fuzzy logic 
is applied by considering the device type, network character-
istics, and real-time application as primary fuzzy sets. Sec-
ondly, after detection of the privacy level through the Clas-
sifier, the Encryption module encrypts either H.264/AVC or 
HEVC encoded videos with either the in-house P-XOR or 
the industry-strength AES cipher. By keeping in mind the 
need to keep personal videos confidential, the AES cipher 
operating in CFB mode is applied when where the privacy 
level is selected to be high. The P-XOR cipher, which is a 
variant of XOR with two additional permutation rounds, is 
implemented to provide medium-level privacy or confiden-
tiality to streamed videos. If the privacy level is set to Low, 
then the encryption module is by-passed. Consequentially, 
no encryption of videos will be performed at edge servers.

The implementations of P-XOR and AES-CFB for selec-
tive encryption for both encoders was tested in the experi-
ments. The security of the encryption key was also consid-
ered and Diffie-Hellman key exchange was implemented as 
part of the encryption module. An encryption key is gener-
ated per user’s video transmission session. If the same user 
initiates the next session, then a new key will be generated 
again for that specific user. Results show the accuracy of the 
fuzzy Classifier and the considerable visual quality degra-
dation of the tested videos. Comparative distortion analysis 
and entropy testing upon encrypted test videos validated the 
relative confidentiality achieved according to the privacy 
level. The crypto-encoding time and also the compression 
ratio for H.264/AVC and HEVC were also calculated in the 
experiments. Until the present time, AES is well-known as 
the strongest symmetric, block cipher due to its complex 
set of rounds, which consequently increase the Absolute 
Encryption Time (AET). However, visual results and the 
comparative AET verify the suitability of adopting P-XOR 
for real-time videos in comparison to AES for a sufficient 
level of confidentiality, as part of a privacy package. It can 
be concluded that the proposed FTC model will be effec-
tive in implementing video streaming within a Peer-to-Peer, 
enterprise, or public CDN with minimal modifications.

Fig. 17  The comparative com-
pression ratios of H.264/AVC 
and HEVC
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