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Ericka Murray 

JL6stract
The oestrogenic activity of solid phase-extracted (Empore SDB-XC disks) samples of 
wastewater influent and effluent in four wastewater treatment plants (WWTPs) in 
Ireland was estimated using the Yeast Oestrogen Screen (YES). Oestrogen activities 
were expressed as 17p-oestradiol equivalents (EEQ). The oestrogen activity o f the 
effluent was reduced during treatment in the two larger WWTPs by 100% and 45%- 
56% respectively, the former being equipped with an extended aeration oxidation ditch 
with diffused air aeration followed by chemical precipitation and the latter equipped 
with sequential batch reactors with UV disinfection. However the oestrogenic activity 
increased by 21% and 29% during treatment on two sampling occasions for a smaller 
older activated sludge (oxidation ditch) WWTP operating at its population equivalent 
and the oestrogenic activity also increased by 23% on one sampling occasion for 
another small WWTP with a trickling filter system operating at its population 
equivalent. It did, however, reduce the oestrogenicity of the influent on the second 
sampling occasion by 43%. This study demonstrates the varying efficiencies o f the 
different types of treatment systems used in WWTPs. It also demonstrates the 
importance o f the upgrading and proper maintenance of WWTPs which are operating 
above their capacity and are incapable of sufficiently treating influent with regard to 
oestrogens and oestrogen mimicking compounds.
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Chapter 1.0 Literature Review



1.1 Hypotheses and Objectives

It is only in recent years in Ireland that awareness about endocrine disruption in 

the environment has increased, Dempsey and Costello (1998) reviewed oestrogen 

mimicking chemicals in relation to water quality in Ireland and found no information on 

the levels o f natural or synthetic oestrogens, alkylphenol or alkylphenol ethoxylates, 

dioxins, phthalates or phytoestrogens in Irish fresh water systems. However, these 

compounds are continuously entering our freshwater environments through sewage 

discharge, land run-off, atmospheric deposition and leachate from landfills.

The first hypothesis this study will address is the reduction in oestrogenicity 

from wastewater influent to effluent and that use of different treatment systems provides 

varying degrees of removal. Oestrogenic activity is to be assessed using the 

Recombinant Yeast Oestrogen Screen (YES).

The second hypothesis this study will address is that the YES assay is 

compatible for the analysis of treated sludge samples extracted by soxhlet extraction. 

This would allow assessment of the oestrogenic potency o f untreated and treated sludge 

which is important as the latter may be used as biosolids on agricultural land. Many 

endocrine disrupting compounds are lipophilic and persistent in the environment and 

may bioconcentrate in the soil and enter the food chain. The presence of these 

compounds in bio so lids poses a threat to human health.

Objectives of the study are to:

o Establish the YES assay by testing known steroidal oestrogens and 

xenoestrogens.

o Establish an extraction method of oestrogenic compounds from wastewater 

influents and effluents of four wastewater treatment plants in order to determine 

the oestrogenic potency of the wastewaters by means o f the YES assay, 

o Determine the oestrogenic potency of sewage sludge by means of soxhlet 

extraction and biological analysis with the YES assay.



1.2 History of Endocrine Disruption

Worldwide contamination by endocrine disruptors is the result of various factors 

such as deliberate release (incineration, landfill, pulp-mill effluent, industrial and 

municipal wastewater effluent) or accidental release (agricultural run-off into the 

environment, accidental pollution incidences) of endocrine disrupting compounds and 

the incorporation of these compounds into consumer products (for example; 

contraceptives, pesticides, biocides, dioxins, plasticisers, and surfactants) (Myers et al,

2003).

Large volumes of man-made chemicals have been released into the environment 

since the 1940s, the first of which found to be oestrogenic was the insecticide, DDT. It 

was shown to affect the reproductive system in birds (Fry and Toone, 1981) and 

mammals such as seals (Bergman et al 1994) and reptiles (Guillette et al 1994). 

Incidences o f occupational exposure were also identified. In 1949 reduced sperm 

counts were reported in aviation crop dusters handling DDT (Singer et al 1949). In the 

1970s in Virginia, US, factory workers at a plant synthesizing another insecticide, 

kepone were reported to have headaches, tremors, liver toxicity and low sperm counts 

(Guzelian, 1982).

From 1948 to 1971, the synthetic oestrogen, diethylstilbestrol (DES) was 

prescribed to pregnant women to prevent miscarriages. It failed its purpose and in 1971, 

incidences o f unusual vaginal cancers were reported in teenage girls whose mothers had 

taken the drug (Herbst et al 1971) along with cases of uterine and cervical

malformations (Kaufman et a l, 1977; Bibbo et a l , 1977) and immune system

suppression (Vingerhoets et a l, 1998). Structural, functional and cellular abnormalities

(Gill et al 1976; Klip et al 2002) were reported in exposed male offspring

demonstrating that DES affected human reproductive development.

In 1980, a major spill of the organochlorine pesticide Dicofol contaminated with 

15% DDT and its metabolites DDD and DDE occurred at Lake Apopka, in central 

Florida. The population of American alligator in the lake dramatically decreased in the 

1980s and still has not recovered. Guillette et al (1994) suggested that the sex organs of 

juveniles from Lake Apopka have been permanently altered in ovo implying that it is 

improbable that normal sexual maturation will, occur. Juvenile male alligators were



found to have 70% lower plasma testosterone levels and significantly smaller penis size 

than juvenile males from a control lake (Guillette et a l , 1996).

Contaminants of laboratory experiments on oestrogens have led to the discovery 

of xenoestrogens such as 4-nonylphenol which was being released from plastic 

centrifuge tubes (Soto et al. 1991), and bisphenol-A which was being released from 

polycarbonate flasks during autoclaving (Krishnan et al 1993) and also from 

polycarbonate animal cages commonly used to house aquatic laboratory animals 

(Howdeshell et al 2003).

In 1982 the French restriction o f the use of tributyl tin (TBT) formulations in 

antifouling paint on boats less than 25m in length came into legislation due to the 

androgenic effect TBT had on female molluscs. This compound induced imposex 

whereby female molluscs develop male gonads (Alzieu et al, 1991). Regulation was 

subsequently brought into effect in the USA, UK, Ireland and other European countries 

in 1987 and application of TBT on vessels has been banned since 2003 under the 

Marketing and Use Directive (76/769/EEC).

The concept of endocrine disruption in freshwater fish was first realised in the 

early 1990s when anglers discovered hermaphrodite roach in the lagoons o f sewage 

treatment plants in the UK (Purdom et al 1994). The authors carried out an initial study 

in which rainbow trout were placed in cages in the effluent of a sewage treatment plant. 

Plasma vitellogenin concentrations in male fish (usually low to non-existent in male fish 

as it is produced by sexually maturing female fish) increased more than 1000 times after 

3 weeks. An extensive survey o f 15 sewage treatment plants in England was carried out 

and the increase in vitellogenin concentration was found to range from 500-100,000 

times compared to the control. The authors suggested that the compound responsible 

for the oestrogenic effect of the effluent may be ethinyl-oestradiol or alkylphenol 

ethoxylates which are products of degradation of surfactants and detergents during the 

wastewater treatment process for example, nonylphenol. Laboratory, studies on ethinyl- 

oestradiol carried out by Purdom et al (1994) demonstrated that concentrations of 

ethinyl-oestradiol as low as l-10ng/l could result in the same oestrogenic effect 

exhibited by fish in the study. Subsequent studies in Britain such as those carried out by 

Harries et al (1996; 1997), and Jobling et al (.1998; 2003) and in other countries; 

Sweden; Larsson et al. (1999), Spain; Lavado et al (2004) reiterated findings of



Purdom et al (1994) demonstrating the extensiveness of the problem which is the 

oestrogenic effect of effluent on freshwater fish.

1.3 The Endocrine System

The endocrine system, along with the nervous system, regulates and integrates 

the functionality o f different cells within multicellular organisms and is responsible for 

growth, sexual maturation, and reproduction. The major vertebrate endocrine glands 

include the gonads, pancreas, kidney, the adrenal, parathyroid, thyroid and pituitary 

glands and the hypothalamus. Each gland secretes controlled amounts of specific 

hormones into the bloodstream that travel to target organs to act as chemical messengers 

invoking specific target cells to change their growth pattern or activity. These target 

cells consist of a binding site, or receptor and an effector site. When hormones bind to 

the receptor (forming ligand-hormone receptor complexes), the effector site is altered 

triggering gene expression, which consequentially produces the desired response 

(Cornwell et al, 2004; Fairbrother, 2000).

Some “free” hormone molecules are inactivated before reaching the receptors 

and are then excreted primarily by the liver and kidneys in a process called metabolic 

clearance. If the metabolic clearance rate of a specific hormone is low, the hormone 

remains in the body longer increasing its interaction with receptors resulting in more 

responses (Birkett, 2003a).

Control of ovulation is the main function of oestrogens and secondary functions 

include sex determination, development and maintenance of secondary sexual 

characteristics, regulation o f reproductive behaviour and regulation of calcium and 

water homeostasis (Fairbrother, 2000). The most important oestrogen is oestradiol. 

The equivalent male hormones to oestrogens are androgens, the most important being 

testosterone.



1.4 Natural and Steroidal oestrogens

1.4.1 Steroidal oestrogens

Estrío!
• HO

Oestrone

Figure 1.4.1: Chemical structures of 17p»oestradiol (E2), oestriol (E3), oestrone 
(El) (http://lpi.oregonstate.edu/infocenter/phytochemicals/lignans/estrogens.html), 
ethinyl-oestradiol (EE2)(http://www.internal.eawag.ch/~maurer/Nova/bedu/
ster_data_body.htm) and diethylstilbestrol (DES) (http://www.aw- 
bc.com/mathews/ch23/des.htm)

17p-oestradiol (E2) is the most important naturally occurring oestrogenic 

hormone (Figure 1,4.1). All steroids, share the same lipophilic hydrocarbon ring nucleus 

as their parent compound cholesterol. This structure consists of three hexagonal rings 

(ABC) and one pentagonal ring (D) (Figure 1.4.1). All oestrogens contain eighteen 

carbons. An addition to this structure is the hydroxyl group at position 3 of the phenolic 

A-ring common in all steroidal oestrogens. Different steroidal oestrogens have different 

hydrophilic groups bound to the pentagonal D-ring i.e.E2 has an hydroxyl group and El 

has a carbonyl group (Figure 1.1) (Fairbrother, 2000).

Steroidal oestrogens are isolated from the urine of pregnant mares or are 

synthesised (International Agency for Research on Cancer (IARC), 1999) and have 

several applications. Conjugated oestrogens, oestradiol and synthetic oestrogens in 

particular ethinyl-oestradiol (EE2) (Figure 1.4.1) and E2 valerate are commonly used 

for oestrogen replacement therapy or in combination with a progestogen for hormone 

replacement therapy. Oestrogens. are used in oral contraceptives with combined oral 

contraceptive formulations typically consisting of EE2 and various progestogens. The 

synthetic steroidal oestrogen, EE2 was synthesized from E2 to produce a more stable 

compound which could be used as an oral contraceptive. The current dose of EE2 in 

oral contraceptives is 20|xg (Siitterlin et a l , 2003). Oestrogens are also, used in the

http://lpi.oregonstate.edu/infocenter/phytochemicals/lignans/estrogens.html
http://www.internal.eawag.ch/~maurer/Nova/bedu/
http://www.aw-


treatment of prostrate and breast cancer (IARC, 1999). Additionally there is a 

veterinary application o f oestrogens whereby they are used to develop single-sex 

populations of fish (Piferrer, 2001).

The oestrogenicity of E2 has been assessed by various assays and expressed as 

ECso values as can be seen in table 1.4.1 whereby the EC50 is the concentration of a 

compound that produces a half-maximal response (median effective concentration) 

(Rutishauser et a l, 2004).

Table 1.4.1: EC50 values (M) of 17p-oestradiol determined by various in-vitro 

assays

E C 50 value (M) Assay R eference

2 .5 x l0 ' 8 YES Matsui et a l , 2000

lx lO ' 10 YES Legler et a l., 2002

2 . 1xlO ' 10 YES Folmar et al., 2002

2.25xl0"lu YES Gaido et a l ,  1997, Sohoni and Sumpter, 1998

2.72-4.39x10 '1Ü YES Witters et a l , 2001

5 .14x10“ YES Svenson et a l , 2003

4x10 '" YES Hamblen et al., 2003

2 x 1 0 '" luciferase assay Cargouet et al., 2004

5 x l0 ' 12 luciferase assay G utendorf and W estendorf, 2001

3 .2 x 1 0 “ E-Screen Folmar et al., 2002

5 x l0 ' 12 E-Screen G utendorf and W estendorf, 2001

6.2x1 O' 12 E-Screen K om er et al., 2001

l xlO"7 Carp hepatocyte Smeets et a l  1999a

EC50 values determined by the luciferase assay with luciferase assay (MELN 

cells) and the E-Screen bioassay are one to two magnitudes lower than those determined 

by YES (Table 1.4.1). An EC50 value several magnitudes higher (1x10"7M) was 

determined by a carp hepatocyte assay by Smeets et al (1999a). The EC50 values of 

oestrone (El) are higher resulting in lower potencies ranging from ten times,and 100 

times less potent in the E-Screen (Komer et a l9 2001, Gutendorf and Westendorf, 2001 

respectively) and half the potency of E2 in the YES assay (Pawlowski et al (2004). 

Matsui et al (2000) determined that El exhibited 0.21 times the activity of E2 while



sulphate and glucuronide conjugates of E2 exhibited activity greater than four orders of 

magnitude less than E2.

EC50 values for oestriol (E3) are typically 2-3 magnitudes higher than that of E2 

resulting in potencies approximately 275 times lower determined by yeast assay (Gaido 

et al, 1997, Matsui et a l , 2000, and Svenson et a l , 2003).

Potencies determined for EE2 range from 0.5 times the potency (Folmar et a l , 

2002; Saito et a l , 2002) to 0.8 times the potency (Gutendorf and Westendorf, 2001) to 

approximately equal potency (Komer et a l, 2001) of E2 as determined by the E-Screen. 

The potency of EE2 is reiterated in in vivo studies on fish in which an EE2 

concentration o f only 10ng/l was sufficient to inhibit growth and condition of fathead 

minnow (Pimephales promelas) after three weeks and resulted in vitellogenin levels 500 

times higher than the control fish. Also the number of eggs spawned progressively 

decreased at EE2 concentrations above lng/1 (Jobling et a l , 2003).

Diethylstilbesterol (DES) was the first synthetic oestrogen (Figure 1.4.1). It was 

widely prescribed as a treatment to prevent miscarriages, or premature labour from the 

early 1940s until 1971 when it was linked to a rare form of vaginal cancer in daughters 

of women who had taken the drug. DES was prescribed in the 1970s for other uses 

including control of menstrual disorders, hormone replacement therapy, relief or 

prevention of postpartum breast engorgement, palliative treatment for breast cancer in 

postmenopausal women and prostate cancer in men and as a post coital contraceptive. 

Gradually, the approval of DES for these purposes was withdrawn, however, its use in 

clinical trials for treatment of prostate and breast cancer continued (Smith et a l 1998; 

Peethambaram et al, 1999).

Folmar et al. (2002) derived EC50 values for DES of 1.3xl0"M  and 1,9xlO'10M 

from E-screen and YES assays respectively which represented potencies 0.4 and 0.9 

times lower than that of the standard. Gaido et al (1997) calculated DES to be over 1.5 

times as potent asE2 using a yeast assay. There is a degree of variance among results of  

studies reviewed since Sohoni and Sumpter (1998) employed the same yeast assay but 

found DES to be five times less potent than E2. In a carp hepatocyte assay DES was 

found to be half as potent as E2 (Smeets et a l , 1999a).



1.4.2 Phytoestrogens

Figure 1.4.2: Chemical structure of genestein 
(http://www.labmaster.fi/products/tr-fia-kits/genistein-tr-fia.htm)

Phytoestrogens are produced naturally in several classes of plants such as 

legumes, cereals, grasses and herbs. These substances regulate plant hormones, deter 

herbivores and they shield plants from damage by UV radiation. There are several 

groups of phytoestrogens; isoflavones, lignans, coumestans, chalcones and resorcyclic 

acid lactones (Lagana et a l , 2004), the first two groups being given the most attention 

in terms o f endocrine disruption. Isoflavones are synthesized in soybeans and other 

legumes and include genistein (Figure 1.4.2), daidzein and equol. Lignans are found in 

flaxseed and include enterolactone and enterodiol. Coumestans are produced in 

sprouting plants such as alfalfa (Lephart et a l, 2005).

The EC50 value o f the phytoestrogen coumestrol was derived to be 77 times less 

potent than E2 by the yeast assay (Gaido et a l, 1997), and 900-1000 times less potent 

than E2 by the E-screen assay and luciferase reporter gene assay (Gutendorf and 

Westendorf, 2001). The authors also analysed genestein and found it to be 7,600 times 

less potent as E2 in the luciferase reporter gene assay with MVLN cells, 8,000 times 

less potent in the E-screen and 10,000 times less potent in competitive binding with the 

ERa receptor. Genestein was found to be approximately 11,000 and 12,500 times less 

potent than E2 in the YES assay by Matsui et al (2000) and Tanaka et al (2001).
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1.5 Human hormone metabolism

Vertebrates synthesise steroids via a pathway that involves the progressive 

degradation o f cholesterol to progestins, then androgens, for example testosterone, and 

finally to oestrogens such as E2. This pathway is common to both males and females, 

and circulating plasma concentrations of androgens and oestrogens relate to the rate of 

conversion between the two. It is the ratio of androgens to oestrogens that creates a 

male versus female hormonal environment (Fairbrother, 2000).

The endogenous steroidal oestrogens E2 and El are mainly produced in the 

ovary and testis and in both humans and mammals oestrogens undergo various 

transformations, mainly in the liver. Frequently they are oxidized, hydroxylated, 

deoxidised and methylated before conjugation with glucuronic acid or sulphonic acid 

and excretion as glucuronides and sulphonides (Mao et a l , 2004). For instance, E2 is 

rapidly oxidized to El. (Temes et al, 1999b). Oestrogens are principally excreted as 

inactive polar conjugates. E2 is predominantly found as E2-3-glucuronide, El as E l-3- 

sulphate and E3 as E3-16-glucuronide. Studies on the pharmacokinetics of EE2 have 

shown that a percentage (1-26%) of the drug is excreted in the free form (Johnson et al, 

2000). Metabolites are primarily glucuronides or sulphates and a small proportion of 

sulpho-glucuronides (Mao et a l , 2004).

Free oestrogens were not detected in female urine in a study of oestrogens 

excreted daily by 72 women (D’Ascenzo et al, 2003). Oestrogen glucuronides 

accounted for approximately 80% of the total oestrogen derivatives while the remaining 

20% was made up of oestrogen sulphonides.

Discrepancies exist among results of studies on oestrogen and oestrogen 

metabolites excreted in urine. A study carried out on 150 women by Key et al (1996) 

found that women naturally excrete 3.5fig/day o f E2, 7 jig/day of El, and 4.8jag/day E3. 

Based on earlier studies, Johnson et al (2000) assumed that females excreted 

approximately 3.5jag/day of E2, 8)ig/day of El and 4.8 jig/day of E3. Pregnant women 

were assumed to excrete 259|ig/day of E2, 600|ig/day of El and 6000jag/day of E3. 

Mao et al (2004) examined oestrogen levels in 10 men and 10 women. They detected 

averages of 2240|ig/l E2, 770|ig/l E3 and 60|lg/l 17a-EE2 among females. Interestingly, 

a higher concentration of l,300fig/l 17a-EE2 was detected in males.



1.6 Classification o f Endocrine Disruptors

The European Union defines an endocrine disruptor as an exogenous substance 

that causes adverse health effects in an intact organism, or its progeny, secondary to 

changes in endocrine function (EU, 1996). However, how can an effect be categorized 

as being adverse? An endocrine disruptor may cause an effect which may not be 

adverse, but the exogenous substance in question is still an endocrine disruptor. 

Kavlock el al. (1996) provided the following definition “An environmental endocrine or 

hormone disruptor may be defined as an exogenous agent that interferes with the 

synthesis, secretion, transport, binding, action, or elimination o f natural hormones in the 

body that are responsible for the maintenance o f homeostasis, reproduction, 

development and/or behaviour". Endocrine disruptors can be differentiated into two 

categories; natural and synthetic (Figure 1.6).

Figure 1.6: Classification o f endocrine disruptors.

Endocrine disrupting chemicals can also be differentiated according to those that 

were intentionally designed to disrupt the endocrine system for example, oral 

contraceptives, hormone replacement therapy and pesticides, and those that were 

designed for other purposes or bccamc altered through use or disposal and disrupted 

endocrine function as a secondary effect.



1.6.1 Xenoestrogens

1.6.1.1 Bisphenol A (BPA)

HO •OH

Bsfiienol A

Figure 1.6.1.1: Chemical structure of Bisphenol A 
(http://website.lineone.net/~mwarhurst/bisphenol.html)

Bisphenols are hydroxylated diphenylalkanes consisting of two phenolic rings

resins and polycarbonate plastics. The resins are used to line the inner surface of food 

cans and bottle tops. The plastics are used to make food and beverage containers 

(Goodson et al 2002). BP A is used in some polymers used in dental treatment. BP A 

can be leached from the coating of tin cans when they are autoclaved after canning. 

Goodson et al (2002) reported concentrations o f bisphenol A in 62 different canned 

foods ranging from l\xg in creamed rice to 4 2 2 in ham. Leaching of BP A can also 

occur from reusable containers including polycarbonate baby bottles (Sun et a l , 2000) 

and polycarbonate animal cages used in laboratories (Howdeshell et al 2003).

Using the E-screen bio assay and the luciferase reporter gene assay Gutendorf 

and Westendorf (2001) determined BP A to be 40,000 times less potent than E2. Komer 

et al (2001) found it to be 19,5000 times less potent than E2 in the E-screen assay. Its 

potency was shown to be significantly higher in the YES assay with a potency 10,GOO-

17,000 times lower than that of E2 (Gaido et a l , 1997; Sohoni and Sumpter, 1998; 

Matsui et a l , 2000 and Saito et a l , 2002).

1.6.1.2 Phthalates

joined together by a bridging carbon atom (Figure 1.6.1.1). BP A is used to make epoxy

Bity benzyl phthaiate (BOP)

Figure 1.6.1.2: Chemical structure of Di(2-ethylhexyl)phthalate and
benzylbutylphthalate (http://website.lineone.net/~mwarhurst/phthalates.html)

http://website.lineone.net/~mwarhurst/bisphenol.html
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Some of the more important phthalate esters regarding oestrogenic potency 

include benzylbutylphthalate (BBP) (Figure 1.6.1.2), dibutylphthalate (DBP), 

diisobutylphthalate and diethylphthalate (DEP) and di(2-ethylhexyl)phthalate (DEHP).

Phthalate esters are used in intravenous tubing and as softeners in the 

manufacturing of polyvinyl chloride to give flexibility and workability. They are also 

found in vinyl flooring, emulsion paint and frequently in the ink used to print on board, 

plastic and foil-packed products and some adhesives used in packaging 

(http://www.checnet.org/healthehouse/chemicals/chemicals). Lower molecular weight 

phthalates have the least stability as plasticisers and can migrate from a polymer matrix 

particularly if the plastic is heated or it is in a lipophilic medium (Harris et al. , 1997).

Harris et al. (1997) found BBP, the most potent phthalate was found to be 

approximately one million times less potent than E2 in the YES assay. This 

discrepancy can be attributed to the submaximal dose-response curve produced by BBP 

which does not lend itself to potency derivation. In the oestrogen receptor (mediated)- 

chemical activated luciferase gene expression (ER-CALUX) assay BBP was found to 

have a potency approximately 714,000 times lower than E2 (Legler et al.y 2002) which 

is in closer agreement with results obtained by Harris et al. (1997). DEHP, the most 

extensively used phthalate tested negative in both the ER-CALUX assay and YES 

assay.

1.6.1.3 Polycyclic Aromatic hydrocarbons (PAI Is)

A n th r a c e n e  B enzo (a] p y re n e  P h e n a n th iw e n e

Figure 1.6.1.3: Chemical structure o f anthracene, benzopyrene and 
phenanthracenc (www.csmt.cwu.cdu/csmtychcm/jcorkill/PAH.html)

The basic structure of polycyclic aromatic hydrocarbons (PAHs) consists of  

fused benzene rings (Figure 1.6.1.3). Fertuck et al. (2001) found that heterocyclic 

PAHs which contain an oxygen, sulphur, or nitrogen atom in one o f the rings possess 

oestrogenicity.

http://www.checnet.org/healthehouse/chemicals/chemicals
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PAHs are ubiquitous environmental pollutants. All but one PAH is produced 

intentionally. Naphthalene is produced as a mothproofing agent, in the manufacturing 

of dye-stuffs and in the synthesis of phthalates (Rogers, 1996). PAHs form upon 

incomplete combustion of organic compounds, the main source of PAHs in the air being 

incomplete combustion of wood and fuel for residential heating. PAHs are found in 

vehicular exhausts, coal tar pitch (used in aluminium smelting, roofing and surface 

coatings), coke oven emissions, bitumens, industrial smoke and soot, creosote (used in 

marine pilings, telephone poles and to preserve railroad ties), byproducts of open fires 

including natural forest fires, refuse binning and cigarette and cigar tobacco and smoke 

(Environment Australia, 1999).

1.6.1.4 Polychlorinated Biphenyls (PCBs)

Figure 1.6.1.4: Chemical structure of a polychlorinated biphenyl 
(http://website.lineone.net/~mwarhurst/pcb.htmI)

There are 209 congeners. PCB metabolites are hydroxylated PCBs (OH-PCBs) 

or non-hydroxylated PCBs (Figure 1.6.1.4). PCBs were widely used in electrical 

capacitors, transformers and electrical insulating materials, as wax polishes, high 

temperature lubricants and asphalts (Rogers, 1996). Their extensive use was due to 

their chemical inertness, thermal stability and excellent dielectric properties. PCBs are 

very resistant to biodégradation, they are highly lipophilic and have the potential for 

bioaccumulation (Birkett, 2003b).

Soto et al (1995) carried out a study using the E-screen and discovered several 

novel xenoestrogens among antioxidants, plasticizers, polychlorinated biphenyl 

congeners and pesticides. The authors found that hydroxylated PCBs were more potent 

than non-hydroxylated PCBs. Oestrogenic potency of metabolites is dependent on the 

ortho-Cl and para-OH substitutions on the rings (Birkett, 2003b). Layton et al (2002) 

determined the potency of several PCBs using a modified YES (in which the plastic 96- 

well flat-bottom plates were replaced with glass vials) and found that the most potent 

PCB was five magnitudes of power lower than E2.

http://website.lineone.net/~mwarhurst/pcb.htmI


1.6.1.5 Pesticides

DDT

Figure 1.6.1.5: Chemical structure of a pesticide 
(http://website.lineone.net/~mwarhurst/ddt.html)

Pesticides represent the most extensive group of endocrine disruptors and 

potential endocrine disruptors. Dichlorodiphenyltrichloroethane (DDT) (Figure 1.6.1.5) 

was one o f the most commonly used insecticides worldwide from 1946 to 1972 until it 

was banned. It was used to control insect pests such as the Colorado, potatoe beetle and 

the European comborer. It was also used to control typhus, malaria, body lice and other 

vector diseases in humans. It was banned due to persistence in the environment and 

accumulation in the food chain of it and its metabolite, DDE (Agency of Toxic 

Substances and Disease Registry, 2002). However DDT is still used in African 

countries such as Morrocco, some parts of Asia and Latin American countries such as 

Equador and Brazil (Wandiga, 2001; Zumbado et a l , 2005). Other insecticides include 

heptachlor, lindane, kepone and atrazine.

Sohoni and Sumpter (1998) and Legler et al (2002) determined that o’p’-DDT 

had a potency approximately 100,000 times lower than E2 in the YES Assay and the 

ER-CALUX assay. In a carp hepatocyte assay o’p’-DDT was found to be 5,000 times 

less potent than E2 (Smeets et a l , 1999a).

1.6.1.6 Dioxins

: Apolychlorinated d i te m fo i f f l iv y : ' : :
:TCDD t^l3,7r8-tetracfiforcdiiiefizo-/f e6o>sn)y

Figure 1.6.1.6: Chemical structure of 2,3j7,8-tetrachlorodibenzo-p-dioxin 
(http://website.lineone.net/~mwarhurst/pcb.html)

There are seventeen dioxins; seven are polychlorinated dibenzodioxins (PCDDs) 

and ten are polychlorinated dibenzofurans (PCDFs). Polychlorinated dibenzodioxins 

and polychlorinated dibenzofurans are not manufactured purposely but are produced 

unintentionally through waste incineration, metal production, fossil fuel and wood

http://website.lineone.net/~mwarhurst/ddt.html
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combustion, paper and pulp bleaching and production of certain herbicides (Agency of 

Toxic Substances and Disease Registry, 1999). The most important group of dioxins 

are the 2,3,7,8-congeners including 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) 

(Figure 1.6.1.6) which has the greatest biological activity and toxicity of the group. 

Dioxins are persistent pollutants and have the potential for bioaccumulation (Birkett, 

2003b).

1.6.1.7 Alkylphenolic compounds

CHa -;ch2 ..... c h 3 c h 3

CH3-  CH2 -  CH - CH2-  C -  OH n_C - 6 - C - 6  — 4  OH
*' i I V /  3 I H, I \ __ //  ' ■

ch 3 c h 3 c h 3 2 c h 3 v— 7

Nonylphenol Octylphenol

Figure 1.6.1.7: Chemical structure of 4-nonylphenol 
(www.aperc.org/productinfo.htm) and 4-octylphenol 
(www.cheric.org/resea rch/kdb/hcprop/showprop.php?cmpid=888)

The basic structure of an alkylphenol is an alkyl group which can vary in size, 

branching and position joined to a phenolic ring (Figure 1.6.1.7). Alkylphenol 

polyethoxylates (APEOs) are non-ionic surfactants comprised o f a branched-chain 

alkylphenol which has reacted with ethylene oxide to form a polyoxyethylene derivative 

(Routledge and Sumpter, 1996). Nonylphenol (NP) and octylphenol (OP) are primarily 

used to make alkylphenol ethoxylate (APEO) surfactants Le. detergents and are also 

used as plasticisers. In Europe APEOs are used in industrial detergents, and outside of  

Europe they are also used in many domestic detergents. They are also used in the 

spermicide nonoxynol-9, pesticide formulations and some laboratory detergents 

(www.aperc.org).

NP and OP (Figure 1.6.1.7), their ethoxylates NPnEO and OPnEO and 

carboxylates NPEC and OPEC have been analysed in various oestrogen assays 

producing varied results. Matsui et al (2000) and Saito et al (2002) found that NP had 

a potency 1,000 times lower than that of E2. Sohoni and Sumpter (1998). determined 

NP to have a potency approximately 10,000 times lower than E2 in the YES Assay 

while Folmar et al (2002) derived a potency almost 140,000 times lower than E2 using 

the same assay. Regarding the E-screen assay, Komer et al (2001) reported that NP 

was approximately 13,000 times, less potent as E2 however Gutendorf and Westendorf 

(2001) reported a potency 80,000 times lower than that of the standard. Results for
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relative potencies of OP did agree ranging from 10,000-13,000 times less potent than 

17p-E2 between the two studies using the E-screen.

1.7 Structure and potency

The human oestrogen receptor has relatively low specificity as its binding 

pocket is nearly twice as large as the molecular volume of oestradiol (E2) (Brzozowski 

et a l , 1997). Thus, space is provided for a variety o f other molecules to interact with 

the oestrogen receptor (ER). It is very likely that ERs of all vertebrate species are rather 

similar in their non-specificity of the ligand-binding domain (Brzozowski et al., 1997).

There is a wide structural variety between natural steroids, for example, E2, El, 

and E3, and their natural (phytoestrogens, mycoestrogens) and anthropogenic impostors 

such as pesticides, herbicides, polychlorinated biphenyls, phthalates, plasticizers, 

phenols, anilines, combustion products (for example, dioxins) and breakdown products 

of surfactants. Environmental endocrine disrupting compounds are not necessarily 

structurally related to the naturally occurring steroids which make identification o f these 

compounds almost impossible based on chemical structure alone (Routledge and 

Sumpter, 1996).

Schultz et al (2002) developed structure activity relationships for oestrogenicity 

based on 120 aromatic chemicals in the Saccharomyces cerevisiae- based Lac-Z 

reporter assay and identified three specific 2-D structural features related to 

xenoestrogen activity and potency:

(i) The hydrogen-bonding ability of the phenolic ring mimicking the A-ring

(ii) A hydrophobic core of size and shape like that of the B and C rings

(iii) A hydrogen-bond donor imitating the 17p-hydroxyl moiety of the D-ring 

with an oxygen-to-oxygen distance comparable to that between the 3- and 

17P-hydroxyl groups of E2. An aromatic A-ring with an hydroxyl group at 

position 3 was the most important structural requirement for high affinity 

binding to the oestrogen receptor (Schultz, 2002).

Fang et al (2001) and Miller et al (2001) reported similar findings in structure- 

activity relationship analysis on 230 chemicals including natural and xenoestrogens 

using an ER competitive binding assay.



1.8 Endocrine disrupting modes of action

Endocrine disruption can occur in many ways when an endocrine disrupting 

compound alters the natural hormonal processes of the endocrine system by interacting 

with hormone receptors. A hormonal response is a multi-step process which can be 

disrupted at any point by stimulation or inhibition o f any particular stage in the 

sequence. There are various mechanisms; some direct and some indirect as are present 

in Figure 1.8;

Natural hormone, e.g. oestrogen ------- ►

w
% ^ "’.I
V A '

— - — ►

Normal response
Insufficient/ 
excessive response

Response sent 
at the wrong 

time

Oestrogen mimicking
compound
receptor

cell

Receptor blocked -  inaccessible 
to natural hormone

Figure 1.8: Schematic drawing of normal hormonal response and abnormal 

responses produced by oestrogen mimicking compounds

Direct

o Mimicking or partly mimicking oestrogens and androgens by fitting into the 

hormone receptor and sending messages to receiving genes. Messages sent 

at the wrong time or overproduction of messages can badly affect biological 

functions. These endocrine disruptors are classified as environmental
i

oestrogens, or oestrogen mimicking compounds. This is defined as an 

agonistic effect.

o Binding to the receptor site without activating it, effectively blocking the 

natural hormone from binding. The extent of the effect on the genes depends 

on whether the blocking endocrine disruptor is more or less potent than the 

hormone being blocked. The reason why they are not agonists is because 

they cannot provide the molecular interaction required for activation. These 

endocrine disruptors are anti-oestrogens or anti-androgens. This is defined 

as an antagonistic effect.
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Indirect

o Modifying the number o f hormone receptors in a cell by stimulating the 

formation o f  extra hormone receptors on or within cells. The number o f 

hormone signals increases, thus amplifying the response o f  natural and 

foreign hormones.

o Accelerating the breakdown and elimination o f hormones from the body or 

conversely, destroying the enzymes needed to naturally breakdown 

hormones allowing surplus hormones to remain in the body. Too many 

messages are sent to receiving genes and/or sent at the wrong time. (e.g. 

oestrogens in testis).

o Destroying the hormone in such a way that its structure is altered preventing 

the hormone from fitting into its receptor site.

o Influencing and altering natural hormone production by interfering with 

other hormone systems such as the thyroid system.or the immune or nervous 

systems (Birkett, 2003a). Vingerhoets et a l  (1998) reported associated 

diethylstilbestrol exposure in female offspring o f women who had taken 

DES with immune system suppression.

Some endocrine disrupting compounds are capable o f acting via more than one 

mechanism. Some endocrine disrupting compounds are pure agonists, some are pure 

antagonists while others are partial agonists and partial antagonists and are known as 

Selective Estrogen Receptor Modulators (SERMs). SERMs can be tissue selective 

agonsim/antagonism for example tamoxifen is oestrogenic (agonistic) in uterine, liver 

and osteoblastic cells but it anti-oestrogenic (antagonistic) in breast cells (Inal et a l , 

2005).

There are a number o f  factors which affect the potency o f a compound 

including:

o the ability o f the compound to permeate membranes and reach the 

receptor (Hamblen et a l , 2003) 

o the affinity o f  the compound for the oestrogen receptor which depends 

on its structural features and chemical properties 

o the accumulation o f the compound in the body or environment which can 

relate to chemical properties such as solubility, and hydrophobicity 

(A rn o ld s  a l,  1996).



1.9 Introduction of oestrogenic compounds to wastewater

The wastewater treatment process acts as a means o f  access for endocrine 

disruptors to the aquatic environment due to the partial or complete resistance o f 

endocrine disruptors during the treatment process. Natural oestrogens and 

progesterones are excreted primarily in the urine o f humans and animals but also in the 

faeces in smaller quantities. The use o f oral contraceptives, hormone replacement 

therapy, surfactants, plasticizers, pesticides and agricultural growth enhancers 

contribute to the amount o f  natural oestrogens and progesterones already present. 

Synthetic oestrogens and progesterones such as ethinyl-estradiol and progestogen 

respectively are excreted in the urine o f  females using oral contraceptives. Urban areas 

are important sources o f synthetic chemicals due to industrial emissions, car exhausts, 

combustion processes and natural background atmospheric deposition. Rainwater run

off collects the organics deposited on the ground and combines with wastewater 

draining from these areas in the sewerage system. All the aforementioned endocrine 

disruptors can then enter the aquatic system via the effluent o f sewage treatment plants, 

or industries permitted to discharge effluent directly to waterways. The disposal o f dry 

sludge onto land and the release o f  volatile organic compounds into the atmosphere also 

contribute to this source o f pollution. Non-point sources include urban and agricultural 

run-off (Temes et a l , 1999a).

The compounds deemed responsible for the oestrogenic activity o f  wastewaters 

are the natural hormones; oestrone(El), oestradiol (E2), and oestriol (E3), the synthetic 

hormone, ethinyl-oestradiol (EE2) and to a lesser extent, the alkylphenols nonylphenol 

(NP) and octylphenol (OP)(Desbrow et a l , 1998; Synder et a l , 2001; Aemi et a l , 

2004; Rutishauser et a l , 2004). Komer et a l  (2000) determined that phenolic 

xenoestrogens accounted for only 0.7-4.3% o f the total oestrogenic activity o f effluent 

from a German wastewater treatment plant. NP and OP have exhibited oestrogenic 

potencies several magnitudes lower than that o f E2 in various in-vitro assays for 

example comparison using the Recombinant Yeast Oestrogen Screen (YES) 

demonstrated 4-NP to have an oestrogenic potency three magnitudes less than that o f E2 

(Sohoni and Sumpter, 1998) and using the E-screen assay, Komer et a l (2001) assessed 

the oestrogenic potency o f 4-NP and 4-7-OP to be 7.5x105 times less than that o f E2. 

However, when alkylphenols are present at concentrations higher than ljig/1 in-vivo 

studies have indicated that they could have an input similar to that o f E l or E2 (Johnson 

and Sumpter 2001). This is o f concern particularly, in areas where sewage treatment



plants receive large inputs o f trade waste containing alkylphenolic compounds. 

Sheahan et a l (2002a) detected 63 jig/1 o f NP and 230jig/I o f nonylphenol metabolite in 

%  effluent o f a sewage treatment plant being discharged into the Aire River, UK. These

concentrations are extremely high compared to levels detected in effluent elsewhere;

0.05-1.31 jag NP/1 in a study o f eight European countries (Johnson et a l , 2005) and 0.25- 

2.3jigNP/l in a German effluent (Spengler et a l , 2001).
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1.10 The wastewater treatment process

The function o f  sewage treatment systems is the rapid conversion o f  aqueous 

organic compounds into biomass which is then separated from the aqueous phase by 

settlement (Johnson and Sumpter. 2001). Sewage treatment is typically comprised o f 

four stages (Figure 1.10) sometimes with an additional stage (tertiary treatment) to 

produce a higher quality effluent for example, if effluent is to be discharges to a river 

downstream o f which there is an abstraction point for drinking water or if effluent is to 

be discharged into a lake or into groundwater (Gray, 1998). The population equivalent 

(p.e.) is based on the wastewater flow and the mass o f biochemical oxygen demand that 

one person excretes per day (Smith and Scott. 2002).

Influent

! / / / !  Preliminary screening lo remove large floating objects

Preliminar} grit removal by sedimentation

Primary 
sludge to 
be treated

P rim a ry  sedimentation to remove suspended particlcs. 
May be aided by the use of coagulants

Secondary 
sludge relumed 
to activation 
tank

Secondary trcalincnl-biodcgradation of organic matter by 
microbes Methods include activated sludge or solid 
support bacteria e.g. trickling filter and submerged aerated 
filter

Secondary sludge to 
undergo sludge 
treatment

Efllucnt

Secondary sedimentation to separate microbes from tlie 
effluent

Optional tertiary treatment to produce a higher quality 
effluent. Methods include o/xmation. microstraining, sand 
filtration, activated carbon filtration, grassplots, rccdbcds 
or wetlands

Figure 1.10: Schematic drawing o f  the wastewater treatment process



1.10.1 Preliminary treatment •

Preliminary treatment involves the removal of:

o Large floating objects (paper, plastic, wood etc) by inclined parallel steel 

bars in a process called screening 

o Grit (dense material such as sand, gravel, and glass, metal, and plastic 

fragments) by sedimentation usually in cone-shaped separators by 

centrifugal force or in specialised shallow sedimentation tanks.

Most sewage treatment plants are equipped with storm-water tanks to prevent 

overloading the plant by retaining storm-water and allowing it to join the influent at a 

later period. Removal o f fats, oils and greases is necessary in sewage treatment plants 

whose influents contain a large quantity o f these substances. Removal occurs by 

dissolved air flotation tanks which employ the movement o f minute air bubbles up 

through the flotation tank which become attached to the suspended particles o f fats, oils 

and greases and carry them to the surface where they are removed by skimming (Gray,

1998).

1.10.2 Primary treatment

The purpose o f primary treatment is to allow sedimentation o f the wastewater 

(Langford and Lester, 2003): The sewage is clarified by flotation and settlement. 

Suspended matter o f lesser density than water for example, fats, oils and greases will 

rise to the surface and form a scum which is removed by skimmer blades. Primary 

sedimentation is sufficient for the removal o f small amounts o f fats, oils and greases. 

Suspended matter o f  greater density than water will settle to form primary sludge which 

is usually scraped into a collection point form where it can be pumped. This can be 

aided by addition o f coagulants. All wastewater treatment plants except very small rural 

plants have more than one primary sedimentation tank for maintenance purposes with 

the flow equally divided between the tanks whereas primary sedimentation does not 

occur in oxidation ditches.

1.10.3 Secondary treatment

The aim o f secondary treatment is to allow the primary effluent (the overflow 

from primary treatment) to mix with a dense microbial population under aerobic 

conditions to allow the microorganisms, primarily bacteria, to convert organic matter 

into new cells (Gray, 1998). Three types o f secondary treatment processes employed by 

wastewater treatment plants in this study are activated sludge (o f which oxidation



ditches are one variation), trickling (biological or percolating) filters and sequence batch 

reactors.

All activated systems consist o f two vessels; a reactor tank containing large 

populations o f microorganisms to convert the organic matter and a secondary 

sedimentation tank to clarify or separate the microorganisms from the final effluent by 

allowing solids to collect at the base o f  the tank where they are removed and pumped 

back into the reactor tank as return sludge to return microorganisms to the reactor tank 

(Langford and Lester, 2003). The reactor vessel in the trickling filter system consists o f 

a circular tank containing small pieces o f  medium such as plastic in various shapes to a 

depth o f  approximately two metres and a distribution arm equipped with jets which 

rotates spraying the wastewater evenly over the surface o f  the bed. The microbial 

population is present in a biological film over the large surface area o f the media and 

they remove the organic matter as it trickles down through the media. It is collected at 

the bottom and flows away to the secondary settlement tank. Oxygen is provided by 

natural ventilation whereas in activated sludge it is pumped into the wastewater by 

aerators. The secondary sludge in trickling filter systems is not returned to the reactor 

vessel. The sequence batch reactor activated sludge process consists o f a series o f

reactor tanks in which biological treatment progresses in stages (United States

Environmental Protection Agency, 1999c):

i. The filling o f the reactor with primary effluent

ii. The reaction stage during which biological degradation o f  the
i

wastewater occurs

iii. The settling stage during which.solids are allowed to settle to the bottom 

o f the reactor

iv. The drawing off stage in which effluent is drawn out o f the reactor

v. The idle stage during which there is no activity in the reactor until the

cycle restarts once more.

A continuous flow is achieved when different reactor tanks are at different 

stages o f treatment.

The hydraulic retention time is the flow o f  wastewater in relation to the capacity 

o f the aeration tank. It is typically 5 hours at dry weather flow. The hydraulic retention 

time in European activated sludge sewage treatment plants is often in the range 4-14



hours, while trickling filters which normally serve smaller towns and villages may have 

a hydraulic retention time o f  only 0.5hours ((Johnson and Sumpter, 2001). The sludge 

residence time or sludge age is the number o f days that the micro-organisms remain 

both within the aeration tank and while being separated or returned (Gray, 1998). I f  

nitrification (conversion of ammonia to nitrate) is to occur a longer sludge residence and 

a greater input o f oxygen is required to maintain the specific autotrophic bacteria 

involved; Nitrosomonas spp and Nitrobacter spp (Lester and Edge, 2000).

1.10.4 Tertiary treatment

The main methods o f tertiary treatment are: 

o Sand or gravel filtration 

o Microstraining 

o Irrigation onto grasslands 

o Reedbeds or wetlands 

o Prolonged settlement in lagoons 

o Activated carbon

Ozonation, ultra-violet treatment or membrane filtration are used if  disinfection 

o f the effluent is necessary. Nutrient removal by addition o f chemical précipitants such 

as ferric chloride, lime or aluminium sulphate for the removal o f phosphorous can be 

incorporated as a tertiary treatment step. The use o f activated carbon employs the 

process o f adsorption whereby soluble molecules become attached to the surface o f the 

activated carbon by Van der Waals forces and electrical attraction facilitating their 

removal (Gray, 1998). The carbon source (bituminous coal, peat or wood) has a large 

surface area and a rough external surface. It can be used in a powder or granular form 

and must be activated before use. Powdered activated carbon can be added to the 

wastewater at various stages o f treatment to improve floe structure o f activated sludge 

to increase settleability (Gray, 1998). Granular activated carbon is used in the form o f  a 

filter bed and its regeneration after use is possible.

1.10.5 Sludge treatment and biosolids

As primary and waste activated sludge may be 95-96% and 98% water 

respectively, the first step in sludge treatment involves thickening to reduce the volume 

o f sludge. Coagulants and polyelectrolytes (such as lime, ferric chloride, ferric chloride 

and aluminium chloride) are sometimes added prior to dewatering. Thickening is



carried out using flotation, centrifugation, lagooning and the most common method is 

gravity settlement, whereby sludge is slowly stirred in a circular tank which enhances 

particle settlement, while water is forced out at the bottom o f the tank under the weight 

o f the sludge. Dewatering o f  the sludge (the most widely used methods being filter and 

belt presses, vacuum filtration, drying beds, lagoons, centrifugation and reed beds) can 

occur after thickening but usually occurs after the following stage o f sludge treatment 

which is stabilization (Gray, 1998; Scrimshaw and Lester, 2003). Stabilization results in 

a stable, inoffensive product with significantly reduced numbers o f  viable pathogens 

thereby reducing health risks associated with re-use. There are various stabilization 

processes including anaerobic digestion, aerobic digestion, composting, lime treatment 

and heat treatment.

Biosolids- the biological processing o f wastewater solids.

Biosolids are the nutrient-rich organic by-product o f the stabilization o f sewage 

sludge that have met specific quality criteria and regulations and are therefore, 

considered safe for use as fertilizer and as a soil amendment to improve and maintain 

productive soils and stimulate plantvgrowth.

Past disposal practices commonly included land filling, dumping at sea or 

incineration. Biosolids are rich in organic matter and nutrients and thus recycling 

through application on land is a means o f avoiding the environmental and economic 

costs o f disposal (Bright and Healey, 2003). In agriculture, biosolids applied at 

approved rates help improve crop growth and yield. Biosolids condition the soil and 

can supplement or replace commercial fertilizers (Jensen and Jepsen, 2005). Use o f 

biosolids can help to overcome irrigation problems during dry weather and also to 

improve soil water holding capacity and porosity (USEPA, 1999a). Biosolids can be 

used to reclaim mining sites as they can help re-establish vegetation at abandoned mine 

sites where there is little or no topsoil Biosolids which have met the most stringent 

standards and are o f exceptional quality are considered landscape grade, and are used on 

gardens, flowerbeds, golf courses and city parks (USEPA, 1999a).

However, the use o f treated sewage sludge for soil amendment poses potential 

hazards such as:

o odour problems, 

o contamination o f groundwater,



o run-off o f  contaminants into surface waters,

o possible impact on human health by uptake through crops or grazing and

soil contamination by metals, organic compounds and also pathogens 

(Wilson et a l ,  1996; USEPA, 1999a; Birkett and Lester, 2003a).

The concentration o f pollutants in soils from land application o f contaminated 

biosolids from water and wastewater treatment and agricultural practices is termed 

terraccumulation (Rooklidge, 2004).

Sewage sludge is the largest by-product o f wastewater treatment. The presence 

and fate o f endocrine disrupting compounds in this material is o f  important concern in 

the disposal and utilization o f sewage sludge. The method of sludge treatment and 

stabilization will determine the fate o f endocrine disrupting compounds in the treated 

sludge which is to be recycled. For instance, if sludge is incinerated, then it is assumed 

that any endocrine disrupting compounds present will be oxidized to carbon dioxide and

water. Whereas, if  the treated sludge is to be recycled, for example applied to

agricultural land, it is likely that the parent endocrine disrupting compounds present or 

their metabolites will be o f concern.

Maximum contact o f biosolids with soil on application will minimize the risk o f 

subsequent surface or bypass flow into surface or groundwater Colucci et a l (2001a). 

Sludge is incorporated into the plough layer as aggregates o f 2-4cm sizes. These sludge 

aggregates are water saturated and may be anaerobic in their centers for certain periods 

o f time. Hesselsee et a l  (2001) demonstrated that sludge aggregate size and oxygen 

availability will majorly influence degradation o f  the more lipophilic compounds such 

as nonylphenol. There is increased degradation if sludge aggregate size is decreased as 

oxygen can penetrate the aggregates at a faster rate. Hesselsoe et a l  (2001) carried out 

experiments which demonstrated the importance of homogeneity in sludge-soil mixtures 

as radio-labeled nonylphenol was found to degrade within a homogenous sludge-soil 

mixture within 38 days while a period o f over three months was required for similar 

degradation to occur in a non-homogenous sludge-soil mixture.



, 1.11 Alteration/biodegradation of oestrogenic compounds in wastewater and 

sludge treatment

Siiice natural and synthetic steroids have been detected in effluents and in rivers 

in their free form, microbial deconjugation o f  the compounds must occur somewhere in 

the sewers prior to entering the sewage treatment plant or else further deconjugation o f 

conjugated compounds occurs within the plant (Baronti et a l , 2000). D’Ascenzo et al 

(2003) determined concentration ratios o f free oestrogens to conjugated oestrogen in a 

condominium septic tank and at the entrance o f the sewage treatment plant. The ratio 

increased from 0.91 to 2.0 suggesting that oestrogen deconjugation continued in the 

sewers i.e. the concentration o f  free oestrogens increased from the septic tank to the 

inlet o f the treatment plant while the concentration o f conjugated oestrogens decreased.

Panter et al (1999) detected elevated vitellogenin levels in male fathead minnow 

(Pimephales promelas) maintained in simulated sewage treatment effluent to which the 

oestrogen metabolite E2-3-glucuronide had been added compared to controls containing 

a solution o f  E2-3-glucuronide in water. This suggested that E2-3-glucuronide is 

transformed to a free oestrogen by intense microbial activity in sewage treatment plants. 

Nasu et al (2001) found a further increase in concentrations o f  free estrogens from 

influent to primary effluent in a Japanese study suggesting further deconjugation 

occurred in the sewage treatment plant. Similar findings were recorded (Ternes et a l , 

1999a; Kirk et a l , 2002) which could be attributed to cleavage o f  oestrogen conjugates 

during primary sedimentation (Ternes et a l , 1999a). Belfroid et al (1999) did not 

detect any glucuronide conjugated oestrogens in effluents o f activated sludge sewage 

treatment plants when effluent and effluent treated with the enzyme P-glucuronidase (to 

deconjugate any glucuronide conjugates present) prior to analysis were compared. This 

indicates that deconjugation reactions occur during the treatment process.

Escherichia coli is an abundant bacterial strain in domestic wastewaters and 

Dray et al (1972 cited Baronti et al, 2000 p5064) found that E. coli can readily 

deconjugate steroids while synthesizing P-glucuronidase enzyme, an enzyme commonly 

found in bacteria in sewage (Ternes et al, 1999b). A laboratory degradation test carried 

out by D ’Ascenzo et al (2003) using septic tank effluent found that oestrogen 

glucuronides undergo biodégradation in sewers much more readily than oestrogen 

sulphates. Glucuronated oestrogens were absent from the test liquor within one day 

while an incubation period o f eight days was required for bacteria to completely



biodegrade E3-3-sulphate, it being the most resistant sulphate species. The authors 

analysed’ influent at an Italian wastewater treatment plant and found that oestrogen 

sulphates represented 60% o f the total conjugated oestrogen forms. However in a sub

study on female urine o f 72 women oestrogen sulphates only accounted for 

approximately 20% o f total oestrogen forms. This indicates that oestrogen glucuronides 

undergo deconjugation in the sewers forming free oestrogens leaving the more 

recalcitrant oestrogen sulphates as the dominant species o f oestrogen conjugates on 

entry to the sewage treatment plant.

It has been reported that E.coli has a weak arylsulphatase activity (Baronti et a l , 

2000) and hence should not biodegrade oestrogen sulphate as well as oestrogen 

glucuronides. Thus biodégradation o f oestrogen sulphates is dependent on other 

bacterial strains in the activated sludge since the hydraulic retention times commonly 

employed in wastewater treatment plants (4-14hours) do not allow sufficient time for 

biodégradation o f oestrogen sulphates by E. coli, the most prevalent bacteria in sewage.

Since E2 and E3 are primarily excreted as glucuronides and E l as a sulphide 

(Ternes et a l 1999b; D’Ascenzo et a l 2003), the hypothesis exists that large quantities 

o f E l-3-sulphate enter wastewater treatment plants and persist and/or undergo 

conversion to form free E l. Additional E l is formed by oxidation o f E2 during the 

treatment process. This could explain the relatively low removal rates o f E l occurring 

at sewage treatment plants. In a Japanese study, Isobe et a l (2003) analysed effluent 

and surface waters for oestrogen conjugates. Oestrogen glucuronides were not detected 

but oestrogen sulphates were present in all matrices.

1.11.1 Natural and synthetic steroidal oestrogens

1.11.1.2 Degradation o f steroidal oestrogens

Lee and Liu (2002) proposed that biodégradation o f E2 begins at the hydroxyl 

group at C l 7 on ring D o f the molecule, eventually forming E l . Further oxidation o f  E l 

causes cleavage o f the D ring producing an hydroxyl acid which then forms an unknown 

metabolite thought to be a lactone which undergoes cleavage to form tricarboxylic acid.

E l is often present in,effluent at concentrations twice that o f E2 (Johnson et a l , 

2005). Kômer et a l  (2001) found the potency o f E l to be approximately 0.1 times that 

o f E2 using the E-screen assay. Pawlowski et al. (2004) and Colucci et a l  (2001a)



determined the E2 equivalent (EEQ) to be half that o f E2 by means o f the YES Assay. 

E l is the natural oestrogen which is least effectively removed by the sewage treatment 

process. Regarding in-vitro oestrogen potency and concentration, E l is the most 

important endocrine disruptor (Johnson and Sumpter, 2001).

E2 undergoes biodégradation readily in sewage treatment plants forming E l as a 

product o f degradation. Various analysts have carried out studies demonstrating good 

removal efficiencies o f sewage treatment plants in the removal o f  E2. Ternes et a l 

(1999b) carried out aerobic batch experiments with activated sludge and demonstrated 

that after 1-3 hours 95% of unconjugated E2 at concentrations o f lng/ml and 1 |ig/ml 

was oxidised to E l increasing the concentration o f the E l up to 95% with regard to the 

initial concentration o f E2. After 5 hours neither hormone was measured above the 

detection limit. Recent studies in Japan on degradation o f natural and synthetic 

oestrogens demonstrated that E2 was most easily degraded via E l by nitrifying 

activated sludge (98% elimination o f E2 at lmg/1 within 2 hours) compared to E l, E3 

and EE2 (Shi et a l ,  2004). More recently, Li et a l  (2005) reported a reduction o f 

approximately 99% o f spiked E2 at concentrations o f 10, 30 and 50|xg/l in aerobic batch 

degradation tests after 1.5 hours.

Colucci et a l  (2001a) carried out degradation studies o f E2 and E l in 

agricultural soils in Ontario, Canada and found that both hormones were readily 

biodegradable (without a lag phase) in soils under a range o f  temperature and moisture 

conditions. Similar to what occurs in sewage sludge, E2 was converted to E l in the soil 

also. The authors predict that both hormones would undergo rapid dissipation in aerated 

agricultural soils following application o f manures during a temperate growing season. 

A subsequent study revealed that removal o f  EE2 in soil was 2-7 times slower than E2 

under similar conditions (Colucci et a l 2001b) however, both compounds were 

removed at comparably slow rates when soils were adjusted to their field moisture 

capacities. Results indicate that hormones will undergo little biodégradation in cold wet 

soils.

E3 has a lower oestrogenic potency than E l or E2. It is not analysed for as often 

as E l and E2 and there seems to be less concern for its presence in the environment. 

EE2 is an extremely potent oestrogen based on in-vivo studies. Purdom et a l  (1994) 

demonstrated that vitellogenesis may arise from levels o f EE2 as low as 0.1-0.5ng/l.



However, in-vitro, its potency has been found to be similar to that o f E2. Kòmer et al. 

(2001) found the potency o f EE2 to be 0.9 times that o f  E2 using the E-screen Assay. 

Using the Recombinant Yeast Screen Assay, Pawlowski et al (2004) found EE2 to have 

an E2 equivalency o f 1.4. EE2 can be difficult to detect due to its minute concentrations 

which are sometimes very close to the detection limits o f chosen analytical methods. 

Some methods are not sensitive enough to detect it (Johnson et a l , 2005). EE2 

undergoes very slow biodegradation in the activated sludge system. Temes et al 

(1999b) detected elimination o f  only 20% after 24 hours at a concentration o f lng/1 in 

an aerobic batch experiment. Layton et al (2000) found that removal o f  EE2 by 

mineralization in a Canadian wastewater treatment plant was only 20% compared to 

75% removal o f E2. This indicates that the ethinyl group inhibits degradation. 

Cargouét et a l , (2003) calculated a mean removal rate o f 40% for EE2 in five 

wastewater treatment plants in Paris.

1.11.1.3 Degradation o f phytoestrogens

Splenger et al (2001) detected genestein in effluent at levels up to 38ng/l in a 

study on 18 German WWTPs. Laganà et al (2004) detected the phytoestrogens 

dadzein, genistein and biochain A in influents ranging from 8-384ng/l, in effluents; 3- 

83ng/l and Tiber River water at l-7ng/l. Genistein was present at the highest 

concentrations in all matrices. The input o f phytoestrogens is possibly due to vegetable 

material leachate being washed away by rain, irrigation or in tap water (Laganà et al., 

2004).

1.11.2 Xenoestrogens

LI 1.2.1 Bisphenol A (BPA)

Splenger et al. (2001) measured concentrations o f bisphenol A up to 1 .Ojag/1 in a 

study on German effluents. Aguayo et al (2004) detected 0.30 to 5.6jig/1 bisphenol A 

in effluents o f seven Spanish wastewater treatment plants. The octanol-water co

efficient o f bisphenol A is 3.4 with a relatively high solubility o f  120-300mg/l (at 20°C). 

Rapid biodegradation o f bisphenol A in aerobic biological treatment systems have been 

reported. Vethaak et a l , (2005) reported up to 91% removal o f  bisphenol A in 12 

WWTPs in the Netherlands with levels in municipal effluent ranging from <43- 

4090ng/l and <19-800ng/l in industrial effluent.. Saito et al (2004) reported that an 

extracellular enzyme, lacease, isolated from a fungus found in soil is capable o f



oxidizing both bisphenol A arid nonylphenol and eradicating their oestrogenic potency 

within 24hours o f incubation with the strain.

1.11.2.2 Phthalates

The octanol-water co-efficients o f phthalates range from 1.46 to 13.1. 

Lipophilicity and octanol-water co-efficients o f phthalates increases with increasing 

alkyl chain length (Cousins et a l , 2000). The most ubiquitous phthalate is di-(2- 

ethylhexyl) phthalate (DEHP), it has an octanol-water co-efficient o f 7.5 and extremely 

low water solubility facilitating its sorption to sludge (Langford and Lester, 2003). 

DEHP was present in 6 out o f 7 effluents in a study in Spain (Aguayo et ai., 2004). 

Vethaak et a l  (2005) reported that phthalates present in the highest concentrations 

(diethylphthalate (DEP) and DEHP) in influents o f 12 Dutch WWTPs were those with 

the lowest oestrogenic potency and that concentrations were generally reduced to under 

1 jig/1 with the exception o f DEHP (1.5 pg/1).

De Jonge et a l  (2002) reported that DEHP binds strongly to the sludge phase 

and that the extent o f leaching increases with the clay content o f the so il DEHP has 

poor solubility in water and is degraded relatively easily under aerobic conditions. It has 

a half life o f  5 to 85 days (EC, 2001a). Petersen et a l  (2003) carried out a study in 

which sludge bands (two-dimensional sludge particles) containing 55mg/kgDM DEHP 

among other organic contaminants were placed 6-10cm soil depth in sandy and loamy 

soil in Southwest Denmark for a period o f 3 years. Approximately 40% o f the initial 

concentration o f  DEHP was still present at six months with only 5-6% remaining after 

12 months. Uptake o f DEHP by barley grown on the plots was not considered to be 

significant as there was no relationship between waste and crop concentrations. The EU 

has set the maximum limit value of di-(2-ethylhexyl)phthalate in sludge for use on land 

at 100mg/kg dm (EU, 2000).

1.11.2.3 Polyaromatic hydrocarbons (PAHs)

PAHs have log octanol-water co-efficients o f approximately 6.0 for example, 

benzo(k)fluoranthene, benz(a)anthracene and benzo(a)pyrene (Birkett, 2003b) which 

makes them resistant to degradation.

During primary treatment PAHs tend to partition onto suspended solids while 

during secondary treatment volatilization and biodégradation are the main methods o f



removal. PAHs o f  higher molecular mass are more resistant to decay (Manoli and 

Samara 1999). Pérez et a l  (2001) analysed sludge from six wastewater treatment plants 

in Spain and Portugal for 16 different PAH compounds and found phenanthrene to be 

the most dominant in all wastewater treatment plants. The total load o f PAHs in sludge 

ranged from 1.13-5.52mg/kg.

Most PAHs are very persistent in soils and may have half-lives o f up to 10 

years, however, uptake by crops is low. They are relatively insoluble in water 

indicating that the risk o f  leaching into groundwater is low (EC, 2001a). The maximum 

concentration o f  total PAHs in sludge to be used in agriculture is 6mg/kg dm under the 

Council o f the EC Working Directive on Sludge (2000).

1.11.2.4 Polychlorinated biphenyls (PCBs)

PCBs have octanol-water co-efficients ranging from 4.6 to 8.4 indicating that 

these compounds partition to solids and can accumulate in sludge (Birkett, 2003b). 

Katsoyiannis and Samara (2004) observed a linear relationship between the removal o f 

PCBs (particularly during primary treatment) and their log KoW values which indicated 

that compounds with such high log KoW values are principally removed by sorption onto 

the primary sludge. Removal o f PCBs increase as the sludge age increases (Swiss 

Federal Institute for Environmental Science and Technology (EAWAG), 2003; 

Langford et a l , 2005).

Katsoyiannis and Samara (2004) reported that the total PCB concentration in 

influent o f a Greek activated sludge WWTP decreased from 1000ng/l to 630ng/l 

following primary sedimentation to 250ng/I following secondary sedimentation with the 

most abundant PCB congeners being PCB-52, PCB101 and PCB-180 (with total 

removal rates ranging from 65-81%). Conversely, the total concentration o f PCBs 

increased from the primary sludge (460ng/gdw) to the final sludge (550ng/gdw) which 

was treated anaerobically. De Souza Pereira et al. (2005) reported PCB concentrations 

o f 57.6-145mg/kg in sludge from two Brazilian WWTPs which are at least 70 times 

greater than the maximum limit value for total PCB concentration (sum o f seven 

indicator congeners) at 0.8mg/kg dm set by the EU (2000). Germany, Switzerland and 

the Netherlands have set more stringent maximum concentrations o f individual PCB 

congeners in sludge of200[tg/kg (De Souza Pereira et a l , 2005).



PCBs are stable physically, chemically and biologically and due to their 

lipophilic nature they tend to bind to organic matter in soil and will undergo slow 

biodégradation. Highly chlorinated PCBs can persist in soil for longer periods than less 

chlorinated PCBs. They can be introduced into the surface waters via runoff containing 

soil to which PCBS are bound. Uptake by plants appears to be very low (EC, 2001a).

1.11.2.5 Pesticides

Katsoyiannis and Samara (2004) analysed influent for 19 different pesticides 

including quntiozene, dieldrin, heptachlor, and p -p ’-DDE at concentrations ranging 

from 1.4-330ng/l. Removal rates ranging from 75%-91% were reported from the 

influent to the secondary sedimentation tank effluent. Chlorinated pesticides such as 

dieldrin, aldrin, heptachlor and hexachlorobenzene were still detected despite being 

banned. DDT was detected in approximately 30% of influents and was not detected at 

any further stage o f treatment due to conversion to p - p -DDD and p -p ’-DDE 

metabolites. Pesticide concentrations increased from the primary sludge to the final 

sludge (treated anaerobically) which contained levels ranging from 5-270ng/g dw.

1.11.2.6 Dioxins and furans

De Souza Pereira et al. (2005) detected concentrations o f 1107pg/g o f total 

PCDDs and 206 pg/g o f  total PCDFs in a Brazilian WWTP in a semi-rural area with 

higher concentrations o f 3735pg/g o f total PCDDs and 414pg/g o f total PCDFs in an 

urban plant.

Like PCBs, dioxins and furans are lipophilic compounds which are physically, 

chemically and biologically stable. They bind to the organic matter in soil and are 

found in the topsoil. They are not expected to leach into groundwater due to their 

highly lipophilic nature. A maximum limit concentration o f  lOOng toxicological 

equivalent (TE)/kg dm PCDDs and PCDFs in sludge for use on land has been set by the 

EU under the Working Draft on Sludge (2000).

1.11.2.7 Alkylphenols and surfactants

Anionic surfactants linear alkylbenzene sulphonates (LASs) and their precursors 

linear alkylbenzenes (LABs) have been found in sewage sludge at relatively high 

concentrations (Petersen et al. (2003) detected concentrations o f  LAS o f 2870mg/kgdm 

in sewage sludge in Denmark). There is an average removal o f  LASs o f  15-35% by



precipitation during primary sedimentation to the primary sludge (Petrovic and Barceló,

2004).

Levels o f  4-nonylphenol, 4-nonylphenol diethoxylate, and 4-nonylphenoxyacetic 

acid up to 2.3ng/l, 5.5jig/l, and 5.8^g/l were reported in effluents in a study on 18 

German WWTPs (Splenger et al., 2001). Solé et a l (2000) detected much higher 

concentrations in effluents o f four Spanish WWTPs at 6-289|ig/lNP, 24-938^ig/LNPEO 

and 4-80NPECjxg/l. Nonionic surfactants alkylphenol polyethoxylates (APnEO, n-6-40) 

are biodegraded via shortening o f the ethoxylate chain, the ethoxylate groups being 

cleaved and/or oxidized one by one. The lipophilicity o f the metabolite and its 

resistance to biodégradation increases as the ethoxylate chain gets shorter due to the 

presence o f  the benzene ring and their limited water solubility (Langford et a l , 2005). 

The resulting metabolites include short chain alkylphenol ethoxylates (APEO), their 

carboxylic acid derivatives (APECs) and alkylphenols (APs) such as octylphenol and 

nonylphenol. APECs and longer chain APEOs are quite water soluble and can be 

detected in effluents at high concentrations (Solé et a l , 2000; Ahel et a l , 2000; Ahel et 

a l , 1994) whereas the shorter chain compounds and the alkylphenols are more likely to 

adsorb onto particulates. NP has an octanol water co-efficient value o f 4.48 indicating it 

has a high tendency to become adsorbed to the sludge.

In a study by La Guardia et a l (2001), 11 biosolids were analysed for OP, NP, 

NPjEO and NP2EO in 10 o f  which NP was the most abundant APEO metabolite 

detected representing >84% of the total APs and NPEOs. Average NP concentrations 

were 49mg/kg while average OP concentrations were 6.2mg/kg. The authors found that 

biosolids treated by anaerobic digestion obtained the highest levels o f  NP (754mg/kg) 

which was almost twice that o f biosolids treated by heat (496mg/kg) and lime 

(470mg/kg) and 12 times higher than composted biosolids (64mg/kg). Approximately 

63% o f all nonylphenolic compounds that enter wastewater treatment plants are 

discharged in the form o f  NPjEO and NP2EO and NP, carboxylated deriviatives 

(NPECs) or untransformed NPEOs. Digested sewage sludge represents 40% o f the total 

output o f nonylphenolic compound (Castillo et a l , 2000). NP is formed from NPEOs 

during anaerobic stabilization of sludge resulting in very high concentrations o f NP. 

Concentrations o f  > lg/kg are often detected in anaerobically digested sludge (Petrovic 

and Barceló, 2004). NP is more hydrophobic and recalcitrant than its parent compounds 

(Ahel et a l , 1994) and has a greater oestrogenic potency. Digested sludge is likely to



contain up to 96% o f NP produced during wastewater treatment (Scrimshaw and Lester,

2003).

The high biodegradability o f  linear alkylbenzene sulphonates (LASs) in the 

aerobic environment indicates that LASs are not o f concern when sludges are applied to 

land under relevant legislation. Geglsbjerg et a l (2003) deduced the half-life o f LAS in 

sludge-amended soil to be 2-3 days at a concentration o f 10mg/kg.. Petersen et a l 

(2003) found that concentrations o f  LAS (2870mg/kgDM) and NP (60mg.kgDM) in 

sewage sludge applied to soil (6-10cm depth) were degraded by 70% with the first 6 

weeks with <5% remaining after 6 months in a study in Southwest Denmark. Uptake o f 

LAS and NP by barley and oats grown on the field sites was not detected. The 

movement o f LAS into groundwater and uptake by plants are not considered significant 

(Petrovic and Barcelô 2004). The limit value for LASs in sludge for use on land is 

2,600mg/kg dm according to the Working Document on Sludge (EU, 2000).

NP has been shown to have a mineralization half-life o f 16.7 days in loamy soil 

at a concentration o f 1 |xgNP/g soil. Concentrations as high as 250mg/kg were degraded, 

however, slower mineralization occurred in sewage sludge amended soil (Topp and 

Starratt, 2000). Hesselsoe et al. (2001) reported that nonylphenol was degraded within 

38 days in aerobic homogenized mixture o f  sludge and soil. Within an aerobic soil 

environment NP (and LAS) will not accumulate however in anaerobic soils 

accumulation o f their compounds is likely. Hosselsoe et a l (2001) suggested that for 

2cm sludge aggregate to become aerobic a period o f over one year was required 

indicating significant potential for NP to build up in the anaerobic zones. The working 

document on sludge set the limit for the concentration o f total nonylphenolic 

compounds (NPs and NPnEOs) at 50mg/kg dm.

1.11.3 Degradation by indigenous bacterial species in sludge

Lee and Liu (2002) conducted tests in both aerobic and anaerobic conditions 

with an E2 degrading culture (derived from supernatant o f activated sludge). Aerobic 

degradation resulted in 88% degradation o f spiked E2 while anaerobic degradation 

resulted in only 50% degradation after 7 days. A separate biodégradation test was 

carried out on oestrogen and five o f its primary metabolites; E l, E3, 16a-hydroxy-El, 

2-methoxy-E2 and 2-methoxy-El was carried out. After a 7hour period 92% o f 17p-E2,



46% o f E l, 41% o f E3, and 51% of 16a-hydroxy-El were degraded and after a period 

o f 49hours all metabolites were completely removed.

Vader et a l (2000) investigated the degrading ability o f  nitrifying activated 

sludge on EE2 and reported that the nitrifying sludge completely degraded ethinyl- 

estradiol within 6 days and did not need an acclimatization period. Maximum 

degradation occurred during the first 2 days. Analysts in Japan isolated an E2- 

degrading bacterium (named ARI-1) from activated sludge in a sewage treatment plant 

in Tokyo. ARI-1 is a gram-negative oval-shaped bacterium which is a genus that 

includes many species capable o f  assimilating compounds resistant to biodégradation. 

ARI-1 was found to degrade E2 steadily and subsequent analysis by GCMS did not 

detect any accumulative metabolites o f  E2 (Fujii et a l , 2002). A separate degradation 

study using the ammonia-oxidising bacterium Nitrosomonas europaea demonstrated 

similar degradative rates for all four oestrogens and also that E2 degradation by N. 

europaea did not produce E l (Shi et a l , 2004).

1.11.4 Alteration/biodegradation processes

The main processes which determine the fate o f a compound during wastewater 

treatment are advection, sorption, volatilization, air stripping and biotransformation 

(Byrnes, 2001).

1.11.4.1 Advection

Advection is one o f the two processes by which solutes are transported in a 

fluid. Advection is the bulk movement o f solute due to concurrent movement o f fluid. 

Hence solutes which do not react are carried at a rate equal to the linear velocity o f the 

fluid.

1.11.4.2 Sorption

There are two major processes by which sorption o f organic compounds takes 

place; absorption and adsorption. Absorption represents the “hydrophobic interactions 

o f the aliphatic and aromatic groups o f a compound with the lipophilic cell membrane 

of the microorganisms” (Swiss Federal Institute for Environmental Science and 

Technology (Swiss Federal Institute for Environmental Science and Technology 

(EAWAG) 2003) and fat components o f the sludge. Adsorption represents the 

“electrostatic interactions o f  positively charged groups o f  chemicals with the negatively



charged surfaces o f  the microorganisms” (EAWAG, 2003). During primary treatment
✓

organic compounds are adsorbed onto primary sludge (composed o f  suspended solids, 

few microorganisms and a large fat fraction) while during secondary treatment they are 

adsorbed onto secondary sludge which consists o f suspended and a larger quantity o f  

microorgansims (Langford and Lester, 2003; EAWAG, 2003). Hence, higher 

absorption o f organic compounds is more likely to occur during secondary treatment 

than primary treatment.

Particle-contaminant interactions greatly influence the fate o f contaminants in 

wastewater treatment plants. Natural particles include clays, sediments, colloids with 

attached microorganisms while synthetic particles include powdered activated carbon, 

coagulants and ion exchange resin. Contaminant compounds that are dissolved or 

associated with dissolved natural organics or unsettleable colloids can pass through 

treatment systems easily. Contaminants that are adsorbed into activated sludge particles 

accumulate in the sludge (Filali-Meknassi et a l , 2004).

1.11.4.3 Volatilization

In a model to predict the fate o f xenobiotic organic compounds in wastewater 

treatment plants, Byrnes (2001) predicted that compounds with high vapour pressure, 

low octanol-water co-efficients (logkow) values and low solubilities are most likely to be 

removed by volatilization.

1.11.4.4 Degradation

Chemical degradation occurs principally by hydrolysis which is the conversion 

o f organic wastes to more benign compounds through substitution by hydroxide ions. 

Biological degradation o f a compound can occur by partial biodegradation by bacteria 

by which the compound does not act as a carbon source (co-metabolism) or by total 

mineralization whereby bacteria derive carbon and energy from the compounds 

(EAWAG, 2003). Certain structural characteristics influence the degree o f 

biodegradation which can occur. Longer chained molecules are degraded more readily 

then short chain molecules (Langford et a l , 2005) and branched hydrocarbon chains are 

more resistant to degradation than unbranched molecules.



1.11.5 Importance of physiochehiical properties

The physio-chemical properties o f a compound will determine the dominant 

process(es) involved in its fate in the wastewater treatment system (Byrnes, 2001). Physio- 

chemical properties o f oestrogens and selected xenoestrogens are presented in table 1.11.5.

Table 1.11.5: Physiochemical properties of oestrogens and selected xenoestrogens

Compound
Molecular weight (g)

Water Solubility 
(mg/1 at 20°C)

Octanol-water co
efficient (log Kow)

El 270.37 > ; 13b 3.13a
E2 272.39 13 b 4.01a
E3 288.39 13 b 2.45 a
EE2 296.40 4 .8b 3.67 a
NP 2 2 0 . 0 0 5.43° 4.48 e
NP1EO 264.00 3.02e 4.17e
NP2EO 308.00 3.38c 4.21e
NP3EO 352.00 5.88c 4.2 e
OP 206.00 1 2 . 6 b 4.12b
BPA 228.29 120-300d 3.4d
References
a: Kuster et a l., 2004 c: Ahel and Giger, 1993
b: Lai et a l 2000 d: Langford and Lester, 2003

1.11.5.1 Solubility

The solubility o f a solute is the maximum quantity o f solute that can dissolve in 

a certain quantity o f solvent or quantity o f solution at a specified temperature. The 

degree o f solubility that occurs depends on the size o f the particles, agitation and 

temperature. Compounds with high solubilités are most likely to remain dissolved in 

the wastewater and less likely to adsorb to suspended particles or sludge.

1.11.5.2 Octanol-water partition co-efficient (KoW)

The octanol-water partition co-efficient is the ratio o f a compounds 

concentration in octanol to that in water at equilibrium and is expressed logarithmically 

(EC, 2001b). Compounds with large logK oW values tend to be large hydrophobic 

molecules with a greater tendency to associate with solid organic matter while 

compounds with small log KoW values tend to be smaller more hydrophilic_molecules 

(Langford and Lester, 2003). In sorption potential, compounds with a logKow <2.5 have 

low sorption potential, compounds with a logK™ between 2.5 and 4.0 have medium 

sorption potential while those with a logKow o f >4.0 have high sorption potential 

(Rogers, 1996).



1.11.5.3 Organic carbon-watcr partition co-efficient (K^)

The organic carbon-water partition co-efficient is the ratio between the 

concentration o f the organic compound on organic carbon (mg/g) and its concentration 

in water (mg/1) at equilibrium (EC, 2001b). In general, compounds with a high logKoc 

(>3) will tend to absorb to organic carbon such as sewage sludge while compounds with 

low logKoc (<3) tend to remain in the aqueous phase (Langford and Lester, 2003).

1.11.5.4 Henry's law constant (Hc)

Henry’s law constant is the ratio o f a chemicals concentration in air to its 

concentration 1 in water at equilibrium. Compounds with high Hc values tend to 

volatilize while those with low Hc values tend to remain in the aqueous phase (Wilson el 

a/., 1996). A compound with a H* value o f  H xlO ^m ol/m 3 and a H</K<,w quotient o f 

>1x109 has a high tendency to be volatilized while a compound with a Hc value o f  

< lx l0"4mol/m3 and a H o/K ow quotient o f  <1x109 will tend to remain in solution.

1.12 Removal o f oestrogenic compounds in wastewater treatment
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Figure 1.12: Processes o f removal o f organic compounds in an activated sludge
system (Byrnes, 2001).

1.12.1 Treatment stages
1.12.1.1 Primary treatment

The major removal pathways during primary treatment are advection in the

dissolved or adsorbed phase, sorption to particulate matter and subsequent 

sedimentation and to a lesser extent, volatilization and biotransformation (Figure 1.12). 

Advection o f  the dissolved phase is the major removal pathway for compounds with 

octanol-watcr coefficients below 4. Advcction to suspended matter and sorption to



sludge are the main removal pathways for compounds with octanol-water coefficients 

above’ 4. The extent to which removal occurs depends on the removal o f suspended 

solids which is determined by settling characteristics o f the particles (their density, size 

and ability to flocculate), the sludge retention time and the loading into the plant 

(Langford and Lester, 2003).

Volatilization accounts for a small degree o f removal during primary treatment 

with maximum removal occurring for compounds with an octanol-water coefficient o f 

approximately 2.0 (Byrnes, 2001). As can be observed in Table 1.11.5, E3 has the 

highest solubility and the lowest octanol-water co-efficient o f the four oestrogens; E l, 

E2, E3 and EE2 indicating that it is most likely to exist in the dissolved phase. EE2 has 

the lowest solubility o f the four oestrogens and the highest octanol-water co-efficient 

indicating that it is most likely to become sorbed to sludge or suspended matter than to 

remain in the dissolved phase.

1.12.1.2 Secondary treatment

Compounds with low octanol-water co-efficients continue to be removed by 

advection into the dissolved phase and volatilization (Byrnes, 2001) (Figure 1.12). 

Volatilization represents a greater proportion o f  the total removal o f compounds during 

secondary treatment than during primary treatment due to an increased air:water 

interface during aerated treatment processes (EC, 2001b). Biodegradation is the major 

removal pathway with maximum removal occurring for compounds with an octanol- 

water co-efficient between 3.0 and 3.5. The process o f nitrification may occur during 

secondary treatment which is beneficial for the degradation o f organic pollutants such as 

oestrogenic compounds and xenoestrogens as it requires growth o f slow-growing 

microorganisms. Compounds with higher octanol-water co-efficients are more likely to 

become sorbed to the sludge.

1.12.1.3 Tertiary Treatment

Numerous studies have been carried out on different forms o f  advanced 

treatment to assess their efficiency in the removal o f  endocrine disrupting compounds, 

A study on the effects o f chlorination on the oestrogenic potencies o f E2, nonylphenol 

and bisphenol A demonstrated that complete elimination o f oestrogenic activity o f  E2 

with a chlorine concentration o f 1.5mg/l necessitated a time period o f  36 hours whereas 

a higher concentration o f chlorine (7.5 mg/1) was used to assess bisphenol A and resulted



in elimination o f oestrogenic activity after ten minutes. No oestrogenic activity was 

observed in the by-products after chlorination after 24hours. This reduction in potency 

is attributed to oxidation o f  the phenolic ring by the addition o f free chlorine (Lee et a l ,

2004). However advantageous use o f chlorination is with respect to endocrine 

disrupting compounds the disadvantage o f increasing formation o f  chlorination by

products still persists.

Temes et a l  (2003) demonstrated that ozonation using 5-15mg/l o f ozone is 

sufficient to eliminate El with >80% removal. The ozonation process increases both 

the polarity and the number o f functional groups o f E l which results in a weaker 

binding affinity for the oestrogen receptor.

The efficiency o f addition o f absorbents (ferric chloride coagulant, powdered 

activated carbon and magnetic ion exchange resin) for the removal o f E l in jar tests was 

assessed by Schäfer and Waite (2002) with removal rates o f <10%, >90% and 40%- 

70% respectively.

The ability o f  nanofiltration and reverse osmosis to remove E l from wastewater 

and synthetic surface water was examined by Nghiem et a l (2004a). E l was effectively 

retained by tighter nanofiltration and reverse osmosis membranes while lower retention 

was observed for more porous membranes. The study also reiterated the fact that 

hormone retention is enhanced by the presence o f organic matter. In a different study 

Nghiem et a l  (2004b) reported that lower absorption and retention occurred at higher 

pH levels.

Splenger et a l  (2001) and Körner et a l  (2001) found that the use o f activated 

charcoal filtration as a tertiary treatment can greatly reduce the oestrogenic potency o f 

an effluent (the EEQs o f the effluent following activated carbon filtration were 5-10 

fold lower than those o f effluents o f WWTPs without activated carbon filtration). De 

Rudder et a l (2004) carried out studies to assess the treatment efficiency o f sand, 

granulated activated carbon (GAC) and Manganese dioxide (MnC^) granules. Removal 

o f EE2 was carried out using upstream bioreactors filled with sand, granulated activated 

carbon (GAC) and Manganese dioxide (MnC>2) granules in which the oestrogenic 

activity was determined by the Yeast oestrogen screen (YES) bioassay. Granular 

activated carbon is highly adsorptive for EE2 at jig/l concentrations however its



adsorptive capacity decreases for EE2 at environmentally relevant concentrations (0.1- 

20ngEE2/l). It also has to be replaced or regenerated regularly whereas self- 

regeneration o f manganese dioxide is possible making it a more cost-effective option for 

tertiary treatment. Removal efficiencies o f EE2 for the sand, granular activated carbon 

and manganese dioxide upstream bioreactors were 17.3%, >99.8% and 81.7% 

respectively.

1.12.2 Factors that affect removal

On entering wastewater treatment plants oestrogenic compounds can persist due 

to their resistance to microbial degradation and may be present in onetotfmore phases 

within the plant and leave the plant unaltered in the effluent or they can undergo 

biodégradation producing metabolites which may be less potent or indeed, more potent 

than their parent compounds. Various factors exist which influence the removal 

efficiency o f organic compounds including endocrine disrupting compounds in a 

wastewater treatment plant.

It has been shown that oestrogen-degrading organisms accumulate more readily 

in wastewater treatment plants receiving domestic waste than in those receiving 

industrial waste only as Layton et a l  (2000) reported that the rate o f mineralization o f 

I4C-E2 in municipal activated sludge was 84% while that o f industrial activated sludge 

was only 4%. Interestingly, mineralization o f testosterone occurred in both municipal 

and industrial activated sludges. The treatment process itself is also important as some 

compounds are more recalcitrant under anaerobic conditions (Environment Agency,

1999). Temperature, pH and dissolved oxygen content can affect the growth o f aerobic 

microorganisms which in turn affects biodégradation o f oestrogenic compounds. Since 

wastewater treatment plants are operated at ambient temperatures, effects due to 

temperature changes are inevitable. Lower temperatures reduce the metabolic rate o f 

microorganisms inhibiting biodégradation. Ternes et al. (1999a) assessed the removal 

rates o f E l, E2 and EE2 in a Brazilian sewage treatment plant (operating at ^20°C) and 

a German sewage treatment plant (operating at ~2°C) and found the Brazilian sewage 

treatment plant to have much greater removal efficiency. Rodgers-Gray et a l  (2000) 

reported seasonal variation in the oestrogenicity o f effluent in a study on Ghelmsford 

WWTP in the UK in which mean E2 and E l concentrations for months November- 

March were approximately three times higher than the mean concentrations for months 

June-December (1998-1998). An increase in temperature, nitrate levels and bacterial



count were observed for the latter months. Following aerobic batch degradation 

experiments o f E2 by activated sludge, Li et a l  (2005) reported that biodégradation was 

reduced at lower temperatures.

A neutral pH is maintained in most activated sludge treatment plants. PH level 

in sludge can influence ‘"the bioavailability o f compounds due to their changing 

solubility, sorption potential and aerobic growth” (Langford and Lester, 2003). 

Changes in pH influence the extent and type o f  bonding involved in sorption. Clara et 

a l  (2004) demonstrated that adsorption o f  bisphenol A and EE2 to suspended particles 

and sludge is likely to occur at pH levels over approximately 10.5 while both 

compounds are likely to remain dissolved at pH levels below 10.5.

Increased rainfall has the effect o f increasing the flow rate which in turn reduces 

the retention time which can lead to an overall reduction in treatment efficiency 

(Rodgers-Gray et a l ,  2000). However, increased rainfall also dilutes the effluent hence 

weakening its oestrogenic potency and its oestrogenic effects on aquatic organisms 

(Harries, 1996).

Biodégradation increases with increasing sludge retention time as specific 

degrading microorganisms are slow-growing and require time to become established 

within the activated sludge (Andersen et a l ,  2003). With increasing sludge age the 

bacteria compete for more complex, less easily degrading compounds (EAWAG, 2003; 

Langford et a l ,  2005). Ternes et a l  (1999a) and Andersen et a l  (2003) demonstrated 

the increased removal efficiency o f a German WWTP once the sludge age was 

increased (from 4 days to 11-13 days) and all year nitrification and denitrification was 

incorporated into the treatment process. Ternes et a l  (1999a) detected average 

concentrations o f 24ng/l E l, 5mg/1 E2 and 2ng/l EE2 in the effluent in 1997 while 

Andersen et a l  (2003) detected concentrations o f less than lng/1 o f E l, E2, and EE2 in 

2001.

Holbrook et a l (2002) noticed a positive correlation between the oestrogenic 

activity o f mixed liquor suspended solids and aerobic sludge age. Li et a l  (2005) 

reported that higher concentrations o f mixed liquor suspended solids gave rise to the 

most marked decreasing trends in E2 biodégradation in aerobic batch degradation 

experiments. Clara et a l  (2005) determined the critical sludge retention time at 10°C



fo f the natural oestrogens to be between five and ten days. Effluent concentrations in 

tfte*1'range of the limit o f quantification (lng/1 for El, E3 and EE2 and 5ng/l for E2) were 

measured at sludge retention times longer than ten days at 10°C. The degree of  

removal that occurs in a typical activated sludge WWTP depends on the capacity of the 

wastewater solids to adsorb the contaminants and how quickly the microorganisms 

present can degrade these compounds (Schäfer et a l , 2002).

In a study on five WWTPs in the United Kingdom, Kirk et al (2002) examined 

the oestrogen activity o f wastewater at different stages of treatment using the Yeast

Oestrogen Screen (YES) and found that maximum removal occurred during secondary
?

treatment while some additional removal occurred during tertiary treatment. The 

overall removal rate of a WWTP with only primary treatment was only 10%. Studies 

have shown that WWTPs equipped with only primary treatment are not very efficient at 

removing oestrogenic compounds. Three Swedish WWTPs with primary treatment and 

direct precipitation by aluminium or iron were not effective in reducing the oestrogenic 

potency of the effluents but actually increased the oestrogenic potency (Svenson et a l , 

2003). Lime was found to be a more effective precipitate with a removal rate of 73% in 

a fourth WWTP with only primary treatment in which the effluent was of a higher pH 

(pH 11.4).

Primary treatment may actually increase the concentration o f oestrogenic 

compounds in the effluent as demonstrated by Servos et al (2005) in which the average 

El concentration increased by 28.6% in the effluent of a Canadian plant equipped with 

primary treatment only. Similarly, Carballa et al (2004) reported a 20% reduction o f  

E2 with a concurrent increase in El (42%) during primary treatment in a Spanish 

WWTP in Galicia, Spain. Temes et al (1999a) found that El, E2, and 16a- 

hydroxyestrone all increased during primary treatment. E2 and El levels are known to 

increase during primary treatment due to cleavage of glucuronides while oxidation of  

E2 to El may also contribute to the increase in E l. El is much more slowly degraded 

than E2 (Temes et a l , 1999b).

Studies carried out on the removal efficiency o f different varieties o f secondary 

treatment have indicated that the activated sludge and lagoon systems exhibit a^greater 

removal efficiency than solid support bacteria systems such as trickling filters and 

biorotors. Temes et al (1999a) found that El, E2, and 17a-ethinylestradiol were



removed at rates o f  67%, .92% and* 64% respectively in a trickling filter system in a 

Brazilian WWTP while higher removal rates o f  83%, 99.9% and 78% occurred in an 

activated sludge system in the same plant. A German study reported that the 

oestrogenic potency o f  effluent from a trickling filter WWTP was approximately four 

times higher than that o f  the activated sludge plants assessed in the study (Körner et a l, 

2001).

Svenson et al (2003) reported an average removal rate o f  81% for activated 

sludge and 28% for solid support bacteria systems in a study on Swedish WWTPs. 

Average removal rates o f  93% and 83% respectively were reported from four lagoon 

treatment systems by Servos et al (2005) while a treatment plant with trickling filter 

produced increases in 17ß-E2 and E l concentrations o f  18.5% and 62.4% respectively. 

Joss et al (2004) reported greater than 90% removal o f  all oestrogens in 3 activated 

sludge processes consisting o f  conventional activated sludge treatment, a membrane 

bioreactor and a fixed-bed reactor.

It has become apparent that there may be higher removal rates in secondary 

biological treatment if  denitrification is employed. In a study on twenty Swedish 

WWTPs two o f  the highest removal rates occurred in activated sludge treatment plants 

in which denitrification occurred (Svenson et al, (2003). Servos et al (2005) made an 

association between the degree o f  nitrification in the treatment system and removal o f  

E l, E2 and the overall reduction in oestrogenic potency as measured by the YES assay. 

This may be due to the higher hydraulic retention time (HRT) required to allow 

nitrification and denitrification to occur. Two Swedish WWTPs with HRTs o f  12hours 

and 20hours and a third plant employing wetland treatment with a HRT o f  7 days had 

removal rates >97% while the HRT o f  the remaining WWTPs (2-8hours) produced 

removal rates o f  0-94% (Svenson et al, 2003). Similarly, the greatest degree o f  

removal o f  oestrogen activity in an English study on five WWTPs occurred in the plants 

with the longest retention times (13-13.5hours) (Kirk et al, 2002). The removal rate o f  

EE2 increased to approximately 90% at a German WWTP in Wiesbaden after the plant 

was upgraded to remove nutrients and its sludge retention time was increased from less 

than 4 days to 11-13 days (Andersen et a l , 2001).

Percentage removal rates o f  oestrogens in selected studies reviewed in literature 

are presented in table 1.12.2. Frequently, higher removal rates are reported for E2 than



E l. E3 and EE2 are seldom analysed for, however, the studies presented which 

included these compounds indicate efficient removal.

Table 1.12.2: Percentage removal rates of oestrone (E l), oestradiol (E2), oestriol 

(E3) and ethinyl-oestradio! from different countries

Removal 

of E l (%)

Removal 

of E2 (%)

Removal 

of E3(%)

Removal 

of EE2(%)

Country Reference

65 Spain Carbella et al., 2004

64-69 Japan Nasu e ta l,  2001

61 85 97 Italy D ’Ascenzo et al, 2003

61 87 95 85 Italy Baronti et a l, 2000

74 88 77 Italy Johnson et a l, 2000

46-98 39-98 Canada Servos et al, 2005

>98 >98 >90 Germany Andersen et a l , 2003

83 64-99.9 78 Brazil Ternes et a l, 1999a

With regard to xenoestrogens, Lagana et al (2004) determined that bisphenol A 

(BPA) was removed by 90% in a Roman activated sludge plant while 75% o f  

nonylphenol (NP) was removed. In a Japanese study the removal rate for BPA ranged 

from 85% to 96% while that o f  NP ranged from 93-94% (Nasu et a l , 2001).

1.13 Introduction of oestrogenic compounds to surface water

The aqueous concentrations o f  oestrogens in surface waters are decreased by 

dilution, degradation and sorption (Environment Agency, 1999). Most endocrine 

disrupting chemicals will undergo partitioning to the solid phase due to their low 

solubility and their hydrophobic nature. Sedimentation o f  particulates occurs in lakes 

and slow moving waters and to a lesser extent in faster moving rivers.

There are several environmental consequences o f  the partitioning o f  endocrine 

disrupting chemicals to suspended particulates and/or sediment. Firstly, it allows 

endocrine disrupting compounds to persist for a longer period o f  time in the aquatic 

environment. Secondly, particles laden with endocrine disrupting chemicals in river 

systems may be carried downstream meaning that the oestrogenic potential o f  point 

source pollution for example sewage effluent may persist several kilometres 

downstream, however, dilution does occur (Harries et a l , 1996, 1997, Sheahan et a l,



2002a). Thirdly, the availability o f  an endocrine disrupting compound for 

biodégradation is decreased if  it is bound to particulate matter and the presence o f
tk y. T, • 1 *

endocrine disrupting compounds in the sediment means they may have endocrine 

disrupting effects on benthic (bottom-dwelling) organisms for example copepods 

(Marciel et a l, 2003; Andersen et al, 2001; Forget-Leary et a l, 2005) and demersal 

fish and may become biomagnified in the food chain (Gomes et al, 2003).

Lai et al (2000) carried out sorption tests on natural oestrogens; E2, E l, and E3 

and synthetic oestrogens mestranol and EE2 and observed that the synthetic oestrogens 

bound to the sediments to a greater degree (4.5-5.5[ig/g) than the natural oestrogens 

(3.2-4. Ijag/g). Sorption occurred within the first 30 minutes o f  contact. It was evident 

that the compounds with higher octanol water co-efficients and lower water solubilities 

exhibited greater binding affinity for the sediment and competed with other oestrogens. 

Holthaus et al (2002) also found that EE2 showed a greater affinity for bed sediments 

than E2. These findings imply that in natural systems sorption to particulates occurs 

rapidly and there is competition for sorbent binding sites between oestrogens and all 

other hydrophobic compounds implying that compounds o f  lower hydrophobicities such 

as the natural oestrogens will remain in the aqueous phase where they are gradually 

degraded (Lai et a l, 2000; Environment Agency, 1999). Holthaus et al (2002) 

estimated that suspended solids would remove less than 1% o f  E2 and EE2 from the 

water column.

Lai et al (2000) assessed the effect o f  salinity on sorption and found that after 

one hour sorption to the sediment had increased with addition o f  sodium chloride to 

reverse osmosis water implying that oestrogens bound to suspended or dissolved 

organic matter are more likely to be deposited with sediments in estuarine areas. 

Bowman et al (2002) found that sorption onto estuarine sediment particles was 

relatively slow.

In a study for the Environment Agency (1999), Jiirgens et al reported the half- 

lives o f  E2 to range from <3-4days in river water samples and 6-27 days in estuary 

water samples while 46 days was required for EE2 to undergo 50% degradation. 

Williams et al reported a half-life o f  1.2 days for E2 in Thames river water and a half- 

life o f  17 days for EE2 in the same water (Environment Agency, 2001).



BisphenôÎ A is rapidly degraded by bacteria in river water as reported by Kang 

and Ko%do^2002) in a Japanese study in which BPA degradation was found in all 

samples taken from 13 different rivers. It was also found that faster biodégradation 

occurred at higher temperatures.

An Australian study on the sorption o f  BPA, E2, EE2, 4-tert-octylphenol and 4- 

n-nonylphenol onto sediments demonstrated that the alkylphenols had the strongest 

binding affinity for the sediment. Degradation studies were carried out in groundwater 

under aerobic conditions and it was found that E2 and NP had estimated half-lives o f  81 

days whereas BPA and OP did not undergo degradation. The lack o f  degradation o f  

BPA may be due to the fact that riverine bacterial populations may have developed their 

ability to degrade BPA over gradual exposure over time whereas these bacteria may be 

absent from groundwater hence degradation may not occur. Little or no degradation 

was observed for all five endocrine disrupting substances under anaerobic conditions 

(Ying et al., 2003).

Concentrations o f  E2 measured in surface waters in worldwide studies reviewed 

to date range from non detectable in Germany (Ternes et a l , 1999, and the U.K (Fawell 

et a l , 2001) to 25ng/l in the U.K. (Fawell. a l, 2001). Levels o f  E l are typically 

higher (as can be seen in Table 1.17.1 (Appendix B)) due to oxidation o f  17p-E2 and 

range from non detectable (Ternes et a l , 1999a) to 27.8ng/L in a Japanese study 

(Furuichi et al., 2004). A high concentration o f  EE2 (37ng/l) was also detected on the 

same study. The E2 equivalents o f  surface water determined by in-vitro assays in 

studies reviewed to date range from non detectable to 81.4ng/L in Belgium (Witters et 

a l, 2001) and are presented in Table 1.17.2 (Appendix C).

Median concentrations o f  66.7ng/l 4-nonylphenol (NP), 31.4ng/l 4-tert- 

octylphenol (OP) and 72.1ng/lBPA were determined in Kôrsch Stream in Southwest 

Germany which receives effluents from six wastewater treatment plants (Bolz et a l, 

2001). Higher concentrations o f  alkylphenols and bisphenol A were detected in surface 

waters in the Netherlands with <110-4,100ng/LNP, <50-6,300ng/LOP, and <8.8- 

1,000ng/lBPA. Concentrations o f  4- NP in sediments from various streams and rivers in 

Southwest Germany ranged from 10-259|ig/kg dry matter (Bolz et al., 2001) while 

levels o f  BPA in the sediment were low (n.d.-15 jug/kg diy matter) since this compound



is readily degraded in river systems. Solé et al. (2000) detected higher levels o f  NP up 

to 644jig/l in the Anoia Tributary in Northeast Spain.

Figure 1.13: Components of a (partially) closed water cycle with indirect potable 
re-use (Petrovic et a l 2003).

Endocrine disrupting chemicals do not need to be persistent in the environment 

to cause endocrine disfunction because their transformation and removal rates are 

negated by their continuous re-introduction into the environment (Petrovic et a l , 2003) 

(Figure 1.13).

Studies carried out to determine if  endocrine disrupting compounds were present 

in the raw intake and in the reservoirs o f  drinking water treatment plants have shown 

that endocrine disrupting compounds were present (1.8-4.1ng/L E l and <0.3ng/LE2 in 

Severn Trent in the UK (Fawell et a l, 2001) and 0.30-0.44ng/L E2 equivalent in two 

Parisian drinking water treatment plants (Cargouet et a l , 2004). NP, NPnEOs, BPA and 

bisphenol F were non detectable in all samples, however, low concentrations o f  

phthalates, primarily bisethylhexylphthalate, were measured in all samples o f  intake, 

reservoir and final drinking water. Levels o f  steroid oestrogens were below the 

detection limit in treated drinking water (Fawell et a l , 2001).

Rodriguez-Mozaz et al (2004) did not detect oestrogens in drinking water from 

a waterworks in the Llobregat area o f  Barcelona which supplies approximately one third 

o f  Barcelona’s drinking water in a study carried out in 2002. Herbicides were also



analysed for in raw river water and at different stages o f  treatment and in the final 

drinking water. Concentrations o f  the herbicides Simazine and Atrazine up to 2.218(ig/l 

and 0.463 |ig/l respectively were detected in river water with levels up to 0.032^g/l and 

0.018|ug/l respectively detected in final drinking water (Rodriguez-Mozaz et al 2004).

1.14 Effects of endocrine disruption on wildlife

Numerous cases have been reported worldwide where different species o f  

wildlife have been affected by endocrine disruptors.

Exposure o f  animals to endocrine disruptors depends on their habitat and occurs 

via air, water, soil, sediment (bioconcentration), in their food (biomagnification) and 

also from the mother in utero or in ovo. Most endocrine disruptors are fat-soluble and 

accumulate in animal body tissues. This has two implications; the first being that these 

compounds are passed on from mother to offspring via egg yolk or breast milk, for 

example, cetacean females off-load >60% o f  their organochlorine burden to their calf 

during reproduction and lactation (Borrell et al., 1995). The second being that these 

compounds are passed on from prey to predator with increasing biomagnification 

occurring as trophic levels increase (Gray, 2002; Clotfelter et a l , 2004).

Various factors such as the degree, timing and duration o f  exposure relative to 

the developmental stage o f  the organism make assessment o f  exposure to endocrine 

disruptors difficult (World Health Organisation, 2002). Critical periods o f  development 

exist (for example the first 10 days after hatching for salmon) wherein exposure to 

endocrine disruptors at these times causes permanent organizational change in anatomy 

(WHO, 2002; Clotfelter et a l , 2004). The effects o f  endocrine disruption on adult 

individuals are sometimes reversible if  the exposure is stopped (Sonnenschein and Soto,

1998). Many studies o f  endocrine disruption have concentrated on developmental 

(Iguchi et a l, 2001) and reproductive endpoints (Guillette et al, 1994) since the early 

stages o f  life are the most sensitive and since hormones such as oestrogen regulate many 

reproductive processes in vertebrates meaning the reproductive system is prone to attack 

by endocrine disruptors, particularly oestrogen mimicking compounds.

Effects o f  endocrine disruption are not exclusively due to the presence o f  

synthetic compounds in the environment. They can also be due to an altered 

distribution o f  natural hormonal products in the environment, for example, elevated



concentrations o f  phytoestrogens such as p-sitosterol which is a wood-derived 

compound in the effluent o f  pulp mills has caused vitellogenesis in fish (Karels et al. ,

1999) and reptiles (Shelby and Mendon^a, 2001).

In vertebrates, oestrogens are involved in reproduction, somatic cell function, 

sexual differentiation, development o f  secondary sex characteristics, ovulation, 

regulation o f  mating and breeding behaviours and the regulation o f  calcium and water 

homeostasis (Fairbrother, 2000).

Exposure to hormonal oestrogen and oestrogen mimics during sexual 

differentiation has been shown to induce sex reversal and/or intersexuality, while 

exposure during sexual maturation can inhibit gonadal growth and development 

(Jobling et al., 1996).

1.14.1 Mammals

Fish-eating mammals are more vulnerable to the effects o f  endocrine disruption 

than other mammals as they depend on an aquatic/marine foodweb (o f  which they 

represent the higher trophic levels); also certain aspects o f  their reproductive physiology 

may make them more vulnerable to endocrine disruption; and the influence o f  industry 

and agriculture on aquatic and marine systems means that the load o f  endocrine 

disruptors in these systems is ever increasing (WHO, 2002). The majority o f  

information on endocrine disruption in wildlife by chemicals has been derived from 

aquatic ecosystems.

Baltic Seal Disease Syndrome is a disease syndrome in Baltic Grey 

(Halichoerus grypus) and Ringed Seals (Phoca hispida) linked to high body burdens o f  

PCBs, DDT and their metabolites and has resulted in a decline in seal numbers 

(Bergman et a l 1994; Van den Berg, 2000). Effects o f  exposure include interruptions 

during early pregnancy, uterine stenosis and occlusions and partial or complete sterility 

o f  Baltic ringed seals (70%) and grey seals (30%). In 1986, Reijnders carried out a 

semi-field reproductive study with harbour seals (Phoca vitulina) in which one group o f  

twelve female seals were fed flatfish from the polluted Wadden Sea for two years while 

a second group were fed mackerel from the Atlantic Ocean. The former seals had lower 

concentrations o f  17(3-E2 and had lower reproductive success than seals in the latter 

group (Reijnders, 1986). Exposure to PCBs is thought to have impaired the immune
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systeriis^of seals in the Dutch Waddeh Sea, Sweden, the Baltic Sea and the British Isles
\ . . . .

in tne%980s which exacerbated the spread o f  a deadly virus, phocine distemper virus

whicli killed 20,000 seals by mid 1989 (Olsson et a l , 1994).
i
Iii
; High concentrations o f  PCBs have been reported in European otter (Lutra lutra)
\

and mink (Mustela vison) and are generally held responsible for reproductive 

impairment in these species (Brunstrom et a l , 2001; Roos et al, 2001). In 1988 a low  

reproductive rate in a population o f  Beluga Whales (Delphinus leucas) in the polluted 

Gulf o f  St. Lawrence in Canada was associated with high body burdens o f  

organochlorines (Martineau et a l , 1994). More recently, levels o f  total PCBs
i

(dominated by congeners 153 and 138) four to five times higher than that o f  the Beluga 

Whales were found in transient killer whales in British Columbia. These whales can 

now be considered to be among the most contaminated cetaceans in the world (Ross et 

al, 2000).
i
t

1.14.2 Reptiles
I
1 Crocodiles, most turtles and many lizards employ temperature dependent sex
i
determination whereby the sex o f  the offspring is determined by the incubation
}
temperature o f  the eggs (Lance (1994 cited WHO, 2002 chapter 4 part 4.3.1). Studies
i
have shown that oestrogenic compounds administered to eggs incubated at a
i
temperature which would normally give rise to male offspring result in female sex 

determination (Wibbels and Crews, 1995). Crews et al (1995) reported that PCBs 

altered sex determination o f  turtles.

t
f

| The most infamous case o f  endocrine disruption in reptiles occurred in the Great 

Lakes, North America. In 1980, a major spill o f  the organochlorine pesticide Dicofol 

'contaminated with 15% DDT and its metabolites DDD and DDE occurred at Lake
r

Apopka, in central Florida. The population o f  American alligator in the lake
i
dramatically decreased in the 1980s and still had not recovered. Guillette et al (1994) 

¡investigated the reproductive development o f  alligators from Lake Apopka and a control 

¡lake, Lake Woodruff by incubating and hatching eggs taken from both sites and raising 

¡the alligators in captivity for 6 months. At six months o f  age, plasma 17P-E2 

concentrations two times greater were present in Lake Apopka female alligators than in

Lake Woodruff female alligators. Ovaries o f  Lake Apopka females were abnormal
I
containing polyovular follicles and polynuclear oocytes. Male alligators from Lake



Apopka had poorly organised testes* and abnormally small phalli. Juvenile males had 

plasma testosterone concentrations three times lower than males from the control lake. 

Guillette et al (1994) suggested that the sex organs o f  juveniles from Lake Apopka 

have been permanently altered in ovo implying that it is improbable that normal sexual 

maturation will occur.

ii

1.14.3 Fish

I Exposure o f  fish to oestrogenic compounds in the aquatic system occurs via

respiration and osmoregulation. Fish gills consist o f  thin epithelial membranes o f  high 

surface area and there is also a counterflow o f blood and water (World Health 

Organisation, 2002). However, the discovery o f  hermaphrodite roach in lagoons o f  

sewage treatment plants in the United Kingdom in the 1990s marked the realization that

some component o f  wastewater effluent had the capacity to affect gonadal development
)
o f fish.
Í
I
I Oestrogens are involved in many processes in fish, one o f  which is vitellogenin

synthesis. Vitellogenesis is a physiological process for the production o f  yolk in all

female oviparous vertebrates. Sexually maturing female fish produce E2 from their!
ovaries, which is transported to the liver where it diffuses into hepatocytes and binds to

the receptor resulting in expression o f  vitellogenin gene(s) i.e. vitellogenin production.
i
yitellogenin then travels to the ovary where it is taken up by developing oocytes to
i
become yolk (Tilton et a l, 2002). Male fish do not require vitellogenin; hence 

yitellogenin concentrations in males are low to non-existent. Levels are low in 

immature female fish also. Expression o f  vitellogenin is controlled by the oestrogen 

receptor cascade meaning that any ER agonist that can activate the ER results in 

expression o f  vitellogenin. Aquatic contaminants that can increase E2 levels in the 

blood or increase gonadotrophin releasing hormone levels or inhibit the negative 

feedback mechanisms related to these compounds have the ability to increase

yitellogenin levels in fish (Tilton et a l, 2002).
)

! Induction o f  plasma vitellogenin, intersex (typically testis-ova which is the
!

presence o f  ovarian tissue in the testes), reduced testicular development, and reduced 

fertility in fish downstream o f  sewage treatment plant outfalls have been linked to the 

presence o f  oestrogenic substances in the effluent (Purdom et a l, 1994; Harries et a l, 

1996; 1997; Jobling et al., 1998; Rodgers-Gray et a l, 2000). In-vivo studies have



demonstrated that exposure o f fish to as little as l-10ng/l o f E2 (Routledge et a l , 1998)

' and 0.1ng/l o f  EE2 (Purdom et a l , 1994) is sufficient to induce intersex in some species 

o f male wild fish. A study on juvenile Japanese medaka (Oryzias latipes) demonstrated 

that E l, E2, E3, and EE2 induced testis-ova and altered sex at nanogram per litre 

concentrations from the time o f hatching to 100 days afterwards (Metcalfe et a l , 2001). 

Madsena et al (2004) demonstrated that short-term exposure to E2 and nonylphenol can 

delay smolt development and downstream migration in Atlantic salmon {Salmo salar) 

by inhibition o f gill Na+, K+-ATPase.
i

t A myriad o f studies have presented evidence o f endocrine disruption in field 

studies in many countries for example flounder (Kleinkauf et a l , 2004), rainbow trout 

(Purdom et a l , 1994, Harries et a l , 1996;1997, Sheahan et al 2002a;2002b), and roach
i
(Jobling et a l , 1998) in the UK; carp in Spain (Lavado et al, 2004); channel catfish 

(Tilton et a l, 2002) and mosquito fish (Toft et a!., 2003) in the USA, perch and roach in
J
Sweden (Noaksson et al., 2001) and swordfish off the Italian coast (Fossi et a l, 2004).
i
I
i

1.14.4 Birds

Many lipophilic chemicals such as chlorinated pesticides, PCBs, PCDFs, and
|
PCDDs accumulate in the egg yolk o f  laying birds which exposes the avian embryo 

during its early developmental stages.

i
I
| In the 1970s in Southern California, it was observed that 8.14% o f pairs o f 

Western gulls (Larus occidentalis) in the population consisted o f pairs o f  females andi
low numbers o f reproductively competent males were reported (Hunt et al, 1980). The 

probable cause was exposure to the pesticide o,p’-DDT. This pesticide has been shown 

to induce abnormal development o f ovarian tissue and oviducts in male gull embryos 

and interfere with their breeding (Fry and Toone, 1981). Testicular feminization was 

reported in fifty-seven percent o f male gull {Larus occidentalis) embryos collected from 

Scotch Bonnet Island, Canada in 1975 and 1976 (Fox, 1992).
i
ii
\

\ Studies on Laysan Albatross {Diomedea immutabilis) and Black-footed 

Albatross {Diomedea nigriceps) on Midway Island in the Pacific have revealed 

detectable levels o f PCBs, PCDDs, PCDFs, DDT and metabolites in their tissue despite 

the fact that this island is isolated. A decrease in the population o f Black-footed
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• ‘Albatross has been observed since the 1980s due to poor hatching success and eggshell
I '

¡■thinning (Auman et a l , 1997).

•  !'

Exposures to high concentrations o f  organochlorines in the 1970s and 1980s 

have resulted in depleted populations o f the Herring gull (Larus argentatus), Common 

Item, Forster’s tem (Sterna forsteri), Bald eagle (Haliaeetus leucocephalus) and Double-
F

crested cormorant (Phalacrocorax auritus) due to low hatchabilities, deformities in 

[embryos and hatchlings, eggshell thinning and “chick-edema” disease. Exposure to 

PCBs has also been linked to behavioural effects such as poorer nest construction 

¡observed in PCB contaminated tree swallows along the Hudson River in New York 

¡(McCarty and Secord, 1999).
i

#  j  Eggshell thinning primarily due to exposure to DDE which is a degradation

(product o f DDT, has been reported in many avian species such as Peregrine falcon 

;(.Falco peregrinus) (Johnstone et a l , 1996) and Guillemot (Uria aalge) (Bignert et a l
i
j 1995) causing eggs to break and adversely impacting on reproduction.

i
if
I A syndrome prevalent among fish-eating birds in the Great lakes region

'involving skeletal and beak malformations, cardiac edema, and subcutaneous edema has
i

¡been named GLEMEDS (Great Lakes Embryo Mortality, Edema and Deformities 

■Syndrome) (Gilbertson et al., 1991). With some decline o f  concentrations o f DDT, 

¡PCBs, and PCDDs/Fs there have been reductions in the symptoms o f  GLEMEDS and 

¡the rate o f reproductive failure among some species.

i

¡1.14.5 Invertebrates

The most prominent association o f  endocrine disruption to invertebrates is 

imposex, which is masculinization o f  female prosobranch gastropods due to use o f 

tributyltin (TBT), a commonly used antifouling agent on hulls o f  ships. Many different 

¡species o f prosobranch gastropods have been affected by organotins worldwide in 

¡countries such as Ireland (Minchin et a l , 1997), France (Alzieu et a l , 1991), Malta 

¡(Axiak et a l ,  2003) and Northern Europe (Vos et a l ,  2000). Detrimental effects were
i

^  first noticed in the early 1980s in France (Alzieu et a l ,  1991). There are varying

j degrees o f imposex from females with a tiny phalli but no penis duct to females with 

¡almost complete male reproductive organs with sperm-like structures present in the

55



ovaries. In the earlier stages o f imposex, normal reproduction is not affected; however, 

imposex is irreversible (Axiak et a/., 2003).

In 1987 an Irish bye-law prohibited use o f organotins on vessels under 25 metres 

and on all other structures (Anon, 1987). A recent study o f  six Irish bays have 

concluded that the effects o f TBT contamination on wild molluscs and cultivated 

oysters are negligible from the point o f view o f commercial production and that the bye- 

law o f 1987 has been effective in reducing contamination by TBT (Minchin, 2003). 

Application o f TBT to all vessels is forbidden in all EU countries since 1/1/2003 under 

the Marketing and Use Directive (76/769/EEC) and antifouling biocides will be 

reviewed in 2006 under the EU Biocidal Products Directive (98/8/EC) which may result 

in removal o f products containing antifouling biocides from the EU market.

Various studies have been carried out on invertebrates to evaluate the impact o f 

oestrogenic compounds on their development. Marciel et a l  (2003), Andersen et a l 

(2001), and Forget-Leary et a l  (2005) suggested that naupliar development o f copepods 

Tigriopus japonicus, Acartia tonsa and Eurytemora affins respectively could be affected 

and/or inhibited by environmentally relevant concentrations o f oestrogenic compounds.

1.15 Effects of endocrine disruption on humans

There has been increasing concern that chemicals in the environment that are 

capable o f disrupting the endocrine system are affecting human health and may be 

associated with altered reproductive capacity for example the supposed decrease in 

sperm count in adult males, the increasing incidence o f  cancers o f the breast, uterus, 

prostate and testes (Anon, 2000).

The human routes o f exposure to environmental toxicants include 

inhalation, ingestion and dermal contact. The endocrine disrupting contaminants with 

greatest potential for exposure via inhalation are low mass endocrine disrupting 

compounds such as halogenated compounds, for example, lindane and non-halogenated 

aromatic hydrocarbons, phthalate esters and phenols (WHO, 2002). Drinking water is 

not considered a major source for the ingestion o f endocrine disrupting contaminants 

unless unusual contamination has occurred. The primary exposure route to endocrine 

disrupting contaminants for humans is ingestion. Exposure to potential endocrine 

disrupting contaminants varies considerably due to geographic region and food culture



for example, Zumbado et a l  (2005) associated very high mortality rates for breast 

cancer in the province o f Las Palmas, Gran Canaria with the fact that higher DDT:DDE 

ratios and higher values o f  parental DDT isomers were reported in the population o f  

Gran Canaria. DDE is the metabolite o f DDT and high DDT: DDE ratios indicate that 

there could be an active source o f the banned pesticide, DDT on the island despite it 

being banned in Spain since 1977.

Dermal exposure occurs when the skin is in immediate contact with toxicant 

contaminated water, soil, or surfaces (Rice et a l , 2003). This is o f particular concern 

with regard to children chewing or sucking teething rings, toys, stuffed animals etc. in 

their mouths that may have endocrine disrupting contaminants on their surface which 

are solubilised in the mouth and swallowed (Latini et a l , 2004).

The most critical periods o f development susceptible to disruption appear to be 

in utero (Newbold, 2004), in the first few months postnatally (Pohl et al., 2004) and 

puberty (WHO, 2002; Teilmann et a l , 2002). Exposure before conception can 

jeopardise normal foetal differentiation and development. Exposure to toxicants at 

these stages may result in permanent damage to organ function. The degree o f exposure 

in utero depends on the placental barrier and neonatally, on the blood-brain barrier 

which is not fully developed until one year o f age (Damgaard et a l , 2002). The effects 

o f exposure during foetal life and childhood may not become apparent until adult life, 

for example, decreased sperm count and motility.

Studies comparing the effects o f endocrine disrupting compounds on males and 

females are generally not carried out because the cyclical nature o f hormones in females 

complicates studies on hormonal processes (Rice et a l , 2003). Developing males are 

susceptible to demasculinizing and feminizing effects from oestrogens and anti- 

androgens. Developing females may have an increased cancer risk due to exposure to 

oestrogens; however, the potential effects on anti-androgens on females are not yet 

known (Damgaard et a l , 2002).

Documented evidence o f effects o f endocrine disrupting contaminants on 

humans has come from “specific cases o f accidental high-dose exposure to known 

endocrine disruptors through industrial accidents, food contamination, or



pharmacological dosing during critical periods o f development” (Filali-Meknassi et a l , 

2004). The following are some examples o f these incidences:

1.15.1 Polychlorinated biphenyl exposure in Yucheng, Taiwan

In 1978-1979 in central Taiwan a leak from a heating pipe in a rice oil 

production factory led to the contamination o f cooking oil by high concentrations o f 

PCBs and their combustion products, the polychlorinated dibenzofurans (PCDFs). Over

2,000 people, several o f whom were pregnant ingested contaminated cooking oil 

resulting in utero exposure to PCBs and furans and subsequent neonatal exposure 

through breast milk. Increased foetal loss and low birthweight were reported 

immediately (Lione, 1988). Abnormal menstrual bleeding and higher stillbirth rates 

were reported in exposes women in a long-term study (Yu et a l, 2000). The children 

that were exposed prenatally had delayed developmental milestones, intrauterine growth 

retardation, abnormal skin pigmentation, lower IQs and adverse effects on cognitive 

development (Lai et a l ,  2001).

1.15.2 TCDD expo sure in Seveso, Italy

In 1976 in Seveso, Italy, an explosion at a plant that manufactured the herbicide 

2,4,5-trichlorophenol (TCP) exposed the whole community to high concentrations o f 

2,37,8-tetrachlorodibenzo-p-dioxin (TCDD) Mocarelli et a l ,  1996; 2000). An increase 

in cancer in the area o f  highest exposure has been linked to the incident along with 

increases in chronic circulatory and respiratory diseases and a higher incidence o f 

diabetes particularly in exposed women (Bertazzi et a l, 2001).

1.15.3 Diethy 1stilbesterol (DES) exposure

Diethylstilbesterol is a synthetic non-steroidal oestrogen that was used in 

hormone replacement therapy, inhibition o f  lactation, control o f menstrual disorders, as 

a postcoital contraceptive, and in treatment for prostrate cancer in men and in breast 

cancer treatment in postmenopausal women (U.S. Department o f Health and Human 

Services, 2004). From 1948 to 1971 DES was prescribed to pregnant women in order to 

prevent miscarriages and premature labour. The drug failed and in 1971 Herbst et a l 

(1971) linked a rare type o f vaginal; cancer ‘Vaginal clear cell adenocarcinoma” in a 

number o f adolescent girls (<0.1 %) whose mothers had taken the drug. A study by 

Swan (2000) found that the gestational age o f the foetuses at exposure related strongly 

to the degree o f  abnormalities induced. 50% o f prenatal females exposed to a total dose



io f up'to lOOOmg.DES went on to develop vaginal adenosis while those exposed to over 

-3000mgDES all developed adenosis (Swan, 2000). Additionally, malformations in the 

uterus such as T-shaped uterus, constricting bands in the uterus, hypoplastic uterus and 

also abnormalities o f the cervix were reported in exposed female offspring (Kaufman et 

a l , 1977; Bibbo et a l , 1977) and structural, functional and cellular abnormalities such 

as hypospadias, epididymal cysts, hypotrophic testes, retained testes, microphallus, Gill 

et a l , 1976; Klip et a l , 2002). Kaufman et a l  (2000) carried out a follow-up study in 

1994 o f pregnancy outcomes in DES-exposed offspring. Preterm births and 

spontaneous abortion occurred at higher rates o f 19.4% and 19.2% respectively in DES- 

exposed women than in unexposed women (7.5% and 10.3% respectively).

1.15.4 Decreased sperm counts

In 1992 a meta-analysis o f sixty-one studies on 14,947 men was published by 

Carlsen et a l (1992) which demonstrated a major decrease in sperm concentrations 

from 113xl06/ml to 66 x l0 6/ml from 1938 to 1990. However, the results were 

considered invalid by some researchers due to highly variable data, validity o f statistical 

methods, bias due to changing study populations and confusion by factors such as age 

or abstinence. Swan et a l  (1997) reanalysed the studies carried out by Carlsen et a l 

(1992) including more studies from the same period and taking factors such as 

abstinence time, age, and specimen collection method into account. They determined 

that the decline in sperm density per year in the US and Europe/Australia was 1.5 times 

and 3 times greater than the average decline o f  1% per year Carlsen et a l (1992) had 

reported. A subsequent study was carried out with 47 additional studies published 

between 1934 and 1996 in which the average decline in sperm count was almost exactly 

the same as that reported by Carlsen et a l (1992) (a slope of -0.94 versus a slope o f - 

0.93) (Swan et a l , 2000).

Abell et a l  (2000) reported lower sperm counts and percentages o f 

morphologically normal sperm in greenhouse workers in Denmark with higher/longer 

exposure to pesticides. In an American study, Swan et a l  (2003a; 2003b) reported a 

lower sperm count (58.7xl06/ml) and a reduced number o f motile sperm in Columbia, 

Missouri than in New York (102.9x106/ml), Minneapolis (98.6x106/ml) and Los 

Angeles (80.8x106/ml). This decline was associated with exposure to herbicides 

alachlor and atrazine and the insecticide diazinon.



1.16 Legislation and regulations

Development o f policies and regulations must be concurrent with research in 

progress and legislation must be able to be readily adjusted to advances in research. In 

a communication from the Commission to the Council and the European Parliament in 

1999 (COM(1999)706), the commission proposed a strategy consisting o f  short, 

medium and long term actions to address the problem o f endocrine disruption. Short

term measures included among other actions; establishment o f a priority list for 

evaluation, use o f existing legislation and establishment o f monitoring programmes. 

Medium-term measures included identification and assessment o f endocrine disruptors 

and further research and development and long-term measures entailed 

adaptation/amendment o f current legislation to take account o f  endocrine disruption.

A priority list o f substances was compiled in 2000 made up o f  553 man-made 

substances, evidence o f endocrine disruption was found for 118, a further 9 o f which 

were not addressed under legislation at that time. A more in depth study on these 9 

substances and also on 3 natural/synthetic hormones (oestrone, oestradiol and 

ethinyloestradiol) was carried out in 2001 (EC, 2002a). However, there was insufficient 

data to assess endocrine disruption o f  435 o f these substances on the priority list and a 

subsequent study in 2001 led to the finding that there was evidence/potential evidence 

o f endocrine disruption for 147 o f these substances (EC, 2002b). The Organization for 

Economic Co-operation and Development Endocrine Disruptor Testing and Assessment 

Task Force led the program o f  validation o f agreed test methods to ensure all countries 

(European and non-European) adopted the same testing and assessment approaches.

In 1993 the Council adopted the Existing Substances Regulation (93/793/EEC) to 

control use o f “existing” chemical substances. This regulation was intended to 

complement regulations already in place for “new” chemical substances (Council 

Directive 67/548/EEC). However, more recently, in 2003, the European Commission 

approved a proposal for a new regulatory framework for chemicals, which will re

address and greatly improve the EU’s existing chemical substances policy. The 

proposed system is titled REACH (Registration, Evaluation and Authorisation o f 

Chemicals). This proposal requires any company that manufactures or imports more 

than one metric ton o f an existing substance to register it in a centrab database. 

Registration includes information about the properties o f the substance, its uses and 

guidelines on handling the chemical.



The Water Framework Directive (2000/60/EC) sets a framework o f common 

objectives, principles and measures for the management o f water resources across the 

EU. It concerns inland surface waters, groundwater, estuarine and coastal waters and it 

aims to achieve at least “good status” in all waters by 2015. It includes a list o f 33 

priority substances that represent a significant risk to or via the aquatic environment at 

EU level. Among other contaminants listed are nonylphenols and octylphenols, di(2- 

ethylhexylphthalate (DEHP), C10-C13 chloroalkanes and brominated diphenylethers.

1.16.1 Biosolids

By the end o f  1998, under the Urban Wastewater Directive 91/271/EEC 

(Article 14 Irish Sea Act), disposal o f sludge to surface waters for dumping from ships 

should have been phased out but dumping continued through 1999. Application o f 

sewage sludge to the land is regulated under Council Directive 86/278/EEC, 1986, on 

the protection o f the environment, and in particular o f the soil, when sewage sludge is 

used in agriculture however organic contaminants were not considered in this directive. 

In 2000, the European Community drafted regulations specifying maximum 

concentrations for a range o f contaminants in sludges to be used for agriculture which 

are presented in table 1.16. Some European countries have assigned more stringent 

regulations for some organic contaminants in sludge for agricultural use. Germany, 

Switzerland and the Netherlands set values o f 200|ig/kg for individual polychlorinated 

biphenyl (PCB) congeners (De Souza Pereira et a l , 2005) and the Danish Ministry o f 

the Environment and Energy lowered the Danish limit value for nonylphenols, 

nonylphenol-l-ethoxylate and nonylphenol-2-ethoxylate from 30mg/kg to 10mg/kg. 

Table 1.16 Limit values for organic compounds and dioxins in sludge for use on 

land designated by the EU Working Document on Sludge in 2000.

Organic compounds Lim it value (mg/kgdm)
AOXa 500
Linear Alkylbenzyl Sulphonates 2600
Di(2-ethylhexyl)phthalate 100
NPE1, 50
PAHC 6
PCBd 0.8

Dioxins Lim it value (ng TEe/kgdm)
Polychlorinated dibenzodioxins and 
dibenzofiiranes

100

a Sum of halogenated organic compounds
b Nonylphenol and nonylphenolethoxylates with 1 or 2 ethoxy groups



cSum of the following polyaromatic hydrocarbons: acenapthene, phenanthrene, flourene, flouranthene, 
pyrene, benzo (b+j^k)flouranthene, benzo(a)pyrene, benzo(ghi)perylene, indeno(l,2,3-c,d)pyrene.

Sum of polychlonnated biphenyl congeners 28,52,118,138,153,180.
" etoxicological equivalent

1.17 Oestrogen assays

In the analysis o f wastewater when it is not definite which chemicals are present 

and in what quantities they are present in, an assay that can measure the total 

oestrogenic activity o f influents and effluents can indicate the degree o f removal taking 

place within the plant but also gauges the ecotoxicological consequences o f exposure to 

the effluent (Kirk et al., 2002). Some researchers have carried out both chemical 

analysis and in-vitro studies on environmental samples in order to determine whether or 

not the selected xenoestrogens for chemical analysis are responsible for all o f  the 

oestrogenic potency o f the sample (Desbrow et al., 1998; Synder et a l , 2001; Cargouet 

et a l , 2004; Furuichi et al., 2004).

The results o f the chemical analysis for each compound analysed can be 

expressed as theoretical E2 equivalent (EEQ) values which can be summed up to obtain 

a total EEQ value for the sample assuming additive effects within the sample mixture. 

If  this value is lower than the total EEQ value determined by in-vitro analysis then there 

may be other compounds present in the sample which were not chosen for analysis that 

are responsible for the extra oestrogenic activity. If  the value is higher than the total 

EEQ value determined by in-vitro analysis then there may be unknown active 

antagonists in the in-vitro assay or calculation o f EEQ values based on detection limits 

has overestimated the EEQ o f chemical analysis (Murk et a l, 2002). Different methods 

o f chemical analysis have been used to determine oestrogen potency in various 

environmental matrices (Table 1.17.1, Appendix B).

1.17.1 In vivo assays

1.17.1.1 Rodent Uterotrophic assay and vaginal comification assay

Allen and Doisy developed one o f the first assays to measure oestrogenicity in 

the 1920s to identify potent oestrogens and to allow structural elucidation (Hertig, 

1983). In subsequent years the assay was modified for use in the discovery o f  drugs for 

oestrogen agonists and antagonists.

Growth o f the uterus following administration o f a chemical to either sexually 

immature or ovariectomised rodents is determined by increase in wet weight (Ashby,



2001). Immature or ovariectomised female rats and mice are used as they have low 

endogenous oestrogen levels (Owens and Koeter, 2003). In a comparison o f the rodent 

uterotrophic assay to the Yeast Oestrogen Screen assay (YES), Odum et al (1997) 

found both assays had similar sensitivities to E2, nonylphenol and methoxychlor.

The vaginal comification smear is another original method developed for 

studying oestrogenicity in the mid 1900s. This assay was used to detect histological 

changes in the vaginal epithelium. A positive result is indicated by the formation o f 

nucleated (comified) cells (Combes, 2000).

These assays are significant in that they mark the beginning o f oestrogen 

analysis however they are unsuitable for large scale screening due to relatively poor 

sensitivity and labour-intensive end point measurements (Zacharewski, 1997).

1.17.1.2 Vitellogenin assays and reptile egg assay

Vitellogenesis is a physiological process for the production o f yolk in all female 

oviparous vertebrates. Male fish do not require vitellogenin; hence vitellogenin 

concentrations in males are low to non-existent. Levels are low in immature female fish 

also. However, aquatic contaminants that can increase 17(3-E2 levels in the blood or 

increase gonadotrophin releasing hormone levels or inhibit the negative feedback 

mechanisms related to these compounds have the ability to increase vitellogenin levels 

in fish (Tilton et a l, 2002). The increase o f  vitellogenin in male fish is used as a 

biomarker to assess endocrine disruption by oestrogenic compounds (Jones et al, 2000).

Vitellogenin studies have been carried out on various species o f  fish exposed to 

xenoestrogens for example carp (Cyprinus carpio) (Smeets et a l , 1999a; Smeets et a l, 

1999b), brown trout (Salmo trutta) (Sherry et al., 1999), flounder (Platichthys flesus) 

and bream {Abramis Brama)(V ethaak et a l , 2005) with determination o f vitellogenin 

levels by subsequent in-vitro assay. Studies have been carried out in effluents both in 

the laboratory and on site. Other tissue indices such as the hepatic-somatic index (HSI) 

and the gonadsomatic index (GSI) used to identify tissue level effects from effluent 

exposure are usually carried out alongside vitellogenin determination. The HSI is a 

ratio o f the total body weight by the different between total body weight and liver 

weight (Tilton et a l , 2002) while the GSI is the ratio o f the size o f  the gonad to the total 

body weight (Jobling et a l , 1998).



The reptile egg assay is based on the temperature-dependent sex determination 

o f turtles and lizards. Exposure o f turtle eggs to a putative xenoestrogen by spotting or 

painting them with compounds exhibiting oestrogenic potency interferes with the 

temperature-dependent sex determination. It can result in a high proportion o f 

feminization or intersex conditions o f hatchlings at a temperature that would normally 

result in 100% males (Bergeron e t a l ,  1994).

1.17.2 In vitro assays

A range o f  in-vitro assays have been developed for the detection o f potential 

oestrogens at several stages in the primary mechanism o f actions. In general, there are 

three types o f assay: ER competitive binding assays; recombinant receptor-reporter gene 

assays; and cell proliferation assays.

1.17.2.1 ER competitive binding assays

Competitive ligand binding assays rely solely on the binding ability o f  an 

oestrogen or xenoestrogens to bind to the oestrogen receptor (ER). ER binding assays 

are significantly less sensitive than other in-vitro assays. Murk et a l  (2002) compared 

an ER binding assay and two receptor-reporter gene assays; YES and ER-CALUX in a 

study to determine oestrogenic potency in wastewater and surface water. The detection 

limit for the ER binding assay was 272ng/l E2 while it was 2.7ng/lE2 and 0.1ng/l E2 for 

the YES assay and the ER-CALUX assay respectively. The ER binding assay is 

expected to produce higher measurements because it cannot distinguish agonists from 

antagonists, hence, the EEQ is increased. However, this can be seen as an advantage 

because adverse effects can be produced from both agonist and antagonist activity (Li et 

a l , 2004). Compounds that can not permeate cell membranes or would otherwise be 

metabolized can still bind to the ER (Murk et a l , 2002).

Binding o f a substance to the ER does not imply that it can initiate the molecular 

cascade o f events leading to gene transcription and protein synthesis associated with 

adverse effects (Zacharewski, 1997; Joyeux et a l , 1997; Birkett, 2003a). ER binding 

assays are fast but they are not amenable to automation and they require specialised 

laboratory equipment for analysis o f  radioactive substances. A new ER binding assay 

named ELRA (Enyzme-linked receptor assay) has been developed which is sensitive, 

non-radioactive, has a rapid analysis time o f  less than four hours and is cost effective 

(Seifert et a l , 1999). Li et a l , (2004) compared ELRA to the YES assay in the



determination o f oestrogenic potency o f E2, tamoxifen, bisphenol-A (BPA), and 

resveratrol. Results showed that ELRA was approximately one order o f magnitude 

more sensitive tol7P-E2 then the YES in samples.

1.17.2.2 Cell proliferation assays

These assays measure the increase in cell number o f target cells (for example, MCF-7 

or T47-D human breast cancer cells) induced by exposure to oestrogenic compounds. 

The E-SCREEN assay is a cell proliferation assay which measures the oestrogen- 

induced increase o f  cell number o f MCF-7 cells (Soto et ah, 1995). In 1995, novel 

xenoestrogens were discovered by Soto et ah among antioxidants, plasticizers, 

pesticides and polychlorinated biphenyl congeners in an extensive study using the E- 

SCREEN assay. Komer et ah (1999) miniaturised the assay from 24-to-96 well plates 

without compromising sensitivity (detection limit o f 0.27ng/i) which reduced time;and. 

labour. The authors analysed nine effluent samples from five different municipal 

sewage treatment plants in South West Germany and detected-oestrogenic activity 

ranging from 2.5ng EEQ/L to 25ng EEQ/L. They also demonstrated the additive 

behaviour o f the oestrogenicity o f  single compounds in mixtures using the E-SCREEN 

assay.

Folmar et ah (2002) compared the oestrogenic potencies o f  E2, EE2, 

diethylstilbestrol, nonylphenol and methoxychlor in the E-SCREEN assay, YES assay 

and two in-vivo vitellogenin assays. The E-SCREEN assay was found to be one order 

o f magnitude more sensitive than the YES assay for all the chemicals tested:^ Relative 

oestrogenic potencies for EE2 were equal for the E-SCREEN assay and the vitellogenin 

assay. Diethylstilbestrol was somewhat higher in the E-SCREEN assay but 

methoxychlor was three and five orders o f magnitude more potent in-vivo than in the E- 

SCREEN assay and YES assay respectively.

1.17.2.3 Recombinant receptor-reporter gene assays

Reporter gene assays are either mammalian based (i.e. the ER-CALUX, MVLN 

cell assay and chimeric receptor-reporter gene assays) or yeast based (i.e. the YES 

assay). In these assays the test chemical not only binds to the ER but also activates the 

receptor causing transcription and expression o f  reporter genes thereafter. The assay 

can be carried out with cell lines containing an endogenous receptor (MCF-7cells or



T47D cells) or a cell line devoid o f an endogenous receptor (yeast cells or HeLa cells). 

Popular reporter genes used code for firefly luciferase and P-galactosidase.

Following interaction o f  the test compound with the ER, conformation o f  the ER 

is changed and it becomes activated. The ligand-ER complex binds to the ERE on the 

reporter gene plasmid. This initiates expression o f the reporter gene and production of 

the enzyme. This newly synthesised enzyme metabolises a suitable substrate in the 

incubation medium (some reporter gene assays require prior lysis o f  the cells for 

metabolism to occur) producing an easily detectable product (Danish Environmental 

Protection Agency, 2003; Combes 2000).

In the determination o f oestrogenic potency cells are exposed to a test 

substance(s) and a concentration gradient o f a positive control ile. E2. The response is 

measured and compared to the standard to determine its E2 equivalent (EEQ),

1.17.2.3.1 ER-mediated chemical activated luciferase.;.gene expression (ER- 

CALUX)

This assay uses T47D human breast cancer cells expressing endogenous ER 

stably transfected with an oestrogen responsive luciferase reporter gene (pEREtata-Luc) 

containing three EREs. On expression o f the luciferase gene, the cells are lysed, the 

substrate luciferin is added and then light output is measured using a luminometer. It 

has a detection limit o f  0.5pM and can be used to assay anti-oestrogenic compounds 

(Legler et a l , 1999).

1.17.2.3.2 MCF-7-derived cell line assay (MVLN)

The cell line is derived from the MCF-7 breast cancer line expressing 

endogenous ER and is stably infected with an oestrogen- responsive luciferase reporter 

genp. This cell line was originally developed and characterised by Pons et a l (1990). 

The level o f luciferase activity following lysis o f MVLN cells is measured in a 

luminometer



1.17.3 Recombinant yeast oestrogen screen assay
Different yeast based reeeptor-reporter assays have been developed by various

researchers:

Figure 1.17: Schematic o f the oestrogen-inducihle expression system in yeast 

(Routledge and Sumpter, 1996)

The Glaxo Welcome-derived Saccharomyces cerevisiae strain developed by 

Routledge and Sumpter (1996) is a molecular toxicology assay used to identify 

compounds that can interact with the human oestrogen receptor (hER) (figure 1.17). 

The DNA sequence o f  the human oestrogen receptor was stably integrated into the yeast 

genome. The hER is expressed in a form capable o f  binding to oestrogen-responsive 

sequences (ERE). On a separate expression plasmid, the ERE controls the expression o f  

the Lac-Z reporter gene. This reporter gene encodes the enzyme P-galactosidase. 

Natural or xeneoestrogens interact with the bound receptor on the hybrid promoter to 

activate transcription o f  the genes i.e. expression o f  the reporter gene Lac-Z which 

results in the production o f  P-galactosidase. This enzyme is secreted into the medium 

where it metabolizes the chromogenic substance present in the medium, 

chlorophenolred-p-d-galactopyranoside (CPRG) causing a colour change from yellow  

to red, the intensity o f  which relates to the oestrogenic activity o f  the compound or 

mixture being tested and can be measured by absorbance at 540nm.



The YES system developed by Gaido et a l , (1997) and used by researchers 

recently (Servos et a l , 2005) employs yeast containing two plasmids, one plasmid 

contains the CUP1 metallothionien promoter and human oestrogen receptor cDNA for 

copper inducible oestrogen receptor production; the second contains two oestrogen- 

responding elements liked to the lacZ gene. This assay requires lysis o f  yeast cells 

before assessment o f galactosidase activity.

The yeast construct used by Rehmann et a l (1999) did not contain a complete 

oestrogen receptor or a reporter gene linked to oestrogen responsive elements. The 

yeast strain used “expresses a fusion protein carrying only the hormonal binding domain 

o f the human oestrogen receptor connected to the yeast GaL4-DNA binding domain. 

When a suitable compound binds to the hormone binding domain the fusion protein 

recognises a responsive DNA element upstream o f a (3-galactosidase reporter gene” 

Rehmann et a l (1999). The test cultures, are incubated for two hours only and (3- 

galactosidase activity was determined by Miller units.

1.17.3.1 Advantages and disadvantages

The use o f yeast as a recipient organism is advantageous in that it has a rapid 

growth rate, it is easy to culture, and is amenable to genetic engineering. Since yeast 

does not normally contain an oestrogenic receptor or other endogenous receptors, 

potential problems regarding the effects o f other gene targets or the complex interaction 

between the oestrogen receptor and other receptors are avoided (Routledge and 

Sumpter, 1996; Joyeaux et a l , 1997). The expression and reporter plasmids in the yeast 

strain are maintained by growth in selective media, the product o f the receptor is 

secreted into the medium and cell lysis is not required for the assay developed by 

Routledge and Sumpter (Legler et a l ,  2002). In other yeast based assays (Coldham et 

a l , 1997; Gaido et a l , 1997), the (3-galactosidase remains within the yeast cell requiring 

lysis followed by an enzyme assay. Routledge and Sumpter (1996) reported the assay 

to be highly reproducible with a concentration o f 3ng/L E2 producing a desirable 

increase in (3-galactosidase production. The assay allows analysis o f multiple 

compounds over a wide range o f concentrations. The colour change can be seen by the 

naked eye allowing results to be qualitative or quantitative.

However, there are also disadvantages associated with the YES system including 

variations in ligand selectivity compared to mammalian cells in genetic drift o f the yeast



cells over time (Joyeaux et aL, 1997). Some researchers have recorded false negative 

data due to lack o f  uptake o f test chemicals which may be due to toxic effects. 

(Andersen et aL, 1999). The YES assay cannot detect all anti-estrogens (Beresford et 

aL, 2000; Graumann and Jungbauer, 2000).

Various researchers have used various yeast cell clones, ER constructs and 

reporter genes which makes an assessment o f the overall performance o f the assay quite 

difficult. Researchers have made different procedural modifications to the assay also. 

Beresford et aL, (2000) demonstrated the effects o f modifying various aspects 

(incubation time, mode o f addition o f  sample, carrier solvent and. initial cell number) o f 

the standard procedure developed by Routledge and Sumpter (1996). The. authors 

reported that the assay became more sensitive to 17(3-E2 and'mlso to nonylphenol with 

increased incubation time, and with the addition o f the sample directly to the medium 

containing yeast instead o f allowing the sample to evaporate and then adding the media. 

Two different carrier solvents were assessed; ethanol and dimethylsulfoxide and were 

found to give rise to almost the same sensitivity in the assay; The assay could also be 

made more sensitive by increasing the initial cell number o f yeast. Consequently, 

various analysts have used dimethylsulphoxide as the carrier solvent in place o f  ethanol 

(Witters et aL, 2001) in addition to adding the samples to the media containing yeast 

rather than adding the media to the evaporated samples (Murk et aL, 2002; Legler et aL,

2002). Other analysts have increased the incubation period, for example, Holbrook et 

aL, (2000) incubated samples at 32°C for 3 days and then a further 3 days at room 

temperature.

Yeast based receptor-reporter assays have been used to determine oestrogen 

potency in various environmental matrices (Table 1.17.2, Appendix C).



Chapter 2.0 Methods



2.1 Materials

2.1.1 Chemicals

o ultra pure water

o Methanol (99+), acetone, ethanol, hexane and nitric acid (purchased from 

Sigma-Aldrich Ireland Ltd. Dublin, Ireland) 

o Dichloromethane (purchased from Lennox Laboratory Supplies Ltd, Dublin 12) 

o KH2PO4 (purchased from Lennox Laboratory Supplies Ltd, Dublin 12) 

o (NH4)2S04 (1.98g), KOH pellets (4.2g), M gS04 (0.2g), Fe2(S04)3 solution (1ml 

of 40mg/50ml H2O), L-leucine (50mg), L-histidine (50mg), adenine (50mg), 2L- 

arginine-HCl (20mg), L-methionine (20mg), L-tyrosine (30mg), L-isoleucine 

(30mg), L-lysine-HCl (30mg), L-phenylalanine (25mg), lL-glutamic acid 

(lOOmg), L-valine (150mg) and L-serine (375mg) all purchased from Sigma 

Aldrich (Sigma-Aldrich Ireland Ltd. Dublin, Ireland) 

o D-(+)-Glucose (prepared at 20%w/v solution) 

o L-Aspartic acid (prepared at 4mg/ml) 

o L-Threonine (prepared at 24mg/ml)

o Thiamine (8mg), pyridoxine (8mg), pantothenic acid (8mg), inositol (40mg) and 

biotin solution (20ml o f 2mg/100ml H2O) 

o Copper (II) sulphate (20Mm solution)

o Chlorophenol red-fl-D-galactopyranoside (CPRG) (purchased from Fannin 

Healthcare, Dublin 18) (prepared at lOmg/ml) 

o Glycerol (15%-8ml o f sterile glycerol was added to 45ml minimal media) 

o 17p-oestradiol (97%), norethindrone (98%), diethylstilbestrol (97%), bisphenol- 

A (99%), benzylbutylphthalate (98%) and genestein (all purchased from Sigma 

Aldrich (Sigma-Aldrich Ireland Ltd. Dublin, Ireland).

2.1.2 Culture

The recombinant yeast strain, Saccharomyces cerevisae, was kindly provided by 

Professor Sumpter o f Brunell University, Middlesex, UK.

2.1.3 Apparati and materials

o 1L borosilicate glass bottles

o Buchner funnel, Whatman GF/C filters , 0.45¡am filters and filter unit 

o Sonication bath



o 47mm Empore SDB-XC (styrenedivinylbenzene) extraction disks 

(purchased from JVA Analytical; Dublin 12) , 47mm glass filtration 

apparatus, 20ml Quickfit conical flask collection vessels, 20ml volumetric 

flask, and vaccum pump 

o Blender, 1mm mesh sieve, stainless steel dishes 

o Soxhlet apparati, cellulose Whatman thimbles,

o 0.2-pm pore size disposable filter (Lennox Laboratory supplies Ltd, Naas 

Road, Dublin 12), 25ml glass universals 

o Laminar air flow cabinet (Astec Microflow Advanced Bio Safety Cabinet 

class 2)

o Orbital shaker, Incubator, Anthos 2010 microplate reader 

o 1.2ml sterile cryovials, 50ml sterile centrifuge tubes, centrifuge, 

o Sarstedt 96-well microtitre plate, micropipettes, Petri dishes, sterile 50ml 

conical flasks

2.1.4 Wastewater treatment plants to be sampled

Details o f the four wastewater treatment plants (WWTP) chosen for analysis are 

presented in table 2.1.4 (overleaf). These wastewater treatment plants are representative 

o f both small (WWTPs A and B) and large-scale (WWTPs C and D) treatment plants. 

They are all domestic treatment plants with some industrial waste contributing to the 

input into WWTPD. The choice o f  treatment plants to analyse was influenced by the 

different treatment technology employed at the plants which would allow for 

comparison o f treatment efficiency o f  each type.



Table 2.1.4: Details of wastewater treatment plants analysed

Param eter WWTP A WWTP B WWTP C WW TP D

Population

equivalent

Original: 1400

Present: 1900
/

0riginal:1700 

Present: 2100

20,000 1.5 million

Input Domestic Domestic Domestic Industrial and 

domestic

Preliminary 

& primary 

treatment

Screening and 

primary 

sedimentation 

imhoff tank

Screening only Primary

sedimentation

Screening and 

aerated grit 

removal and 

primary

sedimentation

Secondary

treatment

Trickling filter Oxidation ditch and 

clarifier

Extended aeration 

oxidation ditch 

with diffused air 

aeration

Sequential batch 

reactors

Tertiary

treatment

Grass plots n/a Chemical 

precipitation with 

ferric chloride

UV disinfection

HRT (brs) *18 =7 *12 *15

Sludge

treatment

None. Sludge is 

dried on drying 

beds and 

transported to 

Portarlington for 

treatment

None. Sludge is dried 

on drying beds and 

transported to 

Portarlington for 

treatment

Autothermal 

thermophilic 

aerobic digestion 

producing Class A 

biosolids

Anaerobic 

digestion and 

thermal drying 

producing Class A 

biosolids

Abbreviations

W W TP = Wastewater treatment plant 

H RT = H ydraulic retention tim e

72



2.2 Method 

2.2.1 Sampling and preparation

2.2.1.1 Influent and effluent

Sampling was carried out during the summer o f  2004. Samples were collected 

in 1L borosilicate glass bottles, previously washed twice with methanol and once with 

ethanol. Grab samples o f  influents were taken first with grab samples o f  effluents taken 

at a period o f time later equivalent to the retention time of the wastewater treatment 

plant. Samples were chilled on transit to the laboratoiy. 50ml methanol was added to 

each sample to prevent bacterial growth (Desbrow et a l , 1998; Kirk et a l , 2002; 

Aguayo et a l , 2004) and samples were acidified to approximately pH2 using nitric acid 

to so as to aid subsequent filtration (Temes et a l ,  1999a; Servos et a l ,  2005; Pawlowski 

et a l ,  2004). A series o f  filters o f decreasing pore sizes were used. Samples, were 

filtered twice using GF/C filters and once using 0.45 jum filters. Sample bottles were 

rinsed with methanol which was then used to sonicate spent filters for 10 minutes. The 

methanol was filtered and added to the sample as was carried out in several studies 

(Baronti et a l ,  2000; Johnson et a l,  2000; Lagana et a l ,  2004). This, process o f

washing and sonicating was repeated a second time.

2.2.1.1 Sludge

Activated sludge and treated sludge were collected in suitable containers 

previously washed with methanol and ethanol Samples were chilled on transit to the 

laboratory. Samples were then dried in stainless steel dishes (previously washed with 

methanol and ethanol) at 35°C for approximately 48 hours.

2.2.2 Extraction of oestrogenic compounds

2.2.2.1 Influent and effluent

Samples were extracted within 24hours o f arrival to the laboratory. An overview o f the

extraction and analysis steps is presented in Figure 2.2.2

2.2.2.1.1 Apparatus set-up

Extraction was carried out using 47mm Empore SDB-XC 

(styrenedivinylbenzene) (purchased from JVA Analytical, Dublin 12) extraction disks 

with 47mm glass filtration apparatus. These extraction disks have been used in several 

studies (Synder et a l ,  2001; Murk et a l,  2002; Hugget et a l ,  2003; Furuichi et a l ,  

2004). The method employed was a modified method o f that o f the manufacturers, 3M



(http://www.3m.com/empore/library/envirodisks/instructioas.html). The extraction disk 

was centred on the base o f  the filtration apparatus. The sample reservoir was placed on 

top and secured with a clamp. Three different collection vessels were used; one for 

solvents, another for water, and a third for collecting eluate following extraction. One 

disk was used for each sample. A method blank was carried out on each disk prior to 

extraction o f  the sample. Spiked influent and effluent were also extracted. Percentage 

recoveries for influent ranged from 78%-147% and 58%-139% for effluent.

Sludge

I
Soxhlet extraction

Analysis

Influent/effluent

1

> SDB-XC disk extraction

YES assay

Figure 2.2.2 Schcmatic o f the procedure for analysis o f oestrogens in wastewater 

and sludge samples

2.2.2.1.2 Extraction disk conditioning

5ml acetone was pipetted into the sample reservoir. The vacuum was applied 

and the disk let to dry. 5ml o f  methanol was pipetted into the sample reservoir. The 

vacuum was applied and the disk let to dry. 10ml o f  methanol was added to the disk. 

The vacuum was applied and several ml were drawn through the disk. The vacuum was 

vented and the disk was allowed to soak for 5 minutes. The vacuum was applied and 

methanol pulled through the disks until the methanol surface was 3-5mm above the disk 

surface. 10ml o f  ultra pure water was added to the reservoir. The vacuum was applied 

and several ml were drawn through the disk. The vacuum was vented and the disk was 

allowed to soak for 5 minutes. The vacuum was applied and water pulled through the 

disks until the water surface was 3-5mm above the disk surface.

http://www.3m.com/empore/library/envirodisks/instructioas.html


2.2.2.1.3 Sample extraction and elution

500ml o f sample were poured into the sample reservoir and the drawn through 

the filter. Recoveries are not affected by flow rate. The vacuum was left to dry the disk 

to remove as much residual water as possible.

The filter base was placed into the collection vessel, 20ml Quickfit conical flask. 

The chosen elution solvent was methanol as was used by Kirk et al. (2002) and Murk et 

a l  (2002). 5ml o f  methanol was added to the sample container to rinse the container. 

Solvent was transferred to the sample reservoir while washing the walls o f  the sample 

reservoir in the process. The vacuum was applied and a little methanol pulled through 

the disk. The vacuum was vented and the remaining methanol was let sit on the disk for 

5 minutes before applying the vacuum to dry the disk. This process was repeated four 

times. The eluate was transferred quantitatively to a 20ml volumetric flask and then 

evaporated and reconstituted with 2.5ml ethanol and refrigerated for further analysis.

2 2 2 2  Sludge

Dried sludge was ground using a blender and sieved using a 1mm mesh sieve. 

5g aliquots were weighed into cellulose Whatman thimbles. Spikes o f both sludge 

types were also extracted. Soxhlet apparati were set up. An experiment was carried out 

twice to determine the most suitable solvent for extraction. Methanol, hexane:acetone, 

(1:1), dichloromethane, and dichloromethane:acetone (1:1) were used to extract organic 

compounds from 5g o f a common sludge and it was found that dichloromethane 

resulted in the highest recovery on both occasions. Soxhlet extractions ran for 20hours 

after which extracts were collected, filtered and refrigerated. Further extraction was 

carried out the same day using Empore SDBrXC extraction disks in order to purify and 

concentrate the extracts. The same procedure as for influent and effluent samples was 

applied.

2.2.3 Recombinant Yeast Oestrogen Screen Assay

2.2.3.1 Preparation and storage o f minimal medium and medium components

All ingredients were purchased from Sigma Aldrich (Sigma-Aldrich Ireland Ltd. 

Dublin, Ireland) unless otherwise stated. All glassware, spatulas and stirring bars were 

washed twice with methanol and then once with ethanol prior to use. Minimal medium 

and medium components were prepared according to. Routledge and Sumpter (1996). 

Minimal media was prepared by adding 13.61gKH2P04 (purchased from Lennox



Laboratory Supplies Ltd, Dublin 12), 1.98g (NH4)2S04, 4.2g KOH pellets, 0.2g 

MgS04, 1ml Fe2(S04)3 solution (40mg/50ml H2O), 50mg L-leucine, 50mg L-histidine, 

50mg adenine, 20mg L-arginine-HCl, 20mg L-methionine, 30mg L-tyrosine, 30mg L- 

isoleucine, 30mg L-lysine-HCl, 25mg L-phenylalanine, lOOmg L-glutamic acid, 150. mg 

L-valine and 375mg L-serine to 1L distilled water. It was dispensed into 45ml aliquots 

into 100ml Erlenmeyer flasks which were then autoclaved and stored at 4°C.

D-(+)-Glucose: Prepared at 20%w/v solution, autoclaved and stored at 4°C.

L-Aspartic acid: Prepared at 4mg/ml, and autoclaved and stored at 4°C.

L-Threonine: Prepared at 24mg/ml, and autoclaved and stored at 4°C.

Vitamin Solution:8mg thiamine, 8mg pyridoxine, 8mg pantothenic acid, 40mg inositol 

and 20ml biotin solution (2mg/100ml H2O) were added to 180ml distilled water. They 

were sterilized by filtering through a 0.2-jim pore size disposable filter (Lennox 

Laboratory supplies Ltd, Naas Road, Dublin 12) in a laminar air flow cabinet. They 

were filtered into sterile glass bottles and stored at 4°C.

Copper (II) sulphate: A 20Mm solution was prepared and sterilised by filtering through 

a 0.2-|am pore size disposable filter in a laminar air flow cabinet. It was filtered into 

sterile glass bottles and stored at 4°C.

Chlorophenol red-p-D-galactopyranoside (CPRG): CPRG was purchased from Fannin 

Healthcare, Dublin 18. A lOmg/ml solution was prepared and sterilised by filtering 

through a 0.2-|im pore size disposable filter in a laminar air flow cabinet. It was filtered 

into sterile glass bottles and stored at 4°C.

2.2.3.2 Preparation and storage o f yeast stocks

All yeast work was carried out in a laminar flow cabinet (Astec Microflow 

Advanced Bio Safety Cabinet class 2). Yeast was stored on a short term basis with a 

maximum storage period o f four months.

2.2.3.2.1 Short term storage (-20°C)-10X concentrated yeast stock culture

Day 1

Growth medium was prepared by adding 5.00ml o f glucose solution, 1.25ml 

aspartic acid solution, 0.4ml threonine solution, 0.5ml vitamin solution and 0.125ml 

copper sulphate solution to 45ml o f  minimal media. 0.5ml o f 10X concentrated yeast 

stock stored at -20°C was added. The solution was incubated at 32°C for approximately 

24 hours on an orbital shaker.



Growth medium was added to two conical flasks o f 45ml minimal media. 1 ml 

of the 24hour-old yeast culture was added and incubation resumed for another 24 hours.

Day 3

Each 24-hour culture was transferred to a sterile 50-ml centrifuge tube and 

centrifuged at 2000g for 10 minutes at 4°C. The supernatant was then decanted and 

each culture was resuspended in 5ml minimal media with 15% glycerol (8ml o f  sterile 

glycerol was added to 45ml minimal media). 0.5ml aliquots o f the 10X concentrated 

stock solution were transferred to 1.2ml sterile cryovials which were stored at -20°C for 

a maximum o f  four months (Routledge and Sumpter, 1996).

2.2.3.2.2 Preparation and storage o f chemicals

The steroid hormone, 17P-oestradiol (97%) to be used as the standard solution 

was purchased from Sigma Aldrich (Sigma-Aldrich Ireland Ltd. Dublin, Ireland). 

Synthetic hormones, norethindrone (98%). and diethylstilbestrol (97%) were also 

analysed. The ability o f the assay to identify xenoestrogens was assessed by examining 

the activity o f  known xenoestrogens such as bisphenol-A(99%), benzylbutylphthalate 

(98%) and phytoestrogen, genestein (all purchased from Sigma-Aldrich Ireland Ltd. 

Dublin, Ireland).

All glassware, spatulas and stirring bars were washed twice with methanol and 

then once with ethanol prior to use. Chemicals were weighed directly into bottles. The 

standard solution, 17P-oestradiol was made up to a concentration 54.48|ig/l in absolute 

ethanol (Routledge and Sumpter, 1996). Bisphenol-A, benzylbutylphthalate and 

genestein were made up to a concentration o f 2g/l in absolute ethanol. 

Diethylstilbesterol was made up to a concentration o f 1E-06M and norethindrone was 

made up to 0.08g/l as these concentrations gave rise to optimum dose response curves 

parallel to that o f 17P-oestradiol.



2.2.3.3 Assay procedure

All yeast work was carried out in a type II laminar flow cabinet to minimise 

aerosol formation. The assay procedure is that o f  Routledge and Sumpter (1996). 

Analysis was carried out on three different occasions for Ringsend WWTP and 

Killarney WWTP and twice for Strandhill WWTP and Tubbercurry WWTP.

Day 1

Growth medium was prepared by adding 5.00ml o f  glucose solution, 1.25ml 

aspartic acid solution, 0.4ml threonine solution, 0.5ml vitamin solution and 0.125ml 

copper sulphate solution to 45ml minimal media in a sterile conical flask. The media 

was then inoculated with 0.5ml o f  10X concentrated yeast stock frozen at -20°C. The 

yeast suspension was then incubated at 37°C.

Day 2

The standard was serially diluted across one row o f  a Sarstedt 96-well microthre 

plate to give a concentration range o f  2724ng/l to 3ng/l as follows: 100p.l o f  ethanol 

were put into each well except the first well. lOOpI o f  l7(3-oestradk)l (54.48pg/l) were 

placed into the first well containing ethanol. The solution was mixed ten times within 

the pipette, and lOOpl o f  the solution were transferred into the next well and so on. 10 

pi o f  each concentration was transferred to the first row in the test well plates. The 

second row was an assay blank. 10pl aliquots o f  ethanol were transferred to the last 

row in the test well plates as a solvent blank (Figure 2.2.3).

Standard-17p-oesiradiol- 2724ng/l lo 3ng/l (left 
lo nght)-l()^l in cach well + 200)U seeded assay 
medium

Assay blnnk-to contain 200*11 seeded assay 
medium only

Sample-5 rows of a sample with decreasing 
volumes e.g. 30 )d to I jd in cach row from left to 
right so as to create a concentration gradient 
(+200jd seeded assay medium)

Solvent blank-10|il of ethanol in each well +200pl 
seeded assay medium

Figure 2.2.3: 96-well plate layout for the Yeast Oestrogen Screen assay



Varying volumes o f sample extract were transferred to the remaining five rows 

in order to dilute the sample (Kirk et aL, 2002). Extracts were shaken between each 

transferral. Volumes o f  effluent extract typically ranged from 30|il to lfil and for 

influent; 20jll1 to 1 \i\.

The different solutions in the assay plates were left to evaporate. The 

absorbance o f the yeast suspension from the previous day was measured using a 

microplate reader at 640nm. I f  necessary, the suspension was diluted with minimal 

media to obtain an absorbance o f  1.0 at 640nm. Fresh growth medium was prepared by 

adding 5.00ml o f  glucose solution, 1.25ml aspartic acid solution, 0.4ml threonine 

solution, 0.5ml vitamin solution and 0.125ml copper sulphate solution) to a minimal 

media solution. 0.5ml o f CPRG was also added. Finally, 1ml o f  yeast culture 

(absorbance 1.0 at 640nm) was added. The solution was then poured into, a Petri dish 

and continuously mixed to ensure homogenous distribution o f the yeast cells while 

200jil o f the solution was transferred into each well on the test plate using a multi

channel pipette (Figure 2.2.3). The plates were then shaken for two minutes and 

incubated at 32°C.

Days 3 + 4

The test plates were shaken for two minutes and re-incubated at 32°C.

Day 5

The test plates were shaken for two minutes approximately one hour before 

readings were taken and allowed to settle (colour development o f the standard and the 

negative control are presented in Appendix A). Assay plates were measured using an 

Anthos 2010 microplate reader. Absorbance was measured at 540nm and at 620nm. 

The plates were read at 620nm to measure background turbidity o f the yeast.

2.2.3.4 Quantitative analysis

The corrected absorbance values were calculated as follows (Routledge and 

Sumpter, 1996):

(chemical absorbance (540nm) minus chemical absorbance(620nm)) plus average 

absorbance o f solvent blank@620nm



Oestradiol equivalency factors (EEFs) o f the synthetic oestrogens and 

xenoestrogens, were determined by dividing the EC50 o f 17(3-oestradiol by the EC50 o f 

the compound being tested (Tanaka et ah, 2001; Beresford et al., 2000; Coldham et a l, 

1997). Each compound had its own standard oestradiol curve each time it was assayed. 

EC50 values were obtained by plotting graphs o f log concentration, (M) versus 

absorbance o f  the most vertical portion o f the standard curve and each compound. In 

this way, line equations could be attained for the linear portions only o f  the graphs 

whereas a line equation o f a sigmoidal graph would take into account the whole curve 

and not just the required linear portion.

Equal minimum and maximum response values o f the test compound and the 

standard and their parallelism are required for the derivation of accurate relative potency 

(Villeneuve et al., 2000). In some studies, authors designate minimum and maximum 

absorbance values between which they calculate EEQ values at various points (Kirk et 

a i , 2002) while in others, authors have selected one absorbance point only (Witters et 

a l,  2001). An absorbance mid-range in the dose response curves was chosen (whereby 

the maximum absorbance o f 17p*oestradiol is assumed EC 100 and the lowest absorbance 

o f 17P-oestradiol is assumed ECo) and the EC50 values were determined for 17(3- 

oestradiol and for each o f the five replicate concentration gradients o f the compound 

being tested at the chosen absorbance (Tanaka et a l , 2001; Coldham et al., 1997). Five 

EC50 values were derived each time a compound was tested.

Microsoft Excel was used to graph the data and to extrapolate EEQ; o f 

wastewater extracts by plotting graphs o f log concentrations (M) . versus absorbance o f  

the vertical portion o f  the standard curve. EEQ values o f the five replicate sample 

gradients were determined at dilutions which were within the most vertical portion o f 

the standard curve (Kirk et al., 2002) using the equation o f  the line which was typically 

between 1.0 and 1.8. Then, the dilution on the plate relative to the standard and the 

concentration o f the sample that occurred due to extraction from 500ml to 20ml and 

evaporation to 2.5ml was accounted for. For example, the EEQ value o f a sample 

extract volume o f  20jxl that was diluted 10 times in the assay (i.e. 20\i\ in 200(il seeded 

assay medium) o f which the extract was concentrated 200 times (from 500ml to 2.5ml) 

prior to the assay was multiplied by 10 and divided by 200. All o f  the results were 

averaged to produce a mean for that particular sample i.e. influent or effluent at that 

particular sampling period. Results were statistically analysed using Sigma Stat.
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3.1 Steroidal oestrogens and xenoestrogens

Validation o f  the Recombinant yeast Screen assay was carried out regularly using 

17p-oestradiol (Table 3.1.1). The average EC50 for 17p-oestradiol was 1.16xlO‘10M or 

26.76ng/l. Five different compounds exhibiting oestrogenic potency was assessed to 

further validate the assay and these compounds consisted o f  a phytoestrogen; genestein, 

two synthetic oestrogens; diethylstilbestrol and norethindrone and two xenoestrogens 

bisphenol A and benzylbutylphthalate. The EC50 concentrations and Oestrogen 

Equivalency Factors (EEF) for these compounds are presented in Table 3.1.2

Table 3.1.1: EC50 values and 95% confidence intervals for 17p-oestradiol (54.48jig/l)

n Average 95% confidence Average EC50 95% confidence

EC50 value (M) interval (M) value (ng/1) interval(ng/l)

50 1.16xl0',u 
(1.28x1 O'10)

8.07E-11-1.52 xlO'10 26.76
(6.79)

24.86-28.66

EC50: concentration o f  a compound that produces a half-maximal response (median effective concentration) 
(Rutishauser et al., 2004).
Values in parenthesis represent standard deviation.

Table 3.1.2: EC50 values and oestrogen equivalency factors for one phytoestrogen, 
two synthetic oestrogens, and two xenoestrogens tested.

C om pound E ffec tive
concentra tion

n A verage E C 50 

value (M )
A verage E C 50 

value (w /v )
EEF

Genestein

( 2 g/D

EC 50 2 0 2.70x10** 
(2 .4 6 x1 0 ‘7)

0.65 mg/1 
( 0 . 0 2  m g /1)

4.14 x lO ' 5

D ie thy ls tilbes tro l 
(2.6x10 'V l)

E Ç 50 2 0 1 .6 8 x  1 0 ' lü 
(3 .7 2 x 1 0 '“ )

44 .34ng/l„ 
(9 .80ng /l)

6,03 x lO ' 1

N ore th ind rone
(0 .0 8 g /l)

EC 50 2 0 1 .6 8 x 1 0 "
(3 .9 6 x 1 0 '* )

5 0.20 jig/1 
(1 1 .81(xg/l)

5 .3 3 x 1 0 “*

B ispheno l A  

( 2 g /l)
EC50 2 0 2 .2 0 x 1  O' 6  

(3 .6 9 x 1  O'7)
0 .50m g/l
(0 .0 8 m g /l)

5.33 x lO ' 5

B enzy lbu ty lph tha la te

( 2 g /l)

0 0 5 2 .8 6 x 1 0 5 
(1 .89  x lO '5)

8.95m g/l 
(5.91 mg/1)

8.22 x lO ' 7

Values in parenthesis represent standard deviation.
1 An EC 10 concentration was extrapolated for benzylbutylphthalate due to its submaximal potency

The EC50 values are expressed as both molar concentration and weight/volume as both 

values are often presented in literature. Genestein, bisphenol and benzylbutylphthalate 

were assayed at 2g/i. Benzylbutylphthalate produced the highest EC50 value meaning it is 

the least potent compound assayed. Similar EC50 values were derived for Genestein and 

bisphenol. The most potent compound tested was diethylstilbestrol with an EC50 value o f
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1.68x1 O'10 M and an oestradiol equivalency value o f  6.03 xlO 1 meaning it is 1.6 times less 

potent than oestradiol.

3.2 Wastewater influents and effluents

Wastewater Treatment Plant A

2819 - Wluent 

B r
106 04 8 06 04
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I  6 0

I f 50
S ' c  40

i S 30
S “  20
* 10 
•O 0

Wastewater Treatment Plant B

36 81

1 1
27.07.04 3.06.04

Figure 3.2.1: Oestradiol 
equivalent (EEQng/l) o f influent 
and effluent o f Wastewater 
Treatment Plant A

Figure 3.22 : Oestradiol 
equivalent (EEQng/l) o f influent 
and effluent o f Wastewater 
Treatment Plant B
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Figure 3.2 J :  Oestradiol 
equivalent (EEQng/l) o f influent 
and effluent o f Wastewater 
Treatment Plant C

Wastewater Treatment Plant D
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Figure 3.2.4: Oestradiol 
equivalent (EEQng/l) o f influent 
and effluent o f Wastewater 
Treatment Plant I)
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Figure 3.2.5: Oestradiol equivalent (EEQng/l) o f influent and effluent o f all 
Wastewater Treatment Plants

Table 3.2: Oestrogen equivalent concentrations and percentage removal rate for each 
wastewater treatment plant

W W T P Date Influen t E E Q  (ng/l) Effluent E E Q  (ng/l)
Percen tage  
Rem oval ra te

W W T P A 1.06.04 39.97 (26 .82 -50 .12 ) 18 .7 (12 .76 -24 .64 ) 53.21%

W W T P A 8.06.04 22.87 (21 .92 -23 .82 ) 2 8 .1 9 (2 5 .9 2 -3 0 .4 6 ) -23.26%

W W T P  B 27.07.04 29.64 (25 .67 -33 .61 ) 36.81 (35 .44-38 .18) -24 .19%

W W T P  B 3.08.04 46.73 (44.25-47.21 ) 5 6 .4 9 (5 3 2 5 -5 9 .7 3 ) -20 .89%

W W T P  C 14.06.04 8 .1 6 (7 .8 -8 .5 2 ) 0 100.00%

W W T P  C 21.06.04 0 0 n/a

W W T P C 28.06.04 27.77 (25 .76 -29 .74 ) n/a n/a

W W T P  D 5.07.04 n/a n/a n/a

W W T P  D 12.07.04 1.44 (1 .27 -1 .63 ) 0.63 (0 .60-0 .66) 56.25%

W W T P  D 19.07.04 11.89 (9 .24 -14 .54 ) 6 .4 9 (5 .8 3 -7 .1 1 ) 45.42%

Values in parenthesis represent 95% confidence intervals 
n/a: not applicable

These results indicate that wastewater treatment plant (WWTP) B actually increases 

the oestrogenicity by the influent by 21-24% (Table 3.2) rather than decreasing it (Figure

3.2.2). Reduction (53%) is observed on one sampling occasion for WWTPA while

Oestradiol Equivalent Concentrations tor all 
W astewater Treatment Plants analysed

3 0

°  ^  ^  ^« T V  » Y »
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oestrogenicity increases by 23% on the second sampling occasion (Figure 3.2.1 and Table

3.2). Lower oestrogenic potency is detected in the influents and effluents of WWTPs C and 

D (Figure 3.2.5) with a removal rate of 100% observed for WWTPC on one sampling 

occasion (Table 3.2). The removal rates for WWTPD range from 45-56% (Table 3.2).

3.2.1 Statistical analysis

The influent and effluent data were statistically compared by T-test using Sigmastat 

2003 software. The influent and effluent values of each WWTP were statistically different 

from each other (P<0.05) except those of WWTPA. for which there was no statistical 

difference. This was due to the high standard deviation (24.20) of the influent values on 

1.06.04.

Comparison between the four WWTPs (one-way anova) showed that all four plants were 

significantly different to each other regarding their influent mean values at a significance 

level of P<0.050. This was also the case regarding the effluent mean values (at a 

significance level o f P<0.050) except that effluents o f WWTPC and WWTPD were not 

significantly different (P=0.479) to one another. This was due to the fact that oestrogenic 

activity was not detected in WWTPC on two occasions i.e. there was no oestrogenic 

response. On a third occasion the result was invalid due to toxicity in the sample as the 

response of the sample extract was below that o f the solvent blank indicating that 

something in the sample hindered the growth of yeast. Invalid results were also recorded 

for both influent and effluent of WWTPD on one occasion and oestrogenic activity, detected 

for the remaining sampling dates were very low. For these reasons, the effluent values of 

WWTPC and WWTPD were similar to one another and did not give rise to a statistical 

difference.



3.2.2 Toxic effects o f samples

W W T P  A ( 8 . 6 . 0 4 )  17( i -o e s t r ad io l  v s  in f lu e n t  s a m p l e  

 /

0 4  1------!------------ 1----------- 1---------
1a-13 l a - 1 2  l e - 11  1e-10 1* *9  1®-8

L o |  o f  c o n c e n t r a t i o n  o f  1 7 p - o r * t r a d  l o i  ( M )  o f  e x t r a c t  v o l u m e  ( p i )

l7be ta -o«« lradK > l
in fluen t
co n tro l

Figure 3.2.6: Graph of W W TP A (8.06.04) influent sample exhibiting toxicity at 
higher concentrations

W W T P  B ( 2 7 . 0 7 . 0 4 )  I 7 p . o c s t r a d i o l  v s  i n f l u e n t  s a m p l e

L o g  o f  c o n c e n t r a t i o n  o f  ! 7 p - o e s t r a d i o l  ( M )  L o g  o f  r i t r a c t  v o l u m e  ( | * l )

1 7bata-oettrad>o l
I n f l u e n t

C ontro l

Figure 3.2.7: Graph of W W TP B (27.07.04) influent sample exhibiting nonmonotonic 
characteristics
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Figure 3.2.6 and Figure 3.2.7 display examples of toxicity observed in two samples from 

WWTPA and WWTPB. At higher concentrations cytotoxicity occurs due to something 

unknown in the samples preventing growth of yeast.
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4.1 Steroidal oestrogens and xenoestrogens

The EC50 concentration derived for 17(3-oestradiol (1.16 xlO'10M) (table 3.1.1) 

agrees with those of Legler et a l (2002); 1x10 xlO',0M and Folmar et a l  (2002); 2.1x10 

xlO',0M. The oestradiol equivalency factor calculated for genestein indicates that it is 

almost 24,200 times less potent than 17|3-oestradiol. This does not agree with EEFs derived 

by Matsui et a l  (2000) and Tanaka et a l  (2001) who reported the potency of genestein to 

be 10,000 and 12,500 times less potent than 17p-oestradiol in the same assay. 

Diethylstilbestrol was the compound with the EC50 value (1.68 xl0"10M) closest to that of 

the standard meaning that out o f the compounds tested it had the greatest potency (table

3.1.2). The EEF value (6.04 x l0_IM) indicated DES to be approximately 1.6 times less 

potent than 17P-oestradiol. This result is similar to that of Folmar et a l  (2002) who 

reported an EC50 value of 1.9E xlO'loM and indicated DES to be 0.9 times less potent than 

17p-oestradiol. Tanaka et a l  (2001) found DES to approximately 3.3times less potent than 

the standard in the same assay.

Norethindrone was found to be almost 1,900 times less potent than 17P-oestradiol 

with an EC50 value o f 1.68 x l0 ‘7. Bisphenol A gave rise to an EC50 value o f 2,20xl0‘6M 

and an EEF of 5.33 x l0 ‘5M when compared to the standard which indicated that it is almost

19,000 times less potent than 17p-oestradiol (table 3.1.2). This is in agreement with 

Tanaka et a l  (2001) and Komer et a l  (2001) who reported bisphenol A to be almost 

16,700 and 19,500 times less potent than 17p-oestradiol in the YES and E-screen assays 

respectively. However, relative potencies for bisphenol A in the YES assay reported in 

literature vary between 10,000-15,000 times weaker than 17p-oestradiol (Gaido et al 

1997; Sohoni and Sumpter, 1998; Matsui et a l , 2000). The response curve produced by 

benzylbutylphthalate was submaximal (as found by Sohoni and Sumpter (1998) and 

Beresford et a l  (2000)) i.e. it did not produce a response high enough to allow derivation of 

an EC50 value even if the initial concentration of the compound was increased. However, 

on one occasion the response produced was sufficient to derive an ECio value (2.86 xlO’ 

10M) which gave rise to an EEF of 8.22 xlO‘7M indicating that BBP was almost 1,220,000 

times less potent than 17p-oestradiol. ..Harris et a l  (1997) and Tanaka et a l (2001) also 

found that BBP produced submaximal dose response curves in the YES at concentrations 

up to 2g/l. Harris et a l  (1997) and Murk et a l (2002) indicated that BBP was 

approximately one million times less potent than 17p-oestradiol.



4.2 Wastewater influents arid effluents

Higher oestradiol equivalent concentrations were determined overall for influents 

and effluents of wastewater treatment plants A and B than for wastewater treatment plants 

C and D (Table 3.2 and Figure 3.2.5). This may be attributed to the fact that-treatment 

plants C and D have higher treatment efficiencies as they are medium to large scale 

treatment plants with more advanced treatment technologies. The biological treatment 

method employed in both wastewater treatment plants B and C is sludge activation in an 

oxidation ditch however wastewater treatment plant C uses a diffused air aeration system 

while wastewater treatment plant B has two alternating surface aerators (table 2.1.4). Lower 

volatile organic compound emissions have been reported with the use of fine bubble 

diffusers than with coarse bubble diffusers or mechanical surface aeration (United States 

Environmental Protection Agency, 1999c). Also, wastewater treatment plant C is the only 

plant of the two to have primary sedimentation and chemical precipitation in the form of 

ferric chloride. However, use o f ferric chloride as a coagulant is not itself efficient for the 

removal of oestrogenic potency as has been shown by Schafer and Waite (2002) in a study 

in which poor removal of oestrone (<10%) was observed after ferric chloride coagulation 

compared to a removal rate o f >90% with powdered activated carbon.

WWTPrrB .did not reduce oestrogenic potency on either sampling dates (Figure

3.2.2) but actually increased the oestrogen potency by approximately 24% and 21% while 

WWTP C was the most efficient WWTP giving rise to removal rates o f 100% on one 

occasion with a second sampling date on which no oestrogenic potency was determined in 

either the influent or effluent (Table 3.2). However, on a third sampling date the effluent 

was found to be toxic to the yeast (the response of the yeast was below that of the solvent 

control meaning that something in the sample was toxic to the yeast) and the oestrogenic 

activity of the effluent could not be determined. Removal rates o f oestrone of >99% and 

89% were estimated for Belgian and German WWTPs employing oxidation ditches based 

on oestrone levels in the effluent and estimated oestrone levels in the influent (Johnson et 

a l , 2005). These plants had total hydraulic retention times of 17.5hours and 41hours 

respectively and served population equivalents (6,500 and 15,000 respectively) 

intermediate o f those of WWTP B and C. The poor treatment efficiency of WWTP B can 

be attributed to the fact that it was designed to serve a population capacity o f 1,700 but it 

operating at a population capacity of 2,100. This means that the load entering the plant was



too high, the biodegrader microorganisms are overwhelmed and the hydraulic retention 

time (approximately 7 hours) is not long enough to allow sufficient treatment. This problem 

may be worse in the summer months (when sampling occurred) due to less rainfall and 

higher input of people to the area as it is a popular seaside village.

Wastewater treatment plants A and B are located locally and samples were extracted 

within an hour of sampling whereas wastewater treatment plants C and D are considerably 

further away meaning that the length of time between sampling and extraction was longer 

for these samples. Samples from wastewater treatment plant D were extracted within 5 

hours o f sampling. Samples from wastewater treatment plant C were transported by courier 

and were delivered the day after sampling meaning a loss of oestrogenicity may have 

occurred via the degradation of 17p-oestradiol to oestrone.

The biological treatment method employed in WWTP A is a trickling filter system 

followed by tertiary treatment via grassplots (table 2.1.4). This treatment plant is serving 

approximately 1,900 people when it is designed for 1,400 but it has a longer hydraulic

retention time (18hours) than WWTPB (7hours) which may have contributed to its better
- ,  11 -treatment efficiency (Andersen et a l 2003; Langford et a l , 2005). The oestrogenic ity 

decreased during treatment on one occasion by approximately 53% and increased by 

approximately 23% on another occasion (Table 3.2). Such increases in oestrogenic ity 

following trickling filter systems have been reported elsewhere. Servos et a l  (2005) 

reported a 62% increase in the YES response from the influent to the effluent o f a Canadian 

WWTP (equipped with primary treatment but devoid of tertiary treatment) in which the 

hydraulic retention time in the filter itself was 1 hour and the total system hydraulic 

retention time was 6-8hours. Instrumental analysis determined that the concentrations of 

17p-oestradiol and oestrone increased by 18.5% and 62.4% respectively. Splenger et a l 

(2001) measured concentrations o f natural and synthetic oestrogens, phytoestrogens and 

xenoestrogens in effluents of 18 German WWTPs employing various treatment methods. 

Only one WWTP did not employ an activated sludge system but consisted of a trickling 

filter with nitrification and phosphate removal. The effluent of this plant contained the 

highest concentrations of oestrone, ethinyl-oestradiol, genestein, bisphenol A, 4- 

nonylphenol and 4-nonylphenoxyacetic acid among all 18 WWTPs. Using the YES assay 

Svenson et a l  (2003) determined the percentage removal of oestradiol equivalent of three



WWTPs, the sole biological treatment o f which were trickling filters. The effluent o f one 

plant was approximately 3.5 times more potent than the influent while removal efficiencies 

of the second and third WWTP were 33% and 75% respectively. Specific analysis of the 

second plant at intermediate treatment stages demonstrated that the biological treatment 

step accounted for only 8% removal of the total 33% while post-precipitation using 

aluminium was mainly responsible for removal of oestrogenic potency demonstrating the 

poor removal efficiency of trickling filter systems.

Studies carried out on other systems of solid support bacteria have also reported 

poor removal efficiencies. A Swedish WWTP employing a rotating biological contactor (a 

system method in which media i.e. circular disks, plates or tubes attached to a rotor shaft 

rotates in the wastewater flowing through the tank) as biological treatment was not 

effective in removing oestrogenic potency as the effluent was 2.6-4.6 times more potent 

than the influent (Svenson et a l,  2003). The authors reported an average removal rate of 

only 28% for solid support bacteria systems (trickling filter and rotating biological 

contactor systems) in a study on Swedish WWTPs while activated sludge systems resulted 

in an average removal rate o f 81%.

The biological treatment in WWTP D consists of sequence batch reactors with a 

hydraulic retention time of approximately 15 hours (table 2.1.4). Ozonation is used as a 

form o f tertiary treatment. Removal rates of approximately 56% and 45% were observed 

for this WWTP. Results could not be calculated on a third sampling date as both the 

influent and the effluent were toxic to the yeast i.e. oestrogenic activity could not be 

deduced (Table 3.2 and Figure 3.2.4). Ozonation using 5-15mg/l of ozone has been shown 

to be effective in the removal of oestrone with removal rates of >80% as reported by Temes 

et a l (2003). Ozonation has the ability to weaken binding affinity for the oestrogen 

receptor. . . . . . .
)

Oestrogens are excreted as glucuronide and sulphonide conjugates (80% and 20% 

respectively as determined by D’Ascenzo et a l (2003) in a study on 72 women. Oestrogen 

glucuronides (for example, 17p-oestradiol-3-glucuronide, oestriol-3- glucuronide) have 

been shown to undergo biodégradation in the sewers allowing oestrogen sulphonides (for 

example, 17p-oestradiol-3-sulphate, oestrone-3-sulphate) to dominate influent (D’Ascenzo



et a l, 2003). Oestrogen sulphonides are also more recalcitrant in the wastewater process, 

as E. coir; the most prevalent bacterial species in wastewater, can not sufficiently degrade 

sulphonide conjugates in the given hydraulic retention time of most wastewater treatment 

plants (4-14hours). Hence efficient biodégradation o f oestrogen sulphonides may only take 

place in WWTPs with a long enough hydraulic retention time to allow diverse bacterial 

species other than E. coii to flourish. Glucuronide conjugated oestrogens were not detected 

in the effluents o f activated sludge WWTPs in a Dutch study carried out by Belfroid et al. 

(1999) indicating that deconjugation reactions of glucuronides occur during treatment. 

Oestrogen sulphonides were detected in effluent, river water and lake water in a study 

carried out by Isobe et a l  (2003) whereas oestrogen glucuronides were not detected.

If complete degradation of oestrogen conjugates does not occur these conjugates 

may be cleaved producing their free (more potent) form. This may account for the 

observed increase in oestrogenic activity from the influent to the effluent on both sampling 

dates for wastewater treatment plant B (Figure 3.2.2) and on one occasion for WWTP A 

(Figure 3.2.1). Ternes et a l  (1999a), Nasu et a l  (2001) and Kirk et a l  (2002) reported 

increases in concentrations o f oestrogens and/or potency from the influent to the primary 

effluent (that is the wastewater following primary treatment). The authors attributed this 

increase to the deconjugation of conjugated oestrogens.

Furthermore, oxidation of 17p-oestradiol to oestrone during the treatment process 

may also account for the reported increase in oestrogenic potential as although oestrone is 

not as potent as 17p-oestradiol it is more recalcitrant to biodégradation and it is the 

oestrogen species found in the highest concentrations in influent and effluent worldwide 

(Table 1.17.1, Appendix B). Matsui et a l  (2000) found oestrone to be 0.21 times as potent 

as 17p-oestradiol by the YES assay while Pawlowski et a l  (2004) found oestrone to be 0.5 

times as potent as 17p-oestradiol using the same assay. Therefore, if oestrone was present 

in wastewater at a concentration 2-5 times that o f 17p-oestradiol present in the influent then 

it could contribute greatly to the oestrogenic potency of the effluent determined by the YES 

assay resulting in associated poor removal efficiency of the WWTP. As can be seen in 

Table 1.17.1 (Appendix B), this is quite probable as oestrone was present in most effluents 

at concentrations on average 4-8 times that o f 17p-ocstradiol while two authors reported



maximum oestrone levels approximately 23 times higher than maximum 17p-oestradiol 

levels (Baroñti et a l, 2000; Ternes et a l, 1999a).

The findings (of reviewed studies in Table 1.17.1 Appendix B) that oestrone was 

present at concentrations 3-5 times that of 17p-oestradiol in some influents (Johnson et a l,  

2000; Baronti et al., 2000; Andersen et a l, 2003; Servos et a l, 2005) in addition to the 

deconjugation of oestrone conjugates, oxidation of 17p-oestradiol to oestrone and its 

recalcitrance to biodégradation in the wastewater treatment process suggest that oestrone 

may be largely responsible for the oestrogenic potency of effluent with regard to steroidal 

oestrogens. Of course, xenoestrogens in personal care pharmaceutical products such as 

cosmetic surfactants and in industrial discharges such as alkylphenols, polyaromatic 

hydrocarbons and dioxins will also contribute to the oestrogenic potency o f an effluent, 

however, these substances were not quantitatively analysed for in this study and since 

WWTPs A, B and C are domestic WWTPs it is likely that steroidal oestrogens are 

primarily responsible for oestrogenicity in the influents and effluents o f these WWTPs. 

Solé et a l  (2000) suggested that the higher the percentage of domestic influent in 

wastewater, the greater the amount o f endocrine disrupting compounds released into the 

environment. Kômer et a l (2000) reported that phenolic xenoestrogens represented only 

0.7-4.3% of the total oestrogenic activity of effluent from a German WWTP. Aemi et al. 

(2004) calculated that the highest NP concentration (1.74^g/l) in samples measured in a 

French WWTP equivalent to 0.04ng/l oestradiol accounted for only 0.8% of the total 

oestrogenic activity of the sample (4.9ng/l) measured by the YES assay.

4.2.1 Toxic effects of samples

As the yeast assay associates gene expression with a reporter element that has a 

delayed response (secretion o f p-galactosidase into the medium), the intensity of the 

colorimetric change and then time it takes to occur will be affected by initial cell density 

and temperature of incubation. Any toxic effects which hinder transcription and translation 

will affect subsequent p-galactosidase activity. A chemical must exhibit oestrogenic 

activity at a concentration well below its acute toxicity otherwise the yeast will be 

functionally impaired or die before transcription, translation and expression can occur i.e. 

p-galactosidase would not be produced hence there would be no colour change (Hamblen et 

a l 2003). In a study on the oestrogenicity o f anilines using the YES system Hamblen et ai.



(2003) attributed the lack o f oestrogenic activity o f large aniline derivatives to their acute 

toxicities as calculated EC50 values were at, or near, the concentration inferred to cause 

mortality.

Toxic effects result in irregular concentration response curves and there were 

occasions where the concentration response curves produced by sample extracts were not 

parallel to the standard s-shaped curve. At times yeast growth was inhibited in certain 

wells containing higher concentrations o f  sample as found by Witters et al. (2001). Cell 

lysis occurred which was observed as a clear yellow colour in the medium opposed to an 

opaque yellow due to turbidity as a result o f  yeast growth (Routledge and Sumpter, 1996) 

and also a reduced absorbance at 620nm (background turbidity o f yeast).. This is 

exemplified in Figure 3.2.6 where cell lysis was observed at the higher concentrations o f 

sample. On occasions where ideal concentration response curves were not produced but cell 

lysis was not observed, it is thought that competition between oestrogenic compounds 

and/or the presence o f anti-oestrogenic compounds and/or partial agonists may be 

responsible. Toxicity in a fraction o f municipal waste landfill leachate (Kawagoshi et al.,

2003) was attributed to the presence o f  anti-oestrogens. Different oestrogenic compounds 

have varying affinities for the oestrogen receptor such that an oestrogen or an oestrogen 

mimicking compound with a greater affinity for the receptor but present in a low 

concentration may become displaced by a compound present in higher concentration but 

with a weaker affinity for the receptor and vice versa. If anti-oestrogenic compounds were 

present and had a greater affinity for the oestrogen receptor they may have occupied and 

blocked the receptors making them unavailable to the oestrogenic compounds (antagonist 

effect). Also, if the oestrogen mimicking compounds present were partial agonists they 

may not have produced responses sufficient enough to increase with increasing sample 

concentration.

The fundamental assumption that dose-response relationships are linear is 

contradicted by these compounds with the observation o f U-shaped and inverted U-shaped 

curves (Alworth et al., 2002). Difficulties arise in the extrapolation o f  oestrogenic activity 

as both response to oestrogens and receptor occupancy become saturated as concentration 

increases meaning that the relationship between response and concentration cannot be 

linear in the high concentration range. For many responses the concentration-response



relationship is nonmonotonic (inverted-U) i.e. responses increase until a saturation plateau 

is reached and then responses decrease at concentrations, higher than those at which 

saturation occurred due to toxicity (Welshons et a i,  2003). The graph* in Figure 3.2.7 

represents a nonmonotonic concentration response. Welshons et a l  (2003) demonstrated 

that growth of MCF-7 cells exhibits monotonic tendencies as the cells were stimulated in 

the presence ofO.lpM  to lOOpM of oestradiol; cell growth response was saturated and did 

not show an increase between lOOpM and lpM oestradiol and cell growth response 

decreased due to cytotoxicity at concentrations above 1 jiM oestradiol.

4 3  Sludge

An extraction procedure was developed for dried sludge samples incorporating 

soxhlet extraction followed by solid phase extraction using Empore SDB-XC in order to 

purify the extracts prior to analysis by the Recombinant Yeast Screen Assay. Studies in 

which sludge extraction is coupled with biological analysis could not be found in literature 

at the time of submission of this thesis. Experiments were carried out to determine the most 

appropriate solvent for extraction among methanol, dichloromethane (DCM): acetone (1:1), 

acetone and hexaneracetone (1:1) o f which DCM gave rise to the highest oestrogenic 

potency. Experiments demonstrated the benefit of solid phase extraction to clean and purify 

the extract and also to concentrate it to a smaller aliquot which could be more easily 

evaporated prior to YES assay. It also facilitated a necessary solvent change from DCM to 

methanol for the purpose of analysis by the YES assay as DCM is not compatible for use in 

96-we 11 plates as it does not readily evaporate in the wells and it leaves a residue on the 

bottom of the wells which could affect the subsequent absorbance measurement.

However, once the sampling programme had started, oestrogenic activity was not 

detected in sludge samples. In all other samples, the response given by the yeast was below 

that of the control meaning that something in the samples was inhibiting yeast growth. 

Several measures were taken to solve this problem such as increasing the period of time 

and the temperature during which/at which soxhlet extraction occurred; increasing the 

concentration o f oestradiol in the spiked samples, increasing the weight of dried sludge to 

be extracted and use of different soxhlet apparati. It is possible that the extracted samples 

required further cleaning and purification than SDB-XC extraction provided.



When experiments were carried out to determine the suitability of the solvents, the 

solvent volume used was 150ml and this was allowed evaporate in a fume cupboard to 

approximately 5ml before being drawn through a SDB-XC disk and tested by YES. 

However, larger soxhlet apparati had to be used for analysis of samples which required 

250ml of solvent. Rotary evaporation o f five 250ml samples (control, activated sludge, 

spiked activated sludge, treated sludge and spiked treated sludge) was impractical as the 

risk of contaminating the samples from previous material which may have been on the 

inside of the evaporator was too high. All glassware had to be meticulously washed twice 

with methanol and once with ethanol to remove contamination. It was impractical to do 

this with a rotary evaporator. Instead, extracts were filtered and then purified and 

concentrated to 20ml by SDB-XC extraction and then they were allowed to gently 

evaporate in a water bath before being re-constituted with 2.5 ml ethanol and analysed by 

the YES assay. It is possible that retention on the disks was compromised by the larger 

sample volume and oestrogenic compounds were lost by breakthrough.

4.4 Outcome of hypotheses

The first hypothesis this study examined was the reduction in oestrogenicity from 

wastewater influent to effluent and would use o f different treatment systems provide 

varying degrees of removal. Reduction in oestrogenicity was observed (100% in WWTPC 

and 45-56% in WWTPD) but not in all cases. It has been shown that removal of oestrogens 

and oestrogen mimicking compounds is greatly reduced if wastewater treatment plants 

continue to operate at or above their capacities. This is represented in the increases in 

oestrogen activity which occurred for WWTPB (21% and 23%) and WWTP A (23%). 

These WWTPs are old and are serving sprawling villages with ever increasing population 

numbers much higher than what the treatment plants were originally designed to cater for. 

They were chosen to represent small-scale WWTPs typical all over Ireland. The fact that 

these treatment plants were operating aboye their treatment capacity made comparison of 

different removal rates by different treatment technologies difficult as it is probable that 

more efficient removal would have occurred if these plants had not been overloaded. 

However, plans to upgrade/extend wastewater treatment plants throughout the county 

including Strandhill WWTP and Tubercurry WWTP are underway.



WWTPs C and D are newer medium and large-scale WWTPs respectively equipped 

with improved treatment technologies. WWTPC has extended aeration.oxidation ditch 

with diffused air aeration and also chemical precipitation. WWTPD has sequential batch 

reactors with UV disinfection. Less oestrogenic activity was recorded in the influent and 

effluent of these WWTPs and these treatment plants also gave rise to higher removal rates 

(100% and 45-56% respectively). However, invalid results were recorded on two sampling 

dates which hindered the comparison of these modem WWTPS with the two smaller 

WWTPS.

The second hypothesis the study addressed is the compatibility of the recombinant 

yeast screen assay for the analysis of treated sludge samples extracted by soxhlet extraction. 

Unfortunately, it was unsuccessful. Soxhlet extraction o f oestrogenic compounds from 

sludge coupled with further solid-phase extraction did not purify the samples to the extent 

that would allow subsequent assessment by the recombinant yeast screen assay despite 

several attempts to solve the problem.

4.5 Recommendations

o It is recommended that all studies of oestrogenic activity on wastewaters and 

surface waters in Ireland carried out to date are compiled together to provide a 

bigger picture on the state o f the environment with regard to oestrogens and 

oestrogen mimicking compounds.

o A comprehensive nationwide study should be carried out using uniform 

standardized test systems and methods (possibly involving collaboration 

between several postgraduate students) on wastewater, sludges and surface 

waters to ascertain the current levels o f oestrogenic compounds in our 

environment at present.

o Removal o f oestrogens and oestrogen mimicking compounds should be taken 

into consideration in the design phase of wastewater treatment plants as 

different treatment systems and combinations of treatment systems differ in their 

removal efficiency.



It is essential that wastewater treatment plants are upgraded to deal with 

increasing population equivalents as the degradation and removal of oestrogenic 

compounds is severely compromised if the treatment system is overloaded.

It is recommended that assessment o f endocrine disruption in the environment 

be brought into Irish legislation such that the Environmental Protection Agency 

and perhaps the county councils are required to regularly sample and analyse 

wastewater influents, effluents and also surface waters for oestrogenic activity. 

In view of the use of stabilized sludges as biosolids, analysis of halogenated 

organic compounds, LAS, DEHP, NP and NPEOs, certain PAHs, PCDDs and 

PCDFs, and certain PCB congeners for accordance with limit values in sludge to 

be used on land should already be taking place (EU, 2000).
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Colour development o f  standard and negative control over 72 hours
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Table 1.17.1: Qestradiol equivalent concentrations determined by chemical analysis for various matrices in different countries
Influent EEQ (ng/1) Effluent EEQ (ng/1) Surface water EEQ (ng/1) Country Analytical

method
Reference

El E2 EE2 E3 El E2 EE2 E3 El E2 EE2 E3
15-60 10-31 n.d. 23-48 5-30 3-8 n.d. n.d.-l 5-12 2-6 n.d.-l 2-5 Italy Oasis

cartridge.T andem 
LC-M S-M S

Laganà et al, 
2004

<0.5-
75

0.5-20 n.d.-54 nd-7 n.d.-
2.2

n.d.-28 Italy Carbograph 
cartridge. LC- 
MS-MS

Johnson et al. , 
2000

25-132 4-25 0.4-13 24-188 2.5-
82.1

0.35-
3.51

N.d.-
1.7

0.57-
18

0.33 0.11 0.04 1.5 Italy Carbograph
cartridge.LC-
NIS-M S-M S

Baronti et al, 
2000

54.9-
76.6

12.2-
19.5

6.2-
10.1

- <1 <1 <1 - - - - - Germany RP-C18 cartridge 
GC-ion trap-M S

Andersen et a l , 
2003

1.2-19 1-5.6 <1-1.5 <1 3.9 <1 Germany 1 :RPC18 column 
+ GC-MS 
2:GC-QUAD 
MS + LC-ESI- 
MS-M S

Pawlowski et 
al, 2004

n.d.-70 n.d.-3 n.d .-15 n.d.-
1600

n.d. n.d. Germany Lichrolut EN + 
RP-C18
columnsGC-M S-
MS

Ternes et al., 
1999a

' '

n.d.-22 n.d.-
6.4

n.d.-
4.1

Germany C18 SPE 
cartridge. GC- 
MS

Splenger étal,  
2001

51 6 2 Switzerland Lichrolut EN  + 
RP-C18
columnsGC-MS-
MS

Aemi et al., 
2004



Continuation of Table 1.17.1: Oestradiol equivalent concentrations determined by chemical analysis for various matrices in different
countries
Influent EEQ (ng/1) Effluent EEQ (ng/1) Surface water EEQ (ng/1) Country Analytical

method
Reference

E l E2 EE2 E3 E l E2 EE2 E3 E l E2 EE2 E3

- - - - 5.8 1.1 4.5 - - - - - Sweden SDB Isolute 
ENV GCMS

Larsson et al, 
1999

4-50.5 <LOQ-
6.4

<LOQ-
2.8

2.3-
17.5

Switzerland Lichrolut EN + 
RP-C18
columnsGC-M S-
MS

Rutihauser et 
al,  2004

<0.4-47 1.1-12 <0.2-7.5 <0.1-
3.4

0.3-5.5 <0.1-4.3 Netherlands SDBXC disks 
columns HPLC + 
GC-MS-MS

Belfroid et al, 
1999

20-
130

17-
150

<0.3-
5.9

<-.3-11 <0.8 <0.3-2.6 <0.3-
7.2

<0.8-1.0 <0.3-0.4 Netherlands SDBXC disks 
columns HPLC + 
GC-MS-MS

Vethaak étal ,  
2005

- - - - <50 <50-540 <50-240 - - - - - Spain C 18 cartridges 
GC-MS

Aguayo et a l , 
2004

9.6-
17.6

11.1-
17.4

4.9-
7.1

11.4-
15.2

4.3-7.2 4.5-8.6 2.7-4.5 5.0-7.3 2.2-3.0 3 .0 -32 1.8-2.9 2.1

2.5

France Bakerbond 
speedisk DVB 
GC-MS

Cargouët et al., 
2004

- - - - 6.4-29 1.6-7.4 n.d. 2.0-4.0 0.2-10 n.d.-7.1 n.d.-3.1 n.d UK SDBXC disks 
LC-NCI-MS

Xiao et al, 
2001

- - - - 1-80 1-50 n.d.-7 - - - - - UK C 18 cartridges 
GC-MS

Desbrow et al., 
1998

- - - - - - - - 1.8-7.1 n.d.-25 n.d. - UK C l 8 GC-MS Fawell et al, 
2001

- - - - - 1.9-14.6 n.d.-3.0 - - 1.0-10.0 1.0-2.0 - US NP + RP HPLC Synder et al, 
2001

1.6-18 0.77-6.4 US Immunoaffinity 
extraction + LC- 
ES1-MS

Ferguson et al, 
2001

- - - - <1-42 <1-20 <1 - - - - - US SDBXC disks+ 
GC

Hugget et al, 
2003

Abbreviations: - not analysed; n/d: not detected



Continuation of Table 1.17.1: Oestradiol equivalent concentrations determined by chemical analysis for various matrices in different
countries

Influent EEQ (ng/I) Effluent EEQ (ng/1) Surface water EEQ (ng/1) Country Analytical
method

Reference
E l E2 EE2 E3 E l E2 EE2 E3 E l E2 EE2 E3

19-78 2.4-26 - - 1-96 0.2-14.7 - - - - - - Canada RPC18 supelco 
cartridge GCMS

Servos et al., 
2005

12-15 L7-20 3.6-4.7 <0.2-03 <0.4-0.9 1.2-2.1 Japan SDBXC disks 
silica column 
cleanup LC-MS

Sunardi et al, 
2001

- - - - 2.5-34.0 03-2.5 - - 3.4-
6.6

0.8-1.0 - - Japan SPE cartridge 
LC-MS-MS

Iosbe et al, 
2003

107.6 14.7 <0.2 <0.2 6.4-
26.3

0.5-5.9 <0.2 <0.2 Japan SPEcartridge 
LCMS + 
LC/M S/M S

Furichi et al, 
2004
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Table 1.17.2: Oestradiol equivalent concentrations determined by in-vitro assay for various matrices in different countries
Influent EEQ (ng/1) Effluent EEQ (ng/1) Surface water EEQ (ng/1) Country In-vitro assay Reference
1 .1 -1 1 9 .9  (av  4 1 .7 ) 0 .03 -16 .1  (av 2.59) 0 .07 -0 .47 N e th e rlan d s E R -C A L U X M u rk  et a l ,  200 2
n .d -8 6 .4  (av  3 1 .9 ) 0 .1 -1 5 .8  (av 3.1) n .d - 1.1 N e th e rlan d s Y ES M urk  e t a l , 200 2
- = 0 .5 5 -  *70 - S w itze rlan d Y E S R u tish au ser et a l ,  2004
- 0 .4-53 .0 - S w itze rlan d Y E S A ern i e t a l ,  2004
av  =100 av =12 .9 0 .0 1 -3 1  (av  = 1 .6 ) Ja p an Y E S T am am o to  etal . ,  2001

3 5 -7 2 4 -3 5 - Jap an Y E S O n d a  et a l , 2002
- 25.9 1 6 .7 -1 7 2 Ja p an M V L N F u ru ich i et al., 2004

5 7 -6 3 2 -2 4 0 .3 -4 .5 2 F ran ce M V L N C argouS t et a l ,  2004
- 1 .90 -14 .9 0 .8 6 -1 0 .9 U S A M V L N S y n d e re t a l ,  2001

1 7 .7 -2 4 .0 4 .9 -1 0 .6 - U S A Y E S H o lb ro o k  et a l , 2002
- 2 1 -1 4 7 - U S A Y E S T ilton  e t a l , 2002
- < 1 -1 5 .0 - U S A Y E S H u g g e tt et a l ,  2003

n .d .-1 4 5  (av 79)% n .d .-1 0 6  (av 50.1)% - C a n ad a Y E S S ervos et a l ,  2005
1 .1 -2 9 .8 < 0 .1 -1 6 .4 < 0 .0 0 6 -0 .0 8 3 S w eden Y ES S venson  e t a l ,  2003
- n .d - 4 .4 6 n .d .- 8 1 .4 B e lg iu m Y ES W itters et a1 , 2001
- - <15 U K Y ES F aw ell et a l ,  2001

- 1 2 -  - 7 5 n.d -  - 4 0 - U K Y E S K irk  e t a l ,  2002
- 4 .0-35 .8 0.3-7.1 U K Y E S T h o m as et a l ,  2001
- 3 4 .1 -6 5 .9 1 1 .8 -1 9 .4 G erm a n y Y E S P aw lo w sk i et a l ,  2004
- 2 -2 5 - G erm a n y E -S C R E E N K ö rn e r et a l , 1999

5 8 -7 0 5 .6 -6 .4 - G erm a n y E -S C R E E N K örner et a l ,  200 0
- 0 .2 -7 .8 - G erm an y E -S C R E E N K örner et a l ,  2001

- - 0 .00 0 5 -7 .4 K o rea E -S C R E E N O h e t a l ,  200 0
Abbreviations 
av: average 

not analysed 
n/d: not detected


