
1

An Investigation of the Transactional Scope of
a Persistence Context

Kevin Kavanagh

Thesis presented for the degree of MSc in Software Engineering to the
Department of Software Engineering, Athlone Institute of Technology

Supervisor: Enda Fallon

2

Abstract

Transactions are used in almost every application in every industry today whether it’s e-

commerce, telecommunications, cloud computing etc. Java Enterprise Applications (JEAs),

built using J2EE and or newer JEE technology provide an n-tiered distributed environment

which are widely used in the industry. In order to exploit enhanced technology features, it is

common for organisations to routinely update their existing applications. Then aim for

system architects is to gain new features while maintaining backwards compatibility.

This work illustrates a number of backward compatibility issues in the Enterprise Java Bean

(EJB) architecture. In particular it highlights that a transactional scope problem of a

persistence context can occur in a complex transaction pattern when using the new EJB3.x

technology. This interoperability issue occurs when migrating applications from EJB2.x to

EJB3.x. The issue occurs when the transactional context spans multiple JEE application

servers. An experimental evaluation highlights that EJB3.x is not completely backwards

compatible. A corrective system architecture is developed and evaluated as part of this

work.

3

 Table of Contents

Contents
1. Project Introduction .. 5

1.1 Problem Statement ... 5

1.2 Overview of Proposed Solution .. 5

1.3 Contributions Arising from the Work.. 7

1.4 Thesis Outline .. 7

2 Literature Review ... 9

2.1 N-tier/distributed application ... 9

2.2 J2EE ... 10

2.3 JEE5 ... 11

2.4 JEE6 ... 16

2.5 JSF .. 16

2.6 Transactions .. 16

2.7 ORB.. 24

2.8 CORBA ... 24

2.9 JPA ... 25

2.10 Related studies .. 27

3 System Design .. 33

3.1 Requirements Analysis .. 33

3.2 System Architecture .. 34

3.2.1 System Configuration ... 34

3.2.2 EAR files .. 47

3.2.3 Database .. 54

3.2.4 JSF Web Client .. 55

4

3.3 High Level Design .. 60

3.2.1 Use Case Descriptions .. 60

3.4 Low Level Design ... 80

3.4.1 Class Diagram ... 80

3.4.2 Sequence Diagram ... 89

4 System Verification .. 101

4.1 Unit Testing ... 101

4.1.1 Unit test results for ejb-module-a ... 102

4.1.2 Unit test results for ejb-module-b ... 103

4.1.3 Unit test results for remote-api ... 105

4.2 Integration Testing using Arquillian .. 106

4.2.1 Test environment ... 108

4.2.2 Test steps ... 115

4.2.3 Test Cases ... 119

4.2.4 Test Results .. 122

5 Summary of Results and Conclusions .. 123

6 References ... 127

6.1 GitHub - Source Code .. 131

5

1. Project Introduction

1.1 Problem Statement
This work identifies backward compatibility issues between EJB3.x and EJB2.x issues.

Specifically the problem occurs when an EJB3.x bean A is deployed on an application server

A which is the only bean in the system that has access to the underlying database. This bean

EJB A exposes two interfaces a local interface which is accessed by the client to trigger the

use case and a remote interface that is accessed by EJB3.x bean B which is deployed in a

different application server B. On the clients request EJB bean A will start a new

transaction, then modify an attribute of an existing entity and then proceed to invoke EJB

bean B on server B. EJB bean B will then join the same transaction and then remotely call

back to EJB bean A to read the modified attribute by accessing the same persistence

context. The attribute value is read and returned to server B which returns the value back to

EJB bean A where it is verified to see if it is the same modified attribute value, before the

transaction is finally committed. It can be seen that the EJB bean A modified attribute value

in the transaction is not retrieved by EJB bean B so does not "see" the same persistence

context used by EJB bean A.

1.2 Overview of Proposed Solution

The proposed solution encompasses a number of configuration and code changes. The

solution uses configuration changes to the standalone xml of the JBOSS application servers

to enable JTS over IIOP transport. The EJB 3.x beans must be configured to tell the

application server that these EJB3.x beans will be using the EJB2.x client views not the EJB3.x

client view by declaring so using the jboss-ejb3.xml. The EJB business method interfaces

need to be changed to extend the EJBHome and EJBObject interfaces and finally these

EJBObject interfaces need to be exposed via IIOP so these interface end points can be

accessed by Corba.

6

The solution as proposed by this work will:-

● Enable JTS over IIOP so that transactions can be propagated between application

servers on both JBOSS application servers. This is done by editing the application

server profile “standalone-full.xml”

● Start both JBOSS application servers (one with a port offset) specifying the jvm arg

-Djboss.tx.node.id. This will set the core environment node-identifier in the

transaction subsystem.

● Extend the EJB 2.0 EJBHome interface - the EJBHome interface must be extended by

all enterprise beans' remote home interfaces (prior to EJB 3.0 API that is), this allows

us to create an EJB object. This is done by StatelessRemoteHomeA and

StatelessRemoteHomeB.

● Expose the remote EJBObject interfaces i.e StatelessRemoteObjectA,

StatelessRemoteObjectB, StatefulRemoteObjectA and

StatefulRemoteObjectB via IIOP – this is done in the “jboss-ejb3.xml” in the

META-INF folder of the respective ejb jar modules

● Edit the “jboss-ejb3.xml” in the META-INF folder of ejb-module-a and ejb-module-b

to tell the application servers that the beans declared in the file are going to

implement the EJB 2.1 client view not the standard EJB 3.1 client view.

Once the steps above are done then the Ejb2x_StatelessA, Ejb2x_StatelessB,

Ejb2x_StatefulA, Ejb2x_StatefulB remote home interfaces will be exposed and

accessible via the following corba's endpoint name:

Ejb2x_StatelessA corba endpoint lookup:

corbaname:iiop:localhost:<port>#jts/Ejb2x_StatelessA

Ejb2x_StatefullA corba endpoint lookup:

corbaname:iiop:localhost:<port>#jts/Ejb2x_StatefulA

Ejb2x_StatelessB corba endpoint lookup:

7

corbaname:iiop:localhost:<port>#jts/Ejb2x_StatelessB

Ejb2x_StatefulB corba endpoint lookup:

corbaname:iiop:localhost:<port>#jts/Ejb2x_StatefulB

where <port> is the default port value (3528 + port offset) for that server

1.3 Contributions Arising from the Work

The main contribution arising from this work is to highlight issues migrating from EJB 2.x to

EJB3.x technology and to provide a solution to the problem statement in 1.1 using EJB3.1

technology. The specific contributions involve:

● how to implement EJBs using the EJB2.x and EJB3.x APIs

● how to tell the JBOSS application server that an EJB3.x will be using the EJB2.x client

view implementation

● how to enable the JTS in JBoss application servers

● how to expose remote EJB interfaces via IIOP

● how to test the deployment and JEE semantics of the EJBs mentioned above using

the Arquillian test framework

● how to implement a JSF web client

1.4 Thesis Outline

The aim of this study is to achieve a solution to the problem statement mentioned in section

1.1.

8

Chapter 1: Project Introduction – describes information relating to the background of the

problem.

Chapter 2: Literature Review – Describes some of the concepts and technologies used in this

thesis and investigate other papers that have looked at issues relating to EJB and transaction

problems and issues.

Chapter 3: System Design - Describes the design of the whole application including a web

based test client with information relating to the system architecture and use-case diagrams

and descriptions.

Chapter 4: System Verification – This is the functional testing of the application that

describe the different tests and their results.

Chapter 5: Summary of Results and Conclusions – A summary of the results is presented and

conclusions are drawn.

9

2 Literature Review

This chapter will review JEE technologies relevant to this work. This includes reviewing n-

tier/distributed applications and the evolution of JEE technology from J2EE to JEE6 with an

emphasis on the changes of enterprise java beans (EJBs) from EJB2.x to EJB3.x including

their remote interfaces which is an important aspect of this thesis. Transaction concepts are

reviewed with a focus on EJB transactions, persistence contexts, entity managers and JBOSS

application server technologies. Then finally the chapter concludes with a review of a

number of different related papers and articles in the area of transactions and JEE

technology changes. Here is a list of some of the topics this review chapter will cover:

● N-tier (distributed) applications

● J2EE (Java 2 Platform Enterprise Edition)

● JEE (Java Enterprise Edition)

● EJB’s (Enterprise Java Beans)

● Transaction Concepts

● Distributed Transactions

● JTS (Java Transaction Service)

● JTA (Java Transaction API)

● IIOP (Internet Inter Orb Protocol)

● RMI (Remote Method Invocation)

● JBOSS (application server)

2.1 N-tier/distributed application

An n-tier application is an application that is spread over multiple logical tiers, also known as

a distributed application. Typically these logical tiers are physical tiers that are spread across

a network or a JVM boundary. Applications would typically distribute functionality to

achieve scalability or to place functionality close to the data that it accesses. In this study

the test application uses logical tiers on two separate application servers all running in the

same machine but there is no reason why it could not be executed from different physical

10

machines located in different parts of a network like the internet. See Fig.1 for an example

of an n-tier or distributed application.

 Fig 1. Logical N-tier example showing some of the APIs that could be used

2.2 J2EE

The popular Java 2 Enterprise Edition 1.4 (J2EE) [1] technology proposed by Sun

Technologies [2] in 2003 is a collection of APIs and is designed for n-tier or distributed

application development, see Fig. 2 below. These J2EE applications are hugely popular as

the J2EE application server provides the facilities for scalability, reliability, distribution,

transactions, security, and concurrency thus enabling developers to concentrate on business

logic. Even though its regarded as a success there are some criticisms as applications can be

overly complex, require a large amount of design effort as APIs are low level and require

excessive amounts of “plumbing” code, uses a complex component model that is object

based not object oriented based for example EJBs (EJB 2.1) are distributed components and

require an application server to execute. Java EE 5 (JEE5) was the first edition designed to

ease some of these criticisms of J2EE.

11

 Fig 2. Summary of J2SE Architecture

One of the J2EE 1.4 APIs is JSR-153 [3] which defines the specifications for EJB2.1 which will

be discussed in more detail later on in this section. J2EE provides different options for

building distributed object applications

● Session Beans

● Web Services

This study will focus on session beans only and more specifically EJB2.1 beans will be used

by the application developed later on.

2.3 JEE5

After J2EE 1.4 the next version of the technology in 2006 is called JEE5 which is specified by

JSR-244 [4] and is the first edition of Java Enterprise Edition which brought with it big

changes and improvements over J2EE with the primary focus being the ease of

development. It reduces the amount of code to write for developers by making large use of

annotations and uses the concept of “convention over configuration” where developers

provide information only if required over default settings, this paradigm is popular by many

frameworks like Maven [5] and the Spring Framework [6]. JEE5 contained the first EJB3 API

namely EJB 3.0 which is specified by JSR 220 [7]. This new API completely restructured the

12

EJB model and is the main basis for the study in this paper. Here I will look at the main

session and entity bean changes between EJB2.1 and EJB 3.0.

2.3.1 Session Bean Changes

In EJB2.1 and earlier specifications, two interfaces – the home and local or remote business

interfaces and the bean implementation class were required for each session bean. The

home interface was required to extend the EJBHome or the EJBLocalHome interface and

declare the lifecycle method create(). The local or remote business interface was required to

extend the EJBObject or the EJBLocalObject interface and declare the business methods.

The bean implementation class itself was an EnterpriseBean type and in the case of session

beans, extended the SessionBean sub-interface. Callback method implementations in the

bean class had to be provided so that the container could trigger them on occurrence of the

appropriate lifecycle events. In addition, critical elements of the bean, including its

transaction and security definition, and whether it was stateful or stateless, were defined in

the associated deployment descriptors.

Example of a stateful session bean using EJB2.1 specification

public interface Ejb1RemoteHome extends EJBHome{

 Ejb1RemoteObject create() throws RemoteException, CreateException;

}

public interface Ejb1RemoteObject extends EJBObject{

 String getCountryOfOrigin(long id) throws RemoteException;

 void addCastToFilm() throws RemoteException;

}

public class Ejb2_V2 implements SessionBean {

 String getCountryOfOrigin(long id) throws RemoteException{ // business logic here }

13

 void addCastToFilm() throws RemoteException{// business logic here }

 public void ejbCreate(){ // bean life cycle logic here }

 public void ejbActivate(){ // bean life cycle logic here }

 public void ejbPassivate(){// bean life cycle logic here }

 public void ejbRemove(){// bean life cycle logic here }

 public void setSessionContext(SessionContext context){ (){// bean life cycle logic here }

}

In the EJB3.0 specification, a session bean only has to define a business interface and a bean

implementation as the home interface is removed. The business interface is a regular pojo

(plain old java object) interface and it does not need to extend the EJBObject or the

EJBLocalObject interface. The bean implementation class is also a pojo class and it does not

implement an enterprise bean type. The development is further simplified by the fact that

the declaration and the configuration in the deployment descriptor can now be defined

within the java code using annotations as a metadata facility. Also default values are

provided for most configurations and so it minimizes the bean specific configuration

requirements. In the EJB3.0 specification it’s possible to deploy a session bean without any

ejb-jar.xml deployment descriptor but the deployment descriptor facility still exists if the

developer prefers to use it over annotations. As the EJBs are pojo’s it also means that they

can be easily unit tested using testing frameworks like Junit and TestNG independently of an

application server. In 2005 Oracle wrote a white paper entitled “EJB 3.0 Migration” [8] that

goes through the EJB 3.0 migration process.

Example of a stateful session bean using EJB3.0 specification

14

@Remote

public interface Ejb1StatefulRemote {

 String getCountryOfOrigin(long id) throws RemoteException;

 void addCastToFilm() throws RemoteException;

}

@Stateful

public class Ejb1_V3_Stateful implements Ejb1StatefulRemote {

String getCountryOfOrigin(long id) throws RemoteException;

void addCastToFilm() throws RemoteException;

}

It’s worth knowing that EJB components which need to work with EJB2.1 and earlier

specifications do not need to be written using old specifications any more as EJB3.0 beans

can use metadata annotations to make them work with older clients that expect them to

use the home and remote interface. This is important to point this as this is used later on in

the final solution. The methods required by the older specifications are mapped to

corresponding methods in the enterprise bean using EJB3.0 specification and example

would be the create() method could map to a method that initializes the bean.

2.3.2 Entity Bean Changes

In EJB2.1 entity beans implemented the EntityBean interface but in EJB3.0 they are just plain

pojos with an Entity annotation. In EJB3.0, the Persistence API [9] replaces using the

EntityBean interface. The Persistence API defines metadata annotations to define

persistence and relationship criteria for object-relational mapping concepts. The home and

local interfaces are again not required in EJB3.0. In EJB3.0 the identifier or primary key for a

persistent entity is defined using the Id annotation and the Persistence API defines the

15

EntityManager where the lifecycle management, like creation and removal, and searching of

a persistent entity is done using the persist(), remove() and find() method calls on the

EntityManager class. The Java Persistence API is used by the test application in this paper to

model entities that are persisted in a database.

Example of an entity bean using EJB2.1 specification

public class SomeEntityBean implements EntityBean {

 public void setEntityContext(EntityContext ctx) { context = ctx; }

 public void unsetEntityContext() { context = null; }

 public void ejbActivate() {}

 public void ejbPassivate() {}

 public void ejbLoad() {}

 public void ejbStore() {}

 public void ejbRemove() {}

 // plus other getter/setter methods

}

Example of an entity bean using EJB3.0 specification

@Entity

@Table(name="Cast")

public class Cast implements Serializable{

 @Id

 private long id;

 String leadActor;

 public String getLeadActor() {

 return leadActor;

 }

 public void setLeadActor(String leadActor) {

 this.leadActor = leadActor;

16

 }

 public long getId() {

 return id;

 }

 public void setId(long id){

 this.id = id;

 }

}

2.4 JEE6

The second release of JEE is known as JEE6 in 2009 and is specified by JSR-316 [10] and

aimed to further simplify application development over JEE5 and by introducing some

newer APIs like EJB 3.1 [11], JSF 2.0 [12] and JPA 2.0 [13]. EJB3.1 had some further

improvements like a simplified local view for session beans, singleton session beans,

automatically created EJB timers, asynchronous session bean invocations and a portable

global JNDI name syntax for looking up EJB components. The changes from JEE5 to JEE6 are

not as dramatic as from J2EE to JEE especially in the area of sessions beans as this thesis will

show. The test application developed as part of this thesis uses JEE6.

2.5 JSF

Java Server Faces 2.0 (JSF) [12] is a technology for building server side user interfaces for

java based web applications. JSF is used by the test application in this paper to create a test

client that is accessed by a web browser.

2.6 Transactions

As this thesis is based on a complex transaction use case it’s important to understand some

transaction concepts.

17

2.6.1 The ACID Properties of transactions

Transactions are characterized by four properties known as the ACID properties:

Atomicity – for a transaction to be atomic all transactions participants must make the same

decision, meaning they either all commit or they all roll back.

Consistency – this means that written to a database is guaranteed to be valid data. The

database must always be in a consistent state. One example of an inconsistent state would

be a field in which half of the data is written before an operation aborts. A consistent state

would be if all the data were written, or the write were rolled back when it could not be

completed.

Isolation - Isolation means that data being operated on by a transaction must be locked

before modification, to prevent processes outside the scope of the transaction from

modifying the data.

Durability - Durability means that in the event of an external failure after transaction

members have been instructed to commit, all members will be able to continue committing

the transaction when the failure is resolved. This failure may be related to hardware,

software, network, or any other involved system.

This means that a transaction is an indivisible unit of work that usually contains a number of

operations that either must all be completed together or not at all. A transaction can only

end in two ways, either it is committed or rolled back. When a transaction commits, the

data modifications made by its operations are saved. If a statement within a transaction

fails, the transaction rolls back, undoing the effects of all statements in the transaction.

Transactions can be local or global.

2.6.2 Transaction Participant

A Transaction Participant (TP) is any process within a transaction which has the ability to

commit or rollback state. This could be a database, another application or another EJB for

18

example. In the context of this thesis the database and the EJBs on both JBoss 7 applications

servers [14] are transaction participants in the same transaction context.

2.6.3 Transaction Scope

The scope of a transaction is defined by a transaction context that is shared by the

participating objects or to put it more plainly it means those objects that share the same

transaction context are all part of the same transaction scope. As it is an important aspect of

this thesis as we focus on the transactional scope of the persistence context (or entity

manager) in particular.

2.6.4 Java Transaction API

The Java Transaction API (JTA) is specified by JSR-907 [16] and is a specification for using

transactions that allows access to resource managers in a uniform manner. The JTA is an

API that allows you to demarcate transactions in a manner that is independent of the

transaction manager (TM) implementation. A JTA transaction is controlled by the JEE

transaction manager and it can span updates to multiple databases. However the JEE

transaction manager does not support nested transactions meaning that it cannot start a

new transaction for an instance until the previous transaction has ended (Java EE 6 Tutorial,

Oracle 2013)[17].

This is not to be confused with the Java Transaction Service (JTS) [18].

2.6.5 Controlling EJB transactions

With EJBs transactions can be controlled in two ways, either by the EJB container known as

container managed transactions (CMT) or it’s controlled by the EJB itself, known as bean

managed transactions (BMT). The test application in this thesis uses CMTs as it involves less

code and is less complex and the use of BMTs would make no difference to the outcome of

this thesis.

19

2.6.6 Container Managed Transactions

In an EJB with Container Managed Transactions (CMT), the container sets the boundaries of

the transaction. The code does not include statements that begin and end the transaction. If

no transaction demarcation is specified then CMT is the default. The transaction attribute

controls the scope of the transaction and can have the following values:

REQUIRED If a client has started a TX and calls an EJB method annotated with

@TransactionAttribute(REQUIRED) the method executes in the

clients TX, otherwise the container starts a new TX before running

the method.

REQUIRES_NEW If a client has started a TX and calls an EJB method annotated with

@TransactionAttribute(REQUIRES_NEW), then the container

suspends the client’s TX, starts a new TX, delegates the call to the

method and then resumes the client’s TX after the method

completes. If the client does not have a TX started the container

starts a new TX before running the method.

MANDATORY If a client has started a TX and calls an EJB method annotated with

@TransactionAttribute(MANDATORY), then the method executes

within the client’s TX. If the client does not have a TX a started

then the container throws a TransactionRequiredException.

NOT_SUPPORTED If a client has started a TX and calls an EJB method annotated with

@TransactionAttribute(NOT_SUPPORTED), then the container

suspends the client’s TX before executing the method. After the

method has completed the container resumes the client’s TX. If

the client does not have a TX started the container does not start

a new TX before running the method.

SUPPORTS If a client has started a TX and calls an EJB method annotated with

@TransactionAttribute(SUPPORTS), the method executes within

20

the clients TX. If the client does not have a TX started then the

container does not start a new TX before calling the method.

NEVER If a client has started a TX and calls an EJB method annotated with

@TransactionAttribute(SUPPORTS), the container throws

RemoteException. If the client does not have a TX started then the

container does not start a TX before calling the method.

2.6.7 Bean Managed Transactions

The other way to manage transactions in session beans is to use Bean Managed

Transactions (BMT) where it is up to the code in the session bean to mark the boundaries of

the transaction using JTA [16] from Sun Micro Systems.

Example of a Stateless Session Bean using BMT

@Stateless

@TransactionManagement(TransactionManagementType.BEAN)

public class MyMusicBean implements MyLocalMusicBean {

 @Resource

Private UserTransation userTransaction;

public void updateMusicCatalog(int percentage){

….

try{

 userTransaction.begin();

 // do some update

 userTransaction.commit();

}catch(DataAccessException dae){

21

 User.transaction.rollback();

}

}

2.6.8 Java Transaction Service

The Java Transaction Service (JTS) [18], was developed by Sun Micro Systems, and is a

specification for building a transaction manager that adheres to the Object Management

Group (OMG) Object Transaction Service (OTS) [19] used in the Common Object Request

Broker Architecture (CORBA) [20] architecture. It uses Internet Inter-ORB Protocol (IIOP)

[21] to propagate JTA transactions between multiple application servers. To put it plainly,

JTS is a mechanism for supporting JTA transactions when transaction participants reside in

multiple JEE application servers. JTS is used by the test application developed as part of this

thesis.

2.6.9 Distributed Transactions

A distributed transaction or a distributed JTA transaction is where the transaction

participants are in separate applications on different application servers. If a participant

joins a transaction that already exists rather than creating a new transaction, the two (or

more) participants share the same transaction context and are participating in a distributed

transaction. The JBoss application server supports distributed JTA transactions. The complex

transaction scenario that is used in this thesis is one that I have not encountered in any

paper or article to date, in that respect it could be deemed quite unique as the EJB B

participant on the second applications server makes an invocation call back to EJB A on the

first application server which is already a transaction participant in the same transaction

context.

22

In the diagram below, both EJBs are transaction participants as they both have the ability to

affect the transaction state. EJB B joins the transaction started by EJB A and therefore EJB B

becomes part of or shares the same transaction context as EJB A.

Fig 3. Example of a distributed transaction where the transaction participants are EJBs

It is important to note that nested transactions are not studied as part of this thesis and are

not used in the test application that is developed. Nested transactions are transactions

where some participants are also transactions. This means that if a transaction is already

associated with a client call when a new transaction begins the new transaction is nested

within it. Nested Transactions are only supported when distributed transactions are used

with the JTS API, and not part of the JTA API.

2.6.10 Transaction Manager /Transaction Coordinator

The terms Transaction Manager (TM) and Transaction Coordinator (TC) are mostly

interchangeable in terms of transactions with the JBOSS application servers. The term

transaction coordinator is usually used in the context of distributed transactions.

In JTA transactions, the Transaction Manager runs within each JBoss application server. The

Transaction Manager tells transaction participants during the two-phase commit protocol

whether to commit or roll back their data, depending on the outcome of other transaction

participants. In this way, it ensures that transactions adhere to the ACID standard.

23

In JTS transactions, the Transaction Coordinator manages interactions between transaction

managers on different servers. This communication is done so using a process called an

Object Request Broker (ORB), using the CORBA communication standard.

Fig 4. Example of JTS transactions over IIOP between Transaction Coordinators on different servers

From an application standpoint, a JTS transaction behaves in the same way as a JTA

transaction. The difference is that transaction participants and data sources reside in

different containers. The application server implements the transaction manager with the

Java Transaction Service (JTS) but the code doesn’t call the JTS methods directly but instead

it invokes the JTA methods which then invoke the lower-level JTS methods. The test

application in this study is deployed on JBoss AS 7.3.4 servers which implements JTS and

supports distributed JTA applications with other JBoss AS containers only.

2.6.11 Two Phase Commit Protocol

As a distributed transaction is more complicated than a local transaction there needs to be a

mechanism to decide when all the transaction participants should all commit or all roll back

– this is where the two-phase commit protocol (2PC) is used and it involves two phases.

In Phase 1 the participants notify the transaction coordinator whether they are able to

commit the transaction or must roll back.

24

 In Phase 2, the transaction coordinator makes the decision about whether the overall

transaction should commit or rollback. If any one of the participants cannot commit, the

transaction must roll back otherwise the transaction can commit. The transaction

coordinator directs the transactions about what to do and they notify the coordinator when

they have done it. It is at this point that the transaction is finished.

2.7 ORB

The Object Request Broker (ORB) is a process which sends and receives messages to

transaction participants, coordinators, resources, and other services distributed across

multiple application servers. The main use of the ORB is a system of distributed java

transactions using JTS. The ORB Portability API provides mechanisms to interact with an

ORB. This API provides methods for obtaining a reference to the ORB, as well as placing an

application into a mode where it listens for incoming connections from an ORB. An ORB uses

a standardized Interface Description Language (IDL) to communicate and interpret

messages. Common Object Request Broker Architecture (CORBA) is the IDL used by the ORB

in JBoss AS 7. The ORB can be seen in Fig. 4.

2.8 CORBA

Common Object Request Broker Architecture is a standard that enables applications and

services to work together even when they are written in multiple, otherwise-incompatible,

languages or hosted on separate platforms. CORBA requests are brokered by a server-side

Object Request Broker component. The JBoss AS 7 provides an ORB instance, by means of

the JacORB component subsystem. The Object Transaction Service is a service that's part of

CORBA and is a set of standards maintained by the Object Management Group in order to

help with cross-platform processes. In general, OTS helps to standardize the routine

communications between various network components

25

2.9 JPA

The Java Persistence Architecture (JPA) , which is specified by JSR-317 [13] provides a java

centric view of persistent information and uses a standardised approach to persistence. It

works with POJOs which makes things easy and supports object oriented concepts like

inheritance and polymorphism. JPA implements the data access layer as it provides domain

objects as POJOs in response to queries and persists domain objects. JPA is a specification

that is implemented by vendors and does not require an application server to execute.

Fig. 5 The JPA architecture

2.9.1 Entity Manager and Persistence Context

The system level configuration is defined in the persistence.xml file. This defines one or

more persistence units and when it’s used in an application is known as the persistence

26

context. The persistence unit specifies the meta-data or schema for a database. JEE6 uses

the Java Persistence 2.0 specification.

In JEE6 an EntityManager object is retrieved by injection by using the PersistenceContext

annotation.

Example of a getting an EntityManager using PersistenceContext annotation

@PersistenceContext(unitName = "FilmDatabase")

 private EntityManager em;

It’s the EntityManager instance that maintains a persistence context. The persistence

context is the collection of entity beans attached (managed) by the entity manager. The

persistence context can have two scopes, either transaction-scoped persistence context

(default) or extended persistence context. The persistence context scope used in the test

application uses the default transaction-scoped persistence context.

2.9.2 Transaction-scoped persistence context

In this scope the persistence context lives as long as the transaction. When the transaction

completes any modifications to the attached entity bean are saved, the persistence context

is destroyed and the attached entity beans become detached. Any subsequent changes to

the detached entity beans are not tracked and will never be saved to the database. A typical

example would be a client invokes a method on a session bean which starts a new

transaction. The persistence context is associated with the transaction. At the end of the

method, the transaction commits and any pending changes to attached beans are saved

(flushed) to the database.

27

2.9.3 Extended persistence context

In this scope the context lives beyond the end of the transaction. Entity beans attached to

an extended persistence context remain managed even after the transaction is complete.

The extended persistence context is mainly used in client code or in stateful session beans

which can retain the persistence context and its attached beans across multiple calls.

This table shows the typical operations of an EntityManager:

EntityManager method Description

persist() persist or insert a bean into the database

find() find an entity by its primary key

clear() detach all managed entities from a

persistence context

refresh() refresh the state of an entity from the

database

remove() remove an entity from the database

2.10 Related studies

There have been many studies in the area of distributed applications in J2EE and JEE

technologies however few compare EJB2.x with EJB3.x. [28] illustrates how having a dual

container to support existing EJB2.x and the newer EJB3.x technology was more beneficial

in reducing the maintenance costs brought about by functional redundancy than the route

many open source application servers were taking whereby it implemented a new EJB3.x

container that is independent of the existing EJB2.x container. The proposed dual container

architecture can be seen below in Fig 6.

28

Fig 6. The dual container architecture

In [28] it recognises the deep overhaul and simplification of the EJB3.x specification and

changes in contracts between the both versions. It mentions that containers must evolve to

provide backwards compatibility for EJB2.x and on the other hand it must evolve to achieve

compliance with the EJB3.x specification and that the JBoss AS 5 [22] chose to implement a

new container to support EJB3.x which is completely independent of the existing one for

EJB2.x. It proposes three principles on how to introduce the features presented by EJB3.x

into the existing architecture.

The first is called the greatest-common-divisor (GCD). It means all possible overlap code

between EJB2.x and EJB3.x should be identified, analysed, extracted and reused. EJB3.x

inherits a number of contracts from EJB2.x e.g. runtime environment, lifecycle management

and standard services. GCD reduces the possibility of introducing redundant modules.

The second principle is the least-common-multiple (LCM), this represents the abstraction of

the difference between EJB2.x and EJB3.x. Abstract means that a common interface is built

for the different implementations. In brief, different internal designs have the same external

interface.

29

The final principle is transparent intrusion, an enhancement of the former principles. By

inserting new modules into the logic processes transparently, the modification to the

existing architecture can be reduced to the minimum as much as possible.

However since the days of JBoss AS 5 the application server has evolved and now in JBOSS

AS 7 there are no longer independent containers as mentioned in [27]. The specification for

the JBOSS AS 7.1 release notes [15] says that it supports “legacy compatibility with EJB 2” as

defined in JEE 6. In JEE 7 [26] the EJB2.x specification is made optional meaning that vendors

are not required to support it but currently RedHat indicate in the JSR-366 specification [27]

for JBoss AS 8 that they do plan to support it. A quick look at the plans for JEE8 says “In

accordance with the pruning process defined by the Java EE 6 specification, we will consider

designating the following as Proposed Optional in this release: the EJB 2.x client view APIs

(EJBObject, EJBHome, EJBLocalObject, EJBLocalHome) and support for CORBA IIOP

interoperability.” Here it clearly states that it will consider proposing it as an optional

feature again but what if RedHat or other vendors decide to drop support for the “optional”

spec? Well that would mean that the transactional scope of a persistence scope solution as

proposed by this thesis will no longer work and it will be up to the company/developer to

re-design their application resulting in increased maintenance costs on top of the

maintenance costs arising from the proposed solution changes as part of this thesis. It could

even be worse in that the support for EJB2.x client view and CORBA IIOP interoperability

may not make it into the final released version!

In [29] it mentions that J2EE has excelled at standardizing many important middleware

concepts. For example, J2EE provides a standard interface for distributed transaction

management, directory services, and messaging. In addition, Java 2 Standard Edition (J2SE),

which underpins J2EE, provides a largely successful standard for Java interaction with

relational databases. However, the platform has failed to deliver a satisfactory application

programming model. It talks about EJB3.0 in that it seems to be attempting to standardize

dependency injection, even though it’s unclear what benefits this will brings -especially if it

results in the loss of important features, which seems inevitable. Clearly this is true as this

thesis clearly shows from its results of using EJB3.x session beans the transactional scoped

persistence context example shows.

30

In [30] it mentions that it’s widely viewed that OTS is good model in most situations for

heterogeneous fault tolerant computing over networks where the concept of transactions is

not only indispensable in database applications, but also useful in building robust software

for mission critical applications. The paper presents an implementation of the Object

Transaction Service (OTS) based on CORBA 2.0 specification. Transactional applications

developed with the support of our OTS implementation are able to assure the ACID

properties even in the presence of node crashes, software system failures and process

hangs. The preliminary results obtained from the experiments on Sun workstations with

Orbix 1.3 show that the overhead due to the OTS service is satisfactory for most

applications. But this thesis asks is it good for more unusual or less common transaction

problems.

OTS has shown to have some disadvantages [31] though when it comes to scaling as it relies

on synchronous communication and it has been shown that for synchronous single threaded

clients as the number of databases grows the response time for the workload increases.

However, multi-threading adds complexity to the programming effort and failure handling

and increases the cost of ownership of the applications. Transaction management always

adds performance overheads to distributed applications.

There have been many papers that describe solutions that focus on fault tolerant schemes

[32] [33] [34] where the assumption is made that a single client request generates exactly

one transaction at the middle tier server (e.g. ejb server or web server). There are some

papers [33] [35] that identify that it is quite common for multiple client requests to be

encapsulated within one server transaction or that a single client request can initiate several

server transactions but there has been no paper that describes a transaction pattern where

by a distributed transaction re-enters a middle tier server to gain access to an object that is

already part of the same transaction scope.

In [35] the paper points out that current transaction mechanisms assume simple transaction

patterns and don’t often think about complex patterns. It goes through some transaction

patterns examples including nested transactions but as this paper is not concerned with

nested transactions then these will not be examined here. It describes that an initiator of a

transaction can be a client (web server or standalone application) or an application server

31

container. The patterns examples are described using stateful session beans (SFSB) that

maintains conversational state and EntityBean (EB) which represents data of an application.

The client can start a transaction using the UserTransaction interface [13] and this is

regarded as a client transaction (CT). The container can initiate a transaction through the

transaction manager interface [13]. In Fig.7 (a) is the NCT-NNT pattern where there only one

transaction exists started by the container so there is no CT. After SFSB A at application

server receives a request issued by the client, the container of A initiates a transaction TX1

for it. During the execution of A, it invokes EB D and EB C in the context of TX1. Both B and C

will access different back-end databases before the response is returned to the client and

TX1 is committed by the container of A. In the CT-NNT pattern of Fig.7 (b), there is only one

CT. A client first sends a begin request to transaction manager for starting a transaction TX1

and issues a couple of requests to A in TX1, after all the request have finished the client

sends a commit or abort request to the transaction manager.

Fig. 7 Transaction Patterns

The paper describes ‘complex’ transaction patterns such as in Fig. 7 (a) and (b) above but in

my opinion these scenarios are not that complex at all but are in fact quite common

nowadays. In this thesis I tackle a more ‘complex’ transaction example that will show

deficiencies in transaction scope handling of objects when using stateful and stateless

session beans using EJB3.1 such as shown in diagram Fig 8.

32

Fig. 8 A more complex cross container NCT-NNT transaction pattern

The diagram in Fig.8 also adheres to the NCT-NNT pattern but goes a step further in

introducing more complexity. The client invokes step 1 on EJB1 where the container starts

transaction TX1. A remote call step 2 is made to application server 2 to invoke EJB2 and TX1

is propagated as part of the call – no new transaction is started by EJB as it has the

TransactionAttribute(SUPPORTS)annotation and so joins TX1 and becomes a TP, it then

makes a remote invocation back to EJB1 in step 3 where it tries to use the same persistence

context that is part of the same transaction context, it changes some data in the EB and

then returns in step 4 and EJB2 returns back to EJB1 in step 5 at which point the transaction

is committed by the container. As we will see later on this yields some interesting results

when it’s tested using different EJB implementations.

No articles were identified which investigated the transactional scopes of objects in any

related context and I certainly did not come across any papers that looked at a complex

transaction scenario as show in Fig. 8. This paper hopes to address the lack of research in

this area in some way.

33

3 System Design

The complete system architecture is shown in fig 8 below. The system design illustrates the

backwards compatibility issues of using pure EJB3.x beans, which uses the RMI protocol to

remotely access other EJB3.x beans so does not allow an EJB3.x beans on server B to access

the persistence context of server A within the same transaction. It is possible to do this in

previous ejb technology such as EJB2.x, as described in the problem statement section.

3.1 Requirements Analysis

At a high level the main requirement can be stated like this: “Using EJB3.x technology, show

that EJB B can become a transaction participant of a distributed transaction started by EJB A

from a different application server while getting access to the same transaction participants

as those involved in the transaction started by EJB A before the transaction is committed to

the database”.

In a more detailed level it can be described by this sentence “using EJB3.x EJBs, create an

object within a transaction TX1 on application server A in EJB A, make a remote call to EJB B

on a separate application server B which joins TX1, where EJB B then makes a remote call

back to EJB A to create or modify the same object and so becomes a transaction participant

in the same transaction using the same persistence context used by EJB A, before EJB A

commits TX1”. This can be seen in Fig 8.

34

3.2 System Architecture

 Fig. 9 The System Architecture diagram

This system solution requires two JBoss AS 7 servers A and B to be running concurrently. The

JBoss servers used by this system are version “AS 7.3.4.Final-redhat-1”. Because both

servers are started on the same local host 127.0.01 then server B was started with a

specified additional port offset so that the ports used by each server does not clash. The

launch configurations used by both servers is as follows:

3.2.1 System Configuration

3.2.1.1 Server A

Program arguments

-mp "/home/eeikkah/Tools/jboss-as-dist-jboss-eap-6.0.1/modules" -jaxpmodule

javax.xml.jaxp-provider org.jboss.as.standalone -b localhost --server-config=standalone-full-

jts-node1.xml -Djboss.server.base.dir=/home/eeikkah/Tools/jboss-as-dist-jboss-eap-

6.0.1/standalone

35

VM arguments

-server -Xms64m -Xmx1024m -XX:MaxPermSize=256m -Dorg.jboss.resolver.warning=true -

Djava.net.preferIPv4Stack=true -Dsun.rmi.dgc.client.gcInterval=3600000 -

Dsun.rmi.dgc.server.gcInterval=3600000 -Djboss.modules.system.pkgs=org.jboss.byteman -

Djava.awt.headless=true "-Dorg.jboss.boot.log.file=/home/eeikkah/Tools/jboss-as-dist-

jboss-eap-6.0.1/standalone/log/boot.log" "-

Dlogging.configuration=file:/home/eeikkah/Tools/jboss-as-dist-jboss-eap-

6.0.1/standalone/configuration/logging.properties" "-

Djboss.home.dir=/home/eeikkah/Tools/jboss-as-dist-jboss-eap-6.0.1" "-

Djboss.bind.address.management=localhost" "-Djboss.tx.node.id=1111" "-

Djboss.node.name=node1" "-Djboss.server.name=node1"

3.2.1.2 Server B

Program arguments

-mp "/home/eeikkah/Tools/jboss-as-dist-jboss-eap-6.0.1-1/modules" -jaxpmodule

javax.xml.jaxp-provider org.jboss.as.standalone -b localhost --server-config=standalone-full-

jts-node2.xml -Djboss.server.base.dir=/home/eeikkah/Tools/jboss-as-dist-jboss-eap-6.0.1-

1/standalone

VM arguments

-server -Xms64m -Xmx1024m -XX:MaxPermSize=256m -Dorg.jboss.resolver.warning=true -

Djava.net.preferIPv4Stack=true -Dsun.rmi.dgc.client.gcInterval=3600000 -

Dsun.rmi.dgc.server.gcInterval=3600000 -Djboss.modules.system.pkgs=org.jboss.byteman -

Djava.awt.headless=true "-Dorg.jboss.boot.log.file=/home/eeikkah/Tools/jboss-as-dist-

jboss-eap-6.0.1-1/standalone/log/boot.log" "-

Dlogging.configuration=file:/home/eeikkah/Tools/jboss-as-dist-jboss-eap-6.0.1-

1/standalone/configuration/logging.properties" "-

Djboss.home.dir=/home/eeikkah/Tools/jboss-as-dist-jboss-eap-6.0.1-1" "-

36

Djboss.bind.address.management=localhost" "-Djboss.tx.node.id=1111" "-

Djboss.node.name=node2" "-Djboss.server.name=node2"

3.2.1.3 Setting up EJB3.x remote connections between application servers

As the EJBs of server A will invoke the EJBs of server B and the EJBs of server B will invoke

those of A then the remote connections between the servers needs to be configured for this

communication. This is done by adding remote connections to the relevant standalone xmls

by manually editing the xmls or the jboss-cli.sh script can be used to make the configuration

changes. The jboss-cli.sh script is located in the bin directory of the jboss runtime

environment.

In JEE6 application servers have security turned on by default. So before the EJB remote

connections can be set up the security credentials need to be configured between the

application servers, then the socket bindings are created and finally the remote connections

are defined. Here are the steps that were carried out to configure the EJB remote

connections:

Setting up the users and security realm

1. First add a user was added to both application servers called “ejbuser” with password

“EJBUser” . This was done using the add-user.sh script in the runtime bin directory.

Server A and B:

What type of user do you wish to add?

 a) Management User (mgmt-users.properties)

 b) Application User (application-users.properties)

(a): b

37

Enter the details of the new user to add.

Using realm 'ApplicationRealm' as discovered from the existing property files.

Username : ejbuser

Password : EJBUser

Re-enter Password : EJBUser

What groups do you want this user to belong to? (Please enter a comma separated list, or

leave blank for none)[]:

About to add user 'ejbuser' for realm 'ApplicationRealm'

Is this correct yes/no? yes

Is this new user going to be used for one AS process to connect to another AS process?

e.g. for a slave host controller connecting to the master or for a Remoting connection for

server to server EJB calls.

yes/no? yes

To represent the user add the following to the server-identities definition <secret

value="RUpCVXNlcg==" />

2. Add a new security realm called “ejb-security-realm” to each application server by running

the jboss-cli.sh script and add the password output from the command above to represent

the user ejbuser:

Server A:

[standalone@localhost:9999 /] /core-service=management/security-realm=test-realm:add()

[standalone@localhost:9999 /] /core-service=management/security-realm=test-

realm/server-identity=secret:add(value="RUpCVXNlcg==")

38

Server B:

[standalone@localhost:10099 /] /core-service=management/security-realm=test-

realm:add()

[standalone@localhost:10099 /] /core-service=management/security-realm=test-

realm/server-identity=secret:add(value="RUpCVXNlcg==")

The security configuration is now setup for the applications servers to communicate with

each other.

Setting up the socket bindings

Next the outbound socket binding connections needed to be created for each application

server. To do this the following steps were carried out:

1. Using the jboss-cli.sh script for server A this command was executed to create an outbound

socket binding to be used to communicate with server B. Note the port offset of 100 was

added to 4447 as this is the port that application server B will be running on.

Server A:

[standalone@localhost:9999 /] /socket-binding-group=standard-sockets/remote-

destination-outbound-socket-binding=remote-ejb:add(host=localhost, port=4547)

The same command was executed for server B but with no port offset as application server

A is not running with an offset.

Server B:

[standalone@localhost:10099 /] /socket-binding-group=standard-sockets/remote-

destination-outbound-socket-binding=remote-ejb:add(host=localhost, port=4447)

2. Next, the remote outbound connections need to be created for both applications servers

that use the socket binding created above. This was done by executing the following steps:

39

Server A:

[standalone@localhost:9999 /] /subsystem=remoting/remote-outbound-

connection=remote-ejb-connection:add(outbound-socket-binding-ref=remote-ejb, security-

realm=ejb-security-realm,username=ejbuser)

Server B:

[standalone@localhost:10099 /] /subsystem=remoting/remote-outbound-

connection=remote-ejb-connection:add(outbound-socket-binding-ref=remote-ejb2,

security-realm=ejb-security-realm,username=ejbuser)

Creating the outbound connections for the socket bindings

1. On server A a remote outbound connection was created that uses the newly created socket

binding using this command:

Server A:

[standalone@localhost:9999 /] /subsystem=remoting/remote-outbound-

connection=remote-ejb-connection:add(outbound-socket-binding-ref=remote-ejb, security-

realm=ejb-security-realm,username=ejbuser)

Server B:

On server B a remote outbound connection was also created that use the newly created

socket binding using this command:

[standalone@localhost:10099 /] /subsystem=remoting/remote-outbound-

connection=remote-ejb-connection2:add(outbound-socket-binding-ref=remote-ejb2,

security-realm=ejb-security-realm,username=ejbuser)

2. Then some SASL and SSL properties were set as recommended by the JBoss EJB

remoting documentation:

40

Server A:

[standalone@localhost:9999 /] /subsystem=remoting/remote-outbound-

connection=remote-ejb-

connection/property=SASL_POLICY_NOANONYMOUS:add(value=false)

[standalone@localhost:9999 /] /subsystem=remoting/remote-outbound-

connection=remote-ejb-connection/property=SSL_ENABLED:add(value=false)

Server B:

[standalone@localhost:10099 /] /subsystem=remoting/remote-outbound-

connection=remote-ejb-

connection/property=SASL_POLICY_NOANONYMOUS:add(value=false)

[standalone@localhost:10099 /] /subsystem=remoting/remote-outbound-

connection=remote-ejb-connection/property=SSL_ENABLED:add(value=false)

This is the configuration required to enable EJB3.x remoting between different application

servers. After the steps above are carried out the following output can be seen...

Summary of the configuration changes for EJB3.x remote connections

User “ejbuser” is added to the application-users.properties file for both servers:

ejbuser=2d01290ce92f7b34b90d364a9d93415b

Security realm “ejb-security-realm” is added to the standalone xmls for both server’s:

<management>

41

…….

 <security-realms>

 <security-realm name="ejb-security-realm">

 <server-identities>

 <secret value="RUpCVXNlcg=="/>

 </server-identities>

 </security-realm>

 </security-realms>

</management>

The following socket binding configuration for “remote-ejb” is added to server A

standalone.xml:

 <socket-binding-group>

…..

<outbound-socket-binding name="remote-ejb">

 <remote-destination host="localhost" port="4547"/>

 </outbou nd-socket-binding>

 </socket-binding-group>

The following remote outbound connection “remote-ejb-connection” is added to server A

standalone.xml:

42

<subsystem xmlns="urn:jboss:domain:remoting:1.1">

 <connector name="remoting-connector" socket-binding="remoting" security-

realm="ApplicationRealm"/>

 <outbound-connections>

 <remote-outbound-connection name="remote-ejb-connection" outbound-socket-

binding-ref="remote-ejb" username="ejbuser" security-realm="ejb-security-realm">

 <properties>

 <property name="SASL_POLICY_NOANONYMOUS" value="false"/>

 <property name="SSL_ENABLED" value="false"/>

 </properties>

 </remote-outbound-connection>

 </outbound-connections>

 </subsystem>

The following socket binding configuration for “remote-ejb2” is added to server B

standalone.xml:

<socket-binding-group>

…..

<outbound-socket-binding name="remote-ejb2">

 <remote-destination host="localhost" port="4447"/>

 </outbound-socket-binding>

43

 </socket-binding-group>

The following remote outbound connection “remote-ejb-connection2” is added to server B

standalone.xml:

<subsystem xmlns="urn:jboss:domain:remoting:1.1">

 <connector name="remoting-connector" socket-binding="remoting" security-

realm="ApplicationRealm"/>

 <outbound-connections>

 <remote-outbound-connection name="remote-ejb-connection2" outbound-socket-

binding-ref="remote-ejb2" username="ejbuser" security-realm="ejb-security-realm">

 <properties>

 <property name="SASL_POLICY_NOANONYMOUS" value="false"/>

 <property name="SSL_ENABLED" value="false"/>

 </properties>

 </remote-outbound-connection>

 </outbound-connections>

 </subsystem>

Note for the EJBs to be able to use EJB remote connections defined above the EAR files need

to have a jboss-ejb-client.properties file added to the META-INF folder of their respective

ears with the name of the outbound connection specified. This is covered in more detail in

the next EAR files section below.

44

3.2.1.4 Enabling IIOP

JBoss comes prepackaged with different standalone xml files depending on what features

you would like to use and this is the starting point for any JBoss administrator. This

standalone xmls used by this system are copies of the standalone-full.xml which then were

edited as needed. The Jacorb (Corba) subsystem is part of the standalone-full.xml. To enable

IIOP in the application servers the Jacorb subsystem must be running and the <iiop/>

element present in the ejb3 subsystem configuration. This iiop is important to the solution

as this is the element that enables IIOP (corba) invocation of the EJBs. This element has two

properties (1) enable-by-default - If this is true then all EJB's with EJB2.x home interfaces

are exposed via IIOP, otherwise they must be explicitly enabled via jboss-ejb3.xml and (2)

use-qualified-name - if this is true then EJB's are bound to the corba naming context with a

binding name that contains the application and modules name of the deployment if this is

false the default binding name is simply the bean name.

 <subsystem xmlns="urn:jboss:domain:ejb3:1.3">

…...

 <iiop enable-by-default="false" use-qualified-name="false"/>

 </subsystem>

3.2.1.5 Enabling JTS

To enable the java transaction service the </jts> element needs to be added to the

transactions subsystem.

<subsystem xmlns="urn:jboss:domain:transactions:1.2">

 …...

 <jts/>

45

 </subsystem>

It is also necessary to enable the Jacorb transactions interceptor by setting it to ‘on’.

 <subsystem xmlns="urn:jboss:domain:jacorb:1.2">

 <orb socket-binding="jacorb" ssl-socket-binding="jacorb-ssl">

 <initializers security="off" transactions="on"/>

 </orb>

 </subsystem>

3.2.1.6 Exposing EJB2.x home interfaces via IIOP

With IIOP and JTS activated along with the Jacorb subsystem running it is possible then to

declare using the jboss-ejb3.xml which specific EJB2.x home interfaces are exposed via IIOP.

This is crucial in the outcome of this solution. The EJB2.x home interfaces are exposed by

having these jboss-ejb3.xml files in the EJB modules META-INF folders.

jboss-ejb3.xml of used by both EJB modules:

<?xml version="1.0" encoding="UTF-8"?>

<jboss:ejb-jar xmlns:jboss="http://www.jboss.com/xml/ns/javaee"

 xmlns="http://java.sun.com/xml/ns/javaee"

 xmlns:iiop="urn:iiop"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

46

 xsi:schemaLocation="http://www.jboss.com/xml/ns/javaee

http://www.jboss.org/j2ee/schema/jboss-ejb3-2_0.xsd

 http://java.sun.com/xml/ns/javaee

http://www.jboss.org/j2ee/schema/jboss-ejb3-spec-2_0.xsd

 urn:iiop jboss-ejb-iiop_1_0.xsd"

 version="3.1"

 impl-version="2.0">

 <assembly-descriptor>

 <iiop:iiop>

 <ejb-name>Ejb2x_StatelessA</ejb-name>

 <iiop:binding-name>jts/Ejb2x_StatelessA</iiop:binding-name>

 </iiop:iiop>

 <iiop:iiop>

 <ejb-name>Ejb2x_StatelessB</ejb-name>

 <iiop:binding-name>jts/Ejb2x_StatelessB</iiop:binding-name>

 </iiop:iiop>

 </assembly-descriptor>

</jboss:ejb-jar>

Note an observation that was made was that it declares that the version of these EJBs is 3.1

but that it is going to use the EJB 2.1 client view implementation. In fact looking in the jboss

schema documentation “jboss-ejb3-2_0.xsd” for this it specifies that the impl-version is

fixed as 2.0 so it will in fact ignore what is entered.

47

<xs:attribute name="impl-version" type="javaee:dewey-versionType" fixed="2.0"

use="required"/>

3.2.2 EAR files

The deployment of the whole system is deployed in 2 EAR (enterprise archive) files. The

deployment structure of the files ear-module-a-1.0-SNAPSHOT.ear and ear-module-b-1.0-

SNAPSHOT.ear is as follows:

3.2.2.1 ear-module-a-1.0-SNAPSHOT.ear content

Fig. 10 ear-module-a content

● ejb-module-a-1.0.SNAPSHOT.jar - this contains all the ejbs and the entity classes

● jsf-web-client-a-1.0-SNAPSHOT.war - this contains the web application client that can

be accessed from web browser

48

Fig. 11 ear-module-a /lib content

● lib/remote-api-1.0.-SNAPSHOT.jar - this contains the library of remote interfaces in the

system and goes in the /lib directory of the EAR file.

● lib/test-api-1.0-SNAPSHOT.jar - this contains the library of test interfaces in the system

and goes in the /lib directory of the EAR file.

Fig. 12 ear-module-a META-INF content

● META-INF/application.xml - here the display name of the EAR is set to ear-module-a.

This file also tells the server that it contains a web module with a web uri called jsf-web-

49

client-a-1.0-SNAPSHOT.war and that its root context is jsf-web-client-a. This is important

when accessing the client from the browser. This file also says it contains an ejb module

called ejb-module-a-1.0-SNAPSHOT.jar.

<?xml version="1.0" encoding="UTF-8"?>

<application xmlns="http://java.sun.com/xml/ns/javaee"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://java.sun.com/xml/ns/javaee

http://java.sun.com/xml/ns/javaee/application_6.xsd" version="6">

 <display-name>ear-module-a</display-name>

 <module>

 <ejb>ejb-module-a-1.0-SNAPSHOT.jar</ejb>

 </module>

 <module>

 <web>

 <web-uri>jsf-web-client-a-1.0-SNAPSHOT.war</web-uri>

 <context-root>/jsf-web-client-a</context-root>

 </web>

 </module>

 <library-directory>lib</library-directory>

</application>

● META-INF/jboss-deployment-structure.xml - here a dependency on the SLF4J jboss

module is declared to enable logging to the console.

<jboss-deployment-structure xmlns="urn:jboss:deployment-structure:1.2">

50

 <deployment>

 <dependencies>

 <module name="org.slf4j"/>

 </dependencies>

 </deployment>

</jboss-deployment-structure>

● META-INF/jboss-ejb-client.xml - this file is used to tell the application server that there

are EJB clients in this EAR that will be making remote outbound connections to other

servers and it declares the name of the remote outbound connection to use as remote-

ejb-connection as this matches with the name of the connection configured in the

standalone xml file for server A. If the name of the outbound connection ref does not

match with what is configured in the standalone xml then the EJB to EJB communication

will fail.

<jboss-ejb-client xmlns:xsi="urn:jboss:ejb-client:1.0"

xsi:noNamespaceSchemaLocation="jboss-ejb-client_1_2.xsd">

 <client-context>

 <ejb-receivers>

 <remoting-ejb-receiver outbound-connection-ref="remote-ejb-

connection"/>

 </ejb-receivers>

 </client-context>

</jboss-ejb-client>

51

3.2.2.2 ear-module-b-1.0-SNAPSHOT.ear content

Fig. 13 ear-module-b content

 ejb-module-b-1.0-SNAPSHOT.jar - this contains all the ejbs and the entity classes

Fig. 14 ear-module-b /lib content

52

● /lib/remote-api-1.0-SNAPSHOT.jar - this contains the library of remote interfaces in the

EAR file.

● /lib/test-api-1.0-SNAPSHOT.jar - this is only here because it contains an interface that is

used in the arquillian testing

Fig. 15 ear-module-b META-INF content

● /META-INF/application.xml - here the display name of the EAR is set to ear-module-b.

This file also says it contains an ejb module called ejb-module-b-1.0-SNAPSHOT.jar.

<?xml version="1.0" encoding="UTF-8"?>

<application xmlns="http://java.sun.com/xml/ns/javaee"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://java.sun.com/xml/ns/javaee

http://java.sun.com/xml/ns/javaee/application_6.xsd" version="6">

 <display-name>ear-module-b</display-name>

 <module>

 <ejb>ejb-module-b-1.0-SNAPSHOT.jar</ejb>

 </module>

53

 <library-directory>lib</library-directory>

</application>

● /META-INF/jboss-deployment-structure.xml - here a dependency on the SLF4J jboss

module is declared to enable logging to the console.

<jboss-deployment-structure xmlns="urn:jboss:deployment-structure:1.2">

 <deployment>

 <dependencies>

 <module name="org.slf4j"/>

 </dependencies>

 </deployment>

</jboss-deployment-structure>

● /META-INF/jboss-ejb-client.xml - similar to above this declares the name of the remote

outbound connection to use as remote-ejb-connection2 as this matches with the name

of the connection configured in the standalone xml file for server B. If the name of the

outbound connection ref does not match with what is configured in the standalone xml

then the EJB to EJB communication will fail.

<jboss-ejb-client xmlns:xsi="urn:jboss:ejb-client:1.0"

xsi:noNamespaceSchemaLocation="jboss-ejb-client_1_2.xsd">

 <client-context>

 <ejb-receivers>

54

 <remoting-ejb-receiver outbound-connection-ref="remote-ejb-

connection2"/>

 </ejb-receivers>

 </client-context>

</jboss-ejb-client>

3.2.3 Database

JBOSS AS 7 (EAP 6) comes shipped with an open source lightweight database called H2 that

can be very useful for development/test activities such as this thesis and which is easy to

install and use. The H2 database can be configured to run in an embedded java application,

run in client-server mode or configured to run as an in-memory database as I have chosen,

as I have no need to persistently store objects.

To configure it as an in-memory database [36] edit the standalone.xml to add this:

 <subsystem xmlns="urn:jboss:domain:datasources:1.1">

 <datasources>

 <datasource jndi-name="java:jboss/datasources/ExampleDS" pool-

name="ExampleDS" enabled="true" use-java-context="true">

 <connection-url>jdbc:h2:mem:test;DB_CLOSE_DELAY=-1</connection-url>

 <driver>h2</driver>

 <security>

 <user-name>sa</user-name>

 <password>sa</password>

55

 </security>

 </datasource>

 <drivers>

 <driver name="h2" module="com.h2database.h2">

 <xa-datasource-class>org.h2.jdbcx.JdbcDataSource</xa-datasource-class>

 </driver>

 </drivers>

 </datasources>

 </subsystem>

This amount of configuration is enough for testing with JPA applications but it does not

allow persisting data to the hard disk and you cannot access the H2 from the web console.

3.2.4 JSF Web Client

The JSF client jsf-web-client-a-1.0-SNAPSHOT.war is the web application that is deployed in

server A and provides the client for the user to interact with the system using a web

browser backed by a managed bean. JSF provides a simple mechanism that requires only a

small amount of code and configuration before it can be used and that is why JSF was

chosen for the client in this system.

3.2.4.1 jsf-web-client-a-1.0-SNAPSHOT.war content

56

Fig. 16 jsf-web-client content

● home.xhtml - this is the file that is loaded by JSF and used for the presentation part of

the client as it specifies the margins, headings, layouts, buttons and the action listeners

to be executed when events occur such as button presses. This page is backed by the

managed bean called “tc” which is the TestCaseManager class and invokes the bean

methods in this class when the buttons are pressed by the user.

Fig. 17 jsf-web-cient /WEB-INF/ content

 primefaces.jar - this jar is required for JSF to execute

57

Fig. 18 jsf-web-client /WEB-INF/ content

● faces-config.xml - this is for JSF customizations but is not used by this application

● web.xml - this is used to specify the faces servlet is to be used and also what the

mapping url pattern to look for is on deployment of the war file

<?xml version="1.0" encoding="UTF-8"?>

<web-app xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns="http://java.sun.com/xml/ns/javaee"

xmlns:web="http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd"

xsi:schemaLocation="http://java.sun.com/xml/ns/javaee

http://java.sun.com/xml/ns/javaee/web-app_3_0.xsd" id="WebApp_ID"

version="3.0">

 <display-name>JSFClient</display-name>

 <servlet>

 <servlet-name>Faces Servlet</servlet-name>

 <servlet-class>javax.faces.webapp.FacesServlet</servlet-class>

 <load-on-startup>1</load-on-startup>

58

 </servlet>

 <servlet-mapping>

 <servlet-name>Faces Servlet</servlet-name>

 <url-pattern>*.xhtml</url-pattern>

 </servlet-mapping>

</web-app>

3.2.4.2 Test Client

Once deployed in the application server the test client contains a selection of buttons that

the user can press to execute the different test cases that test the transactional scope of a

persistence context. The format for the tests is the same whereby the user clicks the setup

button followed by the execute and teardown buttons in that order. A message is displayed

in the client to provide the user with the result of each button press. Below is an image of

the application which can be accessed using the following url: http://localhost:8080/jsf-

web-client-a/home.xhtml

59

Fig. 19 Screenshot of the JSF web client

60

3.3 High Level Design

The use cases in this system follow the same pattern and so are repeated for different test

cases using different jboss server configuration settings and different types of enterprise

java beans.

3.2.1 Use Case Descriptions

Fig. 20 The Use Case Descriptons

Use Case 1 Stateless EJB3.1in server A and B with JTA only, no JTS and Jacorb TXs

off

Goal in Context Ejb3x_StatelessA in server A creates new TX and modifies attribute in

Film, invokes remotely Ejb3x_StatelessB in server B which invokes

remotely back to Ejb3x_StatelessA in server A to create new Cast

61

object and read the modified attribute from the same TX persistence

context as used by Ejb3x_StatelessA in server A

Scope and level Single remote method invocation from server A to server B, two

remote invocations from server B to server A. JTA only

Preconditions Both application servers are started.

ear-module-a-1.0-SNAPSHOT.ear is deployed in server A and ear-

module-b-1.0-SNAPSHOT.ear in server B.

Both server A and B are not configured to use JTS.

Web browser has loaded the page “http://http://localhost:8080/jsf-

web-client-a/home.xhtml”

Success post

condition

Ejb3x_StatelessA in server A successfully retrieves the modified

attribute via Ejb3x_StatelessB in server B and the Cast object is

successfully committed to the database and the result “passed” is

displayed in the web browser

Failed post

condition

Ejb3x_StatelessA in server A does not successfully retrieve the

modified attribute via Ejb3x_StatelessB in server B and the Cast object

is not successfully committed to the database and the TX is rolled back

Primary - Secondary

actors

User (primary)

System (secondary)

Trigger The user clicks the Execute TC button in the web browser

Description Step Action

 1 User clicks the “Setup TC” button to create a Film object in the

database

 2 User clicks the “Execute TC” to run the test

 3 The system starts a new TX if one does not exist already and

invokes stateless Ejb3x_StatelessA runTest method

62

 4 The system retrieves the Film object from the database

 5 The system modifies the CountryOfOrigin attribute value to

IRELAND

 6 The system invokes Ejb3x_StatelessB in server B within the

same TX

 7 The system invokes Ejb3x_StatelessA twice in server A to get

the CountryOfOrigin attribute and create a new Cast object

within the Film object

 8 The system returns the CountryOfOrigin attribute from

Ejb3x_StatelessB in server B to Ejb3x_StatelessA in server A

 9 The system verifies that the CountryOfOrigin returned has the

value IRELAND and that there exists a new Cast object within

the Film object

 10 The system commits the Ejb3x_StatelessA TX in server A

Extensions Branching Actions

 1a The user fails to create a Film object in the database

 2a The user fails to execute the test

 4a The system fails to retrieve the Film object from the database

 6a The system fails to remotely invoke Ejb3x_StatelessB in server B

 7a The system fails to remotely invoke Ejb3x_StatelessA in server A

 9a The system fails to verify the expected results

63

Use Case 2 Stateless EJB3.1 in server A and B with JTA, JTS on and Jacorb TXs on

Goal in Context Ejb3x_StatelessA in server A creates new TX and modifies attribute

in Film, invokes remotely Ejb3x_StatelessB in server B which invokes

remotely back to same Ejb3x_StatelessA in server A to create new

Cast object and read the modified attribute from the same TX

persistence context as used Ejb3x_StatelessAin server A

Scope and level Single remote method invocation from server A to server B, two

remote invocations from server B to server A with JTA, JTS and

Jacorb TXs on

Preconditions Both application servers are started.

ear-module-a-1.0-SNAPSHOT.ear is deployed in server A and ear-

module-b-1.0-SNAPSHOT.ear in server B.

Both server A and B are configured to use JTS and Jacorb TXs.

Web browser has loaded the page “http://localhost:8080/jsf-web-

client-a/home.xhtml”

Success post

condition

Ejb3x_StatelessA in server A successfully retrieves the modified

attribute via Ejb3x_StatelessB in server B and the Cast object is

successfully committed to the database and the result “passed” is

displayed in the web browser

Failed post

condition

Ejb3x_StatelessA in server A does not successfully retrieve the

modified attribute via Ejb3x_StatelessB in server B and the Cast

object is not successfully committed to the database and the TX is

rolled back

Primary -

Secondary actors

User (primary)

System (secondary)

Trigger The user clicks the Execute TC button in the web browser

Description Ste Action

64

p

 1 User clicks the “Setup TC” button to create a Film object in

the database

 2 User clicks the “Execute TC” to run the test

 3 The system starts a new TX if one does not exist already and

invokes stateless Ejb3x_StatelessA runTest method

 4 The system retrieves the Film object from the database

 5 The system modifies the CountryOfOrigin attribute value to

IRELAND

 6 The system invokes Ejb3x_StatelessB in server B within the

same TX

 7 The system invokes Ejb3x_StatelessA twice in server A to get

the CountryOfOrigin attribute and create a new Cast object

within the Film object

 8 The system returns the CountryOfOrigin attribute from

Ejb3x_StatelessB in server B to Ejb3x_StatelessAin server A

 9 The system verifies that the CountryOfOrigin returned has

the value IRELAND and that there exists a new Cast object

within the Film object

 10 The system commits the Ejb3x_StatelessA TX in server A

Extensions Branching Actions

 1a The user fails to create a Film object in the database

 2a The user fails to execute the test

 4a The system fails to retrieve the Film object from the database

65

 6a The system fails to remotely invoke Ejb3x_StatelessB in

server B

 7a The system fails to remotely invoke Ejb3x_StatelessA in

server A

 9a The system fails to verify the expected results

Use Case 3 Statefull EJB3.1in server A and B with JTA only, no JTS and Jacorb

TXs off

Goal in Context Ejb3x_StatefulA in server A creates new TX and modifies attribute in

Film, invokes remotely Ejb3x_StatefulB in server B which invokes

remotely back to same Ejb3x_StatefulA in server A to create new

Cast object and read the modified attribute from the same TX

persistence context as used Ejb3x_StatefulA in server A

Scope and level Single remote method invocation from server A to server B, two

remote invocations from server B to server A with JTA, JTS and

Jacorb TXs on

Preconditions Both application servers are started.

ear-module-a-1.0-SNAPSHOT.ear is deployed in server A and ear-

module-b-1.0-SNAPSHOT.ear in server B.

Both server A and B are configured to use JTS and Jacorb TXs.

Web browser has loaded the page “http://localhost:8080/jsf-web-

client-a/home.xhtml”

Success post

condition

Ejb3x_StatefulA in server A successfully retrieves the modified

attribute via Ejb3x_StatefulB in server B and the Cast object is

successfully committed to the database and the result “passed” is

66

displayed in the web browser

Failed post

condition

Ejb3x_StatefulA in server A does not successfully retrieve the

modified attribute via Ejb3x_StatefulB in server B and the Cast

object is not successfully committed to the database and the TX is

rolled back

Primary -

Secondary actors

User (primary)

System (secondary)

Trigger The user clicks the Execute TC button in the web browser

Description Ste

p

Action

 1 User clicks the “Setup TC” button to create a Film object in

the database

 2 User clicks the “Execute TC” to run the test

 3 The system starts a new TX if one does not exist already and

invokes stateless Ejb3x_StatefulA runTest method

 4 The system retrieves the Film object from the database

 5 The system modifies the CountryOfOrigin attribute value to

IRELAND

 6 The system invokes Ejb3x_StatefulB in server B within the

same TX

 7 The system invokes Ejb3x_StatefulA twice in server A to get

the CountryOfOrigin attribute and create a new Cast object

within the Film object

 8 The system returns the CountryOfOrigin attribute from

Ejb3x_StatefulB in server B to Ejb3x_StatefulA in server A

67

 9 The system verifies that the CountryOfOrigin returned has

the value IRELAND and that there exists a new Cast object

within the Film object

 10 The system commits the Ejb3x_StatefulA TX in server A

Extensions Branching Actions

 1a The user fails to create a Film object in the database

 2a The user fails to execute the test

 4a The system fails to retrieve the Film object from the database

 6a The system fails to remotely invoke Ejb3x_StatefulB in server

B

 7a The system fails to remotely invoke Ejb3x_StatefulA in server

A

 9a The system fails to verify the expected results

Use Case 4 Stateful EJB3.1in server A and B with JTA, JTS on and Jacorb TXs on

Goal in Context Ejb3x_StatefulA in server A creates new TX and modifies attribute in

Film, invokes remotely Ejb3x_StatefulB in server B which invokes

remotely back to same Ejb3x_StatefulA in server A to create new

Cast object and read the modified attribute from the same TX

persistence context as used Ejb3x_StatefulA in server A

Scope and level Single remote method invocation from server A to server B, two

remote invocations from server B to server A with JTA, JTS and

68

Jacorb TXs on

Preconditions Both application servers are started.

ear-module-a-1.0-SNAPSHOT.ear is deployed in server A and ear-

module-b-1.0-SNAPSHOT.ear in server B.

Both server A and B are configured to use JTS and Jacorb TXs.

Web browser has loaded the page “http://localhost:8080/jsf-web-

client-a/home.xhtml”

Success post

condition

Ejb3x_StatefulA in server A successfully retrieves the modified

attribute via Ejb3x_StatefulB in server B and the Cast object is

successfully committed to the database and the result “passed” is

displayed in the web browser

Failed post

condition

Ejb3x_StatefulA in server A does not successfully retrieve the

modified attribute via Ejb3x_StatefulB in server B and the Cast

object is not successfully committed to the database and the TX is

rolled back

Primary -

Secondary actors

User (primary)

System (secondary)

Trigger The user clicks the Execute TC button in the web browser

Description Ste

p

Action

 1 User clicks the “Setup TC” button to create a Film object in

the database

 2 User clicks the “Execute TC” to run the test

 3 The system starts a new TX if one does not exist already and

invokes stateless Ejb3x_StatefulA runTest method

 4 The system retrieves the Film object from the database

69

 5 The system modifies the CountryOfOrigin attribute value to

IRELAND

 6 The system invokes Ejb3x_StatefulB in server B within the

same TX

 7 The system invokes Ejb3x_StatefulA twice in server A to get

the CountryOfOrigin attribute and create a new Cast object

within the Film object

 8 The system returns the CountryOfOrigin attribute from

Ejb3x_StatefulB in server B to Ejb3x_StatefulA in server A

 9 The system verifies that the CountryOfOrigin returned has

the value IRELAND and that there exists a new Cast object

within the Film object

 10 The system commits the Ejb3x_StatefulA TX in server A

Extensions Branching Actions

 1a The user fails to create a Film object in the database

 2a The user fails to execute the test

 4a The system fails to retrieve the Film object from the database

 6a The system fails to remotely invoke Ejb3x_StatefulB in server

B

 7a The system fails to remotely invoke Ejb3x_StatefulA in server

A

 9a The system fails to verify the expected results

70

Use Case 5 Stateless EJB2.1 in server A and B with JTA only, no JTS and Jacorb

TXs off

Goal in Context Ejb2x_StatelessA in server A creates new TX and modifies attribute

in Film, invokes remotely Ejb2x_StatelessB in server B which invokes

remotely back to same Ejb2x_StatelessA in server A to create new

Cast object and read the modified attribute from the same TX

persistence context as used Ejb2x_StatelessA in server A

Scope and level Single remote method invocation from server A to server B, two

remote invocations from server B to server A. JTA only

Preconditions Both application servers are started.

ear-module-a-1.0-SNAPSHOT.ear is deployed in server A and ear-

module-b-1.0-SNAPSHOT.ear in server B.

Both server A and B are not configured to use JTS.

Web browser has loaded the page “http://localhost:8080/jsf-web-

client-a/home.xhtml”

Success post

condition

Ejb2x_StatelessA in server A successfully retrieves the modified

attribute via Ejb2x_StatelessB in server B and the Cast object is

successfully committed to the database and the result “passed” is

displayed in the web browser

Failed post

condition

Ejb2x_StatelessA in server A does not successfully retrieve the

modified attribute via Ejb2x_StatelessB in server B and the Cast

object is not successfully committed to the database and the TX is

rolled back

Primary -

Secondary actors

User (primary)

System (secondary)

Trigger The user clicks the Execute TC button in the web browser

71

Description Ste

p

Action

 1 User clicks the “Setup TC” button to create a Film object in

the database

 2 User clicks the “Execute TC” to run the test

 3 The system starts a new TX if one does not exist already and

invokes stateless Ejb2x_StatelessA runTest method

 4 The system retrieves the Film object from the database

 5 The system modifies the CountryOfOrigin attribute value to

IRELAND

 6 The system invokes Ejb2x_StatelessB in server B within the

same TX

 7 The system invokes Ejb2x_StatelessA twice in server A to get

the CountryOfOrigin attribute and create a new Cast object

within the Film object

 8 The system returns the CountryOfOrigin attribute from

Ejb2x_StatelessB in server B to Ejb2x_StatelessA in server A

 9 The system verifies that the CountryOfOrigin returned has

the value IRELAND and that there exists a new Cast object

within the Film object

 10 The system commits the Ejb2x_StatelessA TX in server A

Extensions Branching Actions

 1a The user fails to create a Film object in the database

 2a The user fails to execute the test

72

 4a The system fails to retrieve the Film object from the database

 6a The system fails to remotely invoke Ejb2x_StatelessB in

server B

 7a The system fails to remotely invoke Ejb2x_StatelessA in

server A

 9a The system fails to verify the expected results

Use Case 6 Stateless EJB2.1in server A and B with JTA, JTS on and Jacorb TXs on

Goal in Context Ejb2x_StatelessA in server A creates new TX and modifies attribute

in Film, invokes remotely Ejb2x_StatelessB in server B which invokes

remotely back to same Ejb2x_StatelessA in server A to create new

Cast object and read the modified attribute from the same TX

persistence context as used Ejb2x_StatelessA in server A

Scope and level Single remote method invocation from server A to server B, two

remote invocations from server B to server A with JTA, JTS and

Jacorb TXs on

Preconditions Both application servers are started.

ear-module-a-1.0-SNAPSHOT.ear is deployed in server A and ear-

module-b-1.0-SNAPSHOT.ear in server B.

Both server A and B are configured to use JTS and Jacorb TXs.

Web browser has loaded the page “http://localhost:8080/jsf-web-

client-a/home.xhtml”

Success post

condition

Ejb2x_StatelessA in server A successfully retrieves the modified

attribute via Ejb2x_StatelessB in server B and the Cast object is

successfully committed to the database and the result “passed” is

73

displayed in the web browser

Failed post

condition

Ejb2x_StatelessA in server A does not successfully retrieve the

modified attribute via Ejb2x_StatelessB in server B and the Cast

object is not successfully committed to the database and the TX is

rolled back

Primary -

Secondary actors

User (primary)

System (secondary)

Trigger The user clicks the Execute TC button in the web browser

Description Ste

p

Action

 1 User clicks the “Setup TC” button to create a Film object in

the database

 2 User clicks the “Execute TC” to run the test

 3 The system starts a new TX if one does not exist already and

invokes stateless Ejb2x_StatelessA runTest method

 4 The system retrieves the Film object from the database

 5 The system modifies the CountryOfOrigin attribute value to

IRELAND

 6 The system invokes Ejb2x_StatelessB in server B within the

same TX

 7 The system invokes Ejb2x_StatelessA twice in server A to get

the CountryOfOrigin attribute and create a new Cast object

within the Film object

 8 The system returns the CountryOfOrigin attribute from

Ejb2x_StatelessB in server B to Ejb2x_StatelessA in server A

74

 9 The system verifies that the CountryOfOrigin returned has

the value IRELAND and that there exists a new Cast object

within the Film object

 10 The system commits the Ejb2x_StatelessA TX in server A

Extensions Branching Actions

 1a The user fails to create a Film object in the database

 2a The user fails to execute the test

 4a The system fails to retrieve the Film object from the database

 6a The system fails to remotely invoke Ejb2x_StatelessB in

server B

 7a The system fails to remotely invoke Ejb2x_StatelessA in

server A

 9a The system fails to verify the expected results

Use Case 7 Stateless EJB2.1 in server A and B with JTA only, no JTS and Jacorb

TXs off

Goal in Context Ejb2x_StatefulA in server A creates new TX and modifies attribute in

Film, invokes remotely Ejb2x_StatefulB in server B which invokes

remotely back to same Ejb2x_StatefulA in server A to create new

Cast object and read the modified attribute from the same TX

persistence context as used Ejb2x_StatefulA in server A

Scope and level Single remote method invocation from server A to server B, two

75

remote invocations from server B to server A. JTA only

Preconditions Both application servers are started.

ear-module-a-1.0-SNAPSHOT.ear is deployed in server A and ear-

module-b-1.0-SNAPSHOT.ear in server B.

Both server A and B are not configured to use JTS.

Web browser has loaded the page “http://localhost:8080/jsf-web-

client-a/home.xhtml”

Success post

condition

Ejb2x_StatefulA in server A successfully retrieves the modified

attribute via Ejb2x_StatefulB in server B and the Cast object is

successfully committed to the database and the result “passed” is

displayed in the web browser

Failed post

condition

Ejb2x_StatefulA in server A does not successfully retrieve the

modified attribute via Ejb2x_StatefulB in server B and the Cast

object is not successfully committed to the database and the TX is

rolled back

Primary -

Secondary actors

User (primary)

System (secondary)

Trigger The user clicks the Execute TC button in the web browser

Description Ste

p

Action

 1 User clicks the “Setup TC” button to create a Film object in

the database

76

 2 User clicks the “Execute TC” to run the test

 3 The system starts a new TX if one does not exist already and

invokes stateless Ejb2x_StatefulA runTest method

 4 The system retrieves the Film object from the database

 5 The system modifies the CountryOfOrigin attribute value to

IRELAND

 6 The system invokes Ejb2x_StatefulB in server B within the

same TX

 7 The system invokes Ejb2x_StatefulA twice in server A to get

the CountryOfOrigin attribute and create a new Cast object

within the Film object

 8 The system returns the CountryOfOrigin attribute from

Ejb2x_StatefulB in server B to Ejb2x_StatefulA in server A

 9 The system verifies that the CountryOfOrigin returned has

the value IRELAND and that there exists a new Cast object

within the Film object

 10 The system commits the Ejb2x_StatefulA TX in server A

Extensions Branching Actions

 1a The user fails to create a Film object in the database

 2a The user fails to execute the test

77

 4a The system fails to retrieve the Film object from the database

 6a The system fails to remotely invoke Ejb2x_StatefulB in server

B

 7a The system fails to remotely invoke Ejb2x_StatefulA in server

A

 9a The system fails to verify the expected results

Use Case 8 Stateless EJB2.1in server A and B with JTA, JTS on and Jacorb TXs on

Goal in Context Ejb2x_StatefulA in server A creates new TX and modifies attribute in

Film, invokes remotely Ejb2x_StatefulB in server B which invokes

remotely back to same Ejb2x_StatefulA in server A to create new

Cast object and read the modified attribute from the same TX

persistence context as used Ejb2x_StatefulA in server A

Scope and level Single remote method invocation from server A to server B, two

remote invocations from server B to server A with JTA, JTS and

Jacorb TXs on

Preconditions Both application servers are started.

ear-module-a-1.0-SNAPSHOT.ear is deployed in server A and ear-

module-b-1.0-SNAPSHOT.ear in server B.

Both server A and B are configured to use JTS and Jacorb TXs.

Web browser has loaded the page “http://localhost:8080/jsf-web-

78

client-a/home.xhtml”

Success post

condition

Ejb2x_StatefulA in server A successfully retrieves the modified

attribute via Ejb2x_StatefulB in server B and the Cast object is

successfully committed to the database and the result “passed” is

displayed in the web browser

Failed post

condition

Ejb2x_StatefulA in server A does not successfully retrieve the

modified attribute via Ejb2x_StatefulB in server B and the Cast

object is not successfully committed to the database and the TX is

rolled back

Primary -

Secondary actors

User (primary)

System (secondary)

Trigger The user clicks the Execute TC button in the web browser

Description Ste

p

Action

 1 User clicks the “Setup TC” button to create a Film object in

the database

 2 User clicks the “Execute TC” to run the test

 3 The system starts a new TX if one does not exist already and

invokes stateless Ejb2x_StatefulA runTest method

 4 The system retrieves the Film object from the database

79

 5 The system modifies the CountryOfOrigin attribute value to

IRELAND

 6 The system invokes Ejb2x_StatefulB in server B within the

same TX

 7 The system invokes Ejb2x_StatefulA twice in server A to get

the CountryOfOrigin attribute and create a new Cast object

within the Film object

 8 The system returns the CountryOfOrigin attribute from

Ejb2x_StatefulB in server B to Ejb2x_StatefulA in server A

 9 The system verifies that the CountryOfOrigin returned has

the value IRELAND and that there exists a new Cast object

within the Film object

 10 The system commits the Ejb2x_StatefulA TX in server A

Extensions Branching Actions

 1a The user fails to create a Film object in the database

 2a The user fails to execute the test

 4a The system fails to retrieve the Film object from the database

 6a The system fails to remotely invoke Ejb2x_StatefulB in server

B

 7a The system fails to remotely invoke Ejb2x_StatefulA in server

80

A

 9a The system fails to verify the expected results

3.4 Low Level Design

The source code of the complete system is spread over 5 different modules. As it is not

feasible to show all the classes and their relationships with each other in a single diagram

instead a break down of the class diagrams per module is shown. The next section will show

each of these class diagrams in each module and a description of each module. The source

code modules of the system are:

● remote-api - library module that contains the remote interfaces used by the system

● ejb-module-a - an EJB module for server A

● ejb-module-b - an EJB module for server B

● jsf-web-client-a - WEB module that contains the test client code

● test-api - library module that contains the test case interfaces used by the ejb module A

and also contains an interface that is used for testing purposes only

3.4.1 Class Diagram

3.4.1.1 remote-api module

Fig 21. and Fig 22. shows the classes of the remote-api library module that contains common

code used by both the ejb-module-a and ejb-module-b. Most importantly it contains the

different remote interfaces used by the system and it also contains some helper classes and

constants that are used by both ejb modules to locate different EJB bean versions. The

remote-api.jar is contained in the /lib directory of each EAR file.

81

Fig. 21 remote-api class diagram

82

Fig. 22 remote-api class diagram

● StatefulRemoteHomeA - the EJB2.x stateful remote home interface which must extend

the EJBHOME interface used by server A to create StatefulRemoteObjectA objects

● StatefulRemoteObjectA - the EJB2.x stateful EJB remote object interface which provides

the remote client business view

● StatelessRemoteHomeA - the EJB2.x stateful EJB remote home interface which must

extend the EJBHOME interface

● StatelessRemoteObjectA - the EJB2.x stateless EJB remote object interface which

provides the remote client business view

● StatefulRemoteA - the EJB3.x stateful remote business interface

● StatelessRemoteA - the EJB3.x stateless remote business interface

83

● StatefulRemoteHomeB - the EJB2.x stateful remote home interface which must extend

the EJBHOME interface used by server B to create StatefulRemoteObjectB objects

● StatefulRemoteObjectB - the EJB2.x stateful EJB remote object interface which provides

the remote client business view

● StatelessRemoteHomeB - the EJB2.x stateful EJB remote home interface which must

extend the EJBHOME interface

● StatelessRemoteObjectB - the EJB2.x stateless EJB remote object interface which

provides the remote client business view

● StatefulRemoteB - the EJB3.x stateful remote business interface

● StatelessRemoteB - the EJB3.x stateless remote business interface

● Ejb2xBeanLocator - the helper bean for locating EJB2.x beans

● PortableObjectHelper - used by Ejb2xBeanLocator to narrow objects

● Ejb3xBeanLocator - the helper bean for locating EJB3.x beans

● Constants - contains common constants used through the system

3.4.1.2 ejb-module-a

Fig 23. shows the different combinations of EJB implementation classes that are deployed as

part of ear-module-a-1.0-SNAPSHOT.ear on server A that implement the test case interface.

It is through this TestCase interface that the test setup, execution and teardown is done

similar to the junit philosophy. It is also these EJB classes that interact with the WEB module

that contains the TestManager test client which injects these EJBs into its managed bean

that is controlled by a Java Server Faces (JSF) client. This client can be viewed in a web

browser and it allows the user to click buttons to invoke the varioud methods on the

TestCase interface. The EJB3x and EJB2x bean locator helper classes from the remote api

library ase used by the different test EJBs to locate the respective EJBs implementation

versions in server B. The persistent entity classes Film and Cast are also shown.

84

Fig. 23 ejb-module-a class diagram

● EjbBaseA - this is an abstract class that implements the TestCase local interface. It

contains common method implementations that are used by all the subclasses, for

85

example it contains the getCountryOfOrigin method that is used by the EJBs in server B

to try and retrieve the modified entity attribute.

● Ejb2x_StatelessA - the EJB2.x stateless EJB implementation thats extends EjbBaseA and

provides a specific implementation of the runTest method. This bean designates the

RemoteHome interface to be adapted to be StatelessRemoteHomeA and implements the

StatelessRemoteObjectA interface business method.

● Ejb2x_StatefulA - the EJB2.x stateful EJB implementation thats extends EjbBaseA and

provides a specific implementation of the runTest method. This bean designates the

RemoteHome interface to be adapted to be StatefulRemoteHomeA and implements the

StatefulRemoteObjectA interface business method.

● Ejb3x_StatefulA - the EJB3.x stateful EJB implementation that extends EjbBaseA and

provides a specific implementation of the runTest method. This bean implements the

StatefulRemoteA remote interface.

● Ejb3x_StatelessA - the EJB3.x stateless EJB implementation that extends EjbBaseA and

provides a specific implementation of the runTest method. This bean implements the

StatelessRemoteA remote interface.

● Film - the entity class that has some attributes related to a film. It also contains a Cast

field object.

● Cast - the entity class that has some attributes related to a cast.

● Constants - a class that stores some constant values related to the Film and Cast entities.

3.4.1.3 ejb-module-b

Fig 24. shows the different combinations of EJB implementation classes that are deployed as

part of ear-module-b-1.0-SNAPSHOT.ear on server B. These EJBs are invoked from server A

and all of them participate (join) in the transaction that is started by the EJB in container A.

These EJBS then invoke back to server A to try and read the modified CountryOfOrigin

attribute and to also create a new Cast object before returning from their method call back

to server A.

86

Fig. 24 ejb-module-b class diagram

● Ejb3x_StatefulB - the EJB3.x stateful EJB implementation bean that implements the

StatefulRemoteB remote interface. This bean contains methods to lookup the

StatefulRemoteA EJB to read the CountryOfOriginAttribute and create a Cast object. The

business methods of this bean join the transaction context of the calling EJB.

● Ejb3x_StatelessB - the EJB3.x stateful EJB implementation bean that implements the

StatelessRemoteB remote interface. This bean contains methods to lookup the

StatelessRemoteA EJB to read the CountryOfOriginAttribute and create a Cast object.

The business methods of this bean join the transaction context of the calling EJB.

● Ejb2x_StatelessB - the EJB2.x stateless EJB implementation that implements the

RemoteHome interface to be adapted to be StatelessRemoteHomeB and implements the

StatelessRemoteObjectB interface business method. This bean contains methods to

lookup the StatelessRemoteObjectA EJB to read the CountryOfOriginAttribute and create

87

a Cast object. The business methods of this bean join the transaction context of the

calling EJB.

● Ejb2x_StatefulB - the EJB2.x stateful EJB implementation that implements the

RemoteHome interface to be adapted to be StatefulRemoteHomeB and implements the

StatefulRemoteObjectB interface business method. This bean contains methods to

lookup the StatefulRemoteObjectA EJB to read the CountryOfOriginAttribute and create

a Cast object. The business methods of this bean join the transaction context of the

calling EJB.

3.4.1.4 jsf-web-client-a module

Fig 25. shows the class belonging to the web application that is deployed as jsf-web-client-a-

1.0-SNAPSHOT.war on server A. This is a Java Server Faces client that requires the

primefaces-3.5.jar runtime library on its classpath. The client is implemented by the

TestCaseManager class. The structure, layout and presentation of the web client in the

browser is controlled by the web content file home.xhtml.

● TestCaseManager - this is the main managed bean client class. Each different EJB

implementation is injected into the managed bean by using its default class name as a

reference. Each test case has a similar set of variables for storing the results of each

operation of the TestCase interface (which each EJB implements) for displaying on the

web browser to give feedback to the user of the results of each operation (button

press).

88

Fig. 25 jsf-web-client-a class diagram

89

3.4.1.5 Test Client API module

Fig 26. shows the test client API interface that is implemented by the different EJB

implementations that are deployed on server A. This API module is the link between the

web client and the different EJB implementations deployed on server A and enables the

user to interact with the system.

Fig. 26 test client api class diagram

● TestCase - interface that allows the user to interact with the different EJBs deployed on

server A through the web client. This interface contains a setUp method that creates a

new Film object. The runTest method executes the actual test case and tearDown

deletes the Film object and Cast object created after each test run is executed.

3.4.2 Sequence Diagram

3.4.2.1 Setup Sequence

Fig.27 shows the sequence that is executed when the user clicks any of the Setup TC buttons

in the test client.

90

Fig. 27 Setup sequence

3.4.2.2 Execute Ejb3x_StatelessA Test Case Sequence

Fig.28 shows the first part of the sequence that is executed when the user clicks the Execute

TC button of Test Case 1 the EJB3x Stateless bean test. The subsequent sequences are

shown in Fig.32, Fig.33 and Fig.37 sequence diagrams.

91

Fig 28. Ejb3x_StatelessA Run Test Sequence

3.4.2.3 Execute Ejb3x_StatefulA Test Case Sequence

Fig.29 shows the first part of the sequence that is executed when the user clicks the Execute

TC button of Test Case 2 the EJB3x Stateful bean test. The subsequent sequences are shown

in Fig.32, Fig.34 and Fig.37 sequence diagrams.

92

Fig.29 Ejb3x_StatefulA Run Test Sequence

3.4.2.4 Execute Ejb2x_StatelessA Test Case Sequence

Fig.30 shows the first part of the sequence that is executed when the user clicks the Execute

TC button of test case 3 the EJB2x Stateless bean test. The subsequent sequences are shown

in Fig. Fig.32, Fig.40 and Fig.37 sequence diagrams.

93

Fig 30. Ejb2x_StatelessA Run Test Sequence

3.4.2.5 Execute Ejb2x_StatefulA Test Case Sequence

Fig.31 shows the first part of the sequence that is executed when the user clicks the Execute

TC button of test case 4 the EJB2x Stateful bean test. The subsequent sequences are shown

in Fig.32, Fig.36 and Fig.37 sequence diagrams.

94

Fig 31. Ejb2x_StatefulA Run Test Sequence

Fig.32 shows the second part of the sequence after the user clicks the Setup TC button for

all the tests which causes the CountryOfOrigin attribute of the Film object to be modified.

95

Fig 32. Update CountryOfOrigin Sequence common to all tests

96

Fig.33 shows the next part of the Execute TC sequence for the EJB3x Stateless bean test

where the EJB3x_StatelessB of server B is remotely invoked from server A.

Fig 33. Ejb3x_StatelessB Get CountryOfOrigin and Create Cast Sequence

97

Fig.34 shows the next part of the Execute TC sequence for the EJB3.1 Stateful bean test

where the EJB3x_StatefulB of server B is remotely invoked from server A.

Fig 34. Ejb3x_StatefulB Get CountryOfOrigin and Create Cast Sequence

98

Fig.35 shows the next part of the Execute TC sequence for the EJB2x Stateless bean test

where the EJB2x_StatelessB of server B is remotely invoked from server A.

Fig 35. Ejb2x_StatelessB Get CountryOfOrigin and Create Cast Sequence

99

Fig.36 shows part of the Execute TC sequence that is common to all the tests where the

implementing EJBs of server A are invoked from server B to read the modified

CountryOfOrigin attribute and create a new Cast object associated with the Film object.

Fig 36. Ejb3x_StatefulB Get CountryOfOrigin and Create Cast Sequence

100

Fig.37 shows the verify sequence common to all the tests where the value of the local and

remotely fetched CountryOfOrigin are compared and also its verified that the Cast object

exists. If the CountryOfOrigin values match and the Cast object exists then the test case is

successful, anything else is a failed test case.

Fig 37. Verify Sequence common to all tests

101

4 System Verification

The system verification was done in 2 steps:

1. Unit testing

2. Integration testing

4.1 Unit Testing

The unit testing tests the functionality of the classes in isolation. Unit testing was performed

using Junit framework [23] and the mocking framework Mockito [32]. During the

development of the unit tests it was necessary to make some minor adjustments to the

source code to make the unit testing a bit easier in certain situations; this is a normal

refactoring process.

For example the source code contained methods that were creating new instances of

objects in the method itself so it made it difficult to inject mocks for those objects as they

were no field variables declared for storing references to these objects, so in these cases it

was necessary to create a field variable for storing references to these objects which

enabled mock classes to be set for these variables during junit testing. See the method

Ejb2x_StatefulA.createBeanFinder() for an example of this and its test class

Ejb2x_StatefulATest where the mock object Ejb2xBeanLocator is injected in the field

Ejb2xBeanLocator of Ejb2x_StatefulA before the test begins.

The PortableObjectHelper class was solely created to help with unit testing by extracting the

code that did the corba handling into a separate class which meant that it could be mocked

easily in the unit test classes, see Ejb2x_BeanLocatorTest for an example of this.

The unit tests can be executed through maven or directly from eclipse. The tests were

compiled and executed using the maven command:

 mvn clean install -o (-o means offline)

102

4.1.1 Unit test results for ejb-module-a

 T E S T S

Running my.serverA.ejb3.impl.test.Ejb3x_StatelessATest

log4j:WARN No appenders could be found for logger

(my.serverA.ejb3.impl.Ejb3x_StatelessA).

103

log4j:WARN Please initialize the log4j system properly.

log4j:WARN See http://logging.apache.org/log4j/1.2/faq.html#noconfig for more info.

Tests run: 2, Failures: 0, Errors: 0, Skipped: 0, Time elapsed: 0.353 sec

Running my.serverA.ejb3.impl.test.Ejb3x_StatefulATest

Tests run: 2, Failures: 0, Errors: 0, Skipped: 0, Time elapsed: 0.02 sec

Running my.serverA.ejb2.impl.test.Ejb2x_StatefulATest

Tests run: 8, Failures: 0, Errors: 0, Skipped: 0, Time elapsed: 0.076 sec

Running my.serverA.ejb2.impl.test.Ejb2x_StatelessATest

Tests run: 8, Failures: 0, Errors: 0, Skipped: 0, Time elapsed: 0.081 sec

Results :

Tests run: 20, Failures: 0, Errors: 0, Skipped: 0

4.1.2 Unit test results for ejb-module-b

104

 T E S T S

Running my.serverB.ejb3.impl.test.Ejb3x_StatefulBTest

log4j:WARN No appenders could be found for logger

(my.serverB.ejb3.impl.Ejb3x_StatefulB).

105

log4j:WARN Please initialize the log4j system properly.

log4j:WARN See http://logging.apache.org/log4j/1.2/faq.html#noconfig for more info.

Tests run: 6, Failures: 0, Errors: 0, Skipped: 0, Time elapsed: 0.298 sec

Running my.serverB.ejb3.impl.test.Ejb3x_StatelessBTest

Tests run: 6, Failures: 0, Errors: 0, Skipped: 0, Time elapsed: 0.035 sec

Running my.serverB.ejb2.impl.test.Ejb2x_StatefulBTest

Tests run: 10, Failures: 0, Errors: 0, Skipped: 0, Time elapsed: 0.061 sec

Running my.serverB.ejb2.impl.test.Ejb2x_StatelessBTest

Tests run: 10, Failures: 0, Errors: 0, Skipped: 0, Time elapsed: 0.06 sec

Results :

Tests run: 32, Failures: 0, Errors: 0, Skipped: 0

4.1.3 Unit test results for remote-api

106

 T E S T S

Running my.remote.bean.locator.test.Ejb3x_BeanLocatorTest

Apr 13, 2015 3:52:45 PM my.remote.bean.locator.Ejb3xBeanLocator locateBean

INFO: Located bean successfully.

Tests run: 2, Failures: 0, Errors: 0, Skipped: 0, Time elapsed: 0.241 sec

Running my.remote.bean.locator.test.Ejb2x_BeanLocatorTest

log4j:WARN No appenders could be found for logger

(my.remote.bean.locator.Ejb2xBeanLocator).

log4j:WARN Please initialize the log4j system properly.

log4j:WARN See http://logging.apache.org/log4j/1.2/faq.html#noconfig for more info.

Tests run: 3, Failures: 0, Errors: 0, Skipped: 0, Time elapsed: 0.111 sec

Results :

Tests run: 5, Failures: 0, Errors: 0, Skipped: 0

4.2 Integration Testing using Arquillian

The integration tests in this system test the API’s of the complete system by deploying the

EAR files ear-module-a and ear-module-b in running JBoss application server containers. All

the test cases are controlled by software that uses a combination of the JBoss Arquillian test

framework [24] and Junit [23] to execute the tests.

107

The JBoss Arquillian framework is an open source framework that is very powerful to use as

it provides a means for testing that the deployment of artifacts such as EAR/JAR/WAR files

are trouble free and that any server configuration settings are configured correctly. It also

tests that the JEE wiring semantics e.g. annotations for CDI, EJB transaction handling,

session handling, interceptors are correct which is something that cannot be done using

straight forward unit testing as these tests do not execute in a running applications server so

cannot test the overall functionality of the system. For example, an arquillian test can

deploy the artifacts to be tested, then deploy a testable artifact like a WAR file that contains

the test cases and execute the tests towards these deployed artifacts, and then finally

undeploy everything when all the tests have been ran. The JBoss ShrinkWrap API [33] is also

heavily used by arquillian tests to created JAR,WAR and EAR files.

The integration tests are all contained in a single test class called

PersistenceContextScopeTest.java. The test is triggered from maven using a plugin called

the maven-surefire-plugin and by running the maven command:

mvn clean install –o

This command will clean the output target directory, compile the code and execute the

arquillian test. The output of the command above shows that all the test cases passed as

show here:

Tests run: 8, Failures: 0, Errors: 0, Skipped: 0, Time elapsed: 73.929 sec - in

my.arquillian.test.PersistenceContextScopeTest

Results :

Tests run: 8, Failures: 0, Errors: 0, Skipped: 0

108

[INFO]

[INFO] --- maven-jar-plugin:2.3.2:jar (default-jar) @ wookie-integ-test ---

[WARNING] JAR will be empty - no content was marked for inclusion!

[INFO] Building jar: /home/eeikkah/git/wookie-integ-test/target/wookie-integ-test-1.0-

SNAPSHOT.jar

[INFO]

[INFO] --- maven-install-plugin:2.3.1:install (default-install) @ wookie-integ-test ---

[INFO] Installing /home/eeikkah/git/wookie-integ-test/target/wookie-integ-test-1.0-

SNAPSHOT.jar to /home/eeikkah/.m2/repository/my/arquillian/test/wookie-integ-test/1.0-

SNAPSHOT/wookie-integ-test-1.0-SNAPSHOT.jar

[INFO] Installing /home/eeikkah/git/wookie-integ-test/pom.xml to

/home/eeikkah/.m2/repository/my/arquillian/test/wookie-integ-test/1.0-

SNAPSHOT/wookie-integ-test-1.0-SNAPSHOT.pom

[INFO] --

[INFO] BUILD SUCCESS

[INFO] --

[INFO] Total time: 1:59.925s

[INFO] Finished at: Wed Apr 15 21:01:21 IST 2015

[INFO] Final Memory: 27M/436M

[INFO] --

4.2.1 Test environment

One of the main required files for running tests using the Arquillian framework is the

arquillian.xml file. Arquillian works by looking for this file on the classpath. This file tells the

109

arquillian test what applications servers to start as part of the test, what are the servers

names so that can be referenced as a target by the test cases and any properties to use. The

arquillian.xml used by this integration test in this system tells it to start 4 applications

servers forming 2 test environments Test Env1 and Test Env2 as shown in Fig.37. Both

environments have 2 JBoss application servers running that are configured for remote EJB

outbound communication with each other.

The integration test PersistenceContextScopeTest needs 4 servers in total running; 2 with

JTS enabled (Env1) and 2 without (Env2). As all the servers are running on the same local

machine it is necessary to start them using different port offsets to avoid port clashes that

would prevent the startup of the servers.

Fig.38 Overview of the 2 Arquillian Test Environments

● Container_1_non_jts

110

This server has a socket binding port offset of 0. This server has a remote ejb socket

binding connection configured to be able to communicate to Container_2_non_jts. As

Container_2_non_jts is started with a port offset of 100 then the standard port of 4447

is incremented by 100.

 <outbound-socket-binding name="remote-ejb">

 <remote-destination host="localhost" port="4547"/>

 </outbound-socket-binding>

● Container_2_non_jts

This server has a socket binding port offset of 100. This server has a remote ejb socket

binding connection configured to be able to communicate to Container_1_non_jts. As

Container_1_non_jts is started with a port offset of 0 then the standard port of 4447

does not need to be changed.

 <outbound-socket-binding name="remote-ejb2">

 <remote-destination host="localhost" port="4447"/>

 </outbound-socket-binding>

● Container_3_jts

This server has a socket binding port offset of 200. This server has a remote ejb socket

binding connection configured to be able to communicate to Container_4_jts. As

Container_4_non_jts is started with a port offset of 300 then the standard port of 4447

needs to be incremented by 300. The server is also configured for JTS.

111

 <outbound-socket-binding name="remote-ejb">

 <remote-destination host="localhost" port="4747"/>

 </outbound-socket-binding>

● Container_4_jts

This server has a socket binding port offset of 300. This server has a remote ejb socket

binding connection configured to be able to communicate to Container_3_jts. As

Container_3_non_jts is started with a port offset of 200 then the standard port of 4447

needs to be incremented by 200. The server is also configured for JTS.

 <outbound-socket-binding name="remote-ejb2">

 <remote-destination host="localhost" port="4647"/>

 </outbound-socket-binding>

Here is the arquillian.xml that is used by PersistenceContextScopeTest to start the 4 servers:

<?xml version="1.0" encoding="UTF-8"?>

<arquillian xmlns="http://jboss.org/schema/arquillian"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://jboss.org/schema/arquillian

http://jboss.org/schema/arquillian/arquillian_1_0.xsd">

 <defaultProtocol type="Servlet 3.0" />

112

 <engine>

 <property name="deploymentExportPath">${export.path}</property>

 </engine>

 <group qualifier="jboss_managed">

 <container qualifier="Container_1_non_jts" default="false">

 <configuration>

 <property name="jbossHome">${jboss.home}</property>

 <property name="serverConfig">standalone-full-non-jts-

node1.xml</property>

 <property name="javaVmArguments">-Xmx1024m -

XX:MaxPermSize=512m

 -Djava.net.preferIPv4Stack=true

 -Djboss.node.name=node1

 -Djboss.tx.node.id=1111

 -Djboss.server.log.dir=${jboss.home}/standalone/log

 -Dcom.arjuna.orbportability.initialReferencesRoot=${jboss.home}

 </property>

 <property name="managementPort">9999</property>

 </configuration>

 </container>

113

 <container qualifier="Container_2_non_jts" default="false">

 <configuration>

 <property name="jbossHome">${jboss.home}</property>

 <property name="serverConfig">standalone-full-non-jts-

node2.xml</property>

 <property name="javaVmArguments">-Xmx1024m -

XX:MaxPermSize=512m

 -Djava.net.preferIPv4Stack=true

 -Djboss.server.base.dir=${jboss.home}/standalone2

 -Djboss.socket.binding.port-offset=100

 -Djboss.node.name=node2

 -Djboss.tx.node.id=1111

 -Djboss.server.log.dir=${jboss.home}/standalone2/log

 </property>

 <property name="managementPort">10099</property>

 </configuration>

 </container>

 <container qualifier="Container_3_jts" default="false">

 <configuration>

 <property name="jbossHome">${jboss.home}</property>

 <property name="serverConfig">standalone-full-jts-

node1.xml</property>

114

 <property name="javaVmArguments">-Xmx512m -

XX:MaxPermSize=256m

 -Djava.net.preferIPv4Stack=true

 -Djboss.server.base.dir=${jboss.home}/standalone3

 -Djboss.socket.binding.port-offset=200

 -Djboss.node.name=node3

 -Djboss.tx.node.id=2222

 -Djboss.server.log.dir=${jboss.home}/standalone3/log

 -Dcom.arjuna.orbportability.initialReferencesRoot=${jboss.home}

 </property>

 <property name="managementPort">10199</property>

 </configuration>

 </container>

 <container qualifier="Container_4_jts" default="false">

 <configuration>

 <property name="jbossHome">${jboss.home}</property>

 <property name="serverConfig">standalone-full-jts-

node2.xml</property>

 <property name="javaVmArguments">-Xmx512m -

XX:MaxPermSize=256m

 -Djava.net.preferIPv4Stack=true

 -Djboss.server.base.dir=${jboss.home}/standalone4

 -Djboss.socket.binding.port-offset=300

115

 -Djboss.node.name=node4

 -Djboss.tx.node.id=2222

 -Djboss.server.log.dir=${jboss.home}/standalone4/log

 </property>

 <property name="managementPort">10299</property>

 </configuration>

 </container>

 </group>

</arquillian>

4.2.2 Test steps

There are a number of setup and configuration steps that are done before the actual

arquillian test is executed to set up the test environment described above. The different

maven plugins in the pom.xml are used to carry out steps 1-10 below before the maven-

surefire-plugin is used to start the actual execution of the arquillian test:

1. First the target directory is cleaned of any files:

[INFO] --- maven-clean-plugin:2.4.1:clean (default-clean) @ wookie-integ-test ---

[INFO] Deleting /home/eeikkah/git/wookie-integ-test/target

2. Next the jboss tar file is extracted to the target directory:

[INFO] --- maven-dependency-plugin:2.1:unpack (unpack_jboss) @ wookie-integ-test

116

[INFO] Configured Artifact: com.ericsson.oss.itpf.eap:jboss-temp-tar:2.1.9:tar.gz

[INFO] Unpacking /home/eeikkah/.m2/repository/com/ericsson/oss/itpf/eap/jboss-

temp-tar/2.1.9/jboss-temp-tar-2.1.9.tar.gz to

 /home/eeikkah/git/wookie-integ-test/target/jboss-eap

 with includes null and excludes:null

[INFO] Expanding /home/eeikkah/.m2/repository/com/ericsson/oss/itpf/eap/jboss-

temp-tar/2.1.9/jboss-temp-tar-2.1.9.tar.gz to /tmp/tmp1112378441374362097.tar

[INFO] Expanding: /tmp/tmp1112378441374362097.tar into /home/eeikkah/git/wookie-

integ-test/target/jboss-eap

3. Next a new standalone2 directory is created by making a copy of the standalone

directory that was extracted in the previous step:

[INFO] --- maven-resources-plugin:2.6:copy-resources (create-standalone2-directory) @

wookie-integ-test ---

[INFO] Using 'UTF-8' encoding to copy filtered resources.

[INFO] Copying 11 resources

4. Similarly a new standalone3 directory is created:

[INFO] --- maven-resources-plugin:2.6:copy-resources (create-standalone3-directory) @

wookie-integ-test ---

[INFO] Using 'UTF-8' encoding to copy filtered resources.

[INFO] Copying 11 resources

5. Similarly a new standalone4 directory is created:

[INFO] --- maven-resources-plugin:2.6:copy-resources (create-standalone4-directory) @

wookie-integ-test ---

117

[INFO] Using 'UTF-8' encoding to copy filtered resources.

[INFO] Copying 11 resources

6. The application-users.properties file is copied to all 4 standalone configuration

directories as this file contains the user and password for handling the ejb security realm

to enable ejb remoting communcation between the servers:

[INFO] --- maven-resources-plugin:2.6:copy-resources (copy-application-users-

properties-standalone) @ wookie-integ-test ---

[INFO] Using 'UTF-8' encoding to copy filtered resources.

[INFO] Copying 1 resource

[INFO]

[INFO] --- maven-resources-plugin:2.6:copy-resources (copy-application-users-

properties-standalone2) @ wookie-integ-test ---

[INFO] Using 'UTF-8' encoding to copy filtered resources.

[INFO] Copying 1 resource

[INFO]

[INFO] --- maven-resources-plugin:2.6:copy-resources (copy-application-users-

properties-standalone3) @ wookie-integ-test ---

[INFO] Using 'UTF-8' encoding to copy filtered resources.

[INFO] Copying 1 resource

[INFO]

[INFO] --- maven-resources-plugin:2.6:copy-resources (copy-application-users-

properties-standalone4) @ wookie-integ-test ---

[INFO] Using 'UTF-8' encoding to copy filtered resources.

118

[INFO] Copying 1 resource

7. The standalone-full-non-jts-node1.xml file is copied to the standalone/configuration

directory:

[INFO] --- maven-resources-plugin:2.6:copy-resources (copy-full-non-jts-node1-config-

to-standalone) @ wookie-integ-test ---

[INFO] Using 'UTF-8' encoding to copy filtered resources.

[INFO] Copying 1 resource

8. The standalone-full-non-jts-node2.xml file is copied to the standalone/configuration2

directory:

[INFO] --- maven-resources-plugin:2.6:copy-resources (copy-full-non-jts-node2-config-

to-standalone2) @ wookie-integ-test ---

[INFO] Using 'UTF-8' encoding to copy filtered resources.

[INFO] Copying 1 resource

9. The standalone-full-jts-node1.xml file is copied to the standalone/configuration3

directory:

[INFO] --- maven-resources-plugin:2.6:copy-resources (copy-full-jts-node1-config-to-

standalone3) @ wookie-integ-test ---

[INFO] Using 'UTF-8' encoding to copy filtered resources.

[INFO] Copying 1 resource

10. The standalone-full-jts-node2.xml file is copied to the standalone/configuration4

directory:

[INFO] --- maven-resources-plugin:2.6:copy-resources (copy-full-jts-node2-config-to-

standalone4) @ wookie-integ-test ---

119

[INFO] Using 'UTF-8' encoding to copy filtered resources.

[INFO] Copying 1 resource

4.2.3 Test Cases

There is a single test class PersistenceContextScopeTest.java that is added to a test EAR
created using the ShrinkWrap API that is deployed in containers Container_1_non_jts and
Container_3_jts only that enables the test cases to be executed. Here is a description of
each of the 8 test cases:

Test Case Name Test Case Description Expected Result

1 test_Ejb3x_StatelessA_Without

_Jts

Tests when the

PersistenceContext is

injected into stateless

EJB3.1 and deployed in

container with no JTS

active and has EJB remote

connections configured

between containers.

EJBTransactionRolledback
Exception

2 test_Ejb3x_StatefulA_Without_

Jts

Tests when the

PersistenceContext is

injected into stateful

EJB3.1 and deployed in

container with no JTS

active and has EJB remote

connections configured

between containers.

EJBTransactionRolledback
Exception

120

3 test_Ejb2x_StatelessA_Without

_Jts

Tests when the

PersistenceContext is

injected into stateless

EJB3.1 thats declared to

use the EJB2.0 remoting

specification and

configured to use CORBA

IIOP endpoints for

communication thats

deployed in container

with no JTS active.

ERROR no adapter
activator exists

4 test_Ejb2x_StatefulA_Without_

Jts

Tests when the

PersistenceContext is

injected into stateful

EJB3.1 thats declared to

use the EJB2.0 remoting

specification and

configured to use CORBA

IIOP endpoints for

communication thats

deployed in container

with no JTS active.

ERROR no adapter
activator exists

5 test_Ejb3x_StatelessA_With_Jts Tests when the

PersistenceContext is

injected into stateless

EJB3.1 and deployed in

container with JTS active

and has EJB remote

connections configured

between the containers.

EJBTransactionRolledback
Exception

121

6 test_Ejb3x_StatefulA_With_Jts Tests when the

PersistenceContext is

injected into stateful

EJB3.1 and deployed in

container with JTS active

and has EJB remote

connections configured

between the containers.

EJBTransactionRolledback
Exception

7 test_Ejb2x_StatelessA_With_Jts Tests when the

PersistenceContext is

injected into stateless

EJB3.1 thats declared to

use the EJB2.0 remoting

specification and

configured to use CORBA

IIOP endpoints for

communication thats

deployed in container

with JTS active.

Successful

8 test_Ejb2x_StatefulA_With_Jts Tests when the

PersistenceContext is

injected into stateful

EJB3.1 thats declared to

use the EJB2.0 remoting

specification and

configured to use CORBA

IIOP endpoints for

communication thats

deployed in container

with no JTS active.

Successful

122

4.2.4 Test Results

This table lists the integration test results:

Test Case Name Expected Result Test Result

1 test_Ejb3x_StatelessA_Without_Jts Failed Passed

2 test_Ejb3x_StatefulA_Without_Jts Failed Passed

3 test_Ejb2x_StatelessA_Without_Jts Failed Passed

4 test_Ejb2x_StatefulA_Without_Jts Failed Passed

5 test_Ejb3x_StatelessA_With_Jts Failed Passed

6 test_Ejb3x_StatefulA_With_Jts Failed Passed

7 test_Ejb2x_StatelessA_With_Jts Passed Passed

8 test_Ejb2x_StatefulA_With_Jts Passed Passed

The results show that all 8 integration tests pass with the expected outputs but only tests 7

& 8 pass with the desired results.

123

5 Summary of Results and Conclusions

This work evaluated backward compatibility issues with EJB 3.X and EJB 2.X. It illustrated

that an issue occurs when an EJB3.x (EJB A) bean is deployed on an application server A,

which is the only bean in the system that has access to the underlying database. The

proposed solution uses configuration changes to the standalone xml of the JBOSS

application servers to enable JTS over IIOP transport, telling the application server that

EJB3.x beans will be using the EJB2.x client views by declaring so using the jboss-ejb3.xml,

changing the business method interfaces of the EJBs to extend EJBHome and EJBObject

interfaces and to expose these interfaces via IIOP.

The results presented show that for test cases 1, 2, 5 & 6 which use pure EJB3.x beans, and

with JTS and non JTS enabled application servers, that the outcome was the same. The

server B log file shows that the EJB3.x beans do not retrieve the modified attribute

CountryOfOrigin value of ‘IRELAND’ from server A but instead get the value ‘USA’ which is

the value of the CountryOfOrigin attribute before it was modified i.e. the value it is created

with during the test setup. This means that even though these EJB3.x beans join the

transaction and became participants of the transaction, as they have the ability to rollback

the transaction, they are not able to access the same persistence context which had the

modified Film object attribute CountryOfOrigin with value ‘IRELAND’. Instead they can only

get the Film object before the transaction was started through a different persistence

context. Interestingly in all cases the additional invocation method back to server A to

create a child Cast object under the parent Film object fails when the business method

returns due to a session handling error and the transaction is rolled back. This can be seen

clearly from the server B log:

Server B log

20:31:04,247 INFO [my.serverB.ejb3.impl.Ejb3x_StatelessB][getCountryOfOrigin:43] [Server-B]

received CountryOfOrigin value [USA] from [Server-A]

20:31:04,274 INFO [my.serverB.ejb3.impl.Ejb3x_StatelessB][createCast:55] [Server-B] createCast

invoked with id [1]

124

20:31:04,277 INFO [my.remote.bean.locator.Ejb3xBeanLocator][locateBean:33] Located bean

successfully.

20:31:04,324 INFO [org.jboss.ejb.client.remoting][resultReady:213] EJBCLIENT000011: Discarding

result for invocation id 2 since no waiting context found

20:31:04,354 ERROR [my.serverB.ejb3.impl.Ejb3x_StatelessB][createCast:60] [Server-B]

[javax.ejb.EJBTransactionRolledbackException], exception msg [a different object with the same

identifier value was already associated with the session: [my.database.entity.Cast#2]]

20:31:04,355 ERROR [org.jboss.as.ejb3][handleInCallerTx:144]

javax.ejb.EJBTransactionRolledbackException: a different object with the same identifier value was

already associated with the session: [my.database.entity.Cast#2].

The results for test cases 3 & 4 which use EJB3.x beans that implement the EJB2.x client

view in non JTS enabled application servers show that they too also fail to get the modified

attribute value ‘IRELAND’ but instead retrieve the value ‘USA’ from server A. This shows also

that these beans do not get access to the same persistence context belonging to the

transaction started in server A. However no exception is thrown in these tests and so the

transaction started by server A is not rolled back which allows the test to verify that the Cast

object has not been created and the modified attribute value is not returned from server B.

Server B log

20:32:20,364 INFO [my.serverB.ejb2.impl.Ejb2x_StatelessB][getCountryOfOrigin:49] [Server-

B] received CountryOfOrigin value [USA] from [Server-A]

20:32:20,367 INFO [my.serverB.ejb2.impl.Ejb2x_StatelessB][createCast:59] [Server-B]

createCast invoked with id [1]

Server A log

21:30:47,019 INFO [my.serverA.common.EjbBaseA][verifyCast:127] [Server-A] verifying Cast

21:30:47,020 INFO [my.serverA.common.EjbBaseA][find:152] [Server-A] find object with id

[1]

125

21:30:47,021 INFO [my.serverA.common.EjbBaseA][verifyCast:138] [Server-A] verify cast

result passed? [false]

Results presented illustrated there were only 2 test cases, test case 7

test_Ejb2x_StatelessA_With_Jts and test case 8 test_Ejb2x_StatefulA_With_Jts which were

successfully executed. Both these tests had EJB3.1 session beans that were implemented to

use the EJB2.x client views for remote EJB communication, had their remote interfaces

registered as IIOP endpoints in the Corba naming service and had the JTS enabled in the

containers. Only when these conditions were met was a solution to the problem found,

where transactional changes made to the entity and its associated persistence context on

server A accessible within the same transaction by server B - or to put it in simpler terms,

server B was remotely able to see the changes made within the transaction of the

persistence context started by server A, and become a participant of the same transaction

and create a new object within the same transaction.

Server B log

20:46:29,581 INFO [my.serverB.ejb2.impl.Ejb2x_StatelessB][getCountryOfOrigin:49] [Server-

B] received CountryOfOrigin value [Ireland] from [Server-A]

20:46:29,589 INFO [my.serverB.ejb2.impl.Ejb2x_StatelessB][createCast:59] [Server-B]

createCast invoked with id [1]

Server A log

20:46:29,617 INFO [my.serverA.common.EjbBaseA][verifyCast:127] [Server-A] verifying Cast

20:46:29,618 INFO [my.serverA.common.EjbBaseA][find:152] [Server-A] find object with id

[1]

20:46:29,619 INFO [my.serverA.common.EjbBaseA][verifyCast:138] [Server-A] verify cast

result passed? [true]

20:46:29,620 INFO [my.serverA.common.EjbBaseA][verifyCountryOfOrigin:143] [Server-A]

verifying CountryOfOriginAttribute, localValue [Ireland] remoteValue [Ireland]

126

20:46:29,621 INFO [my.serverA.common.EjbBaseA][verifyCountryOfOrigin:147] [Server-A]

verify CountryOfOrigin passed? [true]

It was thought that using EJB3.1 stateful session beans may have been a viable solution to

the problem as the state of the field variable for the persistence context would be kept but

this turned out not to be the case as even then the EJB of server B was not able to get a

handle on the same PersistenceContext when it remotely called back to server A.

Also it was found during testing that EJB3.1 singleton sessions beans cannot be used as they

do not support having EJB 2.X views as the following error is seen when attempting to

deploy them in the container - “Singleton beans cannot have EJB 2.x views”. This makes

sense as singleton session beans are new to EJB3.x and did not exist in the EJB2.x

specification.

A solution to the transaction scope persistence context use case has been demonstrated by

the application in this study running on RedHat JBOSS AS 7.1 servers [15] as it supports

legacy compatibility with EJB2 and indeed this is the case for later versions of JBOSS AS 7.x

as they support the JEE6 specification. In the JEE7 specification the support for EJB2.x is

made optional meaning vendors are not required to support it. The JEE7 specification is

supported by RedHat with their WildFly application servers [25].

The JEE8 specification is not fully defined yet but the latest information gives no guarantees

that support for EJB2.x client view will make the final draft, “In accordance with the pruning

process defined by the Java EE 6 specification, we will consider designating the following as

Proposed Optional in this release: the EJB 2.x client view APIs (EJBObject, EJBHome,

EJBLocalObject, EJBLocalHome) and support for CORBA IIOP interoperability.” Therefore it is

possible that future vendor application servers will no longer support this. This means that

any product solution in this area would have to be re-designed in order to be able to

continue functioning so that it could take advantage of newer technology, which is a natural

progression for software and would of course incur an unwanted maintenance cost along

the way which could be quite costly.

127

6 References

[1] JSR 151: JavaTM 2 Platform, Enterprise Edition 1.4 (J2EE 1.4) Specification

 https://jcp.org/en/jsr/detail?id=151

[2] Sun Technologies

http://www.suntechnologies.com/

[3] JSR 153: Enterprise JavaBeans 2.1

 https://jcp.org/en/jsr/detail?id=153

[4] JSR 244: JEE5 Specification

 https://jcp.org/en/jsr/detail?id=244

[5] Apache Maven

 http://maven.apache.org/

[6] Spring Framework

 http://projects.spring.io/spring-framework/

[7] JSR 220: Enterprise Java Beans 3.0

 https://jcp.org/en/jsr/detail?id=220

[8] “EJB 3.0 Migration”, An Oracle White Paper, October 2005

[9] Java Persistence API

http://www.oracle.com/technetwork/java/javaee/tech/persistence-jsp-140049.html

[10] JSR 316: JEE6 Specification

128

 https://jcp.org/en/jsr/detail?id=316

[11] JSR 318: Enterprise Java Beans 3.1

 https://jcp.org/aboutJava/communityprocess/final/jsr318/

[12] JSR 314: Java Server Faces 2.0

 https://www.jcp.org/en/jsr/detail?id=314

[13] JSR 317: Java Persistence 2.0

https://jcp.org/en/jsr/detail?id=317

[14] JBoss Application Server 7 - JBoss Community

http://jbossas.jboss.org/

[15] JBOSS AS 7.1.0 Final Release Notes

https://developer.jboss.org/wiki/AS710FinalReleaseNotes

[16] JSR 907: Java Transaction API

 https://jcp.org/en/jsr/detail?id=907

[17] The Java EE 6 Tutorial

 http://docs.oracle.com/javaee/6/tutorial/doc/docinfo.html

[18] Java Transaction Service, Sun Micro Systems

 http://www.oracle.com/technetwork/java/javaee/jts-spec095-1508547.pdf

[19] Object Management Group, Object Transaction Service

 http://www.omg.org/cgi-bin/doc?formal/2003-09-02

[20] Object Management Group, CORBA Service

 http://www.corba.org/

[21] Object Management Group, IIOP

129

 http://www.omg.org/library/iiop4.html

[22] JBosss AS 5

 http://jbossas.jboss.org/docs/5-x.html

[23] Junit Framework

 http://junit.org/

[24] Arquillian Framework

 http://arquillian.org/

[25] RedHat Wildfly

 http://wildfly.org/

[26] JSR 342: JEE 7 Specification

 https://jcp.org/en/jsr/detail?id=342

[27] JSR 366: JEE8 Specification

 https://jcp.org/en/jsr/detail?id=366

[28] Ziyou Wang; Minghui Zhou; Donggang Cao; Haiyan Zhao, "Dual-Container: Extending

the EJB2.x Container to Support EJB3.0," Computer Software and Applications

Conference, 2009

[24] Johnson, R., "J2EE development frameworks," Computer , vol.38, no.1, pp.107,110,

Jan. 2005

[25] Deron Liang; Win-Tsung Lo; Kao, Y.M.; Yuan, S.M.; Yue-Shan Chang, "A fault tolerant

object transaction service in CORBA," Computer Software and Applications

Conference, 1997. COMPSAC '97. Proceedings., The Twenty-First Annual

International , vol., no., pp.115,120, 11-15 Aug 1997

130

[26] Ram, P.; Do, L.; Drew, P.; Tong Zhou, "Object Transaction Service: experiences and

open issues," Distributed Objects and Applications, 1999. Proceedings of the

International Symposium on , vol., no., pp.296,304, 1999

[27] Frolund, S.; Guerraoui, R., "e-Transactions: end-to-end reliability for three-tier

architectures," Software Engineering, IEEE Transactions on , vol.28, no.4, pp.378,395,

Apr 2002

[28] Huaigu Wu; Kemme, B., "Fault-tolerance for stateful application servers in the

presence of advanced transactions patterns," Reliable Distributed Systems, 2005.

SRDS 2005. 24th IEEE Symposium on , vol., no., pp.95,105, 26-28 Oct. 2005

[29] Felber, P.; Narasimhan, P., "Experiences, strategies, and challenges in building fault-

tolerant CORBA systems," Computers, IEEE Transactions on , vol.53, no.5,

pp.497,511, May 2004

[30] Lin Zuo; Shaohua Liu; Jun Wei, "A Fault-Tolerant Scheme for Complex Transaction

Patterns in J2EE," Enterprise Distributed Object Computing Conference, 2006. EDOC

'06. 10th IEEE International , vol., no., pp.165,174, Oct. 2006

[31] JBOSS H2 Database Tutorial

 http://www.mastertheboss.com/jboss-server/jboss-datasource/h2-database-tutorial

[32] Mockito Framework

 http://docs.mockito.googlecode.com/hg/org/mockito/Mockito.html

[33] Shrinkwrap API

 http://docs.jboss.org/shrinkwrap/1.0.0-beta-6/

131

6.1 GitHub - Source Code

 The complete EJB source code is stored in a GitHub repository called wookie-prototype

and can be viewed and cloned by the command:

 git clone git@github.com:kevinkav/wookie-prototype.git

 The complete integration test source code is also stored in a Git Hub repository called

wookie-integ-test and can be viewed and cloned by the command:

 git clone git@github.com:kevinkav/wookie-integ-test.git

