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Abstract 

Skates and rays represent one of the most vulnerable components of fish communities in 

temperate demersal fisheries such as the Irish Sea. They also tend to be data poor in 

comparison to commercially exploited teleost fish. Spatial management has been 

suggested as an important tool to protect these species, but requires an understanding 

of the abundance distribution, and the relationship the abundance distribution has with 

the environment at both adult and juvenile life history stages. Here we modelled bottom 

trawl survey data using delta log-normal boosted regression trees on to derive rays’ 

spatial abundance, and environmental links. The modelling approach allowed the 

development of high resolution predictive maps of abundance of four skate and ray 

species targeted by fishing activity: thornback, spotted, cuckoo and blonde rays. The 

distributions of these species were driven by a general preference for sand and coarser 

substrates as well as higher salinities, temperatures and currents speeds. Spatial 

comparisons between abundance distributions and locations of skate and ray commercial 

landings indicated that the main hotspots for the investigated species are outside of the 

main commercial fishing areas and overlap with potential MPAs proposed for wider 

ecosystem protection. The method offers a useful tool for selecting potential MPA’s to 

assist the management and conservation of data-poor species. 
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1 Introduction 

1.1 Managing data-poor elasmobranch stocks 

Most elasmobranch species are large-bodied, slow-growing and inherently vulnerable to 

overfishing, due to their low fecundity and late maturation (Holden, 1974, 1973; Musick 

et al., 2000). Several factors preclude the use of standard methods for stock assessment 

of elasmobranchs: data (particularly on age-structure and fecundity) are typically scarce 

or of poor quality (Ellis et al., 2010; Fahy, 1989; Gallagher, 2000), and landings are 

often reported for groups of species rather than for individual species. These problems 

are particularly compelling in Ireland where the actual species composition and age 

structure of ray catches is masked in bulked landings that are commercially boxed by 

size and value (Fahy, 1991). Ray catches are often not identified at the species level, or 

are misidentified (Fahy, 1991; ICES WGEF, 2010, 2009) (e.g. blonde rays (Raja 

brachyura) are often misidentified as spotted rays (Raja montagui)). Long-term, species-

specific assessments are impeded by low and variable catch rates of rarer skate species 

(Ellis et al., 2010; ICES WGEF, 2010, 2009) and by inappropriate survey design (Ellis et 

al., 2010) leading to errors in abundance estimation (Brander, 1981; Casey and Myers, 

1998; Myers and Worm, 2005). 

 

Improved stock assessment for elasmobranchs has been a high priority since the start of 

the century (Chevolot et al., 2008; Ellis et al., 2005b; Heessen, 2003). The 

Johannesburg Declaration of 2002 (United Nations, 2002) committed governments to 

restore fisheries to maximum sustainable yield (MSY) by 2015 (European Commission, 

2008). This typically involves managing the total allowable catch (TACs) of individual 

species. For Irish Sea skates and rays this approach is currently unfeasible, as 

biologically appropriate management units have not been defined (Ellis et al., 2010). For 

mainly bycatch species such as skates and rays, single-species TACs are unlikely to be 

effective as they can often increase discarding (ICES WGEF, 2012). It has been shown 
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that discard mortality of rays from the fishing fleet is already very high (Shephard et al., 

2015). 

 

Where management reference points are unknown, as in the case of blonde ray, the 

International Council for the Exploration of the Sea (ICES) prescribes a precautionary 

20% annual TAC reduction (ICES WGLIFE, 2012; NWWRAC, 2012a). Whilst recent ICES 

advice based on abundance estimates recommended a 36% reduction for thornback and 

cuckoo ray, a 20% increase was recommended for spotted ray (ICES WGEF, 2012). Such 

examples highlight the inconsistencies that might arise in a mixed ray fishery managed 

under singles-species TACs. Precautionary TAC reductions could increase the pressure on 

the already precarious Irish Sea ray fishing sector which has collapsed from its 1931 

peak (ICES, 2014) with only a few Irish vessels currently taking the majority of the 

landings of thornback (Raja clavata), spotted, blonde and cuckoo ray (R. naevus) 

(Gerritsen, H., Marine Institute, pers. comm.). 

1.2 Addressing management problems with spatial approaches 

Marine Protected Areas (MPAs) are often implemented to achieve conservation goals 

(Agardy, 2000; European Commission, 2008; Waitt Foundation, 2014), and have been 

demonstrated to be effective for elasmobranch species (Edgar et al., 2014). The ICES 

Working Group for Elasmobranch Fisheries (WGEF) recommends that such management 

interventions be implemented as effort restrictions or closures (spatial or seasonal), 

particularly to protect nursery and spawning grounds (ICES WGEF, 2012). Consultation 

with fishers has indicated that spatial management methods are considered to be the 

most effective approach (Fitzpatrick, M., pers. comm.; NWWRAC (2013)). 

 

Whilst spatial management of skates and rays could be valuable (Ellis et al., 2008; 

Speed et al., 2010), its application is hampered by incomplete knowledge of specific 

ecologically important habitats (nursery and spawning areas) (Ellis et al., 2010). 

Identifying such areas may help resolve the ‘choke species’ problem, whereby declines of 

certain species (especially cuckoo and blonde ray (NWWRAC, 2012b)) result in catch 
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limit restrictions being imposed on the entire species group. Protecting the most 

vulnerable species through spatial management of their nursery or spawning areas could 

allow catch limits for other species to be relaxed, such that most resilient species could 

be sustainably harvested. 

 

Various modelling approaches can help identify the best areas to be protected with 

permanent/seasonal closures or technical measures such as minimum landing sizes. For 

example, the program Marxan (Ball and Possingham, 2003) finds the smallest areas 

required to meet its objective (e.g. protect nurseries) but performs badly with poor or 

absent data (Vincent et al., 2004) leading to over-large MPAs and avoidance of coasts 

(Loos, 2006) (where rays are often present). Maximum Entropy (MaxEnt) methods (Elith 

et al., 2011; Phillips et al., 2004) model species distributions from presence-only data, 

but cannot utilise abundance data, when available. Generalised Linear and Additive 

Models (GLMs & GAMs) are commonly used in a two-step procedure (e.g. De 

Raedemaecker et al. (2012) and references therein), first by modelling the 

presence/absence, then by modelling the presence-only abundance, and finally joining 

the two models (Guisan and Zimmermann, 2000; Martin et al., 2012). 

 

Boosted Regression Trees (BRTs) could provide more robust predictions than GLMs and 

GAMs (Lo et al., 1992), with less variance (oversensitivity to noise leading to 

overfitting/imprecision) and bias (false assumptions in the algorithm leading to 

underfitting/inaccuracy), with a lower risk of misspecification and the ability to model 

complex interactions. In addition, BRTs are unaffected by multicollinearity, missing 

predictor values and outliers (see comparative evaluation in Abeare (2009)). They use 

machine learning to add increasingly small predictor-response relationships into one 

model to account for high proportions of variability despite complex multivariate 

relationships (Elith et al., 2008).  
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1.3  Ray habitat preferences and the study area 

The four rays considered in this study have small distributional ranges (McEachran and 

Miyake, 1990; Stehmann and Bürkel, 1984). Juveniles remain nearly sedentary (Holden, 

1975; Steven, 1936) but adults migrate inshore to feed, and also to mate and spawn in 

the spring/summer period (Steven, 1932; Walker et al., 1997). Such site-fidelities and 

habitat preferences make these rays species good candidates for spatial management 

(Hilborn et al., 2004; Kaiser et al., 2004). 

 

Peak recreational angling landings for all species occur in certain small areas (Fahy and 

O’Reilly, 1990). Larger specimens have especially localized distributions (Fahy and 

O’Reilly, 1990), and find shelter in refuges that harbour high biodiversity (Shephard et 

al., 2012) and allow them to reach their maximum weight (Fahy, 1991; Ryland and 

Ajayi, 1984). Anglers often catch particularly large rays, partially because they fish 

where trawlers can’t operate (Ryland and Ajayi, 1984). Commercial landings are highest 

off the Southeast coast of Ireland (Gallagher, 2000; Hillis and Grainger, 1990) and peak 

in August to December (Fahy, 1989; Gallagher, 2000). 

2 Aims 

We present a modelling approach for spatial management of data-poor stocks (cuckoo, 

thornback, blonde and spotted rays in the Irish Sea), using Boosted Regression Trees to 

map species abundances in relation to environmental correlates, and to identify 

ecologically important abundance hotspots. We then investigate how these models can 

be used to aid in MPA design. Finally, we assess the robustness of this approach by 

comparing our results with available data on. 
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3 Methods 

3.1 Database selection and processing 

The Irish Sea is a well-mixed shallow shelf sea that tapers to a deeper (100m) central 

channel, with very shallow (≤5m) sandbanks running parallel to the coast that create 

20-30m deep channels some 7-12km from shore (Connor et al., 2006; Vincent et al., 

2004). Tidal bed stress is generally low to moderate except off a few particular 

headlands (Connor et al., 2006). The substrate is largely a sandy/gravel mix, generally 

coarser at depth, with rocks north west off Anglesey and a large mud bank running 

parallel to the south east coast of Northern Ireland, corresponding to locally lower bed 

stresses. Environmental data used in our analysis are described in Table 2. 

 

Depth, substrate and temperature are known to correlate with elasmobranch abundance 

(Ellis et al., 2005a; Kaiser et al., 2004; Martin et al., 2012)but other potentially 

pertinent variables were also included in the analysis (the BRT modelling approach, 

described below, does not penalise for additional variables). QGis mapping software 

(Quantum GIS Development Team, 2014) was used to interpolate environmental data 

points to a surface of Voronoi polygons, then to append their values to the highest 

resolution dataset (depth grids covering the whole Irish Sea (n = 391,568)). Distance to 

shore was calculated using raster proximity analysis. Substrate categories were 

converted from descriptive Folk classifications (Folk, 2013, 1954) to median grain size 

(SearchMESH, 2014), and inputted as a continuous factor to the model. 

 

We downloaded catch per unit effort (CPUE, in numbers per hour) data for all rays 

caught in ICES area VIIa (Irish Sea) by standardised survey trawls (International 

Groundfish Survey and Bottom Trawl Survey) from 1993 to 2012 from the ICES 

Database of Trawl Surveys (ICES, 2012). To maximise the spatial coverage of the 

analysis, these data were averaged across all years. Cuckoo, thornback, blonde or 

spotted rays were present in 1645 of the 3341 half-hour trawls, the midpoints of which 
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were used as the map locations for those data. This generated 1447 site locations, many 

of which were closely located because the surveys aim to re-sample the same sites (see 

end of section 3.2). 

 

Neither standard linear correlations nor GAMs showed clear strong relationships between 

any one month of temperature/salinity and CPUE, therefore only data collected in 

September were selected for each data source, as ICES trawls were predominantly 

conducted in September. Correlations between environmental variables were minimal 

(R²<0.4) and did not represent a problem for BRTs, which are robust towards 

autocorrelation between independent variables (Abeare, 2009). 

 

Table 1: Physical oceanographic datasets used during modelling, and their sources 

Environmental Dataset Spatial Resolution Source 

Depth 275x455m grids 
EMODnet (European Marine Observation 
and Data Network)(EMODnet, 2014) 

Average Monthly sea bottom 
temperatures 2010-2012 (°C) 

1185x1680m 
Marine Institute, 2014 
(http://www.marine.ie/Home/site-
area/data-services/data-services) 

Average Monthly sea bottom 
salinities 2010-2012 (ppm) 
Maximum monthly 2 
dimensional velocity (m.s-1) 

Substrate (grain size in mm) ~250m minimum 
British Geological Survey, 2011 (British 
Geological Survey, 2011) 

Distance to shore (m) 275x435m grids 
via European coastline layer (freely 
available) 

 

 

3.2 Preliminary analyses 

To determine if the ICES trawl survey stations sampled the full range of the 

environmental conditions in the Irish Sea, the distribution of environmental data 

collected from ICES sites was compared to the higher resolution environmental datasets. 

 

The extremely low (<10m) and high (>50m) depths and hence also areas close to, and 

far (>15km) from shore are underrepresented in the trawl station data. No maximum 
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two-dimensional velocities above 1.5 m.s-1 were recorded, reflecting that the few 

headlands known to feature high bed stress were not sampled. 

 

Kolmogorov-Smirnov tests on all variables showed that the environmental data from the 

trawls were not representative of the Irish Sea as a whole (p<2.2 x 10-16 for all 

variables). Variance tests showed that trawl survey variances were different to those 

from the full Irish Sea environmental dataset, with distance to shore and temperature 

being the most representative. These results are unsurprising given the restricted 

distribution of the survey stations, but were not considered to be problematic: areas in 

the Irish Sea poorly sampled by trawls can be readily identified, and conclusions drawn 

from such areas can be treated with less confidence (see histograms in supplementary 

material, Figure 22). 

Care must be taken to ensure spatial data are not auto-correlated (Miller, 2012; Redfern 

et al., 2006). Analysis of the residuals of a GAM of CPUE as explained by latitude and 

longitude showed a normal error distribution (using ‘mgcv’ package (see packages 

section in references) in R (R Core Team, 2013)). A Mantel test (‘vegan’ package) on the 

same data showed that the model had sufficiently accounted for spatial autocorrelation 

in the raw data, and that the residuals were not auto-correlated (Mantel correlation 

0.078, p=0.001). 

3.3 Modelling approach 

Boosted Regression Trees were used to identify the combination of environmental 

variables that best described the observed variation in distribution and abundance of the 

rays, and to predict their abundances across the Irish Sea, using a custom written R 

function ‘gbm.auto’ (see Supplementary Information) which uses R packages ‘gbm’, 

‘dismo’, and Elith et al.’s (2008) functions ‘calibration’, ‘roc’ and ‘gbm.predict.grids’. Data 

exploration indicated that the CPUE data were zero-inflated with a long tailed distribution 

(most trawls caught nothing, and very few caught many specimens (Figure 9)). 
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Figure 1: Histogram of CPUE of all rays 

 
 

 

Figure 2: First tree produced by the binomial BRT. Variables and their split values are in 

black, above (right branch) and below (left branch) which sub-branches are split, as 

calculated by the model to maximise predictive power. Percentages refer to total 

number of sites within that split. 

 

 

Hence, a two-step (delta) process was followed: modelling the probability of zero/non-

zero catch (presence/absence) with binomial BRTs, separately modelling the non-zero 

catch (abundance) with Gaussian BRTs, then joining each model into one CPUE metric 

(per Lo et al. (1992)). 

Tree-based models use a series of rules to partition the predictor space into regions with 

the most homogeneous responses to predictors, via binary splits at specific values for 

each variable (the split points, see Figure 10). Regression tree-based models then fit the 

mean response for observations in that region, assuming normally distributed errors. 

Boosting posits that averaging many rough predictors is easier than finding a highly 



10 / 64 
 

accurate one, and iteratively fits decision trees to the training data, progressively 

focusing on the remaining poorly modelled observations, which are the hardest to 

predict. The first BRT maximises the predictive performance (known as predictive 

deviance, a measure of the predictive power of a model); the second is fitted to the 

residuals of the first and the model updated with both trees (terms) before fitting the 

third to its residuals, and so on (all from Elith et al. (2008)). The relative contribution of 

any one explanatory variable (xj) is based on how often it is selected to split individual 

trees, weighted by the squared improvement to the model (Ij
2) resulting from the sum of 

these trees (i.e. from m=1 to M the total number of trees): 

 ̂ 
   

 

 
 ∑   

      

 

   

 

where Ij
2 is the relative influence of input variable j for individual tree Tm (Friedman and 

Meulman, 2003; Harma, 2013) – see bar plots in Section 4.1. 

 

Binomial BRTs on presence/absence data were performed for each species and all 

species together. To minimise predictive error we examined a combination of BRT fitting 

parameters: tree complexity and learning rate. Tree complexity, also known as 

interaction depth, fits a model with n-way interactions, i.e. n nodes on the trees. We 

examined tree complexities of n equals either two or five. Learning rate, also known as 

shrinkage parameter, determines the contribution of each tree to the growing model, 

with smaller contributions causing the BRT process to progress more gradually, generate 

more trees, and usually achieve greater accuracy. We examined learning rates of either 

0.01 or 0.005. Another fitting parameter, bag fraction, controls for stochasticity within 

the model by specifying the proportion of data drawn at random, without replacement, 

from the full training set, to be used for each successive tree (Elith et al., 2008; 

Ridgeway, 2006) . Bag fraction was set at 0.5 as recommended by Elith et al. (2008). To 

find the combination of parameters resulting in the minimum predictive error, we tried 

different combinations of learning rate, in case the larger rate – which runs the BRT 

faster, producing less trees – resulted in a better or an equally well performing model 
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with more simplicity. Similarly, different tree complexities were assessed. An example of 

one (of the many) trees generated internally within BRT models is shown in Figure 10. 

The stochasticity introduced by the bag fraction, combined with the small learning rate, 

causes many hundreds or thousands of these trees to be generated, varying each time, 

with each contributing only a small amount to the final modelled relationship. 

 

The best combination of tree complexity and learning rate was chosen for each species 

and the grouped data, based on the BRT model’s correlation score between training data 

and testing data (with proportion of each defined by bag fraction). The effects of 

simplifying these models were then tested, as recommended by Elith et al. (2008), using 

‘gbm.simplify’ from the ‘dismo’ package, which removes predictors one by one then tests 

if the model’s training data correlation score improves without them, compared to the 

previous best model. Simplified models are discarded if they confer no improvement, 

which is often the case. The final BRT model was then used to predict the 

presence/absence probability (0 to 1) for each species at each environmental grid site 

across the Irish Sea, based on that site’s environmental variables. 

 

For the Gaussian BRT, the abundance data (Figure 9) were log transformed (          ) 

as is typical for standardising catch and effort data that is characterised by long-tailed 

positive distributions (Froeschke and Drymon, 2013; Lo et al., 1992; Punt et al., 2000). 

The BRT process was then performed on them with the same parameters as above, 

except with a Gaussian distribution (Maunder and Punt, 2004; Punt et al., 2000). To 

transform the data back to their original scale, they were log-reversed and also bias 

corrected using Duan’s Smearing Estimator (Duan, 1983), resulting in a predicted 

abundance score for each presence-only value. Duan’s Smearing Estimator estimates the 

expected value of the error distribution, which would otherwise be unknown and lead to 

inaccuracy if simply reversing the log using exponents. Resulting presence-only values 

were then multiplied by the presence/absence predictions from the previous stage to 

give a predicted CPUE per site that incorporates the probability of occurrence into the 
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predicted abundance (Cass-Calay and Schmidt, 2009; Froeschke and Froeschke, 2011; 

Lo et al., 1992). The final outputs are thus abundance probability maps per species for 

the whole Irish Sea, based on the environmental variables (see Figure 11 for conceptual 

diagram). In addition, abundance hotspots were generated from the ‘all species’ surface 

by displaying only predicted CPUE values above an arbitrary 50% of the highest 

predicted abundance. Finally these results were compared to existing and proposed 

MPAs, and to Irish ray landings data (Gerritsen, H., Marine Institute, Pers. Comm.), to 

investigate the ability of our approach to identify potential MPAs from the modelled 

abundance surfaces (Figure 14 and Figure 15). 

4 Results 

The training data correlation scores were high for all tests (binomial/Gaussian: all: 

0.79/0.76, cuckoo: 0.77/0.67, thornback: 0.72/0.72, blonde: 0.65/0.84, spotted: 

0.82/0.83). These results indicate confidence in the outputs of the BRT analyses. 

4.1 Influential Variables and Partial Dependence Plots 

Variable influence plots and plots of predictive deviance vs the three most influential 

environmental variables are shown for the ‘all species’ group and for blonde rays only 

(Figures 3 and 4); additional plots for all species are in the supplementary material 

(Figure 17 to Figure 21). Higher predictive deviance scores indicate the range of 

environmental conditions within which there is a relatively high probability of occurrence 

or a higher predicted abundance. For the ‘all species’ group (Figure 12), substrate was 

the most influential predictor of presence, with rays showing a weak-positive preference 

for grain sizes above 0.3mm (sand and coarser), and preferences for more saline, 

warmer waters with higher current speeds. When rays were present their abundances 

were equally explained by salinity and temperature, with higher predicted abundance in 

water above 34ppm and 15°C respectively.  
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Cuckoo ray presence was best predicted by depth (especially >70m) and current speed 

(>1m/s), while its abundance was mostly affected by distance to shore (especially 17 to 

30km) (supplementary information). Reportedly cuckoo ray are most common at depths 

of 70-100m (Wheeler, 1978; Whitehead et al., 1984), away from shore (Marine 

Institute, 2012), and prefer sand (Ellis et al., 2005a). Grain size was found not to be an 

important predictor of cuckoo ray presence or abundance, most likely reflecting that 

substrates in the Irish Sea are quite homogenous, largely comprising a sandy/gravel mix  

(Connor et al., 2006; Vincent et al., 2004). 

 

Thornback presence related strongly to temperature (strong preference for warmer 

water) and salinity (peak at 34.5ppm), with abundance related principally to 

temperature, depth and salinity (supplementary information). Thornback rays are 

usually found 10 to 300m deep, with adults usually 16 to 24 km offshore (Fahy and 

O’Reilly, 1990; Stehmann and Bürkel, 1984) and juveniles inshore (Ellis et al., 2005a). 

All prefer gravel and pebbles, intermediate to strong two-dimensional velocities (Martin 

et al., 2012), and usually occur on sandbanks extending from adjacent shallows rather 

than more dynamic distinct banks, especially for juveniles (Kaiser et al., 2004). 

 

Both the presence and abundance of Blonde rays (Figure 13) were explained by distance 

to shore (slight preference for >40km, peak abundance at 22km), depth (aversion to 

depths between 40 and 100m) and current speed (preference for higher). The species’ 

reported preference for calm coastal shallows was not detected, however, predicted 

distributions were consistent with previous reports of their occurrence offshore on 

distinct sandbanks (Kaiser et al., 2004; Martin et al., 2012).  

 

Spotted ray presence and abundance were predicted by salinity (strong preference for 

>34.3ppm), current speed (gentle peak around 1m/s) and distance to shore (peak 

around 25km), (Figure 17 to Figure 21). This concurs with published literature indicating 

that juvenile spotted rays spotted rays are found further offshore (Southern Irish Sea 
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and St. George's Channel) than other young rays, whereas adults are commonly found 

30 to 150m deep, preferring sandy substrates (Ellis et al., 2005a; Fahy and O’Reilly, 

1990; Martin et al., 2012). 
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Figure 3: Conceptual diagram summarising the Boosted Regression Tree (BRT) 
modelling approach used to spatially represent ray abundance 
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Figure 4: Relative influence (%) of environmental variables on all ray BRT outputs, and 
BRT partial dependence plots showing relationships of environmental variables to ray 
presence/abundance. Tick marks indicate the distribution of the predictors. 
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Figure 5: Relative influence (%) of environmental variables on blonde ray BRT outputs, 
and BRT partial dependence plots showing relationships of environmental variables to 
ray presence/abundance. Tick marks indicate the distribution of the predictors. 
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Figure 6: BRT predicted surface of ‘all species’ ray group, with ICES sampling stations 

(greyscale gradient indicates sampling frequency per site) and Irish Sea locations (red 

crosses). Colour gradient indicates sites’ predicted ray abundance as a proportion of 

global maximum. 
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Figure 7: BRT predicted surfaces for cuckoo, thornback, blonde and spotted ray, with 

colour gradients as a proportion of each species’ individual maximum CPUE. 
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4.2 Predicted surfaces 

For all species combined, the model predicts low abundances in the Nephrops ground 

around Dublin which is characterised by muddy substrate, low current speed, and also in 

the shallow waters of the North East Irish Sea, from Solway Firth down to Morecambe 

Bay. Peak abundances are predicted within a band of water 30-50m deep outside of the 

Welsh bays running from Holyhead to Bardsey Island to St. Davids. Within the Irish 

regional sea limit, peaks are along the same depth band, arcing from Codling to Long 

Bank, around and inside the 20-30m deep channels created by the shallow (≤5m) 

coastal-running central (Kish, Bray, Codling, India) and southern (Rusk, Money-weights, 

Blackwater, Lucifer, Long) Irish banks (Figure 5). 

 

The predicted distribution of cuckoo rays (Figure 6) shows the strong influence of 

distance to shore and depth, with highest abundances occurring in the deeper (~100m) 

central St George’s and North channels, and off the eastern Irish coast, as previously 

suggested (Fahy and O’Reilly, 1990). Higher abundance is also predicted for the Bray 

and Kish Banks. 

 

Predicted thornback ray abundances (Figure 6) show a strong bias towards the shallow 

South-eastern bays (Liverpool, Colwyn, Caernarfon and especially Cardigan) where they 

are known to form local sub-populations spreading from such bays (Fitzmaurice et al., 

2003). Predicted abundance is low in the north and the central channels, consistent with 

their reported near-shore preference (Fahy and O’Reilly, 1990; Stehmann and Bürkel, 

1984), and their strong relationship with temperature (supplementary information). 

There was little rise in abundance around the distinct sandbanks north of Wicklow Head 

(Kaiser et al., 2004), but reportedly high abundances at Greystones (Fahy and O’Reilly, 

1990) were not predicted. 

 

Blonde ray predicted abundances show the underlying influence of distance to shore 

through the bands which track the coastline. Their preference for distinct sandbanks is 
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evident (Ellis et al., 2005a; Kaiser et al., 2004), with peaks over the Bray and Codling 

Banks, and low abundances in higher current speed areas with hard substrate such as 

off Anglesey. This matches the results of similar work from the English Channel (Martin 

et al., 2012). 

 

High spotted ray abundances are predicted inside Caernarfon and outside Cardigan Bay, 

contributing to this pattern alongside thornback ray (Figure 14). Abundances otherwise 

suggest spotted ray are to be found across much of the Irish Sea, less so on the muddy 

Nephrops ground and along the shallow North-eastern coast. They prefer intermediary 

depths as expected (Ellis et al., 2005a; Fahy and O’Reilly, 1990), with a small patch of 

high abundance on the Kish / Bray / Codling Banks, and the southern banks. 
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Figure 8: Predicted abundance hotspots for all ray species (group) above 50% of the 

maximum CPUE (blue) in the Irish Sea, overlaid with JNCC auto-computed best MPAs for 

various management goals (green), 2006-2012 annually-averaged Irish ray fisheries 

landings (red gradient), existing and proposed management areas (boxes) and the 

Irish/UK national limits (dotted line). 
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4.3 Spatial management areas 

This study explores the viability of combining data for a group of species, and managing 

them by protecting the most vulnerable member (based on a productivity susceptibility 

analysis (McCully et al., 2013)). Abundance hotspots for all species (Figure 16, blue 

shading) consist of a few large patches and numerous smaller bands and independent 

areas. The large patches overlap most of the high abundance areas for blonde ray and 

the peak abundance areas for cuckoo ray, covering the extreme peak and offshore band 

in Cardigan Bay for thornback ray, and the patches edging Cardigan and Caernarfon Bay 

for spotted ray. The area off the Bray / Codling banks features high abundance for all 

species except thornback ray (Figure 15). 

 

In the western Irish Sea, most of the northern hotspot and almost all of the southern 

overlaps with existing / proposed management areas (Figure 16, boxes, and green 

shading). The southern hotspot is subject to minimal ray fishing (Figure 16, yellow-red 

gradient), possibly as a consequence of their distance from Howth, the home port for 

most boats exploiting rays in the Irish Sea (Gallagher, 2000) as well as the protection 

provided by surrounding sandbanks . The northern hotspot is similarly protected on its 

western flank, but subject to increasingly intense fishing going eastward. High ray 

catches by the fleet co-occur only with hotspots at the patches extending north-east and 

south-east from the northern hotspot. 

 

Elsewhere in the Irish Sea many hotspot areas don’t overlap with conservation-

designated areas, such as the hotspots in Liverpool Bay, much of Cardigan Bay, the thin 

hotspots in the channel and south west, and many of the small spots in the north. 
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5 Discussion 

5.1 Overview 

The delta log-normal BRT approach synthesises numerous input variables, weighs their 

relative importance to the dependant variable, and produces complex output predictions. 

This is especially valuable for data-poor species like blonde rays (ICES WGLIFE, 2012), 

for which we have generated high resolution predictions leading to spatial management 

advice for the whole Irish Sea from only 668 survey catches. The method produces maps 

of predicted species abundances as related to environmental correlates, requiring little 

post-processing in mapping software, and allowing easy comparisons with existing 

spatial management zones. Areas of ecological importance are clear (Figure 14), and 

abundance hotspots can be easily produced based on managerial threshold choices e.g. 

CPUE (Figure 16).The method effectively discriminates the influence of environmental 

variables on the abundance of these rays (Figure 12 and Figure 13). These outputs 

underpin the predicted surfaces but are themselves important results for improving our 

understanding of the habitat preferences of these species. 

 

The unrepresentativeness of surveyed environmental variable ranges noted in some 

areas does not undermine the general conclusions of the study, but highlights the need 

for caution when drawing conclusions from the least represented areas, i.e. extreme 

shallows and depths, very near and 25-40km from shore, and areas with fast current. 

Several poorly sampled shallow, near-shore, and fast current areas are likely to be co-

located. They may also act as de facto refugia (Shephard et al., 2012), being neither 

sampled by the survey nor fished by the fleet. In future studies, information on the 

abundance of rays in these areas could potentially be obtained from angling record data 

while accounting for the limitations of using fisheries dependent data to derive estimates 

of abundance through appropriate standardisation methods (e.g. Maunder and Punt 

(2004)). 
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The survey was not specifically designed for the purposes of this study, but to provide 

age-based stock abundance information for other commercial fish species to support 

analytical assessments. However, it remains the only substantial source of distribution 

data for our study species. It was necessary to average both the biological and 

environmental data across all the study years. Therefore, interannual changes in species 

distributions in response to environmental or fishery related changes are not captured in 

the analysis and the predicted distributions represent averaged conditions rather than 

the current situation. While environmental variability in some datasets (depth, distance 

to shore, substrate) is minimal, other environmental parameters (temperature, salinity, 

current speed) may be more variable, and hence more likely to exert temporal changes 

in distributions. Revision of derived maps that incorporate updated data is therefore 

advised when using this method to inform spatial management.  

 

Many of the relationships between species abundance and environmental variables that 

are described by the model agree with those previously reported (especially for cuckoo 

ray and spotted ray). This provides some indirect validation of the ability of the model to 

accurately predict the distribution and abundance of those species. It also indicates that 

the habitat preferences of the species in question are generally consistent across study 

areas. However, the habitat preferences of blonde ray appear to show variation between 

study areas, highlighting the influence of local environmental variability on abundance 

distributions and the dangers of extrapolating from one geographic area to another 

(Kaiser et al., 2004; Martin et al., 2012). 

Fishing activity is likely to influence the distribution and abundance of rays, and could 

lead to lower abundance in habitats that are otherwise favourable. Similarly, areas of low 

fishing activity act as de facto refugia. Fishing activity is likely to coincide with certain 

habitat features. Fishing pressure was not considered as an explanatory variable in this 

analysis, so it should be borne in mind that apparent relationships between abundance 

and environmental variables (such as substrate type) may actually reflect a correlation 

with fishing patterns. The survey mostly recorded moderately low abundances of rays in 
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the general areas of high fishing landings, suggesting that low abundances could be 

associated with commercial fishing, however the small discrete areas where maximum 

landings were reported by the fishery were not surveyed, so it is not possible to confirm 

this. In order to disentangle species specific habitat requirements from the effects of 

fishing on abundance, fishing effort could be included as a variable in the model. While 

this was beyond the scope of the current study, it warrants further research. In its 

current form, the model is useful for predicting where areas of high ray abundance 

occur, but does not provide insight into whether this is driven by habitat characteristics 

or the absence of fishing. 

5.2 Spatial overlap of protected areas 

The most vulnerable species (Figure 15, blonde ray) and the species with the most 

precautionary ICES catch advice (cuckoo ray) would both be protected by the closure of 

abundance hotspots identified here (Figure 16), suggesting that this method can be used 

to manage groups of differentially vulnerable, data-poor species. Alternatively, 

protecting hotspots generated by abundance probability maps for blonde or cuckoo ray 

(Figure 4) would also protect some of the less vulnerable members of the group. 

 

The BRT abundance hotspots closely align with a number of areas previously 

recommended for protection. The UK’s Joint Nature Conservancy Council’s (JNCC) 

Marxan analysis of 19 environmental, biological, and anthropogenic datasets resulted in 

a map of the minimum protected area recommended to meet conservation targets for 

nationally-important marine wildlife (green shading in Figure 16. (Vincent et al., 2004)), 

particularly in terms of biodiversity and fisheries objectives. These areas generally 

overlap with all the BRT abundance hotspots. The southern hotspot overlaps the 

Blackwater Bank SAC (Special Area of Conservation) which protects a polychaete and 

amphipod species complex that is a rich food source for rays (especially juveniles) 

(Ajayi, 1982; Farias et al., 2006). Furthermore, it is enclosed by sandbanks and is not 

impacted by trawling (Marine Institute, 2013), suggesting that this is an attractive de 

facto refuge (Shephard et al., 2012). The northern hotspot is mostly covered by the 
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North Western Waters Regional Advisory Council’s (NWWRAC) proposed temporary 

closed area (“ray box”) and has been identified as an important nursery and spawning 

ground by the fishing industry (NWWRAC, 2013). The agreement between the 

abundance hotspots and previous expert advice further reinforces the potential viability 

of the BRT method as a tool to generate MPA candidates. It also highlights that protected 

areas chosen based on the abundance of key indicator species can have broad and 

persistent benefits for many species (Babcock et al., 2010; Barrett et al., 2007). 

Designing MPAs around specific ‘concern’ species is a recognised method for managing 

multi-species fisheries (Hilborn et al., 2004; Myers and Worm, 2005; Stelzenmüller et 

al., 2013), thus basing MPAs on the hotspots known to protect the most vulnerable 

species in this group could be an highly effective conservation strategy. 

 

The high-resolution spatial variability in predicted abundances (Figure 14 and Figure 15) 

reveals the complex interplay of underlying environmental variables, resulting in a few 

large hotspot areas, and many small fragments (blue shading, Figure 16). While these 

hotspots can be readily converted into seemingly viable MPA candidates, other 

considerations often dictate designation of MPAs. Hotspot areas identified via the delta-

BRT approach may be suboptimal MPAs for several reasons: planning and enforcing 

many smaller areas requires more work and cost than does a few larger areas, and non-

compliance by the fishing sector is easier and more likely, hence making policing harder 

and costlier (Agardy et al., 2011). The fragment MPAs may be smaller than the 

thresholds required by species for persistence, abundance or occupancy of an area 

(Rhodes et al., 2008), or their home ranges (Agardy et al., 2011). While networks of 

small sanctuaries may maximize recruitment of fish into surrounding areas (GESAMP, 

1996), this is more true for broadcast spawners (Halpern and Warner, 2003; Shanks et 

al., 2003) than sedentary species like the rays considered here (Kaiser et al., 2004; 

McEachran and Miyake, 1990), however small MPAs may be effective in protecting such 

species (Buxton et al., 2006), if consideration of their migratory behaviours is beneficial 

to MPA planning (Sale et al., 2005). 
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Conservation plans should begin with a clearly defined aim (Kelleher, 1999), and balance 

the conservation benefit of candidate areas versus their maintenance cost, in order to 

identify the optimal MPA (Klein et al., 2013). For example, if the abundance hotspot map 

was intended to focus on nursery areas, counts of adult females could be heavily 

weighted to tailor the BRT analysis towards them. An ideal MPA consists of a highly 

protected core area surrounded by a buffer zone (Kelleher, 1999), but reserve selection 

algorithms such as Marxan can help select the optimal size and number of MPAs to 

balance area closures against negative social impacts (Ball and Possingham, 2003; 

Harborne, 2009). In reality, an MPA’s conservation objective is more likely to be the 

protection of the whole ecosystem or a significant species group rather than a single 

species (Kelleher, 1999; Stelzenmüller et al., 2013), although protecting notable species 

or nursery/spawning areas may be a key priority (Halpern and Warner, 2003; Kelleher, 

1999). 

 

The proposed method should be considered as a valuable tool for MPA selection, and 

could be especially useful if tailored to specific subsets of species data, e.g. to protect 

spawning grounds by focusing on mature females. Pairing the output of this method with 

information regarding home range size (Buxton et al., 2006), thresholds of minimum 

viable habitat size (Kelleher, 1999; Rhodes et al., 2008), migration patterns (Buxton et 

al., 2006; Hilborn et al., 2004), spawning substrate preferences (Lindholm et al., 2001), 

and water movement patterns (for broadcast spawners) (Shanks et al., 2003) could offer 

a powerful tool for conservation. Selection of a threshold CPUE percentage should be 

driven by the underlying biology of the species, such as FMSY (Zhou et al., 2012). Any 

such measures could be incorporated into a management strategy evaluation that 

considers the ramifications of area closures on the future of the stocks, and weighs these 

against the impact on the fishery, e.g. Wiegand et al. (2011). 
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5.3 Further work 

Fishermen’s knowledge of their targeted stocks’ habitat preferences is difficult to 

incorporate into traditional fisheries stock assessments (Johannes, 2003; Soto, 2006) 

but could be highly valuable (Hind, 2012; Johannes et al., 2000). Developing a 

qualitative interface to the statistical model (for example through use of hand-drawn 

maps and social scoring metrics) would enable delta log-normal BRTs to generate 

predicted abundance surfaces from fishermen’s knowledge. 

 

The addition of survey data covering the most heavily fished areas would improve the 

representativeness of the outcomes for high CPUE areas, and thus increase confidence in 

the results in general. Including fishing pressure would strengthen the model further, 

addressing the key limitation of this study as it stands, and allowing the full potential of 

the method to be realised. 
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8.1 R functions and packages used 

calibration, roc, and gbm.predict.grids: from Elith et al. (2008) appendix, built upon 

Friedman’s work (Friedman, 2001). 

 

gbm: Ridgeway, G. 2013. gbm: Generalised Boosted Regression Models. R package 

version: 2.1. http://cran.r-project.org/package=gbm 

 

dismo: Hijmans, R.L., Phillips, S., Leathwick, J. and Elith, J. 2103. dismo: Functions for 

species distribution modelling, that is, predicting entire geographic distributions from 

occurrences at a number of sites. R package version: 0.9-3. http://cran.r-

project.org/package=dismo 

 

mgcv: Wood, S.N. 2011. Mgcv: Fast stable restricted maximum likelihood and marginal 

likelihood estimation of semiparametric generalized linear models. Journal of the 

Royal Statistical Society (B) 73(1):3-36. http://CRAN.R-project.org/package=mgcv 

 

vegan: Oksanen, J., Blanchet, F.G., Kindt, R., Legendre, P., Minchin, P.R., O'Hara, R.B., 

Simpson, G.L., Solymos, P., Stevens, M.H.H. and Wagner, H. 2013. vegan: 

Community Ecology Package. R package version 2.0-10. http://CRAN.R-

project.org/package=vegan 
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9 Figures (see Supplementary Material for full resolution versions) 

 

 

 

 

 

 

 

Table 2: Physical oceanographic datasets used during modelling, and their sources 

Environmental Dataset Spatial Resolution Source 

Depth 275x455m grids 
EMODnet (European Marine Observation 
and Data Network)(EMODnet, 2014) 

Average Monthly sea bottom 
temperatures 2010-2012 (°C) 

1185x1680m 
Marine Institute, 2014 
(http://www.marine.ie/Home/site-
area/data-services/data-services) 

Average Monthly sea bottom 
salinities 2010-2012 (ppm) 
Maximum monthly 2 
dimensional velocity (m.s-1) 

Substrate (grain size in mm) ~250m minimum 
British Geological Survey, 2011 (British 
Geological Survey, 2011) 

Distance to shore (m) 275x435m grids 
via European coastline layer (freely 
available) 
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Figure 9: Histogram of CPUE of all rays 
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Figure 10: First tree produced by the binomial BRT. Variables and their split values are in 

black, above (right branch) and below (left branch) which sub-branches are split, as 

calculated by the model to maximise predictive power. Percentages refer to total 

number of sites within that split. 

 

 

 

 

 

 



47 / 64 
 

 

Figure 11: Conceptual diagram summarising the Boosted Regression Tree (BRT) 
modelling approach used to spatially represent ray abundance 
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Figure 12: Relative influence (%) of environmental variables on all ray BRT outputs, and 
BRT partial dependence plots showing relationships of environmental variables to ray 
presence/abundance. Tick marks indicate the distribution of the predictors. 
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Figure 13: Relative influence (%) of environmental variables on blonde ray BRT outputs, 
and BRT partial dependence plots showing relationships of environmental variables to 
ray presence/abundance. Tick marks indicate the distribution of the predictors. 
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Figure 14: BRT predicted surface of ‘all species’ ray group, with ICES sampling stations 

(greyscale gradient indicates sampling frequency per site) and Irish Sea locations (red 

crosses). Colour gradient indicates sites’ predicted ray abundance as a proportion of 

global maximum. 
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Figure 15: BRT predicted surfaces for cuckoo, thornback, blonde and spotted ray, with 

colour gradients as a proportion of each species’ individual maximum CPUE. 
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Figure 16: Predicted abundance hotspots for all ray species (group) above 50% of the 

maximum CPUE (blue) in the Irish Sea, overlaid with JNCC auto-computed best MPAs for 

various management goals (green), 2006-2012 annually-averaged Irish ray fisheries 

landings (red gradient), existing and proposed management areas (boxes) and the 

Irish/UK national limits (dotted line). 
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10 Supplementary Figures (see separate document for full 
resolution versions) 
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Figure 17: Relative influence (%) of environmental variables on all ray BRT outputs, and 

BRT partial dependence plots showing relationships of environmental variables to ray 

presence/abundance. Tick marks indicate deciles of the distribution of the predictors. 
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Figure 18: Relative influence (%) of environmental variables on cuckoo ray BRT outputs, 

and BRT partial dependence plots showing relationships of environmental variables to 

ray presence/abundance. Tick marks indicate deciles of the distribution of the 

predictors. 
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 Thornback Ray 
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Figure 19: Relative influence (%) of environmental variables on thornback ray BRT 

outputs, and BRT partial dependence plots showing relationships of environmental 

variables to ray presence/abundance. Tick marks indicate deciles of the distribution of 

the predictors. 
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Figure 20: Relative influence (%) of environmental variables on blonde ray BRT outputs, 

and BRT partial dependence plots showing relationships of environmental variables to 

ray presence/abundance. Tick marks indicate deciles of the distribution of the 

predictors. 
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Figure 21: Relative influence (%) of environmental variables on spotted ray BRT 

outputs, and BRT partial dependence plots showing relationships of environmental 

variables to ray presence/abundance. Tick marks indicate deciles of the distribution of 

the predictors. 
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Figure 22: Histograms of environmental variables from survey (left) and environmental 

databases (right and final) 


