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Abstract

Multi-Agent Systems (MAS) are a form of distributed intelligence, where multiple autonomous

agents act in a common environment. Numerous complex, real world systems have been

successfully optimised using Multi-Agent Reinforcement Learning (MARL) in conjunction with

the MAS framework. In MARL agents learn by maximising a scalar reward signal from the

environment, and thus the design of the reward function directly affects the policies learned. In

this work, we address the issue of appropriate multi-agent credit assignment in stochastic resource

management games. We propose two new Stochastic Games to serve as testbeds for MARL

research into resource management problems: the Tragic Commons Domain and the Shepherd

Problem Domain. Our empirical work evaluates the performance of two commonly used reward

shaping techniques: Potential-Based Reward Shaping and difference rewards. Experimental

results demonstrate that systems using appropriate reward shaping techniques for multi-agent

credit assignment can achieve near optimal performance in stochastic resource management

games, outperforming systems learning using unshaped local or global evaluations. We also

present the first empirical investigations into the effect of expressing the same heuristic knowledge

in state- or action-based formats, therefore developing insights into the design of multi-agent

potential functions that will inform future work.

1 Introduction

In a Multi-Agent System (MAS), multiple agents act autonomously in a common environment.

Agents in a MAS may be cooperative, competitive, or may exhibit elements of both behaviours.

Agents in a cooperative MAS are designed to work together to achieve a system-level goal

(Wooldridge, 2001), whereas agents in a competitive MAS are self-interested and may come into

conflict with each other when trying to achieve their own individual goals. Numerous complex,

real world systems have been successfully optimised using the MAS framework, including traffic

signal control (Mannion et al., 2016a), air traffic control (Tumer and Agogino, 2007), electricity

generator scheduling (Mannion et al., 2016c), network security (Malialis et al., 2015), water

resource management (Mason et al., 2016), and data routing in networks (Wolpert and Tumer,

2002), to name a few examples.

1The published version of this article in The Knowledge Engineering Review is available from Cambridge
University Press at https://doi.org/10.1017/S026988891700011X
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Reinforcement Learning (RL) has proven to be successful in developing suitable joint policies

for cooperative MAS in all of the problem domains mentioned above. RL agents learn by

maximising a scalar reward signal from the environment, and thus the design of the reward

function directly affects the policies learned. The issue of credit assignment in Multi-Agent

Reinforcement Learning (MARL) is an area of active research with numerous open questions.

Reward shaping has been investigated as a mechanism to guide exploration in both single- and

multi-agent RL problems, with promising results. Potential-Based Reward Shaping (PBRS) is a

form of reward shaping that provides theoretical guarantees while guiding agents using heuristic

knowledge about a problem. Difference rewards are another commonly used form of reward

shaping that allow an individual agent’s contribution to the system utility to be evaluated, in

order to provide a more informative reward signal. Both of these reward shaping methodologies

have proven to be effective in addressing the multi-agent credit assignment problem (see e.g.

Devlin et al. (2011a, 2014); Mannion et al. (2016b); Tumer and Agogino (2007); Wolpert and

Tumer (2002)).

In this paper we explore the issue of credit assignment in stochastic resource management

games. To facilitate this investigation, we introduce two new Stochastic Games to serve as testbeds

for MARL research into resource management problems: the Tragic Commons Domain (TCD)

and the Shepherd Problem Domain (SPD).

The Tragic Commons Domain is a Stochastic Game which is inspired by both N-player

dilemmas and resource dilemmas from the field of Game Theory. When multiple self-interested

agents share a common resource, each agent seeks to maximise its own gain without consideration

for the welfare of other agents in the system. In the case of a scarce resource, over-exploitation

occurs when all agents follow a greedy strategy. This can have disastrous consequences, in some

cases damaging the resource to the detriment of all agents in the system. This scenario is referred

to as the Tragedy of the Commons. We introduce the TCD as a means to study resource dilemmas

using the MAS paradigm, and investigate techniques to avoid over-exploitation of the resource,

thus maximising the social welfare of the system.

By contrast, our study in the SPD deals with maximising the social welfare of a system

when congestion in a group of common resources is unavoidable. The SPD models a system of

interconnected pastures, where each shepherd (agent) begins in a certain pasture and must decide

in which pasture it will graze its herd of animals. This is a congestion problem, as the number of

herds that must be accommodated is far greater than the total capacity of the available pastures.

Therefore, the goal is to minimise the effect of congestion on the system. Insights gained while

studying congestion problems of this type may be useful when tackling congestion that occurs

naturally in many real world systems, e.g. in road, air or sea transportation applications.

We evaluate the performance of various credit assignment techniques in these empirical studies.

Our results demonstrate that systems using appropriate reward shaping techniques for multi-

agent credit assignment can achieve near optimal performance in stochastic resource management

games, outperforming systems learning using unshaped local or global evaluations. Additionally,

this work contains the first empirical investigations into the effect of expressing the same heuristic

knowledge in state- or action-based formats, therefore developing insights into the design of multi-

agent potential functions that will inform future work.

In the next section of this paper, we discuss the necessary terminology and relevant literature.

This is followed by our first empirical study in the Tragic Commons Domain. We then present

the results of our second empirical study in the Shepherd Problem Domain. Finally, we conclude

this paper with a discussion of our findings and possible future extensions to this work.

2 Background & Related Work

2.1 Reinforcement Learning

Reinforcement Learning (RL) is a powerful Machine Learning paradigm, in which autonomous

agents have the capability to learn through experience. An RL agent learns in an unknown
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environment, usually without any prior knowledge of how to behave. The agent receives a scalar

reward signal r based on the outcomes of previously selected actions, which can be either negative

or positive. Markov Decision Processes (MDPs) are considered the de facto standard when

formalising problems involving a single agent learning sequential decision making (Wiering and

van Otterlo, 2012). A MDP consists of a reward function R, set of states S, set of actions A,

and a transition function T (Puterman, 1994), i.e. a tuple < S, A, T, R >. When in any state

s ∈ S, selecting an action a ∈A will result in the environment entering a new state s′ ∈ S with

probability T (s, a, s′) ∈ (0, 1), and give a reward r =R(s, a, s′).

An agent’s behaviour in its environment is determined by its policy π. A policy is a mapping

from states to actions that determines which action is chosen by the agent for a given state.

The goal of any MDP is to find the best policy (one which gives the highest expected sum of

discounted rewards) (Wiering and van Otterlo, 2012). The optimal policy for a MDP is denoted

π*. Designing an appropriate reward function for the environment is important, as an RL agent

will attempt to maximise the return from this function, which will determine the policy learned.

RL can be classified into two paradigms: model-based (e.g. Dyna, Rmax) and model-free

(e.g. Q-Learning, SARSA). In the case of model-based approaches, agents attempt to learn the

transition function T , which can then be used when making action selections. By contrast, in

model-free approaches knowledge of T is not a requirement. Model-free learners instead sample

the underlying MDP directly in order to gain knowledge about the unknown model, in the form

of value function estimates (Q values). These estimates represent the expected reward for each

state action pair, which aid the agent in deciding which action is most desirable to select when

in a certain state. The agent must strike a balance between exploiting known good actions and

exploring the consequences of new actions in order to maximise the reward received during its

lifetime. Two algorithms that are commonly used to manage the exploration exploitation trade-off

are ε-greedy and softmax (Wiering and van Otterlo, 2012).

Q-Learning (Watkins, 1989) is one of the most commonly used RL algorithms. It a model-

free learning algorithm that has been shown to converge to the optimum action-values with

probability 1, so long as all actions in all states are sampled infinitely often and the action-values

are represented discretely (Watkins and Dayan, 1992). In Q-Learning, the Q values are updated

according to the equation below:

Q(s, a)←Q(s, a) + α[r + γ max
a′

Q(s′, a′)−Q(s, a)] (1)

where α ∈ [0, 1] is the learning rate and γ ∈ [0, 1] is the discount factor.

2.2 Multi-Agent Reinforcement Learning

The single-agent MDP framework becomes inadequate when we consider multiple autonomous

learners acting in the same environment. Instead, the more general Stochastic Game (SG)

may be used in the case of a MAS (Buşoniu et al., 2010). A SG is defined as a tuple

< S, A1...N , T, R1...N >, where N is the number of agents, S is the set of states, Ai is the set

of actions for agent i (and A is the joint action set), T is the transition function, and Ri is the

reward function for agent i.

The SG looks very similar to the MDP framework, apart from the addition of multiple agents.

In fact, for the case of N = 1 a SG then becomes a MDP. The next environment state and the

rewards received by each agent depend on the joint action of all of the agents in the SG. Note

also that each agent may receive a different reward for a state transition, as each agent has its

own separate reward function. In a SG, the agents may all have the same goal (collaborative

SG), totally opposing goals (competitive SG), or there may be elements of collaboration and

competition between agents (mixed SG).

One of two different approaches is typically used when RL is applied to MAS: multiple

individual learners or joint action learners. In the former case multiple agents are deployed into a
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common environment, each using a single-agent RL algorithm, whereas joint action learners use

multi-agent specific algorithms which take account of the presence of other agents. When multiple

self-interested agents learn and act together in the same environment, it is generally not possible

for all agents to receive the maximum possible reward. Therefore, MAS are typically designed to

converge to a Nash Equilibrium (Shoham et al., 2007). While it is possible for multiple individual

learners to converge to a point of equilibrium, there is no theoretical guarantee that the agents

will converge to a Pareto optimal joint policy.

2.3 Reward Shaping

RL agents typically learn how to act in their environment guided by the reward signal alone.

Reward shaping provides a mechanism to guide an agent’s exploration of its environment, via

the addition of a shaping signal to the reward signal naturally received from the environment.

The goal of this approach is to increase learning speed and/or improve the final policy learned.

Generally, the reward function is modified as follows:

R′ =R+ F (2)

where R is the original reward function, F is the additional shaping reward, and R′ is the

modified reward signal given to the agent.

Empirical evidence has shown that reward shaping can be a powerful tool to improve the

learning speed of RL agents; however, it can have unintended consequences. A classic example of

reward shaping gone wrong is reported by Randløv and Alstrøm (1998). The authors designed

an RL agent capable of learning to cycle a bicycle towards a goal, and used reward shaping to

speed up the learning process. However, they encountered the issue of positive reward cycles due

to a poorly designed shaping function. The agent discovered that it could accumulate a greater

reward by cycling in circles continuously to collect the shaping reward encouraging it to stay

balanced, than it could by reaching the goal state. As we discussed earlier, an RL agent will

attempt to maximise its long-term reward, so the policy learned depends directly on the reward

function. Thus, shaping rewards in an arbitrary fashion can modify the optimal policy and cause

unintended behaviour.

Ng et al. (1999) proposed Potential-Based Reward Shaping (PBRS) to deal with these

shortcomings. When implementing PBRS, each possible system state has a certain potential,

which allows the system designer to express a preference for an agent to reach certain system

states. For example, states closer to the goal state of a problem domain could be assigned higher

potentials than those that are further away. Ng et al. (1999) defined the additional shaping reward

F for an agent receiving PBRS as shown in Eqn. 3 below:

F (s, s′) = γΦ(s′)− Φ(s) (3)

where Φ(s) is the potential function which returns the potential for a state s, and γ is the

same discount factor used when updating value function estimates. PBRS has been proven not to

alter the optimal policy of a single agent acting in infinite-horizon and finite-horizon MDPs (Ng

et al., 1999), and thus does not suffer from the problems of arbitrary reward shaping approaches

outlined above. In single agent RL, even with a poorly designed potential function, the worst case

is that an agent may learn more slowly than without shaping but the final policy is unaffected.

However, the form of PBRS proposed by Ng et al. (1999) can only express a designer’s

preference for an agent to be in a certain state, and therefore cannot make use of domain

knowledge that recommends actions. Wiewiora et al. (2003) proposed an extension to PBRS

called Potential-Based Advice, that includes actions as well as states in the potential function.

The authors propose two methods of Potential-Based Advice: Look-Ahead Advice and Look-Back

Advice. The former method defines the additional reward received F as follows:
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F (s, a, s′, a′) = γΦ(s′, a′)− Φ(s, a) (4)

Wiewiora et al. (2003) provided a proof of policy invariance for Look-Ahead Advice for single

agent learning scenarios. No corresponding proof has been provided for Look-Back Advice,

although empirical results suggest that this method also does not alter the optimal policy in

single agent learning scenarios. To maintain policy invariance when using Look-Ahead Advice,

the agent must choose the action that maximises the sum of both Q-value and potential:

π(s) = argmaxa(Q(s, a) + Φ(s, a)) (5)

where π(s) is the agent’s policy in state s (the action that will be chosen by the agent in state

s). We will use Wieiwora’s Look-Ahead Advice to test action-based heuristics in the experimental

sections of this paper. From this point forth, we will use the abbreviations sPBRS and aPBRS

to refer to PBRS approaches with state-based and action-based potential functions respectively.

In MARL, work by Devlin and Kudenko (2011) proved that PBRS does not alter the set of

Nash equilibria of a SG. Furthermore, Devlin and Kudenko (2012) also proved that the potential

function can be changed dynamically during learning, while still preserving the guarantees of

policy invariance and consistent Nash equilibria. PBRS does not alter the set of Nash equilibria

of a MAS, but it can affect the joint policy learned. It has been empirically demonstrated that

agents guided by a well-designed potential function can learn at an increased rate and converge

to better joint policies, when compared to agents learning without PBRS (Devlin et al., 2011a).

However, with an unsuitable potential function, agents learning with PBRS can converge to worse

joint policies than those learning without PBRS.

2.4 Multi-Agent Credit Assignment Structures

Here we introduce the MARL credit assignment structures that we will evaluate in the

experimental sections of this paper. Two typical reward functions for MARL exist: local rewards

unique to each agent and global rewards representative of the group’s performance. In addition

to these basic credit assignment structures, we also evaluate the performance of several other

shaped reward functions.

A local reward (Li) is based on the utility of the part of a system that agent i can observe

directly. Individual agents are self-interested, and each will selfishly seek to maximise its own

local reward signal, often at the expense of global system performance when locally beneficial

actions are in conflict with the optimal joint policy.

A global reward (G) provides a signal to the agents which is based on the utility of the

entire system. Rewards of this form encourage all agents to act in the system’s interest, with the

caveat that an individual agent’s contribution to the system performance is not clearly defined.

All agents receive the same reward signal, regardless of whether their actions actually improved

the system performance.

A difference reward (Di) is a shaped reward signal that aims to quantify each agent’s

individual contribution to the system performance (Wolpert et al., 2000). The unshaped reward

is R=G(z), and the shaping term is F =−G(z−i). Formally:

Di(z) =G(z)−G(z−i) (6)

where Di is the reward received by agent i, G(z) is the global system utility, and G(z−i)

is referred to as the counterfactual. The counterfactual term represents the global utility for a

theoretical system without the contribution of agent i. Here z is a general term that may represent

either states or state-action pairs, depending on the specific application. Difference rewards are a

well-established shaping methodology, with many successful applications in MARL (e.g. Mannion

et al. (2016d); Tumer and Agogino (2007); Wolpert and Tumer (2002)).
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Counterfactual as Potential (CaP ), proposed by Devlin et al. (2014), is an automated

method of generating multi-agent potential functions using the same knowledge represented by

difference rewards. CaP automatically assigns potentials to states using the counterfactual term

G(z−i), so that Φ(s) =G(z−i). In this framework, the unshaped reward R=G(z), and the shaping

reward F is calculated as normal in PBRS according to Eqn. 3. As Φ(s) for agent i is in fact

based on the state of the other agents in the system, the potential function is dynamic, and CaP

is thus an instance of Dynamic PBRS (Devlin and Kudenko, 2012). CaP therefore preserves

the guarantee of consistent Nash equilibria, while incorporating knowledge based on difference

rewards in an automated manner.

3 Tragic Commons Domain

3.1 Problem Description

In this section we introduce the Tragic Commons Domain (TCD), a Stochastic Game designed

with the intent of studying resource dilemmas using the MAS paradigm. As mentioned earlier,

this domain was inspired by N-player dilemmas and resource dilemmas from the field of Game

Theory. An example of a simple dilemma is the Prisoner’s Dilemma (Binmore, 2012), a well-

studied problem in which two players (agents) have the options to either cooperate or defect.

Mutual cooperation results in the highest global utility; however if one player defects he receives

a higher reward, while the cooperating player receives the sucker’s payoff. If both players choose to

defect, they both receive a low payoff. The principles of the Prisoner’s Dilemma can be extended

to N-player dilemmas, where N players must choose to cooperate or defect (Binmore, 2012).

Resource dilemmas are an example of an N-player dilemma, where multiple self-interested

agents share a common resource, and each seeks to maximise its own returns. Agents may

cooperate to conserve the resource and utilise it in a sustainable manner, or they may defect

and selfishly attempt to extract the maximum value possible from the resource. When a majority

of agents act conservatively, there is an incentive for agents to defect so that they will receive a

better than average payoff.

However, as more agents choose to defect the resource becomes over-exploited, and the global

payoff is less than if all agents cooperate. Furthermore, when over-exploitation becomes the norm

there is no incentive for a self-interested agent to act conservatively; to do so would reduce

the individual’s payoff. The dominant strategy is thus to defect but, paradoxically, if all agents

cooperate they maximise the collective benefit, and each does better than if all play the dominant

strategy.

There are numerous real-world examples of resource or commons dilemmas; any natural

resource that is owned and used in common by multiple entities presents a dilemma of how

best to utilise it in a sustainable manner. Examples include fish stocks, wildlife, water resources,

woodlands and common pastures. There are also examples of negative commons, e.g. atmospheric

pollution or fraudulent activities, where an individual may benefit by damaging a common

resource to the detriment of all.

Previous research into commons dilemmas has used approaches such as evolutionary compu-

tation (Howley and Duggan, 2011) and learning automata (de Jong and Tuyls, 2009) to develop

cooperation among agents. In this empirical study, we explore the possibility of using PBRS

to encourage cooperative strategies among self-interested RL agents. Agents learning using a

local reward function L are purely self-interested, and seek to maximise their own utility. As a

comparison and to provide an upper bound on possible performance, we have also tested agents

using reward functions that are explicitly designed to maximise the system utility (the global

reward function G and difference reward function D).

In the Tragic Commons Domain, N agents each have the right to graze their livestock in a

common pasture. At each timestep, the agents decide how many of their own animals will graze in

the commons until the next timestep. Thus the action set for each agent is A= {amin, ..., amax},
where amin and amax correspond to the minimum and maximum number of animals that each
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Figure 1: Occupancy vs. commons value for an entire episode of the Tragic Commons Domain

agent is allowed to graze in the commons. The state for each agent is defined as the number of

its own animals currently grazing in the commons. We define the occupancy of the commons ς

as the sum of the animals placed in the commons by all agents n ∈N at any particular time:

ς =

n=N∑
n=1

sn (7)

Animals left grazing in the commons will increase in value between timesteps. We define χ

as the increase in value for an animal left grazing in the commons for one timestep. However,

there is a maximum number of animals the commons can sustain without deterioration from

overgrazing. The capacity of the commons ψ is defined as the number of animals which can

sustainably graze the commons without causing damage. Animals left grazing in the commons

when it is at or below capacity will increase in value by the maximum χmax. When the commons

is over capacity, animals increase in value by a lower rate due to the lower quantity and quality

of food available. The value of χ is related to the occupancy of the commons by the following

equation:

χ(ς) =


χmax if ς <= ψ

χmax −
(χmax − χmin)× (ς − ψ)

ςmax − ψ
otherwise

(8)

Thus, the global benefit is maximised when ς = ψ, as all animals in the commons increase

in value by the maximum rate. Values of ς that are less than ψ do not utilise the resource to

its full potential, whereas values of ς greater than ψ result in damage to the resource, and a

corresponding decrease in the collective benefit. Agents which select actions less than or equal to
ψ
N are acting in a fair and conservative manner, analogously to the agents who choose to cooperate

in the earlier example. Whereas agents who choose actions greater than ψ
N are acting in an unfair

and exploitative manner, similarly to agents who choose to defect in a classic N-Player dilemma.

We use the commons value as a measure for the system utility, where the commons value for

an episode is the sum of the products of χ and ς for each timestep. The relationship between the

commons value and ς for the parameter values that we have chosen for our experiments is shown

in Fig. 1.

The local reward for a self-interested agent i is calculated based on the added value per animal

multiplied by the number of animals the agent currently has in the commons. Formally:
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Li(si, ai, s
′
i) = χ(ς ′)s′i (9)

The global reward is calculated based on the added value per animal multiplied by the total

number of animals in the commons. This is a per-timestep version of the commons value metric

that is used to measure overall episode performance. Formally:

G(z) = χ(ς ′)ς ′ (10)

The counterfactual for agent i, to be used with D and CaP , is calculated by assuming that

the agent chose the same action as in the previous timestep i.e. a= s= s′. This means that a

counterfactual occupancy ς(z−i) and a counterfactual animal value χ(z−i) must be calculated.

The counterfactual term is then calculated as the product of ς(z−i) and χ(z−i). Formally:

ς(z−i) =

n=N∑
n=1
n 6=i

s′n + si (11)

χ(z−i) = χ(ς(z−i)) (12)

G(z−i) = χ(z−i)ς(z−i) (13)

3.2 PBRS Heuristics

To explore the effectiveness of PBRS in this domain, we apply three different manual heuristics

in addition to the automated CaP heuristic. Each heuristic is expressed in both a state-based

and action-based form. The heuristics used are:

• Fair: Agents are encouraged to act in a fair manner, where each agent is encouraged to graze

the optimal number of animals (i.e. ψ
N ) in the commons. This heuristic is expected to perform

extremely well, and will demonstrate the effect of PBRS when advice can be given about the

optimal policy.

Φ(s) =


ψχmax

N
if s=

ψ

N
0 otherwise

(14)

Φ(s, a) =


ψχmax

N
if a=

ψ

N
0 otherwise

(15)

• Opportunistic: Agents opportunistically seek to utilise any spare capacity available in the

commons. As the available spare capacity is dependent on the joint actions of all agents in

the system, the value of this potential function changes over time. Thus, this heuristic is an

instance of dynamic PBRS Devlin and Kudenko (2012). This is a weaker shaping than Fair,

and is included to demonstrate the effect of PBRS with a sub-optimal heuristic, for contexts

where the optimal policy is not known.

Φ(s) =

{
sχmax if ς < ψ

0 otherwise
(16)

Φ(s, a) =

{
aχmax if ς < ψ

0 otherwise
(17)
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• Greedy: Agents are encouraged to behave greedily, where each agent seeks to graze the

maximum possible number of animals in the commons. This is an example of an extremely

poor heuristic, and is expected to reduce the performance of all agents receiving it.

Φ(s) =

{
smaxχmax if s= smax

0 otherwise
(18)

Φ(s, a) =

{
amaxχmax if a= amax

0 otherwise
(19)

3.3 Experimental Procedure

We test two variations of the TCD: a single-step version with num timesteps= 1 and a

multi-step version with num timesteps= 12. The other experimental parameters used were

as follows: num episodes= 20, 000, N = 20, ψ = 80, χmax = $1000/num timesteps, χmin =

$400/num timesteps, amin = smin = 0, amax = smax = 6, ςmax = 120 (from Eqn. 7). All agents

begin each episode with their initial state set to 0 (i.e. no animals grazing in the commons).

We apply multiple individual Q-Learning agents to the Tragic Commons Domain defined

above, learning with credit assignment structures L, G, D, along with various shaping heuristics.

The learning parameters for all agents are set as follows: α= 0.20, γ = 0.90, ε= 0.10. Both α and

ε are reduced by multiplication with their respective decay rates at the end of each episode, with

alpha decay rate= 0.9999 and epsilon decay rate= 0.9999. These values were selected following

parameter sweeps to determine the best performing settings. Each agent’s Q values for all state

action pairs are initialised to 0 at the start of each experimental run.

Along with the MARL approaches tested, we have also conducted experiments with three

simple agent types: Optimal, Random, and Greedy. Optimal agents always select the action

equal to ψ
N , and thus will maximise the global benefit. The random agents select actions randomly

with equal probability. The greedy agents always select amax i.e. they play the dominant strategy,

which is to graze as many animals as possible in the commons. Optimal and Greedy give the

upper and lower performance bounds for this problem, and serve as a useful comparison to the

MARL approaches tested.

3.4 Experimental Results

For the single-step version of the problem, Figs. 2a to 2d show learning curves for commons value

and occupancy for the approaches tested. For the multi-step version, Figs. 3a to 3d show learning

curves for commons value and occupancy. The average performance of the approaches tested over

the final 2000 episodes in both problem versions is shown in Table 1.

All plots include error bars representative of the standard error of the mean based on 50

statistical runs. Specifically, we calculate the error as σ/
√
n where σ is the standard deviation

and n is the number of statistical runs. Error bars are included on all plots at 200 episode intervals.

The plots show the average performance across the 50 statistical runs that were conducted at 10

episode intervals. All claims of statistical significance are supported by two-tailed t-tests assuming

unequal variances, with p= 0.05 selected as the threshold for significance.

We can see from the learning curves that L starts out at quite a high level of performance,

but this quickly degrades, eventually reaching a final policy close to that of the Greedy agents.

The performance of L is significantly worse than the Random baseline in both the single step

(p= 2.36× 10−57) and multi-step (p= 2× 10−105) versions of the problem. Self-interested agents

learning with L greedily seek to exploit the resource, as evidenced by the occupancy curves in

Figs. 2b and 3b, where the agents consistently learn to graze close to the maximum allowed

number of animals in the commons by the final training episodes.
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(a) Commons values for L, G, and D

(b) Occupancy values for L, G, and D

(c) Commons values for G with heuristics

(d) Commons values for L with heuristics

Figure 2: Single-step Tragic Commons Domain results
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(a) Commons values for L, G, and D

(b) Occupancy values for L, G, and D

(c) Commons values for G with heuristics

(d) Commons values for L with heuristics

Figure 3: Multi-step Tragic Commons Domain results
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Table 1 Tragic Commons Domain results (Averaged over last 2000 episodes)

num timesteps= 1 num timesteps= 12

Commons Value ($) ς Commons Value ($) ς

Optimal Agents 80,000 80.00 80,000 80.00

G+ aPBRS(Fair) 79,560 79.69 79,247 79.68

L+ aPBRS(Fair) 79,559 79.69 79,272 79.70

G 79,367 81.14 78,657 82.79

G+ sPBRS(Fair) 79,355 81.49 78,562 82.78

G+ sPBRS(Greedy) 79,309 81.43 78,626 82.74

D 78,821 79.30 79,207 81.63

G+ aPBRS(Opportunistic) 78,488 81.52 77,297 80.67

G+ CaP 78,295 83.66 77,614 82.00

L+ CaP 77,691 86.18 63,622 106.65

G+ sPBRS(Opportunistic) 77,468 77.54 76,246 77.49

L+ sPBRS(Opportunistic) 71,393 71.52 76,922 83.99

G+ aPBRS(Greedy) 65,744 100.69 71,922 94.22

Random Agents 59,925 59.97 59,762 60.00

L+ sPBRS(Fair) 52,456 116.53 49,238 118.86

L 51,617 117.18 49,282 118.82

L+ sPBRS(Greedy) 50,630 117.98 49,210 118.88

L+ aPBRS(Greedy) 49,198 119.10 48,842 119.11

L+ aPBRS(Opportunistic) 49,172 119.11 49,085 118.97

Greedy Agents 48,000 120.00 48,000 120.00

By contrast, the approaches explicitly designed to maximise the global utility (G and D)

perform quite well in the Tragic Commons Domain. Rather than working at cross-purposes and

seeking to exploit the resource to the maximum extent possible, agents learning using G and D

converge to policies that utilise the shared resource in a fair and conservative manner, and both

come close to the optimal level of performance in the single-step and multi-step variants of the

problem. In both variants of the problem, D reaches a high level of performance very quickly, and

learns more quickly than G. However, in the single-step TCD, G in fact reaches a higher final

performance than D (99.2% of optimal performance for G, vs. 98.5% of optimal performance for

D). This difference in final performance was found to be statistically significant (p= 0.025). D

learned a better final policy than G in the multi-step version of the problem (99.0% of optimal

performance for D, vs. 98.3% of optimal performance for G). D was found to offer statistically

better performance than G in the multi-step TCD (p= 1.41× 10−23).

Devlin et al. (2014) originally proposed CaP as a shaping heuristic for G; however we have also

tested L+ CaP here in addition to the originally proposed G+ CaP . G+ CaP does not perform

quite as well as G in either version of this problem domain. We find that CaP is a good heuristic

for shaping L, reaching 97.1% of the optimal commons value in the single-step TCD, and 79.5%

of the optimal commons value in the multi-step TCD. L+ CaP offers a significant improvement

over the Random baseline (and therefore unshaped L) in both the single-step (p= 2.36× 10−57)

and multi-step (p= 1.47× 10−11) TCD.

The aPBRS(Fair) heuristic performs exceptionally well when combined with both L and G,

in all cases reaching over 99% of the optimal commons value of $80, 000. This is an extremely

strong heuristic, that can guide even self-interested agents towards the optimal joint policy in the

Tragic Commons Domain. L+ aPBRS(Fair) was found to offer statistically similar performance

to G+ aPBRS(Fair) in the single-step version (p= 0.94), and statistically better performance

than G+ aPBRS(Fair) in the multi-step (p= 2.7× 10−6) version. The sPBRS(Fair) shaping

performs well when combined with G, although not quite as well as G without shaping. L+
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sPBRS(Fair) performs quite similarly to L in both versions of the TCD. The aPBRS version

of this heuristic is much more effective than the sPBRS version, as aPBRS specifies preferences

for actions directly.

The sPBRS(Oppor.) heuristic is useful when combined with L to encourage behaviour leading

to a high system utility. L+ sPBRS(Oppor.) offers a significant improvement over the Random

baseline (and therefore unshaped L) in both the single-step (p= 3.69× 10−35) and multi-step

(p= 2.42× 10−66) TCD. G+ sPBRS(Oppor.), however, does not reach the same performance

as unshaped G in either variant of the TCD. The action-based version of this heuristic performs

quite well when combined with G, although again not as well as the unshaped version of G.

When combined with L, aPBRS(Oppor.) is among the worst performing approaches tested. This

is because all agents are encouraged to graze the maximum number of animals in the commons

when it is below capacity using this shaping, resulting in a lower overall return. By contrast,

the sPBRS version performs better, as only agents that choose to add extra animals when the

commons is below capacity are given the shaping reward.

The final PBRS heuristic that we tested was designed to encourage greedy behaviour in the

agents, where each agent seeks to graze the maximum allowed number of animals in the commons.

When combined with L, both the sPBRS and aPBRS versions of the greedy heuristic reach a

lower final level of performance than unshaped L. The aPBRS version of this heuristic learns

more quickly, again as the preferences for actions are defined directly. When combined with G,

the sPBRS(Greedy) heuristic reduces the final performance by a small amount compared to

unshaped G. G+ aPBRS(Greedy) results in much lower performance than unshaped G in both

versions of the TCD. AsG is a much better performing reward function than L, the agents learning

using G manage to overcome the incorrect knowledge that is provided to them, and to converge

to reasonably good final policies. By contrast, the greedy heuristic serves to accentuate the self-

interested nature of agents learning using L, especially in the case of L+ aPBRS(Greedy).

4 Shepherd Problem Domain

4.1 Problem Description

In this section we introduce a new multi-agent congestion game, the Shepherd Problem Domain

(SPD). In the SPD, the agents must coordinate their actions to maximise the social welfare or

global utility of the system. The SPD models a system of interconnected pastures, where each

shepherd (agent) begins in a certain pasture and must decide in which pasture it will graze its

herd of animals. At each timestep each agent knows which pasture it is currently attending and

has the choice to remain still, or to move with its herd to an adjacent pasture.

Once all agents have completed their selected actions they are rewarded. Each pasture has a

certain capacity ψ, and the highest reward for a pasture is received when the number of herds

(agents) present is equal to the capacity of the pasture. Lower rewards are received for pastures

which are congested as there is less food available to each herd, which affects the health and

marketable value of the animals. Pastures that are under capacity also receive lower rewards,

which reflects lost utility due to under-utilisation of the resource. The local reward function (L)

for a particular pasture is calculated as:

L(s, t) = xte
−xs,t
ψs (20)

where s is the pasture (state), xs,t is the number of herds (agents) present at that pasture at

time t, and ψs is the capacity of the pasture. The global reward or capacity utility can then be

calculated as the summation of L(s, t) over all pastures in the SPD:

G(t) =
∑
s∈S

L(s, t) (21)

where S is the set of pastures in the SPD.
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Algorithm 1 Shepherd Problem Domain with G+ CaP

1: initialize Q-values: ∀s, a|Q(s, a) =−1

2: initialize potentials: ∀s|Φ(s) = 0

3: for episode= 1→ num episodes do

4: for timestep= 1→ num timesteps do

5: for i= 1→ num agents do

6: sense current pasture s

7: choose action a, using ε-greedy

8: move agent to s′

9: end for

10: for All pastures s ∈ S do

11: evaluate local reward L(s) (Equation 20)

12: end for

13: evaluate global reward G (Equation 21)

14: for i= 1→ total agents do

15: set Φ(s′) (Equation 23)

16: set F (Equation 3)

17: set R′ =G+ F (Equation 2)

18: update Q(s, a) values (Equation 1)

19: end for

20: reduce ε by multiplication with epsilon decay rate

21: reduce α by multiplication with alpha decay rate

22: end for

23: for i= 1→ num agents do

24: choose action a, using ε-greedy

25: move to absorbing state

26: set F = 0− Φ(s′) (Equation 3)

27: set R′ = 0 + F (Equation 2)

28: update Q(s′, a) values (Equation 1)

29: end for

30: end for

The difference reward (D) for an agent can be directly calculated by applying Equation 6.

As an agent only influences the utility of the pasture it is currently attending at a particular

timestep, Di may be calculated as:

Di(t) = L(s, t)− (xs,t − 1)e
−(xs,t−1)

ψs (22)

where xs,t is the number of agents attending the same pasture s as agent i at timestep t. This

evaluation is precisely equivalent to applying Equation 6 to Equation 21 directly. In a similar

manner, the potential function for CaP may be calculated as:

Φ(s) = (xs,t − 1)e
−(xs,t−1)

ψs (23)

Algorithm 1 provides additional details of the process followed in the SPD when agents are

rewarded using G+ CaP .

Other examples of congestion problems that have been studied thus far include the El-Farol

Bar Problem (EBP) (Arthur, 1994), the Traffic Lane Domain (TLD) (Tumer et al., 2009) and the

Beach Problem Domain (BPD) (Devlin et al., 2014). All these approaches address the need to find

solutions that maximise social welfare in systems with scarce resources. This is an important goal,

due to the fact that insights gained while studying these problems may be useful when tackling

congestion that occurs in real world systems, e.g. in road, air or sea transportation applications.
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Figure 4: SPD 3× 3 grid topology with resource (state) numbers

The SPD builds upon the work presented in these previous approaches, while introducing

additional complexity. In the SPD, we consider two dimensional arrangements of resources,

whereas resources are arranged in a single dimension only in the TLD and BPD. The arrangement

of resources in the EBP is irrelevant to the outcome, as it is a stateless single shot problem

where movement between resources is not allowed. The increased number of possible resource

configurations leads to a larger number of available actions in the SPD (we consider up to 5 actions

in our experiments), compared to 3 available actions in the BPD and TLD (move left, stay still,

move right). This increases the difficulty of the coordination task for the agents and thus the SPD

allows for a more thorough evaluation of MARL approaches to tackling resource management

problems. In this study, we consider a group of |S|= 9 resources in a 3× 3 grid arrangement.

The 3× 3 grid topology that we have used in our experiments is shown in Fig. 4. Therefore the

actions available to the agents at each timestep are: stay still, move up, move right, move down,

move left. Actions which would move an agent outside the resource group leave its position

unchanged. We set the number of agents N = 100, and we assume that all resources have the

same capacity ψ = 4, and that N/4 agents start in each of the pastures 1,3,5,7. The difficulty of

this coordination problem could be increased further by assigning a random initial starting state

to each agent at the beginning of each episode.

4.2 PBRS Heuristics

To explore the effectiveness of PBRS in this domain, we apply four different manual heuristics

in addition to the automated CaP heuristic. These four heuristics are based on those proposed

by Devlin et al. (2014) for the BPD, which we have adapted for the SPD. The work of Devlin

et al. (2014) is the only other study to date on the application of PBRS to congestion games,

and we have included modified versions of these heuristics to test their effectiveness in congestion

games with more complex resource configurations. Furthermore, Devlin et al. (2014) expressed

their heuristics in state-based forms only; therefore our work is the first empirical evaluation of

aPBRS in congestion games. In the aPBRS heuristics below, the function next state(s, a) returns

the state that will be reached if an agent selects action a while in state s. The four heuristics

that we have tested are:

• Overcrowd One: In the SPD, when the number of agents N is much greater than the

combined capacity of the resources, the optimal solution is for N − (|S| − 1)× ψ agents

to converge to a single pasture, leaving ψ agents on each of the remaining pastures. This

minimises the effect of congestion on the system, and gives the highest possible social welfare

(G= 11.77). For the 3× 3 grid instance of this domain with |S|= 9 pastures of capacity

ψ = 4, this means that 68 agents must overcrowd one of the pastures so that the others

remain uncongested. Overcrowd One promotes this behaviour, encouraging most of the agents
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to congest the middle pasture (s= 4), and is therefore an extremely strong heuristic. It is

important to note that this heuristic is manually tailored to individual agents. We expect

this heuristic to achieve near-optimal performance, demonstrating the effectiveness of PBRS

when precise information is available about the optimal joint policy.

Φ(s) =



10 if s= 0 and agent id ∈ [0, ψ − 1]

10 if s= 1 and agent id ∈ [ψ, 2ψ − 1]

10 if s= 2 and agent id ∈ [2ψ, 3ψ − 1]

10 if s= 4 and agent id ∈ [3ψ, N/2− ψ − 1]

10 if s= 3 and agent id ∈ [N/2− ψ, N/2− 1]

10 if s= 5 and agent id ∈ [N/2, N/2 + ψ − 1]

10 if s= 4 and agent id ∈ [N/2 + ψ, N − 3ψ − 1]

10 if s= 6 and agent id ∈ [N − 3ψ, N − 2ψ − 1]

10 if s= 7 and agent id ∈ [N − 2ψ, N − ψ − 1]

10 if s= 8 and agent id ∈ [N − ψ, N − 1]

0 otherwise

(24)

Φ(s, a) =



10 if next state(s, a) = 0 and agent id ∈ [0, ψ − 1]

10 if next state(s, a) = 1 and agent id ∈ [ψ, 2ψ − 1]

10 if next state(s, a) = 2 and agent id ∈ [2ψ, 3ψ − 1]

10 if next state(s, a) = 4 and agent id ∈ [3ψ, N/2− ψ − 1]

10 if next state(s, a) = 3 and agent id ∈ [N/2− ψ, N/2− 1]

10 if next state(s, a) = 5 and agent id ∈ [N/2, N/2 + ψ − 1]

10 if next state(s, a) = 4 and agent id ∈ [N/2 + ψ, N − 3ψ − 1]

10 if next state(s, a) = 6 and agent id ∈ [N − 3ψ, N − 2ψ − 1]

10 if next state(s, a) = 7 and agent id ∈ [N − 2ψ, N − ψ − 1]

10 if next state(s, a) = 8 and agent id ∈ [N − ψ, N − 1]

0 otherwise

(25)

• Middle: This heuristic incorporates some knowledge about the optimal policy i.e. the idea

that one resource should be “sacrificed” or congested for the greater good of the system.

However, in contrast to Overcrowd One this shaping is not tailored to individual agents, as

all agents receive PBRS based on the same potential function. Thus, this heuristic encourages

all agents to go to the middle pasture (s= 4). We expect that this shaping will improve both

the performance and learning speed of agents receiving PBRS, and will demonstrate the effect

of PBRS when useful but incomplete domain knowledge is available.

Φ(s) =

{
10 if s= 4

0 otherwise
(26)

Φ(s, a) =

{
10 if next state(s, a) = 4

0 otherwise
(27)

• Spread: The Spread heuristic encourages agents to distribute themselves evenly across the

pastures in the SPD. This is an example of a weak heuristic, and demonstrates the effect of

PBRS in cases where very little useful domain knowledge is available. Therefore, we expect

agents receiving this shaping to show modest if any improvements in learning speed and final
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performance.

Φ(s) =



10 if s= 0 and agent id ∈ [0, N/|S| − 1]

10 if s= 1 and agent id ∈ [N/|S|, 2N/|S| − 1]

10 if s= 2 and agent id ∈ [2N/|S|, 3N/|S| − 1]

10 if s= 3 and agent id ∈ [3N/|S|, 4N/|S| − 1]

10 if s= 4 and agent id ∈ [4N/|S|, 5N/|S| − 1]

10 if s= 5 and agent id ∈ [5N/|S|, 6N/|S| − 1]

10 if s= 6 and agent id ∈ [6N/|S|, 7N/|S| − 1]

10 if s= 7 and agent id ∈ [7N/|S|, 8N/|S| − 1]

10 if s= 8 and agent id ∈ [8N/|S|, N − 1]

0 otherwise

(28)

Φ(s, a) =



10 if next state(s, a) = 0 and agent id ∈ [0, N/|S| − 1]

10 if next state(s, a) = 1 and agent id ∈ [N/|S|, 2N/|S| − 1]

10 if next state(s, a) = 2 and agent id ∈ [2N/|S|, 3N/|S| − 1]

10 if next state(s, a) = 3 and agent id ∈ [3N/|S|, 4N/|S| − 1]

10 if next state(s, a) = 4 and agent id ∈ [4N/|S|, 5N/|S| − 1]

10 if next state(s, a) = 5 and agent id ∈ [5N/|S|, 6N/|S| − 1]

10 if next state(s, a) = 6 and agent id ∈ [6N/|S|, 7N/|S| − 1]

10 if next state(s, a) = 7 and agent id ∈ [7N/|S|, 8N/|S| − 1]

10 if next state(s, a) = 8 and agent id ∈ [8N/|S|, N − 1]

0 otherwise

(29)

• Overcrowd All: This heuristic encourages agents to go to slightly overcrowded pastures,

and is an instance of dynamic PBRS (Devlin and Kudenko, 2012), as potentials of states or

state action pairs may change over time. We expect this heuristic to perform poorly, and to

serve as an example of the effect of PBRS when misleading information is used to design

potential functions.

Φ(s) =

{
10 if ψ < xs < 2ψ

0 otherwise
(30)

Φ(s, a) =

{
10 if ψ < xnext state(s,a) < 2ψ

0 otherwise
(31)

4.3 Experimental Procedure

For all experiments, we plot the value of the global reward G (referred to as the capacity utility)

against the number of completed learning episodes. All plots include error bars representative of

the standard error of the mean based on 50 statistical runs. Specifically, we calculate the error as

σ/
√
n where σ is the standard deviation and n is the number of statistical runs. Error bars are

included on all plots at 1000 episode intervals. The plots show the average performance across the

50 statistical runs that were conducted at 10 episode intervals. All claims of statistical significance

are supported by two-tailed t-tests assuming unequal variances, with p= 0.05 selected as the

threshold for significance. In all experiments, the number of episodes is set to num episodes=

10000, the number of timesteps is set to num timesteps= 1, the learning rate is set to α= 0.1

with alpha decay rate= 0.9999, the exploration rate is set to ε= 0.05 with epsilon decay rate=

0.9999 and the discount factor is set to γ = 0.9. These parameter values were chosen to match

those used by Devlin et al. (2014) for the Beach Problem Domain.
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4.4 Experimental Results

Figs. 5a to 5d plot the learning curves for capacity utility for the approaches tested, while Table

2 gives the average capacity utility for each approach over the last 1000 episodes. In all plots the

maximum possible capacity utility of 11.77 is marked with a black dashed line. In Table 2 we have

also included several other results to serve as comparisons to the MARL approaches tested; these

are: Optimum, Random Agents, Even Spread, Initial Distribution and Worst. The Optimum

figure shows the maximum possible capacity utility for the system, while Random Agents gives

the average performance of 100 agents that select actions from a uniform random distribution

in the SPD, averaged over 50 runs. Even Spread gives the capacity utility for the SPD if agents

are evenly distributed among the pastures, and Initial Distribution gives the capacity utility for

the starting conditions with N/4 agents in each of the pastures 1, 3, 5, 7. Finally, Worst gives the

system utility if all 100 agents overcrowd any one of the 9 pastures.

The effectiveness of the approaches tested may be assessed by comparison with the performance

of the Random Agents baseline. G significantly outperforms the Random Agents (p= 4.43×
10−11), whereas L+ aPBRS(OvercrowdAll) fails to outperform the Random Agents (p= 1.1×
10−5). Thus all approaches that perform better than G are also statistically better than choosing

actions at random, whereas approaches that perform worse than L+ aPBRS(OvercrowdAll)

are in fact worse than selecting actions at random, and therefore demonstrate extremely poor

performance in the SPD.

Fig. 5a plots the performance of the typical MARL credit assignment structures L, G, and D,

along with G+ CaP and L+ CaP . It is immediately apparent that all of these approaches fall far

short of achieving the maximum possible performance in the SPD. D offers the best performance

of these approaches, reaching a capacity utility of 9.68 or 82% of the maximum possible value.

The CaP heuristic again proves to be useful in this problem domain, with G+ CaP offering

a statistically significant improvement in final performance compared to G (p= 8.33× 10−9),

and L+ CaP offering a statistically significant improvement in final performance compared to L

(p= 1.6× 10−37).

Fig. 5b plots learning curves for the 10 reward functions with the best final performance. As

we saw in the TCD study, aPBRS when combined with good heuristic information (Overcrowd

One in this case) is again the best performer. This is of course to be expected, as Overcrowd One

is an extremely strong heuristic that provides knowledge about the optimal policy for the SPD,

and demonstrates again the effectiveness of aPBRS when good domain knowledge is available.

G+ sPBRS(Middle) is the next best performer, although its performance is statistically worse

than G+ aPBRS(OvercrowdOne) (p= 2.96× 10−27). Nevertheless, G+ sPBRS(Middle) still

achieves a good level of performance, reaching a capacity utility of 10.50 or 89% percent of the

optimal value. The Middle heuristic is however a more realistic evaluation of the effects of PBRS,

as it is unlikely that precise information about the optimal policy (like that provided by Overcrowd

One) will be available for every application domain. The performance of G+ sPBRS(Middle)

demonstrates that shaping with PBRS is effective even with less than perfect domain knowledge.

G+ sPBRS(OvercrowdOne) performs statistically worse than G+ sPBRS(Middle) (p=

3.48× 10−3); this is perhaps a surprising result, as the Overcrowd One heuristic provides more

detailed information about how to behave on a per agent level. This can however be explained

by the nature of shaping using sPBRS; agents receive shaping only upon reaching certain

system states when implementing sPBRS. To exploit the knowledge provided by Overcrowd

One fully, practically all agents would have to reach their encouraged position at the same

time. It is interesting to note also that G+ sPBRS(Middle) initially performs worse than

G+ sPBRS(OvercrowdOne); this is due to many of the agents initially being encouraged

to converge on the middle state. G+ sPBRS(Middle) however quickly begins to outperform

G+ sPBRS(OvercrowdOne), as some agents select actions at random that lead to different

states and thus higher system utilities, while the majority of agents converge on the middle state.
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Table 2 Shepherd Problem Domain Results (Averaged over last 1000 episodes)

Reward Function Capacity Utility

Optimum 11.77

L+ aPBRS(OvercrowdOne) 11.74

G+ aPBRS(OvercrowdOne) 11.73

G+ sPBRS(Middle) 10.50

G+ sPBRS(OvercrowdOne) 10.25

D 9.68

G+ sPBRS(Spread) 8.31

G+ CaP 7.71

G 7.23

Random Agents 6.95

L+ aPBRS(OvercrowdAll) 6.72

L+ CaP 6.44

G+ aPBRS(Spread) 6.43

L+ aPBRS(Spread) 6.32

L+ sPBRS(Middle) 6.26

L 6.26

L+ sPBRS(OvercrowdOne) 6.23

L+ sPBRS(Spread) 6.23

Even Spread 6.22

G+ sPBRS(OvercrowdAll) 6.22

G+ aPBRS(OvercrowdAll) 5.06

L+ sPBRS(OvercrowdAll) 4.91

G+ aPBRS(Middle) 0.47

L+ aPBRS(Middle) 0.45

Initial Distribution 0.19

Worst 1.39× 10−9

The performance of G+ sPBRS(OvercrowdOne) is statistically better than D (p= 4.57×
10−5), and this demonstrates that for certain applications PBRS combined with good heuristic

information is a suitable alternative to the now ubiquitous difference reward. Implementing

PBRS with a manually specified heuristic for MARL also does not require precise knowledge

of the mathematical form of the system evaluation function, whereas this is a requirement for

D which could potentially be problematic for more complex application areas. Of course this

shortcoming also affects the automated CaP PBRS heuristic, however recent work on estimating

counterfactuals (Colby et al., 2016) shows promise in addressing this limitation.

5 Conclusion & Future Work

In this paper, we have explored the issue of appropriate credit assignment in stochastic resource

management games. We introduced two new Stochastic Games to facilitate this research: the

Tragic Commons Domain and the Shepherd Problem Domain. In the TCD we explored how

best to avoid over-exploitation of a shared resource, while in the SPD our work focused on

maximising the social welfare of a system in situations where congestion of a group of shared

resources is inevitable. We applied MARL with various credit assignment structures to learn

solutions to these problems, and our results show that systems learning using appropriate credit

assignment techniques can achieve near optimal performance in stochastic resource management

games, outperforming systems using unshaped local or global rewards.

An interesting finding from our work is that sPBRS and aPBRS variants using the same

heuristic knowledge can encourage very different behaviours. This is the first empirical study
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(a) Basic reward functions

(b) Best performing reward functions

(c) G with various heuristics

(d) L with various heuristics

Figure 5: Shepherd Problem Domain results
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to investigate this effect, and also the largest MARL study of aPBRS in terms of the number

of agents learning in the same environment (previous work by Devlin et al. (2011b) considered

up to 9 agents, 4 of which implemented aPBRS). When precise knowledge about the optimal

policy for a problem domain is available (e.g. the Fair Heuristic for the TCD and the Overcrowd

One heuristic for the SPD), our results show that aPBRS offers the best method to exploit

this knowledge. Having precise knowledge is of course the best case scenario, and many MARL

problem domains exist where precise knowledge is not available. In cases where a misleading

or suboptimal heuristic is used, we found that the aPBRS version generally performed more

poorly than the sPBRS version. These effects can be explained by the fact that aPBRS specifies

preferences for actions directly, whereas sPBRS provides shaping to agents only when certain

system states are reached. Greedy action selection for aPBRS agents is biased by adding the

value of the potential function to the Q(s,a) estimate (Eqn. 5). This modification influences an

agent’s exploration in a more direct manner than that of sPBRS, with the result that the effects

of a good or bad heuristic on exploration are even more pronounced when using aPBRS instead

of sPBRS.

It is also the case that partially correct knowledge can have very different effects when encoded

using either sPBRS or aPBRS; the best example of this is the Middle heuristic used in the

SPD. G+ sPBRS(Middle) was the third best performing reward function in the SPD, whereas

G+ aPBRS(Middle) had close to the worst performance. When using sPBRS, only agents

who reach the middle state are given the shaping reward, whereas with aPBRS all agents are

encouraged to go to the middle state. This is the reason for the large difference in performance;

good solutions to the SPD congest one of the resources, however if all agents adopt this behaviour

it has a disastrous effect on the utility of the system. In summary, our results show that when

implementing PBRS, it is worthwhile to test both sPBRS and aPBRS versions of the same

heuristic information, as heuristics can have very different effects depending on which version

of PBRS is used. Furthermore, we have demonstrated that aPBRS does scale well with larger

numbers of agents when a suitable heuristic is used; Devlin et al. (2014) previously reported

similar findings for sPBRS in a large scale study.

Several possibilities for further research are raised by the work presented in this paper.

We intend to analyse other more complex resource management problems using the MAS

paradigm. Examples that we are currently considering include management of fish stocks and

water resources. In future work, we also plan extend the SPD by adding an additional objective

which models the risk of predator attacks on agents’ herds. In a subset of pastures in the SPD,

predators may be present, and herds placed in these pastures are thus at risk of attack. A safety

score that measures the risk of attack could be awarded as well as the capacity score from the

standard SPD. This extension would provide a basis to study resource management problems

where trade-offs between risk and reward must be considered. Recent work by Mannion et al.

(2017) demonstrated that reward shaping can improve the quality of the trade-off solutions found

in multi-objective multi-agent problem domains. Therefore, we expect that reward shaping will

be a useful mechanism to discover good trade-offs between risk and reward in a multi-objective

version of the SPD.

We also plan to investigate other larger and more complex arrangements of resources in the

SPD than the 3× 3 grid layout evaluated in this work. Other factors that could be investigated

in future work on congestion games include the effect of the number of timesteps and the initial

distribution of the agents on the performance of various credit assignment structures; these are

issues that have not been investigated comprehensively in the literature to date. Finally, the effect

of the scale of potential functions in MARL is an issue that should be addressed comprehensively

in future work on PBRS. Work by Grześ and Kudenko (2009) examined the effect of scale in

single-agent domains, and found that increasing the scale of the potential function used can

improve performance when a good heuristic is used, but can damage performance when a poor
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quality heuristic is used. We expect future studies will demonstrate that scaling can have similar

effects in multi-agent domains.

While we have evaluated several multi-agent credit assignment structures in this study, there

are other techniques that may also prove useful for solving resource management problems. In

future work on stochastic resource management games, we plan to investigate the use of two

recently proposed techniques: Difference Rewards incorporating Potential-Based Reward Shaping

(DRiP ) (Devlin et al., 2014) and Resource Abstraction (Malialis et al., 2016). We expect that

the issue of appropriate credit assignment will become even more important as MARL is applied

to more complex resource management problems, and techniques such as these offer a promising

way to guide learning in complex MAS. It is inevitable that the precise mathematical form of the

system evaluation function will not be known for some future resource management applications;

therefore we expect that recent work on estimating counterfactuals (Colby et al., 2016; Mannion

et al., 2016b) will also have an important role to play, as in these cases it will not be possible to

calculate a traditional difference evaluation directly.
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