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Abstract

Reinforcement Learning (RL) is a powerful and well-studied Machine Learn-
ing paradigm, where an agent learns to improve its performance in an envi-
ronment by maximising a reward signal. In multi-objective Reinforcement
Learning (MORL) the reward signal is a vector, where each component rep-
resents the performance on a different objective. Reward shaping is a well-
established family of techniques that have been successfully used to improve
the performance and learning speed of RL agents in single-objective prob-
lems. The basic premise of reward shaping is to add an additional shaping
reward to the reward naturally received from the environment, to incorpo-
rate domain knowledge and guide an agent’s exploration. Potential-Based
Reward Shaping (PBRS) is a specific form of reward shaping that offers ad-
ditional guarantees. In this paper, we extend the theoretical guarantees of
PBRS to MORL problems. Specifically, we provide theoretical proof that
PBRS does not alter the true Pareto front in both single- and multi-agent
MORL. We also contribute the first published empirical studies of the effect
of PBRS in single- and multi-agent MORL problems.
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1. Introduction

In Reinforcement Learning (RL), an agent learns to improve its perfor-
mance with experience by maximizing the return from a reward function.
The majority of RL research focuses on optimising systems with respect to
a single objective, despite the fact that many real world problems are inher-
ently multi-objective in nature. Single-objective approaches seek to find a
single solution to a problem, whereas in reality a system may have multiple
conflicting objectives that could be optimised. Examples of multi-objective
problems include stock market forecasting [1], traffic signal control [2] and
load balancing in smart grids [3].

Multi-objective optimisation (MOO) approaches address the requirement
to make a trade-off between competing objectives. Compromises between
competing objectives can be defined using the concept of Pareto dominance
[4]. The Pareto optimal or non-dominated set consists of solutions that are
incomparable, where each solution in the set is not dominated by any of
the others on every objective. In multi-objective Reinforcement Learning
(MORL) the reward signal is a vector, where each component represents the
performance on a different objective.

Reward shaping augments the reward function with additional knowledge
provided by the system designer, with the goal of improving learning speed.
Potential-Based Reward Shaping [5] (PBRS) is a specific form of reward
shaping that provides theoretical guarantees including policy invariance in
single-objective single-agent domains [5], and consistent Nash equilibria in
single-objective multi-agent domains [6]. We extend the previous guarantees
of PBRS with theoretical proof and empirical results showing that the set
of Pareto optimal solutions remains consistent when PBRS is used in multi-
objective domains, regardless of the quality of the heuristic used. This means
that the increased learning speed that is a characteristic of PBRS can be
leveraged in multi-objective problem domains, without any risk of altering
the intended goals of the problem. As this is the first published application
of PBRS to MORL problems, the empirical sections of this paper focus on
the use of PBRS with a well-understood and widely-used MORL algorithm,
namely scalarised Q-learning.

The contributions of this work are as follows: (1) We extend the theoreti-
cal guarantees offered by PBRS, proving that PBRS does not alter the Pareto
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front in single- and multi-agent MORL domains; (2) We provide empirical
evidence that PBRS can be used to improve learning speed in single-agent
domains without altering the set of Pareto optimal policies learned; (3) We
demonstrate the effect of PBRS in a multi-agent learning problem, showing
that PBRS can alter the set of Pareto dominating joint policies learned.

The remainder of this work is structured as follows: in the next section of
this paper, we discuss the necessary terminology and relevant literature. We
then introduce our formal proof of Pareto front invariance when applying
PBRS to single- and multi-agent learning problems. Section 4 describes
experimental work in a single-agent problem domain, and Section 5 presents
results in a multi-agent problem domain. The final section concludes our
paper with a discussion of our findings and possible future extensions to this
work.

2. Background

In this section we discuss the necessary background material, including
single- and multi-objective Reinforcement Learning, multi-agent learning and
reward shaping.

2.1. Reinforcement Learning

Reinforcement Learning (RL) is a powerful Machine Learning paradigm,
in which autonomous agents have the capability to learn through experience.
An RL agent learns in an unknown environment, usually without any prior
knowledge of how to behave. The agent receives a scalar reward signal r
based on the outcomes of previously selected actions, which can be either
negative or positive. Markov Decision Processes (MDPs) are considered the
de facto standard when formalising problems involving a single agent learning
sequential decision making [7]. An MDP consists of a reward function R,
set of states S, set of actions A, and a transition function T [8], i.e. a
tuple < S,A, T,R >. When in any state s ∈ S, selecting an action a ∈ A
will result in the environment entering a new state s′ ∈ S with probability
T (s, a, s′) ∈ [0, 1], and give a reward r = R(s, a, s′).

An agent’s behaviour in its environment is determined by its policy π.
A policy is a mapping from states to actions that determines which action
is chosen by the agent for a given state. The goal of any MDP is to find
the best policy (one which gives the highest expected sum of discounted
rewards) [7]. The optimal policy for an MDP is denoted π*. Designing an
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appropriate reward function for the environment is important, as an RL agent
will attempt to maximise the return from this function, which will determine
the policy learned. The value function V gives the expected discounted return
for following policy π from state s onwards:

V π(s) = Eπ

{
∞∑
k=0

γkrt+k+1 | st = s

}
(1)

where γ ∈ [0, 1] is the discount factor.
RL can be classified into two paradigms: model-based (e.g. Dyna, Rmax)

and model-free (e.g. Q-Learning, SARSA). In the case of model-based ap-
proaches, agents attempt to learn the transition function T , which can then
be used when making action selections. By contrast, in the model-free ap-
proach knowledge of T is not a requirement. Model-free learners instead
sample the underlying MDP directly in order to gain knowledge about the
unknown model, in the form of value function estimates (Q values). These
estimates represent the expected reward for each state action pair, which aid
the agent in deciding which action is most desirable to select when in a certain
state. The agent must strike a balance between exploiting known good ac-
tions and exploring the consequences of new actions in order to maximise the
reward received during its lifetime. Two algorithms that are commonly used
to manage the exploration exploitation trade-off are ε-greedy and softmax
(Boltzmann) [7].

Q-Learning [9] is one of the most commonly used RL algorithms. It
is a model-free learning algorithm that has been shown to converge to the
optimum action-values with probability 1, so long as all actions in all states
are sampled infinitely often and the action-values are represented discretely
[10]. In Q-Learning, the Q values are updated according to the equation
below:

Q(s, a)← Q(s, a) + α[r + γmax
a′

Q(s′, a′)−Q(s, a)] (2)

where α ∈ [0, 1] is the learning rate and γ ∈ [0, 1] is the discount factor.

2.2. Multi-Agent Reinforcement Learning

In a Multi-Agent System (MAS), multiple autonomous agents act inde-
pendently in the same environment. Agents in a cooperative MAS are de-
signed to work together to achieve a system-level goal [11]. Numerous com-
plex, real world systems have been successfully optimised using the MAS
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framework, including air traffic control [12], traffic signal control [2], data
routing in networks [13], electricity generator scheduling [14, 15], RoboCup
soccer [16] and water resource management [17].

The single-agent MDP framework becomes inadequate when we consider
multiple autonomous learners acting in the same environment. Instead, the
more general Stochastic Game (SG) may be used in the case of a MAS [18].
An SG is defined as a tuple < S,A1...n, T, R1...n >, where n is the number of
agents, S is the set of states, Ai is the set of actions for agent i (and A is the
joint action set), T is the transition function, and Ri is the reward function
for agent i.

The SG looks very similar to the MDP framework, apart from the addition
of multiple agents. In fact, for the case of n = 1 an SG then becomes an
MDP. The next environment state and the rewards received by each agent
depend on the joint action of all of the agents in the SG. Note also that each
agent may receive a different reward for a state transition, as each agent
has its own separate reward function. In an SG, the agents may all have
the same goal (collaborative SG), totally opposing goals (competitive SG),
or there may be elements of collaboration and competition between agents
(mixed SG).

Two typical reward functions for credit assignment in Multi-Agent Rein-
forcement Learning (MARL) exist: local rewards unique to each agent and
global rewards representative of the group’s performance.

A local reward (Li) is based on the utility of the part of a system that
is most directly associated with agent i. Individual agents are self-interested,
and each will selfishly seek to maximise its own local reward signal, often at
the expense of global system performance when locally beneficial actions are
in conflict with the optimal joint policy.

A global reward (G) provides a signal to the agents which is based on
the utility of the entire system. Rewards of this form encourage all agents
to act in the system’s interest, with the caveat that an individual agent’s
contribution to the system performance is not clearly defined. All agents
receive the same reward signal, regardless of whether their actions actually
improved the system performance.

One of two different approaches is typically used when RL is applied to
MAS: multiple individual learners or joint action learners. In the former
case multiple agents deployed into an environment each use a single-agent
RL algorithm, whereas joint action learners use multi-agent specific algo-
rithms which take account of the presence of other agents. When multiple
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self-interested agents learn and act together in the same environment, it is
generally not possible for all agents to receive the maximum possible reward.
Therefore, MAS are typically designed to converge to a Nash Equilibrium
[19]. While it is possible for multiple individual learners to converge to a
point of equilibrium, there is no theoretical guarantee that the agents will
converge to a Pareto optimal joint policy.

2.3. Reward Shaping

RL agents typically learn how to act in their environment guided by the
reward signal alone. An often overlooked point when designing RL agents is
that the system designer typically has some heuristic knowledge which may
be beneficial to the agent during the learning process [20]. Reward shaping
provides a mechanism to guide an agent’s exploration of its environment, via
the addition of a shaping signal to the reward signal naturally received from
the environment. Heuristic knowledge provided by the system designer can
be encoded into the shaping reward. The goal of this approach is to increase
learning speed and/or improve the final policy learned. Generally, the reward
function is modified as follows:

R′ = R + F (3)

where R is the original reward function, F is the additional shaping re-
ward, and R′ is the modified reward signal given to the agent.

Empirical evidence has shown that reward shaping can be a powerful tool
to improve the learning speed of RL agents [21]; however, it can have un-
intended consequences. A classic example of reward shaping gone wrong is
reported by Randløv and Alstrøm [21]. The authors designed an RL agent
capable of learning to cycle a bicycle towards a goal, and used reward shap-
ing to speed up the learning process. However, they encountered the issue of
positive reward cycles due to a poorly designed shaping function. The agent
discovered that it could accumulate a greater reward by cycling in circles con-
tinuously to collect the shaping reward encouraging it to stay balanced, than
it could by reaching the goal state. As we discussed earlier, an RL agent will
attempt to maximise its long-term reward, so the policy learned depends di-
rectly on the reward function. Thus, shaping rewards in an arbitrary fashion
can modify the optimal policy and cause unintended behaviour.

Ng et al. [5] proposed Potential-Based Reward Shaping (PBRS) to deal
with these shortcomings. When implementing PBRS, each possible system
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state has a certain potential, which allows the system designer to express a
preference for an agent to reach certain system states. For example, states
closer to the goal state of a problem domain could be assigned higher po-
tentials than those that are further away. Ng et al. defined the additional
shaping reward F for an agent receiving PBRS as shown in Eqn. 4 below:

F (s, s′) = γΦ(s′)− Φ(s) (4)

where Φ(s) is the potential function which returns the potential for a
state s, and γ is the same discount factor used when updating value function
estimates. PBRS has been proven not to alter the optimal policy of a single
agent acting in infinite-horizon and finite-horizon MDPs [5], and thus does
not suffer from the problems of arbitrary reward shaping approaches outlined
above. In single agent RL, even with a poorly designed potential function,
the worst case is that an agent may learn more slowly than without shaping
but the final policy is unaffected.

In MARL, work by Devlin and Kudenko [6] proved that PBRS does not
alter the set of Nash equilibria of an SG. Furthermore, Devlin and Kudenko
[22] also proved that the potential function can be changed dynamically dur-
ing learning, while still preserving the guarantees of policy invariance and
consistent Nash equilibria. PBRS does not alter the set of Nash equilibria
of a MAS, but it can affect the joint policy learned. It has been empirically
demonstrated that agents guided by a well-designed potential function can
learn at an increased rate and converge to better joint policies, when com-
pared to agents learning without PBRS [16]. However, with an unsuitable
potential function, agents learning with PBRS can converge to worse joint
policies than those learning without PBRS.

2.4. Multi-Objective Reinforcement Learning

Multi-Objective Reinforcement Learning (MORL) problems may be de-
fined using the MDP or SG framework as appropriate, in a similar manner
to single-objective problems. The main difference lies in the definition of
the reward function: instead of returning a single scalar value r, the reward
function R in multi-objective domains returns a vector r consisting of the
rewards for each individual objective c ∈ C. Therefore, a regular MDP or
SG can be extended to a multi-objective MDP (MOMDP) or multi-objective
SG (MOSG) by modifying the return of the reward function. It follows
that the value function Vπ(s) in multi-objective domains returns a vector
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v whose components are the expected discounted returns for each objective
when starting in state s and following a policy π:

Vπ(s) = Eπ

{
∞∑
k=0

γkrt+k+1 | st = s

}
(5)

A policy π∗ ∈ Π (where Π is the set of possible policies) is Pareto optimal
if for every π ∈ Π either,

∀c∈C [Vπ
c (s0) = Vπ∗

c (s0)] (6)

or, there is at least one c ∈ C such that

Vπ
c (s0) < Vπ∗

c (s0) (7)

where Vπ
c (s0) is the expected discounted return for objective c when starting

in state s0 and following the policy π.
That is, π∗ is Pareto optimal if there exists no feasible policy π which

would increase the value of one objective beyond that of π∗ without causing
a simultaneous decrease in the value of another objective. A policy that does
not meet these criteria is dominated by another policy in Π. All policies not
dominated by another are part of the non-dominated set (NDS).

The majority of MORL approaches make use of single-policy algorithms
in order to learn Pareto optimal solutions. Examples of single-policy algo-
rithms include traditional temporal difference methods such as Q-learning
and SARSA. In order to apply single-policy algorithms to MORL problems,
scalarisation functions are used to transform a reward vector r into a scalar
reward signal r. An agent learns using the scalarised version of the reward
vector, and selects actions as normal by comparing the expected scalarised
Q values for actions in a given state (e.g. using ε-greedy). Linear scalarisa-
tion (+) and hypervolume scalarisation (λ) are commonly used scalarisation
functions in MORL literature, and are shown in Eqns. 8 and 9 respectively:

r+ =
∑
c∈C

wcrc (8)

rλ =
∏
c∈C

rc (9)

where w is the objective weight vector, wc is the weight for objective c,
r+ and rλ are scalarised reward signals, rc is the component of the reward
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vector r for objective c, and C is the set of objectives. When using linear
scalarisation, altering the weights in the weight vector allows the user to
express the relative importance of the objectives.

Although widely used in MORL research, linear scalarised single-policy
algorithms have the fundamental limitation that they can only learn solutions
located in convex regions of the Pareto front [23]. MOO approaches typically
seek to produce a set of solutions that approximate the true Pareto front of
the problem. In order to produce a set of Pareto optimal solutions using
linear scalarised single-policy RL algorithms, researchers typically conduct a
number of independent runs that use different weight vectors [24]. Thus a
number of policies are learned, and compared with one another to produce
an approximation of the Pareto front.

Another approach taken by researchers is to apply multi-policy RL algo-
rithms in order to learn a set of optimal policies in a single run. Examples of
such algorithms include Convex Hull Value Iteration [25], Pareto Q-Learning
[26] and the work of Shelton [27]. As the focus of this work is on the effect
of PBRS on the set of Pareto optimal policies, and not on overcoming the
limitations of scalarised MORL, we have employed single-policy algorithms
in the empirical sections of this paper. PBRS was originally designed for
use with single-policy algorithms, and to the best of our knowledge has not
been tested with any multi-policy algorithms to date. We leave the question
of developing and testing reward shaping techniques tailored for use with
multi-policy algorithms for future work.

For a more complete survey of MORL beyond the brief summary pre-
sented here, we refer the interested reader to a recent survey article by Roijers
et al. [28].

3. Pareto Front Invariance under Reward Transformations

3.1. Multi-Objective Potential-Based Reward Shaping

In this section, we extend the existing theoretical guarantees of PBRS
with proof that the set of Pareto optimal policies is invariant when PBRS is
applied to both infinite- and finite-horizon multi-objective domains. Here we
consider two ways in which PBRS could be applied to MORL problems: (a)
each objective could be shaped separately, or (b) a scalar combination of the
objectives could be shaped. We will first formally analyse case (a), before
moving on to discuss case (b).
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3.2. Proof for Shaping Each Objective Separately (Infinite-Horizon)

If each objective is shaped independently, the general form of shaping is:

R′c = Rc + Fc (10)

where Rc is the reward function component for objective c, Fc is the shaping
applied to objective c, and R′c is the shaped reward function component for
objective c. If the reward function is modified, it follows that the expected
return from the value function is also modified, by adding a term which
accounts for all of the expected shaping rewards received during an infinitely
long learning trial:

V′c = Vc + Eπ

{
∞∑
t=0

γtFc(st, st+1)

}
(11)

where Vc is the value function component for objective c, and V′c is the
shaped value function component for objective c. Assuming that we start in
state s0 and follow a given policy π, and that the shaping rewards are of the
form in Eqn. 4, the value of objective c when receiving PBRS is:

V′
π
c (s0) = Vπ

c (s0) + Eπ

{
∞∑
t=0

γtFc(st, st+1)

}

V′
π
c (s0) = Vπ

c (s0) + Eπ

{
∞∑
t=0

γt(γΦc(st+1)− Φc(st))

}

V′
π
c (s0) = Vπ

c (s0) + Eπ

{
∞∑
t=0

γt+1Φc(st+1)−
∞∑
t=0

γtΦc(st)

}

V′
π
c (s0) = Vπ

c (s0) + Eπ

{
∞∑
t=1

γtΦc(st)−
∞∑
t=0

γtΦc(st)

}
V′

π
c (s0) = Vπ

c (s0)− Φc(s0)

(12)

All π are evaluated from the same starting state s0, and Vπ
c (s0) is modified

by the same amount −Φc(s0) for all π ∈ Π, therefore the Pareto relation
between all π ∈ Π is invariant, and the NDS remains consistent:
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∀c∈C{[V′πc (s0) = V′
π∗

c (s0)] ⇐⇒ [Vπ
c (s0) = Vπ∗

c (s0)]} (13)

And:

[V′
π
c (s0) < V′

π∗

c (s0)] ⇐⇒ [Vπ
c (s0) < Vπ∗

c (s0)] (14)

3.3. Proof for Shaping Each Objective Separately (Finite-Horizon)

In finite-horizon domains, each learning episode has a certain number
of timesteps, referred to as the horizon H. The modified value function
component for objective c in this case is:

V′c = Vc + E

{
H−1∑
t=0

γtFc(st, st+1)

}
(15)

Assuming again that we start in state s0 and follow a given policy π, and
that the shaping rewards are of the form in Eqn. 4, the value of objective c
when receiving PBRS in a finite-horizon domain is:

V′
π
c (s0) = Vπ

c (s0) + Eπ

{
H−1∑
t=0

γtFc(st, st+1)

}

V′
π
c (s0) = Vπ

c (s0) + Eπ

{
H−1∑
t=0

γt(γΦc(st+1)− Φc(st))

}

V′
π
c (s0) = Vπ

c (s0) + Eπ

{
H−1∑
t=0

γt+1Φc(st+1)−
H−1∑
t=0

γtΦc(st)

}

V′
π
c (s0) = Vπ

c (s0) + Eπ

{
H∑
t=1

γtΦc(st)−
H−1∑
t=0

γtΦc(st)

}
V′

π
c (s0) = Vπ

c (s0) + Eπ
{
γHΦc(sH)

}
− Φc(s0)

V′
π
c (s0) = Vπ

c (s0) + γH
∑
s∈S

{
Prπ(sH = s)Φc(s)

}
− Φc(s0)

(16)

This result is similar to that for the infinite-horizon case, apart from
the additional term +γH

∑
s∈S
{
Prπ(sH = s)Φc(s)

}
, which represents the

expected shaping reward for the final state sH . The probability of being in a
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certain state s at time H depends on the policy π being evaluated, which in
turn determines what shaping reward will be received. This additional term
could potentially cause changes in the Pareto relation between policies.

If γ < 1.0 and the value of H is sufficiently large, the value of the term
+γH

∑
s∈S
{
Prπ(sH = s)Φc(s)

}
would become insignificant. However, this

term can be eliminated completely by ensuring that the final potential equals
zero2, i.e. Φc(sH) = 0. This requirement can easily be taken into account
when designing potential functions for episodic problems where the terminal
states are known, by assigning a zero potential to all terminal states.

In cases where the terminal states are not known beforehand, any state
after H timesteps is a terminal state, and policy invariance may be pre-
served by dynamically changing the potential of the final state experienced
to 0. This means that the potential function is time-variant, since it must
be different for timestep H compared to other timesteps.

A more robust method to preserve the theoretical guarantees of PBRS
in finite-horizon problems is to implement an additional absorbing state sabs
with zero potential (i.e. Φ(sabs) = 0). Upon reaching the terminal state, all
agents select actions as normal, and are transitioned to the absorbing state.
No reward is received from the environment for this transition, but agents do
receive the shaping reward as calculated by Eqn. 4. As all possible policies
now terminate in the absorbing state, Prπ(sH = sabs) = 1.0, meaning that
the additional term +γH

∑
s∈S
{
Prπ(sH = s)Φc(s)

}
is guaranteed to sum

to zero. Assuming that the final potential is set to zero using any of these
methods, the form of V′πc (s0) is exactly the same as in the infinite horizon
case, and therefore the NDS remains consistent when PBRS is applied to
finite-horizon MORL domains.

3.4. Discussion

Following the same methods as the proofs above, it can easily be demon-
strated that the guarantees of Pareto front invariance also hold when PBRS
is used to shape a scalarised combination of objectives, if the objective spe-
cific terms V′πc (s0) and Vπ

c (s0) are replaced with scalarised versions, and Fc

is replaced by a single shaping F .

2While this article was under review, Grześ [29] independently demonstrated that a
zero-valued final potential will ensure policy invariance when PBRS is applied to finite-
horizon domains.
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PBRS has seen almost no applications in MORL domains thus far, and
therefore questions remain as to how best to apply it. Previous work by
Brys et al. [30] used PBRS to add additional psuedo objectives to a single-
objective problem in order to speed up learning. However, their work is not
an evaluation of PBRS in a true multi-objective problem. Besides the work of
Brys et al. we are unaware of any prior attempts to use PBRS with MORL,
apart from the present article. Therefore, the area of reward shaping for
MORL merits substantial further study.

One remaining question is whether PBRS should be applied by (a) shap-
ing each objective separately or (b) shaping a scalarised combination. Further
investigation is required into this topic, although the efficacy of one option
versus another is likely to be domain specific, and will also depend on the
nature of the heuristic information that is available. We expect that option
(a) may be more useful in domains where there is a low degree of correla-
tion between objectives, whereas option (b) may be more suited to domains
with strongly correlated objectives. Shaping scalarised combinations may
also be preferable when applying PBRS to complex domains, where design-
ing individual potential functions to shape each objective is impractical or
unintuitive. In the empirical sections of this paper, we have used both op-
tions (a) and (b) in our single-agent study, and option (b) in our multi-agent
study. These studies will examine the effects of PBRS in MORL domains,
and provide supporting evidence for the proofs in this section. While we
focus on scalarised Q-learning for the empirical sections of this paper, we
note that option (a) is also suitable for use in combination with MORL algo-
rithms that do not use scalarisation, as each component of the reward vector
is shaped independently.

Following from our proofs and the proof of policy invariance by Ng. et al
[5], we expect to demonstrate that agents learning with and without PBRS in
single-agent MORL domains will learn the exact same set of Pareto optimal
policies. As we have used single-agent domains where the true Pareto front
is known, the performance of the agents can easily be judged by comparing
how quickly all Pareto optimal policies are learned.

In the multi-agent case, we expect that agents learning with and without
PBRS may converge to different Pareto optimal joint policies. This follows
from the proof of consistent Nash Equilibria in SGs by Devlin and Kudenko
[6]. While applying PBRS does not alter the true Pareto front of a MOSG,
it may alter the Nash equilibrium reached by the agents, and therefore dif-
ferent policies could be learned compared to agents learning without PBRS.
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Figure 1: The Deep Sea Treasure environment

However, the set of possible policies that could be learned and their Pareto
relation to one another remains consistent when PBRS is applied. Our multi-
agent study is conducted in a realistic multi-objective electricity generator
scheduling domain, where the true Pareto front is unknown.

4. Deep Sea Treasure

4.1. Problem Description

The Deep Sea Treasure (DST) environment was proposed by Vamplew
et al. [24] as a benchmark problem for single-agent MORL algorithms. This
is a useful benchmark problem, as the true Pareto front is known. Thus, it
will allow us to accurately evaluate the effect of PBRS on the set of Pareto
optimal policies that are learned in single-agent MORL domains.

The DST environment, shown in Fig. 1, consists of 10 rows and 11
columns. An agent controls a submarine, which searches for undersea trea-
sures. There are 10 treasure locations in all, and the agent begins each
episode in the top left state (labelled s0 in Fig. 1). An episode ends after
1000 actions, or when the agent reaches a treasure location. The agent’s state
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Figure 2: The Pareto front for the Deep Sea Treasure environment

is defined as its current position on the grid, and the actions available corre-
spond to moving one square in one of the four cardinal directions. Actions
which would cause the agent to leave the grid leave its position unchanged.

There are two objectives in this domain: to minimise the time taken
to reach a treasure, and to maximise the reward received when a treasure
is reached. After each action selection, the agent receives a reward vector
with two elements. The first element is the time reward, which is -1 for all
turns. The second element is the treasure reward, which is the value for
the corresponding cell in Fig. 1 if a treasure is reached, and zero for all
other turns. The Pareto front for this problem consists of 10 elements, with
a non-dominated policy corresponding to each of the 10 treasure locations.
The Pareto front is plotted in Fig. 2 and is globally concave, with local
concavities at the second, fourth and sixth points from the left [24].

We also use a modified version of the DST domain called the Convex
Deep Sea Treasure (CDST) environment. In the CDST, the values for the
treasure rewards have been altered to create a Pareto front that is globally
convex. This modification means that scalarised Q-learning can learn all of
the Pareto optimal policies in the CDST. The CDST and its Pareto front are
shown in Figs. 3 and 4 respectively.
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Figure 3: The Convex Deep Sea Treasure environment

4.2. Experimental Procedure

For scalarised Q-learning, the reward vector received at each timestep is
converted into a single scalar value using linear scalarisation. As we noted
earlier, a shortcoming of scalarised Q-learning is its inability to sample poli-
cies in concave regions of the Pareto front. Thus we expect that scalarised
Q-learning will not learn all Pareto-dominating policies in the DST environ-
ment, but this domain will nevertheless prove useful when evaluating the
effects of PBRS. We expect that scalarised Q-learning will learn all policies
in the CDST due to the globally convex Pareto front. We ran this algorithm
with 100 different weight vectors, where the continuous range [0, 1] is uni-
formly discretised with step size 1

100−1 , so that a number of different policies
would be learned. At the start of each run, the action values were optimisti-
cally initialised to [0, 125] scalarised with the appropriate weight vector for
non-terminal states, and to 0 for terminal states. The learning parameters
used were as follows: α = 0.1, γ = 1. The action value initialisation method,
and values for α and γ are the same as were used by Vamplew et al. [24] in
their empirical study on the DST domain. The exploration rate, ε, was set
to 0.998e, where e is the episode number. Vamplew et al. [24] used a fixed
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Figure 4: The Pareto front for the Convex Deep Sea Treasure environment

ε = 0.1, but instead we chose a decaying exploration rate in order to allow
for sufficient exploration in the early stages of learning, and to maximise
exploitation of the learned policies towards the end of the training period.

To test the effect of PBRS in this problem domain, we use two different
types of potential functions: good and poor. In these potential functions
each entry corresponds to a cell in the DST environment. Entries in bold
denote treasure locations, and blank entries denote unreachable cells.

The good heuristics for the DST and CDST are shown in Eqns. 17
and 18 respectively. These heuristics were chosen to illustrate the increased
learning speed that is possible when good domain knowledge is available,
and are used to shape the treasure component of the reward vector that is
received. Agents are encouraged to explore along the Pareto front when using
the good heuristics, with states close to high valued treasures assigned the
highest potentials.

Eqn. 19 is an example of a poorly-designed potential function, and is used
to shape the scalarised combination of the reward vector that is received in
the DST and the CDST. This potential function encourages an agent towards
the upper right corner of the domain, far away from any treasure locations.
We expect that this potential function will reduce the learning speed of any
agents that receive it.
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ΦGood(s) =



6 12 0 0 0 0 0 0 0 0
1 19 25 1 1 1 1 1 1 1

2 31 37 2 2 2 2 2 2
3 43 50 56 62 3 3 3

5 8 16 78 4 4 4
74 5 5 5
81 87 93 6
24 50 99 7

105 112
74 118

124


(17)

ΦGood(s) =



6 12 0 0 0 0 0 0 0 0
1 19 25 1 1 1 1 1 1 1

34 31 37 2 2 2 2 2 2
58 43 50 56 62 3 3 3

78 86 92 78 4 4 4
74 5 5 5
81 87 93 6
112 116 99 7

105 112
122 118

124


(18)

ΦPoor(s) =



1 2 3 4 5 6 7 8 9 10
0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7

0 0 0 3 4 5 6
2 3 4 5
1 2 3 4
0 0 2 3

1 2
0 1

0


(19)

18



Figure 5: Online hypervolume of non-dominated policies learned in the DST environment

4.3. Results

All plots include error bars representative of the standard error of the
mean based on 30 statistical runs. Specifically, we calculate the error as
σ/
√
n where σ is the standard deviation and n is the number of statistical

runs. Error bars are included on all plots at 100 episode intervals. The
plots show the average performance across the 30 statistical runs that were
conducted at 100 episode intervals.

We will first discuss the results from the DST domain. Figs. 5 and 6 show
the online and offline hypervolumes of the non-dominated policies learned by
each approach over the training period. The online hypervolume is calculated
using the accumulated rewards during learning, while the offline hypervolume
is calculated using the accumulated rewards received by greedily evaluating
the current policy. In both cases we begin by first removing the Pareto-
dominated accumulated reward vectors, and the remaining Pareto optimal
vectors are then used to calculate the hypervolumes. All hypervolumes are
calculated using a reference point of [-25,0]. The hypervolume of the true
Pareto front for the DST domain is 1155 using the reference point specified.
A summary of the final hypervolumes and final policies learned in the DST
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Figure 6: Offline hypervolume of non-dominated policies learned in the DST environment

domain is provided in Table 1.
As expected, scalarised Q-learning falls far short of the maximum possible

hypervolume, as it only learns two Pareto optimal policies upon convergence,
corresponding to the extreme solutions at either end of the Pareto front,
[−1, 1] and [−19, 124]. This results in a hypervolume of 762, and our experi-
ence matches with that of Vamplew et al. [24] and Van Moffaert and Nowé
[26], who also report that scalarised Q-learning can only learn the policies
on the convex portion of the Pareto front in this domain.

Figs. 5 and 6 show a considerable improvement in learning speed when a
good PBRS heuristic is added to scalarised Q-learning. We note also that the
hypervolume actually increases beyond its final value when PBRS is added.
This shows that the addition of PBRS causes more of the Pareto optimal
policies to be sampled while learning; however, upon convergence it reaches
the exact same hypervolume as that reached without PBRS. The increased
learning speed that is a characteristic of PBRS is displayed here, but the set
of policies learned upon convergence has not been altered. The poor heuristic
exhibits reduced learning speed as expected, but it still learns the same final
policies as agents learning without PBRS and with a good PBRS heuristic.
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Table 1: Pareto dominating policies for DST at the end of the training period

Hypervolume Pareto dominating policies

True Pareto front 1155 [-1,1],[-3,2],[-5,3],[-7,5],[-8,8],[-9,16],
[-13,24],[-14,50],[-17,74],[-19,124]

No PBRS 762 [-1,1],[-19,124]
PBRS (Good) 762 [-1,1],[-19,124]
PBRS (Poor) 762 [-1,1],[-19,124]

Table 2: Pareto dominating policies for CDST at the end of the training period

Hypervolume Pareto dominating policies

True Pareto front 2166 [-1,1],[-3,34],[-5,58],[-7,78],[-8,86],[-9,92],
[-13,112],[-14,116],[-17,122],[-19,124]

No PBRS 2166 [-1,1],[-3,34],[-5,58],[-7,78],[-8,86],[-9,92],
[-13,112],[-14,116],[-17,122],[-19,124]

PBRS (Good) 2166 [-1,1],[-3,34],[-5,58],[-7,78],[-8,86],[-9,92],
[-13,112],[-14,116],[-17,122],[-19,124]

PBRS (Poor) 2166 [-1,1],[-3,34],[-5,58],[-7,78],[-8,86],[-9,92],
[-13,112],[-14,116],[-17,122],[-19,124]

The results from the CDST domain are plotted in Figs. 7 and 8, and
the final policies learned and final hypervolumes are presented in Table 2. In
this domain, the maximum hypervolume is 2166 when all 10 Pareto optimal
policies are learned, calculated as before using a reference point of [-25,0].
The basic scalarised Q-Learning agent is capable of learning all 10 Pareto
optimal policies in the CDST, as evidenced by the final hypervolume, which
reached the maximum value of 2166. When a good PBRS heuristic is added,
the maximum hypervolume of 2166 is reached more quickly. Here PBRS
has improved the learning speed, without altering the set of Pareto optimal
policies learned for the problem. When using a poor PBRS heuristic, the
learning speed is reduced, but the agent still converges to the maximum
hypervolume, and successfully learns all 10 Pareto optimal policies.

The empirical results in this section demonstrate that the increased learn-
ing speed that is characteristic of PBRS can be leveraged in single-agent
MORL problem domains, without altering the Pareto optimal policies learned
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Figure 7: Online hypervolume of non-dominated policies learned in the CDST environment

upon convergence. An interesting finding is the effect of PBRS on an agent’s
exploration when a suitable heuristic is used. In the early stages of learn-
ing in the DST, scalarised Q-learning with a good heuristic achieves a high
hypervolume initially, and samples Pareto optimal policies that are in the
concave region of the Pareto front. However, upon convergence scalarised
Q-learning with a good heuristic reaches the same hypervolume as scalarised
Q-learning without PBRS. In both the DST and CDST, it is evident that
a well-designed PBRS heuristic can improve learning speed, and conversely
that a poor heuristic can be harmful to an agent’s initial performance. How-
ever, in all cases the set of Pareto optimal policies learned with and without
PBRS is consistent in both problem domains, regardless of the quality of the
heuristic used. Thus, we have demonstrated that the two main strengths of
PBRS for RL in conventional MDPs (i.e. improved learning speed and policy
invariance) can also be leveraged successfully with RL in MOMDPs.

22



Figure 8: Offline hypervolume of non-dominated policies learned in the CDST environment

5. Dynamic Economic Emissions Dispatch

5.1. Problem Description

In the Dynamic Economic Emissions Dispatch (DEED) problem, a num-
ber of electricity generators must be scheduled to meet a specified customer
demand over a period of time, while minimising the conflicting objectives of
fuel cost and emissions. Generator scheduling is a complex task due to many
different factors, including unpredictable fluctuations in demand, power loss
within the transmission lines, and varying efficiency levels, power limits and
ramp limits among generators in the same plant [31]. Approaches such as Ge-
netic Algorithms [31], Particle Swarm Optimisation [32] and MARL [14, 15]
have previously been applied to generator scheduling for the DEED problem.
The version of the problem which we analyse here was originally proposed by
Basu [31]. Mannion et al. [14, 15] reformulated Basu’s version of the DEED
problem as a MOSG in order to allow the application of MARL. We will
use the DEED MOSG to evaluate the effect of using PBRS in multi-agent
MORL problem domains.

In the DEED MOSG, each agent i ∈ {2, ..., N} controls the power output
of a generator n ∈ N at each hour m ∈ M , and the first generator is a
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slack generator. The local cost fLc (n,m) and emissions fLe (n,m) terms for
generator n over hour m are calculated as:

fLc (n,m) = an + bnPnm + cn(Pnm)2 + |dnsin{en(Pmin
n − Pnm)}| (20)

fLe (n,m) = E(αn + βnPnm + γn(Pnm)2 + η exp δPnm) (21)

where an, bn, cn, dn and en are the cost coefficients for each generator, αn,
βn, γn, ηn and δn are the emission coefficients for each generator, Pnm is the
power output from generator n at time m, Pmin

n is the minimum permissible
power output of generator n, and E = 10 is the emissions scaling factor.

The global cost and emissions for hour m may then be calculated as the
summation of fLc (n,m) and fLe (n,m) respectively over the N = 10 generators
in the system:

fGc (m) =
N∑
n=1

fLc (n,m) (22)

fGe (m) =
N∑
n=1

fLe (n,m) (23)

The total power output in a given hour must be equal to the sum of the
power demand and transmission losses:

N∑
n=1

Pnm = PDm + PLm ∀m ∈M (24)

where PDm is the power demand over hour m and PLm is the transmission
loss over hour m.

There are two inequality constraints which any potential solutions are
subject to: the operating limits and the ramp limits for each power generator
in the station. The operating limits specify the minimum and maximum
possible power output of a generator, while the ramp limits determine the
maximum allowed increase or decrease in the power output of a generator
from one hour to the next.

Pmin
n ≤ Pnm ≤ Pmax

n (25)
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Pnm − Pn(m−1) ≤ URn (26a)

Pn(m−1) − Pnm ≤ DRn (26b)

where Pmin
n and Pmax

n refer to the minimum and maximum power output
of each generator, Pnm is the power output for n ∈ N and m ∈M , and URn

and DRn are the ramp up and ramp down limits for generator n.
In order to satisfy the equality constraint described by Eqn. 24, the

first generator n = 1 is a slack generator. The power outputs of the other
9 generators are set directly by individual agents, and the slack generator
makes up any shortfall in the combined power output. The settings for the
slack generator are therefore dependant variables during the optimisation
process, while the outputs of the other N − 1 generators are independent
variables. The power output of the slack generator for a single hour, P1m,
may be calculated by rearranging Eqn. 24:

P1m = PDm + PLm −
N∑
n=2

Pnm (27)

The loss in the transmission lines between generators, PLm, over hour m
is calculated as follows:

PLm =
N∑
n=2

N∑
j=2

PnmBnjPjm + 2P1m(
N∑
n=2

B1nPnm) +B11(P1m)2 (28)

whereB is the matrix of transmission line loss coefficients [31]. Combining
Eqn. 27 with Eqn. 28 produces the following quadratic equation:

0 = B11(P1m)2 + (2
N∑
n=2

B1nPnm − 1)P1m+

(PDm +
N∑
n=2

N∑
j=2

PnmBnjPnm −
N∑
n=2

Pnm)

(29)
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Solving this quadratic equation using basic algebra will give the reactive
power of the slack generator, P1m, at each hour.

The next environmental state for each agent i is defined as a vector con-
taining the change in power demand ∆PD since the previous timestep, and
the previous power output of the generator n, Pnm. The change in power
demand at time m is calculated as:

∆PDm = PDm − PD(m−1) (30)

Therefore the state vector for agent i (controlling generator n) at time m
is:

sim = [∆PDm, Pn(m−1)] (31)

The action chosen by agent i at each timestep determines the power
output of the generator n under its control. However, the power output
constraints in Eqn. 25 must be satisfied for each generator. Therefore the
possible action set for agent i consists of:

Ai = {Pmin
n , ..., Pmax

n } (32)

At any hour m, when the ramp limits in Eqns. 26a and 26b are imposed,
an agent’s action set is constrained to:

Aim = {Pn(m−1) − URn ≥ Pmin
n , ..., Pn(m−1) − URn ≤ Pmax

n } (33)

In order to discretise this continuous action space, we use an abstraction
A∗ of the action space, where each agent has a set of 101 possible actions
A∗ = {0, 1, ..., 99, 100}. Each action represents a different percentage value
of the operating range of the generator, so generators with wider operating
ranges have larger increments. The power output from generator n for action
a∗i is calculated as:

Pn = Pmin
n + a∗i

(
Pmax
n − Pmin

n

100

)
i = n (34)

The power output selected by an agent is still subject to the ramp limits,
as per Eqns. 26a, 26b and 33, so a∗ selections that would violate these limits
are not allowed. Agents select actions using the ε-greedy strategy, where a
random action is selected with probability ε, and the highest valued action
is selected with probability 1− ε.
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We must also consider how to handle the power limits and ramp limits of
the slack generator, n = 1. We develop a global penalty function fGp based
on the static penalty method [33] to capture violations of these constraints:

fGp (m) =
V∑
v=1

C(|hv + 1|δv) (35)

h1 =


P1m − Pmax

1 if P1m > Pmax
1

Pmin
1 − P1m if P1m < Pmin

1

0 otherwise

(36)

h2 =


(P1m − P1(m−1))− UR1 if (P1m − P1(m−1)) > UR1

(P1m − P1(m−1)) +DR1 if (P1m − P1(m−1)) < −DR1

0 otherwise

(37)

where V = 2 is the number of constraints handled using this method (one
possible violation each for slack generator power and ramp limits over hour
m), C = 10E6 is the violation constant, hv is the violation of each constraint,
and δv = 0 if there is no violation in a given constraint and δv = 1 if the
constraint is violated. The violation constant C = 10E4 was selected so that
the output of the penalty function will have a similar magnitude to that of
the cost function fGc . The penalty function is an additional objective that
must be optimised, in addition to cost and emissions.

The global cost, emissions and penalty functions are combined into a
single global reward signal using linear scalarisation:

G(m) = −
[
wcf

G
c (m) + wef

G
e (m) + wpf

G
p (m)

]
(38)

Note that the return from this reward function is negative, as the objectives in
the DEED domain must be minimised. When applying PBRS, the scalarised
return from G is shaped as per Eqns. 3 and 4.

5.2. Experimental Procedure (Finite-Horizon)

We apply multiple individual Q-learners with ε-greedy exploration to the
DEED MOSG, learning using the scalarised global reward function with and
without PBRS. We ran these algorithms with 5 different weight vectors,
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Figure 9: 24 hour power demand for the DEED domain

varying the weights of the cost and emissions objectives so that a variety of
solutions would be learned. The weight vectors used were: [0.200,0.300,0.5],
[0.225,0.275,0.500], [0.250,0.0.250,0.500], [0.275,0.225,0.500], [0.300,0.200,0.500].
The best non-dominated policies were then combined to calculate hypervol-
umes for a single run. Agents learned for 20, 000 episodes, and the duration
of each episode was M = 24 hours. At the beginning of each run, all ac-
tion values in all states were initialised to 0. The learning parameters for all
agents were set as follows: α = 0.10, γ = 0.75, ε = 0.05. These are the same
values that were used by Mannion et al. [15] in their work on formulating the
DEED MOSG. The customer power demand profile used in our experiments
is shown in Fig. 9. All values for cost coefficients, emission coefficients, ramp
limits, generator capacity limits, power demands and transmission line loss
coefficients can be found in the work of Basu [31].

To test the effect of PBRS in this problem domain, we use three different
heuristics:

• High: All agents are encouraged to select high power values. This
heuristic is expected to quickly reduce the cost and emissions values

28



during learning, and lead to good solutions.

ΦHigh(i,m) = −

(
100+

(
Pn,m−1 − Pmin

n

Pmax
n − Pmin

n

×100

))
×106 i = n (39)

• Low: All agents are encouraged to select low power values. This heuris-
tic is also expected to increase learning speed, although encouraging
agents to select low power values will increase loading on the slack gen-
erator, which may negatively affect the running costs and emissions
produced.

ΦLow(i,m) = −

(
100−

(
Pn,m−1 − Pmin

n

Pmax
n − Pmin

n

×100

))
×106 i = n (40)

• Mixed: This heuristic encourages a mixture of the two different be-
haviours above. The agents n = 2 to n = 5 are encouraged to select low
power values using the low heuristic, whereas the agents from i = 6 to
i = 10 are encouraged to select high power values using the high heuris-
tic. The design of this mixed heuristic is based on the intuition that it
may be beneficial to keep some generators in a group working at close
to full power continuously to satisfy the baseline power demand, while
the rest of the generators will only increase their power output during
peaks of high demand.

ΦMixed(i,m) =

{
ΦLow(i,m) if i ≤ 5

ΦHigh(i,m) otherwise
(41)

5.3. Results (Finite-Horizon)

The online hypervolume of cost and emissions for best non-dominated
policies learned by each approach in the DEED domain is shown in Fig.
10. This plot includes error bars representative of the standard error of the
mean based on 30 statistical runs. Specifically, we calculate the error as
σ/
√
n where σ is the standard deviation and n is the number of statistical

runs. Error bars are included on this plot at 1000 episode intervals. The
plot shows the average performance across the 30 statistical runs that were
conducted at 100 episode intervals. Fig. 11 shows the Pareto fronts for each
approach. These fronts are comprised of the best non-dominated policies
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Figure 10: Online hypervolume of cost and emissions for non-dominated policies learned
in the DEED environment

learned over the 30 runs conducted. Table 3 shows the average online hy-
pervolume of cost and emissions over the last 2000 episodes of the 30 runs
that were conducted. All claims of statistical significance are supported by
two-tailed t-tests assuming unequal variances, with p = 0.05 selected as the
threshold for significance.

The learning curves in Fig. 10 show an improvement in learning speed
for all heuristics tested, when compared to unshaped G (note that the y-
axis uses a log10 scale). The high heuristic gave the greatest improvement in
learning speed, followed by the mixed and low heuristics. The high heuristic
also achieved the lowest average hypervolume (9.8612 × 1011), although the
mixed heuristic achieved a similar value (9.9918 × 1011). The difference in
the mean hypervolumes of the high and mixed heuristics was found to be
statistically insignificant (p = 0.05954). The next lowest hypervolume was
that of unshaped G (10.5743 × 1011), and the difference in the means of G
and G+PBRS(Mixed) was found to be statistically significant (p = 8.98×
10−12). G+PBRS(Low) had the highest hypervolume (12.6627×1011), and
the difference between its mean and that of G was found to be statistically
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Table 3: DEED online hypervolumes (averages over last 2000 episodes)

Online Hypervolume (×1011)

G+ PBRS(High) 9.8612
G+ PBRS(Mixed) 9.9918
G 10.5743
G+ PBRS(Low) 12.6627

significant (p = 3.57× 10−20).
The plot of Pareto optimal policies learned in Fig. 11 shows that G +

PBRS(High) performed the best overall, learning joint policies that dom-
inate the best solutions found by the other approaches. All Pareto opti-
mal solutions found by G + PBRS(Mixed) dominate those of G and G +
PBRS(Low). Overall, we have seen that the high heuristic offers the best
performance in this domain, in terms of learning speed and Pareto optimal
policies learned. Furthermore, two of the three PBRS heuristics that we have
tested outperform unshaped G in every respect, demonstrating that PBRS
incorporating suitable domain knowledge is a useful technique to improve
performance in multi-agent MORL domains.

As the true Pareto front for the DEED MOSG is not known, we cannot
evaluate the performance of each variant with respect to the hypervolume
of the true NDS. However, we have demonstrated that well-designed PBRS
heuristics can improve both learning speed and the quality of the final joint
policies learned in multi-objective SGs. This is a similar finding to that of
Devlin et al. [16] in their empirical study of PBRS in single-objective SGs.
While PBRS does not alter the set of Nash equilibria or the Pareto relation
between policies in multi-agent MORL, it can alter the points of equilibrium
that are reached, as we have demonstrated in this study.

5.4. Experimental Procedure (Infinite-Horizon)

In addition to the above empirical study, we also tested the effect of
PBRS on an infinite-horizon version of the DEED problem. This second
study uses the same experimental parameters and reward functions as defined
in Section 5.2 above. In practice, the continuous operation of a group of
generators is in fact an infinite-horizon control problem, and this section
aims to assess the suitability of our PBRS heuristics to develop policies for
such a scenario. Thus, instead of an episode ending and all agents being reset
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Figure 11: Pareto fronts showing the best non-dominated policies learned in the DEED
environment

to the starting state, in this study agents operate continuously for a period
of 480,000 hours. The same power demand curve shown in Fig. 9 is looped
continuously during the 480,000 hour period. This time we use only a single
vector [0.250,0.0.250,0.500] for linear scalarisation of the objective functions.
As before we conducted 30 statistical runs for each reward function, and the
results presented are the average of the 30 runs. The first 240,000 hours of
each run are treated as a training period to allow the agents to converge to
good joint policies, and the second 240,000 hours are used to test the quality
of the policies learned.

5.5. Results (Infinite-Horizon)

The average results for the infinite-horizon DEED experiments are shown
in Table 4. We measure the performance of the approaches using two different
metrics: accumulated cost and accumulated emissions over the 240,000 hour
testing period. Similar to the results for the finite-horizon study, we see that
PBRS can also alter the joint policies learned in infinite-horizon problems.

Considering the accumulated cost metric, again G + PBRS(High) and
G + PBRS(Mixed) both outperform unshaped G, while G + PBRS(Low)
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Table 4: DEED infinite-horizon results (over last 240, 000 hours)

Cost ($× 1010) Emissions (lb ×109)

G+ PBRS(High) 2.7537 3.8931
G+ PBRS(Mixed) 2.7973 3.8197
G 2.8244 4.0602
G+ PBRS(Low) 2.9590 5.6805

is the worst performer. G+PBRS(High) offers the lowest accumulated cost
on average, and performs significantly better than G + PBRS(Mixed) on
this metric (p = 1.68 × 10−14). G + PBRS(Mixed) does however offer a
significant improvement in accumulated cost when compared to unshaped G
(p = 6.55 × 10−10). The accumulated cost result for G + PBRS(Low) is
higher than that of G, and the difference in their performance was found to
be significant (p = 6.97× 10−29).

On the accumulated emissions metric, G+PBRS(Mixed) offers the best
performance, and is significantly better than G+ PBRS(High) (p = 2.54×
10−81). G + PBRS(High) significantly outperforms unshaped G on this
metric (p = 2.36× 10−32), while unshaped G outperforms G+ PBRS(Low)
(p = 1.49 × 10−5). We see that both heuristics that performed better than
unshaped G in the finite-horizon study also outperform it in this study, and
that again G+ PBRS(Low) offers the worst performance.

The results from this study again highlight the effect of the quality of
the heuristic used on the final performance reached by multiple agents in
MORL domains. An interesting finding from this study is the notion that
different PBRS heuristics may improve system performance on different ob-
jectives, as we see when we compare the results for G + PBRS(High) and
G+PBRS(Mixed). We previously suspected that certain types of heuristics
could lead agents to policies that favour one objective over another, however
this study represents the first empirical evidence that this is in fact the case.
Therefore, when designing PBRS heuristics for multi-objective problems this
factor must be taken into account, especially in the case of multi-agent do-
mains where the use of PBRS can change which Nash equilibrium is reached
upon convergence. Due to this effect, it may be possible to use PBRS as a
mechanism to incorporate user preferences in multi-criteria sequential deci-
sion making problems, by designing potential functions that bias an agent’s
exploration to favour one objective over another.
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6. Conclusion & Future Work

In this paper, we have analysed the effect of PBRS in single- and multi-
agent MORL problems, contributing both formal theoretical proofs and em-
pirical studies. Our theoretical results prove that the set of Pareto optimal
policies is invariant when PBRS is applied to both infinite- and finite-horizon
MOMDPs and MOSGs. This result is true regardless of whether PBRS is
applied to each objective individually, or to the resultant scalarised combi-
nation of the reward vector. Furthermore, our empirical results show that
agents learning with and without PBRS in single-agent MORL problems
converge to the same set of Pareto optimal policies, regardless of the quality
of the PBRS heuristic used. When PBRS is applied to multi-agent MORL
problems, we found that the joint policies learned can be altered, and that
good PBRS heuristics can improve both learning speed and the quality of
the Pareto-dominating solutions learned compared to agents learning without
PBRS.

Numerous possibilities for further research are raised by the results pre-
sented in this paper. In the future, we plan to continue our work on reward
shaping techniques for MORL problem domains. In particular, we intend
to investigate the possibility of using reward shaping in conjunction with
multi-policy RL algorithms (e.g. Pareto Q-learning [26]). The effect of re-
ward shaping techniques in multi-agent MORL domains remains an under-
explored topic, and we will continue to address this issue in future theoreti-
cal and empirical studies. It would be useful to develop a set of multi-agent
MORL domains with known Pareto fronts which could act as a set of stan-
dardised benchmarks when evaluating multi-agent MORL algorithms, in a
similar manner to the set of single-agent MORL benchmarks proposed by
Vamplew et al. [24]. Recent work has made some progress towards achieving
this goal [34, 35], and this line of research should be continued in order to
produce a comprehensive suite of multi-agent MORL benchmark domains.
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