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Chapter 1    Introduction 

This chapter discusses the current and future applications of Biomaterials in medical 

devices and summarises the Material Selection process in the initial stages of the Laser 

welding project. It will give a brief outline of each of the materials that were shortlisted 

as possible candidates for this project, and may include reasons as to why they were 

accepted/rejected.  Also, a brief introduction to Laser Welding processes and 

applications. 

INTRODUCTION 

Laser welding and Biodegradable materials are used in diverse fields of science and 

engineering. Whether as an aid for joining materials in different constructions or as 

materials for such constructions, laser welding and biodegradable materials have 

insinuated themselves into almost all aspects of our lives. Biodegradable materials can 

be found in many areas including packaging, medical devices, waste management, 

building constructs, agriculture and clothing. Laser welding processes are also 

routinely used in many products that we consume, ranging in fields as diverse as 

automobile construction, Information Technology infrastructure, electronics 

manufacture and medical devices.  

Despite the ubiquitous nature of these terms, very little work has been carried out to 

date on how one aspect affects the other. There are many bodies of knowledge present 

describing the laser welding process and or processes involving biodegradable 

material constructs but very little exists on how the former affects the latter. To this 

end, this body of knowledge aims to start a discussion on how laser welding affects the 

characteristics of biodegradable materials, specifically focussing on the medical device 

industry. 

The reason for focussing on medical devices is due to the opinion of this researcher 

that at some point in the medical device lifecycle, laser welding may be incorporated 

into part or perhaps all of the medical device production cycle. The medical device 

industry is often highly regulated, especially when the device may be used in the area 

of human therapeutics. Because of these regulatory requirements, the manufacturers of 

these devices must be aware of all interactions between the material which the device 
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is made from and the biological tissues surrounding it in order to be compliant with 

the regulatory authority. But, does the laser welding process affect the biodegradable 

properties of the material, and consequently, its interactions with the surrounding 

tissue? This is the question that this work intends to explore.  

BIOMATERIALS 

The term ‘Biomaterial’ is an umbrella name that covers a multitude of materials that 

are considered to biodegradable, bioresorbable, biocompatible or bioactive. 

Biomaterials occupy a central role over many fields and disciplines ranging from 

Waste Management, Energy production, Food Technology and Medical Sciences. This 

body of work will be more focused on possible applications within Medical Sciences, 

specifically Tissue Engineering, Drug Delivery and Medical Devices. 

Biomaterials can be defined as substances in therapeutic or diagnostic systems that are 

in contact with biological fluids.  Biomaterials require certain essential properties 

depending on the functionality of the final device. Properties such as blood 

compatibility, size, shape, and porosity must be controlled. For instance, for 

cardiovascular implants the devices have certain size requirements in order to avoid 

clotting; in drug delivery, the requirements are different: drug permeability, good 

release properties, etc.(Stamatialis et al. 2008) 

The ideal material for use as a biomaterial would have the following properties: 

1. does not evoke an inflammatory/toxic response, disproportionate to its 

beneficial effect, 

2. is metabolized in the body after fulfilling its purpose leaving no trace, 

3. is easily processed into the final product form, has acceptable shelf life, 

4. is easily sterilized. (Middleton & Tipton 2000) 

Biomaterials fall into three distinct categories of materials which are discussed 

below:  
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Ceramic Biomaterials 

Most ceramics biomaterials are used to repair hard tissues in the body such as bone 

and dental work. Ceramics have good osteoconductivity properties (i.e. formation of 

hydroxyapaptites which are naturally occurring minerals that have a role in bone 

regrowth), but have a very low bioresorbabilty with the exception of tricalcium 

phosphate. Ceramics are relatively inert to body fluids, have high compressive 

strength and are difficult to shear due to the ionic nature of the chemical bonds. 

Ceramics have also found use as reinforcing components for implantable devices that 

are manufactured from different set of biomaterials. (Park & Bronzino 2002) 

Metallic Biomaterials  

Metals are used as biomaterials due to their excellent electrical and thermal 

conductivity and mechanical properties. Some metals are passive substitutes for hard 

tissue replacement such as total hip and knee joints, fracture healing aids, bone plates 

and screws, spinal fixation devices and dental implants. (Park & Bronzino 2002) 

Although some metallic components can degrade in vivo  due to the presence of bodily 

fluids, this characteristic is not often encouraged because high levels of free metallic 

particles can be harmful and can cause toxic responses that outweigh their beneficial 

effects. Because of this, most metallic implants require surgical removal after their 

therapeutic lifecycle has come to an end. As a result more research is being undertaken 

to find substitute materials that can eliminate the need for subsequent surgical 

procedures.  

Polymer Biomaterials 

Polymers are molecules consisting of a large number of individual structural units, 

(called monomers) all joined together by covalent bonds to form chains. Polymers first 

came to light after the discovery of the tapping of Hevea rubber trees in the middle of 

the eighteenth century. Early technological applications of Hevea rubber began with 

efforts to discover the chemical nature of rubber, starting with the determination of its 

elemental composition in 1826. (Morawetz 2000). Despite been known to early 

explorers in the 16th Century,  rubber remained a curiosity only until 1839 where it was 

found that through treatment with sulphur and heat, rubber’s elastic properties could 

be made more permanent.(Dean 1987). This marked the beginning of scientific interest 
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in polymeric materials. Since then numerous attempts have being made to adapt 

natural occurring polymers for use in the diverse fields to which we are familiar with 

today. 

 

All polymers come in two distinct categories, natural and synthetic. Natural polymers 

are present in all organisms are produced during the growth cycles for example, 

protein expression in insects to create their chitin exoskeletons. Synthetic polymers are 

engineered molecules created under controlled conditions, such as ring opening 

polymerization to create materials with specific characteristics.  

 

The most recognisable family of natural polymers are in the polysaccharide groups. 

Common members of the polysaccharide family are cellulose and starch. Both cellulose 

and starch are composed of hundreds or thousands of d-glucopyranoside repeating 

units. These units are linked together by acetal bonds formed between the hemi- acetal 

carbon atom, C1, of the cyclic glucose structure in one unit and a hydroxyl group at 

either the C3 (for cellulose and amylose) or the C6 (for the branch units in amylopectin) 

atoms in the adjacent unit. Both of these natural polymers are produced in green 

plants. 
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Figure 1 Examples of Biomaterials and their applications (Williams 2009). 

(a) Vascular graft; made from conventional textiles (polyethylene terephthalate) or 

microporous polymers (polytetrafluoro- ethylene), produced by standard textile or 

polymer processing techniques. (b) Mechanical heart valve; made from an alloy such as 

one based on titanium or cobalt-chromium, a carbon such as pyrolytic carbon, and a 

sewing ring made of a textile such as polyethylene terephthalate, produced by 

standard metal forming processes such as machining and electrochemical milling, 

chemical vapour deposition of carbon, and textile fabrication processes. (c) 

Bioprosthetic heart valve; made from natural porcine aortic valve or peri- cardium, 

with polymer (e.g. acetyl copolymer) or metal (e.g. Elgiloy) frame and sewing ring (as 

in (b) above), produced by standard materials processing techniques for the frame, and 

sequences of cutting, sewing and chemical treatment of the animal tissue. (d) 

Intravascular stent; made from either a self expanding, shape memory alloy such as 

nickel– titanium or a plastically deformable alloy such as stainless steel, sometimes 

coated with a drug-loaded polymer such as a paclitaxel or sirolimus loaded styrene–

isobutylene–styrene triblock copolymer or polyethylene-co-vinyl acetate/poly n-butyl 



Page 6 of 133 
 

methacrylate copolymer, typically manufactured by laser cutting and polymer coating 

techniques. (Williams 2009) 

BIODEGRADABLE POLYMERS 

Significant advances have been made in the development of biodegradable polymeric 

materials for biomedical applications since the 1980’s. The most promising candidates 

for developing therapeutic devices have been Degradable Polymeric biomaterials for 

diverse applications such as temporary prostheses, three-dimensional porous 

structures as scaffolds for tissue engineering and as controlled/sustained release drug 

delivery vehicles. In order to develop these applications to provide efficient therapy, 

specific material demands had to be taken into account for each material like physical, 

chemical, biological, biomechanical and degradation properties. As a result of these 

demands, a wide range of natural or synthetic polymers capable of undergoing 

degradation by hydrolytic or enzymatic route are being investigated for biomedical 

applications. (Nair & Laurencin 2007).  

There were a number of points considered for the selection of a polymer for this 

research project: 

 

1. There should be a good deal of background information available on the 

material. One of the characteristics that the material will be tested on is the 

effects the Laser Welding process has on the degradation properties.  One of the 

vital pieces of information needed for the degradation experiments is the 

chemical structure of the monomer. Information such as Glass transition 

temperature (Tg), melting points, physical characteristics are also needed in 

order to build up Baseline from which to compare experimental results. 

 

2. The next point was that the polymer would have a wide scope from which laser 

welding would be used at some point in the manufacture of products made 

from the particular material in question. Also, that the material can absorb the 

energy supplied by the Laser, which in this case was Carbon Dioxide. 

 

3. The final point was that the material would be widely available. Manufacturing 

polymers from the initial monomer was also considered, but it was thought that 
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the time needed to optimize these processes would be prohibitively expensive 

time-wise. 

 

Biodegradable polymers offer further benefits due to the fact that they will degrade 

away naturally inside the body, eliminating the need for further surgery to remove the 

delivery vehicle at the end of its life. The goal for any drug delivery system is one 

where the drug is completely encapsulated at a microscopic level. This increases 

biological activity, improves therapeutic effect by controlling the release rate. The most 

common biodegradable polymers that are finding use in this area are polylactide, 

polyglycolide and Polycaprolactone. (Chen et al. 2000) 

Poly(Lactic Acid) 

 

Poly(lactic acid) (PLA) is a high strength and high modulus thermoplastic, which can 

be easily processed by conventional processing techniques used for thermoplastics like 

injection moulding, blow moulding, thermoforming and extrusion. Lactic acid is easily 

obtained by a biotechnological process (usually based on the strain of a lactobacillus) 

from inexpensive raw materials. A large number of investigations have been carried 

out on PLA and its copolymers in biomedical applications for resorbable medical 

implants in the shape of rod, plate, screw, fibre, sheet, rod, sponge, beads for bone and 

tissue engineering, microsphere for drug delivery system, films or foils for wound 

treatment and for applications in agriculture like mulch films, slow release of 

pesticides and fertilisers. This made it an excellent candidate, as its chemical structure 

and TG is well known. PLA is used for orthopaedic and oral surgeries as fixation of 

augmentation devices. (Gupta & Kumar 2007) In these cases, Laser welding may well 

be used in the manufacture of the devices. It is also widely available in various forms, 

meaning no need for further time consuming processing. 
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Figure 2 Chemical Structure of Poly(Lactic Acid) (Wikipedia 2014) 

 

Poly(glycolic acid) 

 

Poly(glycolic acid) (PGA) is the simplest linear, aliphatic polyester. PGA81–84 and 

poly(glycolic acid-co-lactic acid) (PGA/PL) are used as degradable and absorbable 

sutures. Their great advantage is their degradability by simple hydrolysis of the ester 

backbone in aqueous environments such as body fluids. Furthermore, the degradation 

products are ultimately metabolized to carbon dioxide and water or are excreted via 

the kidney. (Chandra & Rustgi 1998). PGA is also widely available, and because it is 

used in surgical sutures (classed as medical devices by most international regulators), 

it’s background information is also well known. However, apart from their use as 

sutures, there did not seem to be much call for any laser welding in their applications 

and were ruled out as a result.  

 

Figure 3 Structure of PGA (Sigma Aldritch 2014) 
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Poly(Propylene Fumarate) 

 

This material was initially developed for orthopaedic applications, so laser welding 

could well have been need to be integrated into the manufacture of any products that 

would be built from this material. However, due to patenting issues, availability was 

proving to be a prohibiting factor. 

 

 
Figure 4 Chemical Structure of Poly(Propylene Fumarate)  (Strut Patent.com Nov 

2013). 

Poly(Alkyl Cyanoacrylate) 

 

This material is already being extensively used in biomedical applications, including 

drug delivery. It has a fast degradation time, so any experiments based on this material 

would have a reasonably short lifecycle compared to other biodegradable polymers. 

Unfortunately there was no real scope for the use of laser welding in any of its 

applications.  

 

 
Figure 5 Chemical Structure of Poly(Alkyl Cyanoacrylate), (google images 2014) 



Page 10 of 133 
 

 

Polyphosphazenes 

 

This particular material could possibly have a large number of applications in various 

biomedical applications. However, in most of these cases, Polyphosphazenes are 

currently in clinical or even pre-clinical trials. Unfortunately the material is not on 

general release, so its supply would have been problematic and was not selected for 

this application. 

 

 
Figure 6 Chemical Structure of Polyphosphazenes, (Wikipedia Nov 2013) 

Polyphosphoester 

 

Polyphosphoester is currently in clinical trials for use as a drug delivery material. At 

the moment, there is no scope for using this material on its own in a laser welding 

capacity. However, due to its highly controllable degradation properties, it could well 

be used as a copolymer with other materials. 
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Figure 7 Chemical Structure of Polyphosphoester (Royal Society of Chemistry 2014) 

Collagen 

Collagen is a commonly used biodegradable material used in a diverse range of 

products from shields in ophthalmology to sponges and skin grafts for burns and 

wounds. It has also found uses in drug delivery in pellet and transdermal patch form. 

However, there were a number of disadvantages associated with this material, such as 

poor mechanical strength, difficulty in obtaining supplies fit for purpose. Most 

supplies that were available would have had to be purified on site, which would have 

meant extra time needed for processing samples fit for laser welding.(Lee et al. 2001) 

Polycaprolactone 

Polycaprolactone is a semi-crystalline linear aliphatic polyester. Historically it has been 

used to make resorbable sutures and drug delivery systems. It has lately seen a 

resurgence of interest due to the emerging field of tissue engineering. There have being 

a number of trials involving Polycaprolactone being used as a substitute for Bone 

Grafts. Polycaprolactone is compatible with a wide variety of other polymers which 

gives it a good range of applications.  

Due to its slow degradation rates, it had also been trialled as a material for use in the 

manufacture of devices with long term activity such as contraception and hormone 

replacement treatment, orthopaedic applications and dentistry.(Woodruff & 

Hutmacher 2010) (Puppi et al. 2010)(Williams et al. 2005) 

BIODEGRADABLE POLYMER APPLICATIONS 

Tissue Engineering:  

Tissue engineering is a relatively new area of research where attempts are made to 

either completely build an organ or tissues from scaffolds made out of biomaterial, or 

where repairs are made to an organ or tissue were damage has occurred, (also using 

biomaterials). There has been promising results in the use of polymers in a field of 

tissue engineering called Bone Tissue Regeneration. For example, In an experimental 

maxillary cleft model, a bioabsorbable composite membrane of ε-caprolactone and L-

lactic acid 50/50 copolymer (PCL/LLA) film and mesh and poly 96L,4D-lactide 
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(PLA96) mesh were found to be suitable materials for guiding bone regeneration in the 

cleft defect area. (Minna Kellomaki, 2000) 

Bone Tissue engineering encapsulates treatments in three distinct orthopaedic defects, 

Bone defects, cartilage defects and osteochondral defects. All of these treatments 

currently rely on harvesting living tissue from donors or in patient specific sites, for 

example iliac crest on the hip. In the last two decades, significant progress has been 

made in the development of surgical techniques for skeletal reconstruction. Beside 

them, tissue engineering is one of the most promising techniques to be used as 

alternative to the conventional bone harvesting or bone donation and cartilage 

transplants. 

Under optimal conditions, cells harvested from donor tissues, including adult stem 

cells, can be expanded in culture and associated with resorbable biomaterials 

(scaffolds) of synthetic and/or natural origin and then implanted in the targeted site 

where the defect is regenerated by an optimal interaction between the graft and the 

host tissue. Treatments based on this technique would eliminate the problems of 

donor-site scarcity, adverse immune reaction and pathogen transfer. (Puppi et al. 2010) 

Another goal of tissue engineering is grow organs in laboratory conditions to replace 

damaged organs and to transfer these organs directly into the patients. Current 

practices are overly dependent on donor organs which are not always successful due to 

the possibility of rejection in the receiver patient. Also, the availability of organs are so 

slight that it results in long waiting lists in which the patient who is need of the organ 

may die before one becomes suitable.  

One of the difficulties with tissue engineering organs, was the ability to find a material 

that could expand and contract with an elasticity that could cope with the flow of 

blood through the particular organ. To cope with these variations, one study used 

major extracellular matrix components such as collagens, elastin, and 

glycosaminoglycans (GAGs). Each tissue/organ has its own unique set and content of 

these biomolecules. Type I collagen is an extracellular matrix protein that is widely 

used as scaffold material. It provides adhesive properties and tensile strength. Elastin 

provides elasticity to tissues/organs and is crucial for e.g. blood vessels in order to 

cope with variations in blood pressure. GAGs are negatively charged polysaccharides 
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with biocharacteristics like hydration of the extracellular matrix and binding of effector 

molecules (e.g. growth factors and cytokines). (Daamen 2003) 

Drug Delivery: 

Currently used medicinal forms (tablets, injections, etc.) provide drug delivery with 

different amounts at variable times, often above the required dose. The constant drug 

level in blood or sustained drug release to avoid multiple doses and bypassing of the 

hepatic “first-pass” metabolism are the main challenges for every delivery system. In 

drug delivery applications the primary active agent is the drug. Degradable polymeric 

biomaterials can often enable the most effective use of the drug, and sometimes its only 

effective use, by routes which include: 

1. Providing sustained effective systemic concentrations of the drug (i.e. avoiding 

the periodic potentially toxic over-dosing that can occur at the beginning of a 

dosing period and preventing the periodic ineffective under-dosing that can 

occur at the end of the dosing period) 

2. Providing high concentrations of the drug only in the local vicinity of the drug-

release depot, avoiding unwanted concentrations and effects of the .(Hubbell 

1998)at locations far away from the disease treatment site; protecting the drug 

from the body’s metabolism and clearance mechanisms as the drug is being 

released. 

3. Targeting the drug to particular cells and sites within the body; and targeting 

the drug to particular organelles and sites within individual cells. (Hubbell 

1998) 

Medical Devices: 

“Medical device” is an umbrella term used to describe devices that range from simple 

tongue depressors and bedpans to complex programmable pacemakers with micro-

chip technology and laser surgical devices. Medical devices also include in vitro 

diagnostic products, such as general purpose lab equipment, reagents, and test kits, 

which may include monoclonal antibody technology. Certain electronic radiation 

emitting products with medical application and can also be covered under the 

definition of medical device. Examples include diagnostic ultrasound products, x-ray 

machines and medical lasers. (FDA 2012) 
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This term also includes devices that are implanted into the body to provide a 

therapeutic benefit for the patient. Medical devices may include Drug Eluting Stents, 

orthopaedic devices (e.g. replacement hip joints), catheters, syringes and other less 

common objects like Gastric Bands. There are many advantages to using biodegradable 

materials for medical devices over non-degradable or metallic materials, for example, 

bone fixing screws, biodegradable materials would transfer stress over time to the 

damaged area as it heals and there would be no need for a second surgery to remove 

the implanted devices, as they would be reabsorbed or excreted by the biological 

processes already present in vivo. (Tian et al. 2011). 

 

Some of the most common polymers used in medical devices are prepared from 

glycolic acid and lactic acid have found a multitude of uses in the medical industry, 

beginning with biodegradable sutures first approved in the 1960 s. Since that time 

other medical devices, based on lactic and glycolic acid, as well as other materials, 

including poly(dioxanone), poly(trimethylene carbonate) copolymers, and 

polycaprolactone homopolymers and copolymers, have been accepted for use as 

medical devices. In addition to these approved devices, a great deal of research 

continues on poly-anhydrides, poly-orthoesters, and other materials. (Middleton & 

Tipton 2000) 

 

As the understanding of biodegradable material increases, so to do the possible 

applications for such materials increase. The applications described above are just a 

small sample of what the industry is beginning to offer. 

MECHANISMS OF BIODEGRADATION 

There are many types of polymer degradation such as photo, thermal, chemical and 

mechanical degradation. All polymers share the property that they erode markedly 

under the influence of Ultraviolet (UV) light or gamma (γ) radiation. For polymer 

biomaterials, such effects are of minor importance unless they are submitted to γ 

sterilization, after which a significant loss of molecular weight can be observed. 

Thermal degradation plays a greater role for non-degradable polymers. Mechanical 

degradation affects those biodegradable polymers that are subject to mechanical stress 

such as non-degradable polymers or polymers that are used as fixtures or suture 

material. All biodegradable polymers contain hydrolysable bonds (chemical bonds that 
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can be broken down in water). Their most important degradation mechanism therefore 

is chemical degradation via hydrolysis or enzyme catalysed hydrolysis. The latter 

effect is often referred to as biodegradation, meaning that the degradation is mediated 

at least partially by a biological system.(Göpferich 1996) 

Thermal Degradation: This process occurs in all materials regardless of the nature of 

their compositions. Thermal degradation where biomaterials are concerned only 

becomes a factor during the production of the polymers concerned, or processing 

techniques involved in the manufacturing of devices etc. using the specific polymer. 

Thermal degradation of biomaterials usually occurs at elevated temperatures, 

exceeding the types of temperature ranges that are the focus here. However, due to the 

nature of the laser welding process used in this body of work, thermal degradation did 

become an issue during the welding process, but was easily controlled using the 

welding parameters and was not analysed to any great depth. More information on 

this issue can be found in Chapter 3. 

Mechanical Degradation: The mechanical properties of biodegradable polymers and 

composites become crucial to the performance of devices made from them for support 

of healing bone, using stainless steel as a standard. The slowest-degrading 

unreinforced biodegradable polymers are poly(L-lactic acid) and poly(ortho ester). 

Biodegradable composites with carbon or inorganic fibers generally lose strength 

rapidly, with a slower loss of stiffness, suggesting the difficulty of fiber-matrix 

coupling in these systems. The strength of composites reinforced with (lower modulus) 

degradable polymeric fibers decrease more slowly. (Daniels et al. 1990) The temporary 

or permanent replacement of hard tissues in load bearing applications demands 

mechanically strong biocompatible materials. The attainment of such bone-matching 

mechanical performance depends on the technological ability to mimic the bone 

anisotropic character. Polymer based composites can, in principle, combine adequately 

stiffness and strength together with a clear anisotropic and viscoelastic character. 

(Sousa et al. 2003). It is important that the polymer retains its mechanical strength 

throughout the degradation process for as much time as is needed to enable the bones 

maintain the mechanical strain unaided. Because this body of work was chiefly 

concerned with the effects of laser welding on the chemical biodegradable properties of 

the material, little attention was paid to this mechanism of degradation.   



Page 16 of 133 
 

Photo-Degradation: Photolysis (photo degradation) with UV light and the γ-ray 

irradiation of polymers generate radicals and/or ions that often lead to cleavage and 

crosslinking. Generally this changes the material’s susceptibility to biodegradation. 

Initially, one expects the observed rate of degradation to increase until most of the 

fragmented polymer is consumed and a slower rate of degradation should follow for 

the crosslinked portion of the polymer. A study of the effects of UV irradiation on 

hydrolyzable polymers confirmed this. Similarly, photooxidation of polyalkenes 

promotes the biodegradation. The formation of carbonyl and ester groups is 

responsible for this change. Processes have been developed to prepare copolymers of 

alkenes containing carbonyl groups so they will be more susceptible to photolytic 

cleavage prior to degradation.  

Chemical Degradation: Chemical degradation occurs when oxygen, water, or other 

reactive substances react with an active polymer layer. In hydrolysis for example, small 

amounts of oxygen and water can be absorbed in the different layers of the polymer.  

Oxygen is readily activated by UV illumination in the presence of sensitizers such as 

titanium oxide or organic molecules. The superoxide or hydrogen peroxide formed 

will then aggressively attack any organic substance present in the material, including 

the active polymers. (Jørgensen et al. 2008) 

 

 

Figure 8 Initial reaction of a PPV polymer with singlet oxygen.  

Singlet oxygen adds to the vinylene bond forming an intermediate dioxetane followed 

by chain scission. The aldehyde products shown can react further with oxygen. 

There are several other factors within the chemical degradation mechanisms that affect 

the rate of degradation. These effects include polymer morphology, molecular weight 

and presence of oxygen or other free radicals within the polymer chain. Pre-treatment 

of the polymer may also affect the degradation rate. 
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Polymer morphology: Selective chemical degradation of semi-crystalline polymer 

samples shows certain characteristic changes. During degradation, the crystallinity of 

the sample increases rapidly at first, then levels off to a much slower rate as the 

crystallinity approaches 100%. This is attributed to the ongoing disappearance of the 

amorphous portions of the sample. This selectivity can be attributed to the less-ordered 

packing of amorphous regions, which permits easier access of the hydrolytic 

compounds into the poymer matrix. 

Molecular weight: Low molecular weight hydrocarbons can be degraded by microbes. 

They are taken in by microbial cells, ‘activated’ by attachment to coenzyme-A, and 

converted to cellular metabolites within the microbial cell. However, these processes 

do not function well (if at all) in an extracellular environment, and the polymer 

molecules are too large to enter the cell. The molecular weight of the polymer also 

affects the degree of crystallinity in a semi-crystalline polymer, which has been 

discussed in polymer morphology.  

Presence of Oxygen: Several enzymes can react directly with oxygen, the classical 

example being cytochromoxidase which is active in the respiratory chain. The presence 

of oxygen in the backbone of the polymer can act as point of breakage during the 

degradation process. Yet another type of biological oxidation exists, namely the process 

where the oxygen molecule is not actually incorporated into the substrate, but rather it 

functions as a hydrogen acceptor (i.e. electron acceptor). This can also lead to breakage 

of the chain and the formation of oligmers during degradation. 

Basically, there are a number of different factors that contribute to polymer 

degradation.  There are also some processes that can be carried out on the individual 

polymers to control the degradation rate. These processes can be used to either speed 

up or slow down the rate of degradation.  
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Figure 9 Cellular metabolic pathways for polymer biodegradation in 

microorganisms. (Chandra & Rustgi 1998) 

LASER WELDING  

The word laser is an acronym for the most significant feature of laser action: Light 

Amplification by Stimulated Emission Radiation. There are many different kinds of 

laser, but they all share a crucial element: Each contains material capable of amplifying 

radiation. The material is called the gain medium because radiation gains energy 

passing through it.(Milonni & Eberly.) Every laser needs four key elements in order for 

stimulated emission to occur: 

1. A light signal of a controlled wavelength is pumped through a “cloud” of 

atoms or molecules  (known as gain medium) stimulating their electrons 

into higher energy states. 

2. The light signal is then reflected back through the “cloud” again, 

stimulating even more electrons. 
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3. As more electrons are stimulated, this has the effect of amplifying the 

signal. To sustain this amplification, more energy is pumped into the gain 

medium. 

4. When the amplification hits a certain level, the beam signal is allowed to 

escape out of the cavity and into the material being lased. 

 

Figure 10 Light Amplification by Stimulated Emission Radiation courtesy of 

http://wjmh.org/ArticleImage/0074KJA 

The advantages of laser welding are as follows: 

1. It is a clean method of joining materials. Laser welding processing 

techniques offer many advantages over traditional fabrication techniques 

such as gluing, metallic welding or soldering. One of the main advantages is 

the fact that laser welding has no need of third part binding agents like in arc 

welding, soldering or gluing, thereby maintaining the purity of the material 

2. Laser welding is also highly controllable and can deliver energy precisely 

where it is needed with an accuracy of micrometers. The flexibility of beam 

delivery also makes it an excellent option to weld hard to reach places 
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3. Laser welding provides concentrated thermal and photochemical energy to 

the joining area and rarely has a large heat affected zone around the 

particular weld you wish to obtain which is proving useful in the processing 

of many physical and chemical systems. (Duley & Mueller 1992).  

Virtually all laser welding systems in commercial use are based on Nd:YAG or CO2, 

(Duley 1998),  However, other gain mediums, such as carbon monoxide and high 

powered semiconductor diode arrays are also beginning to find favour for certain 

applications.  

The majority of laser welding applications occur in metallic specific materials, laser 

welding is slowly beginning to be used in no-metallic applications.  One of these non-

metallic applications is the routine use of laser welding in stent delivery systems. A 

stent delivery system is made up of a balloon attached to a catheter, both items 

manufactured from polymers. The stent to be used is then placed on this balloon. The 

stent is then applied by inserting the whole assembly through an artery, travelling 

through the artery to where the blockage is located. The balloon is then inflated, 

forcing the stent into the arterial wall. The stent delivery system is them removed in 

the same way as it was inserted. [US Patent 4,950,227, 1990]  

One of the major risks associated with this application is the possibility that the balloon 

may become detached from the catheter during the operation.  

To maintain the bond strength of the balloon to the catheter, the balloon is Laser 

welded onto the catheter. This provides a mechanically sound bond between the 

balloon and the catheter and avoids the introduction of further contaminants in the 

forms of metallic particulates (as in soldering) or potentially toxic bonding agents (as in 

gluing). A laser with a gain medium of Carbon dioxide is typically used for this 

process, which is similar to the type of laser used here.  

The gold standard for hermetic encapsulation (complete seal) for implants is a titanium 

enclosure which is sealed using laser welding.  But replacement of metals with 

polymers for encapsulation of active implantable medical devices is an area of interest 

for research and development. Advantages that polymers offer for this application 

include ease of fabrication, weight saving, flexibility, electrical and thermal insulation 
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combined with electromagnetic transmission, as well as cost advantages. (Amanat et al. 

2010)  

Nd:Yag 

This type of laser is the most common type being used in industry, especially for 

welding of metallic materials in the auto motive industry. The average power 

generated by Nd:Yag is between 0.3-3.0 kW and can be operated in three different 

modes, Q-switched mode, continuous mode and pulsed pumping. The laser welding 

system is made up from several laser rods pumped in a single resonator, making the 

pumping and the energy extraction more efficient. However, the input to output 

power ratio of the Nd:Yag is very low, making the efficiency of the laser very low 

overall. The main advantage of this laser is the fact that the laser radiation generated in 

the cavity can be delivered via a fibre optic cable, allowing laser welding to be 

completed in hard to reach areas, for example the inside of door frames in cars. The 

operating wavelength for Nd:Yag laser is at 1064nm, but the absorption coefficients of 

organic polymers are much smaller than they are at 10.6 µm, where the majority of 

organic materials are strongly absorbent. In the case of the Nd:Yag, the bulk heating is 

spread out over a larger volume and poor conversion of incident laser radiation to heat 

result, without the aid of material additives. (Duley 1998) 

Carbon Dioxide 

Initially reported in 1972 by Ruffler and Gurs, Duley and Gonsalves, Carbon Dioxide 

lasers are the second most common type of laser used in industry. The Carbon Dioxide 

laser directly excites vibrational modes in organic solids, which generate heat in 

different ways than other types of lasers described here. Carbon Dioxide lasers do not 

directly transfer heat to the surface of a film via photons, but actually excite the 

molecules in the bulk of the film to such an extent as to generate heat as a bi-product. 

The operating wavelength of the CO2 laser is at 10.6µm making it ideal for polymer 

welding because many organic materials are strongly absorbing at this wavelength. 

The main advantages of CO2 welding are as follows:  

• Good Penetration at low laser power. 

• Fast processing speeds. 

• Small heat affected zone. 
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• Fit up not too critical. 

• Non contact process. 

• Can be used with many, but not all polymers.  (Duley & Mueller 1992)  

Semi-conductor Diode Array 

Traditionally used in the communications sector, semi-conductor diode arrays are 

beginning to find use in Laser welding applications. There are many characteristics to 

these systems that make them attractive in laser processing techniques such as their 

small size, low power consumption, high reliability and wide tunability. They operate 

in wavelengths of between 940 to 1000nm making them well suited in polymer 

welding processes.  

As well there are many different types of laser; there are also numerous ways of 

configuring the films in order to weld them. The most important aspect of the join is 

that both films are placed close enough together so that they fuse as the laser passes 

over them. There also needs to be sufficient distance across both sides of the weld pool 

to provide a mechanical strength comparable to the films on their own. (Duley & 

Mueller 1992) 

Butt Weld  

A butt weld is a simple joint configuration where the ends of both films are pushed 

against each other and the laser path runs down the middle of the joint. However, the 

small amount of material available in the fusion zone during the welding makes butt 

welding of thin sheet susceptible to pinhole formation. This can be aggravated by the 

presence of any gap between the sheets. The sheets also have a tendency to misalign 

during the welding due to thermal stresses and distortion, making clamping hugely 

important. (Duley 1998) 
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Figure 11 But Weld Laser joint (Joining Tech 2014) 

 

Lap Weld 

Lap welds are commonly used in applications involving thin films. In a lap weld, one 

film is placed on top of the other and clamped into position. The laser beam is fired 

through the top layer, which then due to transmission of heat, also melts the surface of 

the bottom layer. These joints are always involved in through transmission welding, 

where the beam is absorbed more strongly in the bottom layer, causing the surface of 

the top layer to melt. Clamping is important here also, however to obtain good 

bonding at the interface between the sheets, this clamping must include provision for a 

fine gap when lap welding galvanized steels or other coated materials with continuous 

wave laser radiation. (Duley 1998). 
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Figure 12 Lap Weld Laser joint (Rofin 2014) 

Edge Weld 

Similar in application to Butt weld, the two films been welded together are pushed 

against each other and where the edges of the films meet is becomes the path for the 

laser beam. As with the butt weld, a good fit-up is still necessary. 

 

 

 

 

 

Figure 13 Edge Weld 

Laser Beam 

Films 

Weld Direction 
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SUMMARY 

Biomaterials are extensively used in healthcare today in such applications as 

orthopaedics, drug delivery, contraceptives, medical implants and other therapeutic 

applications such as aortic valve replacements and stent applications. Biomaterials can 

come in polymer, metallic or ceramic forms. However, future trends suggest that 

polymers are increasingly being used to replace their metallic due to the latter’s 

shortcomings which were explained above. Metallic materials usually need subsequent 

surgeries to remove them from patients once they reach the end of their therapeutic 

lifecycles, putting patients at further risk of adverse effects. One of the main 

advantages that polymers have over their metallic counterparts is the fact that once 

they provide the therapeutic function, they can degrade away naturally in the body, 

removing the need for secondary surgical interventions.  

Biodegradable polymers come in natural and synthetic forms, but the focus in this 

body of work is centred around synthetic polymers. Synthetic polymers can be 

engineered to have specific degradation times, mechanical, chemical or thermal 

properties are readily available and can be processed in highly pure forms. Natural 

polymers availability is highly dependent on the organisms that produce them and 

also may need secondary processing to remove them as in for example in the 

processing of collagen.  

Laser welding is a clean and pure form of joining materials together. It is extensively 

used in highly automated joining processes in the automotive and electronic industries. 

Laser welding is highly controllable and can be readily be adapted to join materials in 

hard to reach places. Laser welding using carbon dioxide as a gain medium is 

extremely suited to weld together polymer materials due to the way the energy 

transfer vibrational nodes in organic polymers, which in turn can generate an adequate 

amount of heat to melt the polymer in a weld pool.  

With the growing popularity of the use biodegradable materials in the field of 

medicine, and with the excellent suitability of the use of the laser welding to join 

biodegradable polymers, it is the intention of this body of work to explore how the 

laser welding process effects the biodegradation properties of a particular polymer.  
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Chapter 2   Material Processing and Film 

Formation 

This chapter will discuss the material selected and how the films were manufactured. It will also 

discuss the initial experiments to the current best practice batch manufacture process that was 

developed in the current body of work. The film itself had to be easily formed, thin enough to be 

welded and strong enough to be handled. Because the films were to be used in degradation 

experiments as part of the overall project this chapter discusses the impact of Statistical Process 

Control had on the quality of the films produced in order to have enough films in stock to 

complete the degradation experiments. 

INTRODUCTION 

 
Synthetic polymers are ubiquitous in modern day living and are found  in many 

applications, from clothing to the automotive industry. The branch of synthetic 

polymers that are of interest in this body of work are biodegradable, specifically 

polymers that have found use in the pharmaceutical and medical device industry. 

Biodegradation is a natural process by which organic chemicals in the environment are 

converted to simpler compounds, mineralized and redistributed through elemental 

cycles such as the carbon, nitrogen and sulphur cycles. Polymers may degrade in many 

ways within the physiological environment due to hydrolysis of the polymer backbone 

or through enzymatic degradation of the whole molecule. There are several diverse 

biodegradable polymers being considered for potential roles in medical applications at 

present. The common ones used would be Poly(Lactic Acid), Poly(glycolic acid), 

Poly(caprolactone) and their co-polymers. (Chandra & Rustgi 1998).  

 

Polycaprolactone (PCL) was the polymer of choice for experimentation in this body of 

work because it is readily available in a relatively pure form, had a workable 

degradation time (up to two years) which could be accelerated in a controlled fashion 

using reagents available to the researcher at the time (Phosphate buffered saline and 

lipase. More information on the degradation process can be found in chapter 4). PCL is 

a semi-crystalline polymer PCL can be prepared by ring opening polymerization of a 

cyclic monomer called ε-caprolactone. It can also be manufactured using free radical 
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ring-opening polymerization of 2-methylene-1-3-dioxepane. A diagram is provided 

below. 

 

Figure 14 Ring Opening process step of ε-Caprolactone to generate Poly-

caprolactone. (Wikipedia 2014) 

Catalysts such as stannous octoate are used to catalyze the polymerization and low 

molecular weight alcohols can be used to control the molecular weight of the polymer.  

The crystallinity tends to decrease with increasing molecular weight. It has a melting 

temperature of between 59 and 64 0C and a glass transition temperature of -60 0C. The 

IR-spectra of PCL molecular weight of 8200 Da is shown in Fig. 5. 

 It has a maximum tensile strength of 14.2MPa. PCL undergoes two types of 

degradation, Hydrolytic and Enzymatic.  

 

 

PCL was difficult to source as a film suitable for the needs of the project. After some 

consideration it was decided to buy in Polycaprolactone granules and process them 

into suitable films In-house.  

The films to be used for experiment where to have required to meet certain standards, 

as defined by the researcher. The basic user requirements were: 

1. The films were easily formed, thin enough to be welded and strong enough to 

be handled.  
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2. The film formation process itself would have to be robust enough to be able to 

manufacture sizeable quantities with a good level of consistency.  

3. The system process would also need to have a minimum financial investment 

initially until a method was deemed fit for purpose. Some of the processes 

considered are described briefly below. 

FILM FORMATION TECHNIQUES 

Compression Moulding 

A compression mould consists of the required mould positioned on a hydraulic press 

and heated to the required temperature needed to melt the polymer. A specific ‘dose’ 

of the material, known as a charge is placed in the heated cavity and becomes soft and 

plastic. The mould is then closed and subjects the charge to high pressures which 

forces the charge to take up the shape of the mould. The mould remains closed until 

the part hardens, or ‘cures’. The mould then opens and the part is removed. (Poli 2001) 

This process would have easily dealt with quantity aspect in number 2 and would have 

had good control over the physical aspects as laid out in number 1 above. However, a 

financial investment would have been needed to buy in equipment or to outsource the 

process elsewhere for a fee.  

Extrusion 

Extrusion is a process involving material pellets being placed into a hopper which 

feeds into a long cylinder containing a rotating screw. The screw transports the pellets 

into a heated portion of the cylinder where the pellets are melted and mixed to form a 

uniform melt. The melt is then forced through a die hole in the required shape to form 

long parts of uniform cross sections such as sheets, rods, tubes and other regular or 

irregular profiles. (Poli 2001) This particular process also needed an investment in 

equipment or services.  

Electrospinning 

The process of electrospinning was first patented in 1934 by Anton Formhals. The 

process involved producing polymer filaments from solution using electrostatic force. 

In its simplest form, the set up consists of a pipette, which is used to hold the solution, 

to electrodes and a DC voltage supply. The polymer drop from the tip of the pipette is 
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drawn into a fibre due to the high voltage. The jet then becomes electrically charged 

and the charge causes the fibres to bend in such a way that every time the polymer 

fibre looped, its diameter would be reduced. The fibre would then be collected as a 

web of fibres on the surface of a target that was connected to ground.(Ramakrishna. 

2005) Though the equipment that was needed for this process was available at the 

institution, it was not pursued due to the time it needed to develop the process further.    

Thin layer deposition 

First developed in the second half of the 19th Century, and growing rapidly in the 

1960’s due to the early development of microelectronics, thin layer deposition involves 

passing an organic gas through an electric discharge. (Biederman 2004). A surface 

containing Benzene molecule as a substrate, get bombarded by high energy particles 

from the electric discharge. The fragments from the gas, in the form of positive ions 

and electrons, react with the benzene molecules and each other and a plasma polymer 

film grows on the surface. This was not pursued on the grounds that there may have 

been some interference with the results from the substrate. 

Solvent Cast Method 

In the manufacture of polymeric films by the solvent evaporation process, (solvent cast 

method), the polymeric material, with or without plasticiser, is dissolved in a solvent 

or solvent mixture and into this the active constituent is dissolved or dispersed. This 

solution is then cast onto a suitable substrate and the solvent allowed to evaporate 

leaving a solid polymeric film containing drug substance. (Jones & Medlicott, 1995) 

Solvent Cast method described here involved dissolving a known amount of 

Polycaprolactone granules (as the “drug substance”) in a specific volume of solvent. A 

known volume of solution was then cast into a mould and left until the solvent had 

evaporated, leaving behind a film of Polycaprolactone. (Centre et al. 1995), (Jones et al. 

2002). It was decided to use this particular method as the set up costs were low, and 

did not require too much investment of time to learn the intricacies of the method. 

A number of different versions of the method were researched in order to obtain 

suitable films that were to be used in this project. But a version described in (Jones et 

al. 2002)was used as a guide for the purposes of this body of work. The choice of 



Page 30 of 133 
 

solvent was also an issue. From various other publications, it was found the PCL 

dissolves quite readily in a number of organic solvents, for example Acetone and 

Ethanol. Dichloromethane was chosen, primarily because of its hydrophobic nature, so 

that any water present in the granules would not trigger any premature degradation 

while the films were being formed. As Reported in (Middleton & Tipton 2000)“The 

additional complication during processing is the potential for molecular weight 

decrease due to the hydrolytic sensitivity of the polymer bonds. The presence of 

moisture during processing can reduce the molecular weight and alter the final 

polymer properties.” It was hoped that by using Dichloromethane in the processing of 

the films, the risk of hydrolytic sensitivity would be lessened because (Centre et al. 

1995) found that “There will be poor penetration of solvent (distilled water) into 

dichloromethane cast polymeric films due to the dense polymer network, a slow rate of 

dissolution and hence slow release of chlorhexidine into the dissolution medium.“ 

It was believed the solvent cast method could also offer a direct and simple way to 

control the thickness of the films being produced. Either by controlling the 

concentration of the Polycaprolactone in solution, or by possibly applying multiple 

layers of one particular solution concentration. Also, solvent cast method offered a 

comparatively low cost and fast set up solution compared to the other methods 

mentioned above.  

MANUFACTURE OF POLYCAPROLACTONE FILMS 

Initial Film Manufacture 

The initial experiment was run using the small amount of Polycaprolactone that was 

available at the time. A small amount of PCL was placed in the flask and was then re-

weighed. Using the micropipette, small additions of Dichloromethane were added to 

the flask until the Polycaprolactone was completely dissolved, leaving a solution that 

had an approximate concentration of 0.1g/ml.  

Using the micropipette, the resulting solution was spread out over the microscope slide 

on top until its surface was completely covered. The lid of the glass tank was then 

replaced and left the fume hood.  
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After an hour had passed, the lid was removed and the film was inspected. It was 

observed that a film was beginning to appear on the surface. The lid was then replaced, 

and tank left for a period of greater than 14 hours. 

When the period 14 hours had elapsed, the tank was inspected again, and it appeared 

that all the solvent had evaporated off. The lid was once again replaced and left for 

another period greater 14 hours. After this period, the tank was inspected and there 

were no observable differences. The resulting film was extremely thin, almost like cling 

film which was not suitable for the laser welding set up in house. 

Effects of Concentration on Film Thickness 

A second batch was attempted, whereby a stock solution was to be made up initially, 

at 10% w/v and then the respective 8% and 4% solutions were to then be created. This 

was to investigate two possibilities, whether the thickness of the film could be 

adequately controlled by varying the concentration of the solutions and to investigate 

which concentration would yield suitable films for laser welding and degradation tests. 

The results of the experiment showed that the 10% w/v   offered the balance of thickness 

and handling. The 8% films were very flaccid and it was envisaged that these films 

would be much harder to clamp in place for welding. The 4% film had a consistency 

described above which broke very easily.  

 

Figure 15 Left to Right; a visual representation of polycaprolactone films 

manufactured through solvent cast method from 4%, 8% and 10% w / v concentrated 

solutions 
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Film Formation in Layers 

In the next experiment, an attempt was made to control the thickness of the films by 

using a technique where each film would be built up in layers. 

A 1-1.5ml volume of stock solution was applied to the surface of a microscope slide 

and placed in a glass tank. The glass lid was replaced and left for more than 14 hours in 

the fume hood. A second layer of stock solution was applied on top of the film that was 

left behind from this period and left to dry once again for more than 14 hours. A third 

layer was applied in the same fashion as before on the next work day. After the third 

layer was added, the 2 layer film dissolved instantaneously on contact with the 

solution. Control of the application of the solution could not be maintained, as it 

spilled out over the edges of the microscope slide. When the film was observed again, a 

change in the physical properties was not expected, but there was an observable 

difference in the “Stiffness” of the film, but no real observable differences in the 

thickness. Due to the difficulties occurring in the control of the application of film 

layers, this method was abandoned in favour of concentration based process. 

Film formation process and SEM analysis 

The initial stages of film formation are associated with loss of solvent, leading to a 

touch dry film that will contain significant quantities of moisture. Subsequent drying 

leads to collapse of the voided structure initially formed to create a densely packed 

structure. This indicates that film formation occurs over a number of stages.  

1. The film solution dries out due to evaporation at a set rate. This leaves a film 

that is dry to the touch, but may still have some solution left inside. The loss of 

this solvent also leaves behind microvoids in the structure of the films. These 

microvoids can be detected using an SEM microscope. 

2. The second stage occurs when the film is completely dry. This causes the 

microvoids in the structure to collapse in on themselves, giving the film a 

smoother appearance under the SEM microscope.  

In latex film formation there is evidence that a drying front first creates micro voids in 

the loosely packed film structure. Evaporation rates are retarded in a latex that is well 

above its Tg  [glass transition temperature] probably as a result of the reduced surface 



Page 33 of 133 
 

area of water caused by extensive particle deformation. It has been suggested that there 

are two important stages in the process of film formation: evaporation of the aqueous 

solvent and deformation/compaction of particles leading to void closure”. (Pethrick, 

1999) The temperature that the evaporation occurs at may also have an effect on the 

formation of voids. The Tg of PCL is -600 so the films were left to dry at room 

temperature. When a film exists at a temperature that is higher than its MFFT 

[Minimum Film Formation Temperature] its resistance to deformation is slight 

(Pethrick, 1999). From these statements it was assumed that drying the films at room 

temperature for a short time (24 hours), there was an increased risk that voids will 

form the top layers, while drying at or near the Tg for the same period, will reduce void 

formation. However, because the Tg of PCL is so low, it became impractical to dry the 

films at this temperature with the instrumentation available at the time. But, evidence 

shown by looking at the SEM images then perhaps drying at room temperature for a 

longer period would also have decreased the risk of void formations.  

All the films manufactured were touch dry after 24hrs, however, SEM analysis was 

carried out on films in an attempt to determine the best minimum length of time that 

the films should be evaporating for. The samples shown here were cut from the centre 

of the film using a standard kitchen scissors. Samples were then placed on a double 

side, self adhesive Carbon tab. All of the images were manipulated using the visual 

software that came with the SEM.  

The first sample observed in the SEM was of the film that was left to evaporate for 

more than 14 hours. At the lower magnification (x 150) the films had shown numerous 

micro voids of around 500 - 1000µm across. The images obtained were from the topside 

of the film (the bottom side would have been in direct contact with the microslide). The 

surface shown here was typical of the surfaces at various positions of the sample. (See 

Figure 17)
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 Figure 16 SEM image of the top side of the sample 1 after been left to dry for more 

than 14 hours. The bottom side of the sample appeared a lot smoother at the same 

magnification. (see figure 17) 
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 Figure 17 SEM of the bottom side of sample 1 after been left to dry for more than 14 

hours(x150 Mag). 

This trend was seen in almost all samples scanned, the top having micro voids and the 

bottom being comparatively smooth.  

 Figure 18 SEM image Sample 2 Topside 
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 Figure 19 SEM image Sample 2 Bottom side 

The occurrence of micro voids seem to have disappeared entirely from the samples that 

were left to evaporate for more than 24 hours (see Figure 21 below)  

The images seem to show that films formation is an active process after the first 24 

hours even if the films themselves appear to have dried out.  

BATCH MANUFACTURING AND PROCESS CONTROL 

Calculating Concentration 

Previous experiments described above had found that the ideal concentration of PCL 

to dichloromethane needed for suitable films was 10%. For batch manufacturing 

purposes it was decided to make up a standard stock solution from which individual 

aliquots of polymer solution would be removed and placed into the special glass 

containers that were used for evaporation. 25g of Polycaprolactone particles were 

dissolved in 250ml of Dichloromethane and used as the standard stock solution.  

The next stage of the process involved calculating the volume of the aliquot removed 

from the stock solution and placed into the glass container. For this calculation it was 

assumed that the film which would be left behind in the evaporation dish would be a 

cylinder, so the formula for calculating volume of a cylinder was used; 
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V=πR2h 

This volume of the aliquot was calculated to be 32 ml. The target thickness of the film 

was approximately 0.2 mm. In order to have tighter control on the environment in 

which the films were drying out in, the container was then covered with a glass dish 

and left in the fumehood. After a period of 7 days, parts of the film was removed from 

the glass lid and cut up using a surgical blade into sections. These sections were 

removed and viewed under the SEM. 

Figure 20 SEM image of a portion of the surface of a batch of PCL films that were left to 

dry 7 days  

An interesting problem with this method started to appear during the manufacture of 

the second batch of films. In these cases, the films had an unusual consistency. The 

surface appeared wrinkly and inconsistent. This was traced back to the way the glass 

dish was placed over the film as it was drying out. The dish that covered the film was 

concave/convex, and when the dish was placed concave (see fig 21) the film appeared 



Page 38 of 133 
 

as described above. But when it was placed Convex, (see fig 22) the film surface 

appeared homogenous.  

 

Figure 21 Pictorial representation of glass dish placed concave over the solvent tank 

 

Figure 22Pictorial representation of glass dish placed convex over the solvent tank 

 

Cursory glance suggests that vapour pressure during the evaporation process plays a 

major role in creating a homogenous solvent cast film. Why this happens or what 

exactly the effect is out beyond the scope of this body of work. 

STATISTICAL PROCESS CONTROL FOR POLYMER FILM MANUFACTURE 
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Once the method of batch manufacture was selected, it was important to be able to 

manufacture polymer films that would have certain physical properties that were 

consistent in order to design a welding process that was optimised to fit those 

properties. For this reason Statistic Process Control (SPC) would need to be applied to 

the batch manufacturing process in order to provide films that were consistent over the 

entire process and were capable of been laser welded using the same welding process 

parameters. The end goal of the process was to provide welded film samples that were 

as uniform as possible so that any variation that appeared in the degradation results 

were due as much as possible to the laser welding process only. This reduced the risk 

of unknown or uncontrolled variables from interfering the experimental results, for 

example, different welding parameters or physical differences in the polymer films 

themselves.  

Process Control 

Statistical Process Control is a specific standard methodology for measuring and 

controlling quality during a particular manufacturing process. Quality data is obtained 

from product or process measurements during real-time manufacturing. All of this 

data is then plotted on a graph within specific control limits that are determined by the 

capability of the process.  

Process Capability 

Process capability describes the variability of the process over a long period of time, 

where all likely external influences are present. Variability can occur due to many 

factors including methods, materials or operators and machines. 

Process capability is determined by comparing the spread of the process to the width 

of the specification limits. Process capability can be used to verify if a product can be 

produced within specification of the process or if the specifications can be tightened 

using the same process. The specification limits are usually determined by customer 

needs. In this case, the specification limits were determined by the range of weights of 

the films that could be satisfactorily welded using an optimised Laser welding process.   

Control Charts 

http://www.infinityqs.com/software/proficient-spc-software-features
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Control Charts are an excellent tool in distinguishing problems in the process due to 

Special Cause or Common Cause variation. Special cause variation occurs when once 

off factor is responsible for samples or a particular batch to fall outside a specified set 

of control limits. For example, in the film formation process described here, the average 

weights in some of the batches were either too heavy or too light. This is an indication 

that there is a root cause that can be assigned to these failures. Common cause 

variation is an indication of chance variation which is inherent in all processes. A 

process that has common cause variation is said to be in statistical control when there 

is no presence of any non-random variation, i.e. no trends occurring in the mean or 

variation points of the graphs. (Harris D.C 2003.) 
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Figure 23 Distribution of individual weights in Single Layer Batch Formation 

Figure 24 above is a histogram developed from every single film that was produced for 

the laser welding process using the single layer batch process. The histogram shows 

that the distribution of the weights is approximately Normal. This is an important fact 

because the upper and lower limits for the process can only be determined if the 

selected quality characteristic is Normally Distributed. As described earlier in the 

chapter, 32ml of dissolved PLC was pipette onto two flat dishes, covered with another 
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dish and left to evaporate for a week. The films were then cut using a surgical blade 

around a glass microslide template and were then weighed to 4 decimal places. At the 

end of each week of manufacture, the process yielded 10 samples; each sample was 

weighed on an analytical balance. The weights were recorded in separate tables and 

each batch was given an individual identifying number. Over the course of the 

research 19 batches were manufactured, two batches however only had a total of 9 

samples. The missing samples were given a weight of 0.000g in order to keep each 

batch size the same. The graph shows that the majority of the sample weights fall 

within 3σ from the centre value. It also showed that there were a number of samples 

that fell outside the “normal” weights produced by the solvent cast method. The fact 

that the data was normally distributed also aided the setting of Upper and Lower 

control limits which was later used to aid selection of films for laser welding as 

discussed in Chapter 3. 

As well as setting upper and lower process control limits, control charts were used to 

construct charts to use as an aid in capturing the natural variation of the Single Layer 

Batch manufacture process. They were also used to look for unusual trends or patterns, 

and to see if the process was in control.  

The quality characteristic of interest for the solvent cast method was weight, as this 

became an important factor in selecting films for laser welding and for measuring the 

effects of degradation (sees chapters 3 and 4).  

At the end of the manufacturing period, the recorded weights were placed in a table 

with their respective batch numbers and the data was manipulated using MinitabTM 

statistical software. 



Page 42 of 133 
 

191715131197531

0.36

0.32

0.28

0.24

0.20

Sample

S
a

m
p

le
 M

e
a

n

__
X=0.2634

UC L=0.3044

LC L=0.2224

191715131197531

0.25

0.20

0.15

0.10

0.05

Sample

S
a

m
p

le
 R

a
n

g
e

_
R=0.1329

UC L=0.2361

LC L=0.0296

Xbar-R Chart of Weight (g)

 

Figure 24 Control Chart for the Solvent Cast method (all Batches) 

The process was then tested for stability to check to see if there were any special causes 

for variation in the solvent cast method. The data was assessed using Xbar and R 

charts. Xbar and R charts are the most commonly used charts to monitor process 

control. The Xbar chart (top graph in fig. 24) tracks changes in the process average or 

mean weight over time. The R chart (bottom graph in fig. 24) monitors changes in 

variability of the process in the short term. Both graphs showed that the process was 

not in control because some batches contained samples that were outside of the control 

limits. These errors were attributed to batches that were manufactured with a stock 

solution that had slightly higher concentrations of PCL to Dichloromethane. Reasons 

for this will be discussed later in the chapter. Once these erroneous batches were traced 

and removed from the data set, another control chart was generated using data from 5 

randomly chosen film samples per batch. (5 being a common sample size for use in 

Xbar and R charts). The results are shown in fig 25 below.  

Capability for this process was measured by using the same 5 random samples that 

were used in the Xbar and R charts above and using the Control limits established for 
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the entire process using data from batches as laid out in fig 26. The results are shown 

below in fig 26. 
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Figure 25 Control chart for  (Revised Control Limits) 

 

Both graphs in fig. 26 show a process that is in statistical control as there are no points 

outside the control limits, no unusual patterns or trends within the control limits (no 

non-random patterns). The graphs also generated revised control limits that were used 

to determine which films minimum and maximum standards for films on which to 

base the laser welding process parameters that were laid out in Chapter 3. 
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Figure 26 Process capability original control limits 

As mentioned before, there were a number of batches that fell outside the control 

limits, skewing the results of the experiments. As seen in fig 24 the batch numbers 

concerned were batch 5, 6, 12 and 17. Investigations into batches 5 and 6 yielded the 

root cause to be a loss of solvent through natural evaporation to an extent that when 

the required volume of stock solution was removed from its primary container and 

placed into the casting dishes, the stock solution concentration was more than the 

required 10% PCL in Dichloromethane. The primary container in this case was the 

volumetric flask that was used to make up the stock solution at 10%.It was discovered 

from the laboratory notes at the time these batches were made that there was a 

significant time difference between the extraction of solution for batch 4, and the 

extraction of solution for batches 5 and 6 which caused the increase in concentration. 

The solutions to this would be:  

1. To increase the number of casting dishes, so more stock solution can be removed 

from its primary container at the start of the process and if possible, to empty the 

primary container initially. This would cut out any loss of solvent over time, 

maintaining the 10% concentration for each batch. 
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2. Using the current number of casting dishes, ensure that the primary container is 

emptied within 3 weeks. 

3. Use smaller volumetric flasks to create the stock solutions for all the batches.  

For batches 12 and 17, no discernible root cause was evident in the note books for why 

the batches were too light. It is suspected that the cause may be due to operator error in 

extracting the volumes of stock solution for these particular batches. (The volumes 

were extracted using a pipette, it maybe just that the operator extracted smaller 

volumes than normal for these batches). 

The process capability results show a Cp of 0.72 and a Cpk also of 0.72. As a general 

rule of thumb, a value of 1 indicates the process variation exactly equals the tolerance, 

values of less than 1 indicate the allowable variation (the tolerance) is less than the 

process variation and values of more than 1 indicate that the process variation is less 

than the tolerance. Values greater than 1 are most desirable, and many quality 

organisations recommend values of 1.33 or greater. This allows a margin of error in 

case a process shift occurs that is not immediately detected. Because the results here are 

low, there is scope for more improvements to be carried out to the process in order to 

tighten the process variation. This could be obtained in a number of ways: 

1. Controlling the temperature of the environment in which the process occurs in, 

as the evaporation process occurred at room temperature, the rate of 

evaporation could be adversely affected by variable room temperature in which 

it was occurring. 

2. Ensure that the casting dishes were kept level at all times, carrying out periodic 

checks to ensure this. (Calibration) 

3. Use a different process technique.  

The overall aim of the process control was to ensure that films that were created for the 

research met a minimum specification and ensure that any variation between the 

degradation rates of the welded films versus the un-welded films was due to the Laser 

welding process only. 

 

 



Page 46 of 133 
 

SUMMARY 

The material chosen for experimentation in this body of work was Polycaprolactone. 

Polycaprolactone was chosen for its wide availability, manageable degradation rate 

and the fact that it could be accelerated if needed by using a combination of Phosphate 

Buffered Saline and lipase. The Polycaprolactone granules were processed into films 

using the Solvent cast method which was selected for its low setup costs. From the 

experiments in the process control parameters for these films, it was found that using a 

stock solution with a concentration of 10% w/v of Polycaprolactone in dichloromethane 

provided the most suitable, tactile films for laser welding. Statistical process control 

was carried out on the manufacturing process in order to achieve a higher degree of 

control over the selection of Polycaprolactone films for the laser welding process. This 

type of SPC cut down on the amount of time spent in optimising the welding process 

by providing an empirical method for providing a steady stream of consistent quality 

films. Further discussion of the how these quality methods impacted on the laser 

welding optimization process can be found in the next chapter.  
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Chapter 3    Laser Welding 

In this chapter, the process of the laser welding of the polymer films is discussed. Also in this 

chapter, the various problems associated with welding films are also explored in some detail. 

There were two types of welding experiments carried out for this chapter. The first was the 

attempt to obtain a good weld, the second was the attempt to weld as much of the surface area of 

the films as possible in order to investigate any effects the laser welding process had on the 

degradation properties of the material 

INTRODUCTION 

As discussed in the introduction, the gain medium for the laser used in these 

experiments was Carbon Dioxide. The laser had an operating wavelength of 10.6µm. 

The laser was manufactured by Synrad, model number J48-1W. There were no lenses 

used to manipulate the beam, which had a beam width of approximately 5mm. The 

only control used for the beam was the laser power setting. The laser itself was 

generated in a continuous pulse wave. The laser set up was used as is, the only 

addition been an Acrylic enclosure that was designed to enclose the whole beam path, 

from the radiation source to the  surface for the polymer films. The setup also had a 

diode laser, which was used as a guide to set the laser beam for automation. 

 

 

 

 

 

 

 

 

 

Figure 27 Plan view of the laser setup. 

Motorized Track  

Sample Holder 

Acrylic Enclosure 

Laser 

Beam Path 

 
X-axis 

 

Y-axis 

 

Z-axis 

 



Page 48 of 133 
 

Initial tests on the laser were carried out to obtain just one good solid weld seam on 

the films and then using the welding parameter to further optimise the parameters of 

the final welding process used to generate test samples for the degradation 

experiments (see table 1).  Once the parameters were narrowed down, the process 

was further optimised to give a weld across the whole surface of the films (see table 

2). As the degradation process for Polycaprolactone occurs in a combination of 

surface and bulk erosion (which is not limited to specific areas of the films), it was 

decided to attempt a complete surface weld in order to achieve relevant experimental 

results. This was expected to give a good correlation of results between non-welded 

and welded films. See chapter 4 for further details.  

THE LASER WELDING PROCESS 

Laser Welding can occur only when the heating effect of the laser radiation extends 

well into the joint to be welded. Penetration of laser welds in polymers occur over a 

wavelength range of 9.12µm to 11µm.There is a narrow temperature band where the 

polymer melts and the polymer decomposes. Control of the temperature in the melt 

pool is critical. (Duley 1998). Treading the border between polymer decomposition 

due to thermal degradation and generating just enough heat to melt the films enough 

to achieve a weld pool constitutes the main difficulty with welding polymers. The 

temperature that this occurs at is so very close to the optimum temperature at which 

the polymers melts to form the weld pool. For PCL this temperature is relatively low, 

at around 600C which made the whole laser welding process into a delicate balancing 

act in order to control the welding process environment. 

With this in mind, initial welding experiments were started at 50% laser power 

setting and a sample movement rate of 30 ms-1. However, the heat generated at these 

settings was enough to burn a hole right through the PCL films. There were two 

options that presented themselves at which this could have been controlled: 

1. The actual amount of laser power applied to the surface. 

2. The speed at which the sample moved to create the weld seams between the 

films. 

In the welding process used for these experiments, the welding process occurs in 

three stages: 
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1. The radiation delivered by the CO2 laser was absorbed by the PCL film on the 

top layer. 

2. The energy absorbed excites the Carbon bonds inside the film causing it to 

heat up. 

3. The heat was then transferred to the film on the bottom layer, inducing both 

films to melt at the point of absorbance and generating the weld pool.  

Another problem that arose while welding the films was the occurrence of holes 

between the weld pools. This was caused by surface tension building up between the 

rapid heating and cooling actions on the same surface in different areas. Special 

welding patterns were put in place to limit these defects, more of which are explained 

later in this chapter. 

Clamping  

Clamping is very important in laser welding, especially important in the welding that 

was carried out in these experiments. However, even though the clamping is 

important, the clamping mechanisms themselves need not be complicated. What 

matters most in the sample clamping is that both films to be welded are held as close 

to each other as possible and as firm as possible, especially in conduction mode lap 

welding that was used here.  Conduction mode lap welding is where one film is laid 

over the other and the laser applied. The energy transfer from the laser to the film 

occurred by heat generated from the molecular vibrations inside the top layer, 

transferring to the bottom layer and causing the two surfaces to melt into one 

another.  

If the films were not clamped together correctly, what tends to happen is that the 

resulting welds are incomplete or that a distortion occurs near the area that does not 

have sufficient clamping force. The distortion is easily spotted, but incomplete welds 

were not as obvious, as the weld pool itself may not have sufficiently bonded in the 

interior of the films which creates weaknesses to the weld strength.  

Weld strength was of lesser importance here, because this body of work is focused 

more with the effects of the welding itself on the degradation properties rather than 

the strength of the welding bond. But clamping was still important to obtaining 

decent weld pools. 



Page 50 of 133 
 

The clamping mode was limited by the setup of the laser apparatus. The film had to 

be attached in some way to the aluminium “Arm” that was in turn attached to the 

automotive movement table. (See fig 28)  

This arm consisted of a number of aluminium plates bolted together to form an 

“elbow” on to which a film holder could be attached. Two separate bespoke clamping 

methods were created for the two stages of the process development.  

In the first stage of development a clamp was created to hold the films in close 

contact with each other in order to explore the best laser welding parameters to be 

used to create a single weld seam. The clamping method used for this particular weld 

was made up of a glass rod stuck onto the middle of the surface of a microscope slide. 

The two films were pressed together and draped across the glass rod and held 

together at both ends of the microscope slide with sticky tape. The idea behind 

draping the films over the glass rod was that both films would be forced close 

together at the point where the two films cross the glass rod. This point created an 

excellent fit up and it was along this point that the film was exposed to the laser. The 

whole clamping mechanism, along the films to be welded were then held in place on 

the “elbow” of the film holder using “bluetactm”   

For the multiple seam welds, a slightly different setup was designed in order to 

achieve good ‘fit ups’ for both films across the entire surface of the films. Also the 

clamps themselves had to be placed in such a way as to expose the maximum surface 

area of the films to the laser itself. This design consisted of a single microscope slide 

and four separate bobby pins to apply the forces needed to keep the films pressed 

together in order to achieve a solid weld.  Two pins were placed on the slide by 

sliding them length ways in parallel with each other. The films that were to be 

welded were then draped over the bumpy side of the pins and then both films were 

clamped onto the microscope slide using the second pair of pins. The crest of the 

bumps on the bobby pins provided excellent points of force application which spread 

evenly across the entire surface are of the films. The microscope slide itself was held 

into position on the film holder again using “bluetactm” 
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Figure 28 Sample Clamping, two bobby pins (for this purpose, termed “foundation 

Pins”) are fixed to the microslide and are held on under the tension generated by the 

bobby pins on the glass surface 
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Figure 29 Sample Clamping 2, the sample to be welded is then placed over the 

Foundation pins. Two more pins are placed near the edges of the weld samples, 

therefor fixing the samples on tight to the slide. This particular set up generates two 

separate clamping forces onto the weld sample. The first is the downward pressure 

provided by the pins on the edge, fixing the sample in position. The second force is 

generated by the “bumps” on the foundation pins which keep the film pressed firmly 

together in the centre.   

 

Film Sample Movement 

The setup of the laser welding apparatus kept the laser in a fixed position and allowed 

the film to be welded to move through 3 axis, X, Y & Z. The sample movement was 

controlled us a DS (Dynamic Systems) controller. Motion control was programmed 

using the Super SEL programming language and connected to the central processing 

unit (CPU) via an RS232 cable connection. The system velocity could be set in 1mm/sec 

increments, and allowed different velocities to be set for each position change. The 

maximum stroke length along the X axis was 500mm, Y and Z axis were both 50mm. 
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The actuator had two different levels of repeatability, +-0.05 mm and +-0.02on the X axis. 

The movement was driven by an AC servo motor and ball screw for multiple 

positioning. A magnetic brake was installed on the Z axis to prevent the arm from 

dropping in the event of power loss.  

The controller that was used to control the movement itself was a 32 bit RISC CPU that 

used Windows NT software. The CPU was used in Program mode, and parallel 

processed signals coming from the Laser unit, external warning light and a guide diode 

laser used for programming the position of the weld seams. A PC was used to interface 

with the programs used to control the welding process parameters.  

Programming 

Each position for the sample movement had to be programmed individually through 

the SEL programming language as described above. The position of the film holder 

was programmed in three axis, X,Y and Z. The values for these positions were retained 

in a separate file to the main program called a position file and had its own *.PNT 

extension. The velocity of the actuator was also stored in this particular program. The 

main program itself, governed the timing of the sequences and the activation of each of 

the inputs, for example, turning on and off the laser, the warning light and the diode 

laser that was used as a guide for the welding process. These values were stored in the 

program with the file extension of *.PRG. For the complete program used in the both 

single and multi seam welds, please see Appendix A. 

Parameter Selection 

There were only two parameters that could have been manipulated in this setup in 

order to control this welding process. The first was laser power which could be 

adjusted manually through a dial control and the second was the movement speed of 

the film to be welded relative to the lasing source, which was fixed. The laser power 

could be adjusted in increments of 0.5% of total laser power and the movement speed 

was controlled by the manipulating the control software called SEL.  

The movement speed of the film was in fact an important parameter to control, because 

the movement speed dictated the laser contact time with the samples to be welded (the 

longer the laser contact time, the greater the amount of heat generated in the films). 
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The contact time indirectly depended on the programming parameters that were 

programmed in the SEL programming software. By adjusting these parameters, and by 

adequately controlling the clamping conditions as explained above, a plan was devised 

to select the best parameters to use in welding of the samples.  

The first laser firing was carried out at 50% laser power on a sheet of paper. The reason 

for this was two-fold, first, it gave an indication of the position of the weld spot in 

relation to the film holder and second, it gave an indication on the diameter of the weld 

spot, (which turned out to be approximately 5mm).  Once the position and size of the 

weld was determined, two full sized PCL films were placed together in a clamping 

device which was based on the single weld seam discussed previously and placed in 

the film holder. The program was run and the weld quality was assessed after, based 

on the whether the weld pool had fused both films together at the seam.  

This was the exploratory phase of the experiments. The goal of this phase was to pin 

point the starting parameter selections, i.e. laser power and movement and from here 

process could be optimized further to give consistently good welds. Each of the films 

was selected using the criteria laid out in previously in Chapter two under the process 

control section. Both films were placed together in the clamping set up (for single 

welds) and the lasing program was run.  If the weld seam was not satisfactory, a 

second pair of films was selected and the process was adjusted before running the 

program again. A table was created using the results of this phase and can be viewed 

in Table 1 below.  

% Laser Power Film Holder Speed ms-1 Result 

50 30 Both layers degraded. 

45 30 Top layer degraded, 
burned holes in second 
layer. 

40 30 Top layer degraded, second 
layer seems untouched. 

35 30 Weld pool created, but 
with holes burned through. 
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% Laser Power Film Holder Speed ms-1 Result 

30 30 Weld pool generated in 
both layers, hardly any 
burn holes, but the surface 
seems warped. 

25 30 No weld pool generated. 
Faint outlines of the laser 
exposure on the surface of 
the top layer. 

Table 1 Stage one of Laser Process Parameter Selection 

From the results of this phase of experimentation, it was found that a parameter 

combination of laser power 30% and sample speed of 30 ms-1 achieved the most 

satisfactory weld seam. The next phase was designed to fine tune the parameters using 

this as a starting point in order to produce even better quality welds. The aim of this 

phase of the experiment was to see if the selected parameters produced a consistently 

good weld on new films that had been selected based on the criteria mentioned in 

chapter two. There were some other adjustments made to the process and films also in 

order to achieve the results. It was decided at this point that in order to preserve 

similar environments for the welded and non-welded films during the degradation 

experiments, both sets of samples should have similar weights. This would preserve 

the polymer mass to volume of degradation solution ratio in the experiment, the 

importance of which is further discussed in chapter four.  

PROCESS OPTIMIZATION 

In this phase, a film sample was selected, folded in half and then cut along the centre 

line, creating a film sample that was the same weight as the non-welded films. The new 

films were then placed in the single weld seam clamping device and the lasing 

program was run. This process was repeated four more times using different films. 

This was to test if the samples could be welded consistently using the same 

parameters. The description of the results obtained in table 2 below were a summary of 

the majority of what was evident from each 5 sample batch used in the optimisation 

process. 
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% Laser Power Sample Speed 

ms-1 

Result Image 

30 30 Partial mixed weld 

pool top and 

bottom. (heat was 

not transferred 

adequately to 

bottom layer). 

 

32 30 Good weld pool 

formation. Top 

layer damaged in 

some areas with 

burn marks.  

29 20 Several burn holes 

through both 

layers. 

 

28 20 Several burn holes 

through both 

layers. 

 

27 20 Partial weld pool 

formed. Few burn 

marks. (heat not 

transferred to 

bottom layer)  
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% Laser Power Sample Speed 

ms-1 

Result Image 

26 25 Good melt pool 

formed.  Holes in 

top layer 

 

26 20 No weld pool 

formation. No heat 

transfer to bottom 

layer. 

 

27 10 Good melt pool 

formed. Holes in 

top layer 

 

27 12 Melt pool formed, 

but not all the way 

through second 

layer. Holes in top 

layer  
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% Laser Power Sample Speed 

ms-1 

Result Image 

27.5 12.5 Good weld pool 

formed. Good 

transfer to both 

layers 
 

Table 2 Stage two, Laser Process Optimization 

Once stage 2 had been completed and the parameters were pinned down for single 

seam welding, the program was adjusted accordingly to cope with running multiple 

weld seams across the surface of the samples welding the films together. The use of 

multiple welds required some further process optimization. These optimizations took 

the form of slight changes to the speed of the sample movement, and built-in time 

delays to the programming to allow for the seams to cool and solidify before the next 

seam was produced. The reasons for this are described below in the results section. As 

in stage two, the films were welded in batches of five and pooled together in order to 

have a good number of samples available to the researcher for selection for the 

degradation experiments as laid out in chapter four.    
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Figure 30 Sample of a multiple seam weld 

RESULTS OF OPTIMIZATION PROCESS EXPERIMENTS 

Initial tests showed that there were six main factors affecting the quality of the weld 

pools.  

1. The obvious one was the percentage laser power used in the weld, the higher 

the percentage, the more likely the films would go into thermal degradation.  

2. The exposure time the film surface had to the laser, the longer the surface was 

exposed, the more radiation that part of the film received.  

3. Cooling time of the weld seams. This did not have as much of an effect on the 

single welds as it did on the multiple welds however.  

4. Inherent deficiencies present in the films themselves. Despite every effort to 

maintain a homogenous film thickness, in some cases this did not occur, and 

resulted in differences in the rate thermal degradation in individual films.  

5. Clamping.  

6. Mechanical forces within the welded films occurring due to the cooling of 

material in the weld pool. 
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Percentage Laser Power: As discussed in the parameter selection section above, the 

laser power was manually controlled via a dial on the laser unit. When the films were 

welded at this setting however, they were almost completely degraded on initial 

exposure. Using 50% as a starting level, subsequent welds were carried out on films, 

with the level decreased by 5% for each run. At 30% weld power, the top samples were 

not as badly degraded and there was decent mixing of the two layers in the weld pool. 

Laser Exposure Time: The time that the films were exposed to the laser was governed 

by the speed at which the sample was moved in front of the laser. The slower the 

speed, the longer the surface was subjected to the Laser radiation. The default speed of 

the sample holder was at 30 ms-1 and was used initially to get a decent weld, without 

too much thermal degradation on the top film. When this was achieved, the speed of 

the sample movement was adjusted during the process optimization stage. The 

optimized speed for acceptable weld pools was found to be 12.5 ms-1 

Film Thickness/weak spots: Occasionally, some films would be obliterated by the 

same parameters that were used to successfully weld other films. This could be traced 

in the majority of cases to the fact the film that was been welded weighed less than the 

average films. Concurrently, films that weighed more than the average did not 

generate sufficient melt between the two layers. Weight was an indication of the 

thickness of the films, and any films that did not have sufficient weld pools were 

discarded. This waste was lessened by only selecting films that met certain weight 

restrictions. Through experimental methods, the ideal weight was found to be 0.2570 +-

0.0900.  

Cooling Time: This came more of an issue for the multiple weld seams. Problems were 

occurring when a second weld seam was started before the first one had cooled. As the 

border of the first seam cooled, it shrunk, placing a mechanical strain on the second 

seam which resulted in the surface between the seams being pulled apart. This was 

corrected by changing the order and position of individual weld pools as shown in the 

diagram below. 

 

 

1       3      5         7         6       4       2 
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Figure 32 Defects on sample due to Insufficient cooling time 

Clamping: As discussed previously, it was of vital importance that the two samples 

were kept in close contact throughout the welding process. It is shown in the picture 

below; the samples took on a warped appearance if the clamping mechanism was not 

spreading sufficient clamping force in that area. In the example below, the warpage 

was caused when insufficient clamping force failed to hold the two films together 

adequately at point A. This introduced a void, or bubble which warped the surface in 

the surrounding area. 

Figure 31 Direction and position of individual weld seams in multi welded films 
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Figure 33 Example defective welds due to  poor clamping 

Thermally Generated Mechanical Strain: Similar defects occurred in this way as they 

did in the section discussed in Cooling time. They almost always occurred in films that 

had multiple weld seams. They differed slightly in the fact that the films were well 

within the weight tolerances discussed in the film thickness section. The defects were 

lessened by alternating weld pools and also slightly increasing the cooling time, 

especially in sections were the weld seams were close together. Thermally Generated 

Mechanical strain occurs when a force deferential appears between two sections of the 

same surface of the samples being welded. This force differential can be destructive 

when one section cools faster than the other section, with the contraction force due to 

the cooling creating an increase in surface tension, pulling the two sections apart.     
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Figure 34 Examples of defective welds due to Thermally Generated Mechanical Strain. 

SUMMARY 

The aim of this chapter was to describe the process involved in achieving consistently 

good quality welds on the polymer films. It also described in detail the good and bad 

affects that clamping, laser radiation exposure time, and the quality of the films that 

were welded using specific welding process parameters. The welding process went 

through three distinct phases at the development stage. The phases were as follows: 

1. The exploratory phase where roughly estimated parameter selections were 

used to generate a single acceptable weld pool. 

2. Optimization phase where the selected parameters discovered in the 

exploratory phase above were used on five consecutive films to verify that 

these parameters provided a consistently good quality weld seam for each film.  

3. Parameters used in the optimization phase were then applied to weld films 

with multiple seams, ready for the degradation part of the experiments. 

At the end of the three stages of optimization, the end result was a stable process that 

welded large quantities of films together with the minimum input from the user at the 

start of each batch. The process took into account the thin line between the attainment 

of a good weld seam and the total thermal degradation of the polymer that was to be 

welded. It also kept wastage to a minimum through following of a selection process of 
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films laid out in chapter two and fine tuning the welding process parameters around 

this sample selection process. It also maximised the amount of samples available to 

continue on with Degradation testing itself which is discussed in greater detail in 

Chapter four. 
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Chapter 4     Degradation Testing 
In this chapter the Degradation Mechanisms of the biomaterial are discussed along with the 

effects the Laser welding had on the rate and structures of the material itself. The degradation 

was split into two phases, Phase 1 where untreated samples were degraded for 18 weeks in 

Phosphate Buffered Saline (PBS) and PBS containing 1 mg/L of Porcine Lipase. Degradation 

was characterized using weight loss, pH and HPLC testing. Degraded samples were also 

viewed with a Scanning Electron Microscope at different stages of the Degradation Process. 

Phase 2 consisted of the same tests on biodegradable films that were either treated by laser or 

actually welded together. Comparative analysis was then completed on both sets of data. 

INTRODUCTION 

All polymers degrade eventually, over time spans ranging from six minutes (poly-

anhydrides) to 83,000 years (poly-amides). For the purposes of medical devices, drug 

delivery or Tissue engineering, most materials require a degradation time of between 

several weeks and up to 2 years. (Göpferich 1996) 

Degradation for most semi-crystalline polymers typically happens in two stages. In 

the first stage, degradation preferentially occurs in amorphous regions as some of the 

water from the PBS penetrates the bulk of the film through the cavities between the 

amorphous regions of the polymer. The remaining polymer chains then start to align 

in a more crystalline structure. As more amorphous material is lost through 

degradation, the crystalline portions of the polymer get shorter and are open to 

hydrolytic and enzymatic degradation, increasing the rates of degradation for that 

portion of the process. (Middleton & Tipton 2000)  

As part of the Laser Welding project, it was decided to carry out some degradation 

studies on the biodegradable material to see if any changes were evident once the 

material was Laser welded. Samples were initially degraded before the laser welding 

process was applied in order to obtain baseline data onto which we could work from.  

METHOD 

Films of PCL measuring  on average 26x76x0.2 mm were degraded in 25 ml of 

Phosphate buffered saline (PBS) and PBS 1mg/l Lipase at 370 C for 16 weeks. A set of 

three samples were removed every 2 weeks and analysed under Scanning Electron 
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microscope (SEM). The dry weights were measured and results were tabulated in an 

Excel spreadsheet. The PBS and PBS/Lipase was renewed twice a week and pH 

measurements were taken at each change over (PBS samples only). The PBS came in 

tablets and was sourced from Sigma Aldritch. Each tablet generated 200ml of solution 

at pH of 7.3. The Lipase (porcine) was as also sourced from Sigma Aldritch and came 

in powder form.  

SEM 

For the SEM analysis, samples were cut using a blade from the samples that seemed 

to have had the highest mass loss. These samples were cut to approximately 5 mm 

square, usually cut from an area in the centre of the film and in some cases, areas that 

included the edge of the original sample. The samples were attached to Carbon Tabs 

of 12 mm diameter and then placed on aluminium stubs. The entire film surface was 

first viewed at a lower magnification of 150. The field of view was then moved from 

right to left, then down along the edge, left to right, up along the other edge, and back 

across to the opposite side. Any typical images were taken and saved at 

magnifications of 150, 500, 1000, 1500, 5000 and in some cases 10000. The SEM was a 

Hitachi TM-1000 table top microscope. The Working Distance was 6440 µm and the 

Emission Current was 57900 A. The acceleration voltage used to obtain the images 

was 15kV.  

pH 

For the pH analysis a Thermo Scientific, Orion Star meter was used in conjunction 

with a VWR International, gel filled glass probe. Readings were taken twice a week 

during the buffer change. The meter was calibrated prior to use, (At least twice a 

week), using three buffer solutions purchased from Acros Organics: phthalate buffer 

solution pH 4.01, phosphate buffer solution pH 7.00 and borate buffer solution pH 

10.01.The pH was then recorded in an Excel spreadsheet, where the differences in 

measurements were graphed. The data for this table was obtained by measuring the 

pH of the buffer before it was placed in the petri dishes with sample and then 

measured again at the next buffer changeover. The differences were then plotted on a 

graph to verify chemical changes if any were occurring during the degradation 

process.  
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The PBS was sourced from SigmaAldritch and came in tablet form. Each Tablet was 

dissolved in 200ml of Ultrapure water obtained on site. This solution was measured 

and had an average pH of 7.3 

Weight Loss 

Before the samples were placed in the petri dishes for degradation studies, each one 

was individually measured and weighed using a standard300mm rule for the lengths 

and an analytical balance that had the capability to weigh down to 0.0001g. . The 

weights were then recorded on the lid of the petri dishes for future reference. There 

were three samples representing each of the time intervals of the degradation process. 

The Time intervals were split into 8 different segments, each segment representing 2 

weeks of degradation time. The interval samples were placed in the incubator every 2 

weeks. The samples were then washed with distilled water, placed in the incubator 

over night to remove the bulk of the water. The samples were then placed in a 

desiccating tank for a week to remove the rest of the water content. Samples were 

then taken out of the desiccating tank and weighed on an analytical balance. From 

which the weight was the recorded to 4 decimal places in grams.  

The mass loss was calculated by subtracting the weights of the film after the 16 week 

degradation process from the initial weights recorded prior to immersion in the 

degradation solution. The percentage weight loss was then calculated from these 

figures, with the average % weight loss plotted in a graph. (See fig. 37) 

Liquid Chromatography 

Liquid chromatography testing was carried out on the supernatant that was removed 

from the film samples at each changeover (PBS only). Samples were tested in 

triplicate on a Varians ProStar 335 HPLC with a C18 column and a combined UV-

PDA detector. The detector was set up to analyze the ssamples for traces of Caproic 

acid as an indicator of how the degradation was progressing. 20µl of the sample was 

injected onto the column which had Water / Acetonitrile Mobile phase pumped 

through on various isocratic and gradient flow rates. The pH of the Mobile phase was 

controlled to pH of 4 using Hydrochloric acid. The chromatographs were analysed 

using the software that was provided with the instrument and was called “Star 

Driver”. The column was at room temperature. 
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RESULTS 

Weight Loss 

The samples that were used in the weight loss experiments measured 76x26x0.2 mm 

and had an average weight of 0.2570g. They were placed in individual petri dishes and 

degraded in 25ml of 1g/litre porcine lipase in PBS. The reason this was chosen was 

because it has been shown previously that lipase accelerates the degradation of the 

family of polymers know as Poly-ortho-esters to which Polycaprolactone belongs to. 

(Chen et al. 2000) 

The graph below shows a comparison of the degradation rates of films immersed in the 

PBS only and in the PBS lipase. 

 

Figure 35 Weight loss comparisons between PBS, and PBS/Lipase solutions 

Data gathered from this experiment showed that the degradation rated of films 

submerged in PBS/lipase solution was significantly increased and was chosen as the 

preferred method for gathering data on the weight loss experiments.  

Welded samples were placed in PBS/Lipase solutions and allowed to degrade for 16 

weeks. The results are reported in the graph below. 
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Figure 36 Comparisons of Average % Weight Loss, welded, non-welded and treated 

samples  

Each time interval represented 2 weeks of degradation. As in the pH experiments, the 

PBS/lipase solution was changed twice a week. The graph shows that the average 

percentage weight loss was similar between the welded and non-welded films up until 

Interval 6 (12 weeks degrading), where the average weight loss of the welded films 

was greater than the non-welded films. Selective chemical degradation of semi-

crystalline polymer samples shows certain characteristic changes. During degradation, 

the crystallinity of the sample increases rapidly at first, then levels off to a much slower 

rate as the crystallinity approaches 100%. This is attributed to the eventual 

disappearance of the amorphous portions of the sample. (Chandra & Rustgi 1998). This 

is the reason why there is a drop in the % weight loss for the non-welded films at 

interval 6, after 12 weeks the majority of the remaining material is crystalline in nature 

and has started to slow. On the other hand, in the welded films, because the laser 

welding process has changed the ratio of amorphous to crystalline material, even at 16 

weeks, the film is still appears to be more amorphous in nature and continues to lose 

mass. Further evidence of the importance of the polymorphisim on the degradation 

rates is illustrated in the SEM section, in images figs. 39 to 58.  
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pH 

Previous publications, (Bosworth & Downes 2010)(Vey et al. 2011), have stated that as 

the film degrades, it releases acidic compounds into the surrounding PBS liquid that it 

is degrading in, thereby effecting its overall pH. It was thought at the time that this 

characteristic could be used as a secondary measure of the degradation rates and the 

results from controls and welded samples could be compared. It was assumed that as 

the film degrades, so would the size of the pH drop throughout the process. This 

assumption was also based on experimental results obtained by diluting set volumes of 

Caproic Acid into PBS and building up a standard curve. The results of this experiment 

are in fig. 37 below. 

 

Figure 37 Standard Curve pH vs Volume of Caproic acid added 

On average, the pH dropped by 0.42 for every 5µl of caproic acid added to PBS. 

However, over the course of the degradation experiments on the films themselves, the 

largest pH drop was 0.2 for the welded samples, and 0.15 for the non-welded samples. 

The total average pH drop for welded samples over the 18 weeks was 0.89 and the total 

average drop for the non-welded samples was 0.73.  

Initially, the pH readings varied throughout the test process, with no trends evident 

from the table of results. A number of specific reasons for this presented themselves, 

but the most likely cause, is due to the difference in polymer mass to volume of 
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degradation medium ratio used. The samples from the initial readings were taken from 

samples that were 1/3 the size of subsequent degradation tests. A similar phenomena  

was reported by (Vey et al. 2011) when they investigated the in vitro degradation of 

poly(lactic-co-glycolic) acid copolymer with different lactic to glycolic ratio.  

The pH results reported here were rerun with full size films (76mm x 26mm x 0.2mm 

average) for another 18 weeks in PBS solutions. pH readings were obtained every two 

weeks as per initial method. Each pH difference was noted and placed in an Excel 

spreadsheet. Each reading corresponding to the particular time interval was averaged 

and the results were then plotted on a graph with pH difference on the Y-Axis and the 

number of weeks on the X-axis, see fig. 38 below. 

For the welded samples, the same test was carried out. The welded films were placed 

in PBS solutions and allowed to degrade for 18 weeks. The results are plotted in the 

graph below. 

 

 

Figure 38 Welded and Controls, a pH comparison 
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It can be seen from the graph in fig. 38 that the pH drop did not increase incrementally 

like the % weight loss results did. Taken out of context, it would appear that as a 

measure of degradation, it shows that the films degrade at different rates (speeding up, 

then inexplicably slowing down half way through the process). As it turns out, when 

observed in context with the SEM images, the results actually point out the points in 

the process where the material composition changes from mostly amorphous to mostly 

crystalline, pointing to the presence of the two step degradation process that has been 

discussed here previously in the introduction. (Middleton & Tipton 2000) 

SEM 

SEM images were taken at various positions of the surface of the films for each 

interval. Positions of interest were saved as JPEG images and the images of both 

welded and non-  welded films were compared to each other at set magnifications.  

150 times Magnification                 

 

Figure 39 No Degradation, Welded                  
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Figure 40 No Degradation Non-welded 

No Degradation: Initial appearances show very little difference in the structure of the 

films. The non-welded sample (Fig. 41) looks “bumpier”. This is to be expected as the 

laser welding action smoothes things out in the weld pool. However, at higher 

magnifications, the non-welded sample does start out slightly more crystalline as will 

be shown below.  
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Figure 41 Welded film, x500 Magnification     

 

Figure 42 Non-welded film, x500 Magnification 
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Figure 43 Interval 1, Welded   
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Figure 44 SEM image of the Non-welded Film surface after 2 weeks,  

Interval 1: The welded sample shown in fig. 44 had a more porous appearance which 

may be due to the faster release of amorphous material into the supernatant. This can 

be seen in an increase in pH at the earlier stages of degradation. The non-welded 

sample in fig. 45 is becoming increasingly crystalline as shown by the growth in 

spherulite formation. It has been documented in previous publications that spherulites 

are usually crystalline and intermediate and non-spherulites are amorphous. (Gupta 

2010). However, the % weight loss for both films appear to be at similar rates to each 

other. 
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Figure 45 SEM Image of the Welded film surface after 4 weeks.  
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Figure 46 SEM image of a Non-Welded film surface after 2 weeks. 

Interval 2: The welded films are retaining their amorphous appearance where as the 

surface of the non-welded samples is almost completely covered in spherulites. The 

lighter coloured “blobs” were also analysed using the Energy Dispersive X-ray 

Spectrometer that came with the microscope and show traces of Carbon (the majority), 

Oxygen, Nitrogen, Chlorine and Sodium. See related information in Appendix B. As 

before, the % weight losses for both films have similar trends. 
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Figure 47 SEM image of a Welded film surface after 6 weeks
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Figure 48 SEM image of a Non-welded film surface after 6 weeks. 

Interval 3: The welded films are starting to become more porous as more material is 

being lost into the supernatant.. The weight loss for both type of films are the same at 

this point. The non-welded sample, in fig. 49 instead of becoming porous seems to 

becoming more crystalline in nature. The bright lines around the boundaries of the 

spherulites are an amalgamation of lamellae from the surrounding crystals beginning 

to grow into the non-crystallized areas. This happens when the lamellae from both 

crystals extend across their respective boundaries into any un-crystallised 

material.(Gupta 2010) 
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Figure 49 SEM Image of a Welded film surface  after 8 weeks.

 



Page 82 of 133 
 

 

Figure 50 SEM image of the surface of Non-welded film after 8 weeks. 

Interval 4: Small spherulites are starting to form on the surface of the welded films, 

with small percentage material loss in the predominantly amorphous regions. The non-

welded film on the other hand is still contains majority crystalline material. Also, some 

material is beginning to degrade away from the lamellae that make up the spherulites. 

According to the weight loss graph, at 8 weeks degradation it appears that both 

welded and non-welded films have the same % weight loss. It is clear however that the 

causes of the weight loss in both films are different. The SEM image shows that the 

welded films still retain a larger amorphous ratio of material and the weight loss is 

happening in the first stage of degradation. The SEM images for the non-welded films 

show that the material has a larger ratio of crystalline material, and all weight loss is 

occurring in the second stage of degradation. The weight loss that occurs in the second 

stage is due to the lipase starting to attack the smaller, more crystalline oligimers, 

which are not as acidic as the oligmers that are entering the supernatant from material 

that is predominantly amorphous in nature.  
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Figure 51 SEM image of the surface of a Welded film after 10 weeks
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Figure 52 SEM image of the surface of a Non-welded film after 10 weeks. 

Interval 5: Spherullites in both welded (fig. 51) and non-welded (fig. 52) are similar in 

size, however, there is more uncrystallised material between the spherulites in the 

welded films than in the non-welded films. There also seems to be more material 

degraded from the surface of the welded samples that in the non-welded samples. 

Some degradation is happening though, as the weight loss is still increasing. It is also 

evident from the SEM pictures, as it appears that there is some amorphous type 

material left. There does not appear to be too much degradation happening in the non-

welded films however but this is to be expected because the material is near totally 

crystalline, making it harder for the lipase to attack the molecules.   
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Figure 53 SEM image of the surface of a Welded film after 12 weeks 
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Figure 54 SEM image of the surface of a Non-welded film after 12 weeks  

Interval 6: At this interval, a dramatic change occurs to the non-welded film (right). 

This has occurred because the crystalline molecules have lost so much material that the 

lipase is finding it easier to attack the remaining chains. This also has the affect of 

speeding up autocatalysis within the bulk of the material. It also shows up as a slight 

increase in acidity. The % weight loss graph shows that degradation is still happening, 

more than likely due to a combination of the last of the amorphous and the start of the 

lipase attacking the crystalline chains.    



Page 87 of 133 
 

 

Figure 55 SEM image of the surface of a Welded film after 14 weeks. 
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Figure 56 SEM image of the surface of a Non-welded film after 14 weeks 

Interval 7: Similar views as interval 6, however the mass loss in the non-welded sample 

is not as dramatic. There is a slightly more crystalline appearance on the welded films 

(Fig. 55) than there was in interval 6. The non-welded films also seem to have more 

pores within the crystalline matrix which could be attributed to the second stage of 

degradation getting well under way.  
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Figure 57 Interval 8, Welded
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Figure 58 Interval 8, Non-welded 

Interval 8: Welded samples continue to show effects of degradation, as the surface is 

stippled with pores. The non-welded films are the same, except that the holes are 

bigger but are smaller in number. There appears to be large cracks appearing across 

surface of the non-welded films indicating that the films are starting to lose mechanical 

integrity and approaching total degradation. The welded films still seem to have 

retained mechanical integrity at this stage, but %weight loss rate is still increasing 

indicating that degradation is still progressing.  

Liquid Chromatography 

The results obtained from the liquid chromatography were inconclusive. The 

chromatograms themselves were not robust enough to obtain any usable data. It is 

hoped that future work will be able to qualitatively and quantitatively discern 

degradation products in the supernatant. See Appendix C for sample chromatographs.  

 

 



Page 91 of 133 
 

Statistical Analysis 

In order to analyze this data further, statistical analysis was carried out on the 

individual % weight loss of all twenty four experimental films. Student T tests carried 

out on the individual Interval sample sets appear to support this fact that % weight 

loss was similar for the first twelve weeks. The P values for the first 6 intervals were 

greater than 0.05. The P-values for those results are shown in the table below. 

 

Time Interval % Mass loss Non-

welded 

% Mass loss 

Welded 

P-value 

Interval 1 2.294246 0.912647 0.111912 
7.235255 1.052221 

8.338558 1.060396 

Interval 2 3.020355 1.815112 0.113332 
5.538315 0.864909 

7.959049 1.702296 

Interval 3 15.49839 12.4812 0.453851 
22.6209 13.10025 

8.374223 11.11516 

Interval 4 10.63036 14.01836 0.783944 
14.97366 17.29167 

18.59449 14.94418 

Interval 5 10.1836 23.94075 0.696132 
30.36031 24.91289 

43.23444 20.7648 

Interval 6 43.56923 34.59038        0.67907 
42.07906 36.17778 

17.87418 25.44732 

Interval 7 26.83721 52.57193 0.002268 
21.76428 50.95735 

26.86047 51.95777 

Interval 8 49.25244 77.29049 0.071862 
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Time Interval % Mass loss Non-

welded 

% Mass loss 

Welded 

P-value 

38.2447 64.28022 

44.84174 54.02387 

Table 3 P-Values for Interval % weight loss measurements 

The Null Hypothesis for these samples was that both % weight loss measurements for 

each data set were the same. For the results after fourteen weeks the P value was less 

than 0.05, thereby rejecting the null hypothesis ( i.e. the results from Intervals 7 and 8 

are significantly different). 

Taking intro account this statistical information provided here and the evidence 

presented by the weight loss data, there appears to be a number of factors responsible 

for the difference in weight loss percentage of the films from Interval 6 onwards. The 

single most factor that we have identified for this seems to be that the non-welded 

films entered the second phase of degradation at least four weeks before the welded 

films, thereby degrading faster. This suggests that the laser welding effects the 

polymorphism of the polymer material indirectly, by a rapid heating and cooling 

during the welding function. This in turn affects the ability of aqueous solution to 

penetrate into the bulk of the material at an earlier stage, making the films appear to be 

degrading faster.  

SUMMARY 

Initial degradation experiments were carried out on film samples in order to obtain 

some baseline data on the actual degradation rate of Polycaprolactone. Two major 

points were discovered at this stage: 

1. Full sized films needed to be used to generate results at sufficient levels that 

could be monitored with the instruments that were available to the researcher 

at the time 

2. The degradation process could be speeded up using lipase at concentrations of 

1mg/L 

 Once these factors were established, three sets of films were degraded in the 

PBS/lipase mediums: 
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1. Non-welded samples x3 

2. Laser welded samples x3 

3. Laser treated samples x3 

The samples were placed into three sets of three and placed into the degradation 

medium concurrently. (i.e. the films that were recorded as degrading for 16 weeks 

were placed first, and labelled as Interval 8, then films that were recorded as Interval 7 

were placed into the degradation medium two weeks later etc). At the end of the 16 

week, each set of films for each interval were dried out and weighed and recorded on a 

graph. Also, SEM images were obtained of each of the degraded films to build up a 

pictorial archive to track the degradation process in conjunction with the weight loss 

results. 

When all the data was collected, weight loss graphs for the welded and non-welded 

films were compared in a Student T test to see if there were any significant differences 

attached to the results.  

Other experiments were carried at on the films at the same time as the ones above, 

(HPLC, pH) but no usable data was obtained. Conclusions to weight loss experiments 

and how the Laser welding process affects the degradation properties of the PCL films 

are discussed in the next chapter.  
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Chapter 5       Conclusion and Future Work 

 

In this chapter, the results of the laser welding and degradation are discussed. The goal of this 

body of work was to discover if the process of laser welding had any effect on the biodegradation 

rates of the material. The key questions were “Does the laser welding process have an effect and 

if there is, does it speed up or slowdown the degradation?” The results from the SEM and 

weight loss will provide some of the talking points starting with the weight loss. A  brief outline 

of where the process may be improved and a brief discussion on possible future work that could 

be carried out. 

CONCLUSIONS  

It has been well documented in several research papers that degradation happens 

preferentially, and faster, in the amorphous regions, but takes longer to degrade in the 

crystalline regions. From the results reported in the previous chapter, it is clear that 

both welded and non-welded films follow the same two-step process.  

The difference that the laser welding makes to the films is the fact that the laser 

welding process somehow increases the ratio between the amorphous and crystalline 

parts of the material, in favour of the amorphous. This in turn delays the time taken to 

degrade the welded films by approximately 4 weeks. This is evident in the SEM images 

taken of the welded and non-welded films from Interval 6 or 12 weeks into the 

degradation process. You can see in the image below that there seems to be more 

material loss in the non-welded films than the welded films. You can also see how 

highly crystalline the material is at this point even though both films have almost the 

same rate of % weight loss.  
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Figure 59 Interval 6 Non-welded versus Welded films at x500 magnification (non-

welded on the left) 

Upon taken the holistic view of the % weight loss graphs in isolation, it appears that 

both types of films (welded and non-welded) have similar rates of degradation all the 

way up to this point at 12 weeks. You can see this in the graph below 
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Figure 60 % weight loss of Welded and non-welded films. 

If the degradation experiments were carried out beyond the sixteen weeks that was 

done here, the welded films would most likely show a similar slow down in the 

degradation rate as the non-welded samples at the twenty week mark. However, there 

is too little data here to say this for sure. There are hints in the SEM images from the 

welded samples at intervals 5 to 8 that the remaining material is starting to look more 

crystalline in nature and if it will start to slow down, possibly with 2 to 4 weeks after 

Interval 8. Another point to note is that the SEM analysis shows the effect of 

degradation at the surface of the films, even though the degradation process occurs in 

bulk. 

Another possibility would be that the laser welding had changed the ratio between 

amorphous to crystalline that the remaining material would have so little crystalline 

material left that it would not be adequate to slow down the mass loss during the 

degradation in the later stages. This could open the possibility that both type of films 

would in fact degrade at the same time. However the research from other sources 

indicates that the degradation happens in a two stage process, with hydrolytic 

degradation occurring first in the amorphous regions and the second stage where 

degradation occurs on the remaining crystalline material through dissolution. There 
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are no indicators apparent in this body of work that point to any significant differences 

to the established theories.  

 

Taking the current information gathered from the results of the numerous experiments 

listed, does the laser welding process have an effect on the degradation properties of 

Polycaprolactone? Results suggest that it does, in and indirect way,  especially between 

weeks 12 and 14. More work may need to done to determine what the exact cause or 

causes are. What was put forward in the discussion above may become a good start 

point to find out.  
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FUTURE WORK 

 

Following on from the work above, there a number of avenues to pursue in which to 

increase the knowledge base. The obvious and most important one would be to 

increase the degradation time intervals until there the films completely degrade. This 

will give important results into whether an increase in crystallinity slows down the 

degradation rates for the welded samples as well as the non-welded samples. It will 

also give definitive results on rate of degradation of both types of films.  

 

Another avenue to explore would be to carry out some Gel Permeation 

Chromatography (GPC) to the degradation process. GPC is a size exclusion 

chromatography type of analysis and is used in a lot of polymer analysis. GPC has a 

well-defined separation time due to the fact that there is a final elution volume for all 

unretained analytes. It also provides narrow bands, although this aspect of GPC is 

more difficult for polymer samples that have broad ranges of molecular weights 

present in the degrading films. Also the analytes do not interact chemically or 

physically with the column, there is a lower chance for analyte loss to occur. GPC 

would have provided good information to changes to the average molecular weights 

that the films would go through, and would provide more data to enhance the current 

data provided by the pH graphs. It was hoped that the HPLC results would have 

provided similar data, but issues with the testing suitability and robustness hampered 

efforts. Making the change to a different HPLC column may have helped with the 

issues however, and if time permitted, this would have been the next option to take.  

 

Differential Scanning Calorimetry (DSC) was another analytical technique that was 

discussed at the start of the process to track possible changes in crystallinity through 

the degradation process. DSC is a thermo-analytical technique in which the difference 

in the amount of heat required to increase the temperature the PCL sample and 

reference (usually polystyrene) is measured as a function of temperature. Glass 

transitions (the reversible transition in amorphous materials or in amorphous regions 

within semi crystalline materials from a hard and relatively brittle state into a molten 

or rubber-like state) may occur as the temperature of an amorphous solid is increased. 

These transitions appear as a step in the baseline of the recorded DSC signal. This is 
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due to the sample undergoing a change in heat capacity; no formal phase change 

occurs. (Woodruff & Hutmacher 2010) 

 

However, the time it would take to get the processes up and running proved to be 

prohibitive for this body of work. DSC could have provided more definitive data on 

the effects of crystallinity on the degradation rates of the films, and could go a long 

way to proving some of the hypothesis discussed in the conclusions above.  

 

The results of this work also opened some other possible lines of inquiry into the 

effects of laser welding on biodegradable materials. The results of this project indicate 

that similar studies need to be run some on other families of biodegradable polymers. 

Examining the degradation rate of PCL and other copolymers would also prove 

worthwhile. With significant advances being made over the past number of years in 

the development of biodegradable materials, more research needs to be carried out on 

the processing techniques to observe any changes of the degradation rates. With the 

increasing use of biodegradable materials as replacement of current therapeutic 

materials, this is becoming increasingly important in order to achieve approval from 

regulatory authorities to help commercialise these technological advances.   
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Appendix A Laser Welding Program 

Weld Program for Multiple Welds: 

 

Step Cnd Cmnd Operand 1 Comment Pst 

1  VEL 10 Speed of  

Movement 

 

2  ACC 0.3 Acceleration 

 

 

3  BTON 303 Warn light 

on 

 

4  BTON 308 laser diode 

on 

 

5  BTON 309 Laser 

Interlock 

 

6  TIMW 5.0 Time Delay  

7  BTON 315 Laser On  

8  MVLI 1   

9  BTOF 315   

10  MVLI 2   

11  BTOF 309   

12  BTOF 303   

13  EXIT    

14      

 

Position Programming for multiple welds 

 

Step Acc Vel Axis 1 Axis 2 Axis 3 

1 7  0.000   0.000   20.000 

2 7  0.000   0.000   - 20.000 
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Appendix B Energy Dispersive X-ray Results 

 

 
Figure 61 Examples of ‘White Blobs’ Analyzed with EDx 



Page 2 of 6 
 

 

Figure 62 EDx Spectrum Graph of fig 61. 

Spectrum: Acquisition 

 

Element   AN  Series  unn. C norm. C Atom. C Error 

                      [wt.%]  [wt.%]  [at.%]   [%] 

-------------------------------------------------- 

Carbon    6  K-series  60.33   61.30   78.02  21.2 

Chlorine  17 K-series  26.65   27.07   11.67   0.9 

Oxygen    8  K-series   9.42    9.57    9.15   3.5 

Aluminium 13 K-series   2.02    2.05    1.16   0.2 

-------------------------------------------------- 

               Total:  98.42  100.00  100.00 
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Figure 63 Acquisition table and Histogram of fig 61. 

Figure 64 EDx Area analysis of partially degraded PCL films 
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Figure 65 Spectrum Graph of fig 64. 

 

Spectrum: Acquisition 

 

Element  AN  Series  unn. C norm. C Atom. C Error 

                     [wt.%]  [wt.%]  [at.%]   [%] 

------------------------------------------------- 

Carbon   6  K-series  66.37   66.37   74.37  15.3 

Oxygen   8  K-series  25.77   25.77   21.67   5.9 

Sodium   11 K-series   4.71    4.71    2.76   0.4 

Chlorine 17 K-series   3.15    3.15    1.20   0.2 

------------------------------------------------- 

              Total: 100.00  100.00  100.00 
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Figure 66 Acquisition table and Histogram of fig 64 

Traces of sodium and chloride present or most due to trace amounts from the 

degradation medium (PBS with lipase). The aluminum present most likely came from 

contact made during the film processing phase (when cut into sections) or from contact 

with the stub that the film samples were placed on prior to being examined in the SEM. 
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Appendix C HPLC Chromatograms 

Initially it was hoped to link the experimental results from the pH analysis with the 

HPLC analysis experiments. The pH results were hoped to provide a visual 

representation of the degradation rates and the HPLC analysis providing the empirical 

results. However, with the small quantities involved with those degradation 

experimental results, it proved extremely difficult to draw specific conclusion from the 

data. Regardless, the results obtained for both welded and un-welded films are 

provided here for reference.   

 
Figure 67 pH Measurements Welded films 

 

 
Figure 68 Welded films Interval 2 

0.0000

0.0500

0.1000

0.1500

0.2000

0.2500

1 2 3 4 5 6 7 8 9

A
ve

ra
ge

 p
H

 D
if

er
en

ce
 

Time Interval 

Welded Films 

Welded Films



Page 2 of 6 
 

         Figure 69 Welded Films Interval 3 

 

Figure 70 Welded films Interval 4 

         Figure 71 Welded films Interval 5 

 

Figure 72 Welded Films Interval 6 
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         Figure 73 Welded films Interval 7 

 

Figure 74 Welded films Interval 8 

 

Figure 75 Welded films Interval 9  
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Figure 76 pH measurements of un-welded films 

 

Figure 77 Un-welded films Interval 2 

 

Figure 78 Un-welded films Interval 3 
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Figure 79 Un-welded films Interval 4 

 

Figure 80 Un-welded films Interval 5 

 

Figure 81 Un-welded films Interval 6 
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Figure 82 Un-welded films Interval 7 

 

Figure 83 Un-welded films Interval 8 

 

Figure 84 Un-welded films Interval 9 
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