

Letterkenny Institute of Technology

A thesis submitted in partial fulfilment of

the requirements for the Master of Science in Computing in

Enterprise Applications Development Letterkenny Institute of Technology

Threat Modelling for Legacy Enterprise

Applications

Author: Supervisor:
Michael McGrath Ruth Lennon

Submitted to the Higher Education and Training Awards Council (HETAC)

August 2013

MSc. Enterprise Applications Development

 ii

DECLARATION

I hereby certify that the material, which I now submit for assessment on the programmes of
study leading to the award of Master of Science in Computing in Enterprise Application
Development, is entirely my own work and has not been taken from the work of others except
to the extent that such work has been cited and acknowledged within the text of my own work.
No portion of the work contained in this thesis has been submitted in support of an application
for another degree or qualification to this or any other institution

Signature of Candidate: ____________________ Date: ____________________

MSc. Enterprise Applications Development

 iii

DEDICATION

Do mo bhean chéile Karen agus ár bheirt mic, Oisín agus Micheál,

Míle buíochas ar son do chuid grá agus tacaíocht le linn mo chuid staidéir agus fá choinne mé a

threorú agus a spreagadh i ngach rud a dheanam.

MSc. Enterprise Applications Development

 iv

ACKNOWLEDGMENTS

I would like to thank my adviser, Ruth Lennon, for her guidance and support. Thanks to Niamh

Hamill, Maura Schoumacker and Padraic Lynch for their valuable input. I would especially like to

thank Company X for granting access to their enterprise system during this research and Lead

Technical Developer Mr. N. for his contribution and encouragement. Further, I would like to

thank my fellow students for sharing this journey. A special thanks to my family for their

constant support. And thanks to my PlayStation III, for her patience and understanding during

our 18 month separation.

MSc. Enterprise Applications Development

 v

ABSTRACT

Legacy enterprise applications provide unique challenges for software security personnel. The

size and historical nature of these systems can result in vulnerabilities that do not have the

appropriate countermeasures in place. Development teams that support these systems can be

unaware of such security weaknesses until they have been exploited by an adversary. By

successfully identifying threats, development teams can put in place the appropriate

mitigations.

This research discusses the practice of Threat Modelling as a systematic approach to identifying

security vulnerabilities in software systems. Although numerous works have been presented on

the subject of Threat Modelling, very little has been published on the unique challenges faced

with Threat Modelling legacy systems. This research presents different Threat Model

methodologies and provides a comparison of leading practices suitable for the Threat

Modelling of large scale systems. The comparison is based on both theoretical research and the

practical application of two of the most popular Threat Models. This research then offers a

Threat Model case study of a major component of a live commercial legacy enterprise

application. An Irish based software company has provided access to an existing legacy system

for the purpose of this project, the practical development of a Threat Model and a detailed

analysis of the system.

MSc. Enterprise Applications Development

 vi

ABREVIATIONS

AS/NZS Australian/New Zealand Standard

BSIMM Building Security in Maturity Model

CLASP Comprehensive and Lightweight Application Security Process

CMMI Capability Maturity Model Integration

CMMI-DEV Capability Maturity Model Integration for Develoeprs

CRUD Create, Read, Write, Update, Delete

CVSS Common Vulnerability Scoring System

DFD Data Flow Diagram

DREAD Damage Potential, Reproducibility, Exploitability, Affected users, Discoverability

EoP Elevation of Privilege

HAZOP Analysis Hazardous Operations Analysis

IT Information Technology

IP Internet Protocol

ISO International Organization for Standardization

NIC Network Interface Controller

OWASP Open Web Application Security Project

P.A.S.T.A Process for Attack Simulation and Threat Analysis

PTA Practical Threat Analysis

S.B.S.R.S Security Bulletin Severity Rating System

SA Server Administrator

SAMM Software Assurance Maturity Model

SDL Security Development Lifecycle

SDLC Software Development Lifecycle

SME Small and Medium Enterprise

SSDL Secure Software Development Lifecycle

STRIDE Spoofing, Tampering, Repudiation, Information Disclosure, Denial of Service,
Elevation of Privilege

TAM Threat Analysis and Modelling

WinPcap Windows Packet Capture Library

WinSock Windows Sockets API

XAMPP Apache HTTP Server, MySQL database, PHP and Perl

MSc. Enterprise Applications Development

 vii

TABLE OF CONTENT

Declaration .. ii

Dedication .. iii

Acknowledgments .. iv

Abstract ... v

Abreviations ... vi

List of Figures ... xi

List of Tables ... xii

Chapter 1 – INTRODUCTION 13

Chapter 2 – BACKGOURND & INITIAL RESEARCH . .. 15

2.1 Background .. 15

2.2 Research ... 16

2.2.1 Open Software Assurance Maturity Model (SAMM) ... 16

2.2.2 Building Security in Maturity Model (BSIMM) ... 17

2.2.3 Comprehensive, Light-weight Application Security Process (CLASP) 17

2.2.4 Microsoft’s Security Development Lifecycle (SDL) .. 18

2.2.5 SDL for Agile ... 20

2.2.6 Security survey reported SDL / SDL for Agile most adopted processes 21

2.3 Conclusion .. 22

Chapter 3 – THREAT MODELLING 23

3.1 Threat Modelling Basic Concepts... 23

3.2 Introduction to Threat Modelling .. 24

3.3 Microsoft SDL – STRIDE .. 24

3.3.1 Scope and Constraint ... 25

3.3.2 Use Scenarios ... 25

3.3.3 External / Internal Dependencies .. 26

3.3.4 Security Notes .. 26

3.3.5 Assets ... 26

MSc. Enterprise Applications Development

 viii

3.3.6 Entry / Exit Points .. 26

3.3.7 Trust Levels .. 26

3.3.8 Architecture Overview – Data Flow Diagrams ... 27

3.3.9 STRIDE Threat Classification .. 27

3.4 TRIKE overview... 30

3.5 P.A.S.T.A (Process for Attack Simulation and Threat Analysis) overview .. 31

3.6 AS/NZS 31000:2009 Risk Management overview.. 31

3.7 Other Threat Model processes .. 32

3.8 Risk Assessment ... 32

3.8.1 DREAD .. 33

3.8.2 Security Bulletin Severity Rating System (S.B.S.R.S) .. 34

3.8.3 Other Risk Assessments Processes .. 35

3.9 Threat Modelling supporting tools .. 35

3.10 Conclusion .. 36

Chapter 4 – COMPARISON OF THREAT MODEL APPROACHES 38

4.1 STRIDE / DREAD ... 39

4.2 SDL Threat Modelling Tool (v3.1.8) ... 39

4.2.1 Draw Diagram .. 40

4.2.2 Analyse Model ... 40

4.2.3 Describe Environment ... 41

4.2.4 Generate Reports .. 42

4.3 SDL Threat Modelling Tool vs. Traditional STRIDE / DREAD .. 42

4.4 TRIKE 1.5 .. 44

4.5 TRIKE v STRIDE ... 47

4.6 The use of Tools in Enterprise Applications ... 49

4.7 Conclusion .. 50

Chapter 5 – THREAT MODELLING AN EXISTING LEGACY . .. 51

MSc. Enterprise Applications Development

 ix

Chapter 6 – CASE STUDY REPORT 53

6.1 Threat Modelling Information ... 53

6.2 Use Scenarios ... 55

6.3 External Dependencies .. 57

6.4 External Security Notes .. 58

6.5 Internal Security Notes .. 58

6.6 Assets ... 59

6.7 Entry / Exit Points ... 60

6.8 Assumptions ... 61

6.9 Data Flow Diagrams ... 61

6.9.1 APP X – DFD Context Diagram ... 62

6.9.2 APP X (DFD Level 0) .. 63

6.9.3 APP X Server (DFD Level 1) .. 64

6.9.4 APP X Client B (DFD Level 1) .. 65

6.9.5 APP X Client A (DFD Level 1) .. 66

6.9.6 External Interfaces (DFD Level 1) ... 67

6.9.7 Client / Server Handshake Protocol (DFD Level 2) .. 68

6.9.8 User Login (DFD Level 2) .. 68

6.10 STRIDE Process ... 69

6.11 Vulnerabilities .. 72

6.11 DREAD Scoring ... 77

Chapter 7 - VERIFICATION. ... 78

7.1 Test: Unauthorised Direct Access to Database .. 78

7.2 Test: Unauthorised Direct Access to Server .. 82

7.3 Test: Network Traffic Interception .. 86

7.4 Additional Verification ... 90

7.5 Conclusion .. 91

Chapter 8 – RESULTS / FINDINGS ... 92

8.1 Threat Modelling of a Legacy Application ... 92

MSc. Enterprise Applications Development

 x

8.2 Results of STRIDE / DREAD ... 93

8.3 Validation of Identified Vulnerabilities .. 95

8.4 Conclusion .. 96

Chapter 9 – INDUSTRY FEEDBACK . .. 97

Chapter 10 – DISCUSSION . .. 98

Chapter 11 – SUMMARY . .. 101

Chapter 12 – CONCLUSIONS & FUTURE WORK. .. 104

12.1 Comprehensive tools ... 104

12.2 Legacy Systems .. 105

12.3 Subjective Assessment – STRIDE / DREAD ... 105

12.4 Enterprise Applications .. 106

12.5 Industry Perception ... 107

12.6 Security Vulnerabilities .. 107

12.7 Future Work ... 108

Reference .. 110

Appendicies... 115

Appendix 1 – STRIDE Mitigation Sheet .. 115

Appendix 2 – STRIDE Threat Model ... 116

Appendix 3 –TM Tool ... 116

Appendix 4 – TRIKE Spreadsheet ... 116

Appendix 5 – DB script ... 116

Appendix 6 – WinSock ... 116

Appendix 7 – An Introduction to Threat Modelling, Slides ... 116

MSc. Enterprise Applications Development

 xi

LIST OF FIGURES

Figure 1 - Security Development Lifecycle Process ... 19

Figure 2 - Classic SDL Threat Modelling .. 25

Figure 3 - DFD Shapes ... 27

Figure 4 - SDL Threat Modelling Tool Process .. 35

Figure 5 - Context DFD of McGrath's Mock Web Application ... 38

Figure 6 - Threat Listings .. 41

Figure 7 - CRUD privileges on each asset ... 45

Figure 8 - Priorities Threats ... 46

Figure 9 - APP X Network Deployment .. 55

Figure 10 - APP X Context Diagram .. 62

Figure 11 - APP X DFD (Level 0) ... 63

Figure 12 - APP X Server (DFD Level 1) .. 64

Figure 13 - APP X Client B (Level 1 DFD) .. 65

Figure 14 - APP X Client A (Level 1 DFD) .. 66

Figure 15 - External Interfaces (Level 1 DFD) ... 67

Figure 16 - Client / Server (Level 2 DFD) .. 68

Figure 17 - User Login (Level 2 DFD) .. 69

Figure 18 - APP X Server Configuration ... 72

Figure 19 - Screen shot of input/output of DB connection ... 81

Figure 20 - Connection to Server Bypassing Client .. 83

Figure 21 - Winsock Hack Application ... 84

Figure 22 - Network Eavesdropping .. 86

Figure 23 - Wireshark Capture Summary .. 88

Figure 24 - Packet with SQL command in plaintext ... 89

file:///C:/Documents%20and%20Settings/mmcgrath.MICK/My%20Documents/Dropbox/SITA-DEV/Threat%20Modelling-05-08-13.docx%23_Toc363462316

MSc. Enterprise Applications Development

 xii

LIST OF TABLES

Table 1 - STRIDE Model .. 28

Table 2 - STRIDE-per-Element ... 28

Table 3 - Mitigation Techniques ... 29

Table 4 - DREAD Model .. 33

Table 5 - Security Bulletin Severity Rating System ... 34

Table 6 - TRIKE CRUD Colour definition .. 45

Table 7 - Threat Rating Colour Scheme .. 47

Table 8 - STRIDE v TRIKE Comparison .. 48

Table 9 - Threat Modelling Information .. 54

Table 10 - Use Scenarios .. 56

Table 11 - External Dependencies ... 57

Table 12 - External Security Notes ... 58

Table 13 - Internal Security Notes ... 58

Table 14 - APP X Assets .. 59

Table 15 - Entry / Exit Points.. 60

Table 16 - Assumptions.. 61

Table 17 - Potential Threats Identified by STRIDE ... 71

Table 19 - Unauthorised Access to Database .. 73

Table 20 - Unauthorised Access to APP X Server ... 74

Table 21 - Disclosure of Login Information .. 75

Table 22 - Access without Auditing ... 75

Table 23 - Un-vetted Interfaces ... 76

Table 24 - Network traffic Interception ... 76

Table 25 - DREAD score sheet .. 77

Table 26 - Imperva 2013 Top Ten Database Threats .. 94

MSc. Enterprise Applications Development

 13

CHAPTER 1.

INTRODUCTION

Over the last decade the global software industry has striven to develop new practices and

methodologies which help software engineers build security into the development lifecycle of

applications. Threat Modelling is one such practice that outlines a structured approach to

identify and classify threats within a software system. By successfully identifying, documenting

and rating these threats, appropriate mitigations can be implemented in a more systematic

manner.

Threat Modelling, when introduced early in the development lifecycle of new applications,

greatly reduces mitigation costs through the early identification of vulnerabilities.

Existing/legacy software systems can also benefit from Threat Modelling, although this research

indicates that unique and complex challenges arise when dealing with historical/legacy systems,

as opposed to new applications

This research presents different Threat Model methodologies and determines which

approaches are most suitable for enterprise application development. Detailed comparisons of

existing methodologies can benefit organisations considering introducing Threat Modelling into

their development lifecycle.

Following this initial research, an in-depth case study Threat Model was developed for an

existing legacy enterprise application. This case study investigated the practical implementation

of the chosen methodologies and assessed the challenges of Threat Modelling a legacy system.

In order to support this research, an Irish based software company provided access to an

existing legacy system, and a Threat Model of that system was developed.

MSc. Enterprise Applications Development

 14

To this end the hypothesis of this research was deemed to be:

STRIDE is a comprehensive Threat Modelling methodology for assessing software

security vulnerabilities in legacy enterprise applications.

To evaluate the hypothesis two applicable threat model methodologies were applied to a mock

application. The initial findings were presented in tabular format. Subsequent to this the STRIDE

methodology was then applied to a legacy enterprise system. Verification of STRIDEs results

was then presented. This research concludes with the presentation of the analysis of the

findings with suggestions for further work.

MSc. Enterprise Applications Development

 15

CHAPTER 2.

BACKGROUND AND INITIAL RESEARCH

2.1 Background

One of the fundamental difficulties that the software industry has faced is security and the

development of secure software. Traditionally with finite budgets, a development team’s focus

was primarily to create an application to meet specified functionality requirements. Security

measures were implemented at a later stage in the Software Development Lifecycle (SDLC) with

vastly varying degrees of competency, influenced by factors such as budget constraints and the

skill-base of the security personnel. Based on industry experience, this author suggests that

software was often developed and released with vulnerabilities easily exploited by adversaries

with the necessary knowledge.

Over the last ten years, application development and the methodologies that govern

development practices have become significantly more focused on security. In 2002 Bill Gates

sent the now infamous “trustworthy computing” email to Microsoft employees, outlining the

company’s obligation to “lead the industry to a whole new level of Trustworthiness in

computing” *1+. The security and privacy of data stored by software as well as security models,

and clearer methods for developers to understand and build them into their applications, was

at the core of this security improvement program. Microsoft was just one of many

organisations at this time that was focusing on “building security in...” *2+ to every aspect of the

software development lifecycle.

Many development processes such as the Microsoft SDL (Security Development Lifecycle) have

since been established to provide a structured approach to the development of more secure

applications. Many of these development frameworks incorporate the practice of Threat

Modelling. In its most basic form Threat Modelling is a structured approach that identifies

potential security threats, assesses the risk and implements countermeasures.

MSc. Enterprise Applications Development

 16

2.2 Research

Each security development process discussed in this chapter incorporates Threat Modelling as

part of its development framework.

This chapter outlines some of the leading development frameworks in secure application

development including: Software Assurance Maturity Model (SAMM), the Building Security in

Maturity Model (BSIMM) and the Comprehensive and Lightweight Application Security Process

(CLASP) and Microsoft’s Security Development Lifecycle (SDL). During initial research it was

found that the SDL process provided a greater amount of supporting resources including

documentation, tutorials and supporting software applications from the Microsoft website [3].

This wealth of information makes SDL an attractive option for organisations looking to adopt a

new software security initiative.

The purpose of researching the different development frameworks was to gain a better

understanding of software security, Threat Modelling, how it fits into software development,

where it originated from and where Threat Modelling is going.

2.2.1 Open Software Assurance Maturity Model (SAMM)

OpenSAAM is an OWASP (Open Web Application Security Project) backed framework that is

built upon a collection of security practices that are tied back into four critical business

functions involved in software development [4], namely Governance, Construction, Verification

and Deployment. Each business function has three security practices and each of these

practices is divided into three maturity levels.

Threat Assessment is the first security practice during the Construction business function. It

uses Threat Modelling to identify potential risks. OpenSAAM it not tied in to any one Threat

Modelling approach and recommends the use of Microsoft’s STRIDE or TRIKE as potential

options.

MSc. Enterprise Applications Development

 17

2.2.2 Building Security in Maturity Model (BSIMM)

BSIMM security initiative was designed to help software development teams understand and

plan security [5] into an applications development lifecycle by studying the practices of fifty-one

leading software security initiatives. Companies such as Google, Adobe, Intel, Visa, Nokia, Sony

and Microsoft [6a] participated in the Gary McGraw (an industry leading expert in software

security) lead research. The resulting methodology combined the best practices (opinion of

BSIMM team) into one initiative. Teodoro and Serrao [7] suggested that companies like

Microsoft and Google give this security framework a special credibility.

Twelve practices grouped into four domains, Governance, Intelligence, SSDL Touchpoints,

Deployment, are used to organise this software security framework’s activities. The first

practice within the Intelligence domain is Attack Models. Threat Modelling is used during this

step to create an attack and data knowledge base [6b] relevant to the application.

BSIMM is not a new innovative approach to secure software development. This framework

gathered data on which activities are actually performed by Industry leaders. It then promoted

the best and most used of those activities. Traditionally, software firms were reluctant to

divulge information on internal practices. Gathering this information is a positive achievement

with relation to improving secure software development practices. BSIMM would benefit an

organisation either looking to adopt a security initiative or improve/mature existing practices.

For this research however BSIMM does not provide enough detailed information on Threat

Modelling.

2.2.3 Comprehensive, Light-weight Application Security Process (CLASP)

CLASP, another OWASP backed security framework contains formalised best practices for

building security into existing or new-start development life-cycles in a structured and

repeatable way [8]. It has been in existence since 2005 but the project has seen no recent

updates. It was originally developed by Secure Software Inc. and later donated to OWASP who

released it as a complete security solution that organisations could implement. Along with

MSc. Enterprise Applications Development

 18

Microsoft’s SDL, CLASP was recognised as one of the original [9] high profile processes for

developing secure software.

Within the CLASP framework, seven best practices are the foundation of all security related

activities. Performing an ‘application assessment’ is one of these seven best practices, which

promotes a security analysis of systems requirements and design to be conducted using Threat

Modelling. CLASP is not tied into any one method of modelling nor has it developed its own

approach.

Due to the lack of evolution of this project, a more progressive framework would be preferable

for a proposed security initiative.

2.2.4 Microsoft’s Security Development Lifecycle (SDL)

The Security Development Lifecycle (SDL) is a product of Microsoft’s “Trustworthy Computing”

initiative. With Threat Modelling at its core it is a clear well documented software security

development process with a number of software tools in support.

SDL aims to reduce software maintenance costs and increase reliability by building security into

each stage of the development lifecycle. The process consists of security practices grouped by

seven phases (Figure 1): training, requirements, design, implementation, verification, release,

and response [10]. Microsoft has developed and released its own Threat Modelling

methodology called STRIDE and different approaches to risk analyses including DREAD. Hussain,

Erwin and Dunne [11] suggested STRIDE is regarded as the most widely used Threat Model

methodology. The quantity of STRIDE based material identified during this initial research

indicates this is an accurate statement.

STRIDE is an acronym for:

Spoofing, Tampering, Repudiation, Information Disclosure, Denial of Service, Elevation

of Privilege.

DREAD is an acronym for:

Damage Potential, Reproducibility, Exploitability, Affected users, Discoverability.

MSc. Enterprise Applications Development

 19

At the end of the STRIDE activity a list of vulnerabilities is produced. These vulnerabilities are

then ranked (low / medium / high) using a risk analyses technique such as DREAD. The end

result is a prioritised list of vulnerabilities that both the development team and business

stakeholders can discuss and use with relation to security improvements.

 One of the keys to SDL is the introduction of Threat Modelling at the design stage which helps

identify application vulnerabilities and even potential design flaws early. This information is

then used to determine mitigations or potential design changes [2].

Figure 1 - Security Development Lifecycle Process [12]

It is evident during this research that Microsoft has put extensive resources behind its Security

Development Lifecycle. The number of tools available, not just for Threat Modelling but every

aspect of the SDL, online tutorials, documentation, support forums and blogs as well as the

constant refining of the process demonstrates Microsoft’s commitment to software security

and the continuous improvement of the activities that are used to developed secure

applications.

A recent IT threat evolution report by security firm Kaspersky Lab in Q3 2012 states that

Microsoft products “ ... no longer feature among the top 10 products with vulnerabilities” [13].

Traditionally Microsoft products would have had a heavy presence on any such list. Such

findings provide evidence that SDL and the resources behind it are paying dividends.

Microsoft’s SDL can be adapted to work with varying development environments. The process

can be used with Waterfall and Agile development methodologies. It can also be applied to any

platform and implemented by any size of organisation.

MSc. Enterprise Applications Development

 20

2.2.5 SDL for Agile

Further evidence of Microsoft’s constant refining of its approach and commitment to secure

software development was the release of SDL for Agile which is a customised version of the

traditional SDL tailored to fit the agile software development cycle. Agile development is a

popular alternative to more traditional development cycles such as the waterfall model.

Development takes place in incremental, iterative cycles known as sprints [14]. A sprint is a

short period of time (1, 2, 3 weeks, but can take longer) within which a set of features are

developed and tested.

The changes to Microsoft’s traditional SDL are focussed on cutting the standard framework

requirements to a core subset to make it possible to complete within an agile development

cycle [15]. The fundamental difference between the classic SDL and SDL for Agile is that each

requirement necessary for classic SDL is not necessarily required for every Agile Sprint [16].

The SDL agile approach defines three categories of requirements. Each requirement is placed

into one of these three categories based on the frequency of use of that requirement. The first

category is the “Every-Sprint” level. These are for requirements that are necessary Every-Sprint,

regardless how short that sprint may be. Threat Modelling is an Every-Sprint requirement as it

is the cornerstone of the SDL. Threat Modelling can take a long time, so for SDL Agile only the

current functionality that is being developed in that sprint is required to be Threat Modelled.

The second category is known as “On-Boarding” requirements. These are requirements that are

completed only once at the beginning of the project. All projects require a baseline Threat

Model for the application. If it is a new project the development team only need to model

features as they are designed. If the development team of an existing legacy system wishes to

move to the SDL Agile approach, then a baseline Threat Model must be built of that system.

All remaining SDL requirements are placed within “Bucket” requirements. These are tasks that

are performed on a regular basis over the lifetime of a project. This category is subdivided into

three bucket requirements: Security Verification, Design Review and Planning.

MSc. Enterprise Applications Development

 21

Microsoft has adapted SDL successfully to fit the Agile Development methodology. One aspect

of interest in Agile SDL is the requirement of a baseline Threat Model if applying to an existing

system. Similarly, converting an existing project to the classic SDL approach also requires a

Threat Model of the existing system. Little documentation is available identifying the specific

challenges of Threat Modelling such systems. Legacy projects may no longer have original

developers within the team. Aspects of the code base and architecture may not be sufficiently

documented. In Chapter 8, the historical nature of a legacy project upon a Threat Model is also

considered.

In 2010, an Errata security survey identified SDL as the most frequently employed technology

by teams implementing software security frameworks. However, the report does not

discriminate between new and legacy projects. Therefore, a more in-depth review is required

for accurate information on the success of methodologies most suitable for security modelling.

2.2.6 Security survey reported SDL / SDL for Agile most adopted processes

In early 2010 Errata Security conducted a survey which gathered information from forty six

companies on current security practices and software development methodologies such as SDL,

SAMM, and BSIMM [17]. Its aim was to establish which organisations were implementing these

methods, as well as to discover the reasons why companies are abstaining from these methods.

The survey’s findings reported that Microsoft’s SDL was the most adopted security

development practice by organisations, with SDL for Agile the second most popular. 35% of

responses stating they use SDL for Agile [18]. Another interesting finding is that 81% of firms

are aware of formal secure software development efforts such as SDL, CSIMM, SAMM and

CLASP [2]. The survey also suggests that companies not deploying security methodologies are

identifying the lack of resources as the reason.

As this survey is based on a very small data set, the findings can only be described as indicative.

However, they do provide a promising indication of the popularity of SDL/SDL for Agile. While it

would have proved interesting to do an up-to-date version of this survey it is also important to

MSc. Enterprise Applications Development

 22

remember that many companies are reluctant to discuss security techniques because of the risk

of exposure and/or attack.

2.3 Conclusion

The range of frameworks that now include Threat Modelling suggests that the inclusion of

Threat Modelling is becoming an industry best practice for identifying security vulnerabilities in

software.

This research has also established Microsoft’s SDL as an industry leader in secure software

development with Threat Modelling at its core. A considerable number of resources are

available for organisations that adopt SDL. Large enterprises also tend to favour well

established software houses such as Microsoft. This may explain the results of the Errata

Security Survey which identified SDL as the leading security development framework.

 It is worth noting that limited information was identified outlining the challenges of

maintaining or further developing legacy enterprise system. The case study presented in

Chapter 6 of this research focuses on the Threat Modelling of a large scale legacy system. More

detailed research was performed focusing on individual Threat Model methodologies available

(presented in Chapter 4) for adoption by enterprise development companies.

This Chapter discussed leading development frameworks and the position of Threat Modelling

within those frameworks. Initial research indicates the importance of establishing the role of

Threat Modelling in security software development. Threat Modelling and the different

methodologies available are discussed in further detail in Chapter 3.

MSc. Enterprise Applications Development

 23

CHAPTER 3.

THREAT MODELLING

This Chapter discusses basic Threat Modelling concepts, identifies different methodologies

including STRIDE and TRIKE and the supporting tools available for these Threat Models. An

overview of Risk Assessment is also provided.

Designing secure software applications can be difficult, but with any challenge, a good strategy

is to break the problem down into small parts that are more easily managed. This is one of the

fundamental goals all Threat Models have in common. Threat Modelling involves identifying

assets, identifying potential threats to those assets, categorising the threats and identifying

mitigation strategies in a structured process.

3.1 Threat Modelling Basic Concepts

When beginning research into Threat Modelling it is important to have an understanding of

basic terminology.

 An Asset is something of value that an adversary requires. The data in a database is an

example of an asset.

 A Threat is an event which may or may not be malicious in origin that can damage or

compromise an asset by performing an attack.

 A Vulnerability is a flaw in some part of systems security that makes a threat possible.

 An Attack is an attempt by an adversary to exploit a vulnerability.

 A Risk is the likelihood of being the target of an attack, the attack being successful and the

impact if successful.

 A Countermeasure is an action or tool that addresses a threat and mitigates the risk.

MSc. Enterprise Applications Development

 24

3.2 Introduction to Threat Modelling

Threat Modelling can be defined as the “Systematic review of features and product architecture

from a security point of view” *19]. The process provides a structured approach to identifying

and classifying threats based on the software’s components, data flows and different trust

boundaries. Threat Modelling is an important part of the software development lifecycle as it

identifies threats that would potentially be missed by traditional security brainstorming

sessions. Unlike software testing techniques such as penetration testing or Fuzzing, Threat

Modelling can be performed during a systems design phase making it code independent.

Introduced early in the development lifecycle Threat Modelling can help ensure an applications

design is secure and reduce costs by minimising required security fixes late in the project.

Existing systems can also benefit from the process. Unknown or unmitigated security issues can

be identified in legacy systems and risk rating applied to these vulnerabilities identified. The

process can also be tailored to fit development practices such as Agile.

Initial research indicated that few detailed comparisons have been published comparing

different processes such as STRIDE and TRIKE. This research presents some in-depth

comparisons of selected methodologies most suitable for enterprise application development

(Chapter Four).

3.3 Microsoft SDL – STRIDE

The goal that all Threat Modelling methodologies share is the development of a process of

iterative steps that a development team can easily follow when evaluating a software system.

Figure 2 depicts the main steps in preparation and performing a STRIDE threat model. STRIDE

supports the identification and categorisation of threats in a software application [20].

Methodologies such as STRIDE successfully reduce the number of threats to software

applications. A repeatable structured approach to software security allows non-security

personnel to also participate in the process.

MSc. Enterprise Applications Development

 25

Figure 2 - SDL Threat Modelling Steps

The precise processes of Threat Modelling methodologies can differ, but all of them involve the

collection of information about the application, its environment, how it is used and deployed,

how vulnerabilities are identified, and risks assessed. Some of the steps that the Microsoft SDL

approach (Figure 2) following include:

3.3.1 Scope and Constraint

Threat Modelling can be a time consuming process especially if modelling an existing enterprise

scale application. Clear objectives help focus the Threat Model activity [21]. The scope of the

model should be defined at the beginning. In the case of larger systems, more value can be

quickly reaped by constraining the process to specific areas.

At the commencement stage of the Threat Model process, when scope and constraint are

defined, additional information such as Use Scenarios, Dependencies and Security Notes may

also be recorded to help build up a better understanding of system.

3.3.2 Use Scenarios

A list of usage scenarios or stories that demonstrate the intended use of the application is

created. This step can aid in the identification of potential areas for system abuse.

MSc. Enterprise Applications Development

 26

3.3.3 External / Internal Dependencies

Software applications often depend upon other systems or components. These other

components can have a direct impact on the security of a system. It is important to list these

dependencies and identify what impact they may have on a system. Examples include:

Antivirus, Firewalls, Third Party libraries and Authentication Systems.

3.3.4 Security Notes

Details such as security-relevant information already known about a system, assumptions made

about the application, or design trade-offs, are recorded. These security notes can assist

decision making.

3.3.5 Assets

The assets that may be of interest to a potential adversary are listed. They may be a physical or

logical asset. Examples of potential assets include Login credentials, Credit Card details,

Encryption keys or User details.

3.3.6 Entry / Exit Points

Entry/Exit points are where the data enters or exits the system. These are sometimes referred

to as attack points [22] as this is where a potential attack can occur. Each of these input/output

points correspond to a location in a system where security measures should be implemented.

3.3.7 Trust Levels

A trust level is used to define the privileges an external entity has to gain access to a system.

They can be categorised according to privileges assigned or credentials supplied, and cross

referenced with entry/exit points and protected resources. Examples include anonymous

user/system, authenticated user/system and the administrator. Trust levels are applied at each

entry/exit point.

MSc. Enterprise Applications Development

 27

3.3.8 Architecture Overview – Data Flow Diagrams

Threat Modelling focuses on the data, how it flows and how it moves between components.

Modelling diagrams provide a visual representation of how the subsystems operate and work

together. Data Flow Diagrams (DFD’s) are a popular choice for many Threat Modelling

processes. They provide a compact and consistent way to model data flows in an application

with the use of six shapes that represent: Process, Multiple Process, External Entity, Data Store,

Data Flow, and Privilege Boundaries (Figure 3).

Note: Screen shot from threat modelling tool

Figure 3 - DFD Shapes [23]

Privilege boundaries and further defined. Trust boundaries are identified by a red dashed line,

Process boundaries identified by a brown dashed line, Machine Boundaries identified by a blue

dashed line and Other Boundaries identified by a green dashed line. The use of colour allows

teams to easy recognise which type of boundary data flow is crossing when assessing system

DFDs.

3.3.9 STRIDE Threat Classification

Identifying potential threats against the system modelled is one of the main goals of the Threat

Modelling process. By understanding the threats it is possible to determine an application’s

vulnerabilities. Microsoft developed the STRIDE model for identifying and classifying threats

into categories. STRIDE (Table 1) is an acronym for: Spoofing, Tampering, Repudiation,

Information Disclosure, Denial of Service and Elevation of Privilege.

MSc. Enterprise Applications Development

 28

Threat Type Description

Spoofing Allows an adversary to pose as another user, component, or
system that has an identity in the system being modelled

Tampering The modification of data within the system to achieve a
malicious goal

Repudiation The ability of an adversary to deny performing some malicious
activity because the system does not have sufficient evidence
to prove otherwise

Information
disclosure

The exposure of protected data to a user that is not otherwise
allowed access to that data

Denial of Service Occurs when an adversary can prevent legitimate users from
using the normal functionality of the system

Elevation of Privilege Occurs when an adversary uses illegitimate means to assume
a trust level with the different privileges than he currently has.

Table 1 - STRIDE Model

Microsoft originally applied STRIDE to each entry / exit point. This approach was refined to

apply STRIDE against each element in the applications Data Flow Diagrams (Table 2).

DFD Element S T R I D E

External Entity x x

Data Flow x x x

Data Store x * x x

Process x x x x x x

*applies if the data store contains logging or audit data

Table 2 - STRIDE-per-Element [24]

For example a data flow between two components, a process and a data store, under the

classification of STRIDE (Table 2) is potentially vulnerable to Tampering, Information Disclosure

and Denial of Service. The Threat Modelling process works through each threat per-element

and assesses if proper mitigation techniques are in place for that threat type. By working

MSc. Enterprise Applications Development

 29

through each element of the system as identified in the DFDs, a threat profile of the application

is created. Each threat is either mitigated or accepted. For none security experts STRIDE

provides classifications of mitigation techniques (Appendix 1 – STRIDE mitigations) for each

potential threat type identified (Table 3).

Threat Type Mitigation Technique

Spoofing Authentication

Tampering Integrity

Repudiation Non-repudiation services

Information disclosure Confidentiality

Denial of Service Availability

Elevation of Privilege Authorization

Table 3 - Mitigation Techniques [25]

One obvious benefit of the STRIDE per element approach is code independence. This is

advantageous as it helps identify security issues at design stage. It also allows members of the

team other than developers to participate in the Threat Model.

The process can benefit small/medium sized enterprises (SME’s) which may not have a security

expert within their team. STRIDE allows such teams to identify vulnerabilities and the mitigation

techniques that can defend against vulnerabilities. Larger organisations can also benefit from

the process for both new projects as well as existing projects where unidentified vulnerabilities

may exist within legacy code. Implementing a methodology that identifies and classifies threats

is a structured repeatable process can beneficial all project types. The end result is a list of

vulnerabilities that development teams and product stakeholders can then assess. At this

point, an accurate risk assessment of vulnerabilities may be made. This topic is discussed in

section 3.8, Risk Assessment.

MSc. Enterprise Applications Development

 30

STRIDE has been identified as an industry leading Threat Modelling methodology in the

software industry. The success of this methodology is because of a well structured approach to

Threat Modelling, and excellent support and resources for users. Other Threat Modelling

methodologies are also available to organisations such as TRIKE, P.A.S.T.A and practices based

on AS/NZS 31000:2009.

3.4 TRIKE overview

TRIKE is an open-source framework for security auditing from a “risk management perspective

through the generation of Threat Models in a reliable, repeatable manner” *26]. The project

began in 2005 as an attempt to improve the efficiency and effectiveness of existing Threat

Modelling methodologies and is being actively used and developed since [27a]. The creators of

TRIKE have also developed tools to accompany this methodology such as the TRIKE

spreadsheet. This tools focus is to automate threat generation. There is no brainstorming

involved. Security teams do not need to think up potential threats as the threats are Pre-

defined. An inexperienced security developer can use TRIKE and reliably find security

vulnerabilities.

The TRIKE team have adopted HAZOP (Hazardous Operations) analysis, “A systematic method,

for identifying which variations in a process need to be mitigated” *27b]. This process replaces

threat and attack trees.

TRIKE uses a risk based approach with distinct implementation, threat and risk models. It

approaches Threat Modelling from a defensive position as opposed to that of an attacker’s.

TRIKE has also proposed threat chaining, an alternative to threat trees, in an attempt to reduce

the repetitive nature of threat trees.

It was not the intention of this research to Threat Model a complete system using different

approaches, but a practical comparison was deemed beneficial. During research no adequate

material comparing TRIKE with STRIDE was identified. As stated, TRIKE approaches Threat

Modelling from a defensive approach when compared to STRIDE. It was for this reason TRIKE

was researched further and a comparison with STRIDE performed.

MSc. Enterprise Applications Development

 31

3.5 P.A.S.T.A (Process for Attack Simulation and Threat Analysis) overview

This is a seven step process that is applicable to most development methodologies and is

platform agnostic. Its main aim is focussed at addressing the most viable threats to a given

application target [28].

Seven steps of P.A.S.T.A

 Define Business Objectives

 Define Technical Scope

 Application Decomposition

 Threat Analysis

 Vulnerability Detection

 Attack Enumeration

 Risk/Impact Analysis

The process is a combination of various Threat Modelling approaches, defines the business

objectives, security and compliance requirements and business impact analysis. Similar to the

Microsoft process, the application is cut down into components with use cases and DFDs used

to illustrate the application. Threat trees and abuse cases are also used during threat and

vulnerability analysis. Risk and business impact are calculated and the necessary

countermeasures identified.

During this research P.A.S.T.A was identified as a possible Threat Model methodology for

further research. When compared to TRIKE and STRIDE it lacked the necessary resources such

as documentation and example Threat Models using P.A.S.T.A. For this reason it was not

considered for this research case study.

3.6 AS/NZS 31000:2009 Risk Management overview

The AS/NZS 31000:2009 issued in November 2009 was built on the Australian/New Zealand

Standard AS/NZS 4360:2004, the world’s first formal standard for documenting and managing

risks and provides generic guidelines on risk management [29]. The standard approach is

MSc. Enterprise Applications Development

 32

simple, flexible and iterative. It does not lock organizations into a particular risk management

methodology, provided they fulfil the five steps of the AS/NZS 4360 process.

 Establish Context: Establish the risk domain, by defining what assets/systems are

important.

 Identify the Risks: Within the risk domain, what specific risks are apparent?

 Analyze the Risks: Looks at the risks and determine if there are any supporting controls

in place.

 Evaluate the Risks: Determine the residual risk.

 Treat the Risks: Describes the method to treat the risks so that risks selected by the

business will be mitigated.

AS/NZS 31000:2009 Risk Management may be used to rank risks for security reviews. However,

because of the lack of structured methods regarding threat enumeration, it is a less desirable

model and thus dismissed as unsuitable for this case study.

3.7 Other Threat Model processes

There are many other Threat Modelling methodologies developed to assist security personnel.

One example of this is the Practical Threat Analysis (PTA), a calculative Threat Modelling

methodology and suite of software tools [30]. The methodology chosen by an organisation

depends on their individual security requirements and objectives and in many cases can involve a

combination of different practices which best suit that organisation’s needs.

3.8 Risk Assessment

For each threat identified as a result of the threat identification process such as STRIDE, it is

necessary to check if the required mitigation techniques are in place. Threats without

mitigation are vulnerabilities. All unmitigated threats identified manifest a vulnerability list. A

Risk Assessment, which is the final step of the Threat Modelling process, is implemented to

prioritise each vulnerability. This step focuses on aspects including: Severity, Ease of

MSc. Enterprise Applications Development

 33

exploitation by a potential attacker as well as the Impact/Cost of a successful exploitation of a

vulnerability.

Microsoft has currently1 developed two such approaches; DREAD and the Security Bulletin

Severity Rating System.

3.8.1 DREAD

Microsoft developed the DREAD (Table 3) methodology to rate each risk identified during the

STRIDE activity. Each risk is assigned a DREAD score by the security/development team

performing the Threat Model. Different variations of the scoring system exist.

DREAD Description

Damage potential Ranks the extent of the damage that occurs if a vulnerability is
exploited

Reproducibility Ranks how often an attempt at exploiting a vulnerability works

Exploitability Assigns a number to the effort required to exploit the
vulnerability. In addition, exploitability considers preconditions
such as whether the user must be authenticated

Affected Users A numeric value characterizing the ration of installed instances
of the system that would be affected if an exploit became widely
available

Denial of Service Measures the likelihood that a vulnerability will be found by
external security researchers and hackers if it went un-patched

Table 4 - DREAD Model

When assessing risk each DREAD component is given a score. The components scores are then

calculated to give a total ‘DREAD Score’. The risk is then determined by the score range the

‘DREAD Score’ falls into. The final outcome is a list of vulnerabilities ranked by risk.

The process of applying DREAD requires the most opinion and expertise. It is recommended to

have at least one team member who is familiar with security to assist in compiling the DREAD

scores. The practical implementation of DREAD is discussed in detail in Section 4.1.

1
 June 2013

MSc. Enterprise Applications Development

 34

3.8.2 Security Bulletin Severity Rating System (S.B.S.R.S)

Microsoft also has the ‘Security Bulletin Severity Rating System’ as an alternative to DREAD to

rate vulnerabilities in Microsoft products. The rating system places vulnerabilities into one of

four categories (Table 5). Microsoft uses this system to rate the necessity of security patches for

its products.

Rating Definition

Critical A vulnerability whose exploitation could allow code execution without user
interaction.

Important A vulnerability whose exploitation could result in compromise of the
confidentiality, integrity, or availability of user data, or of the integrity or
availability of processing resources.

Moderate Impact of the vulnerability is mitigated to a significant degree by factors such
as authentication requirements or applicability only to non-default
configurations.

Low Impact of the vulnerability is comprehensively mitigated by the
characteristics of the affected component. Microsoft recommends that
customers evaluate whether to apply the security update to the affected
systems.

Table 5 - Security Bulletin Severity Rating System [31]

This rating system can also be adapted to rate vulnerabilities identified by STRIDE. The end goal

is a prioritised list of vulnerabilities that will assist decision making. Although Microsoft no

longer uses DREAD, it is the opinion of this author that it is a more suitable risk assessment

process for non-security experts or teams new to Threat Modelling compared to the Security

Bulletin Severity Rating System. DREAD performs a calculation based on assessing different

aspects of the vulnerability such as Damage Potential or Reproducibility. The Security Bulletin

Severity Rating System places vulnerabilities into one of four categories. Both are based on the

opinion of the individual/team performing the risk assessment. DREAD has refined its scoring

system reducing the likelihood of varying results and offers a structured approach for teams to

adopt. The process is also well documented and relatively easy to implement. For these reasons

DREAD was chosen over S.B.S.R.S.

MSc. Enterprise Applications Development

 35

3.8.3 Other Risk Assessments Processes

There are other options available for risk assessment such as US-CERT Vulnerability Metric

which uses a quantitative metric and scores the severity of a vulnerability by assigning to it a

value between 0 and 180. The Common Vulnerability Scoring System (CVSS) [32] aims to

provide an open framework for measuring the impact of IT vulnerabilities while the SANS

Critical Vulnerability Analysis Scale ranks vulnerabilities using several key factors and varying

degree of weight. The risk assessment process to adopt comes down to the individual choice of

the Threat Model team.

3.9 Threat Modelling supporting tools

There are a number of tools available to assist the Threat Modelling process. This section

includes a summary of the tools encountered during research. Some of these tools are

developed for a specific methodology. Microsoft have released several tools to assist their

STRIDE methodology include SDL Threat Modelling (TM) Tool, its predecessor Threat Analysis

and Modelling (TAM) v3.0 and SDL Elevation of Privilege (EoP). The first two tools incorporating

Viso [33] which simplifies the drawing of Data Flow Diagrams and provides the ability to check

diagrams against business rules and logic to ensure accuracy and consistency. These tools apply

STRIDE to each element of the DFD and provide guidance throughout the Threat Modelling

process.

Figure 4 - SDL Threat Modelling Tool Process [34a]

MSc. Enterprise Applications Development

 36

The SDL TM Tool is the most recent2 release which refines the process (Figure 4). The focus of

the analysis is to diagram the system, identify threats using STRIDE, mitigate these threats and

validate by repeating the process. SDL EoP is a card game to assist I.T personnel get started

with Threat Modelling. EoP attempts to clarify the details of Threat Modelling and examine

possible threats to software and computer systems. It uses a simple points system that allows

you to challenge other developers and become your opponent’s biggest threat *34b]. It is a

good starting-point to Threat Model any system. And can be used by a security teams to

commence initial analyses.

The TRIKE team have two tools to support their methodology. The first is a desktop application

that auto generates threats and attacks tree stubs. This tool is mildly buggy and outdated. The

TRIKE spreadsheet is the most current tool. The majority of teams that use TRIKE do so with the

assistance of this tool [35]. It is a very complex spreadsheet that has the TRIKE rules built in. It

auto-generates the threats, prioritises these threats, records security objectives and has data

collection for the privilege analysis as well as support for HAZOP analysis.

The Threat Modelling process can be greatly assisted by supporting tools. As part of this

research the SDL Threat Modelling tool and TRIKE’s spreadsheet were used when assessing

TRIKE v STRIDE.

3.10 Conclusion

Threat Modelling provides a structured, repeatable approach to identify, prioritise and mitigate

vulnerabilities in software systems. Information presented in this Chapter include: Threat

Modelling concepts, Threat Modelling methodologies and software tools developed to support

the practice.

The Threat Model methodologies reviewed in this Chapter were chosen for two reasons. The

first is that they were methodologies identified in the initial research into security development

processes. Secondly, they were approaches identified as possible candidates for

2
 June 2013

MSc. Enterprise Applications Development

 37

implementation in the case study presented by this research. Two of these methodologies were

chosen for comparison by implementation (Chapter 4), STRIDE and TRIKE. This research has

identified SDL’s STRIDE as a well-structured approach to Threat Modelling with supporting

tools, tutorials and documentation easily available. These are characteristics that may make this

approach more appealing to enterprises that are considering the introduction of Threat

Modelling into their development lifecycles.

When adopting a new methodology, organisations consider the number resources the

implementation of the methodology require, the improvements to current practices it brings,

how difficult it is to use and the long term benefits to the project. STRIDE can improve software

security, can be introduced with minimal overheads, can begin identifying vulnerabilities

quickly, is relatively easy to implement and provides the long term benefit of producing more

secure software. For these reasons STRIDE was considered for comparison with TRIKE.

TRIKE approaches Threat Modelling from a defensive, risk management perspective. This may

appeal to enterprises as developers traditionally are focused on functionality. TRIKE focuses on

securing an application’s features, compared to methodologies such as STRIDE which require

Threat Modelling teams to assess a system from the view point of an adversary. TRIKE also has

documentation and supporting tools readily available. Enterprises may consider TRIKE as it can

help identify threats quickly, is a free open source methodology and tool, improves software

security and is progressive with the TRIKE team continuously refining its process and tools. For

these reasons TRIKE was considered for comparison with STRIDE.

MSc. Enterprise Applications Development

 38

CHAPTER 4.

COMPARISON OF THREAT MODEL APPROACHES

In preparation for performing a Threat Model on an enterprise sized application, different

approaches were evaluated during this research. A mock web application (Figure 4) was threat

modelled using two methodologies, STRIDE and TRIKE. The STRIDE approach was performed

both manually and with the aid of the SDL Threat Modelling tool (v3.1.8). TRIKE v1.5 with

supporting spreadsheet was also implemented.

This mock application represents a standard website with user and administration login

functionality to restricted content. The focus of this exercise was to evaluate and compare the

different Threat Modelling processes by working through the different approaches.

Figure 5 - Context DFD of McGrath's Mock Web Application

MSc. Enterprise Applications Development

 39

4.1 STRIDE / DREAD

Firstly the mock web application was modelled using the traditional STRIDE / DREAD approach

(Appendix 2 – STRIDE Threat Model) outlined in Chapter 2. This was performed manually to

demonstrate that STRIDE is not dependent on its supporting tools. The initial steps defined the

scope of the model, identified use scenarios, listed dependencies, security notes, identified

assets, identified entry / exit points and listed user trust levels. The architectural overview was

provided with the use of DFDs and STRIDE was applied to each element in these DFD’s.

An analysis team at this stage would work through each threat with the assistance of the

STRIDE mitigation worksheet. This step determines which elements have been protected with

the correct mitigations and therefore not vulnerable. The final output was a list of

vulnerabilities.

DREAD was used to perform a risk assessment. The vulnerabilities listed in the STRIDE activity

where assigned a DREAD score based on the severity/impact in each of the dimensions of

DREAD. The final output was a list of vulnerabilities with corresponding risk ratings which can

be used to prioritise which vulnerabilities are mitigated first.

Performing STRIDE manually on a small mock application was time consuming. This would

indicate that performing STRIDE manually on an enterprise scaled application would be a long

process requiring a lot of time and resources allocated. This would make the methodology less

appealing for adoption by an organisation. The manual method did however provide the

opportunity to document a significant amount of data about the application. This would be of

benefit for legacy systems which may not have significant documentation. The gathering and

documenting of this data would possibly benefit future product enhancements.

4.2 SDL Threat Modelling Tool (v3.1.8)

The SDL Threat modelling tool is a Microsoft released application that provides a STRIDE based

approach to create and analyse Threat Models and was applied to the mock application

MSc. Enterprise Applications Development

 40

(Appendix 3 – TM Tool). This tool automated the STRIDE process but does not implement

DREAD risk assessment.

This tool allows for impact assessment, proposed mitigations and the generation of reports to

ensure vulnerabilities are mitigated or eliminated [36]. This approach divides the Threat Model

process into four steps:

i. Draw Diagram

ii. Analyse Model

iii. Describe Environment

iv. Generate Reports

4.2.1 Draw Diagram

DFD’s are central to the SDL Threat Model (TM) tools approach. The Microsoft drawing

application ‘Visio’ is embedded which allows for easy drag and drop functionality when creating

DFDs. The TM tool takes the process one step further by providing automatic validation of each

diagram. This validation can identify potential design flaws early in an applications

development. If the design is large the tool also allows for multiple child diagrams that are

related hierarchically. This assists with legibility which proved particularly useful in the

modelling of the enterprise size case study.

4.2.2 Analyse Model

The analysis of the systems diagrams is based on the STRIDE-per-Element Model which provides

a prescriptive approach to threat modelling [36]. When modelling of the system is complete,

the Threat Modelling tool automatically analyses the design and produces a list of threats

against each element in the systems. For example each external entity will have spoofing and

repudiation threats listed (Figure 6) as these are the STRIDE classification of threats to which

external entities are vulnerable.

MSc. Enterprise Applications Development

 41

Figure 6 - Threat Listings

Each threat instance is provided with an individual analysis screen where details such as threat

impact and mitigation details can be recorded. The analysis of each threat remains a manual

process, however this tool provides great assistance in tracking each step of that process as

well as providing bug tracking functionality. This tool also provides a completion status bar to

indicate the progress of the four stages: threat, mitigation, bug filed and complete.

4.2.3 Describe Environment

The security of any application must also consider the environment in which it is deployed.

Information gathered does not directly impact the analysis of an application, but must be

assessed and documented in order to complete the Threat Model process. Details such as third

party dependencies and external security notes are recorded. This often proves difficult in an

enterprise-sized application.

MSc. Enterprise Applications Development

 42

4.2.4 Generate Reports

Once all information is gathered and correctly entered, five report types can be generated and

displayed: Bug, Analysis, Threat Model, Diagram Only and Recommended Fuzzing.

The Bug report lists all bugs entered against threats. The Analysis report shows the status of

various elements, threats and certifications identified in the model. Threat Model Report

provides a comprehensive report containing all the information captured during the Threat

Model. The Recommended Fuzzing provides a priorities list of recommended targets for Fuzz

testing, a software testing technique that provides invalid, random data to the inputs of a

program. Reports on an enterprise system can be unyielding and may be ignored. Prioritising

actions based on these reports is vital.

4.3 SDL Threat Modelling Tool vs. Traditional STRIDE / DREAD

The SDL Threat Modelling Tool automates many of the steps in the Threat Modelling process

but fundamentally produces the same STRIDE-per-element analysis of the system based on the

systems DFDs. The TM Tools approach has several advantages over a manual approach:

 Requires less documentation early in the Threat Modelling process. Analysis is

performed earlier, potentially identifying vulnerabilities sooner.

 Diagram validation is automatically provided as each DFD is constructed.

 The analysis model auto-generates the STRIDE-per-element vulnerability listing.

 The analysis model also provides a centralised location to assess threat impact, record

mitigations, bug tracking and provides a completion status for each vulnerability.

 Generates Reports.

Apart from automating the process the main differences include; systems documentation

recorded and the risk assessment process. Traditionally information such as use scenarios,

external dependencies, security notes, trust levels, assets and entry / exit points were

documented before DFD’s were created and STRIDE implemented. This information does not

affect the analysis of the systems design. It can also be a time consuming process, especially on

MSc. Enterprise Applications Development

 43

enterprise scale applications. Information such as Entry / Exit points are traditionally

documented, however they have no impact on the systems analysis, as STRIDE is implemented

against each DFD element and not against documented system characteristics. The Threat

Modelling tool has streamlined the required documentation from a security perspective. It

records information that describes the environment which the application is deployed:

Dependencies, Assumptions and External Security notes.

The TM tool does not provide risk rating or DREAD rating features. The reason for its exclusion

was the traditional DREAD rating scoring system was too subjective. A security oriented

member of the analysis team could rate a particular threat as high, awarding 9 or 10 on a scale

of 1-10. Developers not as security conscious or business personnel could rate the same threat

with low rating, awarding 2-3. For this reason Microsoft has moved away from DREAD.

DREAD scoring has been refined to reduce the polarity in risk ranking. Each vulnerability

identified during the STRIDE activity is assigned a grade 1-3 (1 = low, 2 = Medium, 3 = High). The

individual scores are totalled to provide a DREAD score.

Determine the risk:

DREAD Score: 5 - 8 = Risk Rating: Low

DREAD Score: 9 - 12 = Risk Rating: Medium

DREAD Score: 12 - 15 = Risk Rating: High

Ranking risks provides Threat Modelling teams the ability to prioritise which vulnerabilities to

mitigate first. This is especially important when teams face financial constraints. The traditional

DREAD approach produced varying results. A refinement of this approach reduces variations

and offers teams the ability to produce a more accurate risk rating. This is crucial in enterprise

development to validate the results obtained so that resources may be most appropriately

applied when mitigating risks.

MSc. Enterprise Applications Development

 44

4.4 TRIKE 1.5

TRIKE has developed a very complex spreadsheet that relies on formatting to convey a

considerable amount of information. Each tab in the spreadsheet is used to describe/identify

different aspects of the system being modelled. The use of colour is prominent throughout;

with each colour carrying a different meaning. For example, a red cell highlights a risky

setting/decision. If the “Intended Actions” tab is red, this means a user should not be able to

complete the action.

All Threat Model processes involve a number of steps that analyse the system, identify threats,

identify mitigations and document decisions. TRIKE starts performing these steps at

requirements level. TRIKE differs from STRIDE when performing analysis on the systems

architecture. It prunes analysis based on the Threat Models security objectives, defined at the

beginning of the TRIKE Threat Model process. This refining of analysis occurs after threats are

identified but before they are investigated and again when threats are investigated but before

any mitigation’s are identified.

The spreadsheet (Appendix 4 – TRIKE Spreadsheet) provides a number of tabs, each

representing a required step. The most important of these tabs include:

 Overview – General meta data about the system

 Actors – System components and privileges

 Data Model – Data exchanged with or manipulated by the system

 Intended Actions – Systems business logic / functional requirements

 Connections – physical or logical between actors

 Threats – Summary of actions that violate the systems business rules

 Security Objectives – Ultimate security goals

 Use Cases - describes how the system implements intended actions that are likely to affect

the threats in the security objectives, as well as HAZOP analysis.

MSc. Enterprise Applications Development

 45

The system is described by assets, while actors are the intended users which are also referred

to as favoured users. An attacker can also be a ‘Favoured user’. The focus is not on motivation

or skill levels of an adversary, but on what privileges a user starts with and ends with after using

the system. TRIKE focuses on the taxonomy of CRUD (create, read, write, update, delete) for

every action that is possible on each asset (Figure 7). Additional actions, ‘Execute’ and

‘Configure’ are also available.

Figure 7 - CRUD privileges on each asset

As previously stated colour is important when displaying information in the TRIKE spreadsheet,

each colour carries meaning (Table 6)

Colour Description

Grey This action does not apply to this asset, based on the asset's type in the Data
Model

Red (Never) The system should never let this actor take this action on this asset.

Yellow (Conditionally) The system should let this actor take this action on this asset when
certain conditions (typically documented in the cell comment) are met.

Green (Always) The system should always let this actor take this action on this asset.

Table 6 - TRIKE CRUD Colour Definition [37]

MSc. Enterprise Applications Development

 46

Working through each step in the process the system overview, actors, data model, assets and

intended actions are defined. At this stage the tool automatically generates threats. The

methodology at this point places security issues into one of two categories: Elevation of

Privilege and Denial of Service. When the threat grid gets produced each threat status is by

default set to ’Unknown’. The threat modelling team and business stakeholder(s) go through

each threat and assign a priority rating: low, medium, high (Figure 8).

Figure 8 - Priorities Threats

Priority ratings colour scheme is identified in table 7. All threats of high priority get added to

the systems security objectives, which in turn are used to control how analysis is pruned for the

rest of the threat modelling process.

MSc. Enterprise Applications Development

 47

Colour Description

Grey This threat is not meaningful for this object, based on the object's type or the
business rules.

Red (High) The direct business effects of this threat, should an attacker manage to
reach it, have immediate, high-value, negative consequences for the organization.
The system should definitely defend against this threat.

Pink (Medium) The direct business effects of this threat, should an attacker manage to
reach it, have negative consequences for the organization.

Light
Pink

(Low) The direct business effects of this threat are negligible.

Table 7 - Threat Rating Colour Scheme [37]

The security objectives are the system's ultimate security goals. These are the threats the TIRKE

process intends to address.

The final major tabs in the TRIKE process identify use cases that are likely to affect the threats in

the security objectives. HAZOP analysis is performed at this point. Information such as security

analysis, design flaws and test cases are recorded here as well as details of implemented

mitigations.

The TRIKE Threat Model is completely dependent on its tools, which are not fully developed.

The methodology may not currently3 be the most suitable choice for organisations introducing

Threat Modelling. The lack of detailed examples and documentation of usage/implementation

relegate it in comparison with STRIDE. For these reason STRIDE was chosen for the case study

Threat Model of a legacy enterprise application.

4.5 TRIKE v STRIDE

TRIKE approaches Threat Modelling from a defensive position as opposed to that of an

attacker’s. The system being modelled is defined within the requirements of TRIKE. Threat

types are auto-generated and the security objectives set based on these threats. This risk based

approach provides an opportunity to view the system from a different security point of view.

3
 June 2013

MSc. Enterprise Applications Development

 48

As part of this research a practical comparison of TRIKE and STRIDE was performed. The results

of this comparison is provided in Table 8.

COMPARISON4 TRIKE STRIDE

Supporting Tools Yes Yes

Tool Dependency Yes No

Tool maturity Under Development Fully Developed

Analyses commenced Requirements phase Design phase

Automated threat generation Yes Yes

Threat Classification Two Six

Security viewpoint Defensive Offensive

Suggested Mitigations No Yes

Support for variations of attacks Yes (HAZOP analysis) No

Detailed support Documentation No Yes

Ease of Implementation Moderate Easy/Moderate

Architecture Validation No Yes (DFD validation)

Generate Reports No Yes

Online tutorials No Yes

Sample Threat Models No Yes

Table 8 - STRIDE v TRIKE Comparison

TRIKE places threats into two categories (Elevation of Privilege and Denial of Service) as

opposed to the six STRIDE classifications. Using the information generated by the spreadsheet

to identify detailed threats however still comes down to the knowledge base and skill of the

Threat Modelling team. The STRIDE classification provides suggestions of mitigation techniques

based on the threat type. This greatly simplifies the process of identifying and implementing

mitigations.

4
 June 2013

MSc. Enterprise Applications Development

 49

TRIKE uses HAZOP analysis. This allows for multiple variations of a process to be documented in

a structure manner, similar to threat trees in concept but much easier to implement and

maintain.

The gathering of information about the system being modelled is in a more systematic manner

compared to STRIDE. It asks more specific, detailed questions about the system, its

components, actors, intended actions and how they all connect. Each step is acquiring data that

is used in the next step (tab).

One area of concern for TRIKE is the over reliance on colour in its spreadsheet to represent

different information. Visually impaired people may struggle to distinguish between colours.

This was confirmed by a colleague who is colour-blind. When presented the TRIKE spreadsheet

this colleague was unable to distinguish between colours, therefore struggled to use the

spreadsheet in its intended way.

STRIDE can be performed both manually and with the aid of tools compared to TRIKE which is

heavily reliant on its tools. The methodology’s theory is hard-coded into these tools which are

still under development. The spreadsheet itself is not yet fully implemented and contains

placeholders for future features. Documentation to assist TRIKE implementation is also sparse

and no detailed sample TRIKE based Threat Models have been documented. This lack of

information made the spreadsheet difficult to implement.

4.6 The use of Tools in Enterprise Applications

Threat Modelling can be very time consuming. To assist the process, a number of supporting

tools have been developed as discussed in Chapters 3 and 4 of this research. In the opinion of

this author, enterprises consider not only the methodology but also the tools available to

support that methodology. Enterprises consider factors such as cost, accessibility, training,

available documentation and tuition? Although the TRIKE spreadsheet is open source, the

learning curve in applying the tool is greater than that of the Threat Modelling tool. The Threat

Modelling tool is free from Microsoft but is dependent on Visio, which does require a licence.

This tool produces faster results than TRIKES spreadsheet and groups the Threat Modelling data

MSc. Enterprise Applications Development

 50

in a more user-friendly, manner. The Threat Modelling tool is superior in maintaining a Threat

Model. Its provides DFDs validation, analyses, presents large volumes of data in user-friendly

UI, and thus more suitable to enterprise-sized applications

4.7 Conclusion

The TRIKE methodology is a viable option for organisations considering different Threat Model

processes. TRIKE’s weaknesses are STRIDE’s strengths. STRIDE is fully developed with a large

volume of resources including Microsoft’s Threat Modelling Tool. After considering both

approaches, the STRIDE based approach was chosen for the Threat Model case study of a

legacy enterprise system.

MSc. Enterprise Applications Development

 51

CHAPTER 5.

THREAT MODELLING AN EXISTING LEGACY

ENTERPRISE SYSTEM

Microsoft’s SDL introduces Threat Modelling during a systems design phase, while TRIKE allows

for a Threat Model to be started during the requirements phase, potentially identifying

vulnerabilities in the systems requirements. Threat Modelling can be performed on existing

projects. Information and examples of issues with relation to Threat Modelling existing/legacy

systems is limited to a few sentences within documentation covered by this research. It is the

opinion of this author that Threat Modelling of a legacy system would result in unique

challenges compared to those faced by a new project.

The term legacy system refers to old/historical technology, application or computer system that

remains in use. There are many reasons why such systems are maintained:

 The system is large and complex. The cost of a redesign or redevelopment exceeds the

benefits of replacing the existing system.

 The system is stable and the owners see no reason to replace it.

 The system is in a state of Vendor lock in, resulting in considerable cost to change.

 The demand for constant availability means the system cannot be taken out of service.

 The application is poorly documented or the original documentation has been lost. In

large organisations the original developers may no longer be with the company resulting

in limited knowledge of how the system works.

Threat Modelling of a legacy project may provide unique challenges. Documentation that

contains original system designs, code overviews, security assumptions and reports detailing

original threats and mitigations may be limited or non-existent depending how old the

application is. In such scenarios a lot of reverse engineering would be required while analysing

MSc. Enterprise Applications Development

 52

the system. Legacy projects that are still supported and have evolved over a period of time

may not have a clear architectural outline. These projects may have had a large number of

developers working on different parts of the system with varying degrees of proficiency in

secure coding techniques. These types of applications may also be vulnerable to new threats as

a result of new technologies such as the emergence of mobile technologies.

The implementation of a Threat Model on an existing legacy system would benefit the project

by potentially identifying unknown threats. New risks have evolved with the emergence of new

technologies. Legacy systems may not incorporate mitigations for these potential

vulnerabilities. Organisations need to assess the risk to a business if an attack was successful

and that information made public.

Although there might not be written documentation of the system, in-depth information may

exist in the knowledge base of the people who currently support the project. The Threat

Modelling process would involve documenting this knowledge. The Threat Modelling Tool has

refined the STRIDE process to Diagram first as outlined in Chapter 4. For the case study

presented in this research the original steps of collecting data about the system before

implementing STRIDE were performed. These steps were used to extract and document the

current knowledge of the legacy system from the existing development team.

Once the initial Threat Model is complete the project is open to the adoption of new

development methodologies such as Agile SDL. The discussion of Agile and legacy projects is

beyond the scope of this research however a key requirement to Agile SDL is the development

of a baseline Threat Model of the system.

When researching software security and the topic of Threat Modelling many examples and case

studies were found to be based on new applications with Threat Modelling starting early in the

development lifecycle. This is not possible for older systems. However the process can still be

greatly beneficial to existing applications. For this reason it was decided that the case study for

this research would be based on the implementation of a Threat Model on an existing legacy

system. The need for this research has been established in the previous sections.

MSc. Enterprise Applications Development

 53

CHAPTER 6.

CASE STUDY REPORT

As part of this research, a case study Threat Model was performed on an existing enterprise

application. A company located in Ireland agreed to have its systems Threat Modelled with the

understanding that the identification of the company, its application and any security issues

identified during the study would remained confidential. Agreements to this effect were signed

prior to commencing this Threat Model. Previous security audits had been performed on the

application. No Threat Model had previously been performed. Within this report details such

as the name of the application, its components, the companies name and the names of Industry

participants have been changed to maintain anonymity. The systems architecture and security

vulnerabilities identified have been maintained as close to the original system as permitted. If

you have any questions please forward to supervising lecturer Ruth Lennon, Letterkenny

Institute of Technology, Co. Donegal, Ireland. Email: ruth.lennon@lyit.ie

Technologies used to perform case study Threat Model included:

 STRIDE

 Microsoft Threat Modelling Tool

 Microsoft Visio

 DREAD

APP X is a legacy project over 15 years in existence. The system has continuously evolved to

meet the changing business requirements of Company X Industry. This Threat Model focuses on

the baseline application

6.1 Threat Modelling Information

The information in Table 9 provides an overview of the company and application. For the

purposes of security the name of the company, application, version and other details have been

sanitised. The original detailed Threat Model has been logged with the company and the

mailto:ruth.lennon@lyit.ie

MSc. Enterprise Applications Development

 54

supervising lecturer. The enterprise application in this case is renamed APP X throughout the

remainder of this document. Version X is the annotation used to represent the Enterprise

Application that has undergone a number of revisions over the past number of years. The name

of the industrial reviewer is also hidden for similar purposes.

Product APP X

Milestone Version: X

Owner Company X

Participant Michael McGrath

Reviewer(s) Mr N. (Lead Technical Developer on APP X)
Ruth Lennon (LYIT – Academic Supervisor)

Location Application Base-line version, In-house staging environment.

Summary APP X core processes include:

 Management of business logic component

 Allocation of resources

 Distribution of Information

 Supply management and planning information

APP X is deployed on a private network (Figure 1) with multiple
clients connecting to a central database. The solutions goal is to
provide easy-to-use modules for operational planning, optimization
of resources and equipment, and proactive control over component,
giving the business flexibility needed to plan and improve business
results.

History APP X is a legacy project over fifteen years in existence. The
architecture over that time has developed with both a 2 tier
(Client/Database) and 3 tier (Client/Server/Database) approach used
for different sections of the system. Multiple applications have also
been developed in parallel to APP X using the same central database.

Table 9 - Threat Modelling Information

MSc. Enterprise Applications Development

 55

Figure 9 – APP X network Deployment

The threat modelling process performs several steps to document the application, its users,

expected usage, dependencies, security notes and assumptions. This information was gathered

from the knowledge base of the current development team.

6.2 Use Scenarios

List the known use scenarios (Table 10) for the application. This table provides information

about the expected use of the application. Using or deploying the application in a way that

violates a use scenario can impact the security of the application

MSc. Enterprise Applications Development

 56

ID USE SCENARIOS DESCRIPTION

1 The APP X Database is installed on a database server that has been secured to current
industry guidelines. Current security patches for the database server must be
maintained. Physical security of the database server is site specific.

2 The APP X Server is installed on a server that has been secured to current industry
guidelines. Current security patches for server must be maintained. Physical security of
the application’s server is site specific.

3 The APP X Client is installed on each work station.

4 Communication between APP X Client, APP X Server and the APP X Database is
conducted over a private network within the customers building. Physical Security of
network is site specific.

5 APP X requires user’s login to access system. No access is permitted to anonymous
users.

6 APP X behaves as an interface. Customer defined interfaces which update table’s (Live
data)

7 The availability of APP X functionality is based on user rights. Different functionality can
be specified to different users/groups. Some functions are restricted to super users.

8 User authentication is performed by the APP X Client

9 APP X has three interfaces

 User Interface 1

 User Interface 2

 User Interface 3

10 The application is designed for multiple user’s to be logged on and using the system at
any one time

11 The System has multiple external interfaces that interact with the database: External
(Ex) Interface 1, Ex. Interface 2, Ex. Interface 3, Ex. Interface 4, Web Interface and Ex.
Interface 5.

12 The application’s Database send/receives data to/from ‘Ex. Interface 1’

13 The application’s Database send/receives data to/from the ‘Web Interface’.

14 The application’s Database send data to the ‘Ex. Interface 2’

15 The application’s Database send/receives data to/from ‘Ex. Interface 3’

16 The application’s Database send/receives data to/from ‘Ex. Interface 4’

17 The application’s Database receives data from the ‘Ex. Interface 5’

Table 10 - Use Scenarios

MSc. Enterprise Applications Development

 57

6.3 External Dependencies

List of external dependencies the application has on other components or products that can

impact security. These dependencies are assumptions made about the usage or behaviour of

those components or products.

EX. DEPENDENCY DESCRIPTION and ASSUMPTION

1 The applications Database runs on SQL Server 2008 R2 on a
dedicated database server within the customers’ network. The
database server is run on Windows OS

2 Operating Systems: Win XP 32/64, Windows 7 32/64

3 APP X Server can be installed on the same server as the Database or
a dedicated server within the customer’s network. Site specific

4 The security of Database is dependent on the security of the DB
server it is installed on

5 The security of APP X server is dependent on the security of the
server it is installed on

6 The security of APP X is dependent on the security of each machine
the Application client is installed

7 APP X depends on the security of the customer’s network. If this
network is compromised, sensitive data could be viewed, or direct
attacks on the database or APP X Server could be attempted

8 The Security of APP X is dependent on the security of each external
Interface that interacts with the APP X Database

9 Anti-virus software – site specific

10 Firewalls – site specific

Table 11 - External Dependencies

MSc. Enterprise Applications Development

 58

6.4 External Security Notes

External Security notes – threats or other information that an application user should be aware

of to prevent possible vulnerabilities. These notes can include features that, if used correctly,

could cause security problems for application users.

ID NOTE

1 Session management does not provide inactivity log out. The system
will not time out if left idle.

Table 12 - External Security Notes

6.5 Internal Security Notes

Internal Security notes – contain security related information relevant only to someone reading

the Threat Model. These notes can also be used to explain choices and design decisions that

impact the products security but were made due to overriding business needs or due to legacy

nature of the system

ID NOTE

1 Login authentication communication with the applications Database is
not encrypted. Potential for eavesdropping

2 Part of APP X Client which is a specific section of the applications source
code that was developed in a 2 tier approach. This part of the
application requires direct access to the systems Database. For this
reason firewall ports remain open

3 User Authentication is performed by the APP X client

4 No mutual authentication is performed by the client / server.
Connections are made by a client / server handshake protocol.

3 The system requires the APP X Client details in the Client Server are
configured. When the application is run it displays in plain text the
username and password used to establish the connection to the
database server. The Consequence of having these configurations in
plain text is that privileged accounts (SA with Sysadmin privilege) and
password is relatively accessible, readable and usable. This means and
represents a high risk in the case someone besides the custodian of the
account gets the password

Table 13 - Internal Security Notes

MSc. Enterprise Applications Development

 59

6.6 Assets

Assets describe the data or functionality that the component needs to protect. This table also

lists the minimum access category (trust level) that should be allowed to access the resource.

ASSET ID Name Description

1 User Login data User Credentials: username / password

2 System Login data System super admin credentials: username
/ password

3 Database data All data that is stored with the systems
Database

4 Availability of APP X If APP X goes down, customers cannot
manage their business components and
allocation of resources.

5 Login Session The session associated with a logged in user

6 Access to Database The ability to interact with the database
that stores user credentials, business
components, billing and other data of value
with Database

7 Up-to-date data If APP X speed slows this can affect
operations as the application relies on
accurate up-to-date data

8 Accuracy of data APP X requires accurate data. Inaccurate
data can have severe impact on the
businesses operations

9 Audit data Adversaries might try to attack the system
without being logged or audited

 Access to the APP X
Server

Direct access to the server could result in
attacks against the server or use of the
server to access the Database

Table 14 - APP X Assets

MSc. Enterprise Applications Development

 60

6.7 Entry / Exit Points

Entry/Exit points describe the interface through which external entities can interact with the

component, either by direct interaction or indirectly supplying it with data.

ID Name Description Trust Level

1 APP X Client User input through APP X clients:

 Multiple Clients can be connected
to APP X Server

APP X User
APP X Admin

2 Patch
Management
files

Updates files sent to APP X System Admin

3 Database
Logging files

Database Log files written by APP X System Admin

4 Client Logging
files

Client Log files written by APP X System Admin

5 APP X Client APP X client interactions that directly
communicate with the Database

APP X User
APP X Admin

6 Ex. Interface 5 Data sent from Ex. Interface 5 -

7 Web Interface Data sent to/from Web Interface -

8 Ex. Interface 1 Data sent to/from Ex. Interface 1 -

9 Ex. Interface 2 Data sent to Ex. Interface 2 -

10 Ex. Interface 3 Data sent to/from Ex. Interface 2 -

11 Ex. Interface 4 Data sent to/from Ex. Interface 4 -

Table 15 - Entry / Exit Points

MSc. Enterprise Applications Development

 61

6.8 Assumptions

Assumptions are notes taken before/during the threat modelling process

ID NOTE

1 The scope of this Threat Model includes the APP X Client, Server and
Database

2 External Interfaces are deemed separate applications which require
individual Threat Models.

3 The application is deployed on a secure network. A Potential adversary
will most likely be a user with some level of access to the network the
application resides on.

 2 and 3 tier architecture implemented due to legacy nature of project

Table 16 - Assumptions

6.9 Data Flow Diagrams

The APP X Threat Model provides eight data flow diagrams (DFDs). Figure 10 shows the systems

context diagram, and Figure 11 shows the Level 0 DFD. During the threat modelling process

Level 1 diagrams (Figure 12, 13, 14 and 15) where created to identify the flow of data between

individual components of the system. Additional Level 2 DFDs were also created to

demonstrate the flow of data during a user login and a client / server communication, as these

areas where identified during the threat modelling process as possible entry points for

potential adversaries.

Note Data Flow Boundaries:

 Red dash Line – Data crossing a Trust Boundary

 Blue dashed Line – Data crossing a Machine Boundary

MSc. Enterprise Applications Development

 62

6.9.1 APP X – DFD Context Diagram

Figure 10 – APP X Context Diagram

APP X context diagram (Figure 10) provides a high level overview of the system. The diagram

shows one external interact or (i) User, which has two way data flow between the APP X Client.

This data flow crosses a trust boundary (depicted by a red dashed line) as the user and it’s

interactions with the client is non-trusted flow of data.

The APP X Client(s) are depicted by the multi-process ‘(a) APP X CLIENTS’ which has a two

dataflow with both the APP X Server depicted by the multi process ‘(B) APP X SERVER’ and the

Database. Dataflow to/from ‘(a) APP X CLIENTS’ to both ‘(B) APP X SERVER’ and Database

crosses machine boundaries (depicted by a blue dashed line), which identifies data moving

from one machine to another.

The APP X Server also shows a two way data flow with the Database which crosses a Machine

Boundary. As previously stated the Database has a two way dataflow with both the APP X

MSc. Enterprise Applications Development

 63

Server and Clients. The DFD also shows two dataflow directly between the database and

external interfaces depicted by multi processes ‘(c) Interfaces’.

6.9.2 APP X (DFD Level 0)

Figure 11 – APP X DFD Level 0

APP X DFD Level 0 (Figure 11) provides a more detailed view the system. The multi-process ‘(a)

APP X CLIENTS’ identified in the context diagram (Figure 10) is defined in further detail. ‘(a1)

MSc. Enterprise Applications Development

 64

Client A’ identifies aspects of APP X client which use a 3 tier approach (Client, Server, Database),

with all interactions with the database performed through the APP X Server.

‘(a2) Client B’ identifies aspects of the APP X client which uses a 2 tier approach (Client,

Database), with interactions directly with the Database. The 2 and 3 tier approaches represent

different aspects of the Client that were developed at different times during the evolution of

this system. A security concern was obvious from this DFD and before STRIDE was

implemented. The direct communication by the ‘Client B’ and Database.

 An additional external Interactor (ii) Patch Management has been added at this level

6.9.3 APP X Server (DFD Level 1)

Figure 12 - APP X Server (DFD Level 1)

MSc. Enterprise Applications Development

 65

APP X Server Level 1 DFD (Figure 12) shows a high level overview of the internal processes

within the Server and flow of data between these processes the systems Database. The key

processes include (b1) Auditing, (b2) DB Operations, (b3) Server Process 1, (b4) Server Process

2. The server error logging is also depicted by multi process (b5) Error Reporting. Logs are

recorded and located on the same server that the APP X server is installed.

6.9.4 APP X Client B (DFD Level 1)

Figure 13 – APP X Client B - Level 1 DFD

MSc. Enterprise Applications Development

 66

Client B Level 1 DFD (Figure 13) shows a high level overview of the internal processes within the

APP X Client B and flow of data between these processes the systems Database. The key

processes include (a2.1) Billing, (a2.2) Archiving, (a2.3) Client B process 1, (a2.4) User Rights,

(a2.5) System Rules.

6.9.5 APP X Client A (DFD Level 1)

Figure 14 – APP X Client Level 1 DFD

Client A Level 1 DFD (Figure 14) shows a high level overview of the internal processes within the

Client A and the flow of data between these processes the APP X Server. The key processes

include (a1.1) Client A process 1, (a1.2) Client A process 2, (a1.3) Client A process 3.

MSc. Enterprise Applications Development

 67

The DFD also shows the client logging by the APP X Server depicted by multi process (a1.4)

Logging. Logs are recorded on the same server that the APP X server is installed.

6.9.6 External Interfaces (DFD Level 1)

Figure 15 - External Interfaces DFD Level 1

External Interfaces Level 1 DFD (Figure 15) shows a high level overview of the external

interfaces that interact with the applications Database and the flow of data to/from these

external interactors. The external interactors identified include: (iii) Ex. Interface 1, (iv) Web

Interface, (v) Ex. Interface 2, (vi) Ex. Interface 3, (vii) Ex. Interface 4, (viii) Ex. Interface 3

MSc. Enterprise Applications Development

 68

6.9.7 Client / Server Handshake Protocol (DFD Level 2)

Client Server Handshake Protocol Level 2 DFD (Figure 16) shows a high level overview of how

communication between an APP X client and the APP X Server is established. This aspect of the

system was investigated during the threat modelling process.

Figure 16 - - Client Server Handshake DFD Level 2

6.9.8 User Login (DFD Level 2)

The user login level 2 DFD (Figure 17) shows a high level overview login attempted is processed

by the application. This aspect of the system was investigated during the threat modelling

MSc. Enterprise Applications Development

 69

process. The Client Login Process determines if the user can gain access to the system.

Authentication is performed by the APP X Client.

Figure 17 - - User Login DFD Level 2

6.10 STRIDE Process

Microsoft’s Threat Modelling tool was used to assist the implementation of the STRIDE against

each element in the projects DFD’s. The tool provided an organised approach to assess each

aspect of the system. This Threat Model started at a high level provided by APP X DFD level 0

(Figure 10) and from there assessed each individual element and data flow as identified by the

systems DFDs.

The threat modelling tool automated the classification of threat types. For example Data Flow

‘(1) User to Client’ based on STRIDE has three potential Threat Types: Tampering, Information

Disclosure and Denial of service. As part of the process each threat type is evaluated against

each element. The impact of the threat and solutions to those threats documented. The Threat

Modelling Tool also allowed for additional management of threats including:

MSc. Enterprise Applications Development

 70

 Certify that there are no threats of this type

o This allows for an individual threat against a specific element to be documented as

non applicable and the reason for this decision to be document based on three

groupings: within a trust boundary, mitigated elsewhere, accepted risk

 Flag a Threat as Finished

o When a threat type has been evaluated and sufficient mitigations identified.

Enterprise scale applications may have a large number of potential threats generated by

STRIDE. These features of the Threat Modelling Tool proved important in the overall

management and of each threat.

STRIDE was implemented against each element in the system. Each potential threat generated

by STRIDE was then assessed.

The STRIDE process identified areas of the system that have potential unmitigated threats.

Table 17 is a list of elements that were identified as having insignificant or non mitigations in

place.

THREAT TYPE DFD ELEMENTS

Spoofing External entities:

 (i) User
Processes:

 (a1) Client A

 (a2) Client B

 (b) APP X Server

 (c) Interfaces

Tampering Data flows:

 (11) Interfaces to DB

 (2) Client to User

 (2.1) Client to User

 (4) Server to Client via TCP IP

 (5) Client to Server via TCP IP

Data stores:

 Database
Processes:

MSc. Enterprise Applications Development

 71

THREAT TYPE DFD ELEMENTS

 (b) APP X Server

 (c) Interfaces

Repudiation External entities:

 (i) User
Data Store:

 Database
Processes:

 (b) APP X Server

 (c) Interfaces

Information disclosure Data flows:

 (1) User to Client

 (11) Interfaces to DB

 (2) Client to User

 (4) Server to Client via TCP IP

 (5) Client to Server via TCP IP

 (6) Client to DB via TCP IP
Data stores:

 Database
Processes:

 (a1) Client A

 (a2) Client B

 (b) APP X Server

Denial of service Data flows:

 (11) Interfaces to DB

 (4) Server to Client via TCP IP

 (5) Client to Server via TCP IP

 (6) Client to DB via TCP IP

 (7) DB to Client via TCP IP
Data stores:

 Database
Processes:

 (b) APP X Server

 (c) Interfaces

Elevation of Privilege Processes:

 (b) APP X Server

Table 17 - Potential Threats Identified by STRIDE

MSc. Enterprise Applications Development

 72

Presented with the information from STRIDE which identified threats to the system and using

this information along with the knowledge of the system acquired throughout the Threat

Model a list of vulnerabilities was compiled outlining potential weaknesses in the system that

could be exploited by an adversary.

6.11 Vulnerabilities

This section outlines the vulnerability identified during the Threat Model process. The

unmitigated threats (Table 17) were used to compose a vulnerability listing.

 Figure 18- APP X Server Configuration

MSc. Enterprise Applications Development

 73

Name Unauthorised Access to Database

ID 1

Description The APP X database is located on a private network behind a firewall.
Due to the 2 tier approach of parts of the systems architecture ports on
the systems firewall remain open to allow communication between the
Client A and the applications Database.

An adversary could potentially gain access to the database through
these ports.

This vulnerability is aided by the internal security issue (5) Where the
server configuration displays in plain text the username and password
used to establish the connection to the database server (Figure 18).
Access to this configuration is restricted to trusted Administrative users.

Unencrypted traffic on the network could also assist a sophisticated
attack against the Database by providing information on the internal
structure of the database.

Mitigated? Not currently mitigated. Legacy project, issue inherited. Solution
requires refactoring of a large section of the system

STRIDE
Classification

 Tampering

 Information Disclosure

 Denial of Service

Entry Points No direct entry point through the application. Vulnerability potentially
allows exploits of open ports on the firewall

Assets (3) Database data

 (4) Availability of APP X

 (6) Access to system Database

Table 18 - Unauthorised Access to Database

MSc. Enterprise Applications Development

 74

Name Unauthorised Access to APP X Server

ID 2

Description APP X uses the client / server handshake protocol to establish a
connection between a client and server. Multiple clients connect to a
single server. No Mutual Authentication exists between a client and the
server.

It is potentially possible to bypass the APP X client and connect directly
to the server. An adversary requires only the IP address of the server,
access to the network Server and Event Ports.

APP X User authentication is performed by the client. Therefore if the
client is bypassed an adversary could potentially perform an attack
either against the server or through the server against the database.

Mitigated? Not currently mitigated

STRIDE
Classification

 Spoofing

 Tampering

 Repudiation

 Information Disclosure

 Denial of Service

 Elevation of Privilege

Entry Points Bypassing ‘(1) APP X client’ accessing system through the APP X Server

Assets (10) Access to the APP X Server

 (3) Database

 (4) Availability of APP X

 (6) Access to Database

Table 19 - Unauthorised Access to APP X Server

MSc. Enterprise Applications Development

 75

Name Disclosure of Login Information

ID 3

Description If an adversary acquires the username and password of another APP X
user. It would be possible to perform any task that user can perform.

Network traffic is not encrypted.

Mitigated? Not currently mitigated.

STRIDE
Classification

 Information Disclosure

 Elevation of Privilege

Entry Points (1) APP X Client

Assets (1) User Login data

Table 20 - Disclosure of Login Information

Name Access without Auditing

ID 4

Description Adversary compromises the system, but insufficient auditing is in place
to know if an attack occurred and little evidence to indicate where the
attack came from.

With relation to Vulnerability 1 & 2. If these attacks where successful no
auditing current in systems to identify source of security breach.

Mitigated? Not currently mitigated.

STRIDE
Classification

 Repudiation

Entry Points (1) APP X Client

 Bypassing ‘(1) APP X client’ accessing system through the APP X
Server

Assets (9) Audit Data

Table 21 - Access without Auditing

MSc. Enterprise Applications Development

 76

Name Un-vetted Interfaces

ID 5

Description The APP X environment incorporates a number of external interfaces.
Un-vetted Interface interactions with the database exist. Similar to
access without auditing however this is specific to the interactions of
external Interfaces with the Database

The APP X logs can identify APP X interactions with the Database. All
other calls to the database are not logged.

Mitigated? Not currently mitigated.

STRIDE
Classification

 Repudiation

Entry Points (6) Ex. Interface 1

 (7) Web Interface

 (8) Ex. Interface 2

 (9) Ex. Interface 5

 (10) Ex. Interface 3

 (11) Ex. Interface 4

Assets (9) Audit Data

Table 22 - Un-vetted Interfaces

Name Network traffic Interception

ID 6

Description Network Traffic is not currently encrypted. An insider threat could
monitor network traffic

Mitigated? Not currently mitigated.

STRIDE
Classification

 Spoofing

 Tampering

 Elevation of Privilege

Entry Points NA

Assets (1) User Login Data

 (2) System Admin Login Data

Table 23 - Network traffic Interception

MSc. Enterprise Applications Development

 77

6.11 DREAD Scoring

For each vulnerability listed after the STRIDE activity, a score of 1 (lowest) to 3 (highest) as to

the severity/impact of that vulnerability in each of the dimensions of DREAD was awarded. Each

of these component scores are combined to give a total DREAD score for each vulnerability.

Reminder of DREAD acronym:

Damage Potential, Reproducibility, Exploitability, Affected users, Discoverability.

The Risk Rating was assessed as High/Medium/Low according to the score:

 5-8 = Low Risk

 9-12 = Medium Risk

 13-15 = High Risk

VULNERABILITY D R E A D TOTAL RISK
RATING

1. Unauthorised direct access to
Database

3 2 3 3 2 13 H

2. Unauthorised direct access to
Server

3 1 1 3 1 9 M

3. Disclosure of Login Information 3 1 1 2 1 8 L

4. Access without Auditing 3 2 2 3 2 12 M

5. Un-vetted Interfaces 3 2 2 3 2 12 M

6. Network traffic Interception 3 1 2 3 3 10 M

Table 24 - DREAD Score sheet

MSc. Enterprise Applications Development

 78

CHAPTER 7.

VERIFICATION

The Threat Modelling process produced a list of vulnerabilities identified by STRIDE and

assessed further by DREAD. The case study enterprise application was used daily by a large

number of Company X customers. The legacy status of the project and the nature of some of

the vulnerabilities identified could result in possible high costs to implement mitigations

necessary to prevent these vulnerabilities from exploitation by potential adversaries. In the

knowledge that the finding’s of this research would have an impact on a real-world company

and potential implications for their customers, each vulnerability where applicable was

investigated further and methods to exploit these vulnerabilities identified. Company X was

presented with the findings of this Threat Model and a demonstration of how some of those

vulnerabilities could be exploited was also provided. It was hoped the information presented to

Company X would assist with the decision making necessary to move forward with their

application.

This section documents the penetration testing performed to identifying potential methods

that could be used by an attacker to exploit the security vulnerabilities in APP X. Each test was

prepared in advance. Company X provided access to the live production system. With full

permission from the company, ethical hacking was performed on APP X to verify the Threat

Models results. Each test was from the viewpoint of an adversary and how they could

potentially carry out such attacks.

7.1 Test: Unauthorised Direct Access to Database

Description

APP X was deployed on a customer’s private network. The system consisted of three tier (client,

server and database) architecture. During this research it was identified that a section of the

legacy code operated in a two tier approach (Client / Database) with a section of the client

communicating directly with the systems database. For this reason ports remained open on the

MSc. Enterprise Applications Development

 79

networks firewall to allow this section of the client software to communicate directly with the

database.

This test aimed to demonstrate how a potential adversary could perform an attack against the

database. The goal of the test was to connect to the database by exploiting the firewalls open

ports and retrieve data once a connection was established (Figure 17). This test also

demonstrated the ease with which such an attack could be successful.

Figure 17 - Connection to Database via Open ports on private Network Firewall

The technologies used to connect to the database included XAMPP setup to run off a portable

USB flash drive and PHP scripts to perform the connection and query of the database. XAMPP is

an Apache web server distribution containing MySQL, PHP and Perl [38]. This setup could allow

a potential attacker to prepare scripts in advance and perform the attack quickly when access

to the network had been established.

Assumptions

 Adversary has access to the private network.

 Adversary may be a ‘trusted user’.

 Firewall ports are open to accommodate the two tier approach for a section of legacy

system.

MSc. Enterprise Applications Development

 80

 Adversary must identify open ports.

 Adversary may use third party tools to identify open ports.

 Adversary must acquire Database credentials to gain access.

 An adversary may acquire Database credentials from plaintext server configuration as

identified during Threat Model.

 Testing was carried out on a live production system.

 Detailed steps to acquire port & database credentials are beyond the scope of this test.

Test Steps

 A test database was created on the SQL Server.

 XAMPP lite was downloaded [39] and configured to run off a USB flash drive.

 Additional drivers (Listing 1) for MS SQL server were downloaded [40] and added to the

XAMPP setup.

 The php.ini file was configured to load the added DLL files [41].

 The XAMPP setup was run off a USB and a connection to a Microsoft SQL Server 2008 R2

was tested and confirmed.

 A PHP script was prepared (Appendix 5 – DB Script) to take input parameters including:

Server, Database Name, Port Number, DB Type, Username, Password and a SQL Query.

These parameters would be used to connect to the server, connect to database and then

query the database. The script allowed for credentials and queries to be inputted and if

successful return the queries results to a text box (Figure 18).

php_sqlsrv_53_nts_vc9.dll

php_pdo_sqlsrv_53_nts_vc9.dll

Listing 1 - Microsoft PHP SQL Server DLLs

MSc. Enterprise Applications Development

 81

Figure 19 - Screen shot of input and output of DB connection

 This script combined with XAMPP can run from a USB. This setup provided a means to

quickly connect and query a database. An attacker would need to focus only on acquiring

port number(s) and database server credentials.

 An adversary may use open source tools such as Superscan 4.0 [42] to perform IP and port

sweeps identifying live hosts and opened ports. This tool was tested and run from a USB.

 Combining XAMPP, the PHP script and open source scan tools, an attack against the

database was simulated within the live production system.

Results of test run on live production system

 XAMPP successfully ran from a USB flash drive.

 PHP script successfully ran on XAMPP.

 Providing the PHP connection script with the correct port number, server IP and database

credentials it was possible to connect to the database through open ports on the firewall

and return the results of a query run against the database.

The aim of this test was to demonstrate a method to connect and query APP X database by

taking advantage of open ports on the systems firewall. This test was completed successfully.

MSc. Enterprise Applications Development

 82

From here an adversary could commence retrieving, altering or deleting data in the applications

database.

STRIDE Classification

Successful implementation of test scenario could result in:

 Tampering

 Information Disclosure

 Denial of Service

The STRIDE Threat Modelling process identified a critical flaw in the applications architecture.

This test verified the existence of that flaw which if exposed would leave the system vulnerable

to tampering, information disclosure or denial of service.

7.2 Test: Unauthorised Direct Access to Server

Description

The APP X client software performed all user authentications and assessed user privileges

within the application. It was identified during the case study Threat Model that a connection

between the client and server was established using a client/server handshake and that no

mutual authentication techniques were implemented.

With the right knowledge of client / server communication it is possible to bypass the client and

connect directly to the server (Figure19). If an adversary were to do so they could attack the

server directly or theoretically, perform more sophisticated attacks against the database

through the server.

MSc. Enterprise Applications Development

 83

Figure 20 - Connection to Server Bypassing Client

It was the aim of this test to demonstrate how a potential attacker could connect to the

applications server and perform a Denial of Service Attack.

Assumptions

 Adversary has access to the private network.

 Adversary must acquire Server IP.

 Adversary must acquire Server ports.

 Testing was carried out on the live production system.

 Detailed steps to acquire Server IP and ports are beyond the scope of this test.

Implementation

 An application was created to connect to the APP X Server mimicking a Client. (Appendix 6 –

WinSock Script)

 The app was configured to take the credential entered (Figure 21) for IP address, Server and

Event Ports and use the details to make a connection with APP X Server.

MSc. Enterprise Applications Development

 84

Figure 21 - Winsock Hack Application

 A socket was created using the C++ socket() system call (Listing 2). The socket was then

connected to the server address using the connect() system call.

// Create a SOCKET for connecting to server

m_ConnectSocket = socket(result->ai_family, SOCK_STREAM, result-

>ai_protocol);

...

// Connect to server

iResult = connect(m_ConnectSocket, ptr->ai_addr, (int)ptr-

>ai_addrlen);

if (iResult == SOCKET_ERROR)

{

 closesocket(m_ConnectSocket);

 m_ConnectSocket = INVALID_SOCKET;

}

Listing 2 – Connection to APP X Server

MSc. Enterprise Applications Development

 85

 The Denial of Service was attempted by creating multiple threads simultaneously

connecting to the server. In each thread a continuous loop then sent 10 bytes of data to

the server every second.

 The test application was limited by the number of bytes that could be sent as a larger

amount caused the test application to crash when run with a large number of threads.

 The test application was limited by the number of sockets that could be created before the

test application crashed. The number of threads was set to 500.

 The application was run simultaneously 30 times on one machine resulting in 15,000

connections to the Server.

 APP X was running on the production system and monitored throughout.

Results

 The application successfully demonstrated how an adversary could connect to the APP X

Server.

 The test resulted in affecting the performance of APP X. The response time of the

application when performing operations was noted significantly slower.

The aim of this test was to demonstrate a method to connect to the APP X Server and perform

a denial of service. The test successfully connected to the server and affected the performance

of the application but did not cause the server to crash. The difficulty was the number of

sockets that could be created and the number of bytes sent by each thread. The results suggest

that performing a denial of service attack against the systems server is possible, but would

require a distributed attack involving multiple machines on the network.

STRIDE Classification

Successful implementation of test scenario could result in:

 Denial of Service

The STRIDE Threat Modelling process identified that no mutual authentication existed between

client and server. This test verified the existence of that security vulnerability. The focus of this

MSc. Enterprise Applications Development

 86

test was a denial of service attack. More sophisticated attacks could be performed against this

vulnerability.

7.3 Test: Network Traffic Interception

Description / Definition

The Threat Model process identified that no data encryption is performed by APP X. Data

packages sent can include information such as login credentials, SQL statements as well as IP

addresses and port numbers. The vulnerability existed that unencrypted packets could be

intercepted by an adversary (Figure 17). These packets may contain information that possibly

could be used to gain access to the application or access at a higher level of privilege, perform

man in the middle type attacks and/or help build a comprehensive picture of the database

scheme by recording and analysing unencrypted SQL statements.

Figure 22 - Network Eavesdropping

It was the aim of this test to demonstrate one method of intercepting packages sent by APP X

and to obtain data from those packets that could be used to perform more sophisticated

attacks.

To perform this test Wireshark a popular Open Source network analyses program was used.

This tool provides microscopic analysis of packets and protocols which can be captured and

studied offline/offsite. Wireshark works by putting the NIC (Network) card in promiscuous

mode to capture packets. It uses protocol dissectors to understand the various protocols and

MSc. Enterprise Applications Development

 87

has two libraries which help identify protocols or packets: WinPcap (Windows) and LibPcap

(Linux) [43]. The tool provides highly configurable filter and capture options allowing packages

on a particular port or from a particular IP Address to be captured.

Assumptions

 Adversary has access to the private network.

 IP addresses of application client, server and database have been captured. This is not a

requirement. For the purpose of this test providing the correct IP’s allowed the packets that

were captured to be filtered for analyses.

 Testing was carried out on live production systems.

 Using Wireshark an adversary could capture packets and perform analyses at a later date

and offsite.

Test Steps

 Wireshark was downloaded [44] and configured to run off a USB flash drive.

 The tool ‘capture feature’ to record network packets was started.

 APP X Client and Server were run.

 Some basic operations were performed on the application’s Client.

 Wiresharks capture was stopped.

 The summary of the capture was viewed (Figure 19) identifying 1245 packets captured in 53

seconds.

 Wiresharks display filters helps reduce the number of packets to investigate. The server

and database IP addresses were applied to the tools filter (Listing 33). This reduced the

number of packets for analyses.

(Ip.addr == 10.60.100.152) && (Ip.addr == 10.60.100.151

)

*IP Address alter for this report

Listing 3 – Applied filter to wireshark packet list

MSc. Enterprise Applications Development

 88

 Each packet included information relating to: source and destination IP addresses, physical

layer, datalink layer, transport layer and the data. These packets were analysed for

unencrypted data sent from the applications server to the database.

Figure 23 - Wireshark Capture Summary

Results of test run on live production system

 Wireshark successfully ran from a USB flash drive and captured packets sent across the live

testing environments network.

 Wireshark successfully reduced the number of packets for analyses when the source and

destination IP addresses were entered into the tools filter option.

MSc. Enterprise Applications Development

 89

 When assessing the filtered captured data a number of packets were identified to include

SQL commands in plaintext (Figure 19).

Figure 24 - Packet with SQL command in plaintext

The aim of this test was to demonstrate a method to capture unencrypted data sent across the

network by APP X. These packets contained unencrypted SQL commands. This test was

completed successfully. From here an adversary could begin gathering information about the

database structure as well as acquire other user’s credentials, IP address and Ports. This

information could be used to perform more sophisticated or destructive attacks.

STRIDE Classification

Successful implementation of test scenario could result in:

 Tampering

 Information Disclosure

MSc. Enterprise Applications Development

 90

Working through the analyses of STRIDE per element, one of the first vulnerabilities identified

in this case study was the sending of unencrypted data across the network. STRIDE provided a

classification of tampering and Information disclosure for this vulnerability. Intercepting SQL

statements could help an attacker build up a better understanding of the database. This

validates the Information disclosure STRIDE classification. If an adversary intercepted packets of

data it is possible in combination with test 7.2 that tampering could occur.

7.4 Additional Verification

Throughout the Threat Modelling process ad hoc testing was performed to verify assumptions

made and issues identified. Such testing included:

Confirmation of Un-vetted External Interface / Access without Auditing

External interfaces can interact and amend data within the applications database. This was

identified during the Threat Model process. Although these external applications are beyond

the scope of this Threat Model, their interactions with the database are within scope. STRIDE

identified the system as vulnerable in the event an interface is compromised. To validate that

this vulnerability exists one external interface was tested. Changes to the database were

performed. No logging exists that records external interface interactions. No records exist in the

database that identifies which interface made changes to the database. This was validated by

code and database checks. Introducing Interface logging would in the event of a hack or

irregular behaviour, help the team narrow down / identify the source of the issue.

Sufficient auditing is currently not in place. If an adversary successfully compromised the

system there would be little evidence to indicate where the attack came from or if an

attempted hack was performed. This was tested and confirmed during analyses.

Input Injection

Injection type attack such as cross scripting or SQL injection were tested for during the Threat

Model process. The applications validation library successfully sanitises all user input.

MSc. Enterprise Applications Development

 91

Buffer overflow

The application was tested for buffer overflow weaknesses. The applications validation library

successfully sanitises all user input.

7.5 Conclusion

The testing outlined in this chapter confirmed that the main vulnerabilities identified by STRIDE

could be exploited, thus validating the STRIDE Threat Models ability at identifying security risk.

This chapter also summarised additional testing that was performed during the Threat Model

process confirming successful mitigations were in place. Ethical hacking performed after the

Threat Model process, provides developers the opportunity to implement techniques an

adversary could use to attack the system. This knowledge can then be used to implement

appropriate mitigations.

MSc. Enterprise Applications Development

 92

CHAPTER 8.

RESULTS / FINDINGS

Discussed in this section are the issues encountered when Threat Modelling a legacy enterprise

application, the vulnerabilities identified by STRIDE / DREAD and the testing performed to

demonstrate basic methods to exploit these vulnerabilities.

8.1 Threat Modelling of a Legacy Application

The case study conducted during this research produced a Threat Model of a large scale system

using the STRIDE / DREAD methodologies. The system incorporated the main application

deployed in a 3 tier approach (Client / Server / Database) with additional external interfaces

including third party interfaces and additional interfaces developed by Company X. The size and

heterogeneous nature of the systems encapsulated within the enterprise made it difficult to

identify a starting point to the Threat Model. The Threat Model was scaled back to focus on the

client, server and database components of the main application. Defining the scale of the

Threat Model resulted in a more manageable project. Each external interface was identified at

this point as requiring an individual Threat Model.

The legacy nature of the system resulted in limited documentation available. Producing

dataflow diagrams of the system proved difficult. Andreas Schaad and Mike Borozdin stated in

their research on Automated Threat Analysis that “even little additional information on

architectural diagrams can yield significant value” *45]. The experience gained during this case

study validates this argument. The success of a Threat Model is directly linked to the accuracy

and detail of the systems DFD’s. To create a more accurate representation of the system the

original Threat Model prerequisites were defined. This included documenting: system use

scenarios, external dependencies, security notes, assets, entry/exit points and data flow

diagrams. The gathering of this information was reliant on a number of sessions with the

applications lead developer and his (extensive) knowledge of the system. If was found that his

participation in the Threat Modelling process was necessary due to the lack of documentation.

Some of these threat modelling sessions were also attended by a senior developer from the

MSc. Enterprise Applications Development

 93

applications support team. During these sessions (which included the constant reviewing and

refining of the data gathered) the application was successfully documented and the high level

DFD’s of the system’s architecture produced.

This research found that successfully Threat Modelling a legacy system is dependent on

detailed information being available of that system. Legacy projects may not have detailed

documentation available, but extensive in-depth information of that system may exist in the

knowledge base of the people who currently support the project. This was the scenario

encountered during this case study.

8.2 Results of STRIDE / DREAD

STRIDE was applied to each element of the systems dataflow diagrams, with the aid of

Microsoft’s Threat Modelling tool. Each classification of threat type against each element was

investigated. Threats identified could be grouped into three types: Mitigated Threats,

Unknown/unmitigated threats and Known/unmitigated threats.

It was identified during this analyses that the systems extensive validation libraries and system

rules prevented users from performing operations beyond the intended use of the application.

The main vulnerabilities identified were the result of the issues with the existing system

architecture, the absence of data encryption of network traffic and inadequate auditing.

The implementation of STRIDE identified areas of the system without correct security

mitigations. This information was analysed and from it a vulnerability list produced. This step

proved to be the most subjective in the Threat Model process. The vulnerabilities identified

included: potential unauthorised direct access to Database, unauthorised connections to the

systems server, Un-vetted external interfaces and the possibility to intercept unencrypted

network traffic. . It was felt during this Threat Model that the original developers of APP X

underestimated insider threats. Dodge, Ferguson and Cappelli defined the threat from insiders,

malicious or unknowingly, as “threats introduced to an organisation by a trusted entity” *46].

This type of threat poses the greatest risk level to APP X.

MSc. Enterprise Applications Development

 94

The DREAD risk analyses methodology was applied to the identified vulnerabilities. The process

categorised each risk (Table 23, Chapter 6). The ratings produced by DREAD included one high

risk, four medium and one low risk vulnerability. Scoring the risks with the use of DREAD

produced similar results. The goal of DREAD was to produce a prioritised list of vulnerabilities to

aid developers decide which risks to address first. The priority list was successfully compiled.

However the results which were limited in range (one high, one low risk, with the remaining

awarded a DREAD rating of medium) made it difficult to determine which risks to mitigate first,

based solely on this data. This research carried out ethical hacking based on the findings of

STRIDE in an attempt to confirm ease/complexity of exploiting the tested vulnerability.

The results of this Threat Model when compared to the 2013 top ten database threats (Table

24) as reported by Imperva suggest that APP X is vulnerable to at least four of those threats

types including: Privilege abuse, Weak Audit Trail, Exploitation of Vulnerabilities/Misconfigured

Databases and Denial of Service.

Ranking 2013 Top Threats

1 Excessive and Unused Privileges

2 Privilege Abuse

3 SQL Injection

4 Malware

5 Weak Audit Trail

6 Storage Media Exposure

7 Exploitation of Vulnerabilities and Misconfigured Database

8 Unmanaged Sensitive Data

9 Denial of Service

10 Limited Security Expertise and Education

Table 25 - Imperva 2013 Top Ten Database Threats [47]

MSc. Enterprise Applications Development

 95

These threat types were demonstrated by simulating potential attack techniques against the

system.

8.3 Validation of Identified Vulnerabilities

The results of STRIDE / DREAD were tested, verified and presented to the APP X development

team along with the applications Threat Model. This was achieved by implementing techniques

to exploit the systems vulnerabilities. This step was beyond the scope of the Threat Model

process. However, by demonstrating potential methods an adversary could use to attack the

system, it was hoped to aid the applications support team in the implementation of appropriate

mitigations. The demonstration of attack techniques combined with the DREAD ratings aided

decision making. This is only possible for existing systems and not for Threat Models of

applications in the design phase of the SDL.

The focus of these tests was to demonstrate how a potential adversary may attack the system.

The ethical hacking also validated the vulnerabilities identified which in turn confirmed STRIDE’s

ability to identify security risks.

 Testing proposed a method to gain access to the systems database by exploiting open ports on

the networks firewall. Testing demonstrated a method to connect and communicate to the

applications server by exploiting a lack of mutual authentication between the server and

clients. Testing demonstrated the use of an open source tool (Wireshark) to intercept

unencrypted data sent over the network. All test cases were successfully implemented on the

live production environment.

Comparing the DREAD scores awarded to each vulnerability with the ease of implementing a

technique to exploit those vulnerabilities suggests that DREAD scoring is relatively accurate. The

‘Unauthorised Direct Access to Database’ vulnerability was given a DREAD rating of High. The

ethical hacking demonstrated the simple steps to exploit this vulnerability. By demonstrating

the ease of performing such an attack and factor in the consequences if that attack was

successful (direct access to the database), the exercise validates the HIGH DREAD rating.

MSc. Enterprise Applications Development

 96

8.4 Conclusion

The results of the STRIDE process successfully provided a systematic method to analyse APP X.

The legacy nature of the system made initial steps difficult as little documentation was

available. The initial steps were reliant on Threat Modelling sessions with members of the

applications existing development team to acquire the necessary data. Once this information

was successfully obtained, working through the STRIDE approach produced a list of

vulnerabilities. Each decision made on potential vulnerabilities was documented with the use of

the Threat Modelling tool. Some of the results of the STRIDE activity identified were issues the

current development team were both unaware of, proving the benefits of Threat Modelling.

Verification of a number of these vulnerabilities was performed by demonstrating how they

could be exploited.

Threat Modelling identifies vulnerabilities with no current mitigations in place. It is the

responsibility of the development team to use this information to put in place the appropriate

countermeasures. Performing a Threat Model on a legacy system identified issues that should

not exist in new projects. Vulnerabilities such as the direct database access identified in the

case study may possibly require architectural changes. The cost to do so may be high. Whether

a company allocates the necessary resources to make these changes or accepts the risk is an

internal matter for that company. This issue does highlight the benefit of introducing Threat

Modelling early in the development lifecycle. If such methodologies were available such

vulnerabilities could have been avoided. Shoemaker and Ingalsbe [48] suggested that over 50%

of defects occur during requirements engineering. Their theory is supported by this case study,

in that the main defects identified were indeed architecture-related.

MSc. Enterprise Applications Development

 97

CHAPTER 9.

INDUSTRY FEEDBACK

Since implementing and presenting the case study Threat Model to company X, the practice of

Threat Modelling has been introduced into the company’s security practices. The following

testimonial was provided Mr. N. the lead technical developer on this project.

“Within our company the technical lead developers have been tasked to review and appraise the

security of its systems from a software and hardware perspective. My remit involves providing a

system architecture overview of APP X and a Threat Model that identifies weaknesses or areas

of improvement. Michael’s threat modelling project is pivotal to exposing potential security

weakness and concerns to the development team, our customers and external vendors. We have

reviewed the Threat Model and understand it to be comprehensive in nature, highlighting key

points that need to be addressed and would see it as the de facto standard for all of the threat

modelling required by our department. I would also like to share the Threat Model with our

security advisor and see how it aligns with CMM.”

Further feedback was acquired from other lead developers at Company X. In a discussion5 with

Mr G. (Lead developer on a different project), he explained that he was led to believe that “a

threat model should take no longer than two hours”. Feedback from the developers confirmed

many common misconceptions, and highlights the need for more information, training,

research and clarity of purpose within the industry. For the successful implementation of Threat

Modelling, software developers must fully understand how the methodology operates.

5
 Michael McGrath in conversation with Mr. G, June 7th 2013

MSc. Enterprise Applications Development

 98

CHAPTER 10.

DISCUSSION

This research has investigated Threat Modelling as a security testing technique and confirms

the efficiency of STRIDE as a comprehensive methodology for assessing software security

vulnerabilities in legacy enterprise applications. The adoption of Threat Modelling by

companies depends upon the individual preference of an organisation and their security

requirements. Threat Modelling is liable to misconceptions, as outlined in chapter 9.

Furthermore, Threat Modelling is also a relatively new practice. Few managers, developers and

security personnel have these skills. The effectiveness of these processes relies upon an

informed and knowledgeable application.

During initial research, multiple companies were approached about current security practices.

Two companies, currently maintaining and developing legacy enterprise systems, have adopted

different approaches to identifying software vulnerabilities. Company X, who provided access

to their legacy system for this research case study, is now employing the offensive approach of

Threat Modelling. Identifying and mitigating software vulnerabilities in both new and legacy

projects. Company Y, another Irish based software company, is taking a defensive approach of

penetration testing to secure their applications.

Network and application penetration testing requires a certain level of expertise. Both

approaches may be time consuming. Threat Modelling can be a laborious exercise, while

penetration testing requires an investment in initial training.

Ingalsbe, Kunimatsu and Beaten [49] stated that Threat Modelling is only one point on the

broader risk management continuum. It is the opinion of this author that software security

benefits from the adoption of multiple security disciplines. This research demonstrated that

Threat Modelling and penetration testing can complement each other. Vulnerabilities were

identified in the legacy system by implementing STRIDE. Penetration testing was then

MSc. Enterprise Applications Development

 99

performed, simulating attacks against the system. This type of testing can also be used to verify

that mitigations have successfully been put in place.

As the case study in this research proceeded, there was a notable increase in the enthusiasm of

Company X towards the potential of Threat Modelling. Mr N, the team’s lead developer, initially

supported the case study as an academic project. As the project proceeded through the various

stages of analysis, there was a noticeable shift in Mr N’s response. Mr. N recognised that

through his support and interaction with this research, his own understanding and appreciation

of the benefits of Threat Modelling became clear. What began as an academic exercise became

a valuable contribution to Company X, and the benefits of Threat Modelling were circulated

during in-house meetings.

It is important that all team members involved in Threat Modelling fully embrace the process. It

is also essential that management incorporate it as part of the development lifecycle, and not

just a once-off task. Threat Modelling can be a time consuming process, especially on legacy

enterprise systems. The cost may deter some organisations from adopting such practices.

Those companies need to determine the cost of implementing security processes such as

Threat Modelling versus the impact of a successful attack against their system. Such breaches

can result in financial losses and a loss of customer confidence. Company X, are proactively

addressing the security issues addressed in this research and have introduced Threat Modelling

as part of their SDLC. The security of their products will improve as a result.

The participation in this research by Company X suggests they are an organisation seeking to

improve on current practices. It is, therefore, no surprise that Company X hold CMMI

(Capability Maturity Model Integration) maturity level 2 certification. Company X adheres to

CMMI for developers (CMMI-DEV) which provides guidance for applying best practices to

improve the quality of the product/service developed [50]. Von Wangenheim, Hauch and Von

Wangenheim stated [51] that in a competitive global market organisations involved in bidding

contracts benefit from CMMI appraisal. The combination of CMMI maturity certification and

the company’s interest in the adoption of new practices such as Threat Modelling will benefit

and strengthen their position in their specific market. Threat Modelling has been introduced by

MSc. Enterprise Applications Development

 100

Company X to manage, monitor and mitigate risks/threats. Threat Modelling provides Company

X with the ability to successfully accomplish the risk management requirements for CMMI level

2.

Threat Modelling is not a requirement for CMMI or other standards such as ISO 9001 (standard

for quality management systems). However, organisations can use Threat Modelling to improve

their software security, one important aspect of CMMI and ISO certification.

MSc. Enterprise Applications Development

 101

CHAPTER 11.

SUMMARY

The last decade has seen an increased effort by the software industry to develop new practices

and methodologies that include security in the development lifecycle of applications. Threat

Modelling is one such practice that outlines a structured approach to identify and classify

threats within a software system. By identifying and documenting threats, the appropriate

countermeasures can be implemented in a more systematic way.

This research identified different Threat Model approaches and ascertained which methodology

was most adapt for enterprise application development. This research then presented an in-

depth case study of a Threat Model developed for an existing legacy enterprise system. Finally

this research verified the results of STRIDE by demonstrating methods to exploit the

vulnerabilities identified.

This research explored some of the current leading secure software development frameworks

including Open SAMM, CLASP, BSIMM and SDL. These frameworks incorporate Threat

Modelling as part of their development lifecycles and therefore merited close examination.

Threat Modelling has been established as a key component within leading secure software

development frameworks. The SDL framework is a product of Microsoft’s “Trustworthy

Computing” initiative and is regarded as an industry leader in secure software development.

The STRIDE Threat Modelling methodology is a product of the SDL framework. SDL is

progressive, continuously refining its framework and Threat Modelling practice.

The fundamental concepts of Threat Modelling and the different available methodologies,

including STRIDE, TRIKE, P.A.S.T.A and the AS/NZS 31000:2009 have all been investigated in this

research. Each of the methodologies display similar characteristics. They attempt to formulate

a reliable, repeatable approach to identify and rate security risks to software. The selection of

an appropriate methodology was guided by the apparent strengths considered most relevant

MSc. Enterprise Applications Development

 102

for Threat Modelling. P.A.S.T.A and the AS/NZS 31000:2009 were dismissed as flawed

methodologies. STRIDE and TRIKE were explored in detail.

As a methodology STRIDE approaches Threat Modelling from the viewpoint of an adversary and

how an attack against a system may be performed. TRIKE approaches Threat Modelling from a

defensive risk management perspective. This research revealed that no comparison between

TRIKE and STRIDE has been published. Chapter 4 offers this comparison, and recognises STRIDE

as a more comprehensive Threat Modelling methodology for assessing software security

vulnerabilities in legacy enterprise applications.

A mock system depicting a basic web application was Threat Modelled by two variations of

STRIDE and the TRIKE methodology v1.5. STRIDE was examined both manually and with the use

of the Threat Modelling tool. The manual STRIDE approach followed the steps outlined in the

book, Threat Modelling by Swiderski and Snyder. [52] This approach required an in-depth

analysis of the system before implementing STRIDE. This exercise demonstrated STRIDE as

independent of its tools. The Threat Modelling (TM) tool approach focused on the system’s

architecture with the aid of data flow diagrams and the automation of STRIDE-per-element

analyses of these diagrams.

This research suggests the Threat Modelling tool could yield faster results, beneficial for

enterprise systems. With relation to a legacy system, existing documentation may be limited.

Working through the manual steps to depict and document the system before implementing

STRIDE may be beneficial to such projects

This research presented a case study Threat Model of a legacy enterprise application,

implemented with the use of STRIDE and the supporting Threat Modelling tool. A risk analysis

was performed by DREAD. The main challenges faced during this case study were related to the

lack of detailed documentation of the application, a common complaint of legacy systems.

This research concluded with verification of the vulnerabilities identified by STRIDE. The aims of

these tests were to identify potential methods an adversary may use to exploit the security

MSc. Enterprise Applications Development

 103

vulnerabilities presented by the Threat Model. These tests confirmed the findings of the STRIDE

process to be accurate. Each risk tested was successfully exploited.

MSc. Enterprise Applications Development

 104

CHAPTER 12.

CONCLUSIONS & FUTURE WORK

The findings of this research work lead the author to conclude that STRIDE is a more

comprehensive Threat Modelling methodology for assessing software security vulnerabilities in

legacy enterprise applications.

The following conclusions (in no particular order) were arrived at.

12.1 Comprehensive tools

Threat Modelling can take time to complete. To assist, supporting tools have been developed.

Enterprises must carefully consider the methodology and the tools available to support that

methodology. Microsoft’s ‘Threat Modelling Tool’ is an example of a comprehensive, cost

efficient and easy to use tool to support the STRIDE Threat Modelling process. This tool

provides DFD validation and auto-generates threats.

This research presented a comparison of STRIDE V TRIKE Threat models. When performing this

comparison both the Threat Modelling Tool and the TRIKE spreadsheet were used. STRIDE’s

tool identified threats more quickly and increased the speed in which the Threat Model could

be performed. It also displayed data in a more user friendly manner.

TRIKE is dependent on the TRIKE spreadsheet to implement its methodology. However, the

TRIKE spreadsheet is not fully developed with placeholders for future features and lacks the

tutorials and documentation available for the STRIDE Threat Modelling tool. The TRIKE

spreadsheet also demonstrates an over-reliance on colour to represent different data. Visually

impaired people may struggle to distinguish between the TRIKE colour schemes, as was

confirmed by a colour-blind colleague who struggled to use the spreadsheet in its intended

way.

The Threat Modelling tool further demonstrated its efficiency during the Threat Model case

study of a legacy enterprise application, presented in this research. The large volume of data

MSc. Enterprise Applications Development

 105

was maintained and presented with the aid of a clear user interface. This research has verified

the benefit this tool offers in assisting STRIDE Threat Models enterprise applications.

12.2 Legacy Systems

The maintenance and enhancement of Historical/Legacy systems provide their own specific

challenges. They remain in use for a variety of reasons including complexity and the cost of

redevelopment, or simply because the product owner has seen no reason to replace the

application. Information on the unique challenges of Threat Modelling these systems was scant.

The main challenges faced during the case study presented in this research were related to the

lack of detailed documentation of the application, a common flaw in legacy systems. The focus

of the current STRIDE approach is to diagram, identify threats, mitigate and validate. This is

adequate for new projects or systems where requirements and design documentation are

readily available to assist produce accurate dataflow diagrams. Sparse documentation makes

the creation of sufficient DFDs a difficult task. To overcome this challenge with a large legacy

system the original Threat Modelling prerequisites such as defining use scenarios and system

entry points, were collated, so the system could properly be understood. This information was

retrieved from the knowledge base of the current development team.

This research found that successfully Threat Modelling a legacy system is dependent on the

availability of detailed information of that system. Legacy projects may not have sufficient

documentation available, but extensive in-depth information of that system may exist in the

knowledge base of the people who currently support the project. The original STRIDE steps are

an excellent starting point to extract that information from the current team and use that

information to build up a greater understanding of the subject system being Threat Modelled.

12.3 Subjective Assessment – STRIDE / DREAD

Correctly knowing when to stop Threat Modelling (exit strategy) is one subjective aspect of

STRIDE. For example when modelling the system different levels of DFDs were created starting

with a high level context diagram and from there producing a hierarchy of detailed DFDs.

MSc. Enterprise Applications Development

 106

During analysis, Injection type attacks were identified as sufficiently mitigated by the

applications validation libraries. This was documented against the higher level DFDs. At the

lower level DFDs it was felt the analyses became repetitive. Threats generated by STRIDE were

mitigated by the same techniques previously documented at a higher level. By identifying

repetition at this point the modelling was stopped. This subjective aspect of STRIDE had little

impact on the methodologies ability to identify vulnerabilities. The sequential steps, well-

defined threat classifications, extremely competent support tools allow STRIDE to repeatedly

identify security vulnerabilities. Knowing when to stop modelling and start analysing may come

with experience.

The DREAD methodology was used to analyse the risks identified by STRIDE. Risk assessment is

an important final step in Threat Modelling. DREAD provided an easy to implement technique

to rate each risk. This research discussed two variations of the DREAD marking system. The

original marking scheme for each step in DREAD was based on values between one and ten for

each category of DREAD. This scoring system was subjective with varying results. For example

security personnel may award a higher mark than developers who may not deem the same

vulnerability as high a risk. The end list of prioritised vulnerabilities was heavily influenced by

the individual(s) awarding the DREAD score. The refined version of DREAD provided a marking

scheme of values between one (lowest) and three (highest) which were awarded based on the

severity/impact of that vulnerability in each of the dimensions of DREAD. This version of DREAD

was used during the case study presented. The resulting prioritised list awarded the majority of

vulnerabilities with a medium risk rating following the new marking scheme. Such little

variation in rankings resulted in a prioritised list which didn’t really prioritise the vulnerabilities

identified by DREAD.

12.4 Enterprise Applications

This case study in this research presented a Threat Model of an existing enterprise system. Due

to the size of the system it was initially difficult to identify a starting point. STRIDE provided a

step to clearly define the scope of the Threat Model, focusing the case study on the main

components of the system.

MSc. Enterprise Applications Development

 107

A security issue with enterprise systems is the existence of external interfaces and varying third

party applications that can interact with the system. STRIDE can incorporate external

applications without generating threats. This is beneficial as assumptions and security notes can

be documented and appropriate security measures put in place on the systems entry point.

The size and nature of enterprise applications can result in variations of complexity and quality

of code. Numerous developers may work on a system. These developers may have varying

degrees of competencies and security techniques may not be adequately implemented. The

STRIDE methodology is code independent. The process systematically evaluates a software

system and identifies unmitigated vulnerabilities. This repeatable practice greatly improves

enterprise application security.

12.5 Industry Perception

Threat Modelling requires additional resource allocation during project planning and

development. As a result the process may encounter initial resistance from developers who

remain functionality oriented. Some Threat Modelling critics dismiss the process as too time

and labour intensive. These criticisms originated in early Threat Modelling efforts. Refinement

of methodologies and the advancement of supporting tools now place Threat Modelling as an

appropriate practice for identifying and managing risks/threats. As companies aim for CMMI

and ISO certifications, new practices and processes are required. Reluctant developers may

have no choice but to adopt practices like Threat Modelling. It is the opinion of this author that

only through practical implementation can software professionals acquire a better

understanding and appreciation of Threat Modelling and the benefits the process can bring to

application development.

12.6 Security Vulnerabilities

Threat Modelling provides software developers a reliable, repeatable approach to identify and

rate security vulnerabilities in software. However, this security practice tends to focus on new

projects and incorporating Threat Modelling early into the development lifecycle. The case

MSc. Enterprise Applications Development

 108

study presented in the research highlighted the benefit of apply the STRIDE Threat Model

methodology, by identifying critical vulnerabilities within the system.

There is a misconception that if a system is large, then it is secure. Quite often, legacy

enterprise systems are more critical as the system has not been modelled. Forgotten

vulnerabilities may exist. STRIDE can identify unknown threats or vulnerabilities that have

potentially been ignored.

In conclusion, this research has presented Threat Modelling as an efficient practice in

identifying potential vulnerabilities within software systems. The case study presented pitched

the STRIDE methodology against a real world legacy enterprise application. The historical

nature of the project provided its own unique challenges, however STRIDE proved to be a

comprehensive methodology to Threat Model a legacy enterprise application. The process

provided well-defined threat classifications, extremely competent support tools and

recommendations of mitigation techniques based on threat type. The volume of resources and

the ease to produce good quality Threat Models are the reason this methodology is a current6

industry leader.

12.7 Future Work

This research established that there are areas of the Threat Modelling process that warrant

further investigation. Threat assessment requires further research and development. This

process is not a simple task, as different factors will impact on the threat. DREAD was applied

to the case study in this research. The results of this process were not comprehensive and did

not provide a priority listing that would be of significant benefit to a development team.

Finally, during verification of the case studies STRIDE results, ethical hacking was performed on

the application. This provided the opportunity to prove the results of the Threat Model while

also demonstrating techniques of how a potential adversary might exploit the vulnerabilities

6
 June 2013

MSc. Enterprise Applications Development

 109

identified by STRIDE. Threat Modelling and penetration testing are very broad topics. However,

further research into how the two interlink is a subject worthy of further analysis.

MSc. Enterprise Applications Development

 110

REFERENCE

[1] Gates, B. (2002). Gates memo: 'We can and must do better'. Available:
httP://nehttp://news.cnet.com/2009-1001-817210.htmlws.cnet.com/2009-1001-817210.html.
Last accessed 11th Dec 2012.

[2] Geer, D. (June 2010). Are Companies Actually Using Secure Development Life
Cycles? Innovative Technologies for Computer Professionals - IEEE Computing Society. 43
(6), p12,16.

[3] Microsoft. (2013). Security Development Lifecycle. Available:
http://http://www.microsoft.com/security/sdl/default.aspx. Last accessed 2nd June 2013.

[4] OWASP. (2010). Software Assurance Maturity Model. Available: http://www.opensamm.org/.
Last accessed 10th Nov 2012.

[5] McGraw, G. Migues S. West J. (2012). BSIMM4. Available: https://buildsecurityin.us-
 cert.gov/bsi/resources/sites/1100-BSI.html. Last accessed 09th Nov 2012.

[6a] McGraw, G. Migues, S. West, J. (2012). BSIMM Community. Available:
shttp://bsimm.com/community/. Last accessed 13th Feb 2013.

[6b] McGraw, G. Migues, S. West, J. (2012). BSIMM Online. Available: http://bsimm.com/online/.
Last accessed 12th Feb 2013.

[7] Teodoro, N. Serrao, C. (June 2011). Web application security: Improving critical web-based
applications quality through in-depth security analysis. Information Society (i-Society), 2011
International Conference. P457-462.

[8] OWASP. (2012) CLASP (Comprehensive, Lightweight Application Security Process). Available:
https://buildsecurityin.us-cert.gov/bsi/resources/sites/132-BSI.html. Last accessed 08th Nov
2012.

[9] Gregoire, J. ; K.U. Leuven, Leuven ; Buyens, K. ; De Win, B. ; Scandariato, R. (2007). On the
Secure Software Development Process: CLASP and SDL Compared. IEEE - Third International
Workshop on SESS, Minneapolis, 2007.

[10] Microsoft. (2012). What is the Security Development Lifecycle? Available:
http://www.microsoft.com/security/sdl/default.aspx. Last accessed 15 Oct 2012.

[11] Hussain, S. Erwin, H. Dunne, P. "Threat modeling using formal methods: A new approach to
develop secure web applications," Emerging Technologies (ICET), 2011 7th International
Conference on, pp.1,5, 5-6 Sept. 2011, doi: 10.1109/ICET.2011.6048492

http://www.opensamm.org/
https://buildsecurityin.us-/
https://buildsecurityin.us-/
http://bsimm.com/online/

MSc. Enterprise Applications Development

 111

[12] Microsoft. (2012). SDL Threat Modeling Tool. Available:
http://www.microsoft.com/security/sdl/adopt/threatmodeling.aspx. Last accessed 28th Nov
2012.

[13] Kaspersky Lab. (2012). IT threat evolution in Q3 2012: Microsoft no longer features among the
top 10 products with vulnerabilities. Available:
http://www.kaspersky.com/about/news/virus/2012/IT_threat_evolution_in_Q3_2012_
Microsoft_no_longer_features_among_the_top_10_products_with_vulnerabilities. Last
accessed 10th Feb 2013.

[14] Agile Methodology. (2008). What Is Agile? Available: http://agilemethodology.org/. Last
accessed 20th Feb 2013.

[15] Sullivan, B. (2008). Streamline Security Practices For Agile Development. Available:
http://msdn.microsoft.com/en-us/magazine/dd153756.aspx. Last accessed 10th Oct 2012.

[16] Microsoft. (2012). Melding the Agile and SDL Worlds. Available: http://msdn.microsoft.com/en-
us/library/windows/desktop/ee790618.aspx. Last accessed 30th October 2012.

[17] Fagan, M. (2010). POLL - What is your experience with security in the Software Development
LifeCycle? Available: http://erratasec.blogspot.ie/2010/02/poll-what-is-your-experience-
with.html. Last accessed 08th Nov 2012.

[18] Jackson Higgins, K. (2010). Survey Says: More Than Half of Software Companies Deploying Secure
Coding Methods. Available: http://www.darkreading.com/vulnerability-
management/167901026/security/application-security/224200945/index.html. Last accessed
07th Nov 2012.

[19] Microsoft. (2012). Introduction to the Microsoft Security Development Lifecycle. Available:
http://www.microsoft.com/en-us/download/details.aspx?id=16420. Last accessed 01st Oct
2012.

[20] Mockel, C. Abdallah, A.E., "Threat modeling approaches and tools for securing architectural
designs of an e-banking application," Information Assurance and Security (IAS), 2010 Sixth
International Conference. p149,154, 23-25 Aug. 2010 doi: 10.1109/ISIAS.2010.5604049

[21] Steven, J. "Threat Modeling - Perhaps It's Time," Security & Privacy, IEEE , vol.8, no.3, pp.83,86,
May-June 2010 doi: 10.1109/MSP.2010.110

[22] Ockwell-Jenner Dave. (2012). A Structured approach to identifying, understanding and
classifying threats to software. Threat Modeling. 1 (1), p01-42.

http://www.kaspersky.com/about/news/virus/2012/IT_threat_evolution_in_Q3_2012_

MSc. Enterprise Applications Development

 112

[23] Microsoft. (2012). SDL Threat Modeling Tool 3.1.8. Available: http://www.microsoft.com/en-
us/download/details.aspx?id=2955. Last accessed 01st February 2013

[24] Hernan, S. Lambert, S. Ostwald, T. Shostack, A. (2006). Uncover Security Design Flaws Using The
STRIDE Approach. Available: http://msdn.microsoft.com/en-us/magazine/cc163519.aspx. Last
accessed 22nd March 2013.

[25] Jeffries, C. (2012). Security Architect, Microsoft Services. Threat Modeling and Agile
Development Practices. Available: http://technet.microsoft.com/en-us/security/hh855044.aspx.
Last accessed 24th March 2013.

[26] Saitta, P, Larcom, B. Eddington M. . (July 13th 2005). Trike v.1 Methodology
Document. Available: http://octotrike.org/papers/Trike_v1_Methodology_Document-draft.pdf.
Last accessed 22nd March 2013.

[27a] Larcom, B. Saitta, E. (2008). Trike. Available: http://www.octotrike.org/home.shtml. Last
accessed 05th Oct 2012.

[27b] Larcom, B. (2011). HAZOP Analysis. Available:
http://www.octotrike.org/talks/baythreat2010.shtml. Last accessed 13th April 2013

[28] UcedaVelez, T. (2012). Real World Threat Modeling Using the PASTA Methodology. Available:
https://www.owasp.org/images/a/aa/AppSecEU2012_PASTA.pdf. Last accessed 08th Oct 2012.

[29] Australian/New Zealand Standard. (2009). AS/NZS ISO 31000:2009 Risk management—
Principles and guidelines. 3 (1), p01- 05.

[30] PTA. (2005). Practical Threat Analysis for Information Security Experts.Available:
http://www.ptatechnologies.com/. Last accessed 01st February 2013.

[31] Security TechCenter. (2012). Security Bulletin Severity Rating System.Available:
http://technet.microsoft.com/en-us/security/gg309177.aspx. Last accessed 09th April 2013.

[32] NIST. (2007). Common Vulnerability Scoring System. Available: http://nvd.nist.gov/cvss.cfm. Last
accessed 19th March 2013.

[33] Microsoft. (2012). Visio Overview. Available: http://visio.microsoft.com/en-
us/preview/default.aspx. Last accessed 16th March 2013.

[34a] Microsoft. (2012). Security Development Lifecycle. Available:
http://www.microsoft.com/security/sdl/adopt/threatmodeling.aspx. Last accessed 22nd March
2013.

MSc. Enterprise Applications Development

 113

[34b] Microsoft. (2012). Elevation of Privilege (EoP) Card Game. Available:
http://www.microsoft.com/security/sdl/adopt/eop.aspx. Last accessed 30th October 2012.

[35] Trike. (2008) Tools. Available: http://www.octotrike.org/tools.shtml. Last accessed 29th March
2013.

[36] Microsoft. (2011). SDL Threat Modeling Tool . Manual. Version 3.1.8 (1), p01.

[37] Trike. (2011). Trike Help. Available:
http://sourceforge.net/apps/trac/trike/browser/spreadsheet/trunk/docs/help/TrikeHelp.xlsx.
Last accessed 29th March 2013.

[38] Seidler, K. (2013). XAMPP. Available: http://www.apachefriends.org/en/xampp.html. Last
accessed 07th July 2013.

[39] XAMPP (2013). Download XAMPP LITE. Available:
http://sourceforge.net/projects/xampp/?source=dlp. Last accessed 01st July 2013.

[40] Microsoft (2013). The SQL Server Driver for PHP.... Available: http://msdn.microsoft.com/en-
us/sqlserver/ff657782.aspx. Last accessed 12th June 2013.

[41] Hiren, D. (2012). Connect with Microsoft Sql server from PHP in xampp. Available:
http://davehiren.blogspot.ie/2012/01/connect-with-microsoft-sql-server-from.html. Last
accessed 12th June 2013.

[42] Foundstone. (2013). McAfee Free Tools. Available: http://www.mcafee.com/us/downloads/free-
tools/index.aspx. Last accessed 01st July 2013.

[43] Combs, G. (2013). Whats on your network. Available: http://www.wireshark.org/about.html.
Last accessed 16th July 2013.

[44] Wireshark. (2013). Downloads. Available: http://www.wireshark.org/download.html. Last
accessed 16th July 2013.

[45] Schaad, A. Borozdin Mike. (2012). TAM2: Automated Threat Analysis.SAC '12 Proceedings of the

27th Annual ACM Symposium on Applied Computing. 1, p1103-1108.

[46] Dodge, R.C. Ferguson, A.J. Cappelli, D.M.. (Jan. 2013). Introduction to Insider Threat Modeling,

Detection, and Mitigation Track. 2013 46th Hawaii International Conference on System Sciences.

46 (no.1), p1812. d.o.i 10.1109/HICSS.2013.308

http://dx.doi.org/10.1109/HICSS.2013.308

MSc. Enterprise Applications Development

 114

[47] Imperva. (2013). Top Ten Database Threats. Available:
http://www.imperva.com/docs/WP_TopTen_Database_Threats.pdf. Last accessed 12th July
2013.

[48] Mead, N.R.; Shoemaker, D.; Ingalsbe, J., "Ensuring Cost Efficient and Secure Software through

Student Case Studies in Risk and Requirements Prioritization," System Sciences, 2009. HICSS '09.

42nd Hawaii International Conference, vol., no., pp.1,9, 5-8 Jan. 2009.

doi: 10.1109/HICSS.2009.193

[49] Ingalsbe, J.A.; Kunimatsu, L.; Baeten, T.; Mead, N.R., "Threat Modeling: Diving into the Deep

End," Software, IEEE , vol.25, no.1, pp.28,34, Jan.-Feb. 2008. doi: 10.1109/MS.2008.25

[50] CMMI Product Team. (2010). CMMI® for Development, Version 1.3 .Available:

http://www.sei.cmu.edu/reports/10tr033.pdf. Last accessed 22nd July 2013.

[51] von Wangenheim, C.G. Hauck, J. von Wangenheim, A.. (March-April 2009). Enhancing Open
Source Software in Alignment with CMMI-DEV.Software, IEEE. 26 (2), p59 - 67.
doi: 10.1109/MS.2009.34

[52] Swiderski, F. Snyder, W. (2004). Threat Modeling. Washington USA: Microsoft Press.

http://dx.doi.org/10.1109/MS.2009.34

MSc. Enterprise Applications Development

 115

APPENDICIES

Appendix 1 – STRIDE Mitigation Sheet

THREAT THREAT TYPE DFD ELEMENTS

Spoofing Authentication Authenticate principals (people or
components):
Basic authentication
Digest authentication
Cookie authentication
Windows authentication (NTLM)
Kerberos authentication
PKI systems such as SSL/TLS and certificates
IPSec
Digitally signed packets
Authenticate code or data:
Digital signatures
Message authentication codes
Hashes

Tampering Integrity Access Control Lists (ACLs)
Digital signatures
Message authentication codes

Repudiation Non-repudiation
services

Strong authentication
Secure auditing and logging
Digital signatures
Secure time-stamps
Trusted third parties

Information
Disclosure

Confidentiality Access Control Lists (ACLs)
Encryption

Denial of Service Availability Access Control Lists (ACLs)
Filtering
Quota
Authorization

Elevation of
Privilege

Authorization Access Control Lists (ACLs)
Group or role membership
Privilege ownership
Permissions
Privilege ownership
Permissions

MSc. Enterprise Applications Development

 116

Appendix 2 – STRIDE Threat Model

Please refer to research files on disk for STRIDE Threat Model presented in Section 4.1

Appendix 3 –TM Tool

Please refer to research files on disk for Threat Modelling Tool files presented in Section 4.2

Appendix 4 – TRIKE Spreadsheet

Please refer to research files on disk for TRIKE Spreadsheet presented in Section 4.4

Appendix 5 – DB script

Please refer to research files on disk for further demonstration of PHP files used during testing.

Section 7.1

Appendix 6 – WinSock

Please refer to the research files on disk for further demonstration on the WinSock code used

to connect to APP X Server during testing. Section 7.2

Appendix 7 – An Introduction to Threat Modelling, Slides

An Introduction to Threat Modelling.

During this research a Guest lecture appearance, providing an introduction to Threat Modelling

was presented to a group of LYIT Computer Science Students, March 2013

Two further publications are currently being written for submission to a leading journal.

