
AUTOMATING THE TESTING PROCESS OF IMAGE PROCESSING
ALGORITHMS

SUBMITTED TO THE SCHOOL OF BUSINESS AND HUMANITIES

OF INSTITUTE OF TECHNOLOGY, SLIGO

FOR THE AWARD OF

MASTER OF SCIENCE IN COMPUTING BY RESEARCH

JOHN BRADY

2006

1

ABSTRACT

As digital imaging processing techniques become increasingly used in a broad range of

consumer applications, the critical need to evaluate algorithm performance has become

recognised by developers as an area of vital importance. With digital image processing

algorithms now playing a greater role fn security and protection applications, it is of

crucial importance that we are able to empirically study their performance. Apart from

the field of biometrics little emphasis has been put on algorithm performance evaluation

until now and where evaluation has taken place, it has been carried out in a somewhat

cumbersome and unsystematic fashion, without any standardised approach. This paper

presents a comprehensive testing methodology and framework aimed towards automating

the evaluation of image processing algorithms. Ultimately, the test framework aims to

shorten the algorithm development life cycle by helping to identify algorithm

performance problems quickly and more efficiently.

2

ACKNOWLEDGMENTS

I would like to take this opportunity to thank a number of people who have contributed to

the completion of this thesis. Firstly, I want to give special thanks to my research

supervisor Dana Vasiloaica for her clear advice, help and encouragement during the

course o f the project. I would also like to thank my research colleague Colin Callanan for

his help, cooperation and support over the last two years. Thanks also to my work

colleagues at the partner company who I worked with at various times during the course

of the project. Much of this work was carried out in the Research Office o f the

Department of Business and Humanities of the Institute of Technology, Sligo and I wish

to thank all my colleagues there for creating such an enjoyable and stimulating

environment for conducting research work. Last but not least I am grateful to my parents

Noel and Christina, my brother Paul and all my family and friends for their support,

guidance and encouragement over the course of the last two years.

3

DECLARATION

TO WHOM IT MAY CONCERN

The work in this thesis “Automating the testing process of image processing algorithms”

represents the research carried out by John Brady under the supervision of Dana

Vasiloaica, and does not include work by any other party, with acknowledged exception.

4

TABLE OF CONTENTS

Abstract... 2

Acknowledgments... 3

Table of Contents.. „........ 5

List of Tables..12

List of Figures.. 13

Glossary of Abbreviations.. 15

Chapter 1: Introduction..17

1.1 Introduction.. 17

1.3 Project Overview..................................... IB

1.4 Thesis Outline... 20

1.4.1 Chapter 1: Introduction.................................... 20

1.4.2 Chapter 2: Literature Review...20

1.6.3 Chapter 3: Requirements Analysis..*..........................20

1.6.4 Chapter 4: D esign... 21

1.6.5 Chapter 5: Implementation.. 21

1.6.6 Chapter 6: Testing and Evaluation.. 21

1.6.7 Chapter 7: Conclusion and Further W ork.. 22

Chapter 2: Literature review............................ „.............. 23

2.1 Introduction..23

2.2 Digital Image Processing Overview...23

2.2.1 Everyday Use of Digital Image Processing Technology................................23

2.2.2 What is a Digital Image Processing Algorithm?...26

2.2.3 Digital Image Processing History And Evolution.. 27

2.3 What IP Algorithms Make Possible... 29

2.3.1 IP Algorithms in Use in Consumer Digital Imagery.................................... 29

5

2.3.1.1 Red Eye Detection and Correction Algorithms..................................... 30

2.3.1.2 Dust Detection and Removal Algorithms...31

2.3.1.3 Auto Exposure Algorithms...31

2.3.2 Computer Vision: IP Algorithms in Use in the Security Industry.............. 33

2.4 Ongoing Challenges in IP Algorithm Development... 37

2.4.1 Face Detection and Recognition Algorithms... 37

2.4.2 Red Eye Detection and Correction Algorithms...39

2.5 IP Algorithm Performance Measurement.. 41

2.5.1 Need for IP Algorithm Performance Measurement?......................................41

2.5.2 Historical Lack of Research into IP Algorithm Performance

Measurement........................ 42

2.5.3 Reasons for Lack of Research into IP Algorithm Performance

Measurement... 43

2.5.4 Recent Interest in IP Algorithm Performance Measurement......................... 44

2.5.5 Techniques available for IP Algorithm Performance Measurement............ 45

2.5.5.1 Performance Characterisation..46

2.5.5.2 Performance Evaluation..46

2.5.5.3 Benchmarking..47

2.5.5.4 Standardisation of Image Databases... 47

2.5.6 Performance Evaluation... 48

2.5.7 A Successful Performance Evaluation Framework - Biometrics..................52

2.6 Barriers to Comprehensive IP Algorithm Performance Evaluation....................... 55

2.6.1 Lack of Methodology..55

2.6.2 Test Data - Lack of Comprehensive Image Database....................................58

2.6.3 Lack of a Systematic Means Of Acquiring Accurate Ground Truth............ 60

2.6.4 Lack of Standard Terminology And Poor Use Of Metrics Of Interest 61

2.7 Recommendations for Effective IP Performance Evaluation..................................63

2.7.1 An Effective IP Performance Evaluation Methodology............................... 63

6

2.7.2 Test Data - A Comprehensive Database Supplying Image-Test-Sets.......... 64

2.7.3 Need for Accurate Ground Truth And An Effective Methodology For

Acquiring I t... 65

2.7.4 Use Of Appropriate Metrics Of Interest...65

2.8 Chapter Summary...66

Chapter 3: Methodoldogy and Requirements Analysis.. 67

3.1 Introduction..67

3.2 Objectives of Proposed IP Algorithm Testing M ethodology..................................68

3.3 The Proposed IP Algorithm Test Framework Overview 69

3.4 Functional Requirements Specification... 72

3.4.1 Integrating Different IP Algorithm into the IP Algorithm Test

Framework.. 72

3.4.2 IP Algorithm Test Execution: A Test Scenario...73

3.4.2.1 Test Data: Image-Test-Set..„75

3.4.2.2 Ground Truth: Marked Image-Test-Set..77

3.4.2.3 Metrics of Interest... 78

3.4.3 Display and Analysis of Test Results...79

3.5 Review of Key Problems Solved by IP Algorithm Test Framework..................... 80

3.6 Chapter Summary...81

Chapter 4: D esign................................ 82

4.1 Introduction............... 82

4.2 Image Processing Algorithm Test Framework.. 82

4.2.1 Defining User Categories for the Testing T o o l...85

4.3 Non-Functional Requirements of the Testing T ool.. 87

4.3.1 Algorithm Integrator...88

4.3.2 Algorithm Tester... 89

4.4 Selection of System Development Life Cycle and Technologies........................... 91

4.4.1 System Development Life Cycle.. 91

7

4.4.1.] Spiral M odel.. 91

4.4.2 System Development Technologies.. 92

4.4.2.1 Development Language..92

4.4.2.2 Integrated Development Environment ..93

4.4.2.2.1 Eclipse Rich Client Platform 93

4.4.2.2.2 Eclipse Perspectives...94

4.5 Testing Tool Design... 94

4.5.1 Algorithm Integration Architecture.. 94

4.5.1.1 Analysis of Implementation Technology: JNI....................................... 96

4.5.2 Test Scenario..97

4.5.2.1 Test D ata...97

4.5.2.1.1 Analysis of Implementation Technology: XML.......................... 98

4.5.2.1.2 Design Strategy......................... 98

4.5.2.2 Ground Truth...99

4.5.2.3 Metrics of Interest..100

4.5.2.3.1 Analysis of Implementation Technology: Bean Scripting

Framework..101

4.5.2.3.1.1 Python..103

4.5.2.3.1.2 Jython...103

4.5.2.4 Underlying Architecture Design.. 104

4.5.2.4.1 Object Diagram... 104

4.5.2.4.2 Sequence Diagram...105

4.5.2.4.3 Design Strategy.. 106

4.5.2.4.3.1 Model-View-Controller Architecture................................106

4.5.2.4.3.2 Test Manager - Singleton Pattern...................................... 108

4.5.3 Graphical User Interface (GUI) Design Process..108

4.5.3.1 Analysis of Implementation Technology: Standard Widget Toolkit 111

4.5.3.1.1 JFace........................ I l l

8

4.6 System Design Evaluation... 112

4.7 Chapter Summary.. 114

Chapter 5: implementation.. 115

5.1 Introduction..115

5.2 IP Algorithm Test Framework............................. 115

5.2.1 Framework Overview.................................... 115

5.3 Testing Tool Implementation.................... 116

5.3.1 Algorithm Integration..................... .. 117

5.3.1.1 Steps in Building a Java Library Wrapper.. 118

5.3.1.2 Example: Building a Library Wrapper for a Histogram W rapper 120

5.3.2 Test Scenario.. 123

5.3.2.1 Test Scripts... .125

5.3.2.1.1 Writing the Test Script for Execution..125

5.3.2.2 Test M anager.. .128

5.3.2.2.1 Test Scenario Storage.. .128

5.3.2.2.2 Test Scenario Execution... 128

5.3.2.2.2.1 Test Scenario Execution Sequence...................................129

5.3.2.3 Test Results...129

5.4 Algorithm Test FRamework GUI Overview... 131

5.4.1 The Image Database Tool...132

5.4.2 The Marker to o l...133

5.5 GUI Design for the Testing Tool..134

5.5.1 The Testing Tool Overview.. 134

5.5.2 Creating a new Test Scenario 135

5.5.3 Running a Test Scenario...138

5.5.4 View Test Results... 139

5.5.5 Test Results History.. 141

5.5.6 Saving a Test on the Server... 142

9

5.5.7 Help.. 143

5.6 System Implementation Evaluation.. 143

5.7 Chapter Summary... 144

Chapter 6: Testing and Evaluation...145

6.1 Introduction.. 145

6.2 Software Testing.................................. 145

6.2.1 Software Inspections and Code Reviews..146

6.2.2 Functional Testing.. 146

6.2.2.1 Unit Testing... 146

6.3 Usability Testing... 147

6.3.1 Formative Evaluation.. 147

6.3.2 Summative Evaluation..................... 148

6.3.2.1 Usability Questionnaire.. 148

6.3.2.2 Usability Questionnaire: Main findings.. 149

6.3.2.2.1 Usability Ratings.. 149

6.3.2.2.2 Questions on Testing Tool Usability...149

6.3.2.2.3 Recommendations For Changes To The User Interface............149

6.3.2.2.4 Any Additional Comments About The System..........................150

6.3.2.2.5 Overall Ratings.. 150

6.4 Chapter Summary...151

Chapter 7: Conclusion and Future W ork.. 152

7.1 Conclusion...152

7.2 Software Solution Overview..153

7.3 Future W ork.................................. 155

APPENDIX A: Spiral Life Cycle Model.. 157

APPENDIX B: Eclipse Rich Client Platform..................................... 159

APPENDIX C: Extensible Markup Language.. 161

APPENDIX D: Red Eye Detection Algorithm Overview.. 162

10

APPENDIX E: Source Code... 164

APPENDIX E.l: Imagingtool Interface.. 164

APPENDIX E.2: Histogram.h.. 165

APPENDIX E.3: Histogramwrapper.h.. 166

Appendix E.4: Histogramwrapper.cpp..166

Appendix E.5: TestManager C lass..168

Appendix E.6: Histogram Test Scenario XML Instance.. 170

Appendix E.7: TestRuntime Class...170

Appendix E.8: Histogram Test Result XML Instance...171

Appendix E.9: gethistogram Method JUnit T est... 172

APPENDIX F: Completed Usability Questionnaire.. 174

References...180

11

LIST OF TABLES

Number

Table 1:

Table 2:

Page

Algorithm Characteristics.. 86

Overall Ratings from Usability Questionnaires...150

12

LIST OF FIGURES

Number Page

Figure 1: Digital Images Capture Worldwide Forecast.. 25

Figure 2: Image Histogram..................... 32

Figure 3: Sample results from the Face Recognition Vendor Test 2002............................ 53

Figure 4: IP Algorithm Test Framework Overview...70

Figure 5: Algorithm Wrapper Overview.. 73

Figure 6: Algorithm Testing Methodology Overview...74

Figure 8: Image Marker Tool Overview...77

Figure 9: Use Case Diagram for IP Algorithm Test Framework... 83

Figure 10: Test Framework Architecture.. 84

Figure 11: Use Case Diagram for Algorithm Tester and Algorithm Integrator.................85

Figure 12: Quality Requirements Tree for Testing Tool.. 87

Figure 13: Test Framework Inputs...89

Figure 14: Adapter Class - Source: Gamma et al, 1995 ... 96

Figure 15: JNI W rapper..96

Figure 16: Data Communication and Storage.. 99

Figure 17: PFML Structure...100

Figure 18: Bean Scripting Framework...102

Figure 19: Preliminary Object-Oriented Domain Analysis.. 105

Figure 20: Sequence Diagram.. 106

Figure 21: Preliminary Model View Controller Infrastructure Overview........................ 107

Figure 22: Singleton Pattern - Source: Gamma et al, 1995...108

Figure 23: Use Case Diagram for Testing Tool... 109

Figure 24: Preliminary GUI Design...110

Figure 25: Revised GUI Design..................... 110

13

Figure 26: Eclipse Workbench, JFace, and SWT - Source: http://www-

12 8 .ibrn.com/developerw orks/1 i brary / os-ecgui 1 / ... 112

Figure 27: System Architecture..112

Figure 28: Test Framework Architecture...116

Figure 29: Imaging Library Wrapper...118

Figure 30: HistogramWrapper Overview ... 121

Figure 31: Test Scenario Overview 124

Figure 32: Mapping java objects into BSF Manager... 125

Figure 33: Histogram Test Script... 126

Figure 34: Activity Diagram for RedEyeDetectionTest Run Method............................... 127

Figure 35: Executing a Python Script..127

Figure 36: Algorithm executed on Image-test-set... 129

Figure 37: com.algorithmtestingapp.ui Package Structure... 131

Figure 38: Image Database Tool.. 132

Figure 39: Image Marker Tool..133

Figure 40: com.algorithmtestingapp.testingtool.ui package structure............................... 134

Figure 41: Testing T oo l........................... 135

Figure 42: Create New Test W izard.. 136

Figure 43: Image Test Set Input Wizard.. 137

Figure 44: Running a test.. 138

Figure 45: Editing a Test Script... 139

Figure 46: Test Runner View..140

Figure 47: Test Scenario Execution Completed.. 141

Figure 48: Test Results Display.. 142

Figure 49: Spiral Model of the Software process (Source: Boehm, 1988:64).................. 158

Figure 50: Eclipse Rich Client Platform - Source: Geer, 2005:17.................................... 159

14

http://www-

GLOSSARY OF ABBREVIATIONS

API Application Programming Interface

AWT Abstract Windowing Toolkit

BSF Bean Scripting Framework

DLL Dynamic Link Library

FERET Face Recognition Technology

FRVT Face Recognition Vendor Test

GUI Graphical User Interface

HCI Human Computer Interaction

IDC International Data Corporation

IDE Integrated Development Environment

IP Image Processing Algorithm

IT Information Technology

JAXP Java API for XML Processing

JNI Java Native Interface

JPEG Joint Photographic Experts Group

JRE Java Runtime Environment

MFC Microsoft Foundation Classes

MIT Massachusetts Institute of Technology

MVC Model View Controller

NASA National Aeronautics and Space Administration

OS Operating System

PEIPA Pilot European Image Processing Archive

PFML Photographic Feature Markup Language

PIE Pose, Illumination and Expression variant

RCP Rich Client Platform

15

SDLC Software Development Life Cycle

SWT Standard Widget Toolkit

UI User Interface

UML Unified Modelling Language

U.S. United States

W3C World Wide Web Consortium

XML Extensible Markup Language

XPath XML Path language

16

CHAPTER Is INTRODUCTION

Introduction

1.1 INTRODUCTION

The last 10 years have seen a digital image revolution, with soaring interest in image

processing technology across the consumer and business landscape. The proliferation of

digital cameras and mobile camera phones in today’s world has resulted in a phenomenal

surge in the use of consumer digital images. (Eastman Kodak, 2006) a digital imaging

market leader reports that we’re moving picture viewing and sharing from an occasional

experience to an always on lifestyle experience giving consumers the ability to be

connected to people and pictures regardless of place or time. Central to the adoption of

digital photography by both businesses and consumers have been advances in the areas of

image processing and image analysis, particularly in the development of complex image

processing algorithms.

Digital image processing is a collection of techniques/algorithms for the manipulation of

digital images by computers. Standard features on most digital cameras sold nowadays,

such as automatic red eye removal, are the result of complex mathematical operations

known as algorithms. Without realising it, users of everyday digital consumer appliances

such as digital cameras, software graphics packages and printers are harnessing years of

research and development in image processing technology.

Of course use of image processing algorithms have not been confined to individual

consumer appliances like digital cameras, but have driven advancements in many

scientific practices, stretching from medicine to security. From a security viewpoint the

17

need to duplicate human vision has been one of the main driving forces behind

developments in image processing.

As digital image processing techniques become increasingly used in a broad range of

applications (Gonzalez & Woods, 2002:6, Jaynes et al, 2005:1), the critical need to

evaluate algorithm performance has become recognised by developers as an area of vital

importance (Courtney & Thacker, 2001; Hua et al, 2004:498; Meer et al, 2000:2

Micheals & Boult, 2001:150). Proper evaluation has always been very important for any

research area but the field of image processing currently lacks a comprehensive testing

framework for assessing the performance of image processing algorithms. Only with a

correct and standardised evaluation can advances in the field be identified and

encouraged. With algorithms being developed without their likely performance being

calculated beforehand, this often leads to a somewhat ad hoc approach to development.

This thesis proposes to investigate and develop software tools to facilitate the evaluation

of these image processing algorithms on large datasets of consumer digital images.

1.3 PROJECT OVERVIEW

THESIS TITLE: Automating the testing process of image processing algorithms.

This thesis, the result of a two years masters degree programme, presents a software

solution aimed at automating the testing process of image processing algorithms. The

aims of the research are to:

1. Study and gain expertise in the area of image processing techniques in general.

Having an understanding of how image processing algorithms operate is of great

importance before attempting to test the algorithms.

18

2. Research into existing methodologies used to test software in general, and image

processing algorithms in particular. Conclude by identifying the best approach

concerning testing image processing algorithms.

3. Research and develop a methodology for automatic testing of image processing

algorithms. This takes into consideration particularities of algorithm testing (i.e.

version control) and reporting (i.e. allow for inspection of images that the

algorithm did process correctly).

4. Become proficient in using the programming techniques required to implement

the testing application. These techniques include:

o User Interface (UI) Design paying particular attention to Graphical User

Interfaces (GUI) suitable for testing applications and reporting.

o Design Patterns.

o Java Development using the Eclipse Integrated Development Environment

(IDE).

o Extensible Markup Language (XML) technology.

5. Design and implement a database to store the results of testing various image

processing algorithms.

6. Develop user friendly tools to support the testing of various image processing

techniques.

7. Implement techniques which allow for image comparison. An algorithm is tested

by executing it on a set of relevant, previously marked images. As a result, every

image in the set is modified in some way, hopefully in the marked areas.

Comparison between the original images and the modified images has to be done

to conclude if the algorithm worked correctly.

8. Develop statistical tools to analyse the results of algorithm testing. The results

from different versions of the same algorithm can then be compared against each

other.

19

1.4 THESIS OUTLINE

1.4.1 C h a p t e r 1: In t r o d u c t io n

This chapter has discussed some of the background to the research components of this

thesis. The chapter commenced with an introduction to the increasing use of digital image

processing algorithms in everyday consumer applications and the critical need to evaluate

these algorithms. A brief overview of the history and purpose of the “Automating the

testing process o f image processing algorithms” project was then presented along with

the projects key aims and objectives. Finally an outline of the thesis structure is

presented.

1.4 .2 C h a p t e r 2: L it e r a t u r e Re v ie w

The second chapter gives an overview of the image processing industry stressing the

importance of image processing algorithm testing and identifies the need for an efficient

framework to address testing needs. The chapter starts by introducing image processing

terminology and algorithms, and then moves on towards identifying problems associated

with algorithm development and testing. Finally the core requirements of a

comprehensive image processing algorithm testing framework are detailed to further

assess and improve the quality of existing and newly developed algorithms.

1.6.3 C h a p t e r 3: R e q u ir e m e n t s A n a l y sis

The third chapter outlines the aims and objectives of the proposed testing methodology, a

solution to current testing and evaluation difficulties. The requirements of a software

solution are outlined in detail and the set of key functional requirements are presented.

Finally a review of the key problems the proposed testing framework intends to solve is

presented.

20

1.6 .4 C h a p t e r 4: D e s ig n

The fourth chapter draws up a blueprint for system implementation called the design.

Firstly, the overall algorithm test framework is described and the classification of the two

distinct categories of testing tool user is explained. The key non-functional requirements

based on the two categorises of user for the testing tool are then identified. After the

selection of system development life cycle and technologies are explained the next

sections outline the main design aspects of the testing tool. Firstly design of the testing

tool algorithm integration architecture is explained. The subsequent section then

describes the design of the components that make up a test scenario and the underlying

test execution architecture, while the penultimate section details the GUI design process.

The concluding section summarises how the chosen design satisfies each of the initial

requirements defined in the previous chapter.

1.6 .5 C h a p t e r 5: I m p l e m e n t a t io n

The fifth chapter focuses on describing some of the important implementation techniques

used during the development of the testing tool. The chapter commences by providing an

overview of the overall algorithm test framework. With a similar approach to the design

chapter, the next sections describe the individual stages of the testing tool’s

implementation. Firstly the development of the components that make up a test scenario

and the underlying test execution architecture is explained, in particular the process of

writing test scripts incorporating relevant metrics of interest to analyse algorithm

performance. The subsequent section then provides an overview of the overall image

testing application UI, while the final section details the GUI of the testing tool. In

addition code snippets are provided throughout this chapter to give a deeper

understanding of how the testing tool really works.

1.6 .6 Ch a p t e r 6: T e s t in g a n d E v a l u a t io n

The sixth chapter summarises the testing techniques used to evaluate the software

solution including both the formative and summative evaluation techniques utilised.

21

In the seventh chapter the conclusion is presented along with suggestions for further

improvements to the software solution into the future.

1.6.7 Ch a p t e r 7: C o n c l u sio n a n d F u r t h e r W o r k

22

CHAPTER 2: LITERATURE REVIEW

Literature Review

2.1 INTRODUCTION

The chapter starts by introducing the everyday use of digital image processing technology

in consumer appliances like digital cameras and its increasing importance to other areas

of industry including security. After a selective review o f popular image processing

algorithms used in both consumer appliances and computer vision applications, the main

problems in image processing algorithm development and testing are presented. A

comprehensive survey on the methods and techniques being used in image processing

algorithm performance assessment is then undertaken and the need for an efficient image

processing algorithm testing framework is identified. Finally, the main components of a

comprehensive image processing algorithm testing methodology that will aid in assessing

and improving the quality o f existing and newly developed algorithms are outlined.

2.2 DIGITAL IMAGE PROCESSING OVERVIEW

2.2 .1 E v e r y d a y U se o f D ig it a l Im a g e P r o c e s s in g T e c h n o l o g y

“We are in the midst o f a revolution sparked by rapid progress in digital image processing technology."
(Gur, 2002)

(Milbum, 2004; Smolka et al, 2003; Wilhelm et al, 2004; Zhang et al, 2002; Zhang et al,

2004a) Today the world is in a midst of a digital imaging revolution as digital technology

replaces traditional photography and high-tech digital image processing techniques

become available in consumer software and photographic equipment (Gur, 2002; Bovik,

2000). Technological advances and the convergences of digital imaging and wireless

23

technologies have brought many changes in the way digital images are captured,

manipulated, analysed, transmitted and printed.

“One aspect o f image processing that makes it such an interesting topic o f study is the amazing diversity o f
applications that use image processing or analysis techniques” (Bovik, 2000:3)

The revolution has not only affected individual lifestyle habits such as the way families

interact through camera phones but have influenced all areas of science from tumor

detection in biomedicine, to monitoring of weather patterns in environmental science and

object and scene perception in robotic vision. (Gur, 2002) reports image processing as

one of the most rapidly evolving areas of Information Technology (IT) with growing

applications in all areas of businesses.

According to (Narayanaswami & Raghunath, 2004:67) digital photography has changed

our entire photo experience for the better. Digital cameras have eliminated the need for

film as the image is digitally captured and stored in a memory array within the camera

allowing photos to be viewed and enjoyed virtually instantaneously (Bovik, 2000). And

since they first appeared on the scene in the mid 1980’s digital cameras have changed

from complicated and expensive tools of limited value to user-friendly, cheap, powerful

and effective tools that can be used in a wide array of tasks (Davis et al, 2005; Gargi et al,

2003; Girgensohn et al, 2004a; Milburn, 2004; Van House et al, 2005). Supported by

advanced image processing (IP) algorithms they have become an ubiquitous and requisite

commodity in the modem technological age for the recording, displaying and

communication of visual representations (Messina et al, 2003:549). For instance red eye

continues to be the most common customer complaint in the digital imaging market (Luo

et al, 2004; Schettini et al, 2004:139; Smolka et al, 2003:1767; Zhang (b) et al 2004) and

most digital cameras sold today incorporate red-eye filters which analyse the captured

image for the red-eye phenomenon and correct the image by changing the red area to its

original colour.

24

“Virtually everyone is in some way affected by personal photography - as photographer, subject, or
viewer.” (Van House et al, 2005:1853)

600

c 400q
j5

- 300

?5
5 200
l/l
(D
Chm
E 100

0
2 OD2 2003 2004 2005 2006 2007 2030 2009

Source Lyra Research Inc
Consumer Imaging Intelligence SeconO Hall 2005 Forocasl

Figure 1: Digital Images Capture Worldwide Forecast

The whole concept of how we share digital photographs is changing as online sharing,

digital archives, email and picture messaging transform the whole viewing experience

(Wilhelm et al, 2004:1406). (Eastman Kodak, 2006) A digital imaging market leader

reports that we’re moving picture viewing and sharing from an occasional experience to

an always-on lifestyle experience giving consumers the ability to be connected to people

and pictures regardless of place or time. Consequently as (Girgensohn et al, 2003; Sarvas

et al, 2004; Sarvas, 2005; Wilhelm et al, 2004:1403; Zhang et al, 2004a) report, there has

been a phenomenal surge in use of consumer digital images with (International Data

Corporation, 2004), a market leader in research and consulting, predicting that digital

camera images captured, shared and received worldwide will grow an average of 35%

from 2003 to 2008.

“By reducing many o f the barriers to camera phone use and image sharing (including increasing image
quality, easing the sharing process, and removing barriers), we find that users quickly develop new uses for
imaging.” (Van House et al, 2005:1853)

Given the increasing use of digital image processing technology in a wide array of both

consumer and industrial applications, testing the accuracy this technology becomes of

25

Digital Images Captured Worldwide, 2002-2009

Camera p io o e images captured I
J Oigial C airo's images caplurod I

even greater importance to the image processing community. Without effective testing,

the performance of image processing algorithms such as red eye filters is questionable,

and it can be hard to pinpoint problem areas in algorithms, or to assess algorithm

accuracy. The next section explains what exactly a digital image processing algorithm is,

and gives an overview of the history and evolution of the digital image processing field.

2 .2 .2 W h a t is a D ig it a l I m a g e P r o c e s sin g A l g o r it h m ?

Central to the adoption of digital photography by both businesses and consumers have

been advances in the areas of image processing and image analysis, particularly in the

development of complex image processing algorithms. Digital image processing is a

collection of techniques/algorithms for the manipulation of digital images by computers.

“The fie ld o f digital image processing refers to processing digital images by means o f a digital
computer.’’(Gonzalez & Woods, 2002:1)

A digital image usually captured by a variety of input devices and techniques, such as

digital cameras or scanners, is a picture that has been converted into a computer readable

binary format represented as a matrix of elements called pixels (Gonzalez & Woods,

2002:2). The digital image contains instructions on how to colour each pixel which can

be thought of as small dots on screen which together create the digital image.

“Picture quality is strictly related to the number o f pixels composing the sensor: the higher the better”
(Mancuso & Battiato, 2001:2)

Computer vision uses information extracted from such images in order to assist in

decision making. Computer vision and image processing are related fields with computer

vision using many of the techniques which traditionally belong to image processing.

(Gonzalez & Woods, 2002:1) reports that there is no clear-cut boundary between the two.

One formal distinction is that image processing deals with transforming images,

producing one image from another, whereas computer vision deals with extracting

specific information from images - for instance object recognition, the detection of

known objects within an image, its main aim being to emulate human vision (Bowyer &

26

Phillips, 1998; Gonzalez & Woods, 2002:1; Meer et al, 2000). Both involve the analysis

of digital images by computer algorithms.

“Computer vision, fo r example, aims to duplicate human vision.” (Low & Hjelmas, 2001:237)

An algorithm is a complex mathematical operation which can be defined as a procedure

or formula for solving a problem. In relation to image processing the term algorithm is

used to describe a problem-solving method suitable for implementation as a computer

program. Standard features on most digital cameras sold nowadays, such as automatic red

eye removal, are the result of complex mathematical operations known as algorithms. For

instance the capturing of a photograph by a digital camera, a rudimentary task for most

users, is driven by an elaborate processing sequence. Such tasks may seem simple but the

underlying technology has been in development for the last 40 years.

2 .2 .3 D ig it a l Im a g e P r o c e s s in g H is t o r y A n d E v o l u t io n

Ever since computers have become powerful enough to manage the processing of large

data sets of images, researchers and developers have taken a great interest in image

processing technology across the consumer and business landscape (Connolly,

2003:193).

“Computers, even PCs, are so fast and so well-endowed with storage that it is entirely feasible to process
large datasets o f images in a reasonable time — and this means it is possible to quantify the performance
o f an algorithm.” (Clark & Clark, 2002:2)

(Clark & Clark, 2002:2) details the discipline variously known as computer vision,

machine vision and image analysis as having its roots in the early artificial intelligence

research of the late 1950’s and early 1960’s when digital computers first became

available. (Umbaugh, 1998) describes image processing as originating during this period

as an extension of electrical engineering and specifically digital signal processing.

“The original goal o f vision was to understand a single image o f a scene, locate and identify objects,
determine their structures, spatial arrangements, relationships with other objects, etc." (Shah, 2002:103)

27

The United States (US) government saw the potential of image processing in relation to

defense, security and space exploration and during the 1970’s and 1980’s played a key

role in establishing an infrastructure for the computer graphics field through support and

research funding. During the 1960’s, the National Aeronautics and Space Administration

(NASA) converted from using analog transmission signals to digital signals with their

space probes to map the surface of the moon (sending digital images back to earth).

Computer technology was advancing at this time so NASA was able to use computers to

enhance the images that the space probes were sending back. The digital and personal

computer revolution of the 1980’s and 1990’s, spawned in part by the change from

analog to digital, allowed major corporations in the private sector at the time (Bell

Laboratories (http://www.bell-labs.com/, 2006) and General Electric Company

(http://www.ge.com/, 2006)) to harness this new technology and develop products for the

commercial marketplace (Jahne, 1997:32).

“Rapid performance in computer technology and photonics had reached a critical level ofperformance”
(Jahne, 1997:32)

After the first digital camera for the consumer-level market that worked with a home

computer was released by Apple Computer Inc. (http://www.apple.com, 2006) in

February 1994 the digital camera market has since exploded and in tandem with the

rapidly decreasing cost and increasing power of modem computers (Bovik, 2000:657),

we have seen the creation of the multi-billion industry known as info-imaging. This

multi-billion dollar industry involving 100’s of new and established technology

companies, which (Eastman Kodak, 2006) estimate as been worth $385 billion

worldwide, combines three closely related markets: (1) Devices, (2) Infrastructure, (3)

Services/media; which are all converging based on the central role of imaging. In effect

the info-imaging industry is concerned with exploiting the latent information stored in

personal and commercial images by using digital technology to extract the relevant data,

and with creating new ways to capture, store and transmit information-rich images

(Eastman Kodak, 2006). In essence images are information (Eastman Kodak info-

28

http://www.bell-labs.com/
http://www.ge.com/
http://www.apple.com

imaging, 2006), so image processing advances have not simply been confined to

consumer software and electronics equipment market but have driven developments

across many areas of computer vision.

The next section presents a selective review of some of the most popular image

processing algorithms used today in both the consumer software and electronics

equipment market and in the security industry.

2.3 WHAT IP ALGORITHMS MAKE POSSIBLE

2 .3 .1 BP A l g o r it h m s in U se in C o n s u m e r D ig it a l Im a g e r y

While first class artificial vision systems are still very much a concept in development

terms, a series of highly evolved algorithms dominate the digital image market today. As

(Bovik, 2000:243) reports, images are produced to record and display useful information

but because of imperfections in the image capturing process, the recorded image

invariably represents a degraded version of the original scene. So the correction of these

imperfections to preserve image quality is critical to many of the ensuing image

processing tasks (Bovik, 2000:243).

“As the digital images are captured, stored, transmitted, and displayed in different devices, there is a need
to maintain image q u a l i t y (Bovik, 2000:669)

Current Image Processing (IP) algorithms are powerful enough to distinguish subtle

differences in image content and “pick up” only the elements of interest. Equally

important is their ability to disregard the content that is particular to the environment in

which the image was captured such as exposure or illumination. Much of this technology

is already incorporated inside digital cameras as part of the image capturing process, or

prior to display on personal digital assistants, mobile phones and other digital imaging

appliances.

29

“To support these uses, ease and speed are critical. Image quality needs to be ‘good e n o u g h (Van House
e tal, 2005:1856)

Without realising it, users of everyday digital consumer appliances such as digital

cameras, software graphics packages and printers are harnessing years of research and

development in image processing technology. IP algorithms embedded in digital cameras

must perform a significant amount of data processing before the captured image can be

compressed and converted to one of several image data formats, the most common being

Joint Photographic Experts Group (JPEG) standard, a worldwide standard for the

compression of digital images (http://www.jpeg.org/, 2006). Pre-capture IP algorithms

are first applied to determine the three parameters which will determine the quality of the

final picture: white balance, exposure and focus (Mancuso & Battiato, 2001:4).

Following this, post capture IP algorithms may be applied to remove image defects and

improve the quality of the images acquired. (Mancuso & Battiato, 2001:4; Messina et al,

2003:549).

“Consistent image quality is one o f the most important requirements fo r a camera system” (Shirvaikar,
2004)

Among the most popular IP algorithms in use today are:

2.3.1.1 Red Eye Detection and Correction Algorithms

"Caused by light reflected o ff the subject's retina, red-eye is a troublesome problem in consumer
photography" (Zhang (b) et al, 2004: 2363)

Red eye continues to be the most common customer complaint in the digital imaging

market (Luo et al, 2004; Schettini et al, 2004:139; Smolka et al, 2003:1767; Zhang (b) et

al 2004). The problem occurs when a flash is used to take a photograph and the light

reflecting from human retina makes the eyes appear red in the photograph.

“The objectionable phenomenon is well understood to be caused in part by a small angle between the flash
o f the camera and the lens o f the camera.” (Deluca Patent, 2002)

30

http://www.jpeg.org/

Most digital cameras sold today incorporate red-eye filters which analyze the captured

image for the red-eye phenomenon and correct the image by changing the red area to its

original colour. Powerful recognition software is able to distinguish between red eyes and

other red dots within the photograph that may be of similar size and colour and correct

the red eye discrepancy.

“The digital camera has a red-eye filter which analyzes the stored image fo r the red-eye phenomenon and
modifies the stored image to eliminate the red-eye phenomenon by changing the red area to black.”(Deluca
patent, 2002)

For the most part the corrected images are realistic and retain any highlights on the eyes.

However the explosion in sales of camera phones means the problem has become more

acute. With camera phones being small in size, the flash source is located even closer to

the lens which results in a higher rate of red-eye pictures.

2.3.1.2 Dust Detection and Removal Algorithms

The appearance of dust on the plate on the front of digital camera lens is another common

problem in digital photography. The dust is caused by small particles entering the camera

body when changing lens. Attracted electrostatically, once on the sensor it can be very

difficult to remove, resulting in impinged image quality. Aside from physically removing

the dust particles from the image sensor the only other way to removes the defects in the

image is to manually correct them. Current powerful dust detection algorithms can find

the dust and reduce and eliminate its effect on the image by reconstructing the dust

obscured area accurately.

2.3.1.3 Auto Exposure Algorithms

One side effect of the digital imaging revolution is that digital cameras perform

differently than film cameras in their treatment o f highlights and shadows. The exposure

parameter is the amount of light that hits the image-sensor and determines how light or

dark the captured image will be (Mancuso & Battiato, 2001:4). Controlling exposure is

crucial to capturing the desired image. If too much light gets through to the image sensor

31

the resulting image will be over exposed and have a faded-out look whereas if too little

light gets through to the sensor the resulting image will be underexposed and have a

darkened look. (Messina et al, 2003:549) report that this is a difficult problem to solve

particularly in mobile camera phones where several factors including absence of flash

gun contribute to badly exposed images. Most high-end digital cameras sold nowadays

incorporate histogram tools used to filter the amount of light hitting the sensor, resulting

in clearly exposed images. A histogram is a graph of the distribution of brightness values

of individual pixels in a digital image. The left hand side of the histogram indicates the

dark tonal range referred to as shadows, the centre portion indicates the mid-tones of the

image, while the right hand side of the histogram shows the bright tonal range or

highlights of the image.

1Wc
Q)C

Figure 2: Image Histogram

As illustrated in the Figure 2 above, if the left hand side or right hand side of the

histogram is empty the image will be most likely be over or under exposed.

32

Unfortunately, according to (Messina et al, 2003:549), there is not an exact definition of

what correct exposure should be but developers are all the time working on new auto

exposure algorithms to capture clearly exposed images.

The beauty of current IP algorithms like those mentioned above is that they can be

optimised to run inside digital cameras, printers and other devices with relatively low on

board processing power. This means the process is completely automatic and transparent

in operation and relieves much of the disappointment and stress of those who use digital

cameras. Developers are all the time improving algorithms to make the process efficient

in terms of computing resources but still fast enough on low-end embedded appliances to

be practically unnoticeable to end-users. Of course as consumers yearn for sharper,

brighter and clearer images, a lot of IP algorithm development and refinement still needs

to be carried out (Riopka & Boult, 2003). The quality of an algorithm can have a strong

impact on the perceived quality of the image. Ideally algorithms are designed to

maximise classification accuracy whilst minimising computational effort.

Simpler algorithms translate into less hardware, lower power consumption, and lower cost” (Mancuso &
Battiato, 2001:1)

The rapid transition to digital photography has raised the expectations of non

professional photographers, and for the digital imaging research community the ultimate

goal is to allow consumers capture and manage discrepancy-free images quickly and

easily.

2.3 .2 C o m p u t e r V is io n : IP A l g o r it h m s in U se in t h e S e c u r it y In d u s t r y

Of course the use of IP algorithms has not been confined to individual consumer

appliances like digital cameras. The security industry has for the last 20 years embraced

computer vision technology; incorporating algorithms that deduce information from

visual images, including face recognition and fingerprint analysis technologies (Hong et

al, 2004:103; Kung et al, 2004).

33

“Image is belter than any other information form fo r our human being to perceive. Vision allows humans to
perceive and understand the world surrounding us. ”
(http://iria.math.pku.edu.cn/~jiangm/courses/dip/html/node3.html, 2003)

From a security viewpoint the need to duplicate human vision has been one o f the main

driving forces behind developments in image processing. (Gur, 2002) proposes that the

technology holds the possibility of developing the ultimate machine in the future that will

be able to perform the visual functions of human beings. Understandably since

September 11 (http://www.septemberl lnews.com/, 2005) in New York and July 7

(http://news.bbc.co.Uk/l/hi/in_depth/uk/2005/london_explosions/default.stm, 2005) in

London, increasing international attention has been brought to imaging technology as

security concerns have grown worldwide (Kung et al, 2004; Mazor, 2005).

The greater interest in security has led to biometrics, the ability of a computer to

recognise a human through a unique physical trait, becoming one of the fastest growing

fields in advanced technology. (Hong et al, 2004; Kong et al, 2005:104; Pankanti et al,

2000; Prabhakar et al, 2003:33) report that biometrics systems have the best performance

in terms of security, management and user convenience compared to traditional systems

able to perform the visual functions of human eye. Traditionally biometric authentication

has been used for the purpose of either verification or identification in law enforcement to

identify criminals (Jain et al, 2004:19). Nowadays it is increasingly being used to

identify persons in a large number of civilian, commercial and financial applications

(Bovik, 2000:821; Hong et al, 2004:104; Pentland & Choudhury, 2000:54; Yang et al,

2004). As biometric imaging comes in many varieties and exists to meet a broad set of

needs, (Jain et al, 2004:10; Prabhakar et al, 2003:36) have divided biometric applications

into three main groups:

(1.) Commercial Applications e.g. computer network login, electronic data security, e-

commerce, physical access control, etc.

34

http://iria.math.pku.edu.cn/~jiangm/courses/dip/html/node3.html
http://www.septemberl
http://news.bbc.co.Uk/l/hi/in_depth/uk/2005/london_explosions/default.stm

(2.) Government Applications e.g. border and passport control, national ID card, drivers

license, etc.

(3.) Forensic Applications e.g. terrorist identification, criminal investigation, parenthood

determination, etc.

Perhaps unbeknownst to us as consumers the above applications have become a part of

everyday life in the 21st centuiy.

“But it is certain that biometric-based recognition will have a profound influence on the way we conduct
our daily business. ’’(Jain et al, 2004:19)

As the prospect of a biometric imaging industry explosion looms large one biometric that

will gamer a lot of attention will be face recognition (Kim et al, 2004; Pentland &

Choudhury, 2000). Face recognition involves:

“Identifying or verifying one or more persons o f interest in a scene by comparing input images with face
images stored in a database .’’(Kong et al, 2005:104)

Evidence of face’s recognitions importance can be seen in the wide array of research

carried out in the field and the wide variety of face detection and recognition techniques

which have been proposed (Kim et al, 2004;Kung et al, 2004; Little et al, 2005:89;

Pentland & Choudhury, 2000:51; Yang et al, 2004:2533). Different face recognition

systems use different methods of facial recognition; however all focus on measures of

key features of the face. The process usually involves the scanning of a person’s face and

matching it against a library of known faces for a match. Usually face detection or

segmentation is first carried out, then feature extraction, followed by the recognition

process which usually involves either identification or verification (Kong et al, 2005:104;

Zhao et al, 2003: 400).

"Given art arbitrary image, the goal o f face detection is to determine whether or not there are any faces in
the image and, ifpresent, return the image location and extent o f each face. ” (Yang et al, 2002:34)

Since a person’s face can be captured by a camera from a distance away, facial

recognition has a covert or concealed operation (i.e. the subject does not necessarily

35

know he has been observed) (Kong et al, 2005:127; Kung et al, 2004; Pentland &

Choudhury,2000:50; Prabhakar et al, 2003:41). For this reason, the demand for this

technology will probably increase further as both government and private organisations

search for more effective military surveillance, monitoring and image recognition

technologies for surveillance and biometric identification tasks (Kung et al, 2004; Yang

et al, 2004). (Prabhakar et al, 2003:42) conclude in 2003 that it is too early to predict

where and how biometrics will evolve, but as reliable personal recognition has become

critical to many business processes, what is certain is that biometric-based recognition

will profoundly effect the way we perform our daily business. For these applications to

maintain a very high degree of security there is still plenty of scope for improvement in

this area.

“Although there are numerous algorithms today that can achieve acceptable recognition rates on idealized
image set, there exists no algorithm capable o f adequately recognizing people in real-world situations”
(Little et al, 2005:89)

(Torres, 2004:21) reports no technique exists that provide robust solutions to all the

situations a face recognition system may encounter. And with (Balasuriya & Kodikara

2001) reporting that automated face recognition has become the holy grail of computer

vision artificial intelligence, the question arises: how do we test and compare algorithm

performance? Currently no standard methodology exists to guide algorithm development

(Black et al, 2002; Liu & Dori, 1999; Sharma & Reilly, 2003; Thacker et al, 2003).

“Although the evaluation and validation o f algorithms have been discussed fo r over a decade, the research
community still faces a lack o f well-defined and standardized methodology. ” (Takeuchi et al, 2003:408)

As a result, algorithms are often implemented based on programmer’s intuition and

experience. It is only extensive testing that proves an image processing algorithm’s

accuracy. The next section will examine some of the major challenges faced by algorithm

developers in producing completely robust IP algorithms particularly face detection and

recognition and red eye detection and correction algorithms and explain how an

36

algorithm performance measurement framework would greatly assist the algorithm

development process.

2.4 ONGOING CHALLENGES IN IP ALGORITHM

DEVELOPMENT

Current IP techniques and algorithms may be resolving many common picture defects in

consumer photography and making the world a more secure place but there still are

numerous challenges facing the image processing industry. (Delac et al, 2005:136)

reports in 2005 that the Pose, Illumination and Expression variant (PIE) problem is still

the most studied issue in face recognition so far while (Kong et al, 2005:105) reports that

evidence o f the depth of the illumination problem can be gauged in that variations of face

images due to illumination variation and viewing direction are typically larger than

variations raised from changes in face identity. Similarly problems relating to

illumination, camera lens and photographic subject mean no current red eye detection and

correction IP algorithm is completely effective (Smolka et al, 2003; Zhang, 2004b). The

next section explains some of the main challenges in producing truly effective face

detection and recognition algorithms and red eye detection and correction algorithms.

“It is my personal view that computer vision is a hard problem” (Shah, 2002:103)

2.4 .1 Fa c e D e t e c t io n a n d R e c o g n it io n A l g o r it h m s

In face recognition where greater accuracy is the key pursuit for facial recognition

systems, performance has been mixed (Gross et al, 2001;

http://www.biometricgroup.com/, 2006). In 2004, (Gross et al, 2004) reported that the

most recent evaluation of commercial face recognition systems shows the level of

performance for face verification of the best systems to be on par with fingerprint

recognisers for frontal, uniformly illuminated faces. Under limited conditions, for

example, verification under controlled indoor environments, performance is quite good.

37

http://www.biometricgroup.com/

These developments have meant face recognition has become a key component in many

biometric systems (Kung et al, 2004).

However, although face recognition has reached a significant level it is still far away

from the capability of human perception (Dalong et al, 2005; Little et al, 2005;Kung et al,

2004; Torres, 2004; Zhao et al, 2000). Despite over 30 years of research in the area,

(Dalong et al, 2005:787) reports that robust recognition of faces in digital photographs,

especially family photographs, still remains a challenge. The US government-sponsored

Face Recognition Vendor Test (FRVT) (Phillips et al, 2003) to measure progress on

difficult face recognition problems in 2002 found that in the images taken indoors, where

environmental conditions can be better controlled, the current state of the art in face

recognition is 90% verification at a 1% false accept rate. Nevertheless, FRVT (Phillips et

al, 2003) found that face recognition with variant pose, illumination and expression (PIE)

is still far from adequate (Dalong et al, 2005:787).

“Complex visual events arise fo r which robust interpretation requires separating the external causes from
the intrinsic properties in the appearance o f each object. This task, roughly equivalent to perceptual
constancies in human visual perception, is currently an active research area in computer vision” (Meer et
al, 2000:2)

Since the early 1990’s many papers (Adini et al, 1997; Gross et al, 2004; Kim et al,

2004; Little et al, 2005; Lu, 2003; Pentland & Choudhury, 2000:51; Riopka & Boult,

2003; Torres, 2004; Yang et al, 2004; Zhao et al, 2000; Zhao et al, 2002) have been

written identifying and proposing solutions to what has become known as the PIE (Pose,

Illumination, Expression variant) problem (Dalong et al, 2005:787). (Delac et al,

2005:136) notes up to 2005 that the PIE problem is still the most studied issue in face

recognition so far. According to (Dalong et al, 2005:793; Kim et al, 2003:29; Kim et al,

2004, Yang et al, 2004) the primary source of difficulty in developing robust face

recognition systems is pose variation where the same face appears differently due to

changes in viewing conditions. Similarly the illumination variation problem involving the

38

same faces appearing differently due to changes in lighting (Yang et al, 2004; Zhao et al,

2002:379) is another key barrier.

“Meanwhile, current automatic face recognition technology is not sufficiently robust to consistently
identify people in widely varying lighting conditions and poses." (Girgensohn et al, 2004a:99).

Evidence of the depth of the illumination problem can be gauged, according to (Kong et

al, 2005:105), in that variations of face images due to illumination variation and viewing

direction are typically larger than variations raised from changes in face identity.

“While humans quickly and easily recognize faces under variable situations or even after several years o f
separation the problem o f machine face recognition is still a highly challenging task in pattern recognition
and computer vision.” (Kong et al, 2005:104)

According to (Bovik, 2000:837) the development of recognition and detection systems

for natural objects such as human face is difficult because they are complex,

multidimensional, and important visual stimuli. Since (Bowyer & Phillips, 1998)

commented in 1998 on the common belief that computer vision was poised to deliver

reliable solutions, the current status of face recognition technology has certainly

advanced. But in terms of performance, current face recognition technologies are still far

from that of human vision. According to (Heseltine et al, 2003:59) because of the

difficulties like the PIE problem leading to high error rates, face recognition technology

has yet to be put to widespread use in commerce or industry. In the area of face

recognition (Torres, 2004) points out

“In spite o f the great work done in the last 30 years, we can be sure that the face recognition research
community will have work to do during, at least, the next 30 years to completely solve the problem. "
(Torres, 2004:3).

2.4 .2 R e d E y e D e t e c t io n a n d C o r r e c t io n A l g o r it h m s

Similarly problems relating to illumination, camera lens and photographic subject mean

no current red eye detection and correction algorithm is completely effective (Smolka et

al, 2003; Zhang, 2004b). According to (Schettini et al, 2004) the main challenge in

effective red eye correction is to avoid the correction of what are called false positives,

39

i.e. misclassified red spots that can be found in the image, while maintaining high

correction rates and quality. Some algorithms identify red eye pixels too aggressively,

darkening eye lid areas, while others are too conservative, leaving many red eye pixels

uncorrected.

"It is generally hard fo r an automatic detection algorithm based on statistical techniques to handle all red
eye cases " (Zhang, 2004b:2365).

And a lot of the automatic red eye solutions that do exist are heavily dependent on face

detection algorithms to detect the red eye regions which may in turn suffer from

challenges in face detection technology (Luo et al, 2004; Zhang, 2004b). Due to these

problems many image processing applications - “IPhoto” (http://www.apple.com, 2006),

“Picture Maker” (Eastman Kodak, 2006) - that offer red eye solutions on the market

today are semi-automatic or manual solutions (Luo et al, 2004). Essentially because

certain algorithms are not accurate enough for automatic detection some systems must

combine user input in semi-automated detection systems (Girgensohn et al, 2004a;

Schettini et al, 2004; Smolka et al, 2003; Zhang et al, 2003)

What is clear is image processing algorithm development is not easy, particularly object

detection. Contrast current face recognition algorithms having a better performance on

photographs captured indoors while (Zhang et al, 2002:99) find in the area of image

orientation detection that after analysing image orientation detection results in detail they

report that the accuracy of indoor images is much lower than that of outdoor images.

”Humans identify the correct orientation o f an image through the contextual information or object
recognition, which is difficult to achieve with present computer vision technologies (Zhang et al,
2002:95)

Although a number of efforts have been made to solve the difficulties outlined above, the

performance of current algorithms are still not satisfactory (Lu, 2003; Muller et al, 2004;

Sharma & Reilly, 2003; Torres, 2004; Zhang et al, 2003). With new approaches being

developed to overcome the challenges in robust algorithm development mentioned above,

40

http://www.apple.com

the question of how we test and compare algorithm performance becomes more critical.

Furthermore where algorithms have to be developed and validated quickly as in the field

of face recognition, security and protection applications, it is of crucial importance that

we are able to empirically study their performance (Jaynes et al, 2005:1). The next

section will define what is meant by performance evaluation from a digital image

processing algorithm perspective, highlight its need and determine some of the problems

hindering its effective implementation in the image processing area.

2.5 IP ALGORITHM PERFORMANCE MEASUREMENT

Proper evaluation has always been important in any research area. Only with proper and

standardised evaluations can advances in the field be identified and promoted.

Unfortunately the field of image processing currently lacks a testing framework, for

developing and assessing the performance of IP algorithms. And with algorithms being

developed without their likely performance being calculated beforehand, this often leads

to a somewhat ad hoc approach to development. Apart from the area of biometrics and

face recognition in particular, evaluation methodologies, standards and protocols are still

largely unavailable. The next section will define what is meant by performance

measurement from a digital imaging algorithm perspective, highlight its need and

determine some of the problems hindering its effective implementation in the field of

image processing.

“The application o f any technology should be based on the careful consideration o fsound scientific test
results” (Bone & Backbum 2002:7)

2.5 .1 N e e d f o r IP A l g o r i t h m P e r f o r m a n c e M e a s u r e m e n t ?

According to (Blackburn, 2001) successful evaluation allows the strengths and

weaknesses of a technology to be shown so we understand where it can be deployed and

what areas future development efforts should be focused on. Benchmarking and

41

performance evaluation not only allows the comparisons of different IP algorithms and

appraisal of the best suited IP algorithm for a particular problem but they also allow

algorithm developers to identify performance bottlenecks and design better systems

(Pankanti et al, 2000). By enabling researchers to measure the performance of their IP

algorithm relative to existing techniques, a developer can quantify any improvements that

each new algorithm development iteration causes, and so speed up the algorithm

development process. Furthermore if system performance for a given task can be

predicted from previously acquired data, its suitability for the task can be evaluated faster

thereby reducing development time. And knowledge of the performance of different IP

algorithms aids the selection of the most appropriate technique for a given problem.

2.5.2 H i s t o r i c a l L a c k o f R e s e a r c h i n t o I P A l g o r i t h m P e r f o r m a n c e

M e a s u r e m e n t

Historically the lack of any standard performance evaluation of IP algorithms has been

one of the main problems hindering development across all areas of image processing.

“As vision techniques become more widely applied, the need to critically evaluate new
methods has also become recognised by users.” (Courtney & Thacker, 2003:2)

Essentially over the last 50 years a large variety of image processing

techniques/algorithms for processing image data have been developed but according to

(Chhabra & Phillips, 1998; Phillips et al, 1998a; Takeuchi et al, 2003) very little work

has been done in the area of measuring and analysing the performance o f these

algorithms. In the early 1990’s (Firschein et al, 1993) outlined the need for benchmarking

in the vision field to objectively measure its progress. (Firschein et al, 1993) pointed out

that, similar to advancements in the natural language and speech recognition fields,

rigorous comparison among various computer vision techniques would help to spur

advancements across the image processing algorithm development industry. In 1997

(Jahne, 1997:49) suggested that a better mathematical foundation would lead to image

42

processing algorithms becoming more predictable and accurate paving the way towards

faster and more efficient algorithms in the long run.

“An important issue is also that a detailed mathematical analysis also leads to faster and more efficient
algorithms, i.e. it becomes possible to perform the same image processing task with less operations”
(Jahne, 1997:49).

And in 1998 (Bowyer & Phillips, 1998) reported that a better comparative assessment of

algorithms would have the following benefits:

(1) Place computer vision on a solid experimental and scientific ground.

(2) Assist in developing engineering solutions to practical problems.

(3) Allow accurate assessment of the state of the art.

(4) Provide convincing evidence to potential users that computer vision research has
indeed found a practical solution to their problems.

Up to the beginning of the 21st century (Meer et al, 2000:6) made the point that a better

mathematical foundation of image processing was not just crucial to the area of image

processing performance evaluation but would also be of great benefit in algorithm design

and development, similar to arguments made by (Jahne, 1997:49; Micheals & Boult,

2000) years previously. At this time however according to (Bowyer & Phillips, 1998) the

computer vision community failed to heed these arguments. (Chhabra & Phillips, 1998;

Liu & Dov, 1999; Ojala et al, 2002) were to report in the late 1990’s that the performance

of most techniques were at best only known from the biased and subjective reports of the

algorithm developers. And up to 2001 (Courtney & Thacker, 2001:1) reported that

“Some 30 years o f research has produced a rich variety o f methods fo r processing image data, but little
information on how they perform beyond a few example images.”

2.5.3 R e a s o n s f o r L a c k o f R e s e a r c h i n t o I P A l g o r i t h m P e r f o r m a n c e

M e a s u r e m e n t

“Although the evaluation and validation o f algorithms have been discussed fo r over a decade, the research
community still faces a lack o f well-defined and standardized methodology. ” (Takeuchi et al, 2003:408)

43

There are a number of reasons why performance evaluation has not been commonly

practiced in the image processing community. In 2003 (Thacker et al, 2003:3)details two

reasons why the need for algorithm characterisation has not been emphasised; one being

a poor understanding and use of statistics and two being the lack of knowledge on how to

use the generated data. (Courtney & Thacker, 2001:3; Micheals & Boult, 2001:150) is of

the opinion that the failings in algorithmic reliability have been due to the neglect of the

important role that statistics must play in algorithm development. Performance evaluation

is not just finding out whether algorithms perform as expected; according to (Courtney &

Thacker, 2001), it involves the use of objective, usually statistical, measures for

comparing the performance of vision algorithms. (Courtney & Thacker, 2001; Micheals

& Boult, 2000). Since the overall performance of an IP algorithm is a function of both the

effectiveness of the algorithm and the conditions under which it operates, the decoupling

of these two factors can be difficult. Describing complex image conditions quantitatively

can be hard. Different tasks require different performance measures; the metrics for

characterising a detection algorithm will differ from that of an optical character

recognition algorithm (Foerstner, 1996).

“The variety o f tasks leads to a variety o f requirements" (Foerstner, 1996:3)

Furthermore vision is complex and many IP algorithms are developed without

accompanying reference material making performance difficult to analyse. Finally

because testing is time-consuming and the gathering of ground truth can be expensive

and dubious to acquire, historically researchers paid little attention to IP algorithm

performance evaluation. It is only in the last 10 years that IP algorithm performance

evaluation has become recognised as a valuable research area.

2.5 .4 R e c e n t In t e r e s t in IP A l g o r it h m P e r f o r m a n c e M e a s u r e m e n t

“However, it has become well accepted that performance evaluation is a critical component in validating
existing and new algorithms. ” (Micheals & Boult, 2001:150)

44

According to both (Courtney & Thacker, 2001; Hua et al, 2004:498; Meer et al, 2000:2

Micheals & Boult, 2001:150) since the start of the 21st century the machine vision

community have took on board that a more rigorous approach to the studying of

performance characterisation of vision algorithms was needed.

”Performance evaluation and benchmarking have been gaining acceptance in all areas o f computer vision”
(Phillips & Chhabra, 1999:1)

Unquestionably since (Chhabra & Phillips, 1998; Phillips et al, 1998) reported in 1998,

performance evaluation as still a very young field, a more concerted effort by developers

and researchers to better analyse performance has taken place. Both (Bowyer & Phillips,

1998; Takeuchi et al, 2003:408) report on the increased publications addressing the issue

of how to evaluate the performance of vision algorithms while in 2005 (Grgic et al, 2005)

reported in the face recognition area that for each newly developed algorithm at least one

paper is written comparing that algorithm to other more known algorithms.

“As a result, the vision community has finally started to turn its attention to issues related to testing and
comparing algorithms: performance assessment.” (Clark & Clark, 2002:2)

(Clark & Clark, 2002) identifies rapid developments in Personal Computer technology

making it possible to quantify the performance of an algorithm as being one of the factors

behind this movement. As a result a number of standard techniques are available for

measuring the performance of IP algorithms. These include performance characterisation,

performance evaluation, benchmarking and standardisation of image databases. The next

section provides an overview of each technique.

2.5.5 T e c h n i q u e s a v a i l a b l e f o r I P A l g o r i t h m P e r f o r m a n c e M e a s u r e m e n t

“Its principal aim is to provide information, datasets and software that allow the effectiveness o f
algorithms to be measured and compared. This is known variously as performance characterization,
performance estimation and benchmarking.” (http://peipa.essex.ac.uk/, 2006)

45

http://peipa.essex.ac.uk/

2.5.5.1 Performance Characterisation

(Thacker et al, 2005:5) define performance characterisation as referring to specifically

obtaining a sufficiently quantitative understanding of performance that the output data

from an algorithm can be interpreted correctly. It involves the measurement or

calculation of the performance of an algorithm throughout the full space of the expected

operating conditions. Different methods for performance characterisation have been

developed, such as testing. Testing simply involves implementing the system and testing

it on its real data. Unfortunately testing can be time consuming because the IP algorithm

must be implemented and a set of input data with the appropriate variation in operating

conditions must be acquired. Furthermore (Ojala et al, 2002:705) reports often the

requirements for testing have more to do with the complexity of describing the operating

conditions than with the IP algorithm itself.

2.5.5.2 Performance Evaluation

Performance evaluation differs from performance characterisation in that it measures

performance under the conditions in which the algorithm will be operating in. Certain

performance characteristics, which it would be necessary to measure for complete

characterisation, can then be ignored. Therefore it is easier to implement performance

evaluation although it may not give a complete description of system performance.

(Takeuchi et al, 2003:408) classifies performance evaluation approaches into the

following general categories:

“Comparative: Here an algorithm may be compared with others that attempt to address the same image
processing task, or its performance may be compared to “ground truth, ” or perhaps to human
performance.

Analytic: The theory behind the algorithm is examined to try to determine the limits to its operation. The
computational complexity may be derived, or theoretical optimality may be determined under certain
constraints. Frequently, the approach makes use o f simplified input data to make the analysis feasible.

Performance: The way the algorithm actually performs on test data is measured and execution times with
different parameters may be reported.

46

Appropriateness to Task: The algorithm is shown in the context o f a particular application, and the
constraints o f the task are used to justify the selection o f the particular algorithm. The performance o f the
task as a whole is taken as the evaluation o f the algorithm. ” (Takeuchi et al, 2003:408)

More informal measures including generality and acceptance are also mentioned.

However, the lack of effective algorithm performance evaluation up to now is evident as

noted by (Takeuchi et al, 2003:409). They find that perhaps the only real performance

evaluation measure in common use is longevity i.e. the best IP algorithms are those that

are acceptcd widely and implemented by many people for different applications.

2.5.5.3 Benchmarking

Benchmarking differs substantially from the previous two techniques, a benchmark being

a basis to compare performance. (Loy & Eklundh, 2005) defines the aim of a benchmark

as not just to evaluate the performance of an individual IP algorithm, but to allow direct

comparison of different IP algorithms. (Clark & Clark, 2002) uses performance

characterisation and defines it.

“one must explore what characteristics o f the inputs affect the algorithms’ performances and by how
much. ” (Clark & Clark, 2002:3)

(Firschein et al, 1993; Loy & Eklundh, 2005) suggests benchmarking’s main motivation

is to provide a basis for comparing different IP algorithms, and to track progress towards

human-level performance. In essence it allows researchers to more fully understand the

strengths and weaknesses of their IP algorithm and compare their results with other IP

algorithms.

2.5.5.4 Standardisation of Image Databases

Several other techniques have been developed which are related to the measurement of IP

algorithm performance. One such approach to comparing IP algorithm performance is to

provide databases of standard images, covering a wide range of operating conditions

against which algorithms can be tested. As (Yang et al, 2002:50) point out the understood

reason for comparing algorithms on test sets is that these datasets represent problems that

algorithms will encounter in the real world and that superior performance on these

47

datasets should in turn translate to superior performance on other real world tasks

(Phillips et al, 2005).

Therefore as complex IP algorithms begin to evolve; each new version of an image

processing algorithm should be verified against a large set of reference images to ensure

that an actual performance improvement has occurred. Since performance

characterisation of all the operating conditions for a particular algorithm is next to

impossible (Moon et al, 2002:1) in most cases it is adequate to test an IP algorithm under

the expected conditions it will be operating in (Jaynes et al, 2005:2). As mentioned in

section 2.5.5.2 this technique is known as performance evaluation. The next section

provides an in-depth explanation of the performance evaluation of IP algorithms, it being

the most practical means of evaluating algorithm performance.

2.5.6 P e r f o r m a n c e E v a l u a t i o n

"Statistical measures o f performance can be obtained by testing on a representative set o f data. ” (Thacker
etal, 2003:5)

Performance evaluation of IP algorithms is a black box evaluation methodology (Thacker

et al, 2005:8), whereby the internal workings of an algorithm are not investigated; rather

the output is compared with the expected results. The reasoning behind the use of black

box evaluation according to (Ojala et al, 2002:704) is given a task, what really matters in

terms of performance is the quality of the output and the (computational) cost, not the

internal properties of the algorithm.

“The task o f a computer vision algorithm can be specified in terms o f two components: the range o f images
to be processed and the performance criterion that the algorithm should try to achieve.” (Moon et al,
2002:1)

Evaluating IP algorithm performance in this way involves the creation and running of test

scenarios incorporating the algorithm on sample data sets to deduce performance scores

(Clark & Clark, 2002:15; Courtney & Thacker, 2001). A scenario or application

evaluation focuses on understanding the performance of specific IP algorithm designed to

48

do a specific task (Courtney & Thacker, 2001:3; Phillips (a) et al, 2000; Thacker et al,

2003:3; Thacker et al, 2005:6). The aim of the scenario evaluation is to determine the

underlying technical ability of a particular technology (Courtney & Thacker, 2001:3;

Phillips (a) et al, 2000; Thacker et al, 2003:3; Thacker et al, 2005:6). Results from the

evaluations usually presented in terms of output parameters or performance data then

show specific areas of the algorithm that require future research and development. To

perform evaluations in this way (Clark & Clark, 2002:4) reports that each individual test

scenario requires three pieces of information:

(1.) The Test Data is the actual input to the algorithm under test. Common practice is

to divide test data into a small number of cases and qualitatively compare

performance across cases (Thacker et al, 2005:28) The original FERET (Phillips

et al, 2000b) tests for example compared performance under three qualitatively

stated conditions: 1) same day images with different facial expressions, 2) images

taken under changing illumination, and 3) extended lapsed time between

acquisition of images (Kong et al, 2005:111; Thacker et al, 2003:28).

(2.) The Ground Truth is the corresponding expected output from the algorithm

determined by a human.

(3.) Whether the output corresponds to a success or failure. The ground truth is

compared with the actual output from the test run using Metrics of Interest to

evaluate algorithm performance (Liu & Dori, 1999:98)

The results of the tests are statistically analysed to deduce information on algorithm

performance. According to (Hua et al, 2004:498, Liu & Dori, 1999) metrics of interest

are usually employed to express the difference between the expected output (ground

truth) and the actual output (returned results) from the algorithm test. For a detection

algorithm the returned results from the test usually take the form of four quantities (Clark

& Clark, 2002:3; Liu & Dori, 1999; Sharma & Reilly, 2003):

49

True Positive: (Also known as detection rate, recognition rate, true acceptance or true

match) occurs when a test that should yield a correct result does so.

True Negative: (also known as true rejection or true non-match) occurs when a test that

should yield an incorrect result does so.

False Negative: (also known as false rejection, false non-match) occurs when a test that

should yield a correct result actually yields an incorrect one.

False Positive: (also known as false acceptance, false match, false alarm) occurs when a

test that should yield an incorrect result actually yields a correct one.

The evaluation process involves keeping track of the four above mentioned values - test

metrics. According to (Yang et al, 2002:35) in the area of face detection most papers

compare the performance of algorithms in terms of detection and false alarm rates.

(Sharma & Reilly, 2003; Yang et al, 2002:35) defines detection rate as the ratio between

the number of regions correctly detected and the number of regions that are determined

by a human, the ground truth. Similar to detection rate, according to (Liu & Dori,

1999:103) the performance of recognition algorithms is usually reflected by the two rates,

true positive and false positive, true positive or recognition rate being the ratio of the

number of correctly recognised features to the total number of ground truths and false

positive rate being the ratio of the number of incorrectly recognised features to the total

number of recognised features (Liu & Dori, 1999:103). The algorithm with the highest

detection or recognition rate (or equivalently, the lowest false rate) is normally seen in

comparisons and competitions as the best.

Accordingly it must be appreciated that there is always a trade-off between true positive

and false positive detection (Clark & Clark, 2002:4; Liu & Dori, 1999:103; Martin et al,

1997). If detection rules are too detailed the algorithm may fail to detect regions that do

not pass rules whereas if rules are too general algorithm may return false positives.

“In general, detectors can make two types o f errors: false negatives in which faces are missed resulting in
low detection rates and false positives in which an image region is declared to be face, but it is not.” (Yang
et al, 2002:35)

50

Similarly according to (Mu et al, 2001: 2877) designing a good face recognition system

involves solving the two types of recognition problems simultaneously:

1. True positive: Correctly recognise and identify individuals who are in the

database.

2. False positive: Reject images of individuals who are not part of the database.

(Mu et al, 2001: 2877) reports that a lot of face recognition algorithm designs are trained

and tuned to work well on only one of these face recognition problems. As (Clark &

Clark, 2002) explains:

“I f a procedure is set to detect all the true positive cases then it will also tend to give a larger number o f
false positives. Conversely i f the procedure is set to minimize false positive detection then the number o f
true positives it detects will be greatly reduced.” (Clark & Clark, 2002:5)

Consequently for a fair evaluation developers should always appreciate that for detection

or recognition algorithms there is always a trade off between true and false detection.

(Courtney & Thacker, 2001:5; Yang et al, 2002:35). Furthermore, as (Clark & Clark,

2002:10) highlight, fair evaluations must not only take into account the number of true

positive or false positives etc but also the size of test sets applied to the algorithm.

“This must take into account not only the number o f false positives etc. but also the number o f tests: if one
algorithm obtains 50 more false positives than another in 100,000 tests, the difference is not likely to be
significant; but the same difference in 100 tests almost certainly is.” (Clark & Clark, 2002:10)

Unfortunately a lot of problems are evident in the literature as regards the performance

evaluation framework mentioned above, among them the lack of a common methodology

for the performance evaluation of detection and recognition algorithms as identified by

(Clark & Clark, 2002; Heo et al, 2003:558; Liu & Dori, 1999:98; Sharma & Reilly,

2003). And with the greater interest by the image processing algorithm research and

development community in studying algorithm performance the need for a

comprehensive performance evaluation tool for all types of image processing algorithms

becomes more important. According to (Courtney & Thacker, 2001), biometrics has been

the first field of image processing to try and identify best practice in the area of

51

performance evaluation and (Kong et al, 2005:128; Phillips et al, 2000a) report that

evaluations have already enhanced biometric performance.

The next section examines current performance evaluation techniques in the field of

biometrics and highlights how areas of best practice there can be applied across all image

processing algorithm evaluations.

2 .5 .7 A Su c c e ssf u l P e r f o r m a n c e E v a l u a t io n F r a m e w o r k - B io m e t r ic s

With growing security concerns in recent times, the performance of biometric

applications has become a high priority. So the evaluation methods and techniques for

biometric algorithms have had to keep up to date so that meticulous testing can be

conducted, helping algorithms to evolve and improve at a fast rate. According to (Phillips

et al, 2000a)

“Evaluations in general—and technology evaluations in particular—have been instrumental in advancing
biometric technology. By continuously raising the performance bar, evaluations encourage progress."
(Phillips et al, 2000a:62)

Major evaluations like the FERET (Face Recognition Technology) (Heo et al, 2003;

Phillips et al, 2000b) and FRVT (Face Recognition Vendor Test) (Phillips et al, 2003)

tests, which evaluated emerging approaches to face recognition (Pentland & Choudhury,

2000:52), have helped to measure the power of face recognition technology and have also

served to drive its evolution. The FERET evaluation protocol provided a means for

evaluating the performance of face recognition algorithms (Kong et al, 2005:111). The

FERET program sponsored by the Department of Defence’s Counterdrug Technology

Development Program from 1993 through 1997 has encouraged and measured

improvements in face recognition systems performance by providing a large database of

facial images and a testing procedure to evaluate face recognition algorithms, two of the

critical requirements in support of producing reliable face-recognition systems (Phillips et

al, 2000b).

52

The earliest FERET Database test in August 1994 established for the first time a baseline

for face recognition algorithms. The test was designed to measure performance on

algorithms that could automatically locate, normalise, and identify faces from a database.

Further tests have been carried out since to measure progress and evaluate algorithms on

larger galleries with the Facial Recognition Vendor Test 2000 (FRVT 2000) (Blackburn

et al, 2001) releasing its results in February 2001. In March 2003 the Face Recognition

Vendor Test 2002 completed the most complete evaluation to date of commercially

available face recognition systems finding that given reasonable controlled indoor

lighting, the current state of the art in face recognition is 90% verification at a 1 % false

accept rate. Further tests are currently being carried out with the FRVT 2006 scheduled to

run in January 2006.

While FERET and FRVT evaluations have certainly helped to assess the effectiveness of

facial recognition technology, problems are still evident in its datasets. (Thacker et al,

2005:28) reports that the FERET database is poor in terms of the number of replicate

images per subject it stores and (Black et al, 2002:6; Little et al, 2005:89) finds that the

FERET database does not possess a wide enough variety of illumination or pose

variations or information on the lighting used to capture the images.

Participant

Figure 3: Sample results from the Fg^e Recognition Vendor Test 2002

The results of the Face Recognition Vendor Test 2002 illustrated in Figure 3 above,

found that Facelt, a face recognition software solution, had the highest accuracy of any

commercial facial recognition software (Heo et al, 2003:551; Kim et al, 2004:1482; Kong

et al, 2005:112; Pentland & Choudhury, 2000:52). Its manufacturer Identix reported at

the time (Bone & Backbum, 2002) that its results demonstrated that facial recognition is

not only effective as a mechanism to prevent unauthorised access, but also as a tool to

detect the presence of a criminal or terrorist attempting to access a restricted area.

However contrary to (Bone & Backbum, 2002) findings, (Heo et al, 2003; Kim et al,

2003:36; Kim et al,2004; Riopka & Boult, 2003) find that although face-recognition

systems such as Facelt works well with “in-lab” databases and ideal conditions, up to

2004 none of the face recognition systems tested in airports have spotted a single person

actually wanted by authorities. Furthermore (Heo et al, 2003:558) points out the

technology has only served to embarrass innocent people by making incorrect matches,

called false positives.

“Though many attempts have been made to measure robustness o f face recognition algorithms, there has
been no method that has proven adequate.” (Little et al, 2005:89)

And problems are not only evident with facial recognition technology but also in the

performance evaluation of these systems. In their Best Practices in Testing and Reporting

Performance of Biometric Devices (Mansfield &.Wayman, 2002) reveal a wide variety of

conflicting and contradictory testing protocols. (Mansfield & Wayman, 2002) further

suggest that there is a need for a common testing protocol and goes on to provide some

general best practice concepts in the development of scientifically sound test protocols

for the field of biometrics. What is clear is although some efforts towards the provision of

effective performance evaluation of biometrics have been successful a comprehensive

performance evaluation framework for image processing algorithms is still absent.

The next section reports on the barriers faced in developing such an effective

performance evaluation framework for IP algorithms.

54

2.6 BARRIERS TO COMPREHENSIVE IP ALGORITHM

PERFORMANCE EVALUATION

2.6 .1 L a c k o f M e t h o d o l o g y

As mentioned in Section 2.5.2, apart from biometrics little emphasis has been put on

algorithm performance evaluation standards up to now and where evaluation has taken

place, it is been carried out in a somewhat cumbersome and unsystematic fashion,

without any standardised approach (Thacker et al, 2005:35). In 1997 (Micheals & Boult,

2001:150) reported no efficient statistically sound approach for evaluating general

classification or recognition systems was in existence. Similarly in 1998 the (9th

Workshop "Theoretical Foundations of Computer Vision" Evaluation and Validation of

Computer Vision Algorithms, 1998) found that although in certain areas of computer

vision a surplus of literature was available on the subject, the research community still

faced a lack of well grounded and standardised algorithm evaluation methodology.

“Although the evaluation and validation o f algorithms have been discussed fo r over a decade, the research
community still faces a lack o f well-defined and standardized methodology." (Takeuchi et al, 2003:408)

Over the course of the last 10 years not a lot has changed with (Thacker et al, 2005:35)

reporting that apart from the field of biometrics there is still only inconsistent use of

performance techniques by researchers. In 1999 (Liu & Dori, 1999:97) pointed out that

although research on performance evaluation on specific classes of recognition

algorithms had taken place such as (Phillips et al, 1998), a standard methodology that can

be applied to all graphics recognition algorithms was currently unavailable. (Liu & Dori,

1999:97) found at the time that even current performance evaluation methodologies for

specific classes of recognition algorithms were not up to requirements. Furthermore (Liu

& Dori, 1999:98) reported that there was no common methodology for performance

evaluation and although ground truth was widely accepted the definitions of comparing

ground truth with recognised results from algorithms and the selection of the appropriate

performance metrics were still undefined and controversial.

55

"To further advance the research on graphics recognition, to fu lly comprehend and reliably compare the
performance o f graphics recognition algorithms, and to help select, improve, and even design new
algorithms to be applied in new systems designedfor some specific application, the establishment o f
objective and comprehensive evaluation protocols and a resulting performance evaluation methodology
are strongly required. " (Liu & Dori, 1999:97)

In the area of face recognition the lack of a common benchmark database and comparison

framework has been identified by (Little et al, 2005; Lu, 2003). (Zhao et al, 2000; Zhao et

al, 2002) points out that with the numerous face recognition theories and techniques now

available, evaluation and benchmarking of these algorithms are crucial.

“Computer vision researchers have emphasized the need to fin d methodologies to characterize the
performance offace recognition algorithms, which deal with a huge amount o f high dimensional data.”
(Little et al, 2005:89)

Where performance evaluation has taken place to measure face recognition rates, (Little

et al, 2005:89) finds that none of these attempts studied the algorithms under varying

pose or illumination conditions - the primary sources of difficulties for face recognition

(Dalong et al, 2005:793;Kim et al, 2003:29). In 2005 (Little et al, 2005) summarised that

although many attempts have been made to measure robustness of face recognition

algorithms no methods have proven satisfactory. Similarly (Low & Hjelmas, 2001;

Sharma & Reilly, 2003) highlights the lack of standard performance evaluation measures

for face detection purposes and (Sharma & Reilly, 2003) proposes a method (including a

face image database) for the evaluation and comparison of existing face detection

algorithms. Even with regard to the most common customer complaint in the digital

imaging market, (Ulichney et al, 2003) highlights the need for automated red eye

correction and detection algorithm testing, pointing out that algorithm enhancement

depends on known failures.

In brief, as (Clark & Clark, 2002; Heo et al, 2003:558; Liu & Dori, 1999:98; Sharma &

Reilly, 2003) report, a common methodology for the performance evaluation of detection

and recognition algorithms is needed. However confusion over best practice and standard

terminology on how this methodology should be implemented are implicit in the

56

literature. In 1998 (Chhabra & Phillips, 1998) described a testing procedure for IP

algorithms that automatically analyse engineering drawings incorporating a testing

protocol and a system for generating ground truth. In (Liu & Dori, 1999:105) recommend

the establishment of a performance evaluation protocol with three essential elements:

1. Ground truth and a sound methodology for acquiring it

2. Matching definition where each ground truth graphic object must first be matched with

one or more objects from the recognised objects set and so should be in the same format.

3. Representative metrics of interest should be selected to display findings.

In 2003 (Sharma & Reilly, 2003) suggested any evaluation procedure should use standard

terminology along with carefully labelled face databases for evaluation purposes.

(Sharma & Reilly, 2003) also propose that any performance results should be presented

graphically to facilitate fast and effective interpretation.

“They may help compare, select, improve, and even design new methods to be applied in new systems
designed fo r some specific application. ’’ (Hua et al, 2004:498)

Obviously as (Yang et al, 2002:54) reports any fair and effective solution needs careful

design of protocols, scope, and datasets. As mentioned in Section 2.5.6 the only feasible

way to compare algorithms is to run them on the same data. Most performance evaluation

techniques involve the creation and running of test scenarios incorporating the IP

algorithm on sample data sets to deduce performance scores (Clark & Clark, 2002:15;

Courtney & Thacker, 2001). Consequently as mentioned in Section2.5.6 and inline with

(Clark & Clark, 2002:4) principles each individual algorithm test scenario requires three

pieces of information:

o Test Data

o Ground Truth

o Metrics of Interest

57

The next section investigates the barriers in implementing a performance evaluation

framework based on the three essential components of an image processing algorithm test

scenario mentioned above.

2 .6 .2 T e st D a t a - L a c k o f C o m p r e h e n s iv e Im a g e D a t a b a s e

“There are many challenges to building a comprehensive face database" (Black et al, 2002:11)

One major requirement of an effective algorithm testing methodology is the provision of

a large database of test images to allow for comprehensive evaluation. (Ulichney et al,

2003) suggests,

“The success and quality o f many image enhancement algorithms, specifically those that address a
particular image defect such as red-eye, depend on the breadth o f test cases available to measure
performance.” (Ulichney et al, 2003:1)

(Kong et al, 2005:111) report that any database must contain a large number of test

images for adequate assessment and (Moon et al, 2002:7) states that ideal performance

evaluation requires all possible images to be tested. In essence because numerous

imaging conditions can affect the performance of an IP algorithm (Moon et al, 2002:1)

reports all detection algorithms require a large database of images for both training and

testing purposes.

“All current face recognition algorithms fa il under the varying conditions in which humans can and must
identify other p e o p l e (Pentland & Choudhury, 2000:55)

Unfortunately (Courtney & Thacker, 2001; Yang et al, 2002:49; Zhao et al, 2000) report

although numerous face recognition algorithms exist most of them have not been tested

on datasets with a large number of images and (Sharma & Reilly, 2003) points out that

the lack of a standard face detection database has caused a lot of algorithm comparison

difficulties. (Clark & Clark, 2002:5) reports that the datasets used in performance

evaluation are not large or comprehensive enough to adequately test the algorithm, while

(Takeuchi et al, 2003:409) finds a large number of papers report excellent performance of

their algorithms, based on small data sets.

58

Consequently, many algorithms developed have not been tested on an image database

containing test sets which possess a high degree of variability in terms of scale, location,

orientation, pose, facial expression lighting conditions. Problems with two of the most

common databases, the FERET (Phillips (b) et al, 2000) and MIT databases used for face

recognition evaluation are systematic of problems across all algorithm evaluation

frameworks. Although the FERET database has aided face recognition evaluations (Black

et al, 2002:4; Kong et al,2005: 128; Little et al, 2005:89) finds that it does not possess a

wide enough variety of illumination and pose variations or information on the lighting

used to capture the images. Similarly (Black et al 2002:5) finds although the MIT

database contains images that were captured with different pose and lighting variations,

these variations are not extensive enough. The MIT database (Yang et al, 2002) reports,

only consists of frontal and near frontal view images on a cluttered background. Such

databases do not provide the challenges that face detection algorithms can encounter in

real applications, such as poor image quality, presence o f multiple faces and faces with

different orientations (upright and rotated).

“Though efficient and robust face detection algorithms [6, 16, 18] have become available, the effectiveness
o f available face recognition algorithms is still limited to images o f mug shots in which faces are mostly in
frontal and with reasonably homogenous lighting conditions and small variations in facial expressions [3,
12, 22].” (Zhang et al, 2004a: 1)

As mentioned in Section 2.4, numerous imaging conditions can affect the performance of

an algorithm, including camera and lighting conditions, so it is important to identify

which parameters affect the criterion function significantly and which do not. Poor

performance of an IP algorithm is usually going to be dominated by the parameters which

occur repeatedly and/or have a strongly harmful effect on image quality. (Moon et al,

2002:2) find that the camera and illumination angles are the most crucial factors. (Moon

et al, 2002:1; Ojala et al, 2002:705) report that if these factors are quantified and if very

large set of images annotated with these parameters are available, testing on this set of

images would give a very informative performance measure for the algorithm.

59

“The estimation o f one or more o f these appearance parameters from one or more images o f the scene has
been an important part o f research in computer vision" (Narasimhan, 2002:148)

Another factor in the need for category-based test sets is due to the difference in IP

algorithm performance on images taken by different image capturing devices. According

to (Phillips et al, 2000a:61) this variation has the potential to affect algorithm

performance as severely as changing illumination. Unfortunately, unlike the effects of

changing illumination, (Phillips et al, 2000a:61) reports the effects on performance of

using multiple camera types has not been quantified. Therefore a means of categorising

multiple images based on different cameras types is certainly needed.

As awareness of the above mentioned difficulties have grown, more and more researchers

have attempted to address these problems. In 2001 (Gross et al, 2001) reported that large

databases with ethnic variations were available; however they lack the variation in

lighting, shape, pose and other factors. In 2003 (Sharma & Reilly, 2003) developed an

image database containing colour images providing ‘real world’ challenges to face

detection algorithms by “including faces with a large variety in size, shape, orientation, expression

and images that have varying lighting conditions, resolution and backgrounds. ” (Sharma & Reilly, 2003).

Unfortunately, however as (Black et al, 2002) reports regards regarding face databases,

most of the currently available image databases in use today are not adequate to achieve

comprehensive performance evaluation of the IP algorithms.

2.6.3 L a c k o f a S y s t e m a t i c M e a n s O f A c q u i r i n g A c c u r a t e G r o u n d T r u t h

“Given a large number o f ground truth data sets from different environments, statistical evaluations are
possible as well as the robust assessment o f performance o f algorithms." (Takeuchi et al, 2003:409)

An important feature of any evaluation procedure is the necessity to determine the

appropriate characteristics of the input data. According to (Micheals & Boult, 2001:152)

one of the fundamental difficulties faced in algorithm performance evaluation is the

difficulty of acquiring sufficient data. In 1999 (Liu & Dov, 1999) reported that the

importance of accurate ground truth had become widely accepted essentially because as

(Muller et al, 2004) reported in 2004, an IP algorithm is only as good as the database and

60

ground truth it is tested upon. Ground truth is the corresponding expected output from the

algorithm determined by a human which is compared with the actual output to measure

performance. In a lot of cases this takes the form of a content-based feature.

“A feature is defined as a descriptive parameter that is extracted from an image or video stream” (Bovik,
2000:689)

(Bovik, 2000:689) define a content-based feature as a feature that is derived for the

purpose of describing the actual content in an image (Bovik, 2000:689). Clearly because

each ground truth content-based feature must be matched with one or more features

recognised by the IP algorithm, both should be in the same format (Liu&Dori, 1999)

“Visual data is usually more complex than the data typically analyzed in statistics, and so often a straight
forward application o f robust statistical techniques does not work.” (Meer et al, 2000:2)

Since most IP algorithm performance relies on ground truth accuracy (Takeuchi et al,

2003:413), its gathering or generation is usually a tedious and onerous task (Chhabra &

Phillips, 1998; Micheals & Boult, 2000:1; Van House et al, 2004a). (Liu & Dov, 1999)

further point out that manual ground truth acquisition is somewhat subjective and can

vary from one human to another. Evidently as (Chhabra & Phillips, 1998) suggested in

1998 and still up to now there is a lack of a systematic way of generating accurate ground

truth.

2 .6 .4 L a c k o f S t a n d a r d T e r m i n o l o g y A n d P o o r U s e O f M e t r i c s O f I n t e r e s t

According to (Courtney & Thacker, 2001:4) in order to carry out a test, it is necessary to

define a metric that can be used to quantify performance. (Micheals & Boult, 2000:3)

reports algorithm evaluation seeks the algorithm that yields the most desirable behaviour,

as dictated by a set of metrics. And if each algorithm is presented the exact same inputs,

the only system variation is the algorithm. A metric is a criterion function which

quantitatively measures the difference between the ideal output arising from the perfect

ideal input and the calculated output arising from the corresponding randomly perturbed

input. With regards face detection which can be viewed as a two-class (face versus non

61

face) classification problem (Hsu et al, 2001; Kong et al, 2005:109), most papers

compare performance of face detection algorithms in terms of detection rates and false

alarm rates. In 1999 (Phillips & Chhabra, 1999) defined a measurement for the

performance (accuracy) of a detection algorithm by counting the number of matches

between the entities detected by the algorithm and the entities in the ground-truth, and the

number of misses and false-alarms. (Phillips & Chhabra, 1999) defined several system

performance metrics including:

Detection Rate is, roughly, the percentage of ground-truth entities that are detected by

the recognition system.

Missed detection rate is the percentage of ground-truth entities not detected by the

recognition system.

False-alarm rate is the percentage of detected entities produced by the system that do

not match with any entity in the ground-truth.

Recognition accuracy indicates, roughly, the percentage of detected entities with the

result file that have their match in the ground truth entities. Thus, one can consider

recognition accuracy as a measurement of the overall accuracy of a recognition system.

Unfortunately the above metrics have not become standard and apart from the FERET

evaluation procedures becoming de facto standards in the face recognition field the lack

of a standard terminology for performance metrics is evident in the literature. (Sharma &

Reilly, 2003; Yang et al 2002:35) reported on the lack of a standard terminology to

describe test results meaning different researchers use different definitions for detection

and false alarm rates. (Clark & Clark, 2002) in particular report on the confusion in the

literature over the terms “false negative” and “false positive”. Consequently this in turn

has led to difficulties in comparing algorithms.

As can be seen from the above section testing image processing algorithms effectively is

a slow and laborious process. Algorithms should be executed on a set of image-test-sets

62

with the appropriate variation in operating conditions. And output should be compared

with accurate ground truth using proper metrics of interest to deduce relevant

performance scores. Accordingly and inline with (Clark & Clark, 2002:12)

recommendations, the best way to perform testing, especially when the results are to be

used for comparison, is to use a specially-designed software package. (Clark & Clark,

2002:12) defined it as a “Test Harness” and essentially it means automating the testing

process of image processing algorithms. The next section outlines the key components of

such a “Test Harness”, an effective image processing algorithm performance

methodology.

2.7 RECOMMENDATIONS FOR EFFECTIVE IP PERFORMANCE

EVALUATION

2.7 .1 A n E f f e c t iv e IP P e r f o r m a n c e E v a l u a t io n M e t h o d o l o g y .

"Scenario evaluations in machine vision often result in the problem o f establishing how well an algorithm
can identify a particular situation in the image." (Thacker et al, 2003:29)

As image processing algorithms are designed to solve a specific task (e.g. detect face in

image), evaluation is also task dependent. The variety of image processing tasks therefore

leads to a variety of different requirements for not only each class of algorithm but for

each individual algorithm. For instance one face detection algorithm may require a

different set of input parameters to that of another. Therefore no single set of

performance metrics or constraints can be applied to all algorithms (Foerstner, 1996:3).

“Measures easily derivable fo r one algorithm may not be derivable fo r another one.” (Foerstner, 1996:12)

Therefore in accordance with (Clark & Clark, 2002) principles the most effective way of

evaluating IP algorithm performance is by means of running the IP algorithm on a large

set of input data whose correct outputs are known and comparing the resulting output

from the algorithm with known correct results. This is in accordance with the FERET

evaluation methodology (Phillips et al, 2000b) where there is a direct connection among

63

the problem being evaluated, the test-image-sets, and the actual testing protocol.

According to (Phillips et al, 2005:948) this allows researchers to assess the best

approaches and fine-tune their algorithms. Consequently test execution, the actual

running of an algorithm on the image-test-set should be the central point of any algorithm

performance evaluation methodology. In essence it means automatically running the

image processing technique on a designated set of marked images. Therefore the

recommended algorithm performance evaluation methodology will have three major

requirements.

2 .7 .2 T e s t D a t a - A C o m p r e h e n s iv e Da t a b a s e Su p p l y in g Im a g e -T e s t -S et s

The first key requirement is the test data, the input to the algorithm under test. From a

conceptual viewpoint, digital image processing revolves around digital images.

Evaluating an IP algorithm’s performance in this way involves the execution of the

algorithm on a large set of images - the image-test-set. Therefore the image-test-set,

which the algorithm is evaluated upon, is crucial. As previously discussed in Section

2.6.2, for the most part the image-test-sets currently used in performance evaluation are

inadequate. (Clark & Clark, 2002:5; Courtney & Thacker, 2001; Muller et al, 2004;

Sharma & Reilly, 2003, Ulichney et al, 2003; Yang et al, 2002:49; Zhao et al, 2000) all

highlight major shortcomings with standard face detection, face recognition and red eye

removal image databases. Therefore it is imperative that any new image database should

contain a large number of standard and representative test images for adequate

assessment (Kong et al, 2005:111; Moon et al, 2002:7; Yang et al, 2002:52).

Poor performance of an algorithm is usually going to be dominated by the parameters

which occur repeatedly and/or have a strongly harmful effect on image quality. For

instance (Dalong et al, 2005:793; Kim et al, 2003:29) identify the primary sources of

difficulties for face recognition as varying pose or illumination conditions. By

categorising image-test-sets (in which all but one parameter is held constant) it becomes

feasible to evaluate an IP algorithms ability to tolerate changes in each type of
64

environmental variable (Black et al, 2002). Another factor in the need for category based

test sets is due to the difference in algorithm performance on images taken by different

image capturing devices. According to (Phillips et al, 2000a:61) this variation has the

potential to affect algorithm performance as severely as changing illumination.

Consequently any effective performance evaluation methodology should allow for

efficient categorisation of test images permitting the IP algorithm to be tested on the most

relevant image-test-set.

2 .7 .3 N e e d f o r A c c u r a t e G r o u n d T r u t h A n d A n E f f e c t i v e M e t h o d o l o g y F o r

A c q u i r i n g I t

The second key requirement of an effective algorithm performance evaluation is the

acquirement of accurate ground truth data (Black et al, 2002; Liu & Dov, 1999; Muller et

al, 2004). Ground truth is compared with the actual output from the algorithm test run

results to evaluate algorithm performance. Therefore any performance evaluation

methodology should provide a tool to generate a large database of ground truth for

evaluating segmentation, classification and recognition algorithms. And as (Liu & Dori,

1999) suggests, because each ground truth object must be matched against one or more

objects from the recognised objects set, both should be in the same format. Then if the

marking system generates accurate markings it becomes a simple matter of comparing

ground truth markings with actual output from the algorithm test run to determine the

percentage of false positive and false negative results of each algorithm and the

correctness of the detected positions and shapes of each object.

2 .7 .4 U s e O f A p p r o p r i a t e M e t r i c s O f I n t e r e s t

The third key requirement is the definition of and use of appropriate metrics of interest.

Performance evaluation is not just finding out whether algorithms perform as expected;

according to (Courtney & Thacker, 2001), it involves the use of objective, usually

statistical measures for comparing the performance of vision algorithms (Courtney &

Thacker, 2001; Micheals & Boult, 2000). Accordingly metrics are usually employed to

65

express the difference between the expected output (ground truth) and the actual output

(returned results) from the algorithm test (Hua et al, 2004:498, Liu & Dori, 1999).

Different IP algorithms require different performance measures so the effectiveness of

any algorithm representation depends critically upon selecting the appropriate parameters

to describe the performance metrics.

Unfortunately, apart from the FERET evaluation procedures which have become de facto

standards in the face recognition field (Phillips et al, 2000b), the lack of a standard

terminology in selecting and defining performance metrics is evident in the literature.

Consequently in line with principles set out by (Sharma & Reilly, 2003) any evaluation

procedure should use standard terminology for evaluation purposes. Additionally since

different IP algorithm tasks require different performance measures, any comprehensive

performance evaluation methodology should define and use the appropriate metrics for

the particular class of algorithm being tested. Ultimately, this core component of the

performance evaluation methodology will allow for developers to pinpoint the problems

within the algorithms they are working on quickly and more effectively.

2.8 CHAPTER SUMMARY

This chapter started by introducing the everyday use of digital image processing

technology in consumer appliances and its increasing importance to other areas of

industry including security. After a selective review of popular image processing

algorithms in use today, the main problems in image processing algorithm development

and testing are presented. A comprehensive survey on the methods and techniques being

used in image processing algorithm performance assessment was then undertaken and the

need for an efficient image processing algorithm testing framework was identified.

Finally, the main components of a comprehensive image processing algorithm testing

methodology were outlined, that will aid in assessing and improving the quality of

existing and newly developed algorithms.

66

CHAPTER 3: METHODOLDOGYAND

REQUIREMENTS ANALYSIS

Methodology and Requirements Analysis

3.1 INTRODUCTION

As digital image processing techniques have become increasingly used in a broad range

of applications (Gonzalez & Woods, 2002:6, Jaynes et al, 2005:1), the critically need to

evaluate algorithm performance has become recognised by developers as an area of vital

importance (Courtney & Thacker, 2001; Hua et al, 2004:498; Meer et al, 2000:2

Micheals & Boult, 2001:150). After conducting a survey of the literature on the methods

and techniques being used, it can be seen that current algorithm testing and evaluation

practices do not live up to expectation. Currently no standard methodology exists for the

performance evaluation of detection and recognition algorithms (Clark & Clark, 2002;

Heo et al, 2003:558; Liu & Dori, 1999:98; Sharma & Reilly, 2003) and although

techniques have been developed for assessing individual classes of algorithms (Liu &

Dori, 1999:97; Phillips et al, 2000b), to date a generalised methodology for image

processing algorithm performance assessment has not been developed.

“Although the evaluation and validation o f algorithms have been discussed fo r over a decade, the research
community still faces a lack o f well-defined and standardized methodology. ” (Takeuchi et al, 2003:408)

Only in the highly financed field of biometrics has any real progress been made in testing

algorithms effectively (Thacker et al, 2005:35). As a result, algorithms are often

implemented based on programmers' intuition and experience rather than any standard

performance evaluation. It is only extensive testing that proves an IP algorithm’s

accuracy and it is this very process that can speed up, or slow down algorithm

development. A new approach that incorporates a comprehensive testing methodology
67

and framework to adequately measure algorithm performance would greatly improve the

quality and efficiency of the algorithm testing process.

The next section outlines the key aims and objectives of a proposed testing methodology

to assist developers in measuring image processing algorithm performance effectively.

3.2 OBJECTIVES OF PROPOSED IP ALGORITHM TESTING

METHODOLOGY

By enforcing adherence to a consistent test approach the new methodology aims to:

1. Enable the analysis and performance assessment for a wide range of the image

processing algorithms in existence today (Jaynes et al, 2005:1; Kim et al, 2004;

Little et al, 2005:89; Pentland & Choudhury, 2000:51; Yang et al, 2004:2533).

2. Provide easy access to a comprehensive set of relevant test images that will allow

algorithms be tested on the most pertinent image-test-sets for a more complete

evaluation (Jaynes et al, 2005:2).

3. Demonstrate how the analysis of image processing algorithms can be considered a

relatively simple function by decoupling the algorithm from the operating

conditions, gathering the appropriate data, and then categorising the problem

according to a set of specified criteria (Sharma & Reilly, 2003).

4. Deduce algorithm performance with an high degree of accuracy by providing

effective tools for accurate and efficient ground truth acquirement.

68

5. Supply the required algorithm performance data which can then be used to

optimise algorithm performance (Pankanti et al, 2000:49) by providing a means of

specifying relevant metrics o f interest for performance analysis.

6. To facilitate fast and effective algorithm performance analysis, performance data

presented graphically should have three fundamental requirements (Sharma &

Reilly, 2003):

- Performance data should be easy for both novice and expert user to

understand.

Allow for adequate assessment of algorithm past performance by enabling

the history of algorithm improvements iterations to be displayed.

Allow for investigation of algorithm performance on individual images as

well as quantitative analysis of image-test-set performance.

7. Speed up the testing process by providing an integrated testing environment

resulting in faster and more efficient testing practice.

Beyond the above, the methodology should play a critical role in guiding and focusing

image processing algorithm development research. Based on the objectives of the

proposed IP algorithm testing methodology outlined above, the next section gives an

overview of the proposed image processing algorithm test framework and its key

components.

3.3 THE PROPOSED IP ALGORITHM TEST FRAMEWORK

OVERVIEW

Figure 4 provides an overview of the proposed IP algorithm test framework and the key

inputs of the IP algorithm testing methodology.

69

Figure 4: IP Algorithm Test Framework Overview

70

IP

Algorithm

W

R

A

P

P

E

R

(1.) Test Data:

Images

(3.) Metrics

of Interest Algorithm Test

(2.) Ground Truth:

Marked Images

- 1 1 .
— \ - i\ li

----------------- V

- 1 JUL
Algorithm

Performance

The first key input into the IP algorithm testing methodology is the IP algorithm to be

tested. Since the proposed test framework will provide for the performance assessment of

a wide range of the IP algorithms, an interface known as a wrapper based on the

individual IP algorithm being tested is required. This wrapper will allow the testing of

various IP algorithms within the test framework.

After the IP algorithm has been selected for testing and inline with (Clark & Clark,

2002:4) recommendations, each individual IP algorithm test scenario requires three

pieces of information. As illustrated in Figure 4, the first key requirement is the Test

Data, the input to the algorithm under test. In most cases this takes the form of a relevant

set of test images. The concept behind this is that high-quality performance on the set of

images should correspond to high-quality performance on similar or corresponding

images the algorithm will encounter in its real world application (Kong et al, 2005:111;

Thacker et al, 2003:28; Thacker et al, 2005:28). The second key requirement is the

acquirement of accurate and relevant G round T ruth data for the test (Micheals & Boult,

71

2001:152; Muller et al, 2004). Ground truth is the corresponding expected output from

the IP algorithm determined by a human and must be compared with the actual results

from the test run - the algorithm output to evaluate algorithm performance. It usually

takes the form of the co-ordinates of manually marked content features within the images

based on the type of IP algorithm being evaluated. Finally the third key requirement is the

specification of relevant Metrics of Interest to express the difference between the

expected output (ground truth) and the actual output (returned results) from the IP

algorithm test (Hua et al, 2004:498, Liu & Dori, 1999). By allowing the specification of

metrics of interest, the desired IP algorithm performance characteristics can be isolated

and evaluated by the algorithm developer.

The first step in building the IP algorithm test framework outlined above is the

specification and analysis of the user’s requirements in order to implement an approach

that fully satisfies the user goals. The key functional requirements of the proposed

software solution are outlined in next section

3.4 FUNCTIONAL REQUIREMENTS SPECIFICATION

“Any system designed fo r people to use should he easy to learn (and remember), useful, that is, contain
functions people really need in their work, and be easy and pleasant to use” (Gould & Lewis, 1985:300)

Functional requirements identify what the system should do (Preece et al, 1994). Based

on the key elements of the proposed IP algorithm test framework outlined above, the next

section lists the functional requirements of the proposed testing methodology in detail.

3.4.1 In t e g r a t in g D if f e r e n t IP A l g o r it h m in t o t h e IP A l g o r it h m T e st

F r a m e w o r k

One of the most important requirements of the algorithm test framework is extensibility

so as to allow for easy integration of various algorithms based on their specific

requirements. There are a wide variety of image processing algorithms in existence today

(Jaynes et al, 2005:1; Kim et al, 2004; Little et al, 2005:89; Pentland & Choudhury,
72

2000:51; Yang et al, 2004:2533) each comprising of its own unique characteristics and

processing mechanisms (Foerstner, 1996).

“The variety o f tasks leads to a variety o f requirements” (Foerstner, 1996:3)

With the wide array of imaging libraries available, essentially “Plug-and-play”

functionality should be provided by the test framework whereby a wrapper is developed

to allow integration of an IP algorithm based on its own unique characteristics. In essence

the wrapper should allow performance evaluation of specific algorithms designed to do

specific tasks - a scenario evaluation (Blackburn, 2001; Courtney & Thacker, 2001:3;

Phillips et al, 2000a).

Figure 5: Algorithm Wrapper Overview

3.4 .2 IP A l g o r i t h m T e s t E x e c u t io n : A T e s t S c e n a r io

Inline with the principles set out in the FERET evaluation methodology (Phillips et al,

2000b), the proposed methodology should exploit the direct connection between the

algorithm being evaluated, the set of test images and the actual testing protocol. For

instance it is of little use testing a red eye removal solution on an image-test-set of

landscape images. The proposed framework should therefore allow individual test

scenarios to be specified based on algorithm and developers requirements. A test scenario

will allow the definition of what parameters the algorithm takes as input, what output the

algorithm returns and how this is compared with ground truth to deduce performance

scores (Foerstner, 1996:12).

73

Figure 6: Algorithm Testing Methodology Overview

In essence the test scenario will incorporate the following components (Clark & Clark,

2002:4; Liu & Dori, 1999:105):

A. The Test D ata is the actual input to the algorithm under test (Image-test-set).

B. The Ground T ruth is the corresponding expected output from the algorithm

determined by a human.

74

C. Whether the output corresponds to a success or failure (Liu & Dori, 1999:98). A

matching method and representative Metrics of Interest to evaluate performance.

3.4.2.1 Test Data: Image-Test-Set

“One must explore what characteristics o f the inputs affect the algorithms performance and how much”
(Clark & Clark, 2002:3).

A vital part of the testing process is the set of images, which the IP algorithms are tested

on. These are known as image-test-sets. The concept behind this is that high-quality

performance on a representative set of images should correspond to high-quality

performance on similar or corresponding images the algorithm will encounter in its real

world application (Kong et al, 2005:111; Thacker et al, 2003:28; Thacker et al, 2005:28).

Therefore the provision of a database containing image-test-sets which the algorithm is

evaluated upon is crucial. Up to now such a database has not been available to algorithm

testers. Many of the successful claims in the literature have used private image-test-sets

that are not comprehensive or varied enough leading to biased and erroneous results

(Takeuchi et al, 2003:409). And over the last decade the need for large databases of

image-test-sets to allow for comprehensive evaluation of face detection, face recognition

and red eye removal solutions in particular has been identified in the literature (Black et

al 2002:4; Clark & Clark, 2002:5; Courtney & Thacker, 2001; Gross et al, 2001; Hsu et

al, 2001; Little et al, 2005:89; Muller et al, 2004; Sharma & Reilly, 2003; Ulichney et al,

2003:1; Yang et al, 2002:49; Zhao et al, 2000). Therefore in order to validate and test

algorithms comprehensively, a key requirement of the proposed test framework is the

image database which should incorporate some vital features:

Image

Database
Image Database Tool

Add Images

Access Images

Figure 7: Image Database Tool Overview

75

3.4 .2 .1 .1 As outlined in the previous chapter, numerous imaging conditions may affect

the performance of a IP algorithm, so to reveal the strengths and weakness of an

algorithm it must be run on pertinent image-test-sets (Jaynes et al, 2005:2; Kong et al,

2005:111; Moon et al, 2002:7; Yang et al, 2002:52). The image database accordingly

should contain a large number of standard and representative test images which possess a

high degree of variability in terms of scale, location, orientation, pose, facial expression,

lighting conditions, etc.

3 .4 .2 .1 .2 To speed up the algorithm testing process the database ought to provide a means

for the categorisation of multiple images based on image content and properties. This

allows for the natural selection of the most relevant image-test-sets for algorithm test

runs. To allow for fast and efficient access the image database should categorise images

by different parameters based on image content (Bovik, 2000:689) and properties. Poor

performance of an algorithm is usually going to be dominated by the parameters which

occur repeatedly and/or have a strongly harmful effect on image quality. Most currently

available test image databases are not adequate to evaluate tolerance of variations in

environmental parameters such as the PIE (Pose, Illumination, Expression variant)

problem (Dalong et al, 2004:787). The proposed test framework should allow for factors

such as these to be quantified in image-test-sets. Testing on such image-test-sets will give

the required informative performance measure for the algorithm (Moon et al, 2002:1;

Ojala et al, 2002:705). Another factor in the need for category based image-test-sets is

due to the difference in algorithm performance on images taken by different image

capturing devices. This variation has the potential to affect algorithm performance as

severely as changing illumination (Phillips et al, 2000a:61).

3 .4 .2 .1 .3 The image database should also reflect the new and unique challenges facing

algorithm testing. As new algorithm techniques emerge that utilise different image

76

properties and content (Nishino et al, 2005(a); Pankanti et al, 2000:49) new image-test-

sets must also be produced to rigorously evaluate these algorithms.

3.4.2.2 Ground Truth: Marked Image-Test-Set

A second key requirement of an effective algorithm performance evaluation is the

acquirement of accurate and relevant ground truth data for the test (Micheals & Boult,

2001:152; Müller et al, 2004).

fe,___
Image Images Image Marker Tool

Database I *
Mark images

(Centralised) <<i Edit marked images
Marked Images

Figure 8: Image Marker Tool Overview

3 .4 .2 .2 .1 A large database of ground truth for evaluating segmentation, classification and

recognition algorithms corresponding to the selected image-test-set is a key input to the

test methodology. Ground truth in this case being relevant features of interest marked or

annotated on the selected image-test-set in the same format as that which the algorithm

under test will return as output (Liu & Dori, 1999). It then becomes a simple matter of

comparing the corresponding ground truth with actual output from the algorithm under

test (Phillips et al, 1998) to determine algorithm performance. Therefore the proposed IP

algorithm test framework should provide an efficient means of generating accurate

ground truth.

3 .4 .2 .2 .2 In addition a key component of the proposed ground truth (markings) lies in its

complementary information (Sarvas et al, 2004:36). When images are marked, the

markings - or ground truth data - should be stored for future use. Ground truth metadata,

literally information about information, may not only be used for the purpose of

algorithm evaluation, it can also be used as a means of categorising images within the

77

image-test-set database (Section 2.6.2) (Girgensohn et al, 2003; Girgensohn et al, 2004b;

Zhang et al, 2003; Zhang (a) et al, 2004).

Note: Although relevant image-test-sets and accurate ground truth are essential

requirements of the algorithm testing methodology, the development of software tools for

the gathering, storage and marking of images is not part of this thesis. This work is

carried out by other researchers, working on the "Tools & Algorithms to Assist in

Automatically Recognising and Deducing Information about People in Consumer Digital

Images" Enterprise Ireland (El) funded project.

3.4.2.3 Metrics of Interest

Test scenario execution, the actual running of an algorithm on the image-test-set will be

the central point of the algorithm testing methodology. In conjunction with a large

database of image-test-sets, comprehensive algorithm testing will allow the execution of

the algorithm on the most pertinent image-test-sets. In the case of testing segmentation,

classification and recognition algorithms, with ground truth provided in the same format

as that which the algorithm under test will return as output it becomes a matter of

comparing the two using a matching method specifically tailored to both ground truth and

algorithm output format. Accordingly the IP algorithm test framework should allow users

to specify metrics of interest to express the difference between the expected output

(ground truth) and the actual output (returned results) from the algorithm test (Hua et al,

2004:498, Liu & Dori, 1999). This process will involve defining metrics of interest

relevant to the IP algorithm being tested that can be used to quantify performance

(Courtney & Thacker, 2001:4; Micheals & Boult, 2000:3).

“The application o f any technology should be based on the careful consideration o f sound scientific test
results” (Bone & Backbum 2002:7)

Unfortunately apart from the FERET evaluation procedures becoming de facto standards

in the face recognition field (Phillips et al, 2000b) the lack of a standard terminology in

selecting and defining appropriate performance metrics is very evident in the literature

78

(Courtney & Thacker, 2001:9; Liu & Dori, 1999:98; Sharma & Reilly, 2003; Yang et al

2002:35). Therefore the proposed IP algorithm test framework should allow users to

specify metrics appropriate to the particular class of algorithm being tested.

3 .4 .3 D is p l a y a n d A n a l y sis o f T e s t R e su l t s

A core part of the proposed testing methodology will be the test-results - the data

generated as a result of running the test scenario. As various versions of an IP algorithm

are tested on the same set of original images, the methodology should allow test result

comparison to clearly show which version is the most efficient. The same image-test-set

been used to test each new version. The results of testing different versions of the same

IP algorithm should to be saved to allow for statistical analysis of algorithm past

performance. With the availability of previous IP algorithm test performance data,

performance results can then clearly display which version of the IP algorithm is the most

efficient, and whether the new version performs better than a previous version.

Relevant pieces of information from the test-results should be displayed graphically to

facilitate fast and effective interpretation (Sharma & Reilly, 2003). For instance

algorithm test performance data should be able to be viewed quantitatively to see the

overall result for an image-test-set. Additionally algorithm performance on each

individual image could be displayed separately to diagnose what discrepancy is causing a

skew in test results. Ultimately, this core component of the IP algorithm test framework

will allow for developers to isolate and identify performance bottlenecks quickly and

build better algorithms (Pankanti et al, 2000:49).

The proposed IP algorithm test framework has a number of advantages over previous

solutions and the next section presents a review of the key problems the proposed IP

algorithm test framework intends to solve.

79

3.5 REVIEW OF KEY PROBLEMS SOLVED BY IP ALGORITHM

TEST FRAMEWORK

1. The core problem addressed by the framework is how to integrate different image

processing algorithms for testing to support a semi-automatic testing processing.

The test framework will provide an extensible interface so as to allow the analysis

and performance assessment of a wide range of image processing algorithms.

2. The integrated database will provide easy access to a comprehensive set of test

images allowing IP algorithms to be tested on the most applicable image-test-sets

resulting in a more complete algorithm evaluation (Jaynes et al, 2005:2; Kong et

al, 2005:111; Moon et al, 2002:7; Yang et al, 2002:52).

3. The framework will facilitate the decoupling of the algorithm from its operating

conditions resulting in a more comprehensive IP algorithm assessment (Moon et

al, 2002:1; Ojala et al, 2002:705; Phillips et al, 2000b).

4. The framework will allow for ground truth to be acquired quickly and accurately

(Micheals & Boult, 2001:152; Muller et al, 2004).

5. The generic nature of the framework allows for metrics of interest to be specified

based on individual algorithm and developer requirements resulting in quicker

algorithm performance evaluation.

6. By providing customisable performance results display functionality the

framework will allow for performance data to be displayed graphically in a

suitable format facilitating fast and effective interpretation by both novice and

expert users (Sharma & Reilly, 2003).

80

7. The integrated nature of the test framework incorporating an image database tool,

a ground truth generation tool and a testing tool in the one environment means

that algorithm performance is carried out quickly and easily, thus greatly reducing

testing time (Clark & Clark, 2002:12)

3.6 CHAPTER SUMMARY

This chapter has outlined the aims and objectives of the proposed testing methodology, a

solution to current testing and evaluation difficulties. The requirements of a software

solution were first outlined in detail and the set of key functional requirements were then

presented. Finally a review of the key problems the proposed testing framework intends

to solve was presented. Ultimately, the test framework proposed aims to shorten the

algorithm development life cycle by helping to identify algorithm performance problems

quickly and more efficiently.

81

CHAPTER 4: DESIGN

Design

4.1 INTRODUCTION

Having outlined the requirements and defined the functionality of the proposed IP

algorithm test framework in the previous chapter this section draws up a blueprint for

system implementation called the design. Firstly, the overall algorithm test framework is

described and the classification of the two distinct categories of testing tool user is

explained. Having formulated the functional requirements of the IP algorithm test

framework in the previous chapter, the key non-functional requirements based on the two

categorises of user for the testing tool are then identified. After the selection of system

development life cycle and technologies are explained the following sections then outline

the main design aspects of the testing tool. Firstly section 4.5.1 details the design of the

testing tool algorithm integration architecture. Section 4.5.2 then describes the design of

the components that make up a test scenario and the underlying test execution

architecture and finally Section 4.5.3 details the GUI design process.

4.2 IMAGE PROCESSING ALGORITHM TEST FRAMEWORK

Based on the initial functional requirements outlined in the previous chapter, Figure 9

illustrates a use case diagram of how each specific category of user will interact with the

proposed software solution to accomplish a specific task.

“A use case is a description o f a functionality (a specific usage o f the system) that the system provides.”
(Eriksson & Penker, 1997:17)

82

I

As illustrated in Figure 9, the three user categories identified are the database

administrator responsible for managing image-test-sets, the image marker responsible for

generating accurate ground truth data and the algorithm tester who is responsible for

managing and executing algorithm tests to deduce algorithm performance. On the

evidence of the above use case diagram it becomes possible to decompose the proposed

test framework into three separate components outlined in Figure 10.

83

Figure 10: Test Framework Architecture

The Image Database Tool will provide access to a comprehensive set of relevant

test images that will allow algorithms be tested on the most applicable image-test-

sets for a complete evaluation.

o The Image Marker Tool will allow for the accurate and rapid marking or

annotation of features of interest within images to be used as ground truth within

the testing process.

o The Testing Tool allows various algorithms to be plugged into testing tool for

performance evaluation. After appropriate metrics of interest have been specified

the algorithms can then be run on the most pertinent image-test-sets to deduce

algorithm performance.

Given that the thesis’s main focus is on the testing tool, the next section further examines

the categories of users who will employ the testing tool.

84

4.2.1 D e f i n i n g U s e r C a t e g o r i e s f o r t h e T e s t i n g T o o l

Figure 11 is a use case diagram that illustrates the different aspects of the testing tool’s

Functionality and how it is going to be used.

Figure 11: Use Case Diagram for Algorithm Tester and Algorithm Integrator

It is important to note that Figure 11 identifies two distinct classes of user:

o Algorithm Integrator who carries out the Algorithm Integration Process,

o Algorithm Tester who carries out Algorithm Test Execution.

The algorithm tester, who in most cases is the actual algorithm developer, carries out

algorithm test execution to find out whether a new version of an algorithm is better than a

previous version. In most cases the algorithm tester will be an expert in the area of

algorithm development but may not have the necessary technical knowledge in how to

integrate an IP algorithm into the testing tool for performance evaluation. As well

become evident, integrating various algorithms for testing purposes and defining relevant

85

metrics of interest to evaluate algorithm performance is not a trivial task because every

algorithm comprises its own unique characteristics and processing mechanisms

(Foerstner, 1996).

“Coding in these languages however can be time consuming because the programmer must iteratively
debug compile-time and run-time errors. This approach also requires extensive knowledge o f the
programming language and the operating system o f the computer platform on which the program is to be
compiled and run” (Bovik, 2000:449)

Table 1 for example displays the different characteristics of various IP algorithms.

Image Processing Algorithm Characteristics Example

Designed to perform different tasks Red Eye Detection

Dust Removal

Developed in different programming languages C++

Java

Python

Requiring different inputs parameters 1 Image

3 Images

Producing different outputs parameters or performance data (True/False)

Integer Value

Table 1: Algorithm Characteristics

Therefore it was decided to differentiate the algorithm integration and actual test

execution tasks. It makes more sense to allow an expert quickly integrate algorithms into

the testing tool without having to retrain individual algorithm developers in the process.

The next section identifies the key non-functional requirements of the testing tool.

86

4.3 NON-FUNCTIONAL REQUIREMENTS OF THE TESTING

TOOL

Based on the functional requirements of the IP algorithm test framework, the Quality

Requirements Tree illustrated in Figure 12 identifies the key non-functional quality

requirements of the testing tool.

M aintainability Integration of algorithms written in new programming languages

Platform independent

Figure 12: Quality Requirements Tree for Testing Tool

The next section identifies the key non-functional requirements of the testing tool for the

two distinct classes of user described above. The algorithm integrator who carries out the

Easy for both novice & expert to deduce algorithm performance

Good Feedback & help features

U sability All tasks integrated into one framework

Ease of integration of a wide range of algorithms

Allow specification of metrics to particular algorithm

Functionality Allow easy integration of particular algorithm

Access to relevant test images and ground truth

Selection & management of relevant algorithms, parameters, images for test

R eliability Access to Database with relevant test images and ground truth

Efficiency

The efficient running of different algorithms developed in various programming

Fast Access to relevant test images and ground truth
y

Speedy return and analysis of algorithm performance results

Compatibility/Integration between database, marking and testing tool components

87

IP algorithm integration process and the algorithm tester who carries out IP algorithm test

execution.

4.3.1 A l g o r it h m In t e g r a t o r

Functionality: No software solution can anticipate the tremendous variety of algorithm

types and architectures that may have to be tested into the future. By using a simple, well-

defined wrapper between an algorithm and the testing tool, the testing tool should be

extensible and customisable to meet various requirements of different algorithms. The

differentiation of algorithm integrator and algorithm tester roles mean that algorithm

developers will spend more time on understanding algorithm performance, instead of

spending time building new testing functionality for each individual algorithm that needs

to be tested.

Performance: The integration of algorithms into the test tool should not impede actual

algorithm performance in terms of speed and execution time. Algorithm execution time is

also one of the main measurements for algorithm performance so the technology used for

implementing the algorithm wrapper should be very efficient in terms of performance.

Usability: Usability is concerned with making a software application easy to learn and

use. The incorporated wrapper functionality should provide a consistent platform for

integrating various algorithms into the testing tool.

“Usability requirements specify the acceptable level o f user performance and satisfaction with the system”
(Preece et al, 1994:385)

As algorithm integration will mainly involve expert users, the testing tool should also

emphasise efficiency for proficient users.

Maintainability: Maintainability is the ability to make changes to the testing tool over

time. In order to provide comprehensive test functionality into the future, the proposed

88

testing tool should be designed to anticipate several types of changes in algorithm

characteristics. Furthermore the development environment chosen should allow for new

component integration easily.

4.3.2 A l g o r i t h m T e s t e r

Functionality: A comprehensive evaluation of an algorithm requires it be executed on

the most relevant set of test images. Consequently access to a database containing a wide

variety of images sorted in a large and easily accessible database is a key component of

the test framework (Clark & Clark, 2002:10; Moon et al, 2002:7; Muller et al, 2004). In

order to ensure a reasonable level of efficiency the database should provide storage

capabilities for a large number of image-test-sets (Kong et al, 2005:111; Sharma &

Reilly, 2003). Images by their nature being large in size, the framework should provide a

fast means of image transmission between the image database and the testing tool. In

addition access to the selected image-test-sets corresponding ground truth is required, as

well as a means of specifying relevant metrics of interest to easily deduce assess

algorithm performance scores.

IP Algorithm

W rapper

Testing Tool Algorithm
Performance

Figure 13: Test Framework Inputs Results

89

Usability: A key requirement of all software systems is that they exhibit good usability.

Particularly as this software solution proposes to speed up the testing of IP algorithms

this requirement becomes even more important.

“Usability a key concept in HCl is concerned with making systems easy to learn and easy to use. Poorly
designed systems can be extremely annoying to users. ” (Preece et al, 1994:14)

The testing tool should provide an easy to use and simple interface that will help speed up

the algorithm testing process by allowing algorithm testers to isolate and identify

potential algorithm weaknesses quicker and more effectively. With all the requirements

for effective algorithm testing incorporated into the one framework, algorithm testers

should be able to carry out their task in relatively short time.

“Algorithm development environments strive to provide the user with an interface that is much closer to
mathematical notation and vernacular than are general-purpose programming languages. The idea is that
a user should be able to write out the desired computational instructions in a native language that requires
relatively little time to master” (Bovik, 2000:449)

Good feedback and help features should be provided within the testing tool to avoid user

errors.

Reliability: Since the system is intended to be available over a network, any number of

users may be using the system simultaneously. All users should therefore be guaranteed

that they receive the information they requested, be it test results or image-test-sets.

Performance: Obviously a core requirement of the testing tool is efficiency so as to

speed up the algorithm testing process. Up to now algorithm developers have had to use

different working environments for the different stages in the testing process, namely;

importing images, image marking, image categorisation, actual algorithm test execution

and performance deduction and analysis. The result of this is a slower and more

cumbersome process than is desired in a modern working environment where many

incremental algorithm changes and improvements must be applied, each time having to

be retested to make sure performance improvements occurred.

90

To help improve and refine the entire image algorithm testing process the proposed

framework should tie together the required components into the one environment:

o Database Tool

o Image Marker Tool

o Testing Tool

Before discussing the different elements of the testing tool’s architecture the next section

examines the choice of Software Development Lifecycle (SDLC) and technologies

employed to develop the entire software solution.

4.4 SELECTION OF SYSTEM DEVELOPMENT LIFE CYCLE AND

TECHNOLOGIES

4 .4 .1 Sy st e m D e v e l o p m e n t L if e C y c l e

In the initial project selection phase, a key decision is what System Development Life

Cycle (SDLC) to use during the course of the project. The Waterfall model is the most

common and classic of SDLC models where each development phase must be completed

in its entirety before the next phase can begin. As it is a poor model for complex and

object-oriented projects due to the rigidity of the model it was not deemed suitable as the

SDLC model for this particular project.

“In practice, however the development stages overlap and feed information to each other. During design,
problems with requirements are identified; during coding, design problems are found; and so on. The
software process is not a simple linear model but involves a sequence o f iterations o f the development
activities.” (S o m m e .r 'j \ \ \e , 1992:7)

4.4.1.1 Spiral Model

The Spiral life cycle model addresses the shortcomings of the Waterfall model by

presenting an incremental development process, in which developers repeatedly assess

changing project risks to manage unstable requirements (Nuseibeh, 2001:115). In the

91

case of this project, because of its iterative and integrated approach to the development

process it was the preferred choice of SDLC for a number of reasons:

o Initial project requirements are not very clear,

o New technologies are being deployed.

o It is likely that requirements will change during the course of the project.

More information on the Spiral life cycle model is available in Appendix A.

4.4 .2 Sy s t e m D e v e l o p m e n t T e c h n o l o g ie s

When developing a software application, one of the first questions that must be asked is

what programming language to use to develop the application. In choosing a

development language a number of factors were taken into consideration including the

Integrated Development Environment (IDE) that would be employed to develop the

application. The original decision of development language was to use C++

(http://msdn.microsoft.com/visualc/, 2006) because C++ is faster for graphics and image

processing. However with recent developments in Java with the powerful and advanced

Eclipse IDE (http://www.eclipse.org, 2006) and the Standard Widget Toolkit (SWT)

library (http://www.eclipse.org/swt/, 2006), Java revealed itself to be a more preferable

choice. It appeared that there were many disadvantages and restrictions that would

become more apparent and problematic further down the line when developing in

Microsoft C++. Using Java with its advanced Eclipse IDE would ensure that the project

is extendable, has the same behaviour across all platforms, and is instantly available for

all platforms even when extra features become available. It must also be remembered that

the overall IP algorithm test framework is going to be a commercial product, and by not

limiting oneself to Microsoft the product can be instantly aimed at a much larger

consumer base.

4.4.2.1 Development Language

Java is a sophisticated, standardised, object-oriented programming language (Young,

2002:656) that has emerged as an implementation language of choice for a variety of

92

http://msdn.microsoft.com/visualc/
http://www.eclipse.org
http://www.eclipse.org/swt/

software applications. Java is platform independent, and can be run without modification

on a broad variety of operating systems (Young, 2002:657). Furthermore, Java

incorporates Java Native Interface (JNI), meaning support for imaging libraries written in

other programming languages like C and C++ is provided. Especially since a large

amount of image processing algorithms are written in high performance programming

languages like C++ this is of vital significance.

“Once an algorithm has been developed and is ready fo r operational use, it is often implemented in one o f
the compiled languages such as C, C++, or Fortran fo r greater efficiency.” (Bovik, 2000:449)

4.4.2.2 Integrated Development Environment

The choice of Java as development language was predicated on another important reason,

the availability of a sophisticated Java development environment, Eclipse. Eclipse is a

Java development environment, a tool integration platform, and an open source

community all in one (Shavor et al, 2003:6).

“Eclipse has garnered so much support that many industry observers say it is now the key Java-tools
player. "(Geer, 2005:16)

According to (McAffer & Lemieux, 2005) it is a world-class Java IDE and regularly tops

the charts in developer satisfaction and use.

4.4.2.2.1 Eclipse Rich Client Platform

“It has become one o f the most flexible, powerful, and integrated Java development environments." (Yang
et al, 2005:1)

Although Eclipse was originally built as an integrated development environment for

software development, the Eclipse platform can also be used to build client applications

(Carlson, 2005; Gruber et al, 2005:289; McAffer & Lemieux, 2005). The Eclipse Rich

Client Platform (RCP) is a subset of Eclipse that allows a set of plug-ins to be developed

and deployed as a standalone application, independent of the Eclipse development

environment. The RCP is composed of a number of components including the workbench

which incorporates the editors, views, and perspectives that will make up the

93

environment that is the overall test framework (Shavor et al, 2003:198). More

information on the Eclipse Rich Client Platform is available in Appendix B.

4.4.2.2.2 Eclipse Perspectives

Within the Eclipse workbench, perspectives are the visual containers that hold an

appropriate collection of views, editors and actions designed to perform distinct

functions.

“You can tailor the supplied perspectives to make it easier fo r your users to visualize how you suggest they
might want to organize your product’s views, editors, and access key actions” (Shavor et al, 2003:198)

As the perspectives behaviour is task-oriented, the main components of the test

framework can be implemented as three separate perspectives:

o A Database Tool perspective,

o An Image Marker Tool perspective,

o A Testing Tool perspective.

4.5 TESTING TOOL DESIGN

Having outlined both the functional and non functional requirements of the proposed

testing tool and explained the design of the overall test framework, the next section

details the design of the testing tool in depth.

4.5.1 A l g o r it h m In t e g r a t io n A r c h it e c t u r e

With the wide range of image processing algorithms in existence today (Jaynes et al,

2005:1; Kim et al, 2004; Little et al, 2005:89; Pentland & Choudhury, 2000:51; Yang et

al, 2004:2533) developed in a host of different programming languages, it becomes

necessary to allow the java developed testing tool to work closely with native code

written in other languages. (Bovik, 2000:449) reports that after algorithms have been

developed and are ready for use, they are often compiled into a C++ or C imaging library

Dynamic-Link Library (DLL) for greater efficiency. An imaging library implements and

exports a set of well defined image processing operations (e.g., Red-eye detection library,

94

Histogram library). Therefore a means is needed of making native imaging libraries

written in C or C++ available to be used inside the Java developed testing tool. In

designing a solution for this requirement, the adapter design pattern was utilised.

4.5.1.1 Adapter Design Pattern

The adapter design pattern also known as a wrapper, allows classes work together that

couldn’t otherwise do so. The intent of the adapter pattern is to convert the interface of

an existing class in order to make it compatible with the interface that its client expects

(Gamma et al, 1995). In this case, the testing tool will be using third party imaging

libraries, and the adapter pattern allows usage of the third party imaging library to be

decoupled from the testing tool code. In essence using the adapter pattern adds certain

flexibility to the relationship between the testing tool and the algorithm to be tested. All

communication between both must go through the wrapper class, meaning that the

algorithm can be replaced or updated without the testing tool functionality having to be

changed. For instance if a newer version of an imaging library becomes available, having

an adaptor interface will allow migration to a newer version very easily, without having

to change the testing tool significantly.

“Convert the interface o f a class into another interface clients expect. Adapter lets classes work together
that couldn't otherwise because o f incompatible interfaces.” (Gamma et al 1995)

Therefore within the testing tool each individual imaging library interface must have an

associated wrapper class that will be responsible for loading the DLL containing the

imaging processing algorithm, calling of the actual image processing algorithm routine,

returning the results of the call, and also dealing with any error conditions.

As illustrated in Figure 14, because fully automating the application of the adaptor

Figure 14: Adapter Class - Source: Gamma et al, 1995

pattern is non-trivial and needs expert knowledge, the mapping from the new adapter

interface to the existing adaptee class should be specified by the programmer. This was

one of the main reasons for differentiating the algorithm integrator and algorithm tester

roles.

4.5.1.1 Analysis of Implementation Technology: JNI

As the testing tool is been developed in Java, Java Native Interface (JNI) was seen as the

most appropriate tool for implementing the wrappers. JNI is a powerful interface that

allows the calling of functions, in this case image processing algorithms, written in other

languages and usually compiled into a dynamic link library, from Java (Liang, 1999).

JAVA JNI C++

Figure 15: JNI Wrapper

“A common case o f using the JNI is when a system architect wants to benefit from both worlds,
implementing communication protocols in Java and computationally expensive algorithmic parts in C++
(the latter are usually compiled into a dynamic library, which is then invoked from the Java code).“
(Gabrilovich & Finkelstein, 2001:1)

The wrapper will provide functionality for:

o Conversion of inputs: Usually image-test-sets and some specified parameters

from the format they are stored in the testing tool to a format which the target

algorithm can understand.

96

o Execution of the target algorithm on the image-test-set and any additional

parameters.

o Conversion of algorithm outputs to a format that can be used by the testing tool.

Essentially it allows interoperability between programming languages (Liang, 1999;

Werbicki & Kremer, 2005). In this case the ability to integrate imaging libraries written in

native programming languages such as C and C++ into the testing tool which is to be

developed in java. After the algorithm has been integrated into the testing tool the next

step is to create a test scenario to evaluate the integrated algorithm’s performance.

4 .5 .2 T e st Sc e n a r io

Inline with the principles set out in the FERET evaluation methodology (Phillips et al,

2000b), design of the testing tool exploits the direct connection between the algorithm

being evaluated, the set of test images and the actual testing protocol. The proposed

testing tool allows individual test scenarios to be specified, which incorporate the

following components (Clark & Clark, 2002:4; Liu & Dori, 1999:105):

o Test Data

o Ground Truth

o Metrics of Interest

The next section will explain the design of each of these components and give

explanations for the choice of implementation technology selected.

4.5.2.1 Test Data

A key requirement of the algorithm testing methodology tool is access to relevant image-

test-sets (Jaynes et al, 2005:2). The stored information for image test sets not only

consists of actual photographic images, but also image metadata, such as an image

description and various other image attributes that may be defined as the need arises.

Furthermore as will be explained later, the storage of test scenarios and test results is an

97

additional requirement of the testing tool. Therefore, data storage is one of the most

important design aspects of the overall test framework to be considered. In conjunction

with partners on the "Tools & Algorithms to Assist in Automatically Recognising and

Deducing Information about People in Consumer Digital Images" project, extensible

Markup Language (XML) was chosen as the storage mechanism for test related data.

Note: Although relevant image-test-sets and accurate ground truth are essential

requirements of the algorithm testing methodology, the development of software tools for

the gathering, storage and marking of images is not part of this thesis. This work is

carried out by other researchers, working on the "Tools & Algorithms to Assist in

Automatically Recognising and Deducing Information about People in Consumer Digital

Images" Enterprise Ireland (El) funded project.

4.5.2.1.1 Analysis of Implementation Technology: XML

XML is a standardised meta-language designed to store, carry and exchange data. XML

is completely flexible in how its data can be structured so can be used describe any kind

of information including test scenarios and test results (Hunter et al, 2000: 21). As such

XML is a perfect fit for the storage and transmission of data associated with the test

framework. More information on XML is available in Appendix C.

“XML simply defines standard ways to manage and exchange complex documents.” (Orfali et al 1999:625)

4.5.2.1.2 Design Strategy

The client side of the testing tool will therefore be a straightforward system in data

storage. By specifying XML schemas for test scenarios and test results, instances of

either may be serialised to XML documents and saved to the tests directory on the local

machine. An XML schema describes a model for the set of allowed data that is enclosed

within an XML document (McLaughlin, 2000). The testing tool then only needs to

understand the XML documents constraints described in the schema to utilise data stored

in the XML documents (McLaughlin, 2000).

98

“In many ways, schemas serve as design tools, establishing a framework on which implementations can be
¿w/Zf.’’(Harold & Means, 2004)

As the testing tool will be web-enabled, support will also be provided to upload both test

scenarios and test results to a server for central storage. XML provides a means for

reducing server load by storing all data on the client for as long as possible and then

sending the information to the server in one big XML document. (Hunter et al, 2000: 24)

The testing tool will utilise parsing routines to access the stored XML documents. JAXP

(Java API for XML Processing) is a standard set of Java APIs for dealing with XML

objects (Mordani et al, 2001). The use of parsers enables the testing tool to read the

stored XML data and get the relevant information from it.

Parsing

Figure 16: Data Communication and Storage

4.5.2.2 Ground Truth

Ground truth is the corresponding expected output from the algorithm determined by a

human and must be compared with the actual results from the algorithm test run to

evaluate algorithm performance. As mentioned in previous chapters it usually takes the

form of marked features of interest within an image. For instance features of interest in

the red eye detection algorithm overview provided in Appendix D are the red eyes.

Therefore a means of storing and comparing ground truth with the outputted results from

algorithm execution is needed.

Partners working on the "Tools & Algorithms to Assist in Automatically Recognising

and Deducing Information about People in Consumer Digital Images” project have

developed an XML based language Photographic Feature Markup Language (PFML)

used to describe relevant features of interest within images. As defined by the PFML a

99

feature of interest (red eye) within a photograph, classified as a feature, comprises of a

geometry element used to store the marked features co-ordinates. As illustrated in Figure

17, Geometry types defined by the PFML include Point, Ellipse, Rectangle, LineString,

LinearRing and Polygon. For instance a point would be used to mark a dust spec on a

photograph while a polygon would mark a face.

Figure 17: PFML Structure
Essentially algorithm integrators can incorporate

these geometry types into their test scripts to compare ground truth with the output from

algorithm execution using specific metrics of interest.

4.5.2.3 Metrics of Interest

Performance evaluation is not just finding out whether algorithms perform as expected, it

involves the use of objective, usually statistical, measures for comparing the performance

of vision algorithms (Courtney & Thacker, 2001; Micheals & Boult, 2000). As can be

seen in section 4.5.2.2, the writing of test scripts involves the definition of metrics to

100

!

compare outputted results from the algorithm with the corresponding ground truth. The

testing tool will allow users to specify metrics of interest to express the difference

between the expected output (ground truth) and the actual output (returned results) from

the algorithm test (Hua et al, 2004:498, Liu & Dori, 1999).To facilitate this design

requirement after algorithms have been integrated into the testing tool, appropriate test

scripts incorporating relevant metrics of interest may be wrote to process images in

different ways and measure various characteristics of the results of algorithm test

scenario execution. The concept of a test script can be defined as the series of image

processing or data comparison operations in some programming language, that are

executed in order to test various image processing algorithms, and produce test results

that may be analysed later. Again it is worth noting with the differentiation of algorithm

integrator and algorithm tester roles mentioned earlier that this is essentially a

programming task.

Since the testing tool is been developed in java for portability and Graphical User

Interface (GUI) component reasons, test scripts will be able to be programmed in Java.

Although test scripts written in Java have the advantage of running a lot faster, the

disadvantage is that they can only be modified outside the application. The Java class

containing the test script must be recompiled and redeployed and the testing tool

application must be restarted once again. Obviously a high level of Java expertise is

required on the part of the algorithm integrator to complete this task. In designing the

testing tool it was thought that integrating functionality to allow test scripts to be written

in scripting languages would simplify and speed up the test script writing process. In

addition scripting languages have another advantage over Java in that they could be

edited from the testing tool and re-run instantly.

4.5.2.3.1 Analysis of Implementation Technology: Bean Scripting Framework

The Bean Scripting Framework (BSF) (http://jakarta.apache.org/bsf/, 2006) is a set of java

classes that enables the use of scripting languages, such as Javascript or Python

101

http://jakarta.apache.org/bsf/

(http://www.python.org, 2006), within Java applications and allows the use of java objects

and functions within the supported scripting languages. By integrating the BSF into the

testing tool, support for the writing of test scripts in several scripting languages is provided

including:

o Python provided by way of the Jython engine (http://www.jython.org, 2006).

o Javascript provided by way of the Rhino engine from the Mozilla project

(http://www.mozilla.org/rhino/, 2006).

o Ruby provided by way of the JRuby engine (http://jruby.sourceforge.net/, 2006).

o BeanShell (http://www.beanshell.org/, 2006).

Figure 18: Bean Scripting Framework

Scenario

Execute Test

102

http://www.python.org
http://www.jython.org
http://www.mozilla.org/rhino/
http://jruby.sourceforge.net/
http://www.beanshell.org/

The advantages of adding BSF architecture to the testing tool for the writing of test

scripts include:

o Enabling the testing tool to support a lot of scripting languages easily,

o Enabling "nonprogrammers" to write test scripts

4.5.2.3.1.1 Python

“Python provides such flexibility, speedy development, and a sense o f ease" (Bill, 2001)

The easy usage of Python language and the clear structure and simple extensibility means

that it is a good choice for a scripting language in the testing tool. Python is a portable,

interpreted, object-oriented programming language. The learning and usage of Python is

very simple and should allow non-programmers to write test scripts.

4.5.2.3.1.2 Jython

“Jython is the combination o f two programming languages—Java and Python" (Bill, 2001)

As mentioned earlier BSF provides support for Python via the Jython engine. To

incorporate Python test scripts within the testing tool, Jython (http://www.jython.org,

2006) a java implementation of the python programming language will be used. With

Jython, Python programs can be wrote that integrate seamlessly with any Java code. And

like Python, Jython can be used interactively (Pedroni & Rappin, 2002).

“Jython, on the other hand, is a powerful complement to existing Java frameworks that blends in
transparently. ” (Bill, 2001)

Providing scripting support allows both algorithm integrators and algorithm testers (non

programmers) to write and edit test scripts within the testing tool application and run

them immediately. By implementing test scripts in high level scripting languages, the

speed of algorithm testing process is also increased. Although not mentioned here,

support for Beanshell, Ruby and Javascript scripting languages are also provided within

the testing tool.

103

http://www.jython.org

4.5.2A Underlying Architecture Design

Having described the design of the main components of the proposed algorithm testing

methodology above, the next section reviews the list of preliminary objects that will be

modelled within the system to satisfy their requirements.

4.5.2.4.1 Object Diagram

The steps to model the algorithm testing methodology start by defining a preliminary

object-oriented domain analysis diagram as illustrated in Figure 19.

1 U * T

Figure 19: Preliminary Object-Oriented Domain Analysis

First of all, an algorithm is selected for performance evaluation. Since the algorithm is

usually encapsulated in a DLL written in a native programming language, an algorithm

wrapper based on the specific requirements of the algorithm, allows for the integration of

the algorithm into the testing tool. In addition test scripts, which define the series of

image processing or data comparison operations that are executed on each image, to

produce test results and deduce algorithm performance must be specified. Test scripts

may also utilise ground truth, the corresponding marked image-test-set from the image

marker tool, stored in PFML format. The algorithm tester first selects a test script to run.

Then after, the relevant image-test-set and any additional test parameters are selected,

what is known as a test scenario is executed and algorithm performance results based on

the test script are returned. Test results are then displayed to the test results view to allow

algorithm testers analyse algorithm performance.

4.5.2.4.2 Sequence Diagram

Having defined test scenario execution, the actual running of an algorithm on the image-

test-set, as the central task in the algorithm testing methodology the next step is to

identify how this will be done. A sequence diagram provided by the Unified Modelling

Language (UML) (Booch, 1993), focuses on how a particular function should be

undertaken by the architectural elements of the system. Understanding the sequence of a

particular task then makes it easier to implement using the appropriate code.

105

Figure 20: Sequence Diagram

“During the system design phase, the sequence diagrams are refined to derive the methods and interactions
between classes.” (Kendall & Kendall, 2001:880)

As can be seen in Figure 20, to create a new test scenario the algorithm tester must select

a test script, an image test set and any additional test parameters. When the algorithm

tester runs the test scenario, it is executed in the test run time module and algorithm

performance data is returned as test results. Test results may then be displayed to the

appropriate views.

4.5.2.4.3 Design Strategy

4.5.2.4.3.1 Model-View-Controller Architecture

As the acquirement and analysis of algorithm performance data is the basis for

development of this system the storage and manipulation of this data should be truly

independent of user interface design. The observer design pattern assumes that the object

enclosing the data is divided from the objects that present the data, and that these objects

will observe changes in that data (Cooper, 1998:177). The Model-View-Controller

106

(MVC) architecture which will be utilised by the testing tool, is an example of the

observer pattern that decouples the user interface from the testing tool functionality and

information content (Cooper, 1998:10; Sommerville, 2001:334).

“Applications developed in Eclipse generally consist o f a domain model and a user interface component
that display some aspect o f the domain model." (Shavor et al, 2003:316).

As illustrated in Figure 21, by separating the display of the data from the actual data, the

representation on the user’s screen can be changed without changing the underlying

computational system (Sommerville, 2001:335).

Fig 21 illustrates the main objects in the system. In the model the main entities will be

test scenarios and test results. The view is concerned with how information is presented

to the user. In this case there will be a “Test Runner” view and a “Test Results” view.

The controller containing the Test Manager is mainly concerned with the interactions

between the user and the view. Since the MVC separates the View, Model and controller;

107

system development, design and maintenance is then made easier (Kurniawan, 1999;

Shalloway & Trott, 2004).

4.5.2.4.3.2 Test Manager - Singleton Pattern

From Figure 20 and Figure 21, it is clear that a class for managing test scenarios and test

results is needed. The singleton design pattern is used in designing classes involved in the

central management of resources, in this case test scenarios and test results. A creational

design pattern, it ensures a class only has one instance, and provides a global point of

access to it. All objects that use an instance of the class will use the same instance.

“A better solution is to make the class itself responsible fo r keeping track o f its sole instance. The class can
ensure that no other instance can be created (by intercepting requests to create new objects), and it can
provide a way to access the instance. This is the Singleton p a t t e r n (Gamma et al, 1995)

r(.■lii'ii ! jn iq u ? J rs la n c e

Figure 22: Singleton Pattern - Source: Gamma et al, 1995

Its main advantage is it controls access to the stole instance of the test manager.

4.5.3 G r a p h i c a l U s e r I n t e r f a c e (GUI) D e s i g n P r o c e s s

Good Graphical User Interface (GUI) design is critical to the success of any software

application (Sommerville, 2001:328). An interface that is difficult to use will result in a

high level of user errors. If for instance performance information is presented in a

confusing or misleading way, users may be unable to deduce algorithm performance.

Therefore, during the GUI design stage, screen design prototypes were utilised to design

and refine the layout of the user interface.

“Prototyping is an appropriate way to communicate design information to users.” (Preece et al, 1994:563)

Singleton

Sim c 1'itiWrcH!) O- ■
K inyìoìoiiO aw aSK jnl)

G o t S i a g l e i o f l O a t a û

stfcl’C unique Instance
sinrjlfiionD ata

108

Prototypes were quick and inexpensive to use and they provided invaluable insights into

UI design. A preliminary use case diagram (Figure 23) depicts the main functionality of

the testing tool purporting to the role of the algorithm tester.

Figure 23: Use Case Diagram for Testing Tool

For the development of a reliable and successful GUI, two questions had to be answered:

o What information should be displayed?

o How should it be displayed?

As examined in the use case displayed in Figure 23, the main information to be displayed

in the GUI is the list of test scenarios which can be run, information on the running

process and the actual tests results. Therefore it was initially decided to divide the testing

tool UI up into three display blocks or views.

109

“Tests

Manager”

view

“Test Runner” view

“Test Run History” view

Figure 24: Preliminary GUI Design
As illustrated in Figure 24, the “Test Manager” view will display a simple tree hierarchy

of the test scenarios which can be run. When a test is run, the “Test Runner” view will

display information on the running status and performance results of the test scenario

while the “Test Run History” view will display previous test run results for the currently

selected test scenario.

“Developing prototypes is an integral part o f iterative user-centred design because it enables designers to
try out their ideas with users and to gather feedback.” (Preece et al, 1994:537)

As a result of early design evaluation it was decided to revise the initial screen design

prototype (Figure 24) and place the “Test Runner” view and “Test Run History” view

into two separate windows (Figure 25). The main reason for this design refinement was

that information displayed in both views was large and both constituted more space.

Test TestRunner & Results

Scenario View

View

Test Test History Results View

Scenario

View

Figure 25: Revised GUI Design
110

As mentioned in section 4.5.2.4.3, design of the testing tool will implement the Model

View Controller (MVC) architecture. The MVC architecture of separating the model

from the user interface is a fundamental pattern applied to the classes involved in

building views in Eclipse. Implementing the above blocks as views illustrated in Figure

25 within the eclipse workbench will be further discussed in the implementation chapter.

4.5.3.1 A n a l y s i s o f I m p l e m e n t a t i o n T e c h n o l o g y : S t a n d a r d W i d g e t T o o l k i t

Eclipse is based on an alternative Java graphics toolkit called the Standard Widget

Toolkit (SWT) (Knudsen & Niemeyer, 2005); a widget toolkit that provides a set of

portable APIs that allows developers to build GUIs easily (Hatton, 2005:1). SWT has

tight integration with the underlying native Operating System GUI platform, which

enables efficient and portable access to the native GUI facilities of the Operating System

(McAffer & Lemieux, 2005).

“It lets developers build portable applications that directly access the user-interface facilities o f the
operating systems on which they are implemented. "(Geer, 2005:16)

Therefore SWT applications can have the identical look and feel to applications

developed entirely in native code on a particular platform (Hatton, 2005:2). The decision

to use SWT as opposed to the Abstract Windowing Toolkit (AWT) and the Java

foundation classes (SWING) for the development of the testing tool’s graphical

components essentially came down to performance issues. SWT has improved

performance and memory consumption as opposed to Swing (Hatton, 2005:1; Knudsen &

Niemeyer, 2005; Pluta, 2004:6).

4.5.3.1.1 JFace

JFace is a platform-independent user interface API implemented using SWT that

provides classes for handling common UI programming tasks. Essentially the JFace UI

framework provides higher-level application constructs for supporting data viewers,

dialogs, wizards, and actions components.

I l l

Eclipse Workbench

JFace

SWT

Figure 26: Eclipse Workbench, JFace, and SWT - Source:

http://www-128.ibm.com/developerworks/library/os-ecguil/
As will become clear in the implementation chapter, extensive use was made of both

SWT and JFace classes during development of the testing tool.

4.6 SYSTEM DESIGN EVALUATION

This section explains how the chosen design satisfies each of the initial requirements

mentioned in previous chapter. Based on the various technologies decided for system

implementation, the system architecture of the testing tool is depicted below.

O

A

Figure 27: System Architecture

112

http://www-128.ibm.com/developerworks/library/os-ecguil/

The core problem addressed by the test framework is how to integrate various image

processing algorithms for performance evaluation to support a semi-automatic testing

processing. By incorporating JNI wrapper functionality the test framework is extensible

and efficient so as to allow the analysis and performance assessment of a wide range of

image processing algorithms. This allows algorithm testers spend more time on

understanding algorithm performance instead of spending time trying to implement

algorithms for testing purposes. By utilising the Rich Client Platform of the Eclipse IDE

(Gruber et al, 2005:289), the testing tool, image marker tool and database tool can all be

integrated into the one application meaning that algorithm performance is carried out

quickly and easily, thus greatly reducing testing time (Clark & Clark, 2002:12). The

integrated database tool provides easy access to a comprehensive set of test images

(Jaynes et al, 2005:2; Kong et al, 2005:111; Moon et al, 2002:7; Yang et al, 2002:52) and

the integrated image marker tool allows for ground truth to be acquired quickly and

accurately (Micheals & Boult, 2001:152; Muller et al, 2004).

The generic nature of the testing tool allows for test scripts to be written incorporating the

specified metrics of interest that will be applied to algorithm execution output based on

the algorithm tester requirements. In meeting the specified non-functional requirements

of good usability and high performance, test scripts can either written in java or in one of

the supported scripting languages by a non-programmer. Furthermore the test scenario

architecture facilitates the decoupling of the algorithm from its operating conditions

resulting in a more comprehensive algorithm assessment (Moon et al, 2002:1; Ojala et al,

2002:705; Phillips et al, 2000b). Finally by utilising SWT and JFace to construct the

testing tool GUI and the use of XML to store the related algorithm test scenario data, the

testing tool allows for performance data to be displayed graphically in a suitable format

facilitating fast and effective interpretation by both novice and expert users (Sharma &

Reilly, 2003).

113

4.7 CHAPTER SUMMARY

This chapter has drawn up a blueprint for system implementation called the design.

Firstly, the overall algorithm test framework was described and the classification of the

two distinct categories of testing tool user was explained. The key non-functional

requirements based on the two categorises of user for the testing tool were then

identified. After the selection of system development life cycle and technologies were

explained, the following sections outlined the main design aspects of the testing tool.

Firstly design of the testing tool algorithm integration architecture was explained. The

subsequent section then described the design of the components that make up a test

scenario and the underlying test execution architecture, while the penultimate section

detailed the GUI design process. The concluding section then explained how the chosen

design satisfies each of the initial requirements defined in the previous chapter.

114

C H A P T E R 5: IM P L E M E N T A T IO N

Implementation

5.1 INTRODUCTION

This chapter will focus on describing some of the important implementation techniques

which were used during the development of the testing tool. The chapter commences by

giving an overview of the overall algorithm test framework. With a similar approach to the

design stage in the previous chapter taken, Section 5.3.1 describes the implementation of

the testing tool algorithm integration architecture. Section 5.3.2 goes on to describe the

development of the components that make up a test scenario and the underlying test

execution architecture, in particular explaining the process of writing test scripts

incorporating the relevant metrics of interest to analyse algorithm performance. Section 5.4

provides an overview of the overall testing application UI, while finally Section 5.5 details

the GUI of the testing tool. In addition code snippets are provided throughout this chapter

to give a deeper understanding of how the testing tool really works.

5.2 IP ALGORITHM TEST FRAMEWORK

5.2 .1 F r a m e w o r k O v e r v ie w

As mentioned in the previous chapter the overall IP algorithm test framework is divided

into three separate tools, which handle its various functions:

115

o The Image Database Tool will provide access to a comprehensive set of relevant

test images that will allow algorithms be tested on the most applicable image-test-

sets for a complete evaluation,

o The Image Marker Tool will allow for the accurate and rapid marking or

annotation of features of interest within images to be used as ground truth within the

testing process.

o The Testing Tool allows various algorithms to be plugged into testing tool for

performance evaluation. After appropriate metrics of interest have been specified

the algorithms can then be run on the most pertinent image-test-sets to deduce

algorithm performance.

Figure 28: Test Framework Architecture

5.3 TESTING TOOL IMPLEMENTATION

This thesis is principally concerned with the design and development of the testing tool so

the next section will describe its implementation. With a similar approach to the design

116

process taken in previous chapter, the next section first describes the implementation of the

testing tool algorithm integration architecture

5.3 .1 A l g o r it h m In t e g r a t io n

As identified in previous chapters, one of the most important requirements of the algorithm

test framework is extensibility. Unlike a lot of current image processing algorithm testing

environments, the testing tool emphasises easy extension by use of library wrappers. In

essence the wrapper allows performance evaluation of specific algorithms designed to do

specific tasks (Blackburn, 2001; Courtney & Thacker, 2001:3; Phillips et al, 2000a).

(Bovik, 2000:449) reports most IP algorithms are compiled into a C++ or C imaging library

DLL for greater efficiency. An imaging library implements and exports a set of well

defined image processing operations (e.g., Red-eye detection library, Histogram library).

For integration into the testing tool, all imaging libraries must implement a common

interface called ImagingTool. The algorithm test scenario accesses and uses any of the

available imaging libraries through this interface. For example image input parameters are

passed in to the Java library wrapper class as a Java ImageBuffer object, which is a thin

wrapper for the IO_Img C data-structure from the ImagelO library. This library and data

structure is used throughout the application by algorithm test scenarios to load, convert and

save images. The ImagingTool source code is available in Appendix E.l.

As mentioned in the design chapter, the testing tool uses Java Native Interface (JNI), a

technology built into Java to call image processing algorithm routines written in C++. The

task of calling routines written in C++ from Java comes under the heading of implementing

and using "native" methods. Since the testing tool is written in Java, to make a native

imaging library written in C or C++ available to be used within the testing tool, the native

imaging library must first be wrapped in an adapter layer. This adapter layer is generally

referred to as a "library wrapper". See Figure 29.

117

ImagingTool
Interface

Java Wrapper Class

Native Methods
JNI I

Library Wrapper

Imaging Library
(e.g. Red-Eye Algorithm)

Figure 29: Imaging Library Wrapper

Essentially once the imaging library is wrapped, the testing tool can call the Java wrapper

class, which in turn calls the native method, which finally calls the standard C++ imaging-

library function to execute the image processing algorithm. The following section outlines

the steps involved in building a java library wrapper. An example of integrating an image

processing algorithm written in Python into the testing tool is provided to better explain the

process.

5.3.1.1 Steps in Building a Java Library Wrapper

Building a Java library wrapper for a native library means creating a Java class that

supports the same logical operations as the ones defined in the imaging library. The Java

class that implements the wrapper will have a number of JNI native methods written in C or

C++ that perform the following operations:

1. Convert the Java input parameters into C/C++ data structures.

2. Call the relevant functions in the imaging library to implement the target operation.

118

3. Convert the C/C++ result data into Java objects and return this result.

4. In case of errors, convert the C/C++ errors into Java exceptions and throw these

exceptions.

Therefore building a Java library wrapper involves the following steps:

1. Evaluate the exported interface of the target imaging library, and define the

equivalent Java API operations so that these match the ImagingTool API.

2. Create the Java class that implements the ImagingTool interface and can perform

the operations defined at the previous step; the class will contain one or more native

methods that perform the required operations using the imaging library.

3. Generate the C header file for the native methods using javah. Sun

(http://java.com/en/about/, 2006) provides a utility “javah” which takes the

compiled java class that implements the ImagingTool and generates a header file

from it. Inside this header file is a C-style declaration for each native method.

4. Write the C++ implementation of native methods using C/C++ IDE and build the

resulting wrapper DLL.

5. Deploy the new wrapper by making its DLL available to the testing tool at run time.

The imaging library must similarly be made available.

As explained, JNI is used when existing imaging libraries implemented in high

performance languages other than Java need to be integrated into the testing tool for

performance analysis. Rather than continue discussing the process of writing wrappers in

an abstract way, the next section explains the process of writing a wrapper for a specific

example, HistogramLib by following the steps described in the previous section.

119

http://java.com/en/about/

5.3.1.2 Example: Building a Library Wrapper for a Histogram Wrapper

The Histogram algorithm is one that detects contrast in images i.e. the variation in colour.

Not all photographs taken are perfectly exposed and most general purpose algorithms

should work as well on over exposed images as on under exposed images.

“Statistical measures can be extracted from a digital image to quantify the image i'/wa/i'ry.”(Shirviiikar, 2004)

The histogram algorithm is used to filter out unsuitable images, those that are over exposed

or underexposed from image-test-sets before an algorithm is run on them. For instance if

the image-test-set is over exposed, too bright, it may be impossible for the red eye detection

algorithm to correctly detect red eyes within the image-test-set. Essentially it measures the

colour distribution of an image finding out what images are over exposed or underexposed.

The algorithm is typical of many image processing algorithms; an input image is passed to

the algorithm and the resulting output is a data structure.

Step 1: Evaluate the exported interface o f the target imaging library.

The exported interface of the target imaging library in this case the HistogramLib is first

evaluated, and the equivalent Java API operations defined so that these match the

ImagingTool API. The target library has a single exported function call GetHistogram that

is used to get a simple histogram from an input image; the user may also specify a rectangle

that marks a region in the image, and the histogram will be calculated only from that

region. The function takes an image buffer and a rectangle as input parameters. The output

parameter is an int[256] array that contains the histogram data. Image input parameters can

be passed in to the Java library wrapper class as a Java ImageBuffer object, which is a thin

wrapper for the IO_Img C data-structure from the ImagelO library. This library and data

structure is used throughout the application to load, convert and save images. Therefore, it

is clear that the wrapper must contain a single operation that takes the image buffer and

region details as input data and will return an int array that contains the histogram

information. The histogram.h source code is available in Appendix E.2.

120

Step 2: Create the Java class that implements the ImagingTool interface and can

perform the operations defined in Step 1.

The Java wrapper class named HistogramWrapper that implements the ImagingTool

interface is created which performs the operations defined at the previous step; the class

will contain one or more native methods that perform the required operations using the

imaging library. Figure 30 illustrates a class diagram of the HistogramWrapper and

ImagelOTool classes.

ImagelOTool

'.¿¿IMAGE 10 TOOL N AM E: String - "ImagelOTool"
.¿¿IMAGE 10 WRAPPER DEFAULT NAME : String = = "Im age lO W rapper
¿ ¿ in itia lize d : Boolean

destroy 0 : Void
^ executeOperation (operationN am e:String, inputParam s:M ap) : Object
$ getName 0 : String
^ getVersion 0 : String
$ in it (bund leM anager:L ibraryB undleM anager) : Boolean
^ loadJpegData (jpegFilenam e:String, da taF o rm a t:ln teg e r) : Im ageBuffer
§ loadJpegData (¡p e g F ile n a m e :S trin g , dataForm at:lnteger, accurateD ecom pression:B oolean) : Im ageBuffer

«interface»

ImagingTool

L - i y J
i
i

HistogramWrapper

¿¿HISTOGRAM TOOL NAME: String = "H istogram Tool"
.¿¿LIB HISTOGRAM WRAPPER DEFAULT NAME ; String = "H is to rq ram W rapper
¿ ^ in it ia liz e d : Boolean

$ destroy 0 : Void
$ executeOperation (operationN am e:String, inputParam s:M ap) : Object

«frge tH istogram (im ageBuf:lm ageBuffer, x:lnteger, y:lnteger, w idth:Integer, h e ig h t:ln te g e r) ; IntegerQ
$ getName 0 : String
^ getVersion 0 : String
♦ in it(bund leM anager:L ib ra ryB und leM anager) : Boolean

Figure 30: HistogramWrapper Overview

121

Step 3: Generate the C header file for the native methods using javah.

Now the C header file for the native methods must be generated. Generating the header file

is pretty straightforward, with use of the javah.exe command line tool that is part the

standard JDK distribution (http://java.com/en/about/, 2006). The following command is

executed: D : \ j 2 s d k l . 4 . 2 _ 0 6 \ b i n \ j a v a h . e x e - j n i H is to g ra m W ra p p e r

This generates the header file for the native part of the wrapper. For this to work the

HistogramWrapper class must be in the classpath. The generated header file is named

HistogramWrapper.h, and it’s source code is available in Appendix E.3.

Step 4: Write the C++ implementation o f native methods using C/C++IDE and build the

resulting wrapper DLL.

This step involves implementing the native methods using a C/C++ IDE, and building the

resulting DLL. To do this a Visual Studio DLL project (http://msdn.microsoft.com/visualc/,

2006) is created and the HistogramWrapper.h header file is added to the project. The

HistogramWrapper.cpp file is then created that will implement the native method defined in

the header file.

The getHistogram routine has a simple API:

- Pass in an image and a rectangle as input parameters which are converted by the JNI

native method to the relevant C++ format.

- Returns an int[256] array that contains the histogram data

Once the code has been written and all the errors are fixed, the code can be compiled and

the wrapper DLL built. The HistogramWrapper.cpp source code is included in Appendix

122

http://java.com/en/about/
http://msdn.microsoft.com/visualc/

Step 5: Deploy the new wrapper by making its DLL available to the testing tool at run

time.

Now that the Java wrapper class, the wrapper DLL, and the imaging library DLL are

available, these must be deployed inside the testing tool. This involves copying the DLLs

into predefined folders, adding the Java wrapper class to the classpath of the testing tool

and registering it to be available to be used by the testing tool. With wrapper support added

for the relevant imaging libraries, work can be carried out on creating and running specific

test scenarios to test the algorithms performance.

5 .3 .2 T e s t S c e n a r i o

The proposed IP algorithm testing methodology allows individual algorithm test scenarios

to be specified based on algorithm developer’s requirements. Algorithm test scenarios are

the central point of the overall test framework, around which all other software components

are built. An algorithm test scenario allows the definition of what parameters the algorithm

takes as input, usually the image-test-set, what output the algorithm returns and how this is

compared with ground truth to deduce performance scores (Clark & Clark, 2002:4;

Foerstner, 1996:12; Liu & Dori, 1999:105). As illustrated in Figure 31, an algorithm test

scenario has the following components:

o Test Input Data:

o Image Test Set - The set of images which the test script is executed on.

o Test Parameters - Set of Input parameters that specify additional input used

by test script.

o Test Script: Specifies the set of instructions to be executed on each image and

produces a set of data fields of various measurements and metrics, which are the

results of the test run for the particular image.

123

Imaging Library
(C++ DLL)

Image Test Set Test
(Database Tool) Parameters

T est Results

Figure 31: Test Scenario Overview

Note: Although relevant image-test-sets and accurate ground truth are essential

requirements of the algorithm testing methodology, the development of software tools for

the gathering, storage and marking of images is not part of this thesis. This work is carried

out by other researchers, working on the "Tools & Algorithms to Assist in Automatically

Recognising and Deducing Information about People in Consumer Digital Images"

Enterprise Ireland (El) funded project. Therefore the next section focuses on describing the

implementation of test script functionality.

124

5.3.2.1 Test Scripts

As mentioned in the design chapter to allow the relevant characteristics of various

algorithms to be assessed, test scripts must be written incorporating appropriate metrics of

interest. Test scripts specify a set of instructions that are executed on each input image, to

produce a set of data fields of various measurements and metrics. Apart from programming

test scripts in java, the testing tool supports the writing of test scripts in various scripting

languages through the use of the Bean Scripting Framework (BSF). The two core elements

of BSF’s architecture are the BSFManager and the BSFEngine. The BSFManager is a

common interface to scripting languages: while the BSFEngine interface provides a

common interface for BSF to cooperate with a scripting language.

After the relevant scripting language is registering with the BSF manager, test scripts can

then be wrote and stored in a file directory on the algorithm tester’s computer. Given the

name of the test script file, BSFManager can then tell which scripting language to use to

execute the test script. Before evaluating and executing scripts, objects (or an entire object

model) may be mapped into the BSF manager. All objects that are mapped in the BSF

manager are available to the scripts. One way to map objects into the BSF manager is to

call the declareBean method. As illustrated in Figure 32, the declareBean method takes

three arguments: the script variable name of the bean (object), the instance and the class of

the instance.__
this.bsfManager.declareBean("ImageMarkup", ImageMarkup.c3 ass,Class.class);
this.bsfManager.declareBean<"TestParam",TestParam.class,Class.class);
this.bsfManager.declareBean{"TestResult",TestResult.class,Class.class);
this.bsfManager.declareBean("Geometry",Geometry.class,Class.class);

Figure 32: Mapping java objects into BSF Manager

5.3.2.1.1 Writing the Test Script for Execution

As mentioned in previous chapters the proposed algorithm testing methodology should

allow users to stipulate metrics appropriate to the particular class of algorithm being tested.

Test scripts specify a set of instructions encompassing various measurements and metrics

125

that are to be executed on each image, the results of which characterise algorithm

performance. To create a test script for the histogram imaging tool, the python script

illustrated in Figure 33 was wrote. The test script calculates the percentage of the dark, light

and other pixels in a set of images.

blackPixelLimit = 80
whitePixelLimit = 200
imageBuffer = imagelOTool.loadJpegData(image.getFullResURL(), format)
totalPixelCount=imageBuf fer.getPixelWidth()*imageBuffer,getPixelHeight()
params = HashMapO
params.put("imageBuffer", imageBuffer)
histoTool = teatContext.getlmagingTool{ "HistogramTool", None)
histogram = histoTool.executeOperation("getHistogram", params)
result.addResultField("Image ID", image.getld())
counter = 0
for i in range{ blackPixelLimit):
counter += histogram[i]
result.addResultField("DarkPixel%",float(counter)/totalPixelCount)*100)
counter = 0
for i in range{ whitePixelLimit, 255):
counter += histogram! i]
result.addResultField("LightPixel%",(float(counter)/totalPixelCount)*100)
counter = 0
for i in range{ blackPixelLimit+1, whitePixelLimit-1):
counter += histogram[i]
result.addResultField("OtherPixel%",(float(counter)/totalPixelCount)*100)

Figure 33: Histogram Test Script

On execution the test script will produce a table of results, with a row for each image from

the input image set. Each row contains the image-id, and the calculated dark, light and other

pixel percentage values as columns. The test scripts provide for customisable results

display. Performance data may be displayed graphically in a suitable format of columns and

rows facilitating fast and effective interpretation by both novice and expert users (Sharma

& Reilly, 2003). The Histogram test is not concerned with ground truth, so access to the

Photographic Feature Markup Language (PFML) is not required here. Metrics of interest

are simply used to calculate the percentage of the dark, light and other pixels in the set of

images.

126

I
1. Using the Im agelO Tool load the Image into an ImageBuffer.

2. Execute the RedEyeD etectTestonthe Im ageBuffer calling the native method.

3. The native method returns the detected Red Eyes which are stored in a Region List.

4. G etthe actual Marked Red Eyes tor the particular im age from the PFM L- Ground Truth
and store as a lis t o f marked eye features.

5 Using the geometiyTool com pare the lis t o f red eye regions detected by the algorithm with the
lis t o f marked eye features from the PFML

6. To analyse algorithm performance for the specific image
- Add the number o f red eyes detected by the agorithrn to the test result.
- Add the num ber o f Marked Red Eyes from the PFML to the tes t result.
- Com pare each by use o fthe geometry tool to find out ifthe res an intersection between the

detected red eyes and the ground truth
- In th is way deduce the num ber of fa lse positives and fa lse negatives and add to the test result.
- The fa lse postive and fa lse negative percentages may also be deduced arid then add to the tes t result. ,

7. Return the test resu lt for algorithm performance analysis

Figure 34: Activity Diagram for RedEyeDetectionTest Run Method
An activity diagram is presented in Figure 34, explains how ground truth would be used in

a test script to evaluate the performance of a red eye algorithm. The Photographic Feature

Markup Language (PFML) is used to store and describe the relevant features of interest

marked within images. After the application's scriptable objects have been mapped into the

manager and the test script written, the script is then execution ready to evaluate algorithm

performance as illustrated in Figure 35.

RedEyeDetectTest::run (id: String, im ages: Imagefl): TestR esu lt

this .1:>sf Manager .exec <"jython" /this.scriptFilenarae,0 r 0,this.cachedScript);

Figure 35: Executing a Python Script

127

5.3.2.2 Test Manager

Obviously with the testing tool allowing the analysis and performance assessment of a wide

range of image processing algorithms multiple test scenarios will be created and executed.

The TestManager class is developed as a singleton class and is responsible for managing

algorithm test scenarios and test results. It loads all test scenarios and test results stored in

XML format from the test store directory. The TestManager source code is available in

Appendix E.5.

5.3.2.2.1 Test Scenario Storage

An XML Schema, a World Wide Web Consortium (W3C) XML language is used for

describing the contents of a stored test scenario instance. Test scenario instances known as

test cases are made up of a number of elements. An individual test case is stored based on

its unique ID, the ID of the algorithm testers who created or edited the test case and

whether the test case is stored locally or to the server. Other information stored include the

name of the test case specified by the algorithm tester, an additional description of the test

case and the date and time the test case was created and last modified The testlnput tag

stores the relevant test input information for instance whether the image-test-set is based on

a tag, query or image-sequence. The final part of the XML document defines the language

the imaging test is written in and the file address of where the test script is stored. The test

script source is stored in the CDATA section within the XML document. All characters

enclosed in the CDATA section are interpreted as characters, not markup or entity

references. Where a test script is written in java, the filename and java class of the test

script is specified there. The histogram test scenario instance serialised to an XML file is

included in Appendix E.6.

5.3.2.2.2 Test Scenario Execution

Once a test scenario has been created by the algorithm tester, the application module called

TestRuntime is responsible with running a test scenario inside the testing tool.

128

When a test scenario is executed by the TestRuntime, it receives a TestContext object

which the test scenario can use to communicate with its testing environment, to access and

use available imaging libraries and tools, in order to perform its required operations. For

example the ImagelO library is used throughout the application to load, convert and save

images. The TestRunTime Class source code is available in Appendix E.7.

53.2.2.2 .1 Test Scenario Execution Sequence

After the relevant image test set is downloaded from the server if not stored locally, the test

script is ran on each image in the image test set, the results of which are added to a test

result set and returned to the test manager.

HistogramTest

Image Test Set
Image 1

Image 2

Image 3

Image 4

Image 5

Image 6

Image 7

Test Result Set
Test Result 1

■* |Test Result 2

■» Test Result 3

Test Result 4

Test Result 5

Test Result 6

* Test Result 7

Figure 36: Algorithm executed on Image-test-set

5.3.2.3 Test Results

The TestRunHistory Class then provides functionality to build up a test result set and

serialise it to an XML file for storage. The histogram test results XML file is included in

Appendix E.8.

129

As will be examined in the next section the test result set can then be displayed in the

testing tool’s GUI to allow algorithm testers to assess the performance of the relevant

algorithm characteristics.

130

5.4 ALGORITHM TEST FRAMEWORK GUI OVERVIEW

“One way o f making windows easier fo r users to control is to arrange fo r the relevant application program
automatically to open the appropriate set o f windows fo r each stage o f the relevant tasks.”(Preece et al,
1994:288)

The test framework is based on the Eclipse Workbench UI comprising of a separate

perspective for each of the three tools.

o Image Database Tool: browse images, add new images, search for images, manage

image queries, modify image properties, delete images

o Testing Tool: manage test scenarios, run test scenarios, save test results

o Image Marker Tool: mark images, edit marked images, unmark images

A perspective defines the set of editors and views for each tool arranged in an initial layout.

The eclipse workbench UI then links the perspectives in an intuitive, easy-to-use window

environment resulting in faster and more efficient testing practice.

“This is a sensible solution fo r tasks fo r which the working set can be reliably specified in advance. ’’(Preece et
al, 1994:288)

AlgorithmTestingApplication UI Classes

com.algorithmtestingapp.ui

Figure 37: com.algorithmtestingapp.ui Package Structure

131

From a conceptual point of view, the whole application revolves around images and the

various test scenarios that will be performed on these images. The image database tool is

used to store and manage images in the image database. It provides the algorithm tester

with easy access to a comprehensive set of relevant test images that allow algorithms be

tested on the most pertinent image-test-sets for a more complete evaluation (Jaynes et al,

2005:2). Figure 38 shows a screen shot of the image database tool.

5.4.1 T h e I m a g e D a t a b a s e T o o l

Fie Edit Tods Run Search Help

i - q, •
l ini i. i h 11 h i * è ,

ImapeDB:)bg>h ttp ://w eb lm aQ <O fttt

| J Image Database
i±) Image Queries
Etf L l Images
S 1, Image-Sequences

f f i < ''>iTagsj

IB £}!> Users

Q u tfy D eta ls | v ' Im a g e Details ¿5

I «alu»

ID 10704
Width 650 pixels
Height 486 pixels
Description
Tags 2005.09.30(Daylight)
Original filename DSCN9679,bmp
Create time Fri Oct 21 17:09:37 BST 2005
Last modified time

«1

Fri O ct 21 17:09:36 BST 2005

l

" " Image V iew er1

J - J

’V ' Image Query S3 O „ “ □

Query expression; | * 1 Execute Query j

Image ID 1 Im a^eU R l

*1

Figure 38: Image Database Tool
Within the database images may be divided into image test sets. An image set is a

collection of images stored in the image database. To facilitate simple retrieval, an image

set can be specified by either a query or a tag. Queries or tags allow algorithm testers to

select a group of images from the database that have some common characteristic. Tags are

associated or applied on images, and any image can have one or more tags associated with

it. An Example of a tag: “RedEye_2MegaPixel_SonyCybershot”. The database also

contains items known as “queries”, allowing the user to query the database and retrieve a

set of images based on certain criteria. An example of a query: “Image.width >= 2000”.

132

http://weblmaQ%3cOfttt

The testing tool retrieves im age-test-sets from the database by specifying either a query or a

5.4.2 T h e M a r k e r t o o l

The job of a segmentation, classification and recognition algorithms is to detect certain

features of interest within images. Therefore, for testing purposes, relevant features of

interest should be marked on each image in the image-test-set prior to executing the

algorithm. Accurate ground truth is crucial for effective performance evaluation of

segmentation, classification and recognition algorithms (Black et al, 2002; Liu & Dov,

1999; Muller et al, 2004; Takeuchi et al, 2003:409). The image marker tool is used to

generate ground truth by marking the relevant features of interest on the imported images as

illustrated in Figure 39.

Q FotoMarker Feature View “ B

[✓j mouth

¡vii nose

E eye
IvTi eye

I ' Feature Details View | a Q

Feature: face Selected Tool: Lhear

Im a g e fc U m o A fip U to tk m

File Edit Sample Meiiu TocJs Run Search Help

I -t [k i 3 - 1 v) ♦ J •
Image .,.

Cu rc n t I r a v y Set; Ta

Im a g o 9 6 » ^ l
Image - 96f
Image - 96(
Image - 96i

£ Image - 96t
t Image - 96?

B Image - 96?
L Im age-96?

Image - 96c_ _

i * Image - 96?
¡1 j Image - 96?
t Image - 96?
L.. Image - 96?

M Image - 96?
t Image - 96?
t=J Image - 97(

Parent
Allowed Geoms:
Marked With:
Pt: 1
Pt: 2
Pt: 3

Linear Ring
LnearRing
5 3 2 . 674
538 , 699
556 , 725 ^

Attributes

Person's Name BarryOperation: C * * ia r y Marking

face -> U w a r Ring Cokntf o fskin

I Save automatically changes c
Save c a n d A ^ W B la c ty D a rk s M n

'A l*n

Figure 39: Image Marker Tool

The generated data or ground truth stored in Photographic Feature Markup Language

(PFML) format is then used by the algorithm test execution process to analyse the

performance of segmentation, classification and recognition algorithms.

133

5.5 GUI DESIGN FOR THE TESTING TOOL

5.5 .1 Th e Te s t in g T o o l O v e r v ie w

Testing Tool U1 Classes

com.algorithmtestingapp.testingtool.ui

Figure 40: com.algorithmtestingapp.testingtool.ui package structure

Test scenario execution, the actual running of an algorithm on the image-test-set is the

central point of this framework, around which all the other framework components are

built. The testing tool allows the user to manage the creation and execution of test scenarios

which produce the required algorithm performance information. The test framework like

any Rich Client Platform inherits basic visual interfaces from Eclipse. The primary user

interface building blocks of Eclipse rich client applications consist of view and editors

(Shavor et al, 2003:315). Views within the Eclipse workbench are visual containers that

allow users to navigate a hierarchy of information, open an editor, or display properties for

the active editor.

134

T e s t in g T o o l - I n l >
File Edit Tools ßun Search Help

] < e p [¥ ; s j 4>
° a | Test Runner £2 => Q

J O ¿ T i X 1 <£» >: b No test Is running.
I I i*g Histogram Test

B [:J|| Test Input data
B Lg Image Set

< > Tag: test-images
|fl Test Parameters (0)

B Ej, Test Code
v Language: python
v Filename: D:\work-dir\test

□ Errors:0

Test Results

Figure 41: Testing Tool

As specified in the design chapter, the testing tool interface as shown in Figure 41 presents

two main views, the “Test Manager” view and the “Test Runner” view. When the testing

tool is first opened the “Test Manager” view on left hand-side automatically reloads and

displays a tree hierarchy of existing test scenarios. A tree view is a selectable control that

displays a hierarchal list of tree items that may be selected by the algorithm tester. In

accordance with Raskin’s principle (Raskin, 2000:105) for highlight indication and

selection, the test scenario selected is highlighted, so the user knows at all times what the

system thinks the user is pointing at. As displayed in Figure 41 additional test scenario

information can be viewed by expanding the selected test scenario tree item. When a test

scenario is ran information about the running status as well as the test results are displayed

in the “Test Runner” view on right hand side.

5.5.2 C r e a t i n g a n e w T e s t S c e n a r io

A new test scenario is created by selecting the "Create New Test" context menu in the “Test

Manager” view or by clicking on the "Create New Test" button in the “Test Manager”

135

view's toolbar. Sincc the lest framework incorporates support for the integration of various

image processing algorithms, on the first page of the wizard the algorithm tester must

specify a name and description for the new test scenario and the code or lest script that will

be executed by the test scenario. The JFace toolkit offers a JFace wizard component, which

couplcd with other user-interface components within the Standard Widget Toolkit (SWT),

provide a flexible mechanism to systematically gather user input and perform input

validation. A wizard dialog is a specialized window for walking the end user through a

sequence of steps; in this case the creation of a new test scenario. Figure 42 shows a screcn

shot of the “Create New Test” wizard.

"The wizard itself acts as a controller, determining which wizard page, from a list o f associated pages, is
displayed in response to user interaction." (Shavor et al, 2003:301)

The dialogs have a standard layout: an area at the top, containing the wizard's title,

description, and image; the actual wizard page appears in the middle and below it is a

button bar containing Next, Back, Finish and Cancel buttons.

Select Test Code

Q Selected test code fie Is not valid. Please select a valid test code file.

Test Description

Test Name: | Histogram Test

Test Description: | Histogram Test

Test Code

Test Code Language: |python

Test Code Class:

Test Code f«e name: I D:/wofkdir/test/l 1434504682291 .p Browse... | New...

________I M«xt > I I Cancel

Figure 42: Create New Test Wizard

136

On the next page the input image test set for the test scenario must be selected and

additional parameters for the test scenario may also be specified.

JnJxJ

2005.09.0l(0utdoor) (15 Images)
: 2006.02.01 (NightVlew) (189 images)
> 2006.02.Ol(Snow) (90 Images)

2006.02.01(Sunset) (SI images)
> redeye (741 images)
> RedEye-RGB (5871 Images)
1 Rotated (3 Images)
> test-images (15 Images)
> test-images 2 (20 Images)
> test_bmp (27 images)

test J iff (1 Images)
> test_John (24 Images)

OK Cancel

Figure 43: Image Test Set Input Wizard

An image set, a collection of images stored in the Image Database, can be specified by

either a query or a tag. As displayed in Figure 43 queries or tags allow algorithm testers to

select a group of images from the database that have some common characteristic. This

allows for the natural selection of the most relevant image-test-sets for performance

evaluation (Jaynes et al, 2005:2; Kong et al, 2005:111; Moon et al, 2002:7; Yang et al,

2002:52). Additionally it facilitates the decoupling of the algorithm from its operating

conditions resulting in a more comprehensive algorithm assessment (Moon et al, 2002:1;

Ojala et al, 2002:705; Phillips et al, 2000b).

137

5.5.3 R u n n in g a T e st S c e n a r io

I testing Tool .-JEUxj
File Edit Tools Run Search Help

J SpI^B J 4]<* •

^ Q ìli x & 'a a ||
e, im m .m ii

Create New Test

Q Run Test

] Edit Test

•g| Open Test Code File

^ 0 Save Test
Show Test Results

X Delete Test
Dupkate Test

Refresh

& Test Runner 23

No test Is running.

j i ts

Figure 44: Running a test

Once a test scenario has been defined as required, it can be run to execute the required

operations. As can be seen in Figure 44, the test scenario is selected in the “Test Manager”

view, right clicked upon and “Run test” is clicked on in the context menu. Additional

operations are available by right clicking on the test scenario and selecting an operation

from the context menu. For instance as illustrated in Figure 45, test scripts written in any of

the supported scripting languages can be edited and re-run instantly from within the testing

tool by selecting “Open Test Code File”. Providing scripting support allows both algorithm

integrators and algorithm testers (non-programmers) write and edit scripts and helps to

speed up the algorithm testing process.

138

F3e Edft lools dun Search Hefc

j ® [é : s J 4 K -

■ j Q ì? =a K j «¿ft a
E ^ 5 Histogram Test

W* '̂±L

•.ZTEj; ___
t if f B elow i s t h e l i s t o f v a r i a b l e s t h a t e x i s t i n t h e c u r r e n t c o n t e x t :
ff d e f a u l t l m a g e D a t a F o r r n a t

.Iffl x|

doDownSampl e
f o r m a t
im a g e
i m a g e D i f f T o o l
im ag e IO T o o l
g e o m e t r y T o o l
r e d E y e T o o l
t e s t C o n t e x t

t o l a c k P i x e l L i m i t = 60
w h i t e P i x e l L i m i t = 200

Im a g e B u f f e r = im a g e I O T o o l . l o a d J p e

t o t a l P i x e l C o u n t = i m a g e B u f f e r . g e t

p aram a = HashMap()
parama.p u t ("ImageBuffer", imagi

h i s t o T o o l = t e s t C o n t e x t . g e t I r n a g i n I

Undo

R evert F ie

ctrt+z

Cut Ctri+X

Copy Ctrl+C

Paste Ctrl+V

S W tR J tf*

Shift Left

Save

] . g e t F u l l R e s U R L () , f o r m a t)

a g e B u f f e r . g e t P i x e l H e i g h t ()

I jT o o l" , None)

Fisure 45: Editine a Test ScriDt

5.5.4 V ie w T est R e s u l t s

A core part of the testing framework is the test-results - the data generated as a result of

executing the test scenario. The “Test Runner” view displays information about the

currently running test. Figure 46 displays a screenshot of a test scenario run in progress.

139

Testing Tool .-JfiJxJ
Fíe Edit Jpote £un Search Help

I-?« I I <4 »
Test M anser ' ' Ö •$? Test Runner 23

¿ O ï ■ î) X 4? ffi B
B 5̂ j

0 j j Test Inpu t data

r t-jB Image Set
< > Tag; test-lmages

[•: Test Parameters (0)

B Ig , Test Code
. Language: python
. Filename: D :\w ork-d ir\tests\l 13865

Test Console X

L oaing te s t code,,,DC$iEI
□ Loadng image set... DONE I
□Dowteaifing
images..DONE I
□ Initializing test.. .DONEI
□

a

í > H s to ç ra m T e s t'n n n fr ig ,.

Running tes t: 13/15

□ Errors: 0

zi

« < *> X . * • ■= n

Imago ID I Im age ID 1 A rray S t» 1 Dark pixels % 1 Light p e a k % 1 Other pixels % |

r ' 10115 10115 256 10.6486225 2.0322888 66.76765
C 10U 1 10111 256 96.0611 0.4267173 2,9417536
E 10122 10122 256 97.907845 0.13766944 1,7373306
n 10120 10120 256 65.361824 0.0012662235 34.215693

10119 10119 256 46.05166 7.348074 42,513428
‘ 10116 10116 256 51.720394 8,275532 27,747843
r - 10123 10123 256 93,763535 0,6635011 4.076443
r 10112 10112 256 % 0661 0,43113425 2.9202032
B lO llO 10110 256 92.06904 0,9516618 5.4420066
•10121 10121 256 65.44444 0,0018993352 34,135803

^10117 10117 256 68.40139 3,4314656 26.538462
^ l o n e 10118 256 68.36277 3.4650207 26.544476

M a y Ska 1 Dark pjxds % U ght pixels % O ther pcxds % I
Totals;

Figure 46: Test Runner View

To allow for investigation of algorithm performance on individual images as well as

quantitative analysis of image-test-set performance, results for each image are displayed

individually in rows depending on the criterion specified in the test script. A statistical

measurement for the entire image test set is then presented in the totals table at bottom the

“Test Runner” view. To help measure and compare algorithm performance, results are

displayed in column format which contain the measurements and metrics specified in the

test script.

“The key design considerations are that the information displayed be legible and that it be easy fo r a user to
locate and process” (Preece et al, 1994:239)

(Raskin: 2000:76) notes the importance of response time and good feedback. In allowing

for this, a progress bar is presented at top of test runner view to provide user with feedback

on algorithm run. Additionally a “Test Console” view on bottom left of screen supplies

relevant information on the running status of test scenario. In the “Test Runner” view,

140

execution of the currently running test scenario can be stopped at any time by selecting the

"Stop current Test Run" button in the toolbar.

I Testing Toni Jn].xJ
Fife Ed* loots Search Help

i :s 1 j q, ■ ____
Test Manager

* o fe q a . * ,-i
- IM.y'uH.'.!!

S ; ; T « t in p u l data
B Q i Image Set

< > Tag: test-hiages

[jr j Test Parameters (0)
H E>, Test Code

v Language: python
• Filename: D:\woric-dir\tests\11386i

Test Runner £3

H stogrA inTest' finished.

r*> Test Console X

load ing te s t code...DONEI
□ Loa dng image s e t.. .DONEI
□Downloading

3

D In itia fiifw j test.. .DONEI
□DONE!
Destroying test...DONEI
□

z i

G Errors: 0

o. « »

Image tD 1 Image ID (A ira y 55a* I D « k pixels % I UQ lV.pixds% [Other ptaefe % |

^10115 101 IS 256 10.6486225 2-0322888 86.76765
& 10111 10111 256 96.0611 0.4267173 2.9417536
f* 10122 10122 256 97.907845 0.13766944 1.7373306
&10120 10120 256 65.361824 0 0012662235 34.215893
*"'10119 10119 256 48.05166 7.348074 42,513428
■■10116 10116 256 51.720394 8.275532 27.747843
^10123 10123 256 93.763535 0.6635011 4.876443
&10112 10112 256 96.0661 0.43113425 2.9202032
' 10110 10110 256 92.06904 0.9516618 5.4420066

10121 10121 256 65.44444 0.0018993352 34.135803
^10117 10117 256 68.*10139 3.4314656 26.538462
-1 0 1 1 8 10116 256 68.36277 3.4650207 26.544476
r 10113 10113 256 0.36534688 27,22189 53.574215
-10 1 2 4 10124 256 93.74897 0.6796455 4.8271604
’ 10114 10114 256 10.584362 2.167458 86.628044

Array Size 1 D arktxxcte% I Ugfct pixel* % j Other p ixds %
3840.0 958.5574 57.235226 441.4127

Figure 47: Test Scenario Execution Completed

After the test execution is successfully completed a simple table at the bottom of the “Test

Runner” view displays the sum of the columns.

5.5.5 T e st R e su l t s H ist o r y

As mentioned in section 5.5.4, support is provided by the testing tool to store test-results.

This allows for assessment of algorithm past performance by enabling the history of

algorithm improvements iterations to be displayed. This means if the algorithm is changed

to improve it, the test scenarios can be re-run, and the results from these can be compared

with results from a previous version. The results will tell them reliably if the change in the

algorithm is actually an improvement. In order to see the list of previous test run results for

the currently loaded test scenario in the “Test Runner” view, the "Show results history"

141

button is pressed. A new tabbed view called "Test Run History" view, illustrated in Figure

48 is opened and the previous test run results for the current test scenario are displayed in it.

“The tab approach can ease sorting o f overlapping windows” (Preece et al, 1994:293)

If previous test results become irrelevant they can be deleted by selecting them in the table

in the "Test Run History" view and pushing the "Delete" button below the table.
-laixi

Fie Edit loots Run Seycti Help

j v j q . -
Test Manager

T}r" O 1= ij X [,
«¡sL_
E Test Input data

E u Image Set
< > Tag: test-lmages

jj? Test Parameters (0)
E li£, Test Code

- Language: python
Filename: D:\work-dir\tests\11386S

Dfsplaytig test run history for test; Vsrtoyam Test'

Test n n history contains 7 previous runs For test: Vlstogram Tesf

Tort R ire

d
Test Console !

33 Qä

lo a d n g te rt code...DONE'
□Loodng inage set. ..DOfC!
□Downloadng

J

□ In itia ling test.-.DONEI
□DONEI
Destroying test...DONEI
□

d

Tort Run Date 1 location I Tort T w I ImoaeSot I Array 5bo 1 O arkpftck % I Light p txd s tti I Other pfrcfc % I Corr/nent

M * 30, 2006 11:27:23 AM Local Histogram Tcrt Tag (t c r t -«tage*] g o 956.5574 57.235226 441.4127

Mar 27, 2006 1:22:31 PM Local Histogram Test Tag [te rt-im ag« J 3840 958.5574 57.235226 441.4127
Mar 24, 2006 3:33:24 PM Local Histogram Test Tag [te r t im a g «] 38*10 956.5574 57.235226 441,4127
Mar 16, 2006 5:02:50 PM Local Hist op-am Test Tag [tert-«noge» j 3840 958.5574 57.235226 441,4127
Mar 16,2006 5:01:55 PM Local Histogram Test Tag[test-lmages J 3840 958.5574 57.235226 441-4127
Mar 16,2006 4:59:47 PM Local Hfetog-am Test Tag[test-lmages] 3840 958.5574 57.23S226 441.4127

d
Delete I

Figure 48: Test Results Display

5.5.6 S a v i n g a T e s t o n t h e S e r v e r

Additionally, newly created tests saved locally can be saved to the server by right-clicking

on the test scenario, and then selecting the "Save Test" context menu item. The save

operation can also be performed by clicking on the "Save selected Test in Server" button in

the view's toolbar.

142

(Sommerville, 2001:340) reports that help systems are an important part of user interface

design for the provision of user guidance.

“Eclipse puts the Help system on equal footing by including it in its integration architecture.” (Shavor et al,
2003:513)

Eclipse, the IDE used to develop the testing tool provides an integrated help environment.

(Raskin, 2000:175) reports that a display of instructional text should be present the first

time product is activated and by utilising Eclipse’s help functionality a simple tutorial is

provided on how to create, edit, save and run test scenarios which may be accessed at any

time. In addition help documentation is provided in the form of HTML files which is

integrated into the test framework architecture (Shavor et al, 2003:513).

5.6 SYSTEM IMPLEMENTATION EVALUATION

The system as implemented now represents a very efficient way to evaluate IP algorithm

performance. The incorporated wrapper functionality provides a flexible mechanism to

plug new algorithms in for testing purposes, allowing for the performance evaluation of a

wide range of IP algorithms. The main advantages of the testing tool include:

o Making it easier to work with the complex technologies involved in testing image

processing algorithms,

o It ties together discrete components of the algorithm testing process including

image-test-sets, ground truth and performance metrics into the one integrated

environment resulting in a faster and more efficient testing process,

o Algorithms can be easily evaluated by testers who may not have even developed the

algorithms

And by following Raskin’s (Raskin, 2000) principles for good interface design, the testing

tool’s UI should lead to higher productivity and increased customer satisfaction for the two

5.5.7 H e l p

143

distinct categories of users identified, the algorithm integrator and algorithm tester.

Additionally the testing tool user interface presented should lead to:

o Increased output

o Increased quality

o Decreased costs

o Decreased errors

o Decreased labour requirements

o Decreased production time

In both the IP algorithm testing and development process. The infrastructure can be

deployed in modem algorithm development environment, where it will speed up testing

cycles by quickly identifying problems early in an algorithm development lifecycle.

5.7 CHAPTER SUMMARY

“Detailed and robust testing can provide insight into the underlying properties o f
algorithms” (Zhao et al 2003:430)

This chapter has described some of the important implementation techniques employed

during the development of the testing tool. With the core problem addressed by the testing

framework being how to integrate various image processing algorithms for testing to

support a semi-automatic testing processing the chapter started by describing the

integration of an algorithm into the testing tool and the writing of test scripts incorporating

the relevant metrics of interest to analyse individual algorithm performance. Following this,

the development of the components which make up a test scenario and the underlying test

execution architecture was explained. Finally the implementation of the overall test

framework and the testing tool’s Graphical User Interface was described.

144

C H A P T E R 6: T E S T IN G A N D E V A L U A T IO N

Testing and Evaluation

6.1 INTRODUCTION

“However, testing has become the preferred process by which software is shown, in some sense, to satisfy
its requirements.” (Hailpem & Santhanam, 2002:9)

Software Testing is the process used to identify the correctness, completeness and quality

of a developed software application. According to (McGregor & Sykes, 2001), testing is

important because it helps to ensure that the software application does everything it is

supposed to do.

“Testing is the primary method to ensure that programs comply with requirements.” (Cheon et al,
2005:290)

The strategy for testing and evaluating the testing tool software solution adopted tactics

recommended for object oriented systems. The two main methods used and described

below, were usability testing and unit testing.

6.2 SOFTWARE TESTING

Although, during program development, software testing and coding were interleaved

activities, (McGregor & Sykes, 2001) reports that development and testing processes are

distinct, primarily because they have different goals and different measures of success.

Software development aims to build a product that satisfies user needs whereas testing

aims to answer questions about the product. Therefore testing and evaluation of the

testing tool has been divided into a separate chapter here.

145

6.2.1 So f t w a r e In sp e c t io n s a n d C o de R e v ie w s

(McGregor & Sykes, 2001) reports software testing is typically accomplished by a

combination of inspections, reviews, and test executions, the purpose of these activities

being to observe failures. Therefore software inspections and code reviews were carried

out during course of the SDLC and involved examining the source representation to

uncover code defects and misunderstood requirements. Although inspections cannot

check non-functional characteristics such as usability, it proved a very effective technique

for discovering errors within the code.

6.2 .2 F u n c t io n a l T e s t in g

“Software testing is the process o f executing a software system to determine whether it matches its
specification and executes in its intended environment." (Whittaker, 2000:77)

Software testing is the process of exercising a program with the intent to yield

measurable errors (Cheon et al, 2005:290). During software development of the testing

tool a particular kind of software testing, called unit testing was employed.

6.2.2.1 Unit Testing

Unit testing involves testing every program unit separately. In object-oriented programs,

a unit can be a method, a class, or a set of closely associated classes. In the case of the

testing tool, unit tests were performed on each of the main java classes as the classes

were coded. The JUnit testing framework (www.junit.org, 2006) which is closely

integrated with the Eclipse development environment was used to perform unit testing.

JUnit is a simple, open-source framework that allows users to produce and run unit tests.

Firstly tests were defined by creating a subclass of the framework class

junit.framework.TestCase and declaring methods in that class whose name starts with the

letters “test”. Then these tests were used to execute arbitrary code, and perform assertions

on computed values by calling framework methods such as

junit.assert.Assert.assertTrue(). A range of test assert methods are provided by JUnit. The

146

http://www.junit.org

most generic method is assertTrue(), which simply passes or fails based on the value of a

Boolean argument. A JUnit test implemented for the HistogramWrapper class

getHistogram method is available in Appendix E.9.

6.3 USABILITY TESTING

“Evaluation is concerned with gathering data about the usability o f a design or product by a specified
group o f users fo r a particular activity within a specified environment or work context.” (Preece et al,
1994:602)

Usability testing is a technique for ensuring that the intended users of a system can carry

out the intended tasks efficiently, effectively and satisfactorily. According to (Preece et

al, 1994:604) evaluations provide ways of answering questions about how well a design

meets user needs.
” Usability is tested to ensure that each category o f user is supported by the interface; can learn and apply
all required navigation syntax and semantics.” (Pressman, 2005:569)

The purpose of carrying out usability testing on the testing tool was to determine what

problems users might experience with the UI and to identify and eliminate faults. In

addition the evaluation results helped to assess the efficiency of the testing tool interface

and pinpoint any necessary modifications to improve its operation. Evaluations were

carried out in two stages, formative evaluation and summative evaluation.

6.3.1 F o r m a t i v e E v a l u a t i o n

“Formative evaluation provides information that contributes to the development o f the system whereas
summative evaluation is concerned with assessing the finished product. ’’(Preece et al, 1994:613)

Due to the use of spiral development life cycle, formative evaluations took place

throughout the testing tool design and development process. As mentioned in the design

chapter (Section 4.9) initial ideas were prototyped using paper-based sketches and

drawings. A low fidelity prototype is both inexpensive and easy to create, and provided

valuable feedback at an early stage in the SDLC. By presenting low fidelity prototypes to

stakeholders at the partner company and observing them as they were confronted with

different tasks, areas of the testing tool interface that needed further improvement were

147

quickly identified. In addition flexible and semi-structured interviews were used to

evaluate choices of initial design ideas and representations. Carrying out these evaluation

functions early in the design process was vital to a smooth and stable development of the

system.

6.3 .2 S u m m a t iv e E v a l u a t i o n

“Interface evaluation is the process o f assessing the usability o f an interface and checking that it meets user
requirements.” (Sommerville, 2001:345)

In order to collect the opinions of the subjects on the interface and any issues with its

design, summative evaluation was carried out as one of the final stages of the SDLC. A

systematic evaluation of the testing tool’s user interface design was deemed too

expensive and an economically unrealistic process for this project, so the summative

evaluation took the form of questionnaires administered to stakeholders at the partner

company. Surveying users by using a questionnaire is a cheap but effective way of

evaluating the software solution.

“Questionnaires are used to actively study specific activities performed by users and get subjective
information on the participants satisfaction.” (Sommerville, 2001:345)

6.3.2.1 Usability Questionnaire

The usability questionnaire consisted of closed questions where respondent was asked to

select an answer from a choice of alternative replies, and open questions, where the

respondent was free to provide their own answer.

“Questions in a questionnaire should be ambiguous and clearly laid out.” (Preece et al, 1994:639)

The questionnaire was divided into five parts. Part one and two contained closed

questions on the usability and functionality provided by the testing tool. A ratings scale

was used to measure user satisfaction. Part three and four contained open questions

relating to recommendations for changes to the testing tool UI and any additional

comments regards the system. Finally part five contained closed questions on the overall

system rating. After the questionnaire had been designed, it was administered to

148

stakeholders at the partner company who had been given the opportunity to use the

testing tool beforehand. The main findings are presented below.

6.3.2.2 Usability Questionnaire: Main findings

6.3.2.2.1 Usability Ratings

The results from part one of the questionnaire demonstrated that the testing tool

conformed to user requirements effectively and efficiently. Regards usability, users

reported that they found the overall system easy to pick up and use with little instruction

required. Users found the system allowed the testing of algorithms in a reasonably short

time period. They found the selection of image-test-sets based on tags and queries

reasonably straightforward and the “Test Manager” view made it easy to navigate

through, select and execute tests. Information displayed in the “Test Runner” view was

reported to be easy to read and understand and coupled with the information displayed in

the Test Console view, provided enough detail to understand clearly and accurately, test

progress information and algorithm performance results. Furthermore the display of test

results in the “Test Run History” view made it easy to track the evolution of the

algorithm from one version to another and compare algorithm performance between

different versions.

6.3.2.2.2 Questions on Testing Tool Usability

Part two of questionnaire contained closed questions on specific functionality provided

by the testing tool. Again a rating scale of one to five was used. Users found the testing

tool UI to be structured in a logical and consistent manner and usable without continual

help or instruction. Users also reported that the rules of interaction helped algorithm

testers to work efficiently. Most importantly users found interaction with the testing tool

to be simple.

6.3.2.2.3 Recommendations For Changes To The User Interface

Part three contained open questions relating to recommendations for changes to the

testing tool interface. The main recommendations uncovered included:

149

“a. Pause/Resume test button. Reason: Some tests take a large amount o f time and a lot o f processing
power. Sometimes you may need to pause the test so you can do other things at your computer,
b. There should be more things in post-processing o f the tests. Like filter the images/sequences within some
range o f results (i.e.: FP > 20%) and throw them in a folder." (Algorithm Tester at Partner Company,
Usability Questionnaire: March 06)

6.3.2.2.4 Any Additional Comments About The System

Part four of the questionnaire contained open questions on any additional comments from

the stakeholders about the system. The main findings are summarised in the example

answers provided by the stakeholders below.

"I. Does the new interface help to speed up the task o f testing image processing algorithms?
Yes it does as the automatic tests replace the manually ones which take much longer.
2. Is it easy fo r the user to understand how to use the system based on i t ’s visual appearance, or are some
instructions required?
I believe it is easy. " (Algorithm Tester at Partner Company, Usability Questionnaire: March 06)

These recommendations were then taken into consideration in determining future

modifications to the testing tool.

6.3.2.2.5 Overall Ratings

Part five of the questionnaire elicited the overall ratings of system usability.

Efficiency 4

User friendliness 5

Pleasant to use 5

Easy to remember 4

Overall satisfaction 4

Potential future usage 5

Table 2: Overall Ratings from Usability Questionnaires

Table 2 summarises the overall results from the usability ratings. An example of one of

the completed usability questionnaires is available in Appendix F.

150

6,4 CHAPTER SUMMARY

As can be seen in Table 2, feedback from the questionnaires proved very positive. The

responses indicate the testing tool provides an efficient means of carrying out algorithm

testing. The majority of users found the testing tool to be pleasant to use and a user

friendliness rating of five indicates that users liked the UI and were not confused by using

it. Overall satisfaction of users of the testing tool was high and a potential future usage

rating of five points to the testing tool being used for algorithm testing well into the

future.

151

C H A P T E R 7: C O N C L U S IO N A N D F U T U R E W O R K

Conclusion and Future Work

7.1 CONCLUSION

The last 10 years have seen a digital image revolution, with soaring interest in image

processing technology across the consumer and business landscape. The proliferation of

digital cameras and mobile camera phones in today’s world has resulted in a phenomenal

surge in use of consumer digital images. New developments in image processing

technology have not only affected individual lifestyle habits such as the way families

interact through camera phones but has influenced all areas of science from tumor

detection in biomedicine, to monitoring of weather patterns in environmental science and

object and scene perception in robotic vision. Central to the adoption of digital

photography by both businesses and consumers have been advances in the areas of image

processing and image analysis, particularly in the development of complex image

processing algorithms.

The rapid transition to digital photography has raised the expectations of non

professional photographers and for the digital imaging research community the ultimate

goal is to allow consumers capture and manage discrepancy free images quickly and

easily. Unfortunately, the digital image revolution has also brought some side effects. For

instance the explosion in sales of camera phones means the problem of red eye, the most

common customer complaint in the digital imaging market (Luo et al, 2004; Schettini et

al, 2004:139; Smolka et al, 2003:1767; Zhang (b) et al 2004) has become more acute.

Additionally because digital cameras perform differently than film cameras in their

treatment of highlights and shadows, there has been an increase in the occurrences of

152

badly exposed photographs. And despite over 30 years of research in the area of

computer vision, (Dalong et al, 2004:787) reports that robust recognition of faces in

digital photographs, especially family photographs, still remains a challenge. Clearly

although there have been major advancements in the field of image processing in the last

10 years, the performance of some of the most popular algorithms are still not

satisfactory (Lu, 2003; Muller et al, 2004; Sharma & Reilly, 2003; Torres, 2004; Zhang et

al, 2003).

With consumers yearning for sharper, brighter and clearer photographs and the security

industry demanding perfect biometric technology the question arises, how do we test and

compare algorithm performance. After conducting a survey of the literature on the

methods and techniques being used, it can be seen that the field of image processing

currently lacks a comprehensive testing framework, for assessing the performance of

image processing algorithms. Proper evaluation has always been very important for any

research area. Apart from the field of biometrics little emphasis has been put on

algorithm performance evaluation up to now and where evaluation has taken place, it is

been carried out in a somewhat cumbersome and unsystematic fashion, without any

standardised approach. (Takeuchi et al, 2003:409) finds for instance that perhaps the only

real performance evaluation measure in common use is longevity. The best algorithms

being those that are accepted widely and implemented by many people for different

applications.

7.2 SOFTWARE SOLUTION OVERVIEW

One key step towards the effective performance evaluation of IP algorithms is the

provision an algorithm testing solution. Towards this end, this thesis has presented a

comprehensive testing methodology and framework to adequately measure the

performance of IP algorithms used in consumer digital imaging technology.

153

Inline with the principles set out in the FERET evaluation methodology (Phillips et al,

2000) the methodology exploits the direct connection between the algorithm being

evaluated, the image-test-sets, and the actual testing protocol. An integrated database tool

provides easy access to a comprehensive set of test images which allows algorithms to be

tested on the most applicable image-test-sets resulting in a more complete algorithm

evaluation (Jaynes et al, 2005:2; Kong et al, 2005:111; Moon et al, 2002:7; Yang et al,

2002:52). And because as (Chhabra & Phillips, 1998) suggest there is a lack of a

systematic way of generating ground truth, the integrated image marker tool, allows for

ground truth to be acquired quickly and accurately (Micheals & Boult, 2001:152; Muller

et al, 2004).

The core problem addressed by the test framework is how to integrate different IP

algorithms for testing to support a semi-automatic testing processing. As no framework

can easily incorporate every IP algorithm, the testing tool provides an extensible interface

so as to allow the analysis and performance assessment of a wide range of image

processing algorithms. Essentially the job of integrating algorithms into the testing tool

has been separating from the job of testing. This allows algorithm testers spend more

time on understanding algorithm performance instead of spending time trying to

implement algorithms for testing purposes.

Additionally the generic nature of the testing tool allows individual test scenarios to be

specified based on algorithm and developers requirements resulting in quicker algorithm

performance evaluation. A test scenario defines what parameters the algorithm takes as

input, usually the image-test-set, what output the algorithm returns and how this is

compared with ground truth to deduce performance scores (Foerstner, 1996:12). Within

the testing tool, the display of test-results can be customised which facilitates fast and

effective interpretation by both novice and expert users (Sharma & Reilly, 2003). The

integrated nature of the overall test framework incorporating the database tool, the image

154

marker tool and testing tool in the one environment means that comprehensive algorithm

performance evaluation is carried out quickly and easily. Comprehensive evaluations will

produce more robust algorithms and in turn reduce algorithm development lifecycles.

The presented software solution has been in development for over two years and it is

believed that the current release, addresses some of the major problems identified in

algorithm testing practice. Initial user response has been very positive and indicates that

the semi-automatic nature of the testing tool means that algorithm performance

evaluation can now be carried out quickly and efficiently, thus greatly reducing testing

time. Results from usability testing involving actual algorithm testers at the partner

company have found that the new interface helps to speed up the task of testing image

processing algorithms and in turn shorten the algorithm development lifecycle

Q: Does the new interface help to speed up the task o f testing image processing algorithms?
A: Yes it does as the automatic tests replace the manually ones which take much longer. ”
(Algorithm Tester at Partner Company, Usability Questionnaire: March 06)

The technology can be deployed in modem algorithm development environment, where it

will improve the standard of algorithm performance in terms of speed and accuracy and

will also result in shorter algorithm development lifecycles.

7.3 FUTURE WORK

The results from usability tests carried out at the partner company suggest the testing tool

provides a strong initial foundation for algorithm performance evaluation. Future work

will continue to refine and enhance the application in response to user feedback. Since

the overall test framework was developed in Eclipse, as the necessity arises, additional

support tools related to testing IP algorithms can be easily integrated.

“This approach is attractive as it allows applications to evolve over time by adding and replacing
components.” (McAffer & Lemieux, 2005)

The main aim of the testing tool is to produce relevant algorithm performance data.

155

(Sharma & Reilly, 2003) suggests any performance evaluation solution should present

data graphically to facilitate fast and effective interpretation. Mechanisms for displaying

more information in the “Test Runner” and “Test Run History” views of the testing tool

may be added in the future. Another related improvement would be to provide a better

Connection between the testing tool and the image marker tool. For instance, if the

algorithm tester clicked on false positive in the “Test Runner” view of the testing tool, the

marking tool should open to display the incorrectly detected feature in the offending

image. This would mean that algorithm testers would be able to pinpoint algorithm

performance problems quicker and more effectively. Additionally, to effectively analyse

complex algorithm performance results such as those produced from more technical

algorithms, more sophisticated reporting tools should be incorporated into the testing

tool. A reporting capability would mean that detailed reports could be produced and

shared between algorithm development and QA teams to help streamline and speed up

the testing process.

The core problem addressed by the testing tool is how to integrate different image

processing algorithms for testing to support a semi-automatic testing process. The testing

tool provides an extensible interface so as to allow the analysis and performance

assessment of a wide range of image processing algorithms. It would be worth

researching the possibility of automating the process of integrating algorithms into the

testing tool. Making it easier to write algorithm wrappers would certainly speed up the

testing process.

156

A P P E N D IX A : S P IR A L L IF E C Y C L E M O D E L

The Spiral life cycle model addresses the shortcomings of the Waterfall model by

presenting an incremental development process, in which developers repeatedly assess

changing project risks to manage unstable requirements (Nuseibeh, 2001:115). The

model created by (Boehm, 1988) has four phases: Planning, Risk Analysis, Engineering

and Evaluation. A software project repeatedly passes through each of these phases in

iterations called Spirals in the model. With each iteration around the spiral, beginning

from the centre and working outwards, progressively more complete versions of the

system are developed. (Green & DiCaterino, 1998:8).

157

Oolo'm
or>|ocln
nitninn'
to n s tru ln ts .

Hevow

CumultUh/o
c o i l

Progr&ss
through
slops

Evaluait* aliai nuli ves,
identity, fosolvo risks

Plan noxl phases

Develop. verify
nexl-level product

Figure 49: Spiral Model of the Software process (Source: Boehm, 1988:64)

158

A P P E N D IX B: E C L IP S E R IC H C L IE N T P L A T F O R M

“It has become one of the most flexible, powerful, and integrated Java development environments.” (Yang
et al, 2005:1)

Although Eclipse was originally built as an integrated development environment for

software development, the Eclipse platform can also be used to build client applications

(Carlson, 2005; Gruber et al, 2005:289; McAffer & Lemieux, 2005). Fundamentally,

Eclipse is a framework for plug-ins (Yang et al, 2005:2). A plug-in being the foundation

building block that is used to add new functionality to the environment. The Eclipse Rich

Client Platform (RCP) is a subset of Eclipse that allows a set of plug-ins to be developed

and deployed as a standalone application, independent of the Eclipse development

environment. The minimal set of plug-ins required to develop a rich client application is

collectively known as the Rich Client Platform (RCP). Essentially, the RCP offers a

generic Eclipse workbench that developers extend to construct client applications.

“The RCP is a natural progression toward integrating not only tools but also applications and services.”
(Gruber et al, 2005:289)

Figure 50: Eclipse Rich Client Platform - Source: Geer, 2005:17

159

As illustrated in Figure 50 the Rich Client Platform is composed of the following

components:

o The Eclipse runtime which provides the foundational support for plug-ins.

o The workbench is the “UI personality” of the eclipse platform which incorporates

the editors, views, and perspectives that will make up the environment that is the

overall test framework (Shavor et al, 2003:198).

o The Standard Widget Toolkit (SWT) and JFace toolkit for building user

interfaces.

160

A P P E N D IX C: E X T E N S IB L E M A R K U P L A N G U A G E

XML is a simple, very flexible format derived from Standard Generalised Markup

Language (SGML). It is a standardised meta-language designed to store, carry and

exchange data and can be used to:

o Define data structures
o Define tags
o Make these structures platform independent
o Process XML defined data automatically

“XML simply defines standard ways to manage and exchange complex documents.” (Orfali et al 1999:625)

XML is completely flexible in how its data can be structured so can be used describe any

kind of information (Hunter et al, 2000: 21). (Knudsen & Niemeyer, 2005) reports that

XML does for content what Java did for programming by providing a portable language

for describing data. It is designed specifically for storing and transmitting data from one

place to another (Hunter et al, 2000:1, Maruyama et al, 1999, Young, 2000:3) and

(Vaughan-Nichols, 2003b: 14) reports XML has become an integral part of numerous

important technologies for exchanging information between systems. Since XML data is

stored in plain text format, it can be easily moved between platforms (McLaughlin,

2001:2). XML Path language - XPath a querying language can be used for searching for a

particular piece of information in an XML document (Hunter et al, 2000: 21).

161

A P P E N D IX D: R E D E Y E D E T E C T IO N

A L G O R IT H M O V E R V IE W

Detection and recognition algorithms can make two types of errors; false positive in

which regions are not classified correctly, resulting in low detection rates and false

positives in which regions are mistakenly detected (Liu & Dori, 1999:103; Martin et al,

1997; Yang et al, 2002:35). Accordingly it must be appreciated that there is always a

trade-off between true positive and false positive detection (Clark & Clark, 2002:4; Liu &

Dori, 1999:103; Martin et al, 1997). If detection rules are to detailed the algorithm may

fail to detect regions that do not pass rules whereas if rules are too general algorithm may

return false positives. For example currently the main challenge in effective red eye

correction is the avoidance of false positives, misclassifying red spots found on the image

as red eyes, while maintaining high correction rates and quality (Schettini et al, 2004).

With metrics of interest defined by the algorithm integrator to obtain and track these

values, algorithm testers can then train and tune their algorithm to get the balance right in

algorithm development(Courtney & Thacker, 2001:5; Yang et al, 2002:35).

Therefore to test a red eye detection algorithm, for each image, the location of every red

eye within is identified or marked prior to running the red-eye detection algorithm.

Images have to be marked in order to automatically conclude on the efficiency of the

algorithm. The red eye detection algorithm proves correct if it identifies red-eyes in the

same location as the marked areas on each image. The comparison between the original

marked images and the images processed by an algorithm tells if that algorithm works

correctly (Liu & Dori, 1999:98).

162

Stage 1 - Red Eye Detection Test Scenario

1. Run the red eye detection algorithm on an image - a list of the detected red eyes -

features of interest are returned (List of Rectangle Co-ordinates)

2. Compare these (result of step 1) with the list of manually marked red eyes prepared by

the image Marker Tool (List of Rectangle Co-ordinates)

Stage 2 - Red Eye Detection Test Scenario

This will then give:

a. a list of matching Red eye (A marked red eye over-laps well enough with a

detected red eye)

b. list of marked red eyes that have not been detected

c. list of detected red eyes that do not match any marked red eyes

Stage 3 - Red Eye Detection Test Scenario
Results in 4 Columns:

1. No. of marked red eyes

2. No. of correctly detected red eyes (the value from a.)

3. False negatives (the value from b.)

4. False positives (the value from c.)

163

A P P E N D IX E: S O U R C E C O D E

APPENDIX E.1: IMAGINGTOOL INTERFACE

j * *

* T h i s i n t e r f a c e d e f i n e s a n i m a g i n g t o o l , a n d i t m u s t b e im p le m e n t e d
* b y a l l t o o l s t h a t p r o v i d e i m a g i n g s e r v i c e s .

*/
p u b l i c i n t e r f a c e I m a g i n g T o o l {

/ * * R e t u r n s t h e n a m e o f t h i s t o o l . * /
p u b l i c S t r i n g g e t N a m e O ;

/ * * R e t u r n s t h e v e r s i o n o f t h i s t o o l . * /
p u b l i c S t r i n g g e t V e r s i o n O ;

j ★ ★

* I n i t i a l i s e s t h e i m a g i n g t o o l .
*
* @ p a ra m b u n d le M a n a g e r t h e l i b r a r y b u n d l e m a n a g e r t h a t c a n b e u s e d
* t o a c c e s s v a r i o u s b u n d l e s .
* @ r e t u r n t r u e i s t h e i n i t i a l i s a t i o n s u c c e e d e d , f a l s e o t h e r w i s e .

*/
p u b l i c b o o l e a n i n i t (L i b r a r y B u n d l e M a n a g e r b u n d l e M a n a g e r) ;

/* *
* E x e c u t e s t h e im a g e p r o c e s s i n g o p e r a t i o n w i t h t h e s p e c i f i e d n a m e
* a n d w i t h t h e s p e c i f i e d i n p u t p a r a m e t e r s ; r e t u r n s t h e r e s u l t s o f
* t h e o p e r a t i o n ; e a c h i m a g i n g t o o l c a n r e t u r n i t s o w n r e s u l t t y p e .
*
* @ p a ra m o p e r a t io n N a m e t h e n a m e o f t h e o p e r a t i o n t o p e r f o r m .
* @ p a ra m in p u t P a r a m s t h e i n p u t p a r a m e t e r s .
* @ r e t u r n r e t u r n s t h e r e s u l t s o f t h e o p e r a t i o n , e a c h i m a g i n g t o o l
* c a n r e t u r n i t s o w n r e s u l t t y p e .
*

* @ th r o w s E x e c u t e O p e r a t i o n E x c e p t i o n i f e x e c u t i n g t h e o p e r a t i o n
* f a i l s f o r s o m e r e a s o n .

*/
p u b l i c O b j e c t e x e c u t e O p e r a t i o n (S t r i n g o p e r a t i o n N m e , M a p I n p u t P a r a m)

t h r o w s E x e c u t e O p e r a t i o n E x c e p t i o n ;
j •k *

* D e s t r o y s t h e i m a g i n g t o o l .

*/
p u b l i c v o i d d e s t r o y () ;

164

APPENDIX E.2: fflSTOGRAM.H

i f n d e f H IS T O _ H ___
d e f i n e H IS T O H

i n c l u d e " I m a g e X O .h "

i f d e f c p l u s p l u s
e x t e r n " C " {
e n d i f

i f ! d e f in e d (H I S T C A L L)
i f d e f in e d (_ S T D C A L L _ S U P P O R T E D) | |d e f in e d (_ M S C _ V E R) & & (_ M S C _ V E R >= 8 0 0)
d e f i n e H IS T C A L L s t d c a l l
e l s e
d e f i n e H IS T C A L L
e n d i f
e n d i f

/ / T y p e t o r e t u r n t h e s t a t u s o f e x e c u t i o n o f a f u n c t i o n ,
t y p e d e f IN T 3 2 H IS T _ S T A T U S ;

d e f i n e H S _ O K 0
d e f i n e H S _ F A IL - 1 / / U n s p e c i f i e d e r r o r .
d e f i n e H S _N O _S Y S T E M _R E S O U R C E S - 2 / / n o t e n o u g h s y s t e m r e s o u r c e s .
d e f i n e H S _ IN V A L ID _ A R G - 3 / / i n v a l i d a r g u m e n t

/ / D e f i n e s
d e f i n e I N
d e f i n e OUT
t t d e f i n e O P T IO N A L

* C a l c u l a t e s a n d r e t u r n s t h e h i s t o g r a m f o r t h e s p e c i f i e d c r o p f r o m t h e
* s p e c i f i e d im a g e .
*

* @ p a ra m im a g e t h e t a r g e t im a g e
* @ p a ra m x t h e h o r i z o n t a l c o o r d i n a t e o f t h e t o p - l e f t p o i n t o f t h e c r o p
* r e c t a n g l e .
* @ p a ra m y t h e v e r t i c a l c o o r d i n a t e o f t h e t o p - l e f t p o i n t o f t h e c r o p
* r e c t a n g l e .
* @ p a ra m w i d t h t h e w i d t h o f t h e c r o p r e c t a n g l e
* O p a ra m h e i g h t t h e h e i g h t o f t h e c r o p r e c t a n g l e
* O p a ra m r e s u l t a n i n t [2 5 6] a r r a y t h a t c o n t a i n s t h e r e s u l t

*/
H IS T S T A T U S H IS T C A L L G e t H i s t o g r a m (I N I O _ I m g * im a g e ,

I N U IN T 3 2 x ,
I N U IN T 3 2 y ,
I N U IN T 3 2 w i d t h ,
I N U IN T 3 2 h e i g h t ,
OUT U IN T 3 2 * r e s u l t

165

i f d e f c p l u s p l u s

}
e n d i f
e n d i f / / H IS T O _ H

) ;

APPENDIX E.3: HISTOGRAMWRAPPER.H

/ * DO N O T E D IT T H IS F I L E - i t i s m a c h in e g e n e r a t e d * /
i n c l u d e < j n i . h >
/ * H e a d e r f o r c l a s s H is t o g r a m W r a p p e r * /

i f n d e f _ I n c l u d e d _ H i s t o g r a m W r a p p e r
d e f i n e _ I n c l u d e d _ H i s t o g r a m W r a p p e r

i f d e f c p l u s p l u s
e x t e r n " C " {
e n d i f

/*
* C l a s s : H is t o g r a m W r a p p e r
* M e t h o d : g e t H i s t o g r a m
* S i g n a t u r e : (L c o m / i m a g e t e s t i n g a p p / t o o l s / i m a g e i o / l m a g e B u f f e r ; I I I I) [I

*/
J N IE X P O R T j i n t A r r a y J N IC A L L J a v a _ H i s t o g r a m W r a p p e r _ g e t H i s t o g r a m
(J N I E n v * , j o b j e c t , j o b j e c t , j i n t , j i n t , j i n t , j i n t) ;
i f d e f c p l u s p l u s

}
e n d i f
e n d i f

APPENDIX E.4: HISTOGRAMWRAPPER.CPP

i n c l u d e < j n i . h >
i n c l u d e " H i s t o g r a m W r a p p e r . h "
i n c l u d e " I m a g e l O . h "
i n c l u d e " h i s t o g r a m . h "

/ / U t i l i t y f u n c t i o n u s e d t o t h r o w a n d e x c e p t i o n b y n a m e ,
s t a t i c v o i d t h r o w B y N a m e (J N I E n v * e n v , c o n s t c h a r ‘ n a m e , c o n s t c h a r * m s g) {

j c l a s s e l s = (e n v) - > F i n d C l a s s (n a m e) ;

/ / i f e l s i s N U L L , a n e x c e p t i o n h a s a l r e a d y b e e n t h r o w n
i f (e l s ! = N U L L) {

(e n v) - > T h r o w N e w (e l s , m s g) ;

}
166

(env)->DeleteLocalRef(els); // free the local ref

/ / U t i l i t y f u n c t i o n u s e d t o t h r o w a n e x c e p t i o n b a s e d o n a s t a t u s c o d e ,
s t a t i c v o i d t h r o w B y S t a t u s (J N I E n v * e n v , H IS T _ S T A T U S s t a t u s) {

s w i t c h (s t a t u s) {
c a s e H S _ F A I L :

th r o w B y N a m e (e n v , " j a v a / l a n g / R u n t i m e E x c e p t i o n " , " D L L r e t u r n e d
U n s p e c i f i e d e r r o r . ") ;

b r e a k ;
c a s e H S _N O _ S Y S T E M _ R E S O U R C E S :

t h r o w B y N a m e (e n v , " j a v a / l a n g / O u t O f M e m o r y E r r o r " ,
" D L L r e t u r n e d T h e r e ' s n o t e n o u g h s y s t e m r e s o u r c e s . ") ;

b r e a k ;
c a s e H S _ IN V A L ID _ A R G :

th r o w B y N a m e (e n v , " j a v a / l a n g / l l l e g a l A r g u m e n t E x c e p t i o n " ,
" D L L r e t u r n e d B a d a r g u m e n t . ") ;

b r e a k ;

}
}

* C l a s s : H is t o g r a m W r a p p e r
* M e t h o d : g e t H i s t o g r a m
* D e s c r i p t i o n :

*/
J N IE X P O R T j i n t A r r a y J N IC A L L
J a v a _ c o m _ i m a g e t e s t i n g a p p _ t o o l s _ H i s t o g r a m W r a p p e r _ g e t H i s t o g r a m

(J N I E n v * e n v , j o b j e c t o b j , j o b j e c t i m a g e B u f , j i n t x , j i n t y , j i n t
w i d t h , j i n t h e i g h t)

{
/ / v a r i a b l e d e c l a r a t i o n s
j e l a s s e l s ;
j m e t h o d I D m id ;
j l o n g i m a g e S t r u c t P o i n t e r ;
I O _ I m g * p lO I m g = N U L L ;
j i n t A r r a y h i s t o g r a m = N U L L ;
U IN T 3 2 d a t a [2 5 6] ;
i f (im a g e B u f = = N U L L) {

t h r o w B y N a m e (e n v , " j a v a / l a n g / N u l l P o i n t e r E x c e p t i o n " , " im a g e B u f
a r g u m e n t i s n u l l ") ;
r e t u r n N U L L ;

}
/ / G e t t h e c l a s s o f t h e I m a g e B u f f e r o b j e c t n e e d e d t o a c c e s s i t s

m e m b e r s .
e l s = (e n v) - > G e t O b j e c t C l a s s (im a g e B u f) ;
i f (e l s = = N U L L) {

r e t u r n N U L L ; / * c l a s s n o t f o u n d , e x c e p t i o n a l r e a d y t h r o w n * /

}

/ / G e t I D o f t h e " g e t l m a g e S t r u c t P o i n t e r " m e t h o d o f t h e I m a g e B u f f e r

167

m id = (e n v) - > G e t M e t h o d I D (e l s , " g e t l m a g e S t r u c t P o i n t e r " , " () J ") ;
i f (m id = = N U L L) {

r e t u r n N U L L ; / * e x c e p t i o n a l r e a d y t h r o w n * /

}

/ / C a l l t h e " g e t l m a g e S t r u c t P o i n t e r " m e t h o d o f t h e I m a g e B u f f e r o b j e c t
i m a g e S t r u c t P o i n t e r = (e n v) - > C a l l L o n g M e t h o d (im a g e B u f , m i d) ;
i f (i m a g e S t r u c t P o i n t e r = = N U L L) {

t h r o w B y N a m e (e n v , " j a v a / l a n g / l l l e g a l A r g u m e n t E x c e p t i o n " ,
" i m a g e S t r u c t P o i n t e r i s N U L L ") ;

r e t u r n N U L L ;

}
p lO I m g = (I O _ I m g *) i m a g e S t r u c t P o i n t e r ;

H IS T S T A T U S s t a t u s = G e t H i s t o g r a m (p lO I m g , x , y , w i d t h , h e i g h t , d a t a) ;
i f (s t a t u s = = H S _ O K) {

h i s t o g r a m = (e n v) - > N e w I n t A r r a y (2 5 6) ;
i f (h i s t o g r a m = = N U L L) {

r e t u r n N U L L ; / * o u t o f m e m o ry e r r o r a l r e a d y t h r o w n * /

}
f o r (i n t i = 0 ; i < 2 5 6 ; i + +) {

j i n t v a l = d a t a [i] ;
(e n v) - > S e t I n t A r r a y R e g i o n (h i s t o g r a m , i , 1 , & v a l) ;

}
}
e l s e {

t h r o w B y S t a t u s (e n v , s t a t u s) ;

}
r e t u r n h i s t o g r a m ;

}

APPENDIX E.5: TESTMANAGER CLASS

p u b l i c c l a s s T e s t M a n a g e r {

p r i v a t e s t a t i c T e s t M a n a g e r s i n g l e l n s t a n c e ;

s t a t i c {
s i n g l e l n s t a n c e = n e w T e s t M a n a g e r () ;

}j * *

* C o n s t a n t t h a t c o n t a i n s t h e n a m e o f t h e f o l d e r w h e r e t h e t e s t s
* w i l l b e s t o r e d i n t h e w o r k d i r e c t o r y .

*/
p u b l i c s t a t i c f i n a l S t r i n g T E S T _ S T O R E _ D IR _ N A M E = " t e s t s " ;

p r i v a t e F i l e t e s t S t o r e D i r ;

/**
* T h i s i s a f l a g t h a t s p e c i f i e s i f t h e T e s t M a n a g e r i n s t a n c e w a s

168

* i n i t i a l i s e d .

*/
p r i v a t e b o o l e a n i n i t i a l i s e d = f a l s e ;

* H o ld s e x i s t i n g t e s t s , m a p s t e s t i d s t o T e s t D e f i n i t i o n i n s t a n c e s .

*/
p r i v a t e M a p t e s t s M a p ;

j * ★
* C r e a t e s a T e s t M a n a g e r i n s t a n c e .

*/
p r i v a t e T e s t M a n a g e r () {

t h i s . t e s t s M a p = n e w H a s h M a p () ;

}
j ★ *

* R e t u r n s t h e s i n g l e i n s t a n c e o f t h i s c l a s s .
*

* @ r e t u r n t h e s i n g l e i n s t a n c e o f t h i s c l a s s .

*/
p u b l i c s t a t i c T e s t M a n a g e r g e t l n s t a n c e () {

r e t u r n s i n g l e l n s t a n c e ;

}

169

APPENDIX E.6: HISTOGRAM TEST SCENARIO XML INSTANCE

<?xm l v e rs io n = " l,0 " e ricod ing="U TF-B " ?>
- c te s tD e fin it io n type="testCase" id = "1 4 0 1 6 ' c l ie n t ld = '1 1 3 8 6 5 8 4 3 3 5 4 9 1 ' ' s to re d O n S e rv e r= " tru e ">

< s e rv e rL a s tM o d if ie d > l 1 3 8 6 6 2 6 5 8 3 1 3 < /s e rv e rL a s tM o d ifie d >
<name>Histogram Test</name>
<description>Histogram Test</description>
< c re a te d > 1 1 3 8 6 5 8 4 3 3 5 1 8 < /c re a te d >
< la s tM o d ifie d > 1 1 3 8 6 6 2 6 5 8 3 1 3 < /la s tM o d ifie d >

- < te s t ln p u t>
- < im a g e S e t type="tag">

< ta g name="test-images" type="image ' expression="//tag[®iname=,test-images1]" />
< /im a g e S e t>

</testInput>

- < te s tC o d e la n g u a g e = "p y th o n ">
<filename>D:\ImageTestingApplication\work-dir\tests\testSource.py</filename>

- <sourceC ode>
+ <![CDATA[]]>
< /so u rce C o d e >

< /te s tC o d e >
< /te s tD G fin it io n >

APPENDIX E.7: TESTRUNTIME CLASS

j -k i t

* T h i s c l a s s i s r e s p o n s i b l e w i t h r u n n i n g a n i m a g i n g t e s t .

*/
p u b l i c c l a s s T e s t R u n t im e {

* C r e a t e s a T e s t R u n t im e i n s t a n c e w i t h t h e s p e c i f i e d c o n f i g u r a t i o n .
*

* @ p a ra m r u n t i m e C o n f i g t h e t e s t r u n t i m e c o n f i g u r a t i o n .
* @ th r o w s T e s t R u n t i m e E x c e p t i o n i f t h e t e s t r u n t i m e i n i t i a l i s a t i o n
f a i l s .

*/
p u b l i c T e s t R u n t i m e (T e s t R u n t i m e C o n f i g u r a t i o n r u n t i m e C o n f i g)
t h r o w s T e s t R u n t i m e E x c e p t i o n ;

/**
* R u n s t h e s p e c i f i e d t e s t . A r e q u e s t t o c a n c e l t h e t e s t r u n s h o u l d b e
* h o n o r e d a n d a c k n o w le d g e d b y t h r o w i n g
* < c o d e > I n t e r r u p t e d E x c e p t i o n < / c o d e > .

* @ p a ra m t e s t D e f t h e t e s t d e f i n i t i o n .
* @ p a ra m l i s t e n e r t h e l i s t e n e r f o r t h i s t e s t r u n .
* @ r e t u r n t h e r e s u l t o f t h e t e s t r u n .

170

*

* @ th r o w s T e s t R u n E x c e p t i o n i f s o m e e r r o r o c c u r s w h i l e r u n n i n g t h e t e s t .
* © t h r o w s I n t e r r u p t e d E x c e p t i o n i f t h e t e s t r u n t i m e d e t e c t s a r e q u e s t t o
* c a n c e l , u s i n g < c o d e > T e s t R u n L i s t e n e r . i s C a n c e l e d () < / c o d e > , i t s h o u l d
* e x i t b y t h r o w i n g I n t e r r u p t e d E x c e p t i o n .

*/
p u b l i c T e s t R e s u l t S e t r u n T e s t (T e s t D e f i n i t i o n t e s t D e f ,
T e s t R u n L i s t e n e r l i s t e n e r)
t h r o w s T e s t R u n E x c e p t i o n , I n t e r r u p t e d E x c e p t i o n ;

APPENDIX E.8: HISTOGRAM TEST RESULT XML INSTANCE

<?xm l v e rs io n = "1 .0 " e n co d ing = "U T F -8 " ?>
- < te s tR e s u ltS e t te s t Id = "1 4 0 1 6 " te s tR u n T im e s ta m p = "1 1 4 3 4 8 8 8 2 0 4 8 3 ‘‘ s to re d O n S e rv e r= " fa ls e ’>

- < su m m a ry>
- < ta g s >

<tag>Histogram Test</tag>
< /ta g s >

- < te s t ln p u t>
- <imageSettype="tag">

< ta g n a m e = "test-images" type="image" expression="//tag[@ name=,test-im ages']'’ />
< /im a g e S e t>

< / te s t In p u t>
- < re s u ltT o ta ls >

- < te s tR e s u lt ty p e = "s u c c e s s ">
< te s tR e su ltF ie ld name="Image ID ' v a lu e = " " type="string />
< te s tR e su ltF ie ld name="Array Size v a lu e = "3 8 4 G type="int" />
< te s tR e su ltF ie ld n a m e = "D a rk pixels <M»" v a lu e = " 9 5 8 .5 5 7 4 " type="float" />
< te s tR e su ltF ie ld n a m e = "L ig h t pixels 1 * " v a lu e = " 5 7 .2 3 5 2 2 6 " type="float" />
< te s tR e s u ltF ie ld n a m e = "O th e r pixels «M«" v a lu e = " 4 4 1 .4 1 2 7 " type="float" />

< /te s tR e s u lt>
< /re s u ltT o ta ls >

< /su m m a ry>
- < te s tR e s u lt in p u tD a ta T y p e = " im a g e " in p u tD a ta ld = " lB 1 1 5 " ty p e = "s u c c e s s ">

< te s tR e su ltF ie ld n a m e = " Im a g e ID " v a lu e = " 1 0 1 1 5 " type="string" />
< te s tR e su ltF ie ld n a m e = "A rra y Size" v a lu e = "2 5 6 type="int" />
< te s tR e su ltF ie ld n a m e = "D a rk pixels <Mi v a lu e = "1 0 .6 4 8 6 2 2 5 type="float" />
< te s tR e su ltF ie ld n a m e = "L ig h t p ix e ls <M>" v a lu e = ’’2 .ü 3 2 2 8 8 8 " ty p e = " f lo a t " />
< te s tR e su ltF ie ld name="Other pixels value="86.76765" type="float" />

< /te s tR e s u lt>

171

APPENDIX E.9: GETfflSTOGRAM METHOD JUNIT TEST

j * *
* T e s t c a s e f o r t h e g e t H i s t o g r a m m e t h o d .

*/
p u b l i c v o i d t e s t G e t H i s t o g r a m () {

L i b r a r y B u n d l e b u n d l e = t h i s . d l l B u n d l e M a n a g e r . g e t B u n d l e (" F N h i s t o " ,
L ib r a r y B u n d le M a n a g e r , L A T E S T _ V E R S I O N) ;

i f (b u n d l e = = n u l l) {
f a i l (" T h e r e q u i r e d F N h i s t o l i b r a r y i s n o t a v a i l a b l e ") ;
r e t u r n ;

}

b u n d l e = t h i s . d l l B u n d l e M a n a g e r . g e t B u n d l e (" H i s t o g r a m W r a p p e r " ,
L i b r a r y B u n d l e M a n a g e r . L A T E S T V E R S IO N) ;

i f (b u n d l e = = n u l l) {
f a i l (" T h e r e q u i r e d H is t o g r a m W r a p p e r l i b r a r y i s n o t a v a i l a b l e ") ;
r e t u r n ;

}

i m a g i n g T o o l i m a g i n g T o o l = n e w H is t o g r a m W r a p p e r () ;
i f (! i m a g i n g T o o l . i n i t (d l l B u n d l e M a n a g e r)) {

f a i l (" F a i l e d t o i n i t i a l i s e t h e H i s t o g r a m W r a p p e r ") ;

}

i n t [] h i s t o g r a m ;
R e c t a n g l e c r o p R e c t = n e w R e c t a n g l e () ;

t r y {
M a p p a r a m s = n e w H a s h M a p () ;
i m a g i n g T o o l . e x e c u t e O p e r a t i o n (" g e t H i s t o g r a m " , p a r a m s) ;
a s s e r t T r u e (" T e s t F a i l e d , e x e c u t e O p e r a t i o n - g e t H i s t o g r a m s h o u l d

h a v e t h r o w n a N u l l P o i n t e r E x c e p t i o n " , f a l s e) ;
} c a t c h (N u l l P o i n t e r E x c e p t i o n e) {

/ / S u c c e s s , w e s h o u l d g e t a N u l l P o i n t e r E x c e p t i o n
} c a t c h (E x e c u t e O p e r a t i o n E x c e p t i o n e) {

a s s e r t T r u e (" F a i l e d w i t h e x c e p t i o n : " + e , f a l s e) ;

}

i m a g e B u f f e r i m a g e B u f f e r = l o a d R B G I m a g e B u f f e r (t h i s . t e s t l m a g e F i l e) ;

t r y {
M a p p a r a m s = n e w H a s h M a p () ,
p a r a m s . p u t (" i m a g e B u f f e r " , i m a g e B u f f e r) ;
p a r a m s . p u t (" c r o p R e c t " , n e w R e c t a n g l e (0 , 0 ,

i m a g e B u f f e r . g e t P i x e l W i d t h () , i m a g e B u f f e r . g e t P i x e l H e i g h t ())) ;

172

O b j e c t r e s u l t = i m a g i n g T o o l . e x e c u t e O p e r a t i o n (" g e t H i s t o g r a m " ,
p a r a m s) ;

a s s e r t T r u e { " g e t H i s t o g r a m d i d n o t r e t u r n i n t [] " , r e s u l t i n s t a n c e o f
i n t []) ;

h i s t o g r a m = (i n t []) r e s u l t ;
a s s e r t N o t N u l l (" g e t H i s t o g r a m r e t u r n e d a n u l l i n t [] " , h i s t o g r a m) ;
a s s e r t T r u e (" g e t H i s t o g r a m r e t u r n e d a n i n t [] w i t h l e n g t h != 2 5 6 " ,

h i s t o g r a m . l e n g t h = = 2 5 6) ;
f o r (i n t i = 0 ; i < h i s t o g r a m . l e n g t h ; i + +) {

S y s t e m . o u t . p r i n t l n (" h i s t o g r a m [" + i + "] = " + h i s t o g r a m [i]) ;

}
} c a t c h (E x e c u t e O p e r a t i o n E x c e p t i o n e) {

a s s e r t T r u e (" F a i l e d w i t h e x c e p t i o n : " + e , f a l s e) ;
} f i n a l l y {

i m a g e B u f f e r . f r e e () ;
i m a g e B u f f e r = n u l l ;
R u n t i m e . g e t R u n t i m e () . g c () ;

}
}

173

A P P E N D IX F: C O M P L E T E D U S A B IL IT Y

Q U E S T IO N N A IR E

Usability Questionnaire - “The Testing Tool”

1. Usability Ratings
Please provide ratings for following functionality:

Rating scale to be used:

1 - Strongly disagree

2 - Disagree

3 - Not sure

4 - Agree

5 - Strongly agree

I found it easy to pick up and use the system with little instruction required.

5

The job of running algorithm tests was intuitive and easy to use

The system responded quickly and allowed me to test algorithms in a reasonably short

period

The steps involved in creating a new test, the selection of the appropriate image-test-set

and defining of appropriate test parameters were reasonably straightforward.

174

The selection of image-test-sets based on tags and queries was reasonably

straightforward.

The steps involved in the selection of a test and actual test execution were reasonably

straightforward.

The steps involved in editing an existing test were reasonably straightforward

The steps involved in deleting an existing test were reasonably straightforward

The Test Manager view was easy to read and understand

The Test Manager view made it easy to navigate through tests

It was always reasonably easy to tell which test was currently selected.

The Test Runner view which displays test run progress information and test results,

provided enough detail for me to understand clearly and accurately, test progress

information and test performance results.

175

In the Test Runner view information displayed in the test run progress area was easy to

read and understand.

The information displayed in the Test Console view at bottom left of screen was useful,

easy to read and understand.

The information displayed in the Test Run History view was easy to read and understand.

The display of test results made it easy to track the evolution o f the algorithm from one

version to another and see compare algorithm performance between different versions.

It was easy to save the selected test to the server.

It was easy to save the selected test results to the server.

I would find such the system useful in my day to day job when I need to test image

processing algorithms on a large quantity of images.

The testing tool greatly speeds up the algorithm testing process.

176

2. Questions on Testing Tool Usability.

Is the testing tool usable without continual help or instruction?

Do the rules of interaction help a knowledgeable user to work efficiently?

Do interaction mechanisms become more flexible as users become more knowledgeable?

Has the testing tool been tuned to the physical and social environment in which it will be

used?

Is the user aware of the state of the testing tool? Does the user know where he/she is at all

times?

Is the testing tool interface structured in a logical and consistent manner?

5

Are interaction mechanisms, icons, and procedures, consistent across the testing tool

interface?

Does the interaction anticipate errors and help the user correct them?

177

Is the interaction simple?

5

3. Recommendations for changes to the Interface

What buttons, if any, did you find least useful? Most useful?

Lest useful: expand all

Most useful: start test

Are there any buttons (functions) that you would add to the system? Why?

a. Pause/Resume test button. Reason: Some tests take a large amount o f time and a lot of

processing power. Sometimes you may need to pause the test so you can do other things

at your computer.

b. There should be more things in post-processing of the tests. Like filter the

images/sequences within some range of results (i.e.: FP > 20%) and throw them in a

folder.

If you ever deviated from the envisaged use of the system, what was the usual reason?

Can you think of something the system could do to help prevent this?

What was the hardest thing to learn about using the system?

Query syntax. I always had to read the help about that.

Is the testing tool interface tolerant of errors that are made?

178

What feature did you particularly like?

Results history and saving/retrieving results from the server

4. Any additional comments about the system

1. Does the new interface help to speed up the task of testing image processing
algorithms?

Yes it does as the automatic tests replace the manually ones which take much longer.

2. Is it easy for the user to understand how to use the system based on it’s visual
appearance, or are some instructions required?

I believe it is easy.

3. Does the system present any difficulties that prevent the user from carrying out
tasks seamlessly?

On a very large amount of database the test is sensible slower than it could. The fact

that it queries the database for a large amount of images and that the testing part is

written in java makes it slower. It’s just my opinion.

4. Are parts of the system irrelevant or unnecessary?
I can’t think of any at the moment.

5. Overall Ratings

Please rate the system from 1 to 5 based on the following measures. Feel free to leave a

comment for any of the measures.

a. Efficiency 4
b. User friendliness 5
c. Pleasant to use 5
d. Easy to remember 4
e. Overall satisfaction 4
f. Potential future usage 5

179

R E F E R E N C E S

Adini, Y., Moses, Y., Ullman, S., (1997) Face recognition: The Problem o f

Compensating fo r Changes in Illumination Direction In IEEE Transactions on Pattern

Analysis and Machine Intelligence Vol. 19 No. 7 pp.721-732.

Balasuriya L.S., Kodikara N.D., (2001) Frontal View Human Face Detection and

Recognition In Proceedings of the International Information Technology Conference

IITC2000, Colombo, January 17th-l 9th 2001.

Bill, R.W., (2001) Jython fo r Java Programmers. Sams Pub, December 18, 2001 ISBN-

10: 0-7357-1111-9.

Black, J.A., Gargesha, M., Kahol, K., Kuchi, P., (2002) A Framework fo r Performance

Evaluation o f Face Recognition Algorithms In Proceedings of the International

Conference on ITCOM, Internet Multimedia Systems II, Boston, July 2002.

Blackburn, D., M., Bone, J.M., Phillips, P.J., (2001). FR VT2000 Report Technical

Report, February 2001, Available: http://www.frvt.org/FRVT2000/documents.htm

Blackburn, D.M., (2001) Evaluating Technology Properly - Three Easy Steps To

Success Article originally published in Corrections Today, July 2001, Vol. 63 No. 1.

Boehm, B., (1988) A Spiral Model o f Software Development and Enhancement In IEEE

Computer, vol.21, No. 5, May 1988, pp 61-72.

Bone, M., Backburn, D., (2002) Face Recognition at a Chokepoint - Scenario

Evaluation Results Evaluation Report United States Department of Defence

(Counterdrug Technology Development Program office) November 2002.

180

http://www.frvt.org/FRVT2000/documents.htm

Booch, G., (1993) Object-Oriented Analysis and Design with Applications 2nd Edition,

Addison-Wesley Professional; September 30, 1993.

Bovik, A.C., (2000) Handbook o f Image & Video Processing Academic Press.

Bowyer, K.W., Phillips, P.J., (1998) Overview o f Work in Empirical Evaluation o f

Computer Vision Algorithms In Empirical Evaluation Techniques in Computer Vision

(ed. K.W.Bowyer and P.J. Phillips), IEEE Computer Society Press, Los Alamitos,

1998, pp. 1-11.

Carlson, D., (2005) Eclipse Distilled Addison Wesley Professional, February 14, 2005

ISBN-10: 0-321-28815-7.

Cheon, Y., Kim, M.Y., Perumandla, A., (2005) A Complete Automation o f Unit Testing

fo r Java Programs In Proceedings of the 2005 International Conference on Software

Engineering Research and Practice (SERP ’05), Las Vegas, Nevada, June 27-29,

2005, pp. 290-295.

Chhabra, A., Phillips, L, (1998) A Benchmark fo r Graphics Recognition Systems In

Empirical Evaluation Techniques in Computer Vision, Los Alamitos, CA, IEEE

Computer Society Press, pp. 28-44.

Clark, A.F., Clark, C., (2002) Performance Characterization in Computer Vision: a

Tutorial Available Online: peipa.essex.ac.uk/benchmark/tutorials/essex/tutorial.pdf

Connolly, C. (2003) Latest Developments in Machine Vision - a Review o f Image

Processing Packages In Sensor Review Vol. 23 No. 3 pp. 193 - 201. ISSN: 0260-

2288 Publisher: MCB UP Ltd.

Cooper, J. W., (1998) The Design Patterns Java Companion Addison-Wesley, October

1998.

181

Courtney, P., Thacker, N.A., (2001) Performance Characterisation in Computer

Vision: The Role o f Statistics in Testing and Design. In Blanc-Talon and Popescu,

editors, Imaging and Vision Systems: Theory, Assessment and Applications. NOVA

Science Books, 2001.

Courtney, P., Thacker, N.A., (2003) Performance Characterisation in Computer

Vision: The Role o f Statistics in Testing and Design. August 29, 2003 Available:

http://peipa.essex.ac.uk/benchmark/tutorials/epsrcss2002/handout/epsrcss2002-

handout.pdf

Dalong, J., Yuxiao, H., Shuicheng, Y., Zhang, L., Zhang, H., Wen, G., (2005)

Efficient 3D Reconstruction For Face Recognition In Pattern Recognition Letters,

Vol. 38, No. 6, June 2005, pp. 787-798.

Davis, M., Van House, N.A., Burgener, C., Perkel, D., King, S., Towle, J., Ahern, S.,

Finn, M., Viswanathan, V., Rothenberg, M., (2005) MMM2: Mobile Media

Metadata fo r Media Sharing In CHI '05 Extended Abstracts on Human Factors in

Computing Systems, 2005, ACM Press, pp. 1335-1338.

Delac, K., Grgic, M., Grgic, S., (2005) Effects o f JPEG and JPEG2000 Compression on

Face Recognition In Proceedings of Third International Conference on Advances in

Pattern Recognition, ICAPR 2005, LMCS 3687 Springer-Verlag Berlin Heidelberg,

pp. 136-145.

Deluca, M.J., United States Patent: 6,407,777 Filed: October 9, 1997 Application No:

947603

Eastman Kodak (2006) Infoimaging - A $255 Billion Industry Creating by the

Convergence o f Image Science and Information Technology Eastman Kodak White

Available online: http://www.kodak.com/go/infoimaging

182

http://peipa.essex.ac.uk/benchmark/tutorials/epsrcss2002/handout/epsrcss2002-
http://www.kodak.com/go/infoimaging

Eriksson, H.-K., Penker, M., (1997) UML Toolkit John Wiley & Sons Inc; October 14

1997.

Firschein, 0 ., Fischler, M.A., Kanade, T., (1993) Creating Benchmarking Problems in

Machine Vision: Scientific Challenge Problems In Proceedings of the 1993 DARPA

Image Understanding Workshop, April, 1993.

Föerstner, W., (1996) 10 Pros and Cons against Performance Characterisation o f

Vision Algorithms In Proceedings of ECCV Workshop on Performance

Characteristics o f Vision Algorithms, Cambridge, UK, April 1996. Also in Machine

Vision Applications, 9 (5/6), 1997, pp.215-218.

Gabrilovich, E., Finkeistein, L., (2001) J N I - C++ Integration Made Easy In C/C++

Users Journal. CMP Media LLC, Manhasset, NY, USA, January 2001.

Gamma, E., Helm, R., Johnson, R., Vlissides, J., (1995) Design Patterns, Elements o f

Reusable Object-Oriented Software Addison Wesley (January 15, 1995) ISBN 0-201-

63361-2.

Gargi, U., Deng, Y., Tretter, D.R., (2003) Managing and Searching Personal Photo

Collections In Proc. SPIE Storage and Retrieval for Media Databases, pp. 13-21.

Geer, D., (2005) Eclipse Becomes the Dominant Java IDE In IEEE Computer Vol. 38

No. 7, pp. 16-18.

Girgensohn, A., Adcock, J., Cooper, M., Foote, J., Wilcox, L., (2003) Simplifying the

Management o f Large Photo Collections In INTERACT '03: Ninth IFIP TCI 3

International Conference on Human-Computer Interaction, IOS Press, September

2003. pp 196-203.

Girgensohn, A., Adcock, J., Wilcox, L., (2004a) Leveraging Face Recognition

Technology to Find and Organize Photos In MIR '04: Proceedings of the 6th ACM

183

SIGMM international workshop on Multimedia information retrieval. ACM Press, pp

99-106.

Girgensohn, A., Adcock, J., Wilcox, L., (2004B) Organizing Photos o f People In

Proceedings o f UIST 2004 Conference Companion, Santa Fe, USA. October 24, pp.

37-38.

Gonzalez, R. C., Woods, R. E., (2002) Digital Image Processing (2nd Edition) Prentice

Hall (January 15, 2002) ISBN: 0201180758

Gould, I.D., Lewis, C., (1985) Designing fo r Usability: Key Principles and What

Designers Think In Communications of the ACM Volume 28, No. 3 (Mar. 1985), pp.

300-311.

Green, D., DiCaterino, A., (1998) A Survey o f System Development Process Models

Center for Technology in Government, University at Albany/SUNY, CTG.MFA -

003, February 1998, Available online:

http://www.ctg.albany.edu/publications/reports/survey_of_sysdev

Grgic, M., Delac, K., Grgic, S., (2005) Face Recognition: Hypothesis Testing Across All

Ranks Technical Report, FER-VCL-TR-2005-02, University o f Zagreb, FER.

Gross, R., Baker, S., Matthews, I., Kanade T., (2004) Face Recognition across Pose

and Illumination In Handbook of Face Recognition, (Stan Z. Li and Anil K. Jain, ed.,)

Springer-Verlag, June, 2004.

Gross, R., Cohn, J., Shi, J., (2001) Quo Vadis Face Recognition Third Workshop on

Empirical Evaluation Methods in Computer Vision, In IEEE Conference on

Computer Vision and Pattern Recognition, Hawaii, December 2001.

184

http://www.ctg.albany.edu/publications/reports/survey_of_sysdev

Gruber, O., Hargrave, B.J., McAffer, J., Rapicault, P., Watson, T., (2005) The

Eclipse 3.0platform: Adopting OSGi technology In IBM SYSTEMS JOURNAL,

Volume 44, No 2, 2005 pp.289-299.

Gur, H., (2002) Newgen Software Technologies Available Online:

http://www.expresscomputeronline.com/20020408/technology2.shtml 8 Apr 2002

(Accessed 19 Jan 2005)

Hailpern, B., Santhanam, P., (2002). Software Debugging, Testing, and Verification In

IBM Systems Journal, Volume 41, Number 1, pp. 4-12.

Harold, E.R., Means, W.S., (2004) XML in a Nutshell. 3rd Edition, O'Reilly, September

2004, ISBN: 0-596-00764-7.

Hatton, T., (2005) SWT: A Developers Notebook O Reilly Media Inc., October 2004.

Heo, J., Abidi, B., Paik, J., Abidi, M.A., (2003) Face recognition: Evaluation Report

fo r Facelt Identification and Surveillance .In Proc. Of SPIE 6th International

Conference on Quality Control by Artificial Vision, Vol. 5132, Gatlinburg, TN, May

2003, p p .551-558.

Heseltine, T., Pears, N., Austin, J., Chen, Z., (2003) Face Recognition: A Comparison

o f Appearance-Based Approaches In Proc. 7th Digital Image Computing: Techniques

and Applications, (Sun C., Talbot H., Ourselin S. and Adriaansen T. (Eds.)), Dec.

2003, Vol. 1 pp. 59-69.

Hong, J.-H., Yun, E.-K., Cho, S.-B., (2004) A Review o f Performance Evaluation fo r

Biometrics System In International Journal o f Image and Graphics World Scientific

Publishing Company March 24, 2004.

Hsu, R.L., Abdel-Mottaleb, M., Jain, A.K., (2001) Face Detection in Color Images In

Proc. International Conference Image Processing, pp. 1046-1049.

185

http://www.expresscomputeronline.com/20020408/technology2.shtml

http://jakarta.apache.org/bsf/ (2006) The Apache Jakarta Project- Bean Scripting

Framework (Accessed 20 April 2006)

http://jruby.sourceforge.net/ (2006) (Accessed 20 April 2006)

http://msdn.microsoft.com/visualc/ (2006) (Accessed 20 April 2006)

http://news.bbc.co.Uk/l/hi/in_depth/uk/2005/london_explosions/default.stm, (2005)

(Accessed 20 April 2006)

http://peipa.essex.ac.uk/ PEIPA, the Pilot European Image Processing Archive

(Accessed 05 May 2006)

http://java.com/en/about/, 2006 Sun Microsystems, Inc. (Accessed 20 May 2006)

http://www.apple.com (2006) Apple Computer, Inc. (Accessed 20 May 2006)

http://www.beanshell.org/ (2006) (Accessed 17 May 2006)

http://www.bell-labs.com/ (2006) Bell Laboratories (Accessed 20 May 2006)

http://www.biometricgroup.com/ (2006) International Biometric Group (Accessed 17

May 2006)

http://www.eclipse.org/ (2006) (Accessed 20 May 2006)

http://www.eclipse.org/swt (2006) The Standard Widget Toolkit (Accessed 20 May

2006)

http://www.ge.com/ (2006) General Electric (Accessed 20 May 2006)

http://www.jpeg.org/ (2005) (Accessed 24 January 2005)

http://www.junit.org (2006) (Accessed 20 April 2006)

186

http://jakarta.apache.org/bsf/
http://jruby.sourceforge.net/
http://msdn.microsoft.com/visualc/
http://news.bbc.co.Uk/l/hi/in_depth/uk/2005/london_explosions/default.stm
http://peipa.essex.ac.uk/
http://java.com/en/about/
http://www.apple.com
http://www.beanshell.org/
http://www.bell-labs.com/
http://www.biometricgroup.com/
http://www.eclipse.org/
http://www.eclipse.org/swt
http://www.ge.com/
http://www.jpeg.org/
http://www.junit.org

http://www.jython.org (2006) (Accessed 20 April 2006)

http://www.python.org (2006) (Accessed 20 April 2006)

http://www.mozilla.org/rhino/ (2006) Rhino: JavaScript for Java (Accessed 20 April

2006)

http://www.septemberllnews.com/, (2005) (Accessed 20 April 2006)

Hua, X.-S., Wenyin, L., Zhang, H.-J., (2004) An Automatic Performance Evaluation

Protocol fo r Video Text Detection Algorithms In IEEE Transactions on circuits and

systems for video technology, Vol. 14 No. 4, April 2004, pp. 498-507.

Hunter, D., Gibbons, D., Ozu, N., Pinnock, J., Cagle, K., (2000) Beginning Xml

(Programmer to Programmer) Peer Information Inc.; 1st edition, (June 1, 2000)

ISBN 1861003412.

International Data Corporation, (2004) Worldwide Image Forecast, 2004-2008: The

Image Bible (IDC #32428), December 2004, Available Online: www.idc.com

Jähne, B., (1997) Practical Handbook on Image Processing for Scientific and Technical

Applications. CRC Press 1997, ISBN 0849389062 (alk. paper)

Jain, A. K., Ross, A., Prabhaka, S., (2004) An Introduction to Biometric Recognition In

IEEE Transactions on Circuits and Systems for Video Technology, Special Issue on

Image and Video-Based Biometrics. Vol. 14 No. 1, pp. 4-20.

Jaynes, C., Kale, A., Sanders, N., Grossmann, E., (2005) The Terrascope Dataset: A

Scripted Multi-Camera Indoor Video Surveillance Dataset with Ground-truth In

Proceedings of the IEEE Workshop on Visual Surveillance and Performance Analysis

for Tracking and Surveillance.

187

http://www.jython.org
http://www.python.org
http://www.mozilla.org/rhino/
http://www.septemberllnews.com/
http://www.idc.com

Kendall, K.E., Kendall, J.E., (2001) Systems Analysis and Design 5 Edition Prentice

Hall, June 2001.

Kim, Y.-O., Jang, S.-H., Park, C.-W., Sung, H.-G., Kwon, O., Paik, J., (2004) A New

3D Active Camera System fo r Robust Face Recognition by Correcting Pose Variation

In Proceedings of International Conference on Control, Automation and Systems

(ICCAS 2004) August 2004 pp. 1482-1487.

Kim, Y.-O., Paik, J., Heo, J., Koschan, A., Abidi, B., Abidi, M., (2003) Automatic

Face Region Tracking fo r Highly Accurate Face Recognition in Unconstrained

Environments In Proc. IEEE International Conference on Advanced Video and Signal

Based Surveillance, Miami, FL, July 2003. pp. 29-36.

Knudsen, J., Niemeyer, P., (2005) Learning Java 3rd Edition, O'Reilly, May 2005

ISBN: 0-596-00873-2

Kong, S.G., Heo, J., Abidi, B.R., Paik, J., Abidi, M.A., (2005) Recent Advances in

Visual and Infrared Face Recognition - A Review In the Journal of Computer Vision

and Image Understanding, Vol. 97 No. 1, June 2005, pp. 103-135.

Kung, S.Y., Mak, M.K., Lin, S.H., (2004) Biometric Authentication: A Machine

Learning Approach Prentice Hall PTR, September 14, 2004, Print ISBN-10: 0-13-

147824-9.

Liang, S., (1999) Java™ Native Interface: Programmer's Guide and Specification

Addison Wesley Professional, June 10, 1999 ISBN-10: 0-201-32577-2.

Little, G., Krishna, S., Black, J., Panchanathan, S., (2005) A Methodology fo r

Evaluating Robustness o f Face Recognition Algorithms with Respect to Variations in

Pose Angle and Illumination Angle In IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP 2005), September pp. 89-92.

188

Liu, W., Dori, D., (1999) Principles o f Constructing a Performance Evaluation Protocol

fo r Graphics Recognition Algorithms In Performance Characterization and Evaluation

of Computer Vision Algorithms, R. Klette, S. Stiehl, and M. Viergever (eds.),

Kluwer, pp. 97-106.

Low, B.K., Hjelmas, E., (2001) Face Detection: A Survey Computer Vision and Image

Understanding, Sept. 2001, Vol. 3 No. 3, pp. 236-274.

Loy, G., Eklundh, J., (2005) A Review o f Benchmarking Content Based Image Retrieval

In Proceedings of the MUSCLE / ImageCLEF Workshop on Image and Video

Retrieval Evaluation, September 2005.

Lu, X., (2003) Image Analysis fo r Face Recognition, personal notes, May 2003,

Available Online:

http://www.cse.msu.edu/%7Elvxiaogu/publications/ImAna4FacRcg_Lu.pdf

Luo, H., Yen, J., Tretter, D., (2004) An Efficient Automatic Redeye Detection and

Correction Algorithm 17th International Conference on Pattern Recognition

(ICPR'04). Cambridge, UK. Vol. 2, pp. 883-886.

Lyra Research (2006) The Big Picture: What Happens to Photo Prints? The 2006 Lyra

Imaging Symposium, 02 March 2006.

Mancuso, M., Battiato, S., (2001) An Introduction to the Digital Still Camera

Technology In ST Journal o f System Research, Vol.2 No.2, Dec.2001.

Mansfield, A.J., Wayman, J.L., (2002) Best Practices in Testing and Reporting

Performance o f Biometric Devices Issue 2 draft 9, Issued 08/02, United Kingdom

Government Biometric Working Group. Available Online:

http://www.npl.co.uk/scientific_software/publications/biometrics/bestprac_v2_l.pdf

189

http://www.cse.msu.edu/%7Elvxiaogu/publications/ImAna4FacRcg_Lu.pdf
http://www.npl.co.uk/scientific_software/publications/biometrics/bestprac_v2_l.pdf

Martin, A., Doddington, G., Kamm, T., Ordowski, M., and Przybocki, M., (1997)

The DET Curve In Assessment o f Detection Task Performance In Proceedings of the

European Conference on Speech Communication and Technology, 1997, pp. 1895-

1898.

Maruyama, H., Tamura, K., Uramoto, N., (1999) XML and Java Developing Web

Applications Addison-Wesley Professional, May 04, 1999 ISBN-10: 0-201-48543-5.

Mazor, B., (2005) Biometric Imaging Faces a Reality Check Discussion Featuring

Biometric Imaging and Security Concerns. In Advanced Imaging Magazine,

September 2005, Available Online:

http://www.advancedimagingpro.com/publication/article.jsp7pubIdH &id=l 743

McAffer, J., Lemieux, J.-M., (2005) Eclipse Rich Client Platform: Designing, Coding,

and Packaging Java™ Applications Addison Wesley Professional, October 11, 2005

ISBN-10: 0-321-33461-2.

McGregor, J.D., Sykes, D.A., (2001) A Practical Guide to Testing Object-Oriented

Software Addison Wesley Professional, March 05, 2001 ISBN-10: 0-201-32564-0

McLaughlin, B., (2000) Java & XML O’ Reilly Publishing, June 2000, ISBN: 0-596-

00016-2.

McLaughlin, B., (2001) Java & XML 2nd Edition, O’ Reilly Publishing, September 2001,

ISBN: 0-596-00197-5.

Meer, P., Stewart, C.V., Tyler, D.E., (2000) Introduction - Robust Computer Vision:

An Interdisciplinary Challenge In Computer Vision and Image Understanding 78

Published by Academic Press, pp. 1-7.

Messina, G., Castorina, A., Battiato, S., Bosco, A., (2003) Image Quality Improvement

by Adaptive Exposure Correction Techniques In Proc. of ICME 2003. pp. 549-552.

190

http://www.advancedimagingpro.com/publication/article.jsp7pubIdH

Micheals, R.J., Boult, T.E., (2000) Replicate Statistics fo r Efficient Vision Systems

Technical report (Lehigh University) December 2000 Available Online:

http://www.eecs.lehigh.edu/

Micheals, R.J., Boult, T.E., (2001) Efficient Evaluation o f Classification and

Recognition Systems In IEEE Computer Society Conference on Computer Vision and

Pattern Recognition. (CVPR 2001), vol. 1, Dec. 2001, pp. 150-157.

Milburn, K., (2004) Digital Photography: Expert Techniques O'Reilly Publishing,

March 2004 ISBN: 0-596-00547-4.

MIT face database, (2000) Massachusetts Institute of Technology. Available online:

ftp://whitechapel.media.mit.edu/pub/images/

Moon, H., Chellapa, R., Rosenfeld, A., (2002) Performance Analysis o f a Simple

Vehicle Detection Algorithm In Image and Vision Computing, Vol. 20 No. 1, pp. 1—

13.

Mordani, R., Davidson, J.D., Boag, S., (2001) Java API fo r XML Processing Sun

Microsystems, Inc. Version 1.1 Final Release, February 6, 2001.

Mu, X., Artiklar, M., Artiklar, M., Hassoun, M.H., Watta, P., (2001) Training

Algorithms fo r Robust Face Recognition Using a Template-matching Approach In

Proc. International Joint Conference on Neural Networks (IJCNN ’01), Vol. 4,

Washington, DC, USA, July 2001, pp. 2877-2882.

Muller, H., Geissbuhler, A., Marchand-Maillet, S., Clough, P., (2004) Benchmarking

Image Retrieval Applications In Proceedings of The Tenth International Conference

on Distributed Multimedia Systems (DMS’2004), Workshop on Visual Information

Systems (VIS 2004), San Francisco, CA, USA, 2004.

191

http://www.eecs.lehigh.edu/
ftp://whitechapel.media.mit.edu/pub/images/

Narasimhan, S.G., Wang, C., Nayar, S. K., (2002) All the Images o f an Outdoor Scene

In Proc. ECCV, 2002. LNCS 2352, 2002, pp. 148-162.

Narayanaswami, C., Raghunath, M.T., (2004) Expanding the Digital Camera's Reach

In IEEE Computer, Vol. 37 No. 12, Dec 2004, pp. 65-73.

Nishino, K., Belhumeur, P.N., Nayar, S.K., (2005a) Using Eye Reflections fo r Face

Recognition Under Varying Illumination In Tenth IEEE International Conference on

Computer Vision (ICCV'05) Volume 1, pp. 519-526.

Nuseibeh, BA., (2001) Weaving Together Requirements and Architecture In IEEE

Computer Volume 34 No. 3, pp.l 15-117 (March 2001).

Ojala, T. Mäenpää, T. Pietikäinen, M. Viertola, J. Kyllönen, J. Huovinen, S. (2002)

Outex - New Framework fo r Empirical Evaluation o f Texture Analysis Algorithms In

Proc. 16th International Conference on Pattern Recognition, Vol. 1, Quebec, Canada,

2002, pp. 701-706.

Orfali, R., Harkey, D., Edwards, J., (1999) Client/Server Survival Guide Third Edition,

John Wiley & Sons, 1999 ISBN 0-471-31615-6.

Pankanti, S., Bolle, R.M., Jain, A., Guest Editors' Introduction: Biometrics - The

Future o f Identification In IEEE Computer, Vol. 33, No. 2, pp. 46-49.

Pedroni, S., Rappin N., (2002) Jython Essentials: Rapid Scripting in Java 1st Edition,

O'Reilly & Associates, ISBN:0596002475.

Pentland, A., Choudhury, T., (2000) Face Recognition fo r Smart Environments In

IEEE Computer Magazine (Special issue on biometrics), Vol. 33, No. 2. (February

2000), pp. 50-55.

192

Phillips, I.T., Chhabra, A.K., (1999) Empirical Performance Evaluation o f Graphics

Recognition Systems In IEEE Trans. Pattern Analysis and Machine Intelligence, Vol.

21 No. 9, September 1999.

Phillips, I.T., Liang, J., Chhabra, A.K., Haralick, R., (1998) A Performance

Evaluation Protocol fo r Graphics Recognition Systems. In Graphics Recognition:

Algorithms and Systems, Second International Workshop, GREC’97, Nancy, France,

August 1997, Selected Papers, Vol. 1389 of Lecture Notes in Computer Science, pp.

(K. Tombre and A. Chhabra, Eds), Springer, Berlin, 1998, pp.372-389.

Phillips, P.J., Flynn, P.J., Scruggs, T., Bowyer, K.W., Chang, J., Hoffman, K.,

Marques, J., Min, J., Worek, W., (2005) Overview o f the Face Recognition Grand

Challenge Computer Vision and Pattern Recognition (CVPR 2005), San Diego, June

2005, p p .947-954.

Phillips, P.J., Grother, P., Micheals, R.J., Blackburn, D.M., Tabassi, E., Bone, J.M.,

(2003) FRVT2002: Evaluation report Tech. Rep., March 2003, Available online:

http://www.frvt.org/FRVT2002/documents.htm.

Phillips, P.J., Martin, A., Wilson, C.L., Przybocki, M., (2000a) An Introduction to

Evaluating Biometric Systems In IEEE Computer Magazine (Special issue on

biometrics), Vol. 33, No. 2 (February 2000), pp. 56-63.

Phillips, P.J., Moon, H., Rizvi, S.A., Rauss, P.J., (2000b) The FERET Evaluation

Methodology fo r Face-Recognition Algorithms In IEEE Transactions on Pattern

Analysis and Machine Intelligence, October 2000, Vol. 22 No. 10.

Pluta, J., (2004) Eclipse: Step by Step. A Practical Guide to Becoming Proficient in

Eclipse MC Press Online, October 2004.

193

http://www.frvt.org/FRVT2002/documents.htm

Prabhakar, S., Pan kanti, S., Jain, A.K., (2003) Biometric Recognition: Security and

Privacy Concern In IEEE Security and Privacy Magazine, Vol. 1, No. 2, pp. 33-42.

Preece, J., Rogers, Y., Sharp, H., Benyon, D., Holland, S., Carey, T., (1994) Human-

Computer Interaction : Concepts And Design (Hardcover) Addison Wesley; 1st

edition (April 30, 1994) ISBN: 0201627698.

Pressman R. S., (2005) Software Engineering A Practitioner’s Approach 6th Edition,

McGraw-Hill ISBN: 0007-123840-9.

Raskin, J., (2000) The Humane Interface: New Directions fo r Designing Interactive

Systems Addison Wesley, April 6 2000, ISBN: 0201379376.

Riopka, T., Boult, T., (2003) The Eyes Have It In ACM Workshop on Biometric Methods

& Application. (WBMA’03), November 2003, Berkley, pp. 9-16.

Sarvas, R., (2005) User-centric Metadata fo r Mobile Photos In Proc. Pervasive Image

Capture and Sharing Workshop (PICS2005) at Ubicomp 2005.

Sarvas, R., Herrarte, E., Wilhelm, A., Davis, M., (2004) Metadata Creation System fo r

Mobile Images In Proceedings of MobiSys 2004, Boston, MA, USA. ACM Press,

New York, NY, 2004, pp. 36-48.

Schettini, R., Gasparini, F., Chazli, F., (2004) A Modular Procedure fo r Automatic Red

Eye Correction in Digital Photos In Proceedings o f SPIE. Vol. 5293 (R. Eschbach,

G.G. Marcu eds.), pp. 139-147.

Shah, M., (2002) Guest Introduction: The Changing Shape o f Computer Vision in the

Twenty-First Century In International Journal o f Computer Vision, November 2002

194

Shalloway, A., Trott, J.R., (2004) Design Patterns Explained A New Perspective on

Object-Oriented Design Second Edition, Addison Wesley Professional, Pub Date:

October 12 2004, ISBN-10: 0-321-24714-0.

Sharma, P., Reilly, R.B., (2003) A Colour Face Image Database fo r Benchmarking o f

Automatic Face Detection Algorithms In 4th EURASIP Conference, Video/Image

Processing and Multimedia Communications, 2003, 2-5 July 2003.

Shavor, S., D ’Anjou, J., Fairbrother, S., Kehn, D., Kellermen, J., McCarthy, P.,

(2003) The Java Developer’s Guide to ECLIPSE Addison-Wesley, June 2003.

Smolka, B., Czubin, K., Hardeberg, J.Y., Plataniotis, K.N., Szczepanski, M.,

Wojciechowski, K., (2003) Towards Automatic Redeye Effect Removal In Pattern

Recognition Letters Vol. 24 No. 11. July 2003, pp. 1767-1785.

Sommerville, I., (1992) Software Engineering 4th Edition, Addison-Wesley Publishing

Company.

Sommerville, I., (2001) Software Engineering 6th Edition, Addison-Wesley Publishing

Company.

Takeuchi, A., Shneier, M., Hong, T., Chang, T., Scrapper, C., Cheok, G., (2003)

Ground Truth and Benchmarks fo r Performance Evaluation In Proceedings o f SPIE-

the International Society For Optical Engineering, Vol. 5083 No. 48, April 2003, pp.

408-414.

Thacker, N., Lacey, T., Courtney, P., (2003) An Empirical Design Methodology fo r the

Construction o f Machine Vision Systems Tina memo 2002-005, Technical report,

Department o f Imaging Science and Biomedical Engineering, Medical School,

University o f Manchester, UK, May 2003. Available online:

http://peipa.essex.ac.uk/benchmark/methodology/white-paper/methodology.pdf

195

http://peipa.essex.ac.uk/benchmark/methodology/white-paper/methodology.pdf

Thacker, N.A., Clark, A.F., Barron, J., Beveridge, R., Clark, C., Courtney, P.,

Crum, W.R., Ramesh, V., (2005) Performance Characterisation in Computer

Vision: A Guide to Best Practices Tina memo 2005-009, Technical report,

Department of Imaging Science and Biomedical Engineering, Medical School,

University of Manchester, UK, April 2005. Available online: http://www.tina-

vision.net/docs/memos/2005-009.pdf

Torres, L., (2004) Is There Any Hope fo r Face Recognition? In Proc. o f the 5th

International Workshop on Image Analysis for Multimedia Interactive Services,

WIAMIS 2004, 21-23 April 2004, Lisboa, Portugal.

Ulichney, R., Gaubatz, M., Thong, JM. V. P., (2003) RedBot- A Tool fo r Improving

Red-Eye Correction. Available online: http://hpl.hp.com/research/redbot/. October

2003.

Umbaugh, S. E., (1998) Computer Vision and Image Processing: A Practical Approach

using C VIP tools Prentice Hall PTR Publishing

Van House, N., Davis, M., Ames, M., Finn, M., Viswanathan, V., (2005) The Uses o f

Personal Networked Digital Imaging: An Empirical Study o f Cameraphone Photos

and Sharing In CHI '05 Extended Abstracts on Human Factors in Computing

Systems, 2005, ACM Press, pp. 1853-1856.

Van House, N., Davis, M., Takhteyev, Y., Good, N., Wilhelm, A., Finn, M., (2004 a)

From 'What?' to 'Why?': The Social Uses o f Personal Photos In CSC W’04,

November 6-10, 2004, Chicago, Illinois, USA. ACM Press 2004.

Vaughan-Nichols, S.J., (2003b) XML Raises Concerns As It Gains Prominence

In IEEE Computer Volume 36, Issue 5, May 2003 pp. 14 - 16. Vol. 50, No. 2, pp.

103-110.

196

http://www.tina-
http://hpl.hp.com/research/redbot/

Werbicki, P., Kremer, R., (2005) Object-Oriented Programming across Native-Virtual

Boundaries Virtual Execution Environments (Vee’05), June 11-12, 2005, Chicago,

Illinois, USA. ACM.

Whittaker, J.A., (2000) What is Software Testing? And Why is It So Hard? In IEEE

Software Volume 17, No. 1 (Jan 2000), pp.70-79.

Wilhelm, A., Takhteyev, Y., Sarvas, R., Van House, N., Davis, M., (2004) Photo

Annotation on a Camera Phone In Proc. of CHI2004, ACM Press, 2004, pp. 1403-

1406.

Yang, C-H.T., Lai, S.-H., Chang, L.-W., (2004) Robust Face Image Matching Under

Illumination Variations In EURASIP Journal on Applied Signal Processing Vol. 16

Hindawi Publishing Corporation, pp. 2533-2543.

Yang, M.-H., Kriegman, D., Ahuja, N., (2002) Detecting Faces in Images: A Survey In

IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 24 No. 1, pp.

34-58.

Yang, Z., Zage, D., Zage, W., (2005) The Eclipse Platform fo r Tool Integration and

Development SERC#: SERC-TR-273 Publication Date: 5/1/2005 Software

Engineering Research Center, An NSF Industry/University Cooperative Research

Center.

Young, M., (2000) Step by Step XML Microsoft Press, July 2000.

Young, M.L., (2002) Internet: the Complete Reference Osborne/McGraw-Hill; 2nd

edition (June 6, 2002) ISBN: 0072194154.

Zhang, L., Chen, L., Li, M., Zhang, H., (2003) Automated Annotation o f Human Faces

in Family Albums In Proceedings o f the 11th International Conference on Multimedia

(MM2003), ACM Press, 2003, pp.335-358.

197

Zhang, L., Hu, Y., Li, M., Ma, W., Zhang, H., (2004a) Efficient Propagation fo r Face

Annotation in Family Albums In Proceedings o f the 12th International Conference on

Multimedia (MM2004), ACM Press, pp. 716-723.

Zhang, L., Li, M., Zhang, H.-J., (2002) Boosting Image Orientation Detection with

Indoor vs. Outdoor Classification In Proceedings of IEEE Workshop on Applications

of Computer Vision, pp. 95-99.

Zhang, L., Sun, Y., Li, M., Zhang, H., (2004b) Automated Red-Eye Detection and

Correction in Digital Photographs In Proc. IEEE International Conference on Image

Processing (ICIP 2004). Singapore, October 24-27, Vol. 4 pp. 2363 - 2366.

Zhao, W.Y., Chellappa, R., (2002) Image-based Face Recognition: Issues and Methods

Image Recognition and Classification, (Ed. B. Javidi, M. Dekker) 2002, pp. 375-402.

Zhao, W., Chellappa, R., Rosenfeld, A., Phillips, P.J., (2000) Face recognition: A

Literature Survey Technical Report, CAR-TR-948, University of Maryland, College

Park, 2000.

Zhao, W., Chellappa, R., Rosenfeld, A., Phillips, P.J., (2003) Face recognition: A

Literature Survey. In ACM Computing Surveys, 2003, pp. 399-458.

198

