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Abstract

Virtual observatories allow the means by which an astronomer is able to discover, access, and process data seamlessly, regardless
of its physical location. However, steep learning curves are often required to become proficient in the software employed to access,
analyse and visualise this trove of data. It would be desirable, for both research and educational purposes, to have applications which
allow users to visualise data at the click of a button. Therefore, we have developed a standalone application (written in Python)
for plotting photometric Colour Magnitude Diagrams (CMDs) - one of the most widely used tools for studying and teaching about
astronomical populations. The CMD Plot Tool application functions “out of the box” without the need for the user to install code
interpreters, additional libraries and modules, or to modify system paths; and it is available on multiple platforms. Interacting via
a graphical user interface (GUI), users can quickly and easily generate high quality plots, annotated and labelled as desired, from
various data sources. This paper describes how CMD Plot Tool was developed using Object Orientated Programming and a formal
software design lifecycle (SDLC). We highlight the need for the astronomical software development culture to identify appropriate
programming paradigms and SDLCs. We outline the functionality and uses of CMD Plot Tool, with examples of star cluster
photometry. All results plots were created using CMD Plot Tool on data readily available from various online virtual observatories,
or acquired from observations and reduced with IRAF/PyRAF.

Keywords: Agile software development; Object oriented development; Scientific visualisation; Hertzsprung-Russell diagram;
Globular clusters; General

1. Introduction

In recent years, online archives and virtual observatories or
VOs (Hanisch et al., 2015) have increased the availability and
quantity of digitised, multi-wavelength astronomical data ac-
cessible to research scientists, academics, students and hobby-
ist astronomers. As the data access problem diminishes, more
focus is now required on effectively and efficiently analysing,
interpreting and visualising results from the data. To one ma-
jor institution active in the VO sphere, the European South-
ern Observatory, the term ”Virtual Observatory Tools” only
means tools to query and retrieve raw or processed data from its
archives4; not to manipulate or visualise it. Popular examples
of existing tools which do address some forms of manipulation
and visualisation include SAO ds9 (available as a desktop appli-
cation), which is restricted to pixel data and has limited options
for overplotting of markers and regions; CDS Aladin (avail-
able in both full-functionality desktop and ”Lite”-functionality
HTML5 browser versions), which can perform many operations
on VO images, catalogs and overlays - but lacks the ability
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to plot an ”x vs y” graph such as a CMD; and TOPCAT and
VOPlot, both of which operate on VO catalog (tabular) data.
EURO-VO maintains an online list5 of these and other tools for
VO data. But what this list makes clear is that no one piece
of user-friendly software is readily available to manage, anal-
yse and visualise this diversity of data. As a result of this, a
growing number of researchers, students and hobbyists are de-
veloping their own tools for their own specific purposes.

Furthermore, new users also experience steep learning curves
in installing, understanding and utilising specialist software.
One example is where a user must create a colour magnitude
diagram (CMD) to visualise and interpret photometric data. A
CMD is an observational representation of the Hertzsprung-
Russell diagram (Russell, 1913), not in physical units (absolute
luminosity and temperature) but in observational units (stellar
magnitudes and magnitude differences, in particular filter band-
passes). The flowchart shown in Figure 1 outlines the steps
involved in generating a CMD using IRAF6 (ascl:9911.002)
(Tody, 1993) or PyRAF7 (ascl:1207.011) (Greenfield and
White, 2000). The sophistication, flexibility and breadth of

5http://www.euro-vo.org/?q=science/software
6IRAF: Image Reduction and Analysis Facility.
7PyRAF is a product of the Space Telescope Science Institute, which is

operated by AURA for NASA.
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IRAF have made it one of the “industry standard” platforms
in observational astronomy research - but is it necessary or rea-
sonable to expect mastery in IRAF (or its ilk) as a pre-requisite
for CMD generation? Even tools like VOPlot and TOPCAT,
which take photometric catalog data as their starting point, may
intimidate some users: VOPlot has a 64-page online user man-
ual; TOPCAT’s PDF manual runs to 527 pages! This paper
introduces CMD Plot Tool: a standalone application designed
to read various sources of data and to easily produce consistent
and high quality plots of CMDs - allowing novices to bypass
the usual learning curve, and experts to get results more read-
ily. The executables and source code are publically available on
Sourceforge at https://cmd-plot-tool.sourceforge.io

The paper outline is as follows: Section 2 discusses the de-
velopment of specialised software in astronomy and recent re-
search highlighting its importance and current trends. The soft-
ware development lifecycle (SDLC) used in developing CMD
Plot Tool, and the process of software freezing to create an “out
of the box” application, are outlined. These techniques have
wider utility for other application developers. This section con-
cludes by documenting how this application can be deployed on
various platforms without the need for additional development
environments, code interpreters, or users having to modify sys-
tem paths. Section 3 describes the functionality of the CMD
Plot Tool, how the various data sources are integrated, and the
operations needed to produce CMDs. Section 4 illustrates how
CMDs can be used to interpret, visualise and analyse celestial
populations, with focus on sample datasets to produce CMDs
of globular clusters (GCs). Section 5 presents our conclusions.

2. Software Development in Astronomy

A survey carried out by Momcheva and Tollerud (2015) fo-
cused on the use of software and the software skills of the par-
ticipants in the worldwide astronomy community, between De-
cember 2014 and February 2015. Participants consisted of 1142
astronomers: 380 graduate students, 340 postdocs, 385 research
scientists and faculty, and the remaining 37 consisted of under-
graduate students, observatory scientists, etc. All survey partic-
ipants responded “yes” when asked if they used software as part
of their research; 11% of responders said they used software de-
veloped by others; 57% used software developed by themselves
and others; while 33% said that they used software they devel-
oped themselves for specific purposes, as there was no software
readily available. This research also revealed the open source
language, Python, to be the programming language of choice.
However, there was no reference in this research to the software
development life cycle (SDLC) employed by developers in the
astronomy domain.

Prior to our development of CMD Plot Tool, we investi-
gated which (if any) SDLCs are utilised in the development of
astronomy-specific software. Examples of promising software
publications we checked include Collins et al. (2017), Kon-
stantopoulos (2015), Sybilski et al. (2014), VanderPlas et al.
(2012), Economou et al. (2014), Allen and Schmidt (2015),
Bray (2014), Davies et al. (2013), Kent (2013), Goodman

Figure 1: CMD Generation Flowchart. This illustrates the steps and learning
curve required to generate a CMD of stellar objects, starting with raw image
data. Task names in IRAF/PyRAF/DAOPHOT, which would achieve the pho-
tometry steps, are given for illustration.

(2012), and McMullin et al. (2007). We found no informa-
tion regarding the process (programming paradigms) by which
the published astronomy-specific software was written, i.e. the
developers do not state whether they employed any particu-
lar SDLC or test driven development (TDD: Beck (2002); As-
tels (2003)) approach. In order to preclude our own selection
bias, we then checked every paper in the most recent year’s
volume of freely available Astronomical Data Analysis Soft-
ware and Systems (ADASS) conference e-proceedings (Tay-
lor and Rosolowsky, 2015) - choosing ADASS because of its
pre-eminence as a forum for communicating best practice in
this field. Not all of these 128 ADASS papers involve writ-
ing code - in fact, over half are concerned with other topics
(databases, data standards and models, metadata and archive
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management, VO interfacing, creative use of archival data, col-
laborative workspaces, cloud computing, source code libraries).
However, our trawl revealed that in nearly all cases where a
code or pipeline was developed (typically using Python, Java,
C or C++; sometimes in conjunction with MPI or Perl), it is
described in terms of its algorithms and functionality, layers
and internal architecture, external connectivity, inputs and out-
puts; but not in terms of its development approach. The few
exceptions to this rule were Ballester et al. (2015), Vallejo et al.
(2015), Surace et al. (2015) and Mulumba et al. (2015). The
first of these papers outlines a process of iterating with users on
their requirements, but does not explicitly identify this approach
by its name. The other three, in contrast, give comprehensive
treatment to their Agile and User-Centred design methodolo-
gies. This investigation indicates that only the order of 5% of
astronomical coding papers provide such information, and pre-
sumably this reflects the proportion of projects which take a
SDLC approach.

The advantages of employing and adhering to a SDLC in-
clude: clarity in project objectives, requirements and estimates;
more stable systems where missing functionality can be easily
identified; developing a valuable relationship between users and
developers. A lack of awareness of these benefits is an unfortu-
nate aspect of the astronomical software development culture,
and if unchecked can potentially lead to software/systems be-
ing over budget, delivered late, or missing functionality; and
in worst cases, to complete project failure. So in an attempt to
steer this culture, we will describe programming paradigms and
the SDLC/TDD approach, including the advantages and disad-
vantages of various SDLCs.

2.1. Software Development Life Cycle (SDLC) and Program-
ming Paradigms

A SDLC defines a structured sequence of stages in software
engineering to develop the intended software product. A TDD
approach relies on a shorter development cycle, where require-
ments become specific test cases that the software must pass.
Another factor to consider is determining which programming
paradigm to use. In developing CMD Plot Tool, much emphasis
was put on determining an appropriate SDLC/TDD approach
and programming paradigm, while also setting out a strict set
of requirements beforehand. This section will discuss the op-
tions available and justify the choices made.

Programming Paradigms. Different paradigms allow for al-
ternative approaches when developing software applications.
However, it is important to note that while programming
languages are usually classified by one paradigm, there are
some languages - such as Python - that can handle multiple
paradigms. The two most common programming paradigms
are the procedural paradigm and the object-oriented paradigm.
Procedural programming relies on the premise that the coder
utilises procedures (routines or subroutines) to operate and ma-
nipulate data. This type of programming is sequential in na-
ture, and so not particularly complicated. Object-orientated
programming (OOP) amalgamates procedures and data into ob-
jects, allowing for more complicated functionality, while min-

imising the amount of code required. Objects can either be in-
dependent or associated with other objects, and they interact
by passing information to each other. In the instance where an
object interacts with another object, regardless of their simi-
larity or differences, then the object contains information about
itself (encapsulation) and the objects it can interact with (inher-
itance). Inheritance enables new objects to inherit the proper-
ties and methods of existing objects. OOP also utilises classes,
which are user-defined prototypes for an object. They define a
set of attributes that characterise any object of the class. Classes
allow for the generation of multiple objects of the same type
that can be used anywhere in the code, allowing for a significant
reduction in coding but also more flexibility and functionality
when dealing with multiple objects of the same type. Inheri-
tance may be exploited for further coding efficiencies: rather
than creating a new object from scratch, developers can refer-
ence a pre-existing object or superclass and create a subclass
based on the previous one, allowing them to reuse code and
functionality more effectively.

Using OOP, developers can manage and break software
projects down into smaller, more manageable modular prob-
lems, one object at a time. The modularity of objects makes
trouble-shooting easier; encapsulation ensures that objects
are self-contained and functionality contained within meth-
ods/functions specific to that class. When errors do occur,
developers know where to look without having to navigate
through large amounts of code. Another advantage of OOP is
in software maintenance; applications may evolve by additional
functionality or improvements to the user experience, and up-
grades might be required to allow software to work on newer
computer systems. While an OOP-based application requires a
great deal of planning pre-release, less work is needed to main-
tain it over time. Given these advantages, CMD Plot Tool was
developed using OOP, written in Python.

Figure 2: The Agile Software Development Lifecycle. Im-
age reproduced from http://cssmith.co/wp-content/uploads/2017/10/

scrum-diagram-agile-application-and-cloud-computing.jpg.
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Agile Software Development. The Agile Software Develop-
ment Lifecycle (ASDL) is a set of methodologies (four values
and twelve principles) defined by the Agile Manifesto (Beck
et al., 2001). It values:

1. Individuals and interactions over processes and tools
2. Working software over comprehensive documentation
3. Customer collaboration over contract negotiation
4. Responding to change over following a plan

The twelve principles expand on these values in more detail,
giving more emphasis to the items highlighted in bold. The
ASDL is illustrated in Figure 2. It combines iterative and in-
cremental process models, and focuses on adaptability and sat-
isfaction by rapid delivery of working software products before
the product is reviewed. During each development lifecycle,
additional functionality is incorporated and tested. If the prod-
uct meets the specification and satisfaction of the project owner,
then the product is released to the market or end users; if not,
then another iteration of the development phase begins after all
incremental changes have been noted. Each development phase
focuses on particular functionality.

A comparison of the ASDL and traditional software develop-
ment life cycles is presented in Table 1 (Leau et al., 2012). This
explains our main reasoning for choosing the ASDL over tradi-
tional SDL: the project (1) was relatively low scale, (2) had high
customer involvement, and (3) was characterised by a change-
able development direction and evolving user requirements. Ta-
ble 2 (Sami, 2012) outlines the rubric used in deciding on the
ASDL over the alternatives for this project; ASDL again scores
highest or joint-highest in factors such as user requirement and
“visibility of stakeholders” (another name for customer involve-
ment), but low cost and short time schedule were also important
in a busy, non-commercial, academic development team.

Our utilisation of the ASDL to develop of CMD Plot Tool
proved extremely beneficial. User stories - concise, written
descriptions of specific functionality that is valued to the user
or owner of the software - were generated by two co-authors
(R.B., L.-M.B.) prior to the commencement of coding by K.F.
A description of a user story follows the following template
(Rehkopf, 2017):

As a [user role], I want to [goal], so i can [reason]

For example: As an astronomer, I want to be able to select
two magnitude files output by IRAF/DAOPHOT; calculate
the colour index for each star; format the axis, title, plotting
colour; and add annotation; so I can generate a CMD plot for
the classroom or for publication.

User stories must be detailed enough to start work; however,
further details can be established and clarified as the project
progresses. The relatively small scale of this project bene-
fited the authors by allowing them to discuss the overall goal
and functionality of the software prior to and during develop-
ment. Regular communication and continuous inputs from the
customers (in this instance the co-authors) left little room for
guesswork regarding functionality. Requirements specified by

the customers were developed into 13 user stories (often with
some elements in common).

These user stories focused the development cycle for each
iteration of CMD Plot Tool and saved time: by allowing the
developer to concentrate on breaking requirements down into
functionality, this breaks a large project into smaller, more man-
ageable tasks (in total 14 iterations were required, with 1-2
weeks allocated for each depending on the complexity of the
functionality). For example, the above user story is accom-
plished by the following tasks:

1. Read in DAOPHOT-format photometry file for each fil-
ter/waveband

2. Extract necessary fields from each file.
3. Merge fields from each file, removing errors & duplicates.
4. Calculate the colour indices from pair(s) of magnitudes,

and calculate their errors.
5. Retrieve user specified parameters regarding axis scale,

annotation, and colour options from the GUI.
6. Generate and save the plot.
7. Display the plot.
8. Delete temporary files.

Another benefit of having well defined user stories is the abil-
ity to anticipate the functionality of each software class and how
they interact with each other. Upon completion, CMD Plot Tool
consisted of 6 classes, illustrated in the UML diagram of Figure
3, with approximately 1000 lines of code; an analysis of each
class is given in Table 3.

Software Testing. Software testing is essential in evaluating the
quality, performance and accuracy of code by detecting differ-
ences between actual and expected outputs, for given inputs.
The ASDL (Figure 2) recommends that this process be carried
out during each development phase, to ensure verification and
validation of the product. Verification ensures that the prod-
uct satisfies the conditions imposed at the start of the develop-
ment phase, to confirm that the application behaves as it should.
Validation ensures the application satisfies the requirements at
the end of the development phase to certify that it is built as
per the customer requirements. There are numerous types of
software testing, which can be categorised as being either func-
tional, non-functional or maintenance. TDD, unit testing and
GUI testing were considered as possible testing techniques for
testing the CMD Plot Tool.

TDD is a technique developed by Kent Beck (Beck, 2002),
(Figure 4) for constructing software. It follows three simple
steps repeatedly:

• Construct a test for the next functionality to be coded
• Write functional code until the test is passed
• Refactor new and old code, making it well structured

This particular software development technique relies on the
repetition of a very short development cycle where require-
ments are turned into very specific test cases, and software is
then improved to pass only the new tests. However, implement-
ing a TTD approach in this project proved difficult due to lack
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Agile Traditional
User requirement Iterative acquisition Detailed user requirements are well

defined before coding
Development direction Readily changeable Fixed
Testing On every iteration After coding phase completed
Customer involvement High Low
Extra quality required for developers Interpersonal skills & basic business knowledge Nothing in particular
Suitable project scale Low to medium scaled Large-scaled

Table 1: Agile SDLC versus Traditional SDLC models (Leau et al., 2012)

Factors Waterfall V-Shaped Evolutionary Prototyping Spiral Iterative &
Incremental

Agile

Unclear User Requirement Poor Poor Good Excellent Good Excellent
Unfamiliar Technology Poor Poor Excellent Excellent Good Poor
Complex System Good Good Excellent Excellent Good Poor
Reliable system Good Good Poor Excellent Good Good
Short Time Schedule Poor Poor Good Poor Excellent Excellent
Strong Project Management Excellent Excellent Excellent Excellent Excellent Excellent
Cost limitation Poor Poor Poor Poor Excellent Excellent
Visibility of Stakeholders Good Good Excellent Excellent Good Excellent
Skills limitation Good Good Poor Poor Good Poor
Documentation Excellent Excellent Good Good Excellent Poor
Component reusability Excellent Excellent Poor Poor Excellent Poor

Table 2: Rubric used in deciding on the SDL for this project (Sami, 2012)

of experience in designing test cases prior to coding. As a con-
sequence of this steep learning curve, it was decided to use unit
testing.

The CMD Plot Tool was developed and tested using the Py-
Charm IDE (integrated development environment) 2017 Com-
munity Edition, Python 2.7 with later iterations using Python
3.7. The free community edition of PyCharm offers usage of
both testing frameworks8 and code analysis tools9. Code in-
spections detect - and suggest corrections for - compiling er-
rors, code inefficiencies including unreachable code, unused
code, non-localised string, unresolved method, memory leaks
and even spelling mistakes. We found the code inspection fea-
ture extremely useful in identifying and eliminating potential
errors prior to running any unit testing. In addition to this auto-
mated testing, the co-authors behind the user stories used their
expertise in astronomical photometry to test the GUI, based on
a range of inputs and expected outputs - sampling the 3 types
of input file format (see 3.1), and input catalogs of sizes which
varied up to approximately 105 stars. Testing covered all of
the functionality provided in the GUI (see 3), including error
bars, plot annotation, axis specification, and side-by-side plot-
ting. Figures 6, 7, 8, and 9 illustrate some of these features.
Feedback was provided to co-author K.F., who then made the
appropriate changes, and the code was tested again. This pro-
cess was done at the end of each iteration.

8PyCharm Testing Frameworks: https://www.jetbrains.com/help/pycharm/

testing-frameworks.html
9PyCharm Editions Comparison: https://www.jetbrains.com/pycharm/

features/editions comparison matrix.html

2.2. Freezing Python Code

Installation of astronomical software packages can be non-
trivial, and a source of frustration. It is often the case that
the end-user installs programming interpreters to execute code,
only then to be informed that the software package requires the
presence of another to work correctly, and that system paths
must be set for referencing additional libraries. Other issues
can arise when there are multiple versions of a particular pro-
gramming language on a system (e.g. Python 2 and Python 3).

Freezing of code allows for the creation of a single executable
file that can be distributed to users. This application/executable
contains all the code and any additional resources required to
run the application, and includes the Python interpreter that it
was developed on. The major advantage for distributing appli-
cations in this manner is that it will work immediately, without
the need for the user to have the required version of Python (or
any additional necessary libraries) installed on their system. A
disadvantage of generating a single file is that it will be larger,
as all necessary libraries are incorporated. The increase in file
size is acceptable when considering other issues, for example
ease of installation, running, and portability to other platforms.
Python freezing tools and platforms supported are listed in Ta-
ble 4. CMD Plot Tool was developed on OSX using Python
3.6, and the following libraries were used and frozen with it:
numpy, pandas, tkinter, PIL, csv, math, matplotlib, glob, os and
datetime. The size of the frozen output file is 152 MB.
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Class Name
(.py)

Lines of
Code
(Including
Comments)

Description

SplashScreen 41 Creates and positions a splash screen in the centre of the monitor when the application starts.
CMD Plot Tool 554 Constructs and manages operations via the GUI. Parameters and operational requests based

on user interaction are passed to appropriate classes.
Plot DAOPHOT 189 Selected DAOPHOT-format photometry (magnitude) files are passed to this class, which con-

structs and saves a CMD plot based on user-specified parameters.
Plotting 250 Selected .zpt and .txt photometry (magnitude) files are passed to this class, which constructs

and saves a CMD plot based on the user-specified parameters and requirements.
Plot Text 21 Manages every instance of an annotation on the plot. A reference to the annotation text, with

its corresponding x,y coordinate and its pointer x,y coordinate, allows for multiple instances
within a single plot.

ThePlot 41 Updates and displays the plot on the screen. Additional functionality also allows for this
window to be moved, based on mouse clicks and movement.

Table 3: Characteristics of each class within CMD Plot Tool. Note that the ”lines of code” column includes comments, i.e. non-executable code.

Tool Apple OSX Linux Microsoft Windows
py2app Yes No No
py2exe No No Yes
pyInstaller Yes Yes Yes
cx Freeze Yes Yes Yes

Table 4: Python freezing tools and the platforms they support. As this software
was developed on OSX, py2app was used to successfully freeze the code into
a single file. Further single-file applications/executables were created using
cx Freeze for the platforms listed above. These are available with the source
code.

3. Functionality of CMD Plot Tool

The Graphical User Interface (GUI) of CMD Plot Tool,
shown in Figure 5a, allows the user to select files and format
plots from a single window. Users generating plots follow the
flowchart outlined in Figure 5b. Current functionality includes:

• Set working directory: Select the directory where all plots
will be saved.

• Save option: Depending on the scenario, users may gen-
erate multiple plots. Each time a plot is generated, it is
saved using a timestamp. This aids efficiency, while also
allowing the user to keep a detailed track record of plots
generated. Users can overwrite this option.

• Select input file type: Current functionality allows the user
to work on standard text files, .mag files generated from
IRAF/DAOPHOT, and .zpt files from the ACS Survey of
Galactic Globular Clusters (Sarajedini et al., 2007). Each
file type is handled differently due to their unique format.

• Title and Axis options: format plot titles; select which
columns in the data are to be plotted on X and Y axes;
set axis limit values and units of scale on each axis inde-
pendently from each other. This option enables zooming

into particular areas of the CMD plot. Examples of this
are illustrated in Figure 7b and Figure 8b.

• Annotate options: Allows users to position text and format
the colour of text and pointer labels.

• Error bars: Selecting this option displays error bars on
each data point, while also allowing the user to format the
colour and markers used. An example of this is illustrated
in Figure 7b.

• Star count: The user will be informed as to the number of
stars plotted within a region.

• Plot comparison: as an educational tool, it is extremely
useful to illustrate to students and non-professionals the
differences between data acquired from various sources.
Figure 6 is an example of this.

• Delete plots: During the course of plotting CMDs, users
may wish to test variations of different parameters. As a
result, and over time, the number of plots generated will
increase. If selected, all plots within the working directory
are deleted.

• Reset parameters: Allows the user to reset all parameters
within the GUI to their defaults.

3.1. Supported Input File Types

Text Files. The CMD Plot Tool offers users the option to plot
data contained in standard text files. The format of the input
data depends on the type of plot, i.e. with or without error
bars. Plotting without error bars requires data to be presented in
two column format, with each line containing X Y paired data,
and the first line containing the heading name for each column.
Plotting data with error bars follows the same format, with ad-
ditional fields: X Y X error Y error.
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(a) (b)

Figure 5: CMD Plot Tool: Panel (a) shows its Graphical User Interface (GUI). Panel (b) outlines its operational flowchart.

Column Name Description
id Identification of the star
x,y Position of the star on the master image
Vvega, err,
VIvega, err,
Ivega, err

Magnitudes/colour and errors on the
VEGAmag photometric system - stars
with one measurement have errors
based on root(n) noise.

Vground, Iground Magnitudes on the ground VI system.
Nv, Ni Number of times the star was mea-

sured in each filter.
wV, wI Flags for the nature of image in V and

I - short or deep.
xsig, ysig RMS of x and y positions (large scatter

indicates poor photometry)
othv, othi Fraction of light from other stars (mea-

sure of crowding).
qfitV, qfitI Quality of the fits - smaller is better
RA, Dec The right ascension and declination

(celestial coordinates) of the star at the
J2000 equinox, from the HST image
headers.

Table 5: ACS .zpt file format. Adapted from https://archive.stsci.edu/pub/hlsp/

acsggct/hlsp acsggct photometry readme.txt

ACS .zpt Files. The ACS Survey of Galactic Globular Clus-
ters (Sarajedini et al., 2007) is an imaging survey of Galactic
GCs using the Advanced Camera for Surveys instrument on
board the Hubble Space Telescope (HST). This HST Treasury
project 10 was designed to obtain photometry with S/N & 10
for main sequence stars with masses & 0.2M� in the central 2
arcminutes of a sample of 66 globulars. Filters used included
F606W (”Wide V” band; yellow light) and F814W (∼I band;
near-infrared light).

The column format of the .zpt file is described in Table 5.
Users of CMD Plot Tool can select which magnitude/colour
columns they wish to plot via a drop down menu that is made
available when this file type is selected; normally the VEGA-
mag columns are used. Corresponding error bar data is included
if the user opts to display error bars on the plot.

DAOPHOT .mag files. DAOPHOT (ascl:1104.011) (Stetson,
1987) was developed for performing point-source photome-
try, particularly in crowded stellar fields; initially as a stan-
dalone package, and subsequently ported into IRAF. The typ-
ical DAOPHOT .mag file (star magnitude file) contains 33
columns of data relating to detected stars, in addition to meta-
data about the observation and relevant DAOPHOT parameter
settings. Not all of this is necessary for visualising a CMD plot.
CMD Plot Tool selects a subset of fields within each .mag file
(two .mag files must be selected for plotting). Corresponding
fields are then merged and sorted based on each star’s unique
ID within the file. Calculations are performed based on their

10Data available online: https://archive.stsci.edu/prepds/acsggct/
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Figure 6: Comparison of CMDs of globular cluster NGC 6205 (M13), generated as a single output using the Plot Comparison functionality (see 3) of CMD Plot
Tool. The plot on the left was generated from reduced Hubble Space Telescope photometry available from the ACS Survey of Galactic Globular Clusters (Sarajedini
et al., 2007). The plot on the right was generated from data acquired by the authors with the 1.52m Cassini Telescope of the Osservatorio Astronomico di Bologna
at Loiano and reduced using IRAF/DAOPHOT.

unique IDs, magnitudes and magnitude errors. The results are
then saved in temporary storage and plotted. Once the applica-
tion is terminated, all temporary files are removed.

It is important to note that users are not required to have
IRAF / PyRAF installed on their system in order to plot CMDs
based on DAOPHOT .mag mag files. The algorithm written
to accomplish this utilises the Python Data Analysis Library11

(pandas) and the Python CSV module. The pandas library is an
open source library which provides high performance, easy to
use data structures (data frames) and other data analytics tools
for Python. Incorporating this with the CSV module allows
for fast, reliable and efficient merging and calculating of large
scale data. Performance is excellent even when the dataset be-
ing worked on contains tens of thousands of stars.

3.2. Annotation

The colour options available for text, markers, pointers and
error bars, and shape options available for markers, are out-
lined in Table 6. Adding annotation to the plot is done via an
algorithm that parses the text input by the user via the text area

11http://pandas.pydata.org

Colour Options Marker Options
Blue Circle (◦)
Red Triangle (4)
Green Diamond (♦)
Black Point (•)
Cyan Pixel (·)
Yellow Star (?)
Magenta X (×)

Table 6: Colour options available for text, markers, pointers and error bars, and
shape options available for markers.

available on the GUI. Annotation is entered in the following
format: text, x1, y1, x2, y2. Text represents the string that the
user wishes to display, x1, y1 represents the start position of the
text, and x2, y2 represents where the labelling arrow will point
to. Data entered is parsed using a comma as a separator, remov-
ing unnecessary spaces. For example, the annotation in Figure
7b was entered as follows:

Main Sequence, 0.85, 17.92, 0.75, 17.75
MS-Turn Off, 0.85, 17.70, 0.75, 17.45

8
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(a) (b)

Figure 7: CMDs for GC NGC 3201, generated from ACS Survey of Galactic Globular Clusters data (Sarajedini et al., 2007). Panel (a) shows the full CMD without
error bars, while Panel (b) shows error bars, and is zoomed in and annotated to highlight stars at the top of the main sequence and main sequence turn-off.

There is no restriction to the amount of annotation on each
plot. For example, in Figure 8a where multiple arrows are pro-
jecting from text, the following annotation was applied:

MS, -2.75, 23, 0.4, 22
MS, -2.75, 23, 0.75, 24.5

If the user wishes to just add text with no pointer, then the x1,
y1 and x2, y2 coordinates must be the same.

4. Usage Case Study for CMD Plot Tool: Interpreting the
CMDs of Globular Clusters

Star Clusters. Stars form in clustered environments which are
encapsulated in a giant molecular cloud (Walker et al., 2015).
They are subjected to the gravitational forces of their stellar
brethren, consume fuel to sustain themselves, and transform
as they age. The energy created and exchanged between stars
causes gas to heat to a point where it is blown away; during this
time some stars may escape a newly forming cluster to become
“runaways”. Those that remain become gravitationally bound.
As a star approaches its end, it will swell to become a red gi-
ant; and depending on its mass, it will either eject its bloated
atmosphere forming a planetary nebula and exposing its core

as white dwarf, or go supernova with a shockwave powerful
enough to instigate star formation in other interstellar clouds.
The remains of the core of the exploded star will form a neutron
star or black hole; which is created will depend on the mass of
the original star. This lifecycle can take anywhere from a few
million to billions of years, again depending on the star. Star
clusters are divided into two principal categories: open (Galac-
tic) clusters and globular clusters.

Globular Clusters. Globular Clusters (GCs) are among the old-
est radiant objects in the universe, with estimated ages be-
tween 10 Gyr − 16 Gyr (Krauss and Chaboyer, 2003). There
are approximately 150 known GCs in the Milky Way galaxy,
most residing in its spherical halo. Their stellar populations
are extremely dense reaching up to 106 stars pc−3. Due to
their density, it is highly probable that collisions occur be-
tween stars within the cluster, such collisions would lead to
a variety of exotic stellar objects such as pulsars, Blue Strag-
gler stars, close interacting binaries, and X-ray sources (Dı́az-
Sánchez et al., 2012). GCs are also readily observable in ex-
ternal galaxies due to their compact sizes12 and masses ranging

12half-light radii of a few parsecs
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(a) (b)

Figure 8: CMDs of Globular Cluster NGC 1851. Data from the ACS Survey of Galactic Globular Clusters (Sarajedini et al., 2007). Panel (a) shows the full CMD,
while Panel (b) zooms in on the brighter sequences. Explanation of labels: MS: Main Sequence, MSTO: Main Sequence Turn Off, HB: Horizontal Branch, BS: Blue
Stragglers, WD: White Dwarfs, RGB: Red Giant Branch, HB-Blue: blue population of the Horizontal Branch, HB-Red: red population of the Horizontal Branch,
AGB: asymptotic giant branch.

from 104 M� − 106 M� (Brodie and Strader, 2006), although it
is harder to resolve extragalactic GCs into individual stars.

GCs are of interest because of their age, assumed rela-
tively homogeneous populations, relative isolation in their par-
ent galaxies, and abundance of unusual objects, such as blue
stragglers, X-ray binaries, radio pulsars, and intermediate-mass
black holes (Portegies Zwart et al., 2010). Krauss and Chaboyer
(2003) describe three independent ways to reliably infer the
ages of the oldest star’s in our galaxy: (i) Radioactive Dating,
(ii) White Dwarf Cooling and (iii) Main Sequence Turnoff Time
Scale: a robust prediction of the theoretical models for deter-
mining absolute GC age is the time it takes a star to exhaust the
supply of hydrogen in its core and leaves the main sequence.
However, uncertainties in determining distances to GCs are a
source of doubt when estimating ages.

4.1. CMDs for Globular Clusters

The CMD is an extremely useful tool in aiding the under-
standing of the stellar populations within a cluster, and their
evolution. Since a CMD plots apparent magnitudes, stars of the
same inherent luminosity, but different distances from the ob-

server, are displaced vertically on a CMD. But since the depth
of a star cluster is much less than its distance, all its stars can
be taken to be at the same distance. The colours of the stars,
calculated as the ratio of their fluxes (difference in logarithmic
magnitudes) in two filter bandpasses, reflect their surface tem-
perature. Age and chemical composition differences between
stars of a given mass are (mainly) evidenced in temperature
(colour) differences, displacing stars horizontally on the CMD.
But since the stars in a cluster essentially formed from the same
gas nebula at the same time, the assumption of equal age and
chemical composition also generally holds. A typical cluster
CMD therefore shows rather tightly defined sequences of stars,
with the mass of a star determining where it lands in these se-
quences. As indicated in Figure 8a and Figure 8b, a typical
CMD for a GC will include a main sequence (MS), main se-
quence turnoff point (MSTO), subgiant branch (SGB), red giant
branch (RGB), horizontal branch (HB), and asymptotic giant
branch (AGB). Blue stragglers (BS) may also be present be-
tween the MSTO and HB, and if the photometry reaches deep
enough, white dwarfs (WDs) may be detected as well.

These CMD sequences and branches trace the evolutionary

10



Figure 9: A single output file in Plot Comparison mode. Left side: CMD for GC NGC 288, where HB-Blue is the blue population of the horizontal branch. Right
side: CMD for GC NGC 362, where HB-Red is the red population of the horizontal branch. Data from the ACS Survey of Galactic Globular Clusters (Sarajedini
et al., 2007).

processes in the cluster’s stars. The relative numbers of stars
in each branch also quantify the relative duration of each evo-
lutionary phase - few stars present in a branch means that they
quickly move on to the next phase.

The main sequence (MS). Most of a star’s life is spent on the
main sequence (MS): a phase when hydrogen in the star’s core
is fused into helium, with temperatures reaching ∼ 15 million
Kelvin. Energy is transported to the star’s surface through radi-
ation and convection. There is difference between the CMD of
a globular cluster and that of solar neighbourhood: in the latter,
main sequence stars do not reach the horizontal branch. This
occurs as such young stars are uncommon in GCs. The age of
the cluster is estimated by the main sequence turnoff (MSTO).

The subgiant branch (SGB). This is a narrow section of the
CMD, which joins the main sequence at the turnoff point. A
star moves onto the turnoff point when the hydrogen in its core
has been depleted and an inert helium core created. Hydrogen
will continue burning (fusing) in a shell as the core contracts.
There is a small increase in the luminosity of the star as the
cooler envelope beyond the shell expands. This is known as the
subgiant phase. The position of the SGB moves considerably
with age, so the narrowness of this feature on a GC CMD limits

the stellar formation period to no more than ∼2% of the clus-
ter’s age (Stetson, 1993). The metallicity (relative abundance of
elements heavier than helium) of the cluster governs the posi-
tion of the MS and SGB on the CMD. Metal-poor clusters tend
to have a much flatter SGB than that of metal-rich clusters.

The red giant branch (RGB). As the envelope of the star ex-
pands, the effective temperature decreases and it reaches an adi-
abatic temperature gradient. This is due to convection within
the star’s interior and the efficiency of energy transportation to
the surface. At this point the star will rise quickly up the RGB.
When the star reaches the top of the RGB, its core temperature
rises and helium fusion begins, producing carbon and oxygen.
This is known as the helium flash.

The horizontal branch (HB). After the helium flash, energy is
being released from helium burning in the star’s core plus hy-
drogen burning continues in the thin shell surrounding the core;
as a result the star shrinks, becomes hotter and bluer, and jumps
to the horizontal branch. CMDs reveal how the metallicity of
the cluster influences the composition of the HB. Metal poor
clusters have bluer stars than metal rich clusters. RR Lyrae pul-
sating variable stars can be found on the HB in the instability
strip, which is located between red and blue HB stars. The

11



Figure 3: UML diagram for classes outlined in the Python files in Table 3

blue portion of the branch consists of helium burning similar to
the hydrogen burning of the MS, at shorter time scales. As the
star moves to the red portion of the branch, the helium in its
core is depleted and has been completely converted into carbon
and oxygen. This evolution occurs rapidly and forms a carbon-
oxygen inert core. The populations of blue and red stars on the
HB can be seen in Figure 8b. Although there is a correlation be-
tween HB colour and metallicity, there can also be a spread of
HB star colours at any given metallicity. For example NGC 288
and NGC 362 have identical metallicities; yet NGC 288 has a
very blue HB and NGC 362 had a very red HB, as can be seen
in Figure 9.

The asymptotic giant branch (AGB). The AGB derives its
name from the manner in which the evolutionary track ap-
proaches the line of the RGB from the left (see Figure 8b).

Figure 4: Test Driven Development Image reproduced from http://agiledata.
org/essays/ tdd.html. c© Scott W Ambler

The inert carbon?oxygen core shrinks and heats up, with both
helium and hydrogen burning shells around it. The star then
moves up the AGB. Here the star has a higher temperature than
when it was on the RGB. Stars on this branch will again cool
and grow quickly. The core of such a star can be unstable, and
its outer envelope can be ejected slowly while the core con-
tracts. This leads to the creation of planetary nebulae with white
dwarfs at their centres.

White dwarfs (WD). Because of their faintness, the most elu-
sive sequence in most CMDs is the white dwarf cooling se-
quence. The older WDs have had more time to cool and fade,
and the rate of cooling can be modelled, so the faintest de-
tectable WD can be dated relative to the brightest WD.

CMDs and GC age. The oldest GCs have been of particular
interest to researchers as they tried to determine their age. In
doing so, they provided an excellent constraint on determining
the age of the universe and subsequently on cosmological mod-
els used to describe it (VandenBerg et al., 2002). Isochrones
are synthetic CMD sequences computed for a grid of differ-
ent ages and metallicities. Determining the best isochrone fit
for stars in the region of the turnoff (MSTO) best estimates the
age of the GC. Analysing the variances of these isochrones be-
tween the TO and the start of the subgiant branch is shown to be
nearly independent of age and chemical abundances. More re-
cently, VandenBerg et al. (2013) determined the ages of 55 GCs
using CMDs and an improved ∆VHB

TO method. In that study,
isochrones were fitted to just the TO portion of the observed
CMD where morphology is predicted to nearly independent of
age and metallicity; furthermore inferred ages were based on
the location of the beginning of the subgiant branch. This shows
how several features on a CMD can be used for chronology.

5. Conclusions

We have presented a new application, CMD Plot Tool, for
calculating and plotting CMDs. It can handle multiple file for-
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mats to generate professional and customised plots, without the
usual steep learning curve. Development using Python, OOP
and a formal software development lifecycle model (Agile) al-
lowed for the creation of an application that can be deployed on
multiple systems. It works “out of the box” and does not re-
quire any installation of development environments, additional
libraries or resetting of system paths. The tool is available as
a single application/executable file, with the source code, on
the public open-source repository, Sourceforge. Sample data is
also bundled, to demonstrate its complete functionality to users.
Other functionality within this application is the ability to con-
vert DAOPHOT magnitude files to CSV format. We have il-
lustrated one usage of the application: exploring the CMDs of
globular star clusters.
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Oscoz, A., Hildebrandt, S.R., López, R., Rodrı́guez, L.F., 2012. High-
resolution optical imaging of the core of the globular cluster M15 with Fast-
Cam. Monthly Notices of the Royal Astronomical Society 423, 2260–2269.
doi:10.1111/j.1365-2966.2012.21034.x, arXiv:1204.5340.

Economou, F., Hoblitt, J.C., Norris, P., 2014. Your data is your dogfood: De-
vOps in the astronomical observatory. arXiv e-prints arXiv:1407.6463.

Goodman, A.A., 2012. Principles of high-dimensional data visualization in
astronomy. Astronomische Nachrichten 333, 505. doi:10.1002/asna.
201211705, arXiv:1205.4747.

Greenfield, P., White, R.L., 2000. A New CL for IRAF Based On Python,
in: Manset, N., Veillet, C., Crabtree, D. (Eds.), Astronomical Data Analysis
Software and Systems IX, p. 59.

Hanisch, R.J., Berriman, G.B., Lazio, T.J.W., Emery Bunn, S., Evans, J., McG-
lynn, T.A., Plante, R., 2015. The Virtual Astronomical Observatory: Re-
engineering access to astronomical data. Astronomy and Computing 11,
190–209. doi:10.1016/j.ascom.2015.03.007, arXiv:1504.02133.

Kent, B.R., 2013. Visualizing Astronomical Data with Blender. Publ. Astron.
Soc. Pac 125, 731–748. doi:10.1086/671412, arXiv:1306.3481.

Konstantopoulos, I.S., 2015. The starfish diagram: Visualising data within
the context of survey samples. Astronomy and Computing 10, 116–120.
doi:10.1016/j.ascom.2015.01.007, arXiv:1407.5619.

Krauss, L.M., Chaboyer, B., 2003. Age estimates of globular clusters in the
milky way: Constraints on cosmology. Science 299, 65–69. doi:10.1126/
science.1075631.

Leau, Y.B., Loo, W.K., Tham, W.Y., Tan, S.F. (Eds.), 2012. Software De-
velopment Life Cycle AGILE vs Traditional Approaches. volume 37, In-
ternational Conference on Information and Network Technology (ICINT),
Singapore.

McMullin, J.P., Waters, B., Schiebel, D., Young, W., Golap, K., 2007. CASA
Architecture and Applications, in: Shaw, R.A., Hill, F., Bell, D.J. (Eds.),
Astronomical Data Analysis Software and Systems XVI, p. 127.

Momcheva, I., Tollerud, E., 2015. Software Use in Astronomy: an Informal
Survey. ArXiv e-prints arXiv:1507.03989.

Mulumba, P., Gain, J., Marais, P., Woudt, P., 2015. Scientific Visualiza-
tion of Radio Astronomy Data using Gesture Interaction, in: Taylor, A.R.,
Rosolowsky, E. (Eds.), Astronomical Data Analysis Software an Systems
XXIV (ADASS XXIV), p. 145.

Portegies Zwart, S.F., McMillan, S.L.W., Gieles, M., 2010. Young Massive
Star Clusters. Annu. Rev. Astron. Astrophys 48, 431–493. doi:10.1146/
annurev-astro-081309-130834, arXiv:1002.1961.

Rehkopf, M., 2017. Atlassian Agile Coach - User Stories. https://www.
atlassian.com/agile/project-management/user-stories. Accessed: 2018-09-
13.

Russell, H.N., 1913. “Giant” and “dwarf” stars. The Observatory 36, 324–329.
Sami, M., 2012. Choosing the right Software Develop-

ment Life Cycle Model. https://melsatar.blog/2012/03/21/

choosing-the-right-software-development-life-cycle-model/. Accessed:
2017-09-20.

Sarajedini, A., Bedin, L., Chaboyer, B., Dotter, A., Siegel, M., 2007. The
ACS Survey of Galactic Globular Clusters. I. Overview and Clusters without
Previous Hubble Space Telescope Photometry. The Astronomical Journal
133, 1658–1672. doi:10.1086/511979, arXiv:astro-ph/0612598.

Stetson, P.B., 1987. DAOPHOT - A computer program for crowded-field stellar
photometry. Publ. Astron. Soc. Pac 99, 191–222. doi:10.1086/131977.

Surace, J., Laher, R., Masci, F., Grillmair, C., Helou, G., 2015. The Palo-
mar Transient Factory: High Quality Realtime Data Processing in a Cost-
Constrained Environment, in: Taylor, A.R., Rosolowsky, E. (Eds.), Astro-
nomical Data Analysis Software an Systems XXIV (ADASS XXIV), p. 197.
arXiv:1501.06007.

Sybilski, P.W., Pawłaszek, R., Kozłowski, S.K., Konacki, M., Ratajczak, M.,
Hełminiak, K.G., 2014. Software for autonomous astronomical observa-
tories: challenges and opportunities in the age of big data, in: Software
and Cyberinfrastructure for Astronomy III, p. 91521C. doi:10.1117/12.
2055836.

Taylor, A.R., Rosolowsky, E. (Eds.), 2015. Astronomical Data Analysis Soft-
ware an Systems XXIV (ADASS XXIV). volume 495 of Astronomical So-
ciety of the Pacific Conference Series.

Tody, D., 1993. IRAF in the Nineties, in: Hanisch, R.J., Brissenden, R.J.V.,
Barnes, J. (Eds.), Astronomical Data Analysis Software and Systems II, p.
173.

Vallejo, J.C., Lopez, F.P., Ortiz, I., Macfarlane, A., Osuna, P., Gill, R., Casale,
M., 2015. Flexible and Modular Design for the BepiColombo Science Oper-
ations Control System, in: Taylor, A.R., Rosolowsky, E. (Eds.), Astronomi-
cal Data Analysis Software an Systems XXIV (ADASS XXIV), p. 277.

VandenBerg, D.A., Brogaard, K., Leaman, R., Casagrande, L., 2013. The
Ages of 55 Globular Clusters as Determined Using an Improved \Delta
VˆHB TO Method along with Color-Magnitude Diagram Constraints, and
Their Implications for Broader Issues. The Astrophysical Journal 775, 134.
doi:10.1088/0004-637X/775/2/134, arXiv:1308.2257.

VandenBerg, D.A., Richard, O., Michaud, G., Richer, J., 2002. Models of
metal-poor stars with gravitational settling and radiative accelerations. ii.
the age of the oldest stars. The Astrophysical Journal 571, 487. URL:
http://stacks.iop.org/0004-637X/571/i=1/a=487.

13

http://dx.doi.org/http://doi.org/10.5334/jors.bv
http://dx.doi.org/http://doi.org/10.5334/jors.bv
https://agilemanifesto.org/iso/en/manifesto.html
https://agilemanifesto.org/iso/en/manifesto.html
http://dx.doi.org/10.1146/annurev.astro.44.051905.092441
http://dx.doi.org/10.1146/annurev.astro.44.051905.092441
http://arxiv.org/abs/astro-ph/0602601
http://dx.doi.org/10.3847/1538-3881/153/2/77
http://dx.doi.org/10.3847/1538-3881/153/2/77
http://arxiv.org/abs/1601.02622
http://dx.doi.org/10.1051/0004-6361/201322282
http://dx.doi.org/10.1051/0004-6361/201322282
http://arxiv.org/abs/1308.6679
http://dx.doi.org/10.1111/j.1365-2966.2012.21034.x
http://arxiv.org/abs/1204.5340
http://arxiv.org/abs/1407.6463
http://dx.doi.org/10.1002/asna.201211705
http://dx.doi.org/10.1002/asna.201211705
http://arxiv.org/abs/1205.4747
http://dx.doi.org/10.1016/j.ascom.2015.03.007
http://arxiv.org/abs/1504.02133
http://dx.doi.org/10.1086/671412
http://arxiv.org/abs/1306.3481
http://dx.doi.org/10.1016/j.ascom.2015.01.007
http://arxiv.org/abs/1407.5619
http://dx.doi.org/10.1126/science.1075631
http://dx.doi.org/10.1126/science.1075631
http://arxiv.org/abs/1507.03989
http://dx.doi.org/10.1146/annurev-astro-081309-130834
http://dx.doi.org/10.1146/annurev-astro-081309-130834
http://arxiv.org/abs/1002.1961
https://www.atlassian.com/agile/project-management/user-stories
https://www.atlassian.com/agile/project-management/user-stories
https://melsatar.blog/2012/03/21/choosing-the-right-software-development-life-cycle-model/
https://melsatar.blog/2012/03/21/choosing-the-right-software-development-life-cycle-model/
http://dx.doi.org/10.1086/511979
http://arxiv.org/abs/astro-ph/0612598
http://dx.doi.org/10.1086/131977
http://arxiv.org/abs/1501.06007
http://dx.doi.org/10.1117/12.2055836
http://dx.doi.org/10.1117/12.2055836
http://dx.doi.org/10.1088/0004-637X/775/2/134
http://arxiv.org/abs/1308.2257
http://stacks.iop.org/0004-637X/571/i=1/a=487


VanderPlas, J., Connolly, A.J., Ivezic, Z., Gray, A., 2012. Introduction to
astroML: Machine learning for astrophysics. doi:10.1109/CIDU.2012.
6382200, arXiv:1411.5039.

Walker, D.L., Longmore, S.N., Bastian, N., Kruijssen, J.M.D., Rathborne, J.M.,
Jackson, J.M., Foster, J.B., Contreras, Y., 2015. Tracing the Conversion
of Gas into Stars in Young Massive Cluster Progenitors. ArXiv e-prints
arXiv:1502.03822.

14

http://dx.doi.org/10.1109/CIDU.2012.6382200
http://dx.doi.org/10.1109/CIDU.2012.6382200
http://arxiv.org/abs/1411.5039
http://arxiv.org/abs/1502.03822

	Introduction
	Software Development in Astronomy
	Software Development Life Cycle (SDLC) and Programming Paradigms
	Freezing Python Code

	Functionality of CMD Plot Tool
	Supported Input File Types
	Annotation

	Usage Case Study for CMD Plot Tool: Interpreting the CMDs of Globular Clusters
	CMDs for Globular Clusters

	Conclusions

