
POSE WARPING FOR REALTIME ANIMATION

By
Darragh Maloney

INSTiTIUlD TEICNEOLAIOCHTA
AN LE A B H A R LA N N

LEITIR CEANAINN

SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

MASTER OF COMPUTER SCIENCE

AT

LETTERKENNY INSTITUTE OF TECHNOLOGY

DONEGAL, IRELAND

JUNE 2007

© Copyright by Darragh Maloney, 2007

LETTERKENNY INSTITUTE OF TECHNOLOGY

DEPARTMENT OF

COMPUTER SCIENCE

The undersigned hereby certify that they have read and recommend

to the Faculty of Science for acceptance a thesis entitled “Pose Warping

for Realtime Animation’’ by Darragh Maloney in partial fulfillment of the

requirements for the degree of Master of Computer Science.

Dated: June 2007

Supervisor: _________________________
Dr. Mark Leeney

Readers:

i

'NS™ j ® TE'CNE0Ui0CHTA
^ E A B H A fiL A N N

lejt/r ceanajnn

INSTITIUID T I îCNEOLAIOCHTA
A N L E A S H A R L A N N

l e it j r CEANAINN

LETTERKENNY INSTITUTE OF TECHNOLOGY

Date: June 2007

Author: Darragh Maloney

Title: Pose Warping for Realtime Animation

Department: Computer Science

Degree: M.Sc. Convocation: November Year: 2007

Permission is herewith granted to Letterkenny Institute of Technology to circulate
and to have copied for non-commercial purposes, at its discretion, the above title upon
the request of individuals or institutions.

Signature of Author

THE AUTHOR RESERVES OTHER PUBLICATION RIGHTS, AND NEITHER
THE THESIS NOR EXTENSIVE EXTRACTS FROM IT MAY BE PRINTED OR
OTHERWISE REPRODUCED WITHOUT THE AUTHOR’S WRITTEN PERMISSION.

THE AUTHOR ATTESTS THAT PERMISSION HAS BEEN OBTAINED
FOR THE USE OF ANY COPYRIGHTED MATERIAL APPEARING IN THIS
THESIS (OTHER THAN BRIEF EXCERPTS REQUIRING ONLY PROPER
ACKNOWLEDGEMENT IN SCHOLARLY WRITING) AND THAT ALL SUCH
USE IS CLEARLY ACKNOWLEDGED.

Abstract

3D computer games with animated characters are restricted to the animations provided
by an animator. This thesis explores a method for having a character perform different
animations using only simple base animations and discrete poses incorporating a digital
signal processing approach. Treating the animations as a series of digital signals allows
digital signal processing techniques to be applied to create new motions. This facilitates a
decreased animator workload while allowing a character to interact better with its environ­
ment. These techniques involve treating an animation as a continuous signal, sampling it
and shifting it about another signal to combine an animation and a pose. To eliminate dead
poses the use of filters on animations with a view to creating new animations with the aid
of timewarping is also explored

Acknowledgements

I would like to acknowledge the help many people who helped me along the way to com­

pleting my masters. Firstly, Mark Leeney, my supervisor, for his guidance, patience and

help, especially with my thesis and the many mathematical issues encountered.

Secondly, John OKane, my mentor during my time at Instinct Technology, to whom I

am indebted for all he taught me about games programming and animation. I must also

thank Ronan Pearce, Chris Gregan and Patrick McColgan, as well as the rest of the staff

at Instinct Technology, not just for their technical assistance, but also for providing a fun

atmosphere to work.

To Instinct Technologies, Letterkenny Institute of Technology and Enterprise Ireland,

thanks are due for their provision of funding and facilities, without which this work would

not have been possibly.

Many thanks must go to my parents for their encouragement and support of my contin­

ued education.

Lastly, I must acknowledge Maria O Callaghan, who, until she finished her thesis very

shortly before me, provided great motivation to finish.

v

Abbreviations

FPS Frames Per Second

IK Inverse Kinematics

DSP Digital Signal Processing

LERP Linear Interpolation

SLERP Spherical Linear Interpolation

ADC Analogue to Digital Converter

DFT Discreet Fourier Transform

DTFT Discreet Time Fourier Transform

PC Personal Computer

STL Standard Template Library

CCD Cyclic Coordinate Descent

Table of Contents

Abstract iv

Acknowledgements v

Abbreviations vi

Table of Contents vii

List of Figures ix

1 Introduction 1
1.1 Organisation.. 2

2 Animation 3
2.1 Introduction.. 3
2.2 Technical A n im a tio n .. 3
2.3 Motion W arping.. 5
2.4 Modeling for A n im a tio n .. 6

2.4.1 P o ly g o n s ... 6
2.4.2 P a tc h e s .. 7

2.5 The C haracter... 9
2.6 Applying the M e s h .. 12
2.7 Conclusion .. 14

3 Animation Technologies 16
3.1 Introduction.. 16
3.2 A Physical A p p ro ach .. 16
3.3 An Inverse Kinematics Approach... 18
3.4 Motion B le n d in g , , 19
3.5 Conclusion ..20

vii

4 Essential Mathematics 22
4.1 Introduction... 22
4.2 Coordinate Spaces ... 22
4.3 Rotation of a P o i n t ...23

4.3.1 2D rotation about the o r ig i n .. 23
4.3.2 3D rotation about a cardinal a x is ..24
4.3.3 3D rotation about an arbitrary axis through the o rig in 25

4.4 Translation of a P o in t 25
4.5 Translating B ones..26
4.6 Eulerian A ngles...28
4.7 Quaternions... 30

4.7.1 Quaternion Algebra.. 30
4.7.2 Quaternion M ultiplication..31
4.7.3 Quaternion Inverse 32
4.7.4 Rotating Points with Quaternions ... 32

4.8 C o n c lu sio n ... 33

5 Digital Signal Processing 34
5.1 Introduction... 34
5.2 Sampling a Signal ..36

5.2.1 A liasing... 38
5.2.2 The Frequency Domain.. 39
5.2.3 Animation as Digital S ignals.. 40

5.3 LERP and SLERP... 41
5.3.1 Other Sampling Rate Constraints ...42

5.4 C o n clu sio n 43

6 Implementation 44
6.1 Introduction.. 44
6.2 Sampling an Animation ..45

6.2.1 Why is Sampling Necessary?.. 45
6.2.2 Finding a Sampling Rate that Works ... 46
6.2.3 Code Reference............................. .. 47

6.3 Converting a Quaternion Animation to an Eulerian A n im atio n48
6.3.1 Using this Conversion with an A nim ation.. 48
6.3.2 Code Reference ..49

6.4 Filtering an animation... 50
6.4.1 Implementing a Low Pass F i l t e r ..52
6.4.2 Filtering in Real T i m e ..52
6.4.3 Code Reference54

viii

6.5 Time Warping an A nim ation ... 55
6.5.1 Timewarping Algorithms...56
6.5.2 The Implemented Time Warping A lgorithm56
6.5.3 Bending Work ...58

6.6 The Grid R ev isited ... 64
6.6.1 Code Reference.. 67

6.7 Conclusion ..70

7 Results and Conclusions 71
7.1 Introduction..71
7.2 Timewarping R esu lts .. 71

7.2.1 Timewarping a pose ...74
7.3 Motion Warping..76
7.4 Pose Specific Motion W arp ing ..77
7.5 Conclusion ..78
7.6 Future Work ...79

Bibliography 80

A Code Diagrams 83

B C++ Code 88

ix

List of Figures

2.1 A polygon wireframe of a cube. The yellow dots are the vertices and the

blue lines are edges............................ .. 7

2.2 A rendered version of the same cube. The faces are more easily seen. . . . 8

2.3 A sphere showing how a curved surface can be approximated. 8

2.4 A sphere made from patches. The purple points are the control points for

controlling the shape. Notice it takes less points to make a sphere from

patches than from polygons. Patches are better suited to curved surfaces. . . 9

2.5 A cardinal spline passes through its control points (yellow points). The an­

gle of entry and exit to these points can be altered by adjusting the tangent

controls.. 9

2.6 Wireframe representation of a character made in Maya.................................... 10

2.7 A smoothed version of the same character. The yellow dots are vertices. . . 11

2.8 A representation of a character’s skeleton.. 12

2.9 The straight edge on the inside of the elbow is the problem............................. 13

2.10 Associating the middle vertices with both bones with an even weight. . . . 13

2.11 The result of a weighted bend. ... 14

2.12 A real world example of a skeleton being used to deform a mesh are the

characters in Tore Interactive’s Dreadnought. .. 15

3.1 The animated Luxo lamp... 17

4.1 2D rotation of a point about the o r ig in ...24

4.2 Euler A x is .. 29

x

5.1 A sine wave with a period of 0.25s and an amplitude of 1 in the time do­

main.. ..35

5.2 A sine wave with a period of 0.125s and an amplitude of 0.33 in the time

domain... 35

5.3 The sum of the previous two graphs in the time domain. 35

5.4 The frequency domain equivalent of Figure 5.3. 36

5.5 An aperiodic discrete signal taken from two animations blended together. . 37

5.6 A periodic discrete signal taken from a walk animation................................ 37

5.7 A sine wave (blue) and a sampled version (pink) of the same sine wave. . . 38

5.8 A sine wave sampled at twice the Nyquist frequency and at l/1 0 i/l the

Nyquist frequency.................................39

5.9 LERP - the points on the curve are not evenly spaced.......................................41

5.10 SLERP - the points on the curve are evenly spaced... 42

6.1 A signal produced using a low sampling rate.46

6.2 A signal produced using a high sampling rate. 47

6.3 A quaternion to Eulerian conversion shown for the left thigh bone. There is

a conversion discrepancy with the Z component of the Eulerian representa­

tion, shown in yellow. The right thigh bone Z rotations are similar................ 49

6.4 How the signal showing the Z rotations of the left thigh should look.............. 50

6.5 The filtering architecture.................... ... 51

6.6 Four low passes of the Y component of a thigh bone. The signal gets

smoother with each iteration.. 53

6.7 A graphical representation of the grid created by dynamic programming to

implement timewarping.............. 57

6.8 2 signals illustrating what angles and lengths are compared to calculate a

work value for a node on the grid. 58

6.9 Translate the 2 segments so they sit on the origin. 60

6.10 Rotate the second segment so it lies on the x-axis. Rotate the second seg­

ment by the same amount to preserve the a n g le ... 60

xi

6.11 Calculate the angle 0 using trigonometry. If necessary, adjust it to account

for the quadrant in which point ’a’ lies...61

6.12 As the sampling rate decreases the angle at y2 approaches a limit of 180

degrees...61

6.13 When the y values are scaled up they have a greater bearing on the angle

between the 2 line segments............. 63

6.14 A screengrab from excel where the values of a grid were printed. The least

cost path through the grid is shown in green. ... 65

6.15 The diagram shows a 50/50 merge of 2 points on a diagonal move, how a

B-Spline is used when moving down, and an average when moving across.

It should be noted that only the y values of the signals are involved in the

numeric operations shown. ..66

7.1 Blending a walk and a run that are slightly out of synchronization with each

other... 72

7.2 Blending a walk and a run that are out of synchronization with each other

produces an un-useable r e s u l t 72

7.3 Timewarping a walk to synchronize with a run.. 73

7.4 Blending a timewarped walk with a run to produce a jog................................. 73

7.5 Timewarping a run to synchronize with a walk. ..74

7.6 Blending a timewarped run with a walk to produce a jog.74

7.7 Timewarping a pose to fit a walk animation. ... 75

7.8 Blending a timewarped pose with a walk... 75

7.9 Blending a timewarped pose with a walk... 76

7.10 The walk signal is centered on the pose signal with no timewarping. 77

xii

Chapter 1

Introduction

Modem computer game environments have progressed to simulate real world environments

to a very high level of detail, not just in terms of look (for example Far Cry or Half Life 2)

but also in terms of physical interaction. With packages such as Havok Physics or PhysX

by Ageia, physical interactions between objects mimic real life to the highest detail.

The same can be said of animation. This is most obvious in films like Disney’s Toy

Story or Monster House from Sony Pictures. These films use the same software for charac­

ter animation as computer games - namely Maya and 3D Studio Max. The main difference

is that with films an animation can be tailor made for a situation and this will not have

to change, but with games the animations respond dynamically to changes in the virtual

world.

Allowing many different motions for a character helps to supplement the aspect of

realism in games. However, to do this successfully requires a lot of time and effort from

a skilled animator. A compromise is to make a key set of animations and construct the

game so these animations always fit, for example, having every ledge at the same height so

only one jump animation is needed, instead of many different jump animations for ledges

of different heights.

1

The goal of the present work is to develop a system enabling new animations to be cre­

ated at run time by providing a single pose to warp with an animation. For example, instead

of having all obstacles that the character can walk under at the same height - facilitating

one stooped animation, obstacles can be at different heights, with each obstacle having its

own associated stooped pose. This pose will be warped with the walk animation at run

time, removing the need to make several different stooped animations. Given the complex

structure of a human based character, such a system offers the opportunity to eliminate a

large quantity of pre-animated work and also offer a more natural finished product.

1.1 Organisation

Chapter 2 discusses some animation fundamentals as well as the structure of a character

and how characters are constructed. In Chapter 3, different approaches to animation are

discussed along with different techniques based on the same skeletal approach used in this

thesis. Chapter 4 provides a discussion of the mathematics involved in skeletal animation.

The relationship between the signal processing involved in this work and classical digital

signal processing is outlined in chapter 5. Chapter 6 provides a detailed description of the

procedures implemented to achieve animation warping. Finally, Chapter 7 discusses the

results of the implementation and details the conclusions drawn.

2

Chapter 2

Animation

2.1 Introduction

Animation is the optical illusion of motion created by the consecutive display of static im­

ages. This holds true from the early Disney cartoons to today’s modem computer generated

films and computer games. An everyday example where this is very apparent is .gif files,

commonly used on websites, or as avatars on web based forums. These loop a series of still

images to give an impression of motion.

Generally, when talking about animation, it’s assumed the subject is a person, animal,

robot or some other creature. However, animation also deals with anything that has motion:

vehicles, doors, non character objects, fluids etc. Often these are background details in a

scene, adding to the detail. This chapter will deal with character animation involving bipeds

(people).

2.2 Technical Animation

Firstly, some technical background. The still images in an animation are called frames.

On film, 24 frames per second (fps) is enough to give the illusion of motion, due to the

persistence of vision. Before video, most animation was drawn to work at 24fps, so this

3

was 24 frames hand drawn for each second of film. Examples are the early Disney films

Snow White and Pinocchio. By drawing each frame with a slight progression from the

previous one, motion is conveyed. There are two methods in doing this: Pose-to-Pose

animation and Straight-Ahead animation.

Straight-Ahead animation is the type mentioned above, you start with one frame, and

draw each frame that comes after it in sequence. It is similar in concept to the animation

seen in films like Wallace and Gromit, where the character’s pose in incremented for the

next frame. Pose-to-Pose animation is where the action to be animated is broken down

into the main poses for that action, then the in-between frames are drawn. As an example,

imagine a character jumping. First they compress, then spring up, lift off, come down and

compress again. The main poses here could be compressing, lifting off, the highest point

of the jump, landing and compressing after landing. Sketching these gives 6 frames, but

if the jump lasts a second, we need another 18 frames. These frames are the in-between

frames. MPEG video encoding and compression uses keyframing in this manner.

Pose-to-Pose animation is used in traditional hand drawn animation. It is also known

as keyframing with the poses being the keyframes. Because the frames were hand drawn,

the lead artist would draw the key frames, having others draw the in-between frames.

In modem computer animation, the same process is still in use. After a character

has been modeled, keyframes are set, but in this case the computer draws the in-between

frames. While animation for film is made at 24 fps, computer games can run as high as 90

fps, so that means a lot of in between frames are needed. Storing this many frames would

take a lot of memory. Also, with PC games, where the hardware varies from machine to

machine, the frame rate will vary. As a result, it cannot be assumed that an animation will

run at a certain frame rate, say the 90fps mentioned above. Storing an animation as a series

of keyframes and in-between frames with the assumption that it will be played at a certain

rate of frames per second will cause the animation to be played faster or slower depending

on the hardware used. The solution is to only store the keyframes, with each keyframe

having an associated time. In-between frames are achieved by interpolating between the

4

keyframes. If the animation is played at 10 fps or 100 fps, the key frames will always be

played at the correct time, and the length of the animation will not change. Under this sys­

tem, different hardware setups only cause a different number of in-between frames, they

will not alter how fast the animation is played.

2.3 Motion Warping

Where do the animations in computer games come from? There are two sources. Either

through motion capture, or from an artist using a program such as 3D Studio Max or Maya.

For motion capture, an actor wears a suit with sensors. The positions of these sensors

can be tracked in 3D space over time by the motion capture rig. It allows the actor to

perform motions that can be recorded into a computer. This motion data can be applied to a

computer character with the character performing the same motion as the actor did during

the recording. This can lead to much more realistic animations as the motion capture can

pick up on small movements (like the hips rotating) that an animator either may not know

about, or may not think it worth their while incorporating. However, when you have an

animation from motion capture, it is hard to edit it, so if you don’t get the recording right it

often must be re-recorded, which can be expensive to do.

The other method is to have an animator use Maya or 3D Studio Max to make the

animations required. This is cheaper than subcontracting motion capture or buying the

equipment, but a lot more time consuming. For every action needed, the artist must make

an animation for it, thereby building up a library of animations over time. As a result of this,

it is accepted that objects in a game environment will conform to a uniform size to suit the

corresponding animations: ledges are all the same height, boxes are all the same size and

weight, doors all have the same dimensions etc. This means that one ’climb-onto-ledge’

animation will suffice, instead of having to make a different ’climb-onto-ledge’ animation

for every ledge. Similarly for doors, as there are no small doors there is no need for a ’stoop-

through-door’ animation. This can lead to a somewhat monotonous game environment.

5

2.4 Modeling for Animation

When creating a model for animation, character traits need to be specified; hero or villain,

important or insignificant, aggressive or meek? Often the role of a character will influence

the choice of the character’s appearance. However, this is mostly for an artist to determine.

Looking at a character from a technical side, it is desirable that computations associated

with the character are fast and require as little storage space as necessary. There may be

limitations to the software used for creating the character, or in the software/game in which

the character will be used that will affect their appearance.

When making a model for animation there are a number of different ways to model

the character’s surface. The two main methods employed are polygons and patches. Each

method has its own strengths and weaknesses. The desired appearance of the character will

often be the biggest factor in choosing a method to model it [2],

2.4.1 Polygons

Polygons consist of 3 different parts, vertices, edges and faces. A vertex is a point in 3D

space, an edge is a line between 2 vertices and a face is the space enclosed by 3 or more

edges. Generally, a polygon will end up as triangles. This is because 3 vertices define a

plane. Trying to have 4 vertices define a polygon when the 4 vertices are not on the same

plane creates a problem which can be solved by using 2 triangle polygons.

Using polygons is the most popular method for modeling in 3D and all other methods

at some point are reduced to polygons before rendering. The advantage of polygons is that

they can be used to model any type of surface, whereas patches suit only certain types of

models. Despite this, accurately modeling a curved surface requires lots of polygons which

can be slow to render and have a high memory demand.

The diagrams shown Figures 2.2 and 2.3, show only simple primary shapes. To make

more complex shapes, faces are extruded, edges are beveled, split, scaled, moved, and

vertices can be added and removed. See the polygon wireframe of a human character in

6

Figure 2.6 for an example.

2.4.2 Patches

Patches use curves based on splines to define shapes. A shape can be defined with less

information but will still get resolved down to polygons before being displayed. There are

various different splines used:

Linear - l si degree The control points are linked by a straight fine.

Cardinal 2nd degree The curve passes through the control points, and each control point

has control tangents used to influence the angle of approach/leaving angle of the

spline. Two extra control points are needed that define the curve at the beginning and

the end and, generally the curve will not pass through these.

Bezier Splines - 3rd degree and higher Splines with a degree greater than or equal to

three. B6zier splines only pass through the first and last points, and do so with a

slope equal to that of the tangent to the line joining the first two points, and at a

Figure 2.1: A polygon wireframe of a cube. The yellow dots are the vertices and the blue
lines are edges.

7

Figure 2.2: A rendered version of the same cube. The faces are more easily seen.

Figure 2.3: A sphere showing how a curved surface can be approximated.

8

Figure 2.4: A sphere made from patches. The purple points are the control points for
controlling the shape. Notice it takes less points to make a sphere from patches than from
polygons. Patches are better suited to curved surfaces.

Figure 2.5: A cardinal spline passes through its control points (yellow points). The angle
of entry and exit to these points can be altered by adjusting the tangent controls.

tangent to the line joining the last two points. Bezier splines do not have local con­

trol, moving one point effects the whole curve. If the degree of a Bezier is greater

than three, calculating the spline becomes exponentially expensive, with regard to

the number of control points. Instead, it is cheaper to base the spline on a series of

3rd degree Bezier splines. A B-spline is a type of Bezier spline.

2.5 The Character

The wireframe character in Figure 2.6 was created in Maya. It has no texture, just volume.

Texture is created by an artist and applied as a texture map, in effect filling the polygons

9

and producing the impression of a solid. The texture process is beyond the scope of this re­

search. It was created from a polygon cube, with extrusions and bevels and other operations

to give it its shape.

Figure 2.6: Wireframe representation of a character made in Maya.

The character looks blocky and there are quite a few vertices, as shown by the yellow

dots. The character can be made more realistic by manually adding more vertices and hence

polygons, or automatically, by smoothing the character, as shown in Figure 2.7.

The number of vertices in the second character has increased greatly. To animate this

character, using keyframe animation, means having several ’heavy’ keyframes, each hold­

ing the position of all the vertices. Frames in between keyframes are arrived at by inter­

polating the two nearest keyframes. This means an interpolation operation for each vertex,

which is a lot of interpolation. Another solution may be to use the blocky or low ver­

tex character for interpolation and then perform a smoothing operation before rendering.

This will reduce the overhead for interpolation, and reduce the memory overhead for the

keyframes. However, even with this approach there are still a lot of vertices being stored
ijj1

for each keyframe.

10

Figure 2.7: A smoothed version of the same character. The yellow dots are vertices.

A cheaper approach, and one that better suits animation, is to animate a skeleton and

then apply the high resolution mesh (like seen above) onto it when the pose for that frame

has been calculated. This skeleton pose comes either straight from a keyframe, or from in­

terpolation of two keyframes. In effect the skeleton will act as a deformer for the character’s

mesh.

The wireframe diagram shown below in Figure 2.8 gives an idea of the bones involved

in a character. Without the head, neck and hands, there are 17 bones in this modeled

body. The head and hands have been left out of this example as they are often features of

animation by themselves. Although shown as polygons, in practice the bones are just lines,

represented by two points in 3D space. How they are stored and manipulated is dealt with

in Chapter 4. Two points per bone, by 17 bones is 34 points to be held in memory. This

is much more efficient than holding a blocky character in memory. Its also more efficient

when it comes to interpolation to get a pose. There are now 34 points to interpolate, not a

whole character mesh.

The animation warping carried out in this research is based on the skeleton model. It is

11

Figure 2.8: A representation of a character’s skeleton,

the skeleton that is warped, with the mesh being added at a later point.

2.6 Applying the Mesh

The vertices in the mesh all have a weighted association with one or more bones on the

skeleton. If the vertices on a mesh are only associated with one bone, the deformations

imposed by the skeleton will lead to tearing in places. For example, take the elbow shown

in Figure 2.9.

The forearm and upper arm are shown as the two triangles, with the dots representing

the vertices. When the elbow bends, the desired result is for the skin on the acute side to fold

up and the skin on the other side to stretch. However, bending the forearm (white triangle)

upwards, leads to the situation shown in Figure 2.9, which does not look acceptable.

To eliminate this problem, a weighted association between the bone and the vertices is

used. Each vertex is associated with a bone with a certain weight. If the weight is 1, then it

is only associated with that bone. If it is less than one, it is associated with more than one

12

Figure 2.9: The straight edge on the inside of the elbow is the problem.

bone. As in [1], a useful approach is x = J27=o where:

• x is the global position of the vertex.

• Mi is the global matrix for bone i (see 4 for greater discussion),

• di is the distance between the a common point on the bone and the vertex,

• Wi is the weight and

• n is the number of bones the vertex is associated with.

o o o • •

O O 3 • •

Figure 2.10: Associating the middle vertices with both bones with an even weight.

If the middle vertices in the example above are associated with both bones using this

method (not just the upper arm), as shown, the result of the arm bending in the same manner

13

Figure 2.11: The result of a weighted bend.

as before is much more acceptable. Now the vertex at the elbow does move, shrinking on

the acute side and stretching on the other side.

One issue with this method occurs when performing an operation like rotating a hand

while keeping the forearm fixed. The joint between them will collapse. In practical terms,

this is taken into account when setting up the character, resulting in it not being a significant

issue. A resolution of this problem is achievable but currently too expensive, especially

when taking into account that it does not tend to show up at run time. This method is

explained in more detail in [1].

2.7 Conclusion

Real-time character animation is not based on animating a mesh, but instead animating a

skeleton and applying a mesh afterwards. In the next chapter, other approaches to animation

(such as a physical approach or inverse kinematics based approach), are discussed.

14

w '

Figure 2.12: A real world example of a skeleton being used to deform a mesh are the
characters in Tore Interactive’s Dreadnought.

15

Chapter 3

Animation Technologies

3.1 Introduction

The keyframe-based animation framework upon which this research is based is not the only

framework for processing computer animation. Other frameworks center around different

methods for specifying the animation. A spacetime system uses a physical approach, but

there are also hierarchical approaches built upon inverse kinematics (IK) to determine an­

imations. This chapter discusses these other animation frameworks, as well as animation

warping approaches that are similar to this work.

3.2 A Physical Approach

Animation deals with the movement of objects in a virtual environment. Most of the time,

these object’s appear to obey the same physical laws as in reality, with exceptions being

made to express artistic input (Wile Coyote running off a cliff and hovering in the air until

he looks down is an example). A physical approach to animation takes away control of a

character or object from an animator and surrenders it to the laws of physics. An animation

of an objects motion may be determined, not by an animator specifying each frame, rather

by computing the motion according to the laws of physics.

16

In the paper Spacetime Constraints [3], Witkin and Kass describe such a physically

based system. Certain attributes are specified to define and enable this physically based

system - the action of the character, how this action should be performed, the structure of

the character and the environment in which the action is to take place.

Using a Luxo lamp as a character, see Figure 3.1, the main action is jumping and the

performance attributes include ’being as energy efficient as possible’ or landing as softly

as possible’. The structure is a chain of four joints with certain weights and sizes, and the

environment includes information about the springs on the lamp and the surfaces on which

the action is carried out.

Figure 3.1: The animated Luxo lamp.

The jumping action of a Luxo lamp can be defined by equations of motion, derived

from Newton’s Laws relating to forces. The force is split into horizontal (f H) and vertical

(f v) components as the jumping Luxo lamp can be treated as a projectile. The horizontal

distance to be jumped sh can be found by specifying the take off and landing points. The

path of the lamp from take off to landing can change depending on the requirements of the

jump (e.g. as little energy needed, or as little vertical displacement as possible), and the

specifications of the lamp (e.g. the weight of the lamp).

To perform the jump using as little energy as possible, the force required to move the

lamp must be minimized. If the lamp only moves across the floor, it will encounter a

frictional force. This can be avoided if the lamp jumps - which looks more ’natural’. The

sum of f n and f v gives the total force required to make the lamp jump a distance s. If this

force is to be as small as possible, the problem becomes a minimization problem.

17

The mass can be assumed constant, leaving displacement, initial velocity and time to be

decided. A combination of these needs to be found such that the force will be a minimum.

The solution described uses Sequential Quadratic Programming. A solution is needed for

each joint on the lamp - where the forces involved are the spring forces for each joint. In

the context of animating a lamp, these joint forces can be derived. However, in the context

of animating a person, the joint forces are not so well defined or understood, and will

change from character to character, as will the characters’ mass, and several other physical

attributes that would affect any physically-based calculations. See [4].

3.3 An Inverse Kinematics Approach

The normal approach to character animation can be described as kinematic - angles are

assigned to each bone, and these place the feet and hands in certain positions. Inverse kine­

matics (IK) places the hands and feet at certain positions, and then calculates the angles

to assign to the bones. Why use IK to control motion? If the path of a character traverses

uneven ground and its walking motion has been authored assuming level ground, the char­

acter feet will hover above the ground in places, while sinking into the ground in other

places.

In [4] Chung and Hahn discusses the use of IK to adapt animations at run time to incor­

porate the characters’ environment. In order to appear realistic, the IK method described is

based on studies from animation, biomechanics, human gait experiments and psychology.

This is important, as while producing a motion from IK that doesn’t violate any constraints

on joint angles is reasonably straightforward, a simple solution is likely to appear uncon­

vincing and somewhat robotic.

Particular attention is paid to the gait of the character. Planning a route through the

environment starts by assuming the ground is flat, then looking for any physical obstacles

on the straight path. If obstacles are small they can be stepped on or over, but if they are

too big for this the path must go round them. Footprints are then placed according to the

18

character step length, changes in direction along the path, and how uneven the terrain is.

With the footsteps in place, the next step is to make the character use them, but still

retain a realistic looking motion. At any time there will be a stance leg and a swinging

leg. The calculation of the arc of the swinging leg checks for any obstacles that must be

avoided. The resulting path is a ’least energy spent’ path. The path of the foot will follow

a Bezier curve over any detected obstacles, accelerating around the midpoint of the swing.

Conversely, the pelvis, while also following a Bezier curve, slows while the swinging leg

passes through its midpoint.

An adaptation of such an IK method could perhaps be used to control a character’s

overall motion. Instead of using IK to make the swinging arms avoid obstacles - certain

obstacles could be tagged so a hand will reach for them, handrails being one example. The

collision avoidance mechanism could be adapted to control an IK chain with the head as an

end effector, forcing the character to stoop or bend under obstacles.

3.4 Motion Blending

The previous sections have discussed approaches to automating animation using methods

that didn’t involve blending. Blending is an approach widely used in computer animation.

Blending is most commonly used when joining two animations. For instance, coming from

a crouch animation to a walk animation. The two animations can be blended (assuming the

walk cycles are synchronized) to give a crouch-to-walk animation. Blending in this manner

removes the need to author transitional animations.

In [5], Sloan, Rose and Cohen describe a system for creating new motions based on a

set of example motions. Interpolation between motions is carried out at runtime to create

new motions, with adjectives used to indicate the interpolation factor between motions.

For example, interpolating a ’sad walk’ with an ’injured walk’ can give a sad injured walk.

But by changing the interpolation factor, a bias can be given to either the sad walk or the

injured walk. The system works by placing animations in an abstract multidimensional

19

space. Animations are classified by adjectives, with a dimension for each adjective. Tag­

ging important parts of the motions, such as when the feet are on the ground, speeds up

timewarping. Entering a request like ’reasonably hurt’ defines a point in the abstract space

- in the ’hurt’ dimension, as well as in a ’normal’ dimension. The system will interpolate,

or blend the hurt walk with a normal walk.

This is different from the solution devised in this research, as while their motions come

from a blend of two motions, our motions come from an “addition” of a motion and a pose.

While the degree of interpolation between two animations in their work is variable, i.e.

very hurt, reasonably hurt, marginally hurt, the degree of addition between an animation

and a pose in this work is not. This can be seen in section 7.3.

Indeed the problem of blending a pose and a motion is quite different from blending

two motions. This is shown in Chapters 6 and 7, where the timewarping is based upon the

procedure outlined by Bruderlin and Williams in their paper Motion Signal Processing [6].

The same timewarping procedure is used by Kovar and Gleicher in their paper Flexible

Automatic Motion Blending with Registration Curves [7]. Both describe systems of blend­

ing animations, but where the earlier Motion Signal Processing paper describes a system

where the motions to be blended have the same course, there is no such requirement in

Kovar’s/Gleicher’s work. The variance in the course of the animations leads to problems

involving the character leaning to the side when moving round a comer, and taken to an

extreme can reverse the direction of the animation. Their solution involves lining up the

animations, not just by timewarping, but by translation, so that they are both traveling in

the same direction.

3.5 Conclusion

Undoubtedly there is a large body of work already in the motion warping field. However,

most of it describes warping multiple animations, not an animation and a pose. The result of

this work is a system for blending animations, which is then adapted and improved to warp

20

poses with animations. In the next chapter we consider some of the essential mathematics

required for this work.

21

Chapter 4

Essential Mathematics

4.1 Introduction

A skeleton used for animation can be viewed as an abstract entity. In the normal running of

a game, the skeleton is not visible. In the development of a game it can be enabled to assist

debugging, but artists, when creating animations work with a character with volume - not

with the skeleton. This animation is then abstracted to a skeleton form to enhance perfor­

mance and reduce the memory required for storing that animation. The skeletal animation

consists of a series of positions and rotations held in matrices. This chapter discusses the

mathematical side of such an implementation. A more detailed description of the mathe­

matics discussed can be found in Dunn and Parberry [12] and calculus regarding IK can be

found in [13].

4.2 Coordinate Spaces

In the context of a skeleton, there are three associated coordinate spaces:

World Space - This is the space into which the skeleton is placed. As an example,

think of a football game. The world space for a character is the football pitch. The

character’s position will be translated about this area.

22

Object Space - This is the coordinate space of the skeleton. If a translation or rotation

(the skeleton is turning) is applied to the skeleton, the whole skeleton will be moved.

Other objects in world space are not affected by this.

Local Space - Each individual bone has its own local space. It allows rotations to be

applied to individual bones without affecting their parent bones. An ankle rotating in

isolation from its parent leg is an example of this. Local Space is also referred to as

bone space.

4.3 Rotation of a Point

In order to rotate a point, three things are required, the point, the angle of rotation and

an axis to rotate the point about. When rotating in 2D, the axis of rotation is the z-axis.

Rotation in 3D can be about the z-axis, or any of the cardinal axes, or about any axis defined

in terms of the x,y and z-axis.

4.3.1 2D rotation about the origin

Looking at Figure 4.1, it shows two points p = (1,0) and q — (0,1). Rotating these points

by an angle of 9 gives p — (cos 9, sin 9) and q — (— sin 9, cos 9). This can also be shown

in matrix form as

(cos 9 sin 9

— sin 9 cos 9

23

Figure 4.1: 2D rotation of a point about the origin

4.3.2 3D rotation about a cardinal axis

Looking at this in 3D, this can be interpreted as a rotation on the xy plane about the z-axis.

Adjusting the matrix to allow for this gives

 ̂ cos0 sin# 0^

— sin 9 cos 0 0

V 0 0 V
In this matrix the top row represents the x-axis, the middle row represents the y-axis and

the bottom row represents the z-axis. Keeping this in mind, it follows that a rotation in the

yz plane about the x-axis is given by

^ 1 0 0 ^

0 cos 9 sin 9

^0 — sin 9 cos 9J

24

and a rotation in the xz plane about the y-axis is given by

^cos 6 0 — sin6^

0 1 0

^sin# 0 cos# j

4.3.3 3D rotation about an arbitrary axis through the origin

Rotations on bones are carried out in the bone’s local space. A result of this is that when

rotating about an arbitrary axis the angle of rotation will be a local space angle. Because

there is no translation involved in such a rotation, the axis of rotation will be through the

local space origin.

Combining the three cardinal axis rotation matrices from section 4.3.2, the following

formula can be derived to rotate a point about an arbitrary axis that passes through the

origin [12]:

 ̂ 7^(1 — cos#) + cos# nxn y(l — cos9) + nz sinQ nxnz (l — cos#) — ny sin#''

nxny(l — cos 6) — nz sin# n^(l — cos #) + cos # nynz{l — cos #) + nx sin#

\nxnz(l - cos #) + ny sin # nynz(l — cos#) — n^sin# n^(l — cos #) + cos # J

Here, n is the axis of rotation, with nx, ny and nz being the x,y and z coordinates of the

axis.

4.4 Translation of a Point

To translate a point is to offset a point by a scalar amount. This is different to rotation as

seen so far. Rotation involved moving a point through an arc about the origin, and as such,

the distance between the point and the origin remained unchanged. With translation, this

distance can change.

25

Taking a point (x, y) it can be translated by adding a scalar to x and y to give (x +

Ax, y + Ay). This can be represented in a matrix:

/

(x y 1) x

A
= (x + Ax , y + Ay)

1 0 0

0 1 0

\ A x A y 1

The 1 in the point is there to facilitate matrix multiplication, as the number of columns of

the left hand side of the multiplication must be the same as the number of rows on the right

hand side of the multiplication.

While this may seem a bit cumbersome to use a 3 x 3 matrix for a translation, if this

matrix is multiplied with the matrix for rotation of a point about the origin it yields:

 ̂ cos# sin# 0^

— sin 6 cos # 0

 ̂ Ax A y 1 j

This is the same as rotating the point and then translating it. It can be expanded on by

combining the matrix for rotation about an arbitrary axis in 3D with a 3D translation matrix

to give:

 ̂ n l (l — cos #) + cos# nxTiy{\ — cos #) -|- nz sin # nxn z(l — cos#) — ny sin# CM

nxny(l — cos#) — n* sin# n^(l — cos#) + cos# n yn z(l — cos#) + n x sin# 0

nxnz (l — cos#) + ny sin# nynz{l — cos#) — nx sin# n^(l — cos#) + cos# 0

Ax A y

where the point to be multiplied is given in the form of (x, y, z, 1),

Az 1

4.5 Translating Bones

A skeleton can be thought of as a series of connected lines. Each of these lines can be

defined as two points. Given two connected lines, A and B, moving in two dimensions, if

26

a rotation is applied to A, the position of B will change:

A = (0,0) to (1,0), B = (1,0) to (2,0)

Applying a rotation of 0 to A will give A — (0, 0) to (cos<f>, sin (¡)). This will mean the start

point of B will now have changed to (cosq!>, sin <p). But what about the endpoint of B1 The

length of B is one, so the end point of B will be at a distance of 1 from the endpoint of A.

Two different things can happen to B:

1. The rotation was applied to A. B will have no rotation, remaining parallel to the

x-axis, but will be translated to the end point of A.

2. B will be translated to the endpoint of A and will assume the same rotation as A,

remaining parallel to A.

Assuming the two lines A and B represent an arm. If the arm is straight, and then rotated

at the shoulder joint, it’s desirable to have the forearm - in this case B, assume the same

rotation as the upper arm - A. If the lines are stored as two points, there is nothing to

infer that the angle between A and B should be maintained after A is rotated. A better

representation of the lines - or bones, is to use a matrix. The matrix can hold the rotation

of the line relative to the parent. The matrix can also hold the translation its bone must

go through to be positioned correctly in object space. Because A is the parent bone in

this case, its object space is the same as its local space and hence there is no translation

necessary.
(a b o \

c d 0

\ x y V
a , b, c and d hold the rotation of the line and x and y hold the translation into the object

space of the parent bone. Putting this to work in this example gives:

/ COS (j) sin <p 0^ ft 0 o \

- sin (j) cos 4> 0 B = 0 1 0

\ 0.0 0.0 V V '0 0.0 1 /

27

The translation part of B has the same length as A, namely 1. The translation part of a

line can be thought of as holding the length of its parent line. This means that to define the

last child line, a separate matrix is needed. This is called a nub. It does not need to contain

any angle for rotation, as it has no child bones to be rotated.

o (Af i

0 1 0

^1.0 0.0 1 j \

(cos (j) sin (p 0^

- sin <fi cos (j) 0

cos (j) sin (j) 1J

(coscj) sincf) o'''

— sin <fr cos 4> 0 =

0.0 0.0 1 j

In this result, the cos 4> and sin 4> in the 3rd row of the matrix give the translation to apply to

B, while giving the length of A, which is still 1. The line A is now (0,0) to (cos 0, sin </>)

as expected. As mentioned above, to give the length of B a nub bone is used. In this case,

the nub will be:
f l 0 0^

0 1 0

0 y
Multiplying this with the object space matrix for B will give the matrix for the object space

nub, and in doing so will define the end of B in object space:

fl 0 0̂ ̂ cos</>

0 1 0 X — sin^

(s1 0 V ̂ COS (j)

/ COS (j) sin (j) 0)

COS (j) 0

2 sin (j) V
As with A, the endpoint of B can be read from the translation part of the matrix. B

now runs from the end point of A, (cos </>, sin <f>) to (2 cos (j), 2 sin <f>).

This example illustrates the parent-child relationship of the bones as well as local space

and object space rotation.

4.6 Eulerian Angles

The matrix approach to rotating lines in 3D has its advantages. It is reasonably easy to

understand, but not that efficient. It uses nine numbers to express a rotation or orientation.

28

Eulerian angles (henceforth known simply as ’’Eulers”) can express angular rotation using

three numbers. Instead of x, y and z-axis, Eulers refer to heading(y), pitch(x) and bank(z).

Figure 4.2: Euler Axis

An example of a rotation given in Eulers could be (50°, 60°, 20°). This rotates 50° about

the heading, 60° about the pitch and 20° about the bank. After rotating about the heading,

there is a pitch of 60° about the x-axis. However, this is the local space x-axis, not the

object space x-axis. As such, it was moved with the change in heading. Finally, there is a

bank of 20°. The z-axis that the bank occurs around is also a local space axis and has been

moved twice as a result of the change in heading and pitch.

The order of rotations is important. Performing the rotations in the opposite order will

result in a different orientation.

An issue with Eulers is that a given orientation can be represented by various different

tuples of Eulers. The most obvious case of this is adding 360° to any of the elements of the

Euler. This will rotate a full circle. Another issue with Eulers is that the three angles are

not independent of each other. For example, pitching up 30° is the same as heading 180°,

pitching 150° and then banking 180°.

29

This can be partially solved by restricting the range of the angles. Limit heading and

bank to ±180 and pitch to ±90. When functions are returning Eulers, they will always

fit this ’’canonical” format. There is still a singularity that can occur. Eulers have three

degrees of freedom. If there is a pitch of ±90°, any change in heading will have the same

effect as a change in bank. There are now only two degrees of freedom. This is known

as gimbal lock. Because of this, Eulers, while more efficient than matrices in terms of

computation and memory, are not suitable for representing bones in a skeleton. There is

another issue regarding Euler interpolation that crops up later on in the implementation (see

Section 6.3.1), and the problem and solution are discussed then.

4.7 Quaternions

Three numbers cannot safely represent an orientation, as seen with Eulers. The proof is

quite detailed and advanced, and is not discussed here. Using four numbers, in the form

of quaternions, avoids such problems. Quaternions have a lot in their favor when used to

represent a 3D orientation.

4.7.1 Quaternion Algebra

A quaternion consists of a scalar and a 3D vector. As the vector is already referred to as

(x, y , z), the scalar part will be w.

q = [w (x, y, z)]

A series of rotations can be expressed as a single rotation about an axis. This axis is not

necessarily a cardinal axis. Given a vector n, it can be an axis for a rotation. The length is

not important, only the direction. However, it’s convenient to scale it to a length of one. The

amount of rotation about this axis can be given by a scalar with the positive direction being

determined from the way the vector axis is pointed. Thus, the pair (0, n) is an axis-angle

30

rotation. As a quaternion is a scalar and a vector - it can represent an axis-angle rotation.

The (9, n) pair don’t plug straight into a quaternion. The following format is used:

q = [cos(0/2) sin(0/2)n]

= [cos(0/2) (sm (0/2)nx sin(0/2)ny sin(0/2)n^]

When negating a quaternion, all the elements are negated:

- q = [-w (- x , - y , - z)]

When the vector is negated, it points in the opposite direction. Because the direction of

rotation depends on which way the vector points, after negation, the direction of rotation

changes direction. The result of this is a negated quaternion gives the same rotation as its

positive version. This can prove troublesome when converting quaternions to Eulers.

4.7.2 Quaternion Multiplication

Quaternions are an extension of complex numbers. The scalar part is real, the vector part

is “imaginary”. Quaternion multiplication takes this into account:

(w-i + Xx i + yxj + Zik){w2 + X 2i + y2j + z2k)

- wxw2 + 101 x 2i + Wty2j + wxz2k

+X! w2i + x i x 2i2 + xi y2i j + xi z2ik

+yiw2j + y ix2i j + yiy2k2 + yiz2j k

+ z lw 2k + Z\x2ik + Ziy2j k + z \z2k2

= wiw2 + w ix2i + wxy2j + wiz2k

+ x xw2i + x ix2(- l) + xi y2(- k) + x 1 z2{ - j)

+yiw2j + y ix2(- k) + yiy2(- l) + y iz2{i)

+ z \w 2k + zxx 2(j) + z\y2(—i) + z ^ i - l)

31

= W \W 2 - x xx 2 - y xy 2 - ^ 1 ^ 2

+ { w 1x 2 + x \ w 2 + y \ Z 2 - z ± y 2) (i)

+ (^ 1 2 / 2 + VlW2 + Z1X2 - X iZ2) { j)

+ { w xz 2 + z xw 2 + x xy 2 - y i X 2) (k)

Rewriting this in a more recognisable layout:

W iW 2 - X \ X 2 - 2 /12 /2 - ZlZ2

t w xx 2 + X \ W 2 + y i Z 2 - z xy 2^

w

(x)

WlV2 + V\W2 + ZiX 2 - X \Z 2 y

\ w 1 Z 2 + Z \ w 2 + X i y 2 - y i X 2) W

4.7.3 Quaternion Inverse

The inverse of a quaternion is calculated by dividing the conjugate of the quaternion by the

square of its magnitude. As stated already [4.7.1] the magnitude of quaternions will be 1.

In this case the inverse of a quaternion will be the same as its conjugate.

As with complex numbers, the conjugate of a quaternion is calculated by negating the

imaginary part - in the case of a quaternion this is the vector part. The conjugate of p is

denoted p*:

p = [w{ x , y , z)]=>p* = [w (- x , - y , -z)]

4.7.4 Rotating Points with Quaternions

Instead of using a quaternion to hold an axis and an angle of rotation, the quaternion can

be used to hold a point in 3D space, by putting the point in the vector and setting the angle

to 0, p — [0 (X, y, z)}. This point can be rotated clockwise about the axis of a quaternion

by the angle of the quaternion with the following multiplication:

p' = q-'pq

where q is the rotating quaternion and p' is the point after rotation.

32

The inverse of a quaternion product is the product of the inverses, when the inverses are

multiplied in reverse order:

(qr)-1 = r _1(Z_1

This comes in useful when a point is to be rotated by a series of quaternions. It means a

series of quaternions can be multiplied up before rotating a point - so only one rotation is

necessary. Let p be a point in quaternion format, and a and b be quaternions suitable for

rotation. Rotating in the order a then b gives:

(6_1 (a~lpa)b)

(b~1a~1)p(ab)

(ab)~1p(ab)

This means that a series of skeleton bones can be rotated into their parents object space

by storing their local space orientation in a quaternion and multiplying it by their parents

object space quaternion.

4.8 Conclusion

The quaternion does not replace the matrix completely. It only replaces the rotation part

of the matrix, with the translation or length part of the matrix the same as before. Using

quaternions, a reduction from nine numbers needed to store orientation to four numbers

is achieved. This will reduce the memory and system requirements thus improving per­

formance. In the next chapter we consider the topic of treating animations as a series of

rotation signals over time.

33

Chapter 5

Digital Signal Processing

5.1 Introduction

The movement of a character over time, i.e. an animation, can be thought of as a series of

signals changing over time. Each signal represents the rotation of a bone about an axis as

the animation progresses. Manipulating these signals will alter the animation, which is a

significant goal in the scope of the research. To this end, this chapter discusses the basics

of digital signal processing, or DSP for short, and how it relates to the DSP implemented

in the project.

One of the major concepts of DSP is being able to represent the same data in both time

and frequency domains. The time domain is the representation normally used, where sig­

nals are plotted with their amplitude over time. The frequency domain shows the amplitude

of the different frequencies in a signal. Figure 5.1 shows a sine wave in the time domain.

The period of the signal, 0.25 seconds is related to its frequency. It repeats four times a

second, and so has a frequency of 4 Hz.

In Figure 5.2 the signal has a period of 0.083seconds, conversely having a frequency of

12Hz. Plotting these signals in the frequency domain will give a line at 4H z and at 12Hz,

where the lines give their magnitude. But the information in these frequency domain graphs

doesn’t tell anything that can’t be seen from an intuitive look at the time domain graphs.

34

0 0.2 0.4 0.6 0.8 1 12 14 1.« 18 2

Figure 5.1: A sine wave with a period of 0.25s and an amplitude of 1 in the time domain.

Wt AAAAAirnirn ¿I!w m m M m m WlIn

0 0.2 0.4 0.6 0.0 1 1.2 1.4 16 1.« I

Figure 5.2: A sine wave with a period of 0.125s and an amplitude of 0.33 in the time
domain.

Figure 5.3: The sum of the previous two graphs in the time domain.

35

Figure 5.3 shows the sum of the two previous signals in the time domain. The frequency

domain version of the signal is not so intuitive. It is shown in Figure 5.4.

1 2

oe

oe

04

0 2

0 —
14 16

Hz

Figure 5.4: The frequency domain equivalent of Figure 5.3.

The graph shows there are two different frequencies in the signal, one at 4 H z with

an amplitude of 1 and another at 12 H z with an amplitude of 0.33. Here, and in general,

the use of the frequency domain displays information in a time signal that may not be

obvious [18].

5.2 Sampling a Signal

Most operations in DSP revolve around having a continuous signal and sampling it at dis­

crete times before manipulating the samples. The continuous signal can be periodic or

aperiodic [8]. We consider four different types of signal that can occur:

Aperiodic Continuous These are continuous signals that tend towards 0 over time, for

example a Gaussian curve.

36

Periodic Continuous These are signals that repeat periodically over time, with common

examples being sine and cosine curves.

Aperiodic Discrete These are signals only defined at discrete times and that do not repeat

over time. The signals used when altering an animation fall into this category.

Figure 5.5: An aperiodic discrete signal taken from two animations blended together.

Periodic Discrete Discrete signals that repeat periodically over time. A walk signal from

an animation falls into this category. See Figure 5.6.

Figure 5.6: A periodic discrete signal taken from a walk animation.

Sampling is used to convert an analogue, or continuous signal, to a digital, or discrete

signal. In an electronics setting, an analogue to digital (ADC) converter is used, with the

discrete samples stored as a binary value. This conversion introduces noise into the system,

known as quantization noise. The more bits in the binary value that holds a sample, the

higher the resolution of the ADC and inversely, the smaller the quantization noise.

37

In Figure 5.7 the sine wave is an analogue signal. Samples are taken every 20°, giving

a digital signal consisting of 35 points. The digital signal is now defined only at these 35

points, giving the step signal shown in Figure 5.7. If the number of samples is increased,

the digital signal will better approximate the analogue signal.

Figure 5.7: A sine wave (blue) and a sampled version (pink) of the same sine wave.

5.2.1 Aliasing

While increasing the number of samples will give a better representation of the original

signal, it also requires more memory to store the digital signal, and more operations to

process it. However, not taking enough samples will result in not being able to reconstruct

the original signal. The ’’sampling theorem” says that in order to be able to reconstruct a

signal from samples, the signal must be sampled at twice the Nyquist frequency, where the

Nyquist frequency is the highest frequency in the signal. Sampling at a rate less than this

will result in samples representing a difference signal of lower frequency [15].

In Figure 5.8 the dense sine wave is sampled at twice the Nyquist frequency, that is,

twice for every period - this is shown by the black dots. If the sampling rate is less than

this, as shown by the blue dots, where the signal is being sampled at l / lQ th the Nyquist

frequency, the longer sine wave is stored. This is known as aliasing - where the frequency

of the sampling data is different to that of the original signal.

38

Figure 5.8: A sine wave sampled at twice the Nyquist frequency and at 1/10,A the Nyquist
frequency.

5.2.2 The Frequency Domain

Thus far, the signals discussed have all been viewed in the time domain. It has been estab­

lished that to sample a signal properly, it must be sampled at twice the highest frequency in

the signal. But what is the highest frequency in a signal?

The time domain signals can be viewed in the frequency domain, which has the same

information, but in a different representation. To convert a discrete time signal to the fre­

quency domain either the Discrete Time Fourier Transform (DTFT) or the Discrete Fourier

Transform (DFT) can be used. The DTFT is used for aperiodic signals and the DFT is used

for periodic signals.

The idea behind both the DFT and the DTFT is to split up a time domain signal into

sine and cosine waves. However, an infinite number of component signals are needed to

represent an aperiodic signal, which means the DTFT isn’t practical in terms of implemen­

tation in a computer program. The solution is to repeat the aperiodic signal over time so

it appears to be periodic, instead of aperiodic, and then to use the DFT to convert it to the

frequency domain.

The DFT takes a time domain signal of N samples and from it derives two N /2 + 1

39

Cosine signals, and N/ 2 + 1 Sine signals. The equations used are given in 5.1 and 5.2.

^ 1 2Trki
ReX[k\ = ^ x [¿] cos (5.1)

¿=o

O7rki
ImX[k] = — x[i\ sin (5.2)

i= 0

Re is the real part of the DFT result, also known as the cosine part, and I m is the imaginary

part, or the Sine part. x[i\ is the time domain signal being processed by the DFT k is the

index for the frequency domain signal and runs from 0 to N/2.

The larger k is, the higher the frequency of the component sine or cosine curve. The

goal of using the DFT was to see the frequencies in the original time domain signal, so

as to determine the Nyquist frequency and thus the rate at which to sample the signal at.

However, the frequency resolution of the DFT depends on the number of samples in the

discrete signal. The DFT cannot be used to determine at what rate to sample the original

signal. In electronics, the analogue signal is passed through a low pass anti alias filter

before sampling. The purpose of this low pass filter is to eliminate any frequencies above a

certain threshold, guaranteeing there are no frequencies remaining in the signal above the

frequency threshold of the low pass filter. With animation signals however, there are other

constraints that have an impact on the sampling frequency that are more important than

filter resolution or storage requirements.

5.2.3 Animation as Digital Signals

An animation may be stored as a series of keyframes. Each of these keyframes consists of

an array of quaternions where each quaternion holds the rotation applied to a corresponding

bone in a skeleton relative to its parent bone (the skeleton is the structure used to animate

a character, with the skin being applied at a later stage). Because PC games can run at

different frame rates depending on the hardware configuration of the PC the game is being

run on, an animation cannot be made from x keyframes and expected to run at x frames

40

per second 1. With a variable frame rate, it is necessary to be able to resolve an animation

into a variable number of frames, determined at run time. To get the frames in between

two keyframes, the quaternions of both keyframes are interpolated, either using linear in­

terpolation (LERP) or spherical interpolation (SLERP). This approach results in a series

of poses at discrete times, the rotations applied to each bone over time can be taken as a

digital signal (section 6.3) forming a discrete aperiodic time domain signal.

5.3 LERP and SLERP

These are two types of quaternion interpolation, both having different attributes. Both

methods follow the torque minimal arc between two quaternions. However, LERP has a

varying acceleration along its arc over time, see Figure 5.9.

Torque
minimal
path

Quaternion at keyframe
• Interpolated quaternion of in-between frame

Figure 5.9: LERP - the points on the curve are not evenly spaced.

This manifests itself as the first few in-between frames having less movement than

the middle in-between frames, with less movement again for the last in-between frames.

SLERP follows the arc with a constant velocity, meaning no such problem exists, as shown

in Figure 5.10.

In practice, the varying acceleration of LERP methods isn’t a problem, so long as there

are a sufficient number of pose quaternions. Although the movement will be non uniform,

LERP approximates SLERP to a degree where the negative aspect of LERP isn’t visible due

'in classic hand drawn animation for film, 12 frames were drawn, and each displayed twice consecutively
to give 24 fps.

41

■ Quaternion at keyframe
• Interpolated quaternion of in-between frame

Figure 5.10: SLERP - the points on the curve are evenly spaced.

to high frame rates (60 frames per second and greater). This is a factor in the sampling rate

used. With a low sampling rate (less than 10 Hertz) this acceleration and de-acceleration

of limbs will start to become visible. While the sampling theorem may evaluate to give a

lower sampling rate, it does not take this into account.

If SLERP does not suffer the disadvantage of this varying velocity, why not use it

instead? Quaternion LERP is commutative, quaternion SLERP isn’t. This commutative

property is convenient when blending several animations, as such a blend will involve

interpolating between several quaternions for each bone. Using SLERP would require a

system to have the blending animations to be in a certain order. LERP is also cheaper to

compute than SLERP, though this is to be expected given the nature of the operations [17].

5.3.1 Other Sampling Rate Constraints

There are a number of other system constraints that effect the sampling rate. These are

discussed in more detail in Chapter 6, the implementation chapter. They include:

Bending work Part of the timewarping algorithm involves finding the angle between three

points in a signal. As such, at least three samples are required, with more samples

allowing a better time warp.

Wide spacing of points In the timewarping implementation, an Eulerian angle is con­

verted into three 2D points, with the x value being the time of the Eulerian point

in the animation signal, and the y value being either the x, y or z value of the same

42

Eulerian point. As the y values are in radians, they will be between ± 7r, and will

often be close to 0. If the sampling rate forces the x values to be far apart relative to

the near 0 values of the y components, any attempt to determine the angle between 3

points will return a value of pi.

Low Pass Filtering To reduce noise in the resulting time warped signal, a low pass filter is

used to smooth out the signal. The filter used has a kernel width of five, and so to be

effective requires more than five samples, with 15 samples giving acceptable results.

5.4 Conclusion

As will be demonstrated in this thesis, regarding sampling animations with a view to warp­

ing, the sampling rate is not as important as the DSP literature would suggest. Using

floating point variables to hold samples gives a very high degree of resolution, certainly

enough that quantization noise is not noticeable in the finished time warp. The main con­

straints on the sampling rate are not those imposed by the sampling theorem, but instead,

those imposed by the timewarping algorithm, and from the choice of LERP or SLERP

for quaternion interpolation. In the next chapter the motion warping implementation is

described.

43

Chapter 6

Implementation

6.1 Introduction

This chapter discusses an algorithm for implementing animation warping - that is, taking an

animation and a pose, and automatically having the animation meet the pose in a realistic

manner.

The implementation is in C++, and works in conjunction with Instinct Technology’s

Instinct Engine. This engine handles importing animations and poses from 3D Studio Max

using Instinct Technology’s 3D Studio Max exporter. The engine also handles user input at

run time as well as the graphics required to display animations in a suitable environment.

Throughout the chapter, references are made to the code used in the implementation. At the

core is the CMorphData class, used to hold all the various incarnations of the animations

involved in the program. Strictly speaking, it’s more of a structure than a class, as all of its

member variables are declared to be public for ease of access.

The algorithm follows the approach of Bruderlin and Williams in [6], with regard to

using a low pass filter to alter an animation, as well as timewarping. Before that however,

it is necessary to convert the animation into a format that fits with the approach in [6].

44

6.2 Sampling an Animation

The Instinct engine works by creating entities and assigning properties to these entities.

These entities include lights, sounds and user input along with any other object involved in

the environment used at run time. The stickman used for displaying animations is one such

entity, and the various animations and poses are some of the stickman’s properties.

There are three animation properties of the stickman: the bones, the walk animation

and the pose animation. The bones property contains information regarding the length

of each bone and the order in which they are connected. The walk animation property

contains keyframes for the animation. These keyframes consist of a series of quaternion

values - holding the local rotation of each bone for that keyframe. There is also a time

associated with each keyframe. Lastly, the pose property is similar to the walk property, in

that it contains the quaternion rotations for each bone. However, there is no need to have

an associated time, as the pose is a single keyframe.

In order to get the quaternion rotations of an animation, the time of the animation must

be set to give the bone rotations at that time. If the time is greater than the length of

the animation, it will loop - though generally a function is called to get the length of the

animation and this is used as the exit point for a For-Loop. With the time set, the rotations

can be accessed on a bone by bone basis. This will give one frame of the animation and is

the process by which a sample of the animation is acquired.

6.2.1 Why is Sampling Necessary?

Although the animation is already loaded into the Instinct Engine, it is not in a format that

lends itself to motion warping. The main reasons for this is that the four elements of a

quaternion are not independent of each other1 meaning standard shifting and multiplica­

tion operations cannot be applied to the components of the samples. Eulerian rotations are

'One simple way to help understand this is by noting that as the quaternions are only used to give the
rotation of a bone, all the quaternions are unit quaternions meaning their length is 1. If one component of the
quaternion increases, another must decrease to maintain the unit length.

45

much better suited to the operations required for motion warping as the three values are in­

dependent of each other. However, in the conversion from quaternions, successive Eulerian

rotations in an animation are not independent of each other. This is discussed in greater

detail in section 6.3.

Sampling the entire walk animation leads to an Eulerian version of the animation held

locally in the motion warping application as opposed to as a property of the stickman.

6.2.2 Finding a Sampling Rate that Works

The choice of a sampling rate has an impact on various aspects of the motion warping de­

velopment. Picking a low sampling rate, for example 10 Hertz, will be quicker to compute

and will use less memory. However, it may lead to noise in the animation as well as a

visible acceleration in the bones of the character for the frames made from interpolating

between the samples, see Figure 6.1. On the other hand, picking a high sampling rate,

greater than 20 Hertz, will slow the performance of the warp, but will produce a cleaner,

smoother result, see Figure 6.2.

Figure 6.1: A signal produced using a low sampling rate.

46

oon

» • f \ f \
i a i

w V i
1 * H

k 9 \ "
V p * p

9 ’* • n
\ 4 \

y *

.... v

pr
ft 0

» « « * • • • m ■ ■ • w

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61

Time

Figure 6.2: A signal produced using a high sampling rate.

The difference can be seen by graphing the rotations for a bone on an axis. The more

samples the smoother the signal. The smoother the signal, the less noise in the resulting

animation.

Using a sampling rate of 15 Hertz is almost a good compromise, certainly the workload

is reduced, but the output is jerky. To rectify this, the warped animation is passed through

a low pass filter to smooth out the result and give a much more pleasant warp. For more on

this filter, see section 6.4.

6.2.3 Code Reference

The sampling function is in the CWarping class and is called SampleAnimation. It takes

a CMorphData object and an animation as parameters. The resulting sampled animation

is stored as quaternions in the m_pBoneSampleArray. The pRotKeys hold the quaternion

rotations while the pPosKeys hold the vector positions. The time of each sample is stored

for both.

47

6.3 Converting a Quaternion Animation to an Eulerian

Animation

As quaternions and Eulerian angles are both used to give angular displacement, it is pos­

sible to convert from one format to the other. To convert from a quaternion to an Eulerian

representation the following equations are used:

pitch — arcsin(—2(y;z + wx)) (6.1)

heading = arctan 2 (xz — w y , 1/2 — x 2 — y2) (6.2)

bank = arctan 2 (xy — w z , 1/2 — x 2 — z2) (6.3)

However, when converting, it should be noted that if the Eulerian rotation has entered

Gimbal lock, its bank should be set to 0, and the following equation is used for heading:

heading - arctan 2{—x z — wy, 1/2 — y2 — z 2) (6.4)

6.3.1 Using this Conversion with an Animation

A property of quaternions is that a negative quaternion and a positive quaternion will give

the same animation. However, they will produce different Eulerian representations when

converted using the equations in section 6.3. This problem occurs with the thigh bones of

the skeleton.

As it is, converting the signal shown in Figure 6.3 back into quaternions will return

the original quaternion signal and so the original walk animation will be reconstructed.

However, when the signal of Figure 6.3 is smoothed out by a filter, or passed through the

timewarping algorithm, the jump from ~ — n to ~ n becomes a problem. The desired walk

signal for the left thigh is shown in Figure 6.4.

Here the signal oscillates around w, but if it oscillated around — n the rotation is still

the same. The jump from —7r to 7r is what causes the problem. The jump is removed by

48

Left Thigh Euler Rotations

>■*, -•»•***. ,*•••***

1 4 / 1 0 13 IE 19 22 ¿5 28 31 34 37 10 43 46 49 52 55 58 61

Samples

Figure 6.3: A quaternion to Eulerian conversion shown for the left thigh bone. There is
a conversion discrepancy with the Z component of the Eulerian representation, shown in
yellow. The right thigh bone Z rotations are similar.

comparing each sample with the previous sample and seeing if the difference is greater than

~ 27r radians. If it is, there is a jump in the signal. The jump is eliminated by multiplying

the sample by -1.

6.3.2 Code Reference

The method CWarping::convertAnimToEuler handles converting the quaternion signals of

an animation to Eulerian signals. It takes in a CMorphData object - which contains the

quaternion version of the animation in m_pBoneSampleArray. It makes a conversion using

the formula in 6.3 by calling the convertToEuler function. The resulting Eulerian signals

are stored in m_pBandPassArray[0]. Then they are corrected for flips between —7r and n.

49

Desired Left Thigh Euler Rotations

35

2.5

2
to

I 1-5
a .

1

05

0
-0 5

-^X
• Y

Z

V«*: .wAVlVll.».. . +*->. <•**/> A
I 4 7"*10 13 16 19 22*^5 26 31 34 37 ”40 43 48 49 52*^5 SB 61

Sample«

Figure 6.4: How the signal showing the Z rotations of the left thigh should look.

6.4 Filtering an animation

Following the approach in [6], a system was developed to incorporate multiresolution fil­

tering. This can be thought of as an equaliser, as commonly used in audio processing, but

used for animation in this case. With Bruderlin and Williams, the purpose of the filter is

to be able to adjust animations before timewarping to give a better result. The goals of

implementing such a filter for warping an animation with a pose are similar. However, the

actual use of the filter in this project is to enhance the resulting warped animation after the

timewarping.

In digital audio signals low-pass filters are used to remove high frequency noise in the

signal. In the same vein, an animation can be passed through a low pass filter to remove

high frequencies. This results in a level of detail being removed from the animation, with

the resulting animation appearing somewhat restricted. The more detail each successive

low pass filter removes, the more restricted the resulting animation.

In audio signals, the low frequencies contain the bass, the general sound, and the high

50

frequencies contain the treble, or the detail. Motion is somewhat similar - the middle

frequencies contain the general motion, with the high frequencies containing the detail of

the motion.

Passing the animation through successive low pass filters results in several low pass

versions of the animation, each with less detail than the low pass before it. Subtracting

consecutive low passes from each other gives band passes or wavelets (see Figure 6.5).

These band passes can be summed to recreate the original animation. However, if a band

pass is scaled before it is added, it will alter the animation. Scaling the lower pass bands

positively exaggerates the general shape of the animation; scaling them in a negative di­

rection will restrict the general shape of the animation. Along with this, scaling the higher

band passes will cause the character to appear twitchy and nervous. This filtering method

can be used to remove noise from the final timewarped signal.

Low Pass 0

Unfiltered Low Pass 1

Animation Low Pass 2

|_ow Pass 3

Band Pass 0

Band Pass 1

Band Pass 2

Band Pass 3

Figure 6.5: The filtering architecture.

51

6.4.1 Implementing a Low Pass Filter

As already discussed, in the electronics domain, a low pass filter is used to remove high

frequencies before sampling a signal. The design of these filters centers around changing

resistor values in an op-amp circuit. The values chosen for these resistors give the filter

kernel. Its job is to decide how much from each part of a signal gets passed through the low

pass filter. The kernel in the animation filter calculates how much of each sample in the

animation gets passed to the lower pass bands. As suggested in [6], the filter kernel used is

(c, b, a, 6, c) with a = 3/8, 6 = 1/4 and c = 1/16.

The number of lowpass bands, n, is related to the number of samples, m in the anima­

tion signal as follows:

2n < m < 2n+1

The filter is convolved with the animation to give the first lowpass. For each successive

low pass, the filter kernel is expanded by padding it with 0’s between a , b and c:

kernel 0 : (c, b, a, 6, c)

kernel 1 : (c, 0, b, 0, a, 0, b, 0, c)

kernel 2 : (c, 0,0, b, 0,0, a, 0,0, b, 0, 0, c) etc...

When the convolution requires a point that is outside the range of the m points of

the animation, the end point is used. On the first iteration this will happen on the first

and second convolution operations, as well as on the last and second last operations. An

example of this filter in operation is shown in Figure 6.6

6.4.2 Filtering in Real Time

While the implementation of multiresolution filtering affords an ability to alter an anima­

tion outside of the normal channels (blending and timewarping), it didn’t fit in with the real

time goals of the motion warping procedure.

52

Figure 6.6: Four low passes of the Y component of a thigh bone. The signal gets smoother
with each iteration.

In a similar illustration to that by Steven Collins of Havok (www.havok.com) when

discussing the resources available for animation in a computer game at the Eurographics

conference 2005 in Trinity College, Dublin, the following figures illustrate the number of

operations required to implement filtering. Take the case of calculating a motion warp over

2 seconds; at 15Hz, this means 30 samples, and 4 frequency bands. With a kernel width

of 5, there are 5 additions needed for each value in each frequency band. So 4 frequency

bands, with 30 samples each, with 5 additions per sample gives 600 operations. But then

there are 3 values in each sample, as the samples are Eulerian, giving 1800 operations.

On their own, this number of operations is not something that would generally cause any

problem. But to play a warped animation, it’s ideal that the whole animation be calculated

and stored in memory as early as possible, so the frames that come from interpolations be­

tween keyframes can be calculated at run time - a calculation time of around 5 frames being

preferred. Running at 60fps this means a calculation time of 0.0166 * 5 = 0.0833seconds.

The time warping has to be carried out in this same time - it’s also an expensive operation,

as highlighted in section 6.5.2. 0.0833 seconds is not a great deal of time in the context

of a next generation computer game when all the other processes in a game are taken into

53

http://www.havok.com

consideration as well. This however, is both machine and game dependent.

Another point about multiresolution filtering is that, while it does afford the ability to

alter animations when using timewarping and blending, it seems this property isn’t needed.

The results from filtering appear to be no better than putting the animation and pose in

to the timewarp solution2. In situations where the mix of timewarping and blending fail

to give a good motion warp, this animation altering property provides another avenue to

explore.

6.4.3 Code Reference

The filter function, CWarping::calculateLowPass, takes a CMorphData object. It works

with the m_pSignalArray, originally using m_pSignaLArray[0], as this is where the Eu-

lerian version of the animation is stored. The CMorphData constructor calculates the

number of low passes from the number of samples in the animation. This is held in

CMorphData.m_noFrequencyBands. The m.pSignalArray uses m_noFrequencyBands to

initialize enough memory to hold all the lowpass bands. When the function finishes,

m-pSignalArray [0] holds and unfiltered Eulerian version of the animation, while

m.pSignalArray [m_noFrequencyBands - 1] holds the lowest lowpass version of the anima­

tion.

The CWarping::eulerBandPass function will subtract successive lowpass bands to cre­

ate bandpasses. It takes a CMorphData object which has m_pBandPassArray initialized in

the same way as m_pSignalArray, with enough memory to hold the bandpasses. At this

point the band passes can be scaled to alter the animation.

The bandpasses are added using CWarping::eulerSumPassBands. This initializes the

2In fact filtering doesn’t suit a pose. Filtering removes detail and restrains the motion of an animation -
but with a pose there is no detail to remove or motion to restrain. The result of this is the highest pass band
contains the pose, with the remaining pass bands all evaluating to 0. To get round this during development,
instead of a pose, an animation made from a linear interpolation of the pose and the animation was used and
while this could be filtered it had inherent errors making it a bad animation to timewarp with.

54

CWarping.m_pEDisplayArray. This is an array to hold an Eulerian version of the recom­

bined animation. Calling CWarping.fillQDisplayArray will convert m_pEDisplayArray

from Eulerian values to quaternion values and store the result in

CWarping.m_pQDisplayArray. This array is accessed when rotations for the animations

are required to display the animation on screen.

6.5 Time Warping an Animation

Blending two animations to produce a third animation sounds like an appropriate solution

to the problem of creating a lot of separate animations. For instance, why create a jog

animation when a blend of a run and a walk will give a jog? To discuss this question, it’s

first necessary to define what a blend is in terms of animation and illustrate the difference

between a blend and a warp.

A blend is taking a frame of one animation and combining it with a frame from a second

animation to create a frame of a third animation. The problem with this is if the second

animation doesn’t synchronize with the first animation regarding the general motion of the

limbs, the result can be very restricted or static. A good example is that of foot plants,

where the walking/running combination can cancel each other out resulting in a still pose

for the character’s legs (if the running character has a leg at the highest point of its motion

while the walk animation has a leg on the ground, the blend gives the in between, resulting

in a hovering motion). The character can then be seen to slide across the ground with no

walking motion. What’s needed is a different blend that first of all synchronizes the two

animations. This is called timewarping. The goal of timewarping is to put one animation

into a suitable position before blending to give results that won’t be ’canceled out’.

55

6.5.1 Timewarping Algorithms

Timewarping is not just restricted to the field of animation. It’s used in speech recognition

- where a word may be pronounced at a slower rate than a test case and so the word is

timewarped to a form where it may match the test case. Timewarping of this form is docu­

mented in [9]. This approach involves looking at the audio signal in the frequency domain.

As noted when discussing the DFT in chapter 4, such a conversion adds a lot of computa­

tional expense, an undesirable trait when trying to implement real-time timewarping.

A different approach to time warping, and one that deals with an animation and a pose

(as opposed to two animations) is discussed in the Motion Warping paper by Witkin and

Popovic [10]. However, with this approach, the timewarping shifts are given beforehand,

with the focus being on a blend between an animation and pose - the timewarping of the

animation is already calculated.

In [6], there is a section discussing time warping. It was chosen as a blueprint to follow

as it didn’t require any run time input from a user or any frequency domain conversion.

6.5.2 The Implemented Time Warping Algorithm

As in [6], this approach involves looking at the signals of 2 animations and treating the

signals as shaped pieces of wire. The goal is to find the least work required to match them

in shape by simulating the physical work required to bend and stretch the pieces of wire.

Using this on Eulerian animation signals, each time warp component signal consists of

(x, y) pairs, where x is the time of the sample and y is one of either the bank, pitch or

heading. Each signal with regard to pitch, bank and heading is timewarped separately.

A ’grid’ is dynamically programmed to work out the least cost combination of a signal

from the walk animation with the pose. In the diagram (see Figure 6.7) the pose is plotted

across the top with each point across the grid holding a value of the pose. The walk ani­

mation is plotted in a similar fashion down the side. The walk and pose can be switched

with no impact on the result. Starting at (0, 0) (the top left comer) a ’work’ or ’cost’ value

56

Animation
0 (2 3 4 5 6 7 8

1
2

3
Blend 4

5
6
7
8

X, Deletion
+ Insertion

Substitution

Figure 6.7: A graphical representation of the grid created by dynamic programming to
implement timewarping.

>

>f

\ .'
.

>f

57

is assigned to each node. (0,0) has a value of 0. The work value in the successive nodes

is a combination of a bending work value and a stretching work value. This combination is

a weighted sum, changing the weights can change work values, in turn changing the path

through the grid and hence the time warp. The path through the grid must follow certain

rules: three different types of moves are allowed - across, down, or diagonal. A move

across cannot be followed by a move down, and a move down cannot be followed by a

move across, without first having a diagonal move in between.

6.5.3 Bending Work

Signal A

Figure 6.8: 2 signals illustrating what angles and lengths are compared to calculate a work
value for a node on the grid.

The bending work value corresponds to the difference in angle between two successive

line segments on one signal (animation signal) with two successive line segments on the

other signal (pose signal). As such, this requires three points, so the bending element of the

work value of a node does not come into effect on the grid until elements (2, y) and (x, 2).

58

In [6], the timewarping algorithm is based on methods documented in a paper by Seder-

berg and Greenwood [11] on 2D shape blending. Where Sederberg discusses taking the

angle between 2 line segments, he does so with the aim of morphing from one signal to

the other. This leads to setting up a Bezier spline between the 3 points, so an interpolation

value can be used to show how far along this spline the shape blend has gone at a point.

Implementing such a spline puts a drain on resources, and isn’t strictly necessary, as the

only values needed are those when the interpolation factor is 0 and 1, ie. the start and end

of the spline. Finding the difference between the angles when the interpolation factor is

1 and 0, will give the angle between the 2 line segments of a signal. Doing this for both

signals allows a comparison of their angles.

Instead of implementing this overly complicated method, the 2 line segments of each

signal are brought into a local space. One segment is rotated to he on the x-axis. The

second segment is rotated accordingly. Then depending on the sector the end point of this

second segment lies, the angle between it and the x axis is calculated. This is carried out for

both signals, allowing a comparison to be made between the angles of both signals. This is

illustrated in Figures ??, 6.10 and 6.11.

When in use it was discovered that this method returned 180 degrees the majority of

the time, which was odd, as it could be seen from the signals that the angles between points

were not 180 degrees. The reason for this lay in the values involved. To illustrate why,

suppose the sampling rate is 10Hz, meaning the samples are spaced 0.1 seconds apart. The

natural unit for angles in C++ is radians, giving angle values a range between -2ir and 2tt,

or -3.14 to 3.14. Quite often a bone won’t have a great deal of motion in this time, perhaps

oscillating in a range of -0.0001 to 0.0001 radians (of course, it can be much bigger, but

such small rotations are common). Getting the difference in angle between 2 line segments

with such values will always approximate 180 degrees as the points are relatively far apart,

given their magnitude.

One possible solution may be to sample the signals at a higher rate, meaning the points

won’t be spaced so far apart and so their magnitude would have a greater effect when

59

\

Figure 6.9: Translate the 2 segments so they sit on the origin.

Figure 6.10: Rotate the second segment so it lies on the x-axis. Rotate the second segment
by the same amount to preserve the angle.

60

Figure 6.11: Calculate the angle 0 using trigonometry. If necessary, adjust it to account
for the quadrant in which point ’a’ lies.

yl ~

4 ■
1/Sampling Rate

Figure 6.12: As the sampling rate decreases the angle at y2 approaches a limit of 180
degrees.

61

calculating angles. This is an undesirable solution for two reasons. The most obvious

is that it will mean more samples, in turn meaning more processing and hence a slower

algorithm. The second reason is that as the sampling rate increases the angular difference

between two points will decrease (taken to the limit will lead to every consecutive pair of

points being co-linear), leading back to the case where all the angles computed will return

180 degrees.

A second solution, and indeed the solution used, is to scale up the rotation values before

calculating an angle. If the angle of rotation of the 3 points used (3 points to define 2

segments) has a magnitude of less than 1, the values are all scaled up by increasing powers

of 10 until one of the 3 points (or possibly 2 or all 3 points) has a value greater than 1. This

resolves the problem of the points being relatively far apart by increasing them so they can

influence the angle between the 2 segments. Changing the values of the data on which the

time warp is based may give the impression that the resulting timewarp will be deformed.

However, if a point is scaled up by 1000, it can be observed that all the other points in

the signal will require a similar scale value, meaning the bending work of a node hasn’t

changed relative to all the other nodes3.

Having an angle for each signal, these are used to calculate how much work is needed

to bend one signal to the shape of the other signal. In [11] the following formula is used:

kb(A9 + m bA9*)e» (6.5)

where kb is a constant to indicate bending stiffness, A 9 is the change in angle that the point

must undergo to match up with the new shape, m,bA6* is an additional angle to be added

if the Bezier spline was not monotonic and lastly, eb is a user definable constant to do with

elasticity. As the bending application in this case isn’t shape blending where the positions

in between the start and end are important, the formula can be reduced significantly. As the

Bezier spline has been removed, there is no need to account for monotonicity, so that can

go. kb and eb are both constants and are set at the start of the bending function. In the case

3There is normally a certain uniformity in all the samples of a given signal, if one is xS — 5) the rest of
the samples will also be xS — 5) where £ is a variable within a signal.

62

i = * --
1/Sam pling Rate

Figure 6.13: When the y values are scaled up they have a greater bearing on the angle
between the 2 line segments.

of getting a bending value where there aren’t 3 points to make 2 segments, but one vertex

or two vertices, the angle is taken to be 180 degrees.

Calculating the stretching component of a node’s work value is much more straight­

forward. It’s based on the work required to stretch one segment of a signal to the length of

the corresponding segment on the other signal. The length of each segment is calculated

using the formula for the distance between two points. If there is only one vertex the length

of the segment is 0. Again, in [11] the following formula is used:

k -(--------- t . ---------r m (6-6)(1 — cs)min{L0, Li) + csm ax(L 0,L i)

where k3 is a constant involving a theoretical cross sectional area of the wire - it is set to 1,

but can be altered to change the influence of stretching in the work value of a node. L q and

Li are the lengths of each of the segments, cs is a constant that imposes a penalty when one

of the segments has a length of 0. es is an elasticity constant similar to e& is with bending.

The bending and stretching values are added to give a possible work value for a node.

63

6.6 The Grid Revisited

It was stated previously in section 6.5.2 that a work value is assigned to each node in the

grid. As the aim of the grid is to find the lowest cost route from the top left comer to

the bottom right comer, it is necessary to ensure that the work value of each node is the

smallest work value available to that node. The combination of moves to access a node

(down, across or diagonal) leads to 7 possible combinations to get the least work for that

node - across across, across diagonal, diagonal across, diagonal diagonal, diagonal down,

down diagonal and down down (remember, it takes 3 points to get the bending work).

Obviously, there will be some restrictions, for example, if the node in question is at the top

or the side, it can only be accessed by going across (top), or down (side). The possible costs

for a node ’A’ are evaluated for each possible route to A and the smallest cost is selected.

This cost is then added to the cost of the middle node of the three nodes used to get the

bending part of the cost for ’A’. In the implementation, this cost is worked out when the

grid is being created dynamically.

When each node in the grid has been assigned a cost, the grid is traversed backwards

from the point (x — 1, y — 1) to (0, 0), where x is the number of samples of the pose and

y is the number of samples of the animation4. The route taken to traverse the grid controls

the timewarp. The algorithm for finding this route is as follows:

• The CurrentNode is the node on the grid currently in use.

• Start by setting the current node to (x — l , y — 1) - the last node on the grid.

• Push the CurrentNode to the OptimalPath list.

• Repeat:

{

- If CurrentNode.x or CurrentNode.y has depleted to 0, force the next node along

the side or across the top.

4The -1 is because the arrays used to hold the signals run from 0 to x-l/y-1, not from 1-x/y

64

- If this is the first move, or if the previous move was diagonal check the cost

values of the following three points:

(CurrentNode.x — 1, CurrentNode.y),

(CurrentNode.x — 1, C urren tN ode.y — 1),

(CurrentNode.x , CurrentNode.y — 1)

- If the previous move was across, check the cost values of the following 2 points:

(CurrentNode.x — 1, C urren tN ode.y),

(CurrentN ode.x — 1, C urren tN ode.y — 1),

- If the previous move was up, check the cost values of the following 2 points:

(CurrentNode.x — 1, CurrentNode.y — 1),

(C urrentN ode.x, C urren tN ode.y — 1)

- Set the CurrentNode to whichever of the nodes has the lowest cost.

- Push the CurrentNode to the OptimalPath.

}
while the CurrentNode is not(0,0)

The result of this is the OptimalPath list contains a series of nodes that will trace out

the path through the grid. An example of such a path is shown in Figure 6.14.

Figure 6.14: A screengrab from excel where the values of a grid were printed. The least
cost path through the grid is shown in green.

The purpose of this path through the grid is it gives a plan for how to construct the

timewarped signal. If there is a diagonal move on the path, the corresponding point on the

signal being timewarped is stored in a separate array.

65

If it’s an across move, the point to be stored is an average of the pose points correspond­

ing to each consecutive across move.

Finally, on a downwards move, the points are created by taking a B-spline round the

pose point - i.e. the point immediately before the pose, the relevant point on the pose,

and the point immediately after that. A value is extracted from the B-spline for every

downwards move5 and stored for the timewarped signal. This is shown in Figure 6.15. For

more detail on B-splines see [16]

The signal resulting from this timewarp contains times for each sample. However, these

are not the times used, instead, the original sample times are mapped to the new samples,

thus timewarping the blended signal.

A

s .

i c

N

D t (• G H 1

--------- >V v
.

X"
~

--------->f y
*s^

(
-r \ s. \

s

RC =
F + G

Figure 6.15: The diagram shows a 50/50 merge of 2 points on a diagonal move, how a
B-Spline is used when moving down, and an average when moving across. It should be
noted that only the y values of the signals are involved in the numeric operations shown.

5Creating a B-spline from animation points suffers from the same ’small numbers’ problem as getting the
angle between two segments of a signal. This leads to the spline always approximating a straight line, when
often that it approximate a curve. It is resolved in the same way as it’s solved in the bending function.

66

6.6.1 Code Reference

The CSederberg class (named after the author of [11]), located in the graph.cpp file, com­

putes the time warp. It is passed five parameters, three CMorphData objects - referred to

locally as a, b, and result, and a start time (morphStartTime) and an end time (morphEnd-

Time) for the timewarp.

As the grid will compare all the samples in ’a’ with all the samples in ’b’, some memory

allocation is required. Firstly m_NoAcrossPoints holds the number of samples in ’a’ and

m_NoDownPoints holds the number of samples in ’b \ These are equal in value, but there

is no guarantee this will always be the case.

The CSederberg class is able to timewarp the band passes of two animations. This is

implemented in a series of nested loops. The outer loop cycles through the band passes.

Inside this, the next loop cycles through the x, y and 2 strands of each band pass. Inside this

again is a loop on each bone in the character. Lastly, inside this is a loop on the samples in

each signal.

In order to timewarp each pair of corresponding signals, they are first copied into the

m_pAcross and m_pDown arrays. The CSederberg: :findOptimalPath function is called to

find a path through the grid. Before calling CSederberg: :plotPath to draw up the grid, two

PATH nodes are created. A PATH node is a structure to hold the information required by

each node on the grid. It can be thought of as a doubly linked list node, as it has a pointer

to its parent - PATH * pParent, and child PATH * pNextNode. Also in a PATH node are:

bool north Used when recording the path through the grid. Set to true if the preceding

node on the path lies north of this node.

bool west Used when recording the path through the grid. Set to true if the preceding node

on the path lies west of this node.

float cost Used to store the cost associated with the node

MYPOINT coordinates Each node has coordinates to make it possible to locate that node

67

in the grid without having to search through all the elements in the grid.

MYPOINT I Holds the time (I.x) and rotation (I.y) values of the ’a’ signal plotted across

the top of the grid.

MYPOINT J Holds the time (J.x) and rotation (J.y) values of the ’b’ signal plotted down

the side of the gird.

The parent node, m_pGridPath is set with invalid information to differentiate it from the

regular path nodes. Its pNextNode pointer points to m_pGridEnd. The grid will be inserted

between these two PATH nodes.

Creating the grid as a linked list is relatively straightforward, but because the elements

of a linked list do not occupy a contiguous block of memory, it is not possible to refer to

nodes by their coordinates. Coordinate reference for nodes is desirable as without it some

form of searching algorithm is needed, and these are generally slow. Taking advantage

of knowing how many samples will be plotted along the top of the grid, and down the

side of the grid, a contiguous block of memory can be allocated to hold a grid of size

(.acrossPoints * downPoints) - this is done in CSederberg::plotPath. Building on this,

the function CSederberg::findNode takes the coordinates of a node, multiply’s the y value

by the number of across points and then adds x. From this value the address of the node

(x, y) is returned.

CSederberg::plotPath builds the grid a node at a time, going across in rows. It sets the

I and J values and the coordinates of each node, before inserting it in the grid by setting its

pNextNode to point to m_pGridEnd, and its pParent to point to m_pGridEnd.pParent.pParent,

i.e. the last node currently in the grid before the node being inserted. Lastly, CSeder-

berg: ¡calculateWork is called on the new node to get the cost value for that node.

CSederberg::calculateWork has 2 variables, bendWeight and stretchWeight that can be

set to ensure the results from either the bendingWork function or the stretchingWork func­

tion are not so great as to make the other insignificant. The calculate Work method looks

at the position of the node in the grid and then calculates the work for that node from the

68

information in the node and the nodes around it. It will then set the north and west elements

in the node to indicate the cheapest node of the three immediate nodes before it.

Returning to the plotPath function and starting with the last node in the grid - bottom

right, the coordinates of this node are pushed onto the m_vOptimalPath vector (in this

instance, the vector is an instance of the STL vector class, of type MYPOINT). Looking at

the north and west elements of each node pushed onto this vector indicates the next node

to be pushed on to the vector. Thus plotPath plots a path from the bottom right comer of

the grid to the start at the top left comer.

When plotPath has entered a path into the m_vOptimalPath, control returns to the find-

OptimalPath function. It steps backwards through the vector 6. From the coordinates in the

coordinate values in the vector, there are three possible cases:

A diagonal move In this case the shift value is added to the relevant point in the m_pDown

array, placing the result in m_pPathResult vector.

One or more moves down A count is taken for all the successive moves down. A B-

Spline is created using three points: m_pAcross[currentNode.coordinates.x - 1],

m_pAcross[currentNode.coordinates.x] and

m_pAcross[currentNode.coordinates.x + 1]. A point for every move down is calcu­

lated from the B-Spline.

One or move moves across The number of successive moves across are counted. For each

move the y or rotation value of of that sample in m_pAcross recorded and the average

of these points is returned.

Returning to the CSederberg constructor, the time warped signal is in the m_pPathResult

vector. It is copied into the corresponding space in the CMorphData result object. The

memory created for the grid is deallocated. The time values of the new timewarped signal

6The vector holds points starting with the last point on the path, so the first step on the path through the
grid lies in the last element of the vector.

69

are copied over from one of the original signals. The timewarp process then repeats for the

next bone etc.

6.7 Conclusion

In the next chapter the results of this work are considered and some general conclusions

aie drawn.

70

Chapter 7

Results and Conclusions

7.1 Introduction

This chapter discusses how effectively the timewarping procedure works and how suited it

is to warping a pose within a real time environment. To aid this discussion, graphs are used

to illustrate results. In each case - unless otherwise stated - the graphs show the Eulerian

rotations about the x-axis of the hip bone.

7.2 Timewarping Results

As discussed in section 6.5, timewarping is necessary to synchronize two animations before

blending them. Figure 7.1 shows two different animations, a run animation and a walk

animation. It also shows a blend of the two animations. This blend is a 50/50 mix. It gives

a reasonable result - the phase is similar, as is the amplitude.

A 50/50 blend will not give a good result if the animations are not synchronized first.

In fact, if they are out of phase, it’s possible they will cancel each other out, resulting in a

lifeless pose. This is illustrated in Figure 7.2.

The yellow signal is the blend. It doesn’t reflect either signal - it is out of phase with

both the walk and run signals. Its amplitude is also less than the walk signal - which does

71

Figure 7.1: Blending a walk and a run that are slightly out of synchronization with each
other.

Figure 7.2: Blending a walk and a run that are out of synchronization with each other
produces an un-useable result.

not serve to give the expected ’jog’ motion, instead giving a constrained walk motion.

Timewarping synchronizes the two animations so they can be blended. The timewarp-

ing algorithm described in 6.5 produces such a synchronization, as shown in Figure 7.3.

Here, the walk signal is timewarped so it synchronizes with the run signal. The blend of

this timewarped walk and the run signal is shown in Figure 7.4 as the green signal. As

expected for a jogging signal, it sits between the run and (timewarped) walk signals.

It is also possible to warp the run to synchronize with the walk, by swapping which

animation is plotted across the top of the grid. The results are shown in Figure 7.5 and

72

Figure 7.3: Timewarping a walk to synchronize with a run.

Figure 7.4: Blending a timewarped walk with a run to produce a jog.

Figure 7.6.

The capacity to implement the timewarp of a run and a walk with the aim of getting

a useable result on screen has not been considered in this project. This is because, up

until now, there has only been a need to work with the rotations of bones to be able to

successively warp a pose with an animation. To create a jog animation from warping a run

and walk will involve the world-space position of the character. The world-space position

of the character is related to their velocity, a velocity which will be different for a run and

a walk. The velocity of a jog will be in between. Without anything to account for this, the

resulting jog animation is played with the velocity of the walk animation, resulting in the

73

Figure 7.5: Timewarping a run to synchronize with a walk.

Figure 7.6: Blending a timewarped run with a walk to produce a jog.

feet gliding across the ground.

7.2.1 Timewarping a pose

The signals from a pose are all flat lines when graphed over time - like a DC component of

a current - they don’t have any phase. This lack of phase doesn’t fit with the idea of shifting

a signal so it synchronizes with another signal. When a pose signal is shifted to the left or

right, the result is the same signal. This is shown in Figure 7.7.

Progressing as before and assuming the pose has been timewarped, a 50/50 blend will

74

Figure 7.7: Timewarping a pose to fit a walk animation.

give the result shown in Figure 7.8. The blended signal has the correct phase, but its

amplitude is significantly reduced. This leads to a constrained motion from the character,

meaning the character never reaches the pose and at the same time does not move his legs

enough to reproduce a useable walking motion. The flat nature of pose signals does not

lend itself to 50/50 blends. A possible solution to this constrained issue is to filter the

animation and scale up the bass bands to give the resulting motion a greater amplitude in

its signals, hence increasing the motion of the character. But as discussed in section 6.4,

filtering adds a significant overhead. A simpler, cheaper solution is discussed in the next

section - section 7.3.

Figure 7.8: Blending a timewarped pose with a walk.

75

7.3 Motion Warping

A 50/50 blend doesn’t reach the pose or contain enough of a walking element to be really

useful. The reason the pose is not met, or the walk isn’t acceptable is because there isn’t

enough of each signal (pose and walk) in the resulting blended signal. To accommodate

this, instead of a 50/50 blend, the walk signal is shifted to oscillate about the pose signal.

This is shown in Figure 7.9, where the walk signal has been timewarped before shifting it

about the pose.

Figure 7.9: Blending a timewarped pose with a walk.

This shift makes the pose central to the resulting animation, which still retains the

motion from the walk. The results from this are acceptable, with just a slight element of

footskate 1 - introduced by the walk animation being timewarped, which could be fixed

up with some inverse kinematics. It works for a variety of poses, for example stooping,

crouching and raising the characters arms.

One point to note is, when a crouching pose is warped with a walk the resulting crouch­

ing walk animation is not planted on the ground. The position of the crouching walk comes

straight from the walk animation, which assumes the character is upright. This could be

solved by incorporating a positional strand of both the pose and animation into the warp,

footskate is where the characters foot ’skates’ across the ground, instead of planting solidly

76

However, as the goal is to produce something that may be used in the computer games

industry, it is fair to assume a character controller will be used.

Normally, a character controller is a type of bounding box encapsulating the character,

allowing the character to respond to the physics of the environment it is in, such as colli­

sions, or falling off ledges. It can also be used to control the character’s position in world

space - part of which includes keeping the character on the ground.

7.4 Pose Specific Motion Warping

While the work presented so far produces reasonable results, it is too slow to implement in

practice. However, observing that the aim of timewarping is to synchronize two animations,

and that the DC nature of a pose cannot be synchronized in the normal sense, timewarping

doesn’t serve any particular purpose in this instance. Removing timewarping gives the

result shown in Figure 7.10.

Figure 7.10: The walk signal is centered on the pose signal with no timewarping.

This produces a better result than timewarping and then shifting, as there is no footskate

in the resulting animation. At the same time, the result has both the movement of the

original walk, and the rotation needed to meet the pose. Removing the timewarping also

removes most of the work required to warp the pose and the animation. Calculating the

77

grid is quite expensive. As an illustration of this, at 35 bones per character, and with 3

signals per bone, 135 grids must be calculated. A 4 second interval with 15 samples per

second, means 4 x 15 x 135 = 8100 memory allocations. For each of these, a cost must be

calculated. It can be seen that it’s not a cheap method, especially when the goal is to have

it completed in the space of 4-5 frames. Comparing this to doing a shift on a signal - get

the average value of the walk signal, find the difference between the first point of the walk

and pose signals and then add this difference to every point on the walk signal. There is no

need to allocate temporary memory, work out the bending or stretching costs or find grid

paths. This means the process ought to be cheap enough to develop for use in a real time

environment.

7.5 Conclusion

While timewarping is necessary for warping two animations, it is not necessary when warp­

ing a pose and an animation. It offers no advantage over warping the two signals as de­

scribed in section 7.4.

A possible improvement in performance could be achieved by removing the quaternion

to Eulerian (and back) angle conversion.

A real time implementation of pose specific motion warping in a game can lead to

more variations in character animations, without the need to create case specific animations

before hand - just case specific poses. Instead of having all the obstacles arranged so that

a character must crouch under at the same height to suit a single crouched walk animation,

they can be placed at different heights (or even variable heights) with a pose attached to

control the crouched walk to pass under the ledge.

Other applications can include emotional animations. Create a walk - create a sad

pose, warp them to create a sad walk. Mix an enthusiastic pose with a walk to create an

enthusiastic walk - and so on.

While the filtering was not used, due to its relatively high overhead regarding real time

78

use, it may have applications in off line use. As an example, take a crowd at a football

match. Having one ’hands up cheering’ animation means every character in the crowd will

be doing the same thing. So several different cheering animations are needed, to stop the

crowd looking automated. However, if the ’hands up cheering’ animation was filtered, it

could be applied with different scale factors to different characters to make them cheer with

different intensities.

7.6 Future Work

The animation/pose warping method described is a starting point to using animations not

previously authored, at runtime. There are two main issues to consider when implementing

this animation/pose approach. Firstly, how it is handled in a game, i.e. at what point does

the control of a character switch from the player to the warp and will the warp retain control

of the character until the warp is finished, or is it possible to break from a warp because of

player input. This is an issue for a games AI.

One of the advantages of such an animation/pose warping system is that game levels

don’t have to bend to a set of predefined animations. The second issue with implementing

this system in a game involves collisions with the world. Unless the poses are very carefully

chosen, walking surfaces will have to remain mostly flat, to avoid visual glitches with foot

placement. In a way, the game environment is once again bending to the constraints of

the animation system. If an IK system was incorporated with the warping system, the

dependency of the game environment on the animation system decreases. [4] describes a

suitable IK system. The animation warping would occur, and then an IK pass would work

out foot placements. The CCD IK system described by Welman in [19] is possibly suitable,

as it deals with a bone structure. However, the Jacobian IK method described is slow to

converge and as such, is not suited for use in a real time environment.

79

Bibliography

[1] J. Weber, “Run-Time Skin Deformation”, Game Developers Conference

2000, h t t p : / / www. g a m a s u t r a . c o m / f e a t u r e s / g d c a r c h i v e / 2 0 00 /

w e b e r . doc; accessed January 15th, 2006.

[2] G. Maestri Digital Character Animation 2, vol. 1 - Essential Techniques, New Riders

Publishing, 201 West 103rd Street, Indianapolis, 1999.

[3] A. Witkin and M. Kass, “Spacetime Constraints,” Computer Graphics, vol. 22, no. 4,

pp. 159-168, Aug 1988.

[4] S. Chung and J.K. Hahn, “Animation of Human Walking in Virtual Environments”

Institute for Computer Graphics, School of Engineering and Applied Science, The

George Washington University.

[5] P. Sloan, C.F. Rose III and M.F. Cohen, “Shape and Animation by Example” Techni­

cal Report MSR-TR-2000-79, Microsoft Research, Microsoft Corporation, One Mi­

crosoft Way, Redmond, WA 98052.

[6] A. Bruderlin and L. Williams “Motion Signal Processing” Proceedings o f the 22

Annual Conference on Computer Graphics and Interactive Techniques, pp. 97-104,

1995.

80

http://www.gamasutra.com/features/gdcarchive/2000/

[7] L. Kovar and M. Gleicher “Flexible Automatic Motion Blending with Reg­

istration Curves” Eurographics/SIGGRAPH symposium on Computer Anima­

tion, July 2003. h t t p : / / www. c s . w i s e . e d u / g r a p h i c s / G a l l e r y / k o v a r .

v o l / R e g i s t r a t i o n C u r v e s / ; accessed February 10th, 2006.

[8] S. W. Smith “The Scientist and Engineers Guide to Digital Signal Processing” Cali­

fornia Technical Publishing, P.O. Box 502407, San Diego, CA, 1997.

[9] S. Goldenstein and J. Gomes “Time Warping of Audio Signals” Computer Graph­

ics International, vol. 22, no. 4, pp. 52-57, 1999. c i t e s e e r . i s t . p s u . e d u /

g o l d e n s t e i n 9 9 t i m e . h t ml ; accessed April 9th, 2006.

[10] A. Witkin and Z. Popovic “Motion Warping” Computer Graphics Proceed­

ings 1995. h t t p : / / www. c s . W a s h i n g t o n . e d u / h o m e s / z o r a n / w a r p a g e /

wa r p a g e . pd f ; accessed January 2005.

[11] T. W. Sederberg and E. Greenwood “A Physically Based Approach to 2D Shape

Blending” Computer Graphics (SIGGRAPH ’92 Proceedings), vol. 26, pp. 26-34,

1992.

[12] F. Dunn and I. Parberry 3D Math Primer for Graphics and Game Development,

Worldware Publishing Inc, 2320 Los Rios Boulevard, Plano, Texas, 2002.

[13] S. Lang Calculus o f Several Variables, Springer-Verlag New York Inc.

[14] H. Goldstein Classical Mechanics, Addison-Wesley Publishing Company, 11th Print­

ing, p. 118, 1974.

[15] E. C. Ifeachor and B. W. Jervis Digital Signal Processing - A Practical Approach, 2nd

Edition, Prentice Hall, Pearson Education Limited, Edinburgh Gate, Harlow, Essex

CM20 2JE, 2001.

81

http://www.cs.Washington.edu/homes/zoran/warpage/

[16] H. Donald and M. P. Baker Computer Graphics C Version, 2nd Edition, chapter

10, section 9, page 334. Pearson Education Limited, Edinburgh Gate, Harlow, Essex

CM20 2JE, 2006.

[171 J. Blow “Understanding Slerp, Then Not Using It”, The Inner Prod­

uct, April 2004, h t t p : / / n u m b e r - n o n e . c o m / p r o d u c t / U n d e r s t a n d i n g \

%20Sl e r p , \ %20Then \ %20Not \ %2 0 U s i n g \ %2 0 I t / ; accessed March 3rd,

2005.

[18] A. Sverdlov “A Very Basic Introduction to Time/Frequency Domains”, Par­

ticle, March 10, 2004, h t t p : / / w w w . t h e p a r t i c l e . c o m / c s / b c / m c s /

s i g n a l n o t e s . p d f ; accessed August 19th, 2006.

[19] C. Welman “Inverse Kinematics and Geometric Constraints for Articulated Figure

Manipulation”, British Columbia, Canada, Simon Fraser University, 1993. (M.Sc

Thesis).

82

http://www.theparticle.com/cs/bc/mcs/

Appendix A

Code Diagrams

83

Animation Warping

O Sampling

O LowPes* Bands

Q Sam pling

Filtering © Create Low Pass Bands
Create Band Passes

Q Sampling
Time Warping O Convert To Eulors

O Timewarp Euler SignalB
O Sampling

Warp O Convert To EulersI »—*------------
O Shin About Pose
00 Sampled Animation
oo Sampltd Pose

! O O Low Passes
UljPlnV O O Bond Passes

0 0 Time Warped Shirt
O O Warped Animation

Sam ple Animation

Convert To Eulers

CMorphData
Takes I n --------------

Animation
Places sam ples in BonoSampleA/ray

Takes in CMorphData

Converts quaternions sam ples to eulers
Quaternions In BoneSamplaArraylOl

Eulers In BandPassArraytOJ

Takas In CMorphDala
. , . , r ; |{ii| Uses Quaternlone In m.pBoneSampleArrayjl] Quaternions stored tiere from sampling the animation

Converts to eulere In m_p8lonatAnay10| Eulor vorsion of sampled animation stored here
colculateLowPeesO ..f iltoib from m..pSionalAmiyfVJ

Fineilng Holds eulot low passes of tho animation
Putting Low passes In m_p8ignaW/rayf k • 1)

--------- e------------------------* Band Passes era calculated nom here
Sets up m_pQLowPassArraytl] Holds quaternion versions of the low passes - suitable for displaying.

Display ■ Mt08lgn»IAir*rtl torn: m_e8l»n»IAir«1i| Eulers
~ ‘ Converts Euler low passes--- lo mjOLowPsssAiraiH Ou»t*imeiw

84

Takes In CMmphData

I Subtracts low passes held In m_p9lgnalArrayp]
From Low passes helci in m ^ s if flnalArrayti1» 11

Stores the resulting band passes In m jBandPassArrayfl]
CammnntecJ out cade allows band passes to be scaled

Takes in CMorphData

^ _ Creates sp;Hc to hold tiuinnmd band passes m^pEDiafiJayAfrtV
V f is n r iP is f f ts Recombine band pastas. eyJsrSumPas&eands J ^ '------- -------------------------------- ---------------------------- < Adda flic band passes In m_pB8ndPassAffirril]

Puts trie eulor resun in m_p£PtsplayArr6yTakes In CMorphOala

, Creates soace to hold Quaternion summed bandpasses
Convert summed euler band passes to quaternions: IHIODlspJa^Afw J .Eulers In m^peotsptayArraiif

1 Converts , • • • - . * , - .to Quaternions In m_pQDIsplayA/ray

Tates In CMorphDala

/ Ouawtnons »n mj>Bon(i8BrnpiBAmftfil
BHHfeK corweftAriiimTioEutsri I Commit«

Cormtd Anlm*twn To CuHnn — i — Toeulersln mj>BandPaBSAna*|0]
C hKH tt fur and removes w p p % Introduced in tb s c em ersion

Takes In

O Timewtfp Euler Signals
CSedstberg

C o p ie s

Pose Animation CMoiph0am
Souite Animation CMorphDala
Empty R&SUH fo ir rration CMorphDala
Start ilm oof warp mjWatpStarfTirns

End time of warp m_WarpEr>JTlmg
a m jfisn iiP flissA iravlij

Eulers from , — — ■" ■i'*“ ------- Trb.mjpaandpBssArraytH
mjiJlQawnM

to m_pAtroŝk]
Head of Grid m jiOndPath

Tall ofQrtd m_pGildEnd
Creates I m pDownlW Down tho left hand side of the g rid

Plots --------------------
m„pAcr0ssl*<3 Across the Inn of the orld (left to righO

Finds the best path through theg il d find OptimalPath 0
from m_vPathResult[ml F-omlhsopWnnth C f f ta m lw — ,eMm̂ Pa$eArrm

Start of grid
End o f grid
m j i f tg o ssfl
m_pDownp

Forces ttmewarped times onto now signal UmeReasslgnment

Deletes

m_pQDlsplavArray

85

Animation sular samplo« m_Source m_pBandPassArraytO|
Usos

Pose eulor sanßpjBE j pBandPussAnaTfO|
Octe tha average valuefor ftatn anlmalio» slgnni

Ö errtflAbout Posi* VVaipAj'lfnPu&eO O0tB ,̂ 0̂0 tafweenthe pose andthe averaße
Sbffls Ute anlmaifor» liy 1his illfferencB
Puts The resull In Eulers In m_ResuH.mjBandPassArr8y(0]

Bone number

Tatosta Tlme
Place holder io rthe quaternion rotation pRoi_ . geiRoiaitonO .

O O Display Sampled Animation \ Locates the 2 sam ples above and below the time value for the bone
Calculates Ihe inteipola llon factor
Interpolates between the 2 adjacent sam ples and returns this quaternion

ô e t Positions
Play the pose like platfng any regular animation

_ _ -------------- ~ * -------- \ Get Reunions
0 © D isplay Sampled Pose

m_AnlmPose*gstPesl11on(M. £/ruppGsitioneji0
fc In CMWApp.irpp

m Anlm Pose^getRotatlontM , &m pRotatlonsfFD

Takes in

00 D isplay Low Passes

Bono number
Low pass num ber which low pass to view

P laceholder fo r the quaternion rotation

TIM
gatUtwPiisgR olallonQ 1 Finds th a a d jjc u n ts a in \Ae-& u&iriy II ie itens '.rilui:

1 Looks up these sam peis in m j)QLowPassArr«ytLow Pass Number)

| Interpolates between them using the time
value to calcuate an interpolation factor

Returns the rotation Intha fiuaiem ion placeholder

86

- n - i , ijelPassBandRolaliQnO
C O Display Band Pauses

Bone number
la kes m Time

P la c e h o ld e r fo r m e q ua te rn io n re su lt

Finds the adjacent samples
s pacified by the time varí able

Calc nl ales an IfttafpolfiEcn factor from ine
«me and the times of the adjacent samples

In le rpo lB te s behvea n m o 2 adjs-c e n t sbim p le s h e jd i n m .p Q D is p la y A r ra tfindex]

Return q ua te rn io n ro ta tio n In Ih o p la c e h o ld e r va ria b le

USGS OMorphData m_Rosytt m_pBandPessArraytU)

Creates m_pODisplayAnay

■ m m . Th(1 eulc,, ,n »̂esuiin-jBanap.swnytoi
Com « its

i y to quaternions In m _pQDIspl8yAn«y

Bone number
Takes In , Time

2 Functions / Placeholder for the qu&tomlun result
T lm ew e ipsJS h to

fin d s the adjacent sam ples
oetMorphedRoletion specified by the lime variable

In te rp o l a le s b e tw e o n th e / m J.111 c »? m s a m i'ilt*s h e ld I n r«_P GDI G pIcryAi f ay|;l n d « 4

Calculates an Inloipolatlcm factor from the
bme and ine times of The adjacent samples

Return quaternion rotation in the placeholder variadle

Takes in

0 Q Warped Animation
2 functions-------- >

4 lime values
The original Waft animation

Sots up ma Mondino Between me waix aaimaccn and iho warped animation

iCie&les an army ta Hold this aoquflnce
Uhlll time 1 CvvaiKO Quaternion scorna from mo on g In at wal k

/ 1 *2 (blend t) Inleipolate from Hie walk to ine waiped animation

5 parts to tne sequence j 1 ? Quûtomoi™ çomo ftom °1« ^«W B oo
1 3 - 4 (b|end2) tnterplate from the warp backto ine walk

Ouater nions corno from lite original walk

4 onwards
Resulting quaternions are stoned in rn_pQBlenfleiflVorpPtBp3ayAnav[i]

Bone number
Take» in

ÜBtBtenOfidvvaípRojatumO

I

time
Quaternion p lacahoidei

FlndBUie adjacent samples spa cilio d by the time variable
Calculates an Inturpolauon factor from me Ume and the tim caof the «djnceni samples
InterpoifttoE between tho 2 adjacont samples held In rnjjQBicndotWarpDispl»yArrBytbonolrvdo>|

Return, quaternion rotation in die placeholder vanable f t i j

87

Appendix B

C++ Code

c :\DarraghBuild\src\common.h
♦ifndef _COMMON_H_
♦define _CQMMON_H_
// include files common to all the other files in the project,
♦include <ieCore/System.h>
♦include CieCore/Dtils/CEntityComponentRef.h>
♦include <ieModels/IAnimation.h>
♦include <ieMaths/Quaternion.h>
♦include CieMaths/Vector.h>
♦include <fstream>
♦include <math.h>
♦include <vector>
namespace IE
{

// holds positions of an animation, along with the time of each
// position
struct POS_KEY
{

float time;
VECTOR pos;

};

// holds rotations of an animation, along with the time of each
// rotation
struct ROT_KEY
{

float time;
QUATERNION rot;

} ;

// bone samples use this structure. Each sample can hold the
II rotation and position of a bone at each sample time,
struct BONE SAMPLES
{ ROT_KEY* pRotKeys;

POS_KEY* pPosKeys;
>;

struct EULER
float x;
float y;
float z;

};

// The euler version of a sample of an animation,
struct SIGNAL BONE

1

c ;\DarraghBuild\src\common.h
t

float * time;
EOLER * pSigEuler;

};

struct SIGNAL
{

SIGNAL_BONE * SignalBone;
} ;

} // end r.amespace

stlHC'i; MYPOINT
{

float x;
float y;

};

#endif

c :\DarraghBuild\src\glfunctions.h
#include <windows.h>
#include <glut.h>
■»include <stdlib.h>
■■■- - n r . id« <stdio . h>

// initilization
12 reshape (mt w, ir.-. h) ;

voic writeNumber (ir. t number, offset x> i r.
void writeWord {const char ‘word, inLt offset_x

mouse!:?.: button, Lot state, i x, int
v::d updateDisplay id) ;

~ offset_y) ;
, int offset_y);
y) ?

c :\DarraghBuild\src\cwarping.h 1

#ifndef _CWARPING_H
♦ define CWARPING H

finclude "CMorphData.h"
#include "common.h"

namespace IE
{

struct QSIGNAL_BONE
{

float * time;
QUATERNION * pSigQuaternion;

};
struct QSIGNAL
{

QSIGNAL_BONE * SignalBone;
} ;
class CWarping
{
public:

float m_WarpStartTime;
float m_WarpEndTime;
// constructor
CWarping()
: m_Time(0.0 f),

m_pRootPositions(0),
m_pBoneSampleArray(0)

{}

II destructor
-CWarping()
O

CMorphData m_Result;
CMorphData m_Source;
CMorphData m_BlendedAnim;
CMorphData m_BlendedWarp;
// initilization function, takes an animation and a target pose to warp the animation to.
ieResult in.it(CEntityComponentRef<Models::IAnimation> &source_anim,

CEntityComponentRef<Models::IAnimation> &target_anim);
void shutdown();

c :\DarraghBuild\src\cwarping.h 2

// sets the time. Used for getting the right part of the animation back to apply to the bones to animate them.
ieResult setTime(float time, CEntityComponentRef<Models::IAnimation> ¿¿Animation) ;
// converts a quaternion to an euler
ieResult convertToEuler(const QUATERNION & q,

EULER & result);
// converts an euler to a quaternion
ieResult convertToQuaternion(const EULER & e,

QUATERNION & result);
// returns the time
float getTime()
{

return m^Time;
J
// returns the rotation of a bone referenced by 'index' into the quaternion variable provided.
// The time has already been set using 'set time'
ieResult getRotation(ieUIntl6 index,

QUATERNION* pRot,
float time);

ieResult getLowPassRotation(ieUIntl6 bonelndex,
QUATERNION & Rot,
ieUIntl6 lowPassIndex,
float time);

ieResult getPassBandRotation(ieUIntl6 index,
QUATERNION* pRot,
float time);

ieResult getMorphedRotation(ieUIntl6 index,
QUATERNION* pRot,
float time);

// returns the position of a bone referenced by 'index' into the Vector provided.
// The time has already been set using 'set time'
ieResult getPosition(ieUIntl6 index,

VECTOR * pPos,
float time);

ieResult SampleAnimation(CMorphData &data, CEntityComponentRef<Models: :IAnimation> SAnimation);
// Returns a pointer to all the sampled information about an animation
ieResult getBoneSampleArray(BONE_SAMPLES * Result)
{

Result = m_pBoneSampleArray;
return IE S OK;

c :\DarraghBuiId\src\cwarping.h 3

ieResult
ieResult
ieResult
ieResult
ieResult
ieResult
ieResult
ieResult
ieResult
ieResult
ieResult
ieResult

ieResult

calculateLowPass(CMorphData &data);
eulerBandPass(CMorphData &data);
eulerSumPassBands(CMorphData &data);
fillQDisplayArray(CMorphData Sdata);
eulerSumMorphed();
fillMorphedQDisplayArray();
fillQSignalArray(CMorphData Sdata);
convertAnimToEulers(CMorphData &anim);
fillNonFilteredTimeWarpQDisplayArray();
lowPassTimeWarpedSignal();
getBlendedWarp(float walkl, float blendl, float warp, float blend2,

CEntityComponentRef<Models : : IAnimation> {¿Animation);
getBlendedWarpRotation(ieUIntl6 bonelndex,

QUATERNION & Rot,
float time);

WarpAnimPose();
private :

float m Time;
float
float

m_WarpPeriodLength;
m__warpWeight;

ielntl6 m_NumSamples;
BONE_SAMPLES
SIGNAL *

m_pBoneSampieArray;
m_pSignalArray;

QSIGNAL *
BONE_SAMPLES
BONE_SAMPLES
BONE_SAMPLES
VECTOR *
SIGNAL BONE *

m_pQLowPassArray;
m__pQDi splayAr r ay ;
m_pQBlendedWarpDisplayArray;
m_pQlPassDisplayArray;
m_pRootPositions;
m_pEDisplayArray;

} ;

} //namespace IE
#endif

c :\DarraghBuild\src\CWarping.cpp 1

♦include "CWarping.h"
♦include <iostream>
»include <ieCore/Memory.h>
♦include <iemaths/mathsutility.h>
^include "graph.h"
const int SAMPLING_RATE = 15;
//using namespace std;
namespace IE

{

void CWarping::shutdown()
{

{
//This is used when when the series of low pass filters is used
//The data is split into band passes, and after scaling they are summed
//with the result put into.
// can only be deleted if eulerSumPassBands is called, otherwise
// m_pEDsiplayArray hasn't been initialized.
//Delete euler display array data
int i ;
/*for (i = 0; i < m Result.m noBoneTracks; ++i)
{

ieDeleteDataArray(m_pEDisplayArray[i].pSigEuler);
ieDeleteDataArray(m_pEDisplayArray[i]-time);

}
ieDeleteDataArray(m_pEDisplayArray);
*/

//Delete quaternion display array data
for (i = 0; i < m_Result.m_noBoneTracks; ++i)
{

ieDeleteDataArray(m_pQDisplayArray[i].pRotKeys);
}
ieDeleteDataArray(m_pQDisplayArray);

>

m_Result.shutdown ();
m_Source.shutdown();
m_BlendedAnim.shutdown();

}

/ /
/ /
// CWarping::SampleAnimation

c :\DarraghBuild\src\CWarping.cpp 2

/ /
// Takes in an animation, discretely samples it, recording the quaternion
// rotations, the vector positions and the time in the animation they were
// recorded at in the m_pBoneSampleArray member variable of a CMorphData object
/ /
/ /

ieResult CWarping::SampleAnimation(CMorphData &data, CEntityComponentRef<Models::IAnimation> &Animation)
1

int i;
float time_between_samples;
time_between_samples = (float) 1/data.m_samplingRate;
// This fills up the quaternion rotation array
for (i = 0; i < data.m_noBoneTracks; i++)
{

// writes the sampled info for each bone to the bone sample array.
ielntl6 j;
for (j = 0; j < data.m_noSamples /*- 1*/; j++)
{

// Increment time on the animation
float sample_time = (j * time_between_samples) + m_WarpStartTime;
Animation->setTime(sample_time);
// Set the key time
data.m_pBoneSampleArray[i].pRotKeys[j].time = sample_time;
data.m_pBoneSampleArray[i].pPosKeys[j].time = sample_time;
// Set the key rotation
Animation->getRotation(i, & (data.m_pBoneSampleArray[i].pRotKeystj].rot));
// Set the key position
Animation->getPosition(i, & (data.m__pBoneSampleArray[i].pPosKeys[j].pos));

}
}
return IE_S_OK;

}

/
/ /
// CWarping::init
/ /
// Called when a CWarping object is created. Calls for an animation to be
// sampled, and then calls for the sampled animation to be put through a low
// pass filter.
/ /
/ /

c :\DarraghBuild\src\CWarping.cpp 3
ieResult CWarping: :init(CEntityComponentRef<Models: :IAnimation> &SourceAnim,

CEntityComponentRef<Models::IAnimation> «¡TargetAnim)
{

IE_TRACE
m_WarpStartTime = 2.Of;
m_WarpEndTime = 6.0f;
m_WarpPeriodLength = 4.Of;
m_warpWeight= O.Of;
II Initialze the CMorphData objects
m_Souree.initA(SourceAnim, m_WarpPerioaLength);
m_BlendedAnim.initA(TargetAnim, m_WarpPeriodLength);
m_Result.initB(m_WarpPeriodLength, SAMPLING_RATE, SourceAnim->getNumBones());
It Sample both animations
SampleAnimation(m_Source, SourceAnim);
// sample the pose and store the results in m_31enaedAnim
SampleAnimation(m_BlendedAnim, TargetAnim);
// Convert the sample animations from quaternions to eulers
// if the animations are being put through the low pass filters, this is not necessary.
convertAnimToEulers(m_Source);
convertAnimToEulers(m_BlendedAnim);
// Pass the animations through a series of low pass filters.
II calculateLowPass(m_Source);
// calculateLowPass(m^BlendedAnim);
// This shifts the animation signals so the oscillate about the pose signals.
WarpAnimPose();

// Initialize a CSederberg object. This will time warp 2 signals. If the 2 signals have
// been low passed and band passed, it will timewarp the band passes - a call to
// eulerSumMorphed is requred to sum all the timewarped pass bands.
// CSederberg(m_Source, m_BlendedAnim, m_Result, m_WarpStartTime, m_WarpEndTime);
// eulerSumMorphed();
// when just doing a time warp with no filtering, there is no need to sum pass bands
// so, eulerSumMorphed is dropped in favour of fillNonFilteredTimeWarpQDisplayArray
// fillNonFilteredTimeWarpQDisplayArray();
// use this functoin if tne output is noisey
calculateResultLowPass(m_Result);
// Set up the blendedWarp animation
// This sets the times to blend from the walk animation to the warped animation and back

c :\DarraghBuild\src\CWarping.cpp 4
getBlendedWarp(2.Of, 3.5f, 4.5f, 6.Of, SourceAnim);
returr. IE_S_OK;

>

/
/ /
// CWarping::setTime
/ /
// Sets the time for an animation. If the time is greater than the length of
II the animation, it will loop round. The m_Time member variable is set to the
// calculated time.
/ /
/

ieResult CWarping::setTime(float time, CEntityComoonentRef<Models::IAnimation> SAnimation)
{

m_Time = time;
float AnimationLength = Animation->getLength();
if(m_Time > AnimationLength)
{

II divide floating point time by floating point animation length, cast it to an int.
II multiply by animation length, to give an int number of animation loops, subtract
// this from the time, and get the float left over.
m_Time = m_Time - ((static_cast<ielntl6>(m_Time / AnimationLength)) * AnimationLength);

1

returr. IE_S_OK;
}

/
/ /
// CWarping::getRotation
/ /
/ /
/ /
/ /

Takes a bone, a time and returns the rotation applied to that bone at that
time, as recorded by the sampling function.

/ /

ieResult CWarping::getRotation(ieUIntl6 index,
QUATERNION* pRot,
float time)

II binary searcr. to get the correct samples for interpolation.
ielntlS low = -1;
ielntl6 high = m_Source.m_noSamples;
ielntl6 element;

c :\DarraghBuild\src\CWarping.cpp 5
while ((element = (high - low) / 2) > 0)
{

if(m_Source.m_pBoneSampleArray[index].pRotKeys[low + element].time < time)
{

low = low + element;
}
else
{

high = low + element;
}

}
i f (low == -1)

{
*pRot = m_Source.m_pBoneSampleArray[index].pRotKeys[0].rot;
return IEm S_OK;

}
if(high == m_Source.m_noSamples)

{
*pRot = m_Source.m_pBoneSampleArray[index].pRotKeys[m_Source.m_noSamples - l].rot;
return IE_S_OK;

>

// first, get the length of the current sample,
float sample_length;
sample_length = m_Source.m_pBoneSampleArray[index].pRotKeys[low + l].time - m_Source.m_pBoneSampleArray[index].pRotKeys[low].time;
// second, get the time in this interval the quaternion we requrie is at.
float current_time_in_sample;
current_time_in_sample = time - m_Source.m_pBoneSampleArray[index].pRotKeys[low].time;
// divide, to get the interpolation factor - with a check for dividing by 0.
float interpolation_factor;
if(sample_length > 0)
{

interpolation_factor = current_time_in sample/sample_length;
}
else
{

interpolation_factor = 0;
}
// interpolate
QuatLerp(pRot, &m_Source.m_pBoneSampleArray[index] .pRotKeys[low] .rot, &m_Source.m_pBoneSampleArray[index] .pRotKeys[low + l].rot,
interpolation_factor);
return IE S OK;

/ /

c :\DarraghBuild\src\CWarping.cpp 6

/ /
// CWarping::getLowPassRotation
/ /
// Takes a bone, a time and a low pass index and returns the rotation applied
// to that bone at that time, as calculated by the low pass filter.
/ /
/ /

ieResult CWarping::getLowPassRotation(ieUIntl6 bonelndex,
QUATERNION & Rot,
ieUIntl6 lowPassIndex,
float time)

{ // binary search to get the correct samples for interpolation.
ielntl6 low = -1;
ielntl6 high = m_Source.m_noSamples;
ielntl6 element;
while ((element = (high - low) / 2) > 0)
{ if(m_Source.m_pSignalArray[lowPassIndex].SignalBone[bonelndex].time[low + element] < time)

{
low = low + element;

}
else
{

high = low + element;
}

}

if(low == -1)
{ Rot = m pQLowPassArray[lowPassIndex].SignalBone[bonelndex].pSigQuaternion[0];
}

if(high == m_Source.m_noSamples)
{

Rot = m_pQLowPassArray[lowPassIndex].SignalBone[bonelndex].pSigQuaternion[m_Source.m_noSamples - 1];
}

// first, get the length of the current sample,
float sample_length;
sample_length = m_pQLowPassArray[lowPassIndex].SignalBone[bonelndex].time[low + 1] - m_pQLowPassArray[lowPassIndex].SignalBone
[bonelndex].time[low];
// second, get the time in this interval the quaternion we requrie is at.
float current time^in^sample;
current_time_in_sample = time - m_pQLowPassArray[lowPassIndex].SignalBone[bonelndex].time[low];
// divide, to get the interpolation factor - with a check for dividing by 0.

c :\DarraghBuild\src\CWarping.cpp 7
float interpolation_factor;
if(sample_length > 0)
{ interpolation_factor = current_time_in_sample/sample_length;
}
else
{

interpolation_factor = 0;

// interpolate
QuatLerp(& Rot, &m_pQLowPassArray[lowPassIndex].SignalBone[bonelndex].pSigQuaternion[low],&m_pQLowPassArray[lowPassIndex].
SignalBone[bonelndex].pSigQuaternion[low + 1], interpolation_factor);
return IE_S_OK;

/
/ /
// CWarping::getMorphedRotation
/ /
// Takes a bone, a time and a low pass index and returns the rotation applied
// to that bone at that time, as calculated by the low pass filter.
/ /
// This function displayes the timewarped animation - which has the slight
// bit of footskate.
/ /
/ /

ieResult CWarping::getMorphedRotation(ieUIntl6 index,
QUATERNION* pRot,
float time)

{
float timelnWarp = time - m_WarpStartTime;
float lengthOfWarp = m_WarpEndTime - m_WarpStartTime;
float fractionDone = timelnWarp / lengthOfWarp;
int NoSamples = (int) (lengthOfWarp * SAMPLING^RATE) + 2;
float indexRequired = NoSamples * fractionDone;
indexRequired = floor(indexRequired);
int intlndexRequired = (int)indexRequired;

// first, get the length of the current sample,
float sample_length;
sample_length = m_pQDisplayArray[index].pRotKeys[intlndexRequired + l].time - m_pQDisplayArray[index].pRotKeys[intlndexRequired].
time;

c :\DarraghBuild\src\CWarping.cpp 8

// second, get the time in this interval the quaternion we requrie is at.
float current_time_in_sample;
current_time_in_sample = time - m_pQDisplayArray[index].pRotKeys[intlndexRequired].time;
// divide, to get the interpolation factor - with a check for dividing by 0.
float interpolation_factor;
if(sample_length > 0)
{

interpolation_factor = current_time_in_sample/sample_length;
}
else
{

interpolation_factor = 0;
}

// interpolate
QuatLerp(pRot, &m_pQDisplayArray[index].pRotKeys[intlndexRequired].rot,&m_pQDisplayArray[index].pRotKeys[intlndexRequired +
, interpolation_factor);
return IE_S_OK;

}

/
/ /
// CWarping::getPassBandRotation
/ /
// Takes a bone, a time and returns the rotation applied to that bone at that
// time, as recorded by the sampling function.
/ /
/ /

ieResult CWarping::getPassBandRotation(ieUIntl6 index,
QUATERNION* pRot,
float time)

{
// binary search to get the correct samples for interpolation.
ielntl6 low = -1;
ielntl6 high = 8*SAMPLING_RATE;
ielntl6 element;
while ((element = (high - low) / 2) > 0)
{

if(m_pQDisplayArray[index].pRotKeys[low + element].time < time)
{

low = low + element;

{
high = low + element;

}
else

1] . rot/

c :\DarraghBuild\src\CWarping.cpp 9
}

)
i f (low == -1)

{
*pRot = m_pQDisplayArray[index].pRotKeys[0].rot;

}
if(high == (8 * SAMPLING_RATE))

{
*pRot = m_pQDisolayArray[index].oRotKeys[(8 * SAMPLING_RATE) - l].rot;

)

// first, get the length of the current sample,
float sample_length;
sample_length = ra_pQDisplayArray[index].pRotKeys[low + 1].time - m_pQDisplayArray[index].pRotKeys[low].time;
II second, get the time in this interval the quaternion we reaune is at.
float current_time_in_sample;
current_time_in_sample = time - m_pQDisplayArray[index].pRotKeys[low].time;
// divide, to get the interpolation factor - with a check for dividing by 0.
floar. interpolation_factor;
if(sample_length > 0)
{

interpolation_factor = current_time_in_sample/sample_length;
1
else
{

interpolation_factor = 0;
}

II interpolate
QuatLerp(pRot, &m_pQDisplayArray[index].pRotKeys[low].rot,&m_pQDisplayArray[index].pRotKeys[low + 1].rot, interpolation_factor);
ret u rr IE_S_0K;

'}

/
/ /
// CWarping::getPosition
/ /
// Takes a bone, a time and returns the position of that bone at that
// time, as recorded by the sampling function.
/ /
/ /

ieResult CWarping::getPosition(ieOIntl6 index,
VECTOR* pPos,
float time)

{

c :\DarraghBuild\src\CWarping.cpp
// binary search to get the correct samples for interpolation.
ielntl6 low = -1;
ielntl6 high = m_NumSamples;
ielntl6 element;
while((element = (high - low)/2) > 0)
{

if(m_pBoneSampleArray[index].pPosKeys[low + element].time < time)
{

low = low + element;
}
else
{

high = low + element;
}

}
if(low == -1)

{
*pPos = m_pBoneSampleArray[index] .pPosKeys [0] .pos;
return IE_S_OK;

}
if(high == m_NumSamples)

{
*pPos = m_pBoneSampleArray[index].pPosKeys[m_NumSamples - l].pos;
return IE_S_0K;

}

// first, get the length of the current sample,
float sample_length;
sample_length = m_pBoneSampleArray[index].pPosKeys[low + l].time - m_pBoneSampleArray[index].pPosKeys[low].time;
// second, get the time in this interval the quaternion we requrie is at.
float current_time_in_sample;
current_time_in_sample = m_Time - m_pBoneSampleArray[index].pPosKeys[low].time;
// divide, to get the interpolation factor - with a check for dividing by 0.
float interpolation__factor;
if(sample_length > 0)
{

interpolation_factor = current_time_in_sample/sample_length;
}
else
{

interpolation_factor = 0;
}

// This is used for the numbers displayed on the uppper left corner of the screen
VECTOR delta_position;
delta_position.x = (m_pBoneSampleArray[index].pPosKeys[low + l].pos.x - m_pBoneSampleArray[index].pPosKeys[low].pos.x)*
interpolation_factor;

delta_position.y = (m_pBoneSampleArray[index].pPosKeys[low + l].pos.y - m_pBoneSampleArray[index].pPosKeys[low].pos.y)*
interpolation^actor ;
delta_position.z = (m_pBoneSampleArray[index].pPosKeys[low + l].pos.z - m_pBoneSampleArray[index].pPosKeys[low].pos.z)*
interpolation_factor;

delta_position.x = delta_position.x + m_pBoneSampleArray[index].pPosKeys[low].pos.x ;
delta_position.y = delta_position.y + m_pBoneSampleArray[index].pPosKeys[low].pos.y;
delta_position.z = delta_position.z + m_pBoneSampleArray[index].pPosKeys[low].pos.z;
*pPos = delta position;

c : \DarraghBuild\src\CWarping. cpp__ .11

return IE S OK;
>

/
/ /
// CWarping::convertToEuler
/ /
// Takes a quaternion and converts it to an euler, both m local space.
/ /
/

ieResult CWarping::convertToEuler(const QUATERNION & q, EULER & result)
{

// Extract sin(pitch)
float sp = -2.Of * (q.y*q.z - q.w*q.x);
// check for gimbel lock, giving light tolerance for numerical imprecision
if(fabs(sp) > 0.9999f)
{

// Looking straight up or down
result.x = 1.5707963f * sp; // Pi/2 x sp
// Compute heading, slam bank to zero
result.y = atan2(-q.x*q.z + q.w*q.y, 0.5f - q.y*q.y - q.z*q.z);
result.z = O.Of;

>
else
{

// compute angles. We don't have to use the "safe" asin
// function because we already checked for range errors
// when checking for gimbel lock
//pitch
result.x = asin(sp);
// heading
result.y = atan2(q .x*q.z + q.w*q\y, 0.5f - q.x*q.x - q.y*q.y);
// bank

c :\DarraghBuild\src\CWarping.cpp
result.z = atan2(q.x*q.y + q.w*q.z, 0.5f - q.x*q.x - q.z*q.z);

1

return IE_S_OK;
)

/
/ /
// CWarping::convertloQuaternion
/ /
// Takes an euler and converts it to a quaternion, both in local space.
/ /
/ /

ieResult CWarping::convertToQuaternion(cor.sr EULER & e,
QUATERNION 4 result)

{
result.w = (cos (e.y / 2) * cos (e . x ! 2) * cos (e . z / 2)) + (sin (e.y / 2) * sin (e . x / 2) ★ sin (e . z / 2 });
result.x •= (cos t e.y / 2) * sin (e . x / 2) * cos (e . z / 2)) + (sin (e . y I 2) * cos (e . x / 2) + sin (e . z / 2)) ;
result.y = (sin (e.y / 2) * cos (e . x / 2) * cos { e . z / 2)) - (cos (e.y / 2) * sin (e . x / 2) * sin (e . z / 2));
result.z = (cos (e.y / 2) * cos (e . x i 2) * sin { e . z / 2)) - (sin (e.y t 2) * sin (e . x / 2) ★ cos (e . z / 2));
return IE_S_OK;

}

/
/ /
// CWarping::calculateLowPass
/ /
// Looks at the sampled information, specifically the number of samples per bone
// and calculates how many low pass filters to apply. It then passes all the
// bone information though a series of low pass filters, and records the results
// in the m_QSignal arrays.
/ /
/

ieResult CWarping::calculateLowPass(CMorphData &data)
{

// constants for the filter kernal
float a = 0.37 5;
float b = 0.25;
float c = 0.0625;
// do for every point in a signal
// Fills up the first signal with Eulers
// Copies the existing bone sample array into the first signal array.

c :\DarraghBuild\src\CWarping.cpp 13

for
{

(int i = 0; i < data.m_noBoneTracks; i++)

float previous_bank = O.Of;
float previous_pitch = O.Of;
float previous_heading = O.Of;
// do time copy here.
for (int j = 0 ; j < data.m_noSamples; j++)
{ // converts the original samples to eulers and puts them in the unfiltered signal in the array.

convertToEuler(data.m_pBoneSampleArray[i].pRotKeys[j].rot, data.m_pSignalArray[0].SignalBone[i].pSigEuler[j]);

float pitch;
:.3a: heading;
float bank;
pitch = data.m_pSignalArray[0].SignalBone[i].pSigEuler[j].x;
// if pitch is within 0.01 of 0.0 then return true,
if (FloatAlmostEquals(pitch , O.Of , O.OOOOOlf))
{ pitch = O.Of;
}
if (j == 0)
{

previous_pitch = pitch;
}
else
{

if (fabs(pitch - previous_pitch) > 5.6f)
I

pitch = - pitch;
}

}

data.m_pSignalArray[0].SignalBone[i].pSigEuler[j].x = pitch;

heading = data.m_pSignalArray[0].SignalBone[i].pSigEuler[j].y;
if (FloatAlmostEquals(heading, 0.0, O.OOOOOlf))
{

heading = O.Of;
}

if (j — 0)
{

previous_heading = heading;
}
else

c :\DarraghBuild\src\CWarping.cpp 14

{ if (fabs(heading - previous_heading) > 5.6f)
{

heading = - heading;
}

}
data.m_pSignalArray[0] .SignalBone[i] .pSigEuler [j] .y = heading;
bank = data.m_pSignalArray[0].SignalBone[i].pSigEuler[j].z;
if(FloatAliaostEguals (bank, 0.0, O.OOOOlf))
{

bank = O.Of;
}

if (j == 0)
{

previous_bank = bank;
}
else
{

if (fabs(bank - previous_bank) > 5.6f)
{

bank = - bank;
}

}
data,m_pSignalArray[0].SignalBone[i] .pSigEuler[j].z = bank;
data.m_pSignalArray[0].SignalBone[i].timetj] = data,m_pBoneSampleArray[i].pRotKeys[j].time;

// set pitch
pitch = data.m_pSignalArray[0].SignalBone[i].pSigEuler[j].x;
if (j == 0)
{

previous_pitch = pitch;
}
else
{

// If the difference between 2 points is greater than 180 degrees, this is too big of a rotation
// for one frame. So, find the difference between the current frame and the last frame
// and add this difference to the current frame, making it the same as the last frame.
// record this difference for later, and record that the value has been modified.
if (fabs(previous_pitch - pitch) > 3.14f) // this is the threshold of the angle to fix up.
{

data.m_pSignalArray[0].SignalBone[i].pSigEuler[j].x = previous_pitch;
previous_pitch = pitch;

)
1

c :\DarraghBuild\src\CWarping.cpp

// set heading
heading = data.m_pSignalArray[0].SignalBone[i].pSigEuler[j].y;
if (j == 0)
t

previous heading = heading;
J
else
{

if (fabs(previous_heading - heading) > 3.14f)
t

data.m_pSignalArray[0].SignalBone[i].pSigEuler[j].y = previous_heading;
previous_heading = heading;

}
J

bank = data.m_pSignalArray[0].SignalBone[i].pSigEuler[j].z;
if (j -= 0)
t

previous_bank = bank;
)
else
t

if (fabs(previous_bank - bank) > 3.14f)
<

data.m_pSignalArray[0].SignalBone[i].pSigEuler[j].z = previous_bank;
previous_bank = bank;

}
J

>
}

for (k = 0; k < data.m_noFrequencyBands - 1; k++)
{

SIGNAL* p_cur_signal = Sdata.m_pSignalArray[k];
for(int j = 0; j < data.m_noBoneTracks; j++)

SIGNAL_BONE* p_cur_signal_bone = sp_cur_signal->SignalBone[j];
for (int i = 0; i < data.m_noSamples; i++)
1

bool done = false;
// Need to check to ensure that the function is not looking for values using a negative index
lf((i < 2 * pow(2.Of, k)) &S (i < pow(2.Of, k)))
{

data.m_pSignalArray[k + 1].SignalBone[j].pSigEuler[i].x =
c * (p_cur_signal_bone->pSigEuler[0].x) +

c :\DarraghBuild\src\CWarping•epp 16

b * (p_cur_signal_bone->pSigEuler[O].x) +
a * (p_cur_signal_bone->pSigEuler[i].X)+
b * (p_cur_signal_bone->pSigEuler[i + static_cast<int>(pow(2.Of, k))].x) +
c * (p_cur_signal_bone->pSigEuler[i + static_cast<int>(2 * pow (2.Of, k))].x);

data.m_pSignalArray[k + 1].SignalBone[j].pSigEuler[i].y =
c * (p_cur_signal_bone->pSigEuler[0].y) +
b * { p_cur_signal_bone->pSigEuler[0].y) +
a * (p_cur_signal_bone->pSigEuler[i] .y) +
b * (p_cur_signal_bone->pSigEuler[i + static_cast<int>(pow (2.Of, k))].y) +
c * (p_cur_signal_bone->pSigEuler[i + static_cast<int>(2 * pow(2.Of, k))].y);

data,m_pSignalArray[k + 1] .SignalBone [j] .pSigEuler [i] .z =
c * (p_cur_signal_bone->pSigEuler[0].z) +
b * (p_cur_signal_bone->pSigEuler[0]. z) +
a * (p_cur_signal_bone->pSigEuler[i].z)+
b * (p^cur_signal_bone->pSigEuler[i + static_cast<int>(pow (2.Of, k))] .z 1 +
c * (p_cur_signal_bone->pSigEuler[i + static cast<int> (2 * pow(2.Of, k))].z);

done = true;
Í
else
Í

if(i < 2 * pow(2.Of, k))
Í

if(i + (2 * pow(2.Of, k)) > data.m_noSamples - 1)
{

data.m_pSignalArray[k + 1].SignalBone[j].pSigEuler[i].x =
c * (p_cur_signal_bone->pSigEuler[0].x) +
b * (p_cur_signal_bone->pSigEuler[i - static_cast<int>(pow(2.Of, k))].x) +
a * (p_cur_signal_bone->pSigEuler[i].x) +
b * (p_cur__signal_bone->pSigEuler[i + static_cast<int>(pow(2.Of, k))].x) +
c * (p_cur_signal_bone->pSigEuler[data.m_noSamples - l].x);

data.m_pSignalArray[k + 1].SignalBone[j].pSigEuler[i].y =
c * (p_cur_signal bone->pSigEuler[0].y) +
b * (p_cur_signal_bone->pSigEuler[i - static_cast<int> (pow(2.Of, k))].y) +
a * (p_cur_signal_bone->pSigEuler[i].y) +
b * (p_cur_signal_bone->pSigEuler[i + static_cast<int>(pow(2.Of, k))].y) +
c * (p_cur_signal_bone->pSigEuler[data.m_noSamples - l].y);

done = true;
data.m_pSignalArray[k + 1].SignalBone[j].pSigEuler[i].z =

c * (p_cur_signal_bone->pSigEuler[0].z) +
b * (p_cur_signal_bone->pSigEuler[i - static_cast<int> (pow (2.Of, k))].z) +
a * (p_cur_signal_bone->pSigEuler[i].z) +
b * (p_cur_signal_bone->pSigEuler[i + static_cast<int>(pow(2.Of, k))].z) +
c * (p_cur_signal_bone->pSigEuler[data.m_noSamples - l].x);

}
else

c :\DarraghBuild\src\CWarping.cpp
Idata.m_pSignalArray[k + 1].SignalBone[j].pSigEuler[i].x =

c * (p_cur_signal_bone->pSigEulert0].x) +
b * (p_cur_signal_bone->pSigEuler[i - static_cast<int>(pow(2.Of, k))].x) +
a * (p_cur_signal_bone->pSigEuler[i].x)+
b * (p_cur_signal_bone->pSigEuler[i + static_cast<int> (pow(2.Of, k))] ,x } +
c * (p_cur_signal_bone->pSigEuler[i + static_cast<int>(2 * pow(2.Of, k))].x

data.m_pSignalArray[k + 1] .SignalBone[j] .pSigEuler [i] .y =
c * (p_cur_signal_bone->pSigEuler[0].y) +
b * (p_cur_signal_bone->pSigEuler[i - static_cast<int> (pow (2.Of, k))] .y) +
a * (p_cur_signal_bone->pSigEuler[i].y)+
b * (p_cur_signal_bone->pSigEuler[i + static_cast<int> (pow (2.Of, k))].y) +
c * (p_cur_signal_bone->pSigEuler[i + static_cast<int> (2 * pow(2.Of, k))].y

data.m_pSignalArray[k + 1 J.SignalBone[j].pSigEuler [i].z =
c * (p_cur_signal_bone->pSigEuler[0].z) +
b * (p_cur_signal_bone->pSigEuler[i - static_cast<int>(pow(2.Of, k))].z) +
a * (p_cur_signal_bone->pSigEuler[i].z)+
b * (p_cur_signal_bone->pSigEuler[i + static_cast<int>(pow(2.Of, k))].z J +
c * (p_cur_signal_bone->pSigEuler[i + static_cast<int>(2 * pow(2.Of, k))].z

done = true;
)

/'/ now, need tc check that Che index is not greater than the number of samples stored
if((i + (pow(2.Of, k)) >= data.m^noSamples -1) && (i + (2 * pow(2.Of, k)) >= data.m^noSamples) && done =

false)
{

data.m_pSignalArray[k + 1].SignalBone[j].pSigEuler[i].x =
c * (p_cur_signal_bone->pSigEuler[i - static_cast<int>(2 * pow(2.Of, k))].x) +
b * (p_cur_signal_bone->pSigEuler[i - static_cast<int>(pow(2.Of, k))].x) +
a * (p_cur_signal_bone->pSigEuler[i].x) +
b * (p_cur_signal_bone->pSigEuler[data.m_noSamples - l].x) +
c * (p_cur_signal_bone->pSigEuler[data.m^noSamples - l].x);

done = true;
data.m_pSignalArray[k + 1].SignalBone[j].pSigEuler[i].y =

c * (p_cur_signal_bone->pSigEuler[i - static_cast<int> (2 * pow(2.Of, k))]„y) +
b * (p_cur_signal_bone->pSigEuler[i - static_cast<int> (pow (2.Of, k))].y) +
a * (p_cur_signal_bone->pSigEuler[i].y) +
b * (p_cur_signal_bone->pSigEuler[data.m_noSamples — 1].y) +
c * (p_cur_signal_bone->pSigEuler[data.m_noSamples - 1].y);

done = true;
data.m_pSignalArray[k + 1].SignalBone[j].pSigEuler[i] . z =

c * (p_cur_signal_bone->pSigEuler[i - static_cast<int>(2 * pow(2.Of, k))].z) +

c :\DarraghBuild\src\CWarping.cpp

else
{

}
if (
{

b * (p_cur_signal_bone->pSigEuler[i - static_cast<int> (pow(2.Of,
a * (p_cur_signal_bone->pSigEuler[i].z) +
b * (p_cur_signal bone->pSigEuler[data.m_noSamples - 1].z) +
c * (p_cur_signal_bone->pSigEuler[data.m_noSamples - l].z);

done = true;

k))]) +

pow(2.Of, k)) >= data.m noSamples) && done == falseif ((i + (
{
data.m_pSignalArray[k + 1].SignalBone[j].pSigEuler[i].x =

c * (p_cur_signal_bone->pSigEuler[i - static_cast<int> (2 * pow(2.Of, k))].x
b * [p_cur_signal_bone->pSigEuler[i - static_cast<int>(pow (2.Of, k))].x) +
a * (p_cur_signal_bone->pSigEuler[i].x) +
b * (p_cur_signal_bone->pSigEuler[data.m_noSamples - 1].x) +
c * [p cur signal bone->pSigEuler [data.m noSamples - 1] .x);

) +

data.m_pSignalArray[k + 1].SignalBone[j].pSigEuler[i].y =
c * (p_cur_signal_bone->pSigEuler[i - static_cast<int>(2 * pow(2.Of,
b * (p_cur_signal_bone->pSigEuler[i - static_cast<int>(pow(2.Of, k)
a * (p_cur_signal_bone->pSigEuler[i].y) +
b * (p_cur_signal_bone->pSigEuler[data.m_noSamples - 1].y) +
c * (p_cur_signal_bone->pSigEuler[data.m_noSamples - 1].y);

k))]
• y)

) +

data.m_pSignalArray[k + 1].SignalBone[j].pSigEuler[i].z =
c * (p_cur_signal_bone->pSigEuler[i - static_cast<mt>(2 * pow(2.Of,
b * (p_cur_signal_bone->pSigEuler[i - static_cast<int>(pow (2.Of, k)
a * (p_cur_signal_bone->pSigEuler[i].z) +
b * (p_cur_signal_bone->pSigEuler[data.m_noSamples - 1].z) +
c * (p_cur_signal_bone->pSigEuler[data.m_noSamples - 1].z);

done = -rue;
}

done == false)

)] • z
. z) +

data.m_pSignalArray[k + 1].SignalBone[j].pSigEuler[i].x =
c * (p_cur_signal_bone->pSigEuler[i - static_cast<int>(
b * (p_cur_signal_bone->pSigEuler[i - static_cast<int>(pow(2.Of,
a * (p_cur_signal_bone->pSigEuler[i].x) +
b * (p_cur_signal_bone->pSigEuler[i + static_cast<int>(pow(
c * (p_cur_signal_bone->pSigEuler[i + static cast<int>(2 *

2 * pow (2.Of,
k)

2.Of, k)
pow{ 2.Of,

data.m_pSignalArray[k + 1].SignalBone[j],pSigEuler[i].y =
c * (p_cur_signal_bone->pSigEuler[i - static_cast<int>(2 * pow(2.Of,
b * (p_cur_signal_bone->pSigEuler[i - static_cast<int>(pow(2.Of, k)
a * (p_cur_signal_bone->pSigEuler[i].y) +
b * (p_cur_signal_bone->pSigEuler[i + static_cast<int>(pow(2.Of, k)
c * { p_cur_signal_bone->pSigEuler[i + static_cast<int>(2 * pow(2.Of,

k)
)]

)]
k)

. x
+

+
. X

• y
+

+
■ y

) +

J +

C : \Dar2ragh-Build\src\CWarping . Cpp
data.m_pSignalArray[k + 1].SignalBone[j].pSigEuler[i].z =

c * (p_cur_signal_bone->pSigEuler[i - static_cast<int>(2 * pow(2.Of, k))].z J +
b * (p_cur_signal_bone->pSigEuler[i - static_cast<int>(pow(2.Of, k)) J.z) -
a * (p_cur_signal_bone->pSigEuler[i].z) +
b * (p_cur_signal_bone->pSigEuler[i + static_cast<int>(pow(2.Of, k))].z) +
c * (p_cur_signal_bone->pSigEuler[i + static_cast<int>(2 * pow(2.Of, k))] ,z);

}data.m_pSignalArray[k + 1].SignalBone[j].time[i] = data.m_pBoneSampleArray[j].pRotKeys[i].time;
}

>
>

// Fill the quaternion version of the array only if displaying the low pass bands
// fillQSignalArray(data);

eulerBandPass(data);
return IE_S_OK;

)

/
/ /
// C W a r p m g : : eulerBandPass
/ /
// Calculates the band pass values from the low pass values by subtracting the
// low pass bands from the lower pass bands - the result being the pass band.
/ /
/

ieResult CWarping::eulerBandPass(CMorphData &data)
{

for(int i = 0; i< data.m_noFrequencyBands - 1; i++)
{

for(int j = 0; j < data.m_noBoneTracks; j++)
{

for (int k = 0; k < data.m^noSamples,- k++)
{

// To get the band pass, subtract the lower passes from the higher passes
data.m_pBandPassArray[i].SignalBone[j].pSigEuler[k].x = data.m_pSignalArray[i].SignalBone[j].pSigEuler[k].x

m_pSignalArray[i+1].SignalBone[j].pSigEuler[k].x;
data.m_pBandPassArray[i].SignalBone[j].pSigEuler[k].y = data.m_pSignalArray[i].SignalBone[j].pSigEuler[k].y

m_pSignalArray[i+1] .SignalBone[j] .pSigEuler [k] .y;
data.m_pBandPassArray[i].SignalBone[j].pSigEuler[k].z = data,m_pSignalArray[i].SignalBone[j].pSigEuler[k].z

m_pSignalArray[i+1].SignalBone[j].pSigEuler[k].z;
// set the time for the sample
data.m_pBandPassArray[i] .SignalBone [j] ,time[k] = data.m^pSignalArray[0] .SignalBone[j] .time[k];

>

- data.
- data.
- data.

c :\DarraghBuild\src\CWarping.cpp 20

// Copy the lowest low pass band to the band pass array. This is not done above as there is nothing to subtract
// from it. However, it in itself is a band pass.
for (int j = 0; j < data.m_noBoneTracks; j++)
{

for (int k = 0; k < data.m_noSamples; k++)
{ data.m_pBandPassArray[data.m_noFrequencyBands - 1].SignalBone[j].pSigEuler[k].x = data.m_pSignalArray[data. /

m_noFrequencyBands - 1].SignalBone[j].pSigEuler[k].x;
data.m_pBandPassArray[data.m_noFrequencyBands - 1].SignalBone[j].pSigEuler[k].y = data.m_pSignalArray[data.

m_noFrequencyBands - 1].SignalBone[j].pSigEuler[k].y;
data.m_pBandPassArray[data.m_noFrequencyBands - 1].SignalBone[j].pSigEuler[k].z = data.m_pSignalArray[data.

m_noFrequencyBands - 1].SignalBone[j].pSigEuler[k].z;
}

}

// trying out a scaling of one of the bands to see what effect it has on the resulting animation.
/*for (int j = 0; i < m NoBoneTracks; 1++
{

for (int k = 0; k < m_NumSamples; k++;
m pBandPassArray[0 .SignalBone[j].pSigEuler[k] . X = m pBandPassArray[0 .SignalBone [j].pSigEuler[k] . X * I
m pBandPassArray[0 .SignalBone [j].pSigEuler[k] ■ y = m pBandPassArray[0 .SignalBone[j].pSigEuler[k]■ y -- 1
m pBandPassArray[0 .SignalBone [j].pSigEuler[k] . z = m pBandPassArray[0 .SignalBone[j]. pSigEuler[k] . z * 1

m.pBandPassArray[1 .SignalBone [j].pSigEuler[k) . X = m pBandPassArray[1 .SignalBone [j].pSigEuler[k] . X * 1

m. pBandPassArray[1 .SignalBone[j].pSigEule r [k] • y = m pBandPassArray[1 .SignalBone[j].pSigEuler[kj * 1;
m pBandPassArray[1 .SignalBone [j].pSigEuler[k] . z = m pBandPassArray[1 .SignalBone[j].pSigEuler[k] 2 ' 1;

m pBandPassArray[2 . SignalBone [j] . pSigEuler[k] . X = m pBandPassArray[2 . SignalBone[j].pSigEuler[k] . X - -L /
m pBandPassArray[2 . SignalBone [j] . pSigEuler [k] • y = m _pBandPassArray[2 . SignalBone[j].pSigEuler[k] * y -
m pBandPassArray[2 .SignalBone [j]. pSigEuler [k] . z = m pBandPassArray[2 .SignalBone [j].pSigEuler[k]•z i.f
m pBandPassArray[3 .SignalBone[j]. pSigEuler [k] . X = m pBandPassArray[3 .SignalBone[j].pSigEuler[k] . X

■4. i
m pBandPassArray[3 .SignalBone [j].pSigEuler[k]• y = m pBandPassArray[3 . SignalBone[j] . pSigEuler[k] . y I
m pBandPas sArray[3 . SignalBone [j] . pSigEuler [k] . z = m pBandPassArray[3 . SignalBone[j].pSigEuler[k] ■ z * l

m pBandPassArray[6 ,SignalBone [j]. pSigEuler [k] . X = m pBandPassArray[6 .SignalBone[j]. pSigEuler[k]. X - 3
m pBandPassArray[6 .SignalBone [jJ .pSigEuler [k] ■ y = m pBandPassArray[6 .SignalBone[j].pSigEuler[k] * y * 3
m pBandPassArray[6 ,SignalBone [j].pSigEuler [k] . z = m pBandPassArray[6 .SignalBone [j]. pSigEuler[k]. z * 3

\ * !

eulerSumPassBands(data);
return IE_S^OK;

>

c :\DarraghBuild\src\CWarping.cpp 21

/
/ /
// CWarping: :eulerSumPassBands
/ /
// The pass bands are held seperately. This function adds their, up, in eulers,
// to give a representation of the animation in eulers. Needed to display
// an animation altered by scaling band passes
/ /
/ / / / / / I I / / / / / / / / / / / / / / / / I I / / / / J / / / / / / / / / / / / • / / / / / É/ I I H I I i I I / / / I I / / / / / / / / / / / / I I / / / / / / / / / / /

ieResult CWarping::eulerSumPassBands(CMorphData Sdata)
{

// Create an array to hold the summed band passes in Eulers - later to be
// converted to quaternions for display.
m_pEDisplayArray = ieNewDataArray(SIGNAL_BONE, data.m_noBoneTracks);
for(int j = 0; j < data,m_noBoneTracks; j++)
{

m_pEDisplayArray[j].pSigEuler = ieNewDataArray(EDLER, data.m_noSamples);
m_pEDisplayArray[j].time = ieNewDataArray(float, data.m_noSamples);

>

for(int j = 0; j < data.m_noBoneTracks; j++)
{

for(int k = 0; k < data.m_noSamples; k++)
{

for (int i = 0; i < data.m_noFrequencyBands; i++)
{

if(i == 0)
{

// if i == 0, we just need to add on the last/lowest pass band.
m_pEDisplayArray[j] .pSigEuler[k] .x = data,m_pBandPassArray[data.m_noFrequencyBands - 1] .SignalBone [j] .pSigEuler[k]

. x * 10 ;
m_pEDisplayArray[j].pSigEuler[k].y = data.m_pBandPassArray[data.m_noFrequencyBands - 1].SignalBone[j].pSigEuler[k]

. y*10;
m_pE.DisplayArray[j].pSigEuler[k].z = data.m_pBandPassArray[data.m_noFrequencyBands - 1].SignalBone[j].pSigEuler[k]

. z * 10 ;
// time
m_pEDisplayArray[j].time[k] = data,m_pBandPassArray[0].SignalBone[j].time[k];

}
else
{

m_pEDisplayArray[j].pSigEuler[k].x = m_pEDisplayArray[j].pSigEuler[k].x + data.m_pBandPassArray[data.
m_noFrequencyBands - 1 - i].SignalBone[j].pSigEuler[k].x ;

m_pEDisplayArray[j].pSigEuler[k].y = m_pEDisplayArray[j].pSigEuler[k].y + data.m_pBandPassArray[data.
m_noFrequencyBands - 1 - i].SignalBone[j].pSigEuler[k].y;

m_pEDisplayArray[j].pSigEuler[k].z = m_pEDisplayArray[j].pSigEuler[k].z + data.m_pBandPassArray[data.
m_noFrequencyBands - 1 - i].SignalBone[j].pSigEuler[k].z;

c :\DarraghBuild\src\CWarping.cpp

1
}

}
fillQDisplayArray (data);
return IE_S_OK;

}

/
/ /
// CWarping::fillQDisplayArray
/ /
// Takes the added up band pass signal which is in eulers and converts it to
// a quaternion signal, suitable for the engine to display on screen.
/ /
/

ieResult CWarping::fillQDisplayArray(CMorphData Sdata)
{

// Set up an array to hold the quaternions. A 2D array, Bones * Samples
m_pQDisplayArray = ieNewDataArray(BONE_SAMPLES, data.m_noBoneTracks);
for(int j = 0; j < data.m_noBoneTracks; j++)
{

m_pQDisplayArray[j].pRotKeys = ieNewDataArray(ROT_KEY, data.m_noSamples);

for(int j = 0; j < data.m_noBoneTracks; j++)
{

for (int k = 0; k < data.m_noSamples; k++)
{

convertToQuaternion(m_pEDisplayArray[j].pSigEuler[k] , m_pQDisplayArray[j].pRotKeys[k].rot);
m_pQDisplayArray[j].pRotKeys[k].time = m_pEDisplayArray[j].time[k];

}
}
return IE_S_OK;

I

/
/ /
// CWarping::eulerSumMorphed
// Takes the seperately timewarped euler signals and recombines them to form 1 euler
// signal.
/ /
/

ieResult CWarping::eulerSumMorphed()
{

c :\DarraghBuild\src\CWarping.cpp 23
// Create an array to hold the summed band passes in Eulers - later to be
// converted to quaternions for display.
m_pEDisplayArray = ieNewDataArray(SIGNAL_BONE, m_Result.m^noBoneTracks);
for(int j = 0; j < m_Result.m_noBoneTracks; j++)

m_pEDisplayArray[j].pSigEuler = ieNewDataArray(EULER, m_Result.m_noSamples);
m_pEDisplayArray[j].time = ieNewDataArray(float, m_Result.m_noSamples);

}

for(int j = 0; j < m_Result.m_noBoneTracks; j++)
for (int k = 0; k < m_Result,m_noSamples; k++)
{ for (int i = 0; i < m_Result.m_noFrequencyBands; i++)

{
if(i == 0)
{

// if i == 0, we just need to add on the last/lowest pass band.
m_pEDisplayArray[j] .pSigEuler [k] .x = m_Result.m_pBandPassArray[m_Result.m_noFrequencyBands - 1] .SignalBone [j] .

pSigEuler[k].x;
m_pEDisplayArray[j].pSigEuler[k].y = m_Result.m_pBandPassArray[m_Result.m_noFrequencyBands - 1].SignalBone[j].

pSigEuler[k].y;
m_pEDisplayArray[j].pSigEuler[k] .z = m_Resuit.m_pBandPassArray[m_Result.m_noFrequencyBands - 1].SignalBone [j] .

pSigEuler[k].z;
// time
m_pEDisplayArray[j].time[k] = m_Result.m_pBandPassArray[0].SignalBone[j].time[k];

}
else
{

m_pEDisplayArray[j].pSigEuler[k].x = m_pEDisplayArray[j].pSigEuler[k].x + m_Result.m_pBandPassArray[m_Result.
m_noFrequencyBands - 1 - i].SignalBone[j].pSigEuler[k].x;

m_pEDisplayArray[j].pSigEuler[k].y = m_pEDisplayArray[j].pSigEuler[k].y + m_Result.m_pBandPassArray[m_Result.
m_noFrequencyBands - 1 - i].SignalBone[j].pSigEuler[k].y;

m_pEDisplayArray[j].pSigEuler[k].z = m__pEDisplayArray [j]. pSigEuler [k] . z + m_Result.m_pBandPassArray[m_Result.
m_noFrequencyBands - 1 - i].SignalBone[j].pSigEuler[k].z;

}
}

}
}
fillMorphedQDisplayArray();
return IE_S_OK;

/
/ /
// CWarping::fillQDisplavArray
II
II Takes the added up band pass signal which is in eulers and converts it to

c :\DarraghBuild\src\CWarping.cpp
// a quaternion signal, suitable for the engine to display on screen.
/ /
/

ieResult CWarping::fillMorphedQDisplayArray()
{

// Set up an array to hold the quaternions. A 2D array, Bones * Samples
m_pQDisplayArray = ieNewDataArray(BONE^SAMPLES, m_Result,m_noBoneTracks);
for(int j = 0; j < m_Result.m_noBoneTracks; j++)
{

m_pQDisplayArray[j].pRotKeys = ieNewDataArray(ROT_KEY, m_Result.m_noSamples);
}

for(int j = 0; j < m_Result.m_noBoneTracks; j++)
{

for (int k = 0; k < m_Result.m_noSamples; k++)
{

convertToQuaternion(m_pEDisplayArray[j] .pSigEuler [k] , m_pQDisplayArray[j].pRotKeys[k] .rot);
m_pQDisplayArray[j].pRotKeys[k].time = m_pEDisplayArray[j].time[k];

}
i
return IE_S_OK;

}

/
/ /
// CWarping::fillQSignalArray
/ /
// Fills the array holding the quaternions after they have been passed through
// the filter. Each index of the array holds the results of a lower pass filter
// Used when displaying low pass animations on screen.
/ /
/

ieResult CWarping::fillQSignalArray(CMorphData &data)
{

// Create the QLowPass array - used to hold quaternions to run the low pass display from
m_pQLowPassArray = ieNewArray(QSIGNAL, (data.m_noFrequencyBands + 1));
for (int i = 0; i < data.m_noFrequencyBands; i++)
{

m_pQLowPassArray[i].SignalBone = ieNewArray(QSIGNAL_BONE, data.m_noBoneTracks);
}
for (int i = 0; i <data.m_noFrequencyBands; i++)
i

for (int j = 0; j < data.m_noBoneTracks; j++)
{

m_pQLowPassArray[i].SignalBone[j].pSigQuaternion = ieNewArray(QUATERNION, data.m_noSamples);

c :\DarraghBuild\src\CWarping.cpp 25
m_pQLowPassArray[i].SignalBone[j].time = ieNewArray(float,data.m_noSamples);

)
}

// Convert the euler low pass bands to quaternions and store in m_pQLowPassArray
for (int i = 0; i < data.m_noFrequencyBands; i++)
{

for (int j = 0 ; j < data.m_noBoneTracks; j++)
{

for (int k = 0; k < data.m_noSamples; k++)
{

convertToQuaternion(data.m_pSignalArray[i].SignalBone[j].pSigEuler[k], m_pQLowPassArray[i].SignalBone[j].
pSigQuaternion[k]);

m_pQLowPassArray[i].SignalBone[j].time[k] = data.m_pSignalArray[i].SignalBone[j].time[k];
}

}
}

// Need to dot product the quaternions to remove stray rotations,
float result;
for (int i = 0; i <data.m_noFrequencyBands; i++)
{

for (int j = 0; j < data.m_noBoneTracks; j++)
{

for (int k = 1; k < data.m_noSamples; k++)
{

result = QuatDotProduct(Sm_pQLowPassArray[i] .SignalBone [j] .pSigQuaternion[k], &m_pQLowPassArray[i] .SignalBone[j] .
pSigQuaternion[k-1]);

if (result < 1)
i

// need to negate the quaternion
m_pQLowPassArray[i].SignalBone[j].pSigQuaternion[k].w = -m_pQLowPassArray[i].SignalBone[j].pSigQuaternion[k].w;
m_pQLowPassArray[i].SignalBone[j].pSigQuaternion[k].x = -m_pQLowPassArray[i].SignalBone[j].pSigQuaternion[k].x;
m_pQLowPassArray[i].SignalBone[j].pSigQuaternion[k],y = -m_pQLowPassArray[i].SignalBone[j].pSigQuaternion[k].y;
m__pQLowPass Array[i].SignalBone[j].pSigQuaternion[k].z = -m_pQLowPassArray[i].SignalBone[j].pSigQuaternion[k].z;

}
}

}
>

//calculateBandPass();
return IE_S_OK;

}

/
/ /
// CWarping::convertAnimToEulers
// Takes the quaternion signal (made up of the samples in the sampling function) and

c :\DarraghBuild\src\CWarping.cpp 26
// converts them to Eulerian signals. It takes account of the fact a negative
// quaternion is the same rotation as a positive quaternion.
/ /
/

ieResult CWarping::convertAnimToEulers(CMorphData &anim)
{ // do for every point in a signal

// Fills up the band pass array with eulers.
// Copies the existing bone sample array into the first signal array,
for (int i = 0; i < anim.m_noBoneTracks; i++)
{ // need to know the angles of the previous sample to be able to detect if a rotation

// close to 2 pi has occured, as this will cause a flip.
float previous_bank = O.Of;
float previous_pitch = O.Of;
float previous_heading = O.Of;
// do time copy here.
for (int j = 0; j < anim.m_noSamples; j++)
{ anim.m_pBandPassArray[0].SignalBone[i].time[j] = anim.m_pBoneSampleArray[i].pRotKeys[j].time;

// converts the original samples to eulers and puts them in the unfiltered signal in the array.
convertToEuler(anim.m_pBoneSampleArray[i].pRotKeys[j] .rot, anim.m_pBandPassArray[0] .SignalBone [i] .pSigEuler[j]);

float pitch;
floa- heading;
float bank;
pitch = anim.m_pBandPassArray[0].SignalBone[i].pSigEuler[j].x;
II if pitch is within 0.01 of 0.0 ther. return true,
if (FloatAlmostEquals(Ditch , O.Of , O.OOOOOlf))
{

pitch = O.Of;
}
if (j — 0)
{

previous_pitch = pitch;
J
else
{

if (fabs{ pitch - previous_pitch) > 1.65f)
i

pitch = - pitch;
}

}

anim.m_pBandPassArray[0].SignalBone[i].pSigEuler [j]. x = pitch;

c :\DarraghBuild\src\CWarping.cpp 2

heading = anim.m_pBandPassArray[0].SignaiBone[i].pSigEuler[j] . y;
if (FioatAlmostEquals(heading, 0.0, O.OOOOOlf))
{

heading = O.Of;
)

if (j == 0)
{

previous_heading = heading;
>
else
{

if (fabs(heading - Drevious_heading) > 1.65f)
{

heading = - heading;
}

}

anim.m_pBandPassArray[0].SignalBone[i].pSigEuler[j].y = heading;
bank = anim.m_pBandPassArray[0].SignaiBone[i].pSigEuler[j).z;
if (FioatAlmostEquals(bank, 0.0, O.OOOOlf))
{

bank = O.Of;
}

if (j == 0)
{

previous_bank = bank;
}
else
<

if (fabs(bank - previous_bank) > 1.65f)
{

bank = - bank;
}

}
anim.m_pBandPassArray[0].SignaiBone[i].pSigEuler[j].z = bank;
// set pitch
pitch = anim.m_pBandPassArray[0].SignaiBone[i].pSigEuler[j].x;
if < j == 0)
{

previous_pitch = pitch;
}
else
{

previous_oitch = anim.m_pBandPassArray(0).SignaiBone[i].pSigEuler[j-1].x;
// If the difference between 2 points is greater than 180 degrees, this is too big of a rotation

c :\DarraghBuild\src\CWarping.cpp 2

// for one frame. So, find the difference between the current frame and the last frame
// and add this difference to the current frame, making it the same as the last frame.
// record this difference for later, and record that the value has been modified.
if (fabs(previous_pitch - pitch) > 1.65f) // this is the threshold of the angle to fix up.
{

anim.m_pBandPassArray[0].SignalBone[i].pSigEuler[j].x = previous_pitch;
previous_pitch = pitch;

}
}
// if the angle is less than 5 x E-6 set it to 0 - angle is too small, ends up as noise.
if((anim.m_pBandPassArray[0].SignalBone[i].pSigEuler[j].x < 0.000005)

&& (anim.m_pBandPassArray[0].SignalBone[i].pSigEuler[j].x > -0.000005))
{

anim.m_pBandPassArray[0].SignalBone[i].pSigEuler[j].x = O.OOOf;
}
// set heading
heading = anim.m_pBandPassArray[0].SignalBone[i].pSigEuler[j].y;
if (j == 0)
t

previous_heading = heading;
}
else
{ previous_heading = anim.m_pBandPassArray[0].SignalBone[i].pSigEuler[j-1].y;

if (fabs (previous_heading - heading) > 1.65f)
1 anim.m_pBandPassArray[0].SignalBone[i].pSigEuler[j].y = previous_heading;

previous_heading = heading;
)

}
// if the angle is less than 5 x E-6 set it to 0 - angle is too small, ends up as noise,
if((anim.m_pBandPassArray[0].SignalBone[i].pSigEuler[j].y < 0.000005)

&& (anim.m_pBandPassArray[0].SignalBone[i].pSigEuler[j].y > -0.000005))
{

anim.m_pBandPassArray[0].SignalBone[i].pSigEuler[j].y = O.OOOf;
}
// set bank
bank = anim.m_pBandPassArray[0].SignalBone[i].pSigEuler[j].z;
if (j == 0)
t

previous_bank = bank;
)
else
{

previous_bank = anim.m_pBandPassArray[0] .SignalBone [i] .pSigEuler[j-1] .z;
if (fabs (previous_bank - bank) > 1.65f)
{

anim.m_pBandPassArray[0] .SignalBone[i].pSigEuler [j] .z = previous_bank;

c !\DarraghBuild\src\CWarping.cpp
previous_bank = bank;

}

// if the angle is less than 5 x E-6 set it to 0 - angle is too small, ends up as noise,
if((anim.m_pBandPassArray[0] .SignalBone [i] .pSigEuler[j].z < 0.000005)

&& (anim.m_pBandPassArray[0] .SignalBone [i] .pSigEuler[j].z > -0.000005))
{ anim.m_pBandPassArray[0] .SignalBone[i] .pSigEuler [j] .z = O.OOOf;
}

}
}
// need to remove any z axis rotation from the thighs - this rotation is only introduced to counteract
// the roation in the pelvis - which has been squashed in the conversion.
// also need to fix the Z rotation on the pelvis, if left open the legs will circulate around
// the vertical axis
for(int j = 0 ; j < anim.m_noSamples; j++)
{

// the more the pelvis z deviates from its average z rotation of 1.57... the more the
// thighs deviate to compensate, by a scale of 2 in the opposite direction,
float deviation;
deviation = 1.571153f - anim.m_pBandPassArray[0].SignalBone[1].pSigEuler[j].z;
anim.m_pBandPassArray[0].SignalBone[21].pSigEuler[j].z = 3.14159265f + (1 * deviation);//EWSPelvis.z;
anim.m_pBandPassArray[0]-SignalBone[28].pSigEuler[j].z = 3.14159265f + (1 * deviation);//EWSPelvis.z;

}

// need to set the number of frequency bands to 1
anim.m_noFrequencyBands = 1;
return IE S OK;

/ /
/ /
// CWarping::fillNonfilteredTimeWarpQDisplayArray
// Takes the euler timewarped signal returned from CSederberg and converts it to
// quaternions so it can be displayed on screen
/ /
/

ieResult CWarping::fillNonFilteredTimeWarpQDisplayArray()
{

// Set up an array to hold the quaternions. A 2D array, Bones * Samples
m_pQDisplayArray = ieNewDataArray(BONE_SAMPLES, m_Result.m_noBoneTracks);
for (int j = 0; j < m_Result.m_noBoneTracks; j++)
{

c :\DarraghBuild\src\CWarping.cpp 3
m pQDisplayArray[j].pRotKeys = ieNewDataArray(ROT_KEY, m_Result.m_noSamples);

1
// convert the euler signals to quaternions and store them in the m^pQDisplayArray
for(int j = 0; j < m Result.m_noBoneTracks; j++)
{ for (int k = 0; k < m_Result.m_noSamples; k++)

{ convertToQuaternion(m_Result.m_pBandPassArray[0].SignalBone[j].pSigEuler[k] , m_pQDisplayArray[j].pRotKeys[k].rot);
m_pQDisplayArray[j].pRotKeys[k].time = m_Result,m_pBandPassArray[0].SignalBone[j].time[k];

}
}

return IE_S_OK;
}

/
/ /
// CWarping::getBlendedWarp
// Sets up the warped animation to display on screen. Takes both the walk
// animation and the warped animation. Walkl is the time to start blending between
// the walk and the warp. The blend finsishes at time blendl. Now the animation
// all comes from the warp - until the 'warp' time. Then the warp blends back
// to the walk. The blend finsishes at time 'blend2' and now the animation is just
// the walk again.
/ /
/ /

ieResult CWarping::getBlendedWarp(float walkl, float blendl, float warp, float blend2,
CEntityComponentRef<Models::IAnimation> SAnimation)

{ // Make an array to hold the quaternions of the animation to display on screen.
// Calculate the size of the array,
float length = Animation->getLength();
int size_of_quat_array;
size_of_quat_array = (int) (length * m_Result.m_samplingRate);
// Set up an array to hold the quaternions. A 2D array, Bones * Samples
m_pQBlendedWarpDisplayArray = ieNewDataArray(BONE_SAMPLES, m^Result.m_noBoneTracks);
for(int p = 0; p < m_Result.m_noBoneTracks; p++)
{ m_pQBlendedWarpDisplayArray[p].pRotKeys = ieNewDataArray(ROT_KEY, size_of_quat_array);
}

float time_between_samples;
time_between_samples = (float) l/m_Result.m_samplingRate;
int j = 0;
// This fills up the quaternion rotation array

c : \DarraghBuild\src\CWarping. cpp 31

for (int i = 0; i < m_Result.m^noBoneTracks; i++)
{

// writes the sampled info for each bone to the bone sample array,
float time = O.Of;
// reset j
j = 0;
for (time = 0; time < length ; time = time + time_between_samples)
{

// when time is less than walkl, pull the rotations from the original
// walk animation,
if (time < walkl)
{ getRotation(i, &m_pQBlendedWarpDisplayArray[i].pRotKeys[j].rot, time);

m_pQBlendedWarpDisplayArray[i].pRotKeys[j].time = time;
}
else
{

// when time is less than blend 1, pull the rotations from a blend of the
// original walk and the warped walk,
if (time < blendl)
{

QUATERNION walkQuat;
QUATERNION warpedQuat;
// get the quaternion from the walk
Animation->setTime(time);
Animation->getRotation(i, SwalkQuat);
// get the quaternion from the warp
getlPassRotation(i, SwarpedQuat, time);
// the interpolation factor needs to ramp up as the time goes from the
// start of the blend segment to the start of the warped segment
float interpolationFactor;
interpolationFactor = ((time - walkl) / (blendl - walkl));
// Lerp the 2 quaternions
QuatLerp(&m_pQBlendedWarpDisplayArray[i].pRotKeys[j].rot, SwalkQuat, SwarpedQuat, interpolationFactor);
m_pQBlendedWarpDisplayArray[i].pRotKeys[j].time = time;

}
else
{

// when the time is less than warp - pull the quaternions from the warped animation
if(time < warp)
{

getlPassRotation(i, Sm_pQBlendedWarpDisplayArray[i].pRotKeys[j].rot, time);
m_pQBlendedWarpDisplayArray[i].pRotKeys[j].time = time;

}
else
{

c :\DarraghBuild\src\CWarping.cpp 3

// if the time is less than blend 2, pull the quaternions from a lerp of the
// walk and the warped animations
if (time < blend2)
{

QUATERNION walkQuat;
QUATERNION warpedQuat;
// get the quaternion from the walk
Animation->setTime(time);
Animation->getRotation(i, &walkQuat);
// get the quaternion from the warp
getlPassRotation(i, SwarpedQuat, time);
// the interpolation factor needs to ramp up as the time goes from the
// start of the blend segment to the start of the warped segment
float interpolationFactor;
interpolationFactor = l.Of - ((time - warp) / (blend2 - warp));
// Lerp the 2 quaternions
QuatLerp(&m_pQBlendedWarpDisplayArray[i].pRotKeys[j].rot, SwalkQuat, &warpedQuat, interpolationFactor);
m_pQBlendedWarpDisplayArray[i].pRotKeys[j].time = time;

}
else
{

Animation->setTime(time);
Animation->getRotation(i, &m_pQBlendedWarpDisplayArray[i].pRotKeys[j].rot);
m_pQBlendedWarpDisplayArray[i].pRotKeys[j].time = time;

}
}

}
j++;
}

}
}
return IE_S_OK;

}

/
/ /
// CWarping::getBlendedWarpRotation
// Takes a bone number and a time and returns a rotation for the walk-warp-walk
// sequence animation.
/ /
/ /

ieResult CWarping::getBlendedWarpRotation(ieUIntl6 bonelndex,
QUATERNION & Rot,
float time)

c :\DarraghBuild\src\CWarping.cpp 33

// binary search to get the correct samples for interpolation.
ielntl6 low = -1;
ielntl6 high = m_Source.m_noSamples;
ielntl6 element;
while((element = (high - low) / 2) > 0)
{

i f (m_pQBlendedWarpDisplayArray[bonelndex].pRotKeys[low + element].time < time)
{

low = low + element;
}
else
{

high = low + element;
}

}

if(low == -1)
{

Rot = m_pQBlendedWarpDisplayArray[bonelndex].pRotKeys[0].rot;
}

if(high == m_Source.m_noSamples)
{

Rot = mjpQBlendedWarpDisplayArray[bonelndex].pRotKeys[0].rot; // MAY WANT TO CHANGE THIS
}

// first, get the length of the current sample,
float sample_length;
sample_length = m_pQBlendedWarpDisplayArray[bonelndex].pRotKeys[low + l].time - m_pQBlendedWarpDisplayArray[bonelndex].pRotKeys
[low].time;
// second, get the time in this interval the quaternion we requrie is at.
float current_time_in_sample;
current_time_in_sample = time - m_pQBlendedWarpDisplayArray[bonelndex].pRotKeys[low].time;
// divide, to get the interpolation factor - with a check for dividing by 0.
float interpolation_factor;
i f(sample_length > 0)
{

interpolation_factor = current_time_in_sample/sample_length;
}
else
i

interpolation^ actor = 0;
)

// interpolate
QuatLerp(& Rot, &m_pQBlendedWarpDisplayArray[bonelndex].pRotKeys[low].rot, &m_pQBlendedWarpDisplayArray[bonelndex].pRotKeys[low +
l].rot, interpolation factor);

c :\DarraghBuild\src\CWarping.cpp

return IE_S OK;
)

/ / / / / / II I I I / / / / / / / / /
/ /
// CWarping::WarpAnimPose
// Shifts the animation signal so it centers its oscillations about the pose signal
/ /
/

ieResult CWarping::WarpAnimPose()
{

float averageX;
float averageY;
float averageZ;
float shiftX;
float shiftY;
float shiftZ;

// Find the average value of each (XYZ) animation signal
for(int j = 0 ; j < m_Source,m_noBoneTracks; j++)
{

averageX = 0;
averageY = 0;
averageZ = 0;
shiftX = 0;
shiftY = 0;
shiftZ = 0;
for(int i = 0; i < m_Source.m_noSamples; i++)
{

// Get the total of all the valus in each XY and Z component of each signal.
averageX = averageX + m_Source.m_pBandPassArray[0].SignalBone[j].pSigEuler[i].x ;
averageY = averageY + m_Source.m_pBandPassArray[0].SignalBone[j].pSigEuler[i].y;
averageZ = averageZ + m_Source.m_pBandPassArray[0].SignalBone[j].pSigEuler[i].z;

}
// Divide the totals by the number of points to get the average.
averageX = averageX/m_Source.m_noSamples;
averageY = averageY/m_Source.m_noSamples;
averageZ = averageZ/m_Source.m_noSamples;
// The distance the signal must be shifted is the distance between the average value and the
// value of the pose (m_BlendedAnim) points.
shiftX = m_BlendedAnim.m_pBandPassArray[0].SignalBone[j].pSigEuler[0].x - averageX;
shiftY = m_BlendedAnim.m_pBandPassArray[0].SignalBone[j].pSigEuler[0].y - averageY;
shiftZ = m_BlendedAnim.m_pBandPassArray[0].SignalBone[j].pSigEuler[0].z - averageZ;

c :\DarraghBuild\src\CWarping.cpp 3

// Preform the shift here, putting hte result in the CMorphData m_Result object.
for{ '.n: i = 0; i < m_Source.m_noSamples; i++)
i m_Result.m_pBandPassArray[0].SignalBone[j].pSigEuler[i].x = m_Source.m_pBandPassArray[0].SignalBone[j].pSigEuler[i].x +

shiftX;
m_Result.m_pBandPassArray[0]. SignalBone[j].pSigEuler[i].y = m_Source.m_pBandPassArray[0].SignalBone[j].pSigEuler[i].y +

shiftY;
m_Result.m_pBandPassArray[0].SignalBone[j).pSigEuler[i].z = m_Source.m_pBandPassArray[0].SignalBone[j].pSigEuler[i].z +

shiftZ;
m_Result.m_pBandPassArray[0].SignalBone[j].time[i] = m_Source.m_pBandPassArray[0].SignalBone[j].time[i];

)
return IE_S_OK;

}

J //namespace IE

c :\DarraghBuild\src\CMorphData.h 1

#ifndef _CMORPHDATA_H_
♦define _CMORPHDATA_H_
♦include "common.h"
namespace IE
{
class CMorphData
{
public:

CMorphData() ;
virtual -CMorphData() ;
void shutdown();
void initA(CEntityComponentRef<Models::IAnimation> {¿Animation, float warpLength);
void initB(float warpLength, int samplingRate, int noBoneTracks);
float m_warpLength;
int m_samplingRate;
int m_noSamples;
int m_noBoneTracks;
int m_noFrequencyBands;
B O N E _ S A M P L E S * m_pBoneSampleArray;
S I G N A L * m_pSignalArray;
S I G N A L * m_pBandPassArray;

} ;
} // end namespace IE
#endif

c :\DarraghBuild\src\CMorphData.cpp
«include <ieCore/Memory.h>
«include "CMorphData.h"
// The sampling rate used for sampling an animation. If it is
// change here, it must also be changed in CWarping.cpp
const int 5AMPLING_RATE = 15;
namespace IE
{

/
/ /
// CMorphData
// The default constructor for a CMorphData object - rarely used.
I I
1111111111111111111111 ! 11111111111111111111111111111111111111 ! 11111111111111111

CMorphData: :CMorphData()
: m_warpLength(0.Of),

m_samplingRate(0),
m_noSamples(0),
m_noBoneTracks(0),
m_noFrequencyBands(0)

O

/ /
II
II CMorphData::-CMorphData
// The default destructor - use ::shutdown instead
/ /
/

CMorphData::-CMorphData() {}

111
II
II CMorphData::shutdown
II De-allocates the memory reserved for a CMorphData object.
/ /
111

void CMorphData::shutdown()
//Delete bone samoles
{

int i;
for (i = 0; i < m noBoneTracks; ++i)

c :\DarraghBuild\src\CMorphData.cpp 2

{
ieDeleteDataArray(m_pBoneSampleArray[i].pPosKeys);
ieDeleteDataArray(m_pBoneSampleArray[i].pRotKeys);

}
ieDeleteDataArray(m_pBoneSampleArray);

)

//Delete signals
{

int i;
for (i = 0; i < m_noFrequencyBands; ++i)
{

int j ;
for (j = 0; j < m_noBoneTracks; j++)
{

ieDeleteDataArray(m_pSignalArray[i].SignalBone[j].pSigEuler);
ieDeleteDataArray(m_pSignalArray[i].SignalBone[j].time);

}
ieDeleteDataArray(m_pSignalArray[i].SignalBone);

}
ieDeleteDataArray(m_pSignalArray);

}

//Delete band passes
{

int i;
for (i = 0; i< m_noFrequencyBands; ++i)
{

int j ;
for (j = 0 ; j < m_noBoneTracks; ++j)
{

ieDeleteDataArray(m_pBandPassArray[i] .SignalBone [j] .pSigEuler);
ieDeleteDataArray(m_pBandPassArray[i].SignalBone[j].time);

}
ieDeleteDataArray(m_pBandPassArray[i].SignalBone);

ieDeleteDataArray(m_pBandPassArray);
}

}

/
/ /
// CMorphData::initA
// Sets up a CMorphData object. Reserves memory for frequency bands,
// animation samples and pass bands. Also sets up the sampling rate and
// the number of samples. Only requires an animation and the warp length
/ /
/ /

c :\DarraghBuild\src\CMorphData.cpp 3

void CMorphData::initA(CEntityComponentRef<Models::IAnimation> &Animation, float warpLength)
{

// Get the length of the animation
m_warpLength = warpLength;
// Want to sample at 15 Hz (15 times a second).
m_samplingRate = SAMPLING_RATE;
// get the number of samples to be taken.
m_noSamples = (int)(m_warpLength * m_samplingRate) + 1;
// get the number of bones in the skeleton
m_noBoneTracks = Animation->getNumBones();
// set up the Bone Sample Array
ielntl6 i;
m_pBoneSampleArray = ieNewDataArray(BONE_SAMPLES, m_noBoneTracks);
for (i = 0; i < m_noBoneTracks; i++)
{

m_pBoneSampleArray[i].pRotKeys = ieNewDataArray(ROT_KEY, m_noSamples);
m_pBoneSampleArray[i].pPosKeys = ieNewDataArray(POS_KEY, m_noSamples);

)

// get number of frequency bands
float n = O.Of;
float base = 2.Of;
float result = O.Of;
do
{ result = pow(base, n);

n++;
}
while (result <= m__noSamples) ;
m_noFrequencyBands = static_cast<int>(n) - 2;

// set up the signal array
m_pSignalArray = ieNewDataArray(SIGNAL, (m__noFrequencyBands + 1));
// Make an array in each signal to hold the data for that signal
for (i = 0; i < m_noFrequencyBands; i++)
{

m_pSignalArray[i].SignalBone = ieNewDataArray(SIGNAL_BONE, m_noBoneTracks);
}

// Make an array in each bone in each signal to hold the euler values for each signal
for (i = 0; i < m_noFrequencyBands; i++)
{

for (int j = 0; j < m_noBoneTracks; j++)
{

m_pSignalArray[i].SignalBone[j].pSigEuler = ieNewDataArray(EULER, m_noSamples);
m_pSignalArray[i].SignalBone[j].time = ieNewDataArray(float, m_noSamples);

c :\DarraghBuild\src\CMorphData.cpp 4
}

}

// set up the Band Pass Array
m_pBandPassArray = ieNewDataArray(SIGNAL, m_noFrequencyBands);
for(i = 0; i < m_noFrequencyBands; i++)
{

// In each band pass, a track for each bone
m_pBandPassArray[i].SignalBone = ieNewDataArray(SIGNAL_BONE, m_noBoneTracks);

}

for(i = 0; i < m_noFrequencyBands; i++)
{

for(int j = 0 ; j < m_noBoneTracks; j++)
{

// In each bone track, set aside an euler variable for each sample.
m_pBandPassArray[i].SignalBone[j].pSigEuler = ieNewDataArray(EULER, m_noSamples);
m_pBandPassArray[i].SignalBone[j].time = ieNewDataArray(float, m_noSamples);

}
}

/
/ /
// CMorphData::initB
// Sets up a CMorphData object. Reserves memory for frequency bands,
// animation samples and pass bands. Also sets up the sampling rate and
// the number of samples. Requires a warp lenght, sampling rate and the
// number of bones.
/ /
/
void CMorphData::initB(float warpLength, int samplingRate, int noBoneTracks)
{

// Get the length of the animation
m_warpLength = warpLength;
// Want to sample at 15 Hz (15 times a second).
m_samplingRate = SAMPLING_RATE;
// get the number of samples to be taken.
m_noSamples = (int)(m_warpLength * m_samplingRate) + 1;
// get the number of bones in the skeleton
m_noBoneTracks = noBoneTracks;
// set up the Bone Sample Array
ielntl6 i;
m_pBoneSampleArray = ieNewDataArray(BONE_SAMPLES, m_noBoneTracks);
for (i = 0; i < m^noBoneTracks; i++)
{

c :\DarraghBuild\src\CMorphData.cpp 5
m_pBoneSampleArray[i].pRotKeys = ieNewDataArray(ROT_KEY, m_noSamples);
m_pBoneSampleArray[i].pPosKeys = ieNewDataArray(POS_KEY, m_noSamples);

>

// get number of frequency bands
float n = 0.0f;
float base = 2 . Of;
float result = O.Of;
do
{

result = pow(base, n);
n++;

}
while (result <= m_noSamples);
m_noFrequencyBands = static_cast<int>(n) - 2;
// set up the signal array
m_pSignalArray = ieNewDataArray(SIGNAL, (m_noFrequencyBands + 1));
// Make an array in each signal to hold the data for that signal
for (i = 0; i < m_noFrequencyBands; i++)
{

m_pSignalArray[i].SignalBone = ieNewDataArray(SIGNAL_BONE, ra_noBoneTracks);
}

// Make an array in each bone in each signal to hold the euler values for each signal
for (i = 0; i < m_noFrequencyBands; i++)
{

for (int j = 0 ; j < m_noBoneTracks; j++)
{ m_pSignalArray[i].SignalBone[j].pSigEuler = ieNewDataArray(EULER, m_noSamples);

m_pSignalArray[i].SignalBone[j].time = ieNewDataArray(float, m_noSamples);
}

)

// set up the Band Pass Array
m_pBandPassArray = ieNewDataArray(SIGNAL, m_noFrequencyBands);
for(i = 0; i < m_noFrequencyBands; i++)
{

// In each band pass, a track for each bone
m_pBandPassArray[i].SignalBone = ieNewDataArray(SIGNAL_BONE, m_noBoneTracks);

}

for(i = 0; i < m_noFrequencyBands; i++)
{

for (int j = 0 ; j < m_noBoneTracks; j++)
{

// In each bone track, set aside an euler variable for each sample.
m_pBandPassArray[i].SignalBone[j].pSigEuler = ieNewDataArray(EULER, m_noSamples);

c :\DarraghBuild\src\CMorphData.cpp

}
}

} f / enc

m pBandPassArray[i].SignalBone[j].time = ieNewDataArray(
}

namescace lE

6
float, m_noSamples) ;

c :\DarraghBuild\src\bSpline.h
iifnd&ii _BSPLINE_H_
<define _BSPLINE_H_
«include "common.h"
Class bSpline
{
public:

bSpline();
-bSpline () { } ;
i lu.'.'L CoxDeBoor (i 7. k, \ d, ‘fji.cst u) ;
void getBSpline () ;
Void enterControlPoint(MYPOINT a);
MYPOINT getOResult (iflfcat u);
!nt getNoControlPoints () ;

p r i v a t e :
f to a t m_U;
MYPOINT m_First;
MYPOINT m^Second;
std::vector m_Knot;
std:¡vector <MYPOINT> m_ControlPoints;
iiit- m_NoControlPoints ;
;Ul m_D;

};

iendif

c :\DarraghBuild\src\bSpline.cpp 1

♦include "bSpline.h"

/ / / / / / / / / / / / - / / / / / / / / / / / / / ' / / / / / / / / / / / / -
/ /
// BSpline Constructor
// Sets ud an empty Bspline oy settinc the ranqe of influence of each
,// subcurve.
.//

/ / / / / / / / / / / / ■ / ' / / / / ' /

bSpline::bSpline()
{

/'/ we have 4 control points
// therefore, the knot vector u, is of length 4 - a -1- I
I ! d is set to 3, to give C2 cor.tinunity, anc strong local influence
// hence the knot vector, u, is ; 0,1,2,3,4,5, 6

// set the degree of influence each subcurve :ias on the result.
m_D = 3;
m_NoControlPoints = 0;
// initialize knot vector (n + d + 1)
for (int j = 0; j<m_D; j++)
{

m_Knot.push_back(j);
1

m U = 0.Of;

/ / /
/ /
// bSpline::CoxDeBoor
// The recursive function m a Bsplin
// Bspline curve
//

'' i ¡/¡I // / /; /,' i •' >'', ■; / / ' /, ' ' / / / / ' n / / / / ,

’alulates a point on the

' n n n I !: n n * n ■, < / / / / / / /' / / / / / / / / / / / / / / / / / / /

float bSpline:: CoxDeBoor (m t k, m t d, float u)
{

if(d == 1)
{

if ((u >= m_Knot[k]) && (u < m_Knot[k+l]))
return 1.0 f;

}
else

c :\DarraghBuild\src\bSpIine.cpp
{

return G.Of;
}

>

return (((u - m_Knot[k)) * CoxDeBoor(k, d - 1, u)) / (m_Knot[k + d - 1] - m_Knot[k])) +
(((ro_Knot[k + d] - u) * CoxDeBoor(k + 1, d - 1, u)) / (m_Knot[k + d] - m_Knot[k +1]));

)

/
/ /
// bSpline: : getBSpl-ine
// Calculates all the points on a BSpline by calling the CoxDeBoor
// function for every control point.
II
/
vc:-; bSpline: : getBSpline ()

for(rloat u = (:loa:)m_Knot[m_D - 1]; u <= (£loc■)m_Knot[m_NoControlPoints] + 0.2f; u += 0.2f)
{

m_Second.x = O.Of;
in_Second.y = O.Of;
for (in" j = 0; j < m_NoControlPoints; j++)
{

m_Second.x = m_Second.x + m_ControlPoints[j].x * CoxDeBoor(j, m_D, u);
m_Second.y = m_Second.y + m_ContEoiPointstj].y * CoxDeBoorfj, m_D, u);

}

lfiu — 2.Of)
1

m_First.x = m_Second.x;
m_First.y = m Second.y;

}
else
{

m_First.x = m_Second.x;
m_First.y = m_Second.y;

}
}

/
/ /
// bSpline::enterControlPoint

c :\DarraghBuild\src\bSpline.cpp
// Puts a new control point into the ControlPoints Vector before a BSpline
// is calculated.
/ /
/

void bSpline::enterControlPoint(MYPOINT a)
{

m_ControlPoints.push_back(a);
m_NoControlPoints++;
// need to adjust the knot vector -> n + d + 1;
// n = m_NoControlPoints - 1;
// n + d + 1 = m_NoControlPoints - 1 + d + 1
// this gives m NoControlPoints + d
m_Knot.push_back(m_NoControlPoints + m_D - 1);

)

/
/ /
// bSpline::getOResult
// Takes in a U-value and returns a point on the Bspline corresponding to
// that O-value.
/ /
/ /

MYPOINT bSpline::getUResult(float u)
{

MYPOINT pointOnSpline;
pointOnSpline.x = O.Of;
pointOnSpline.y = O.Of;
for (int j = 0; j < m_NoControlPoints; j++)

{
pointOnSpline.x = pointOnSpline.x + m_ControlPoints[j].x * CoxDeBoor(j, m_D, u);
pointOnSpline.y = pointOnSpline.y + m_ControlPoints[j].y * CoxDeBoor(j# m_D, u);

}
return pointOnSpline;

i

/
/ /
// bSpline::getNoControlPoints
// Returns the number of control points for the BSpline.
/ /
/
int bSpline::getNoControlPoints()
{

return m_NoControlPoints;

c :\DarraghBuild\src\bSpline.epp

c :\DarraghBuiid\src\graph.h 1
♦include "CMorphData.h"
“include "common.h"
«include "bSpline.h"
sifndef _GRAPH_H_
♦define _GRAPH_H_
namesoace IE
t
struct PATH
{

bocl north;
bool west;
float cost;
MYPOINT coordinates;
MYPOINT I;
MYPOINT J;
PATH * pNextNode;
PATH * pParent;

f;

enurn DIRECTION
{

diagional = 0,
west,
north

};

class CSederberg
{
public:

CSederberg::CSederberg(CMorphData &, CMorphData &, CMorphData £ result, float morphStartTime, float morphEndTime);
-CSederberg ()
{
J
float
float
float
float
float

float
void
void
float

inputPoints();
maximum(float a, float b);
minimum(float a, float b);
crossProduct(MYPOINT a, MYPOINT b) ;
dotProduct(MYPOINT a, MYPOINT b);

calculateWork(PATH * node);
plotPath ();
insertPathNode(PATH * pPreviousNode, PATH * pNewNode);
stretchingWork(MYPOINT a, MYPOINT b, MYPOINT c, MYPOINT d);

c :\DarraghBuild\src\graph.h
bendingWork2(MYPOINT a, MYPOINT b, MYPOINT c, MYPOINT d, MYPOINT e

PATH * findNode (int x, m t y) ;
MYPOINT average(std::vectcr<MYPOINT> &value);
MYPOINT bSplineEvaluator(std::vector<MYPOINT> Svalue);
bSpline getBSpline(scd::vector<MYPOINT> &value);
voie timeReassignment(CMorphData Sa, CMorphData ¡¡result);
void findOptimalPath ();

ir m_AcrossSize;
ir.- m_DownSize;
MYPOINT *m_pActoss;
MYPOINT *m_pDown;
MYPOINT m_F0 ;
MYPOINT m_Fl;
MYPOINT m_B0;
MYPOINT m_Bl;
MYPOINT m_Q0;
MYPOINT m_Ql;
MYPOINT m_Q2;

float m_dO;
float m_dl;
float m_d2;
:r.- m_NoAcrossPoints ;
-r m_NoDovraPoints;
:: ioa: m_WarpStartTinve;
float m_WarpEndTiii!e;
std::vector<MYPOINT> m_vOptimalPath;
std: : vector<MYPOINT> m_vPathResult;
std::vector<MYPOINT> m_vFunctionVector;
PATH * m_pGridPath;
PATH * m_pGridEnd;
PATH * rr._pNew?athHode ;
MYPOINT m_Output;

};
} // end namespace IE
fendif

, MYPOINT f);

tinclude "graph.h"
#include <ieCore/Memory.h>
tinclude -CieMaths/MathsUtility.h>
namespace IE
{
/ /
II
II CSederberg::CSederberg
// Takes 2 corresponding signals and time warps them so they synchronize as best
// as possible. Takes in 2 CMorphData objects, and places the result in a third
// CMorphData object.
/ /
/ /

CSederberg::CSederberg(CMorphData &a, CMorphData &b, CMorphData Sresult, float morphStartTime, float morphEndTime)
{

// Initialize some member variables
m_WarpStartTime = morphStartTime;
m_WarpEndTime = morphEndTime;
m_NoAcrossPoints = b.m_noSamples;
m_NoDownPoints = a.m_noSamples;
// for each frequency band
for (int i = 0; i < a.m_noFrequencyBands; i++)
{

// for each euler component
for (int XYZ = 0; XYZ < 3; XYZ++)
{

// for each bone
for (int j = 0; j < a.m_noBoneTracks; j++)
{

// make an array of points for across the top of the grid...
m_pAcross = new MYPOINT[m_NoAcrossPoints];
// and down the side of the grid
m_pDown = new MYPOINT[m_NoDownPoints];
// copy one signal to the array across the top of the gird
for (int k = 0; k < a.m_noSamples; k++)
{

i f (XYZ == 0)
{

m_pDown[k].x = a.m_pBandPassArray[i].SignalBone[j].time[k];
m_pDown[k].y = a,m_pBandPassArray[i].SignalBone[j].pSigEuler[k].x;

}
if (XYZ == 1)
{

m_pDown[k].x = a.m_pBandPassArray[i].SignalBone[j].time[k];

c : \DarraghBuild\src\graph. cpp___

c :\DarraghBuild\src\graph.cpp 2

m_pDown[k].y = a.m_pBandPassArray[i].SignalBone[j].pSigEuler[k].y;
}
if (XYZ == 2)
{

m_pDown[k].x = a.m_pBandPassArray[i].SignalBone[j].time[k];
m_pDown[k] .y = a.m_pBandPassArray[i] .SignalBone [j] .pSigEuler[k] .z;

i
}

// and the other to the array down the side of the grid
for (int 1 = 0; 1 < m_KoAcrossPoints; 1++)
{

if (XYZ == 0)
{

m pAcross[1]
m pAcross[1]

}
if (XYZ == 1)
{

m pAcross[1]
m pAcross[1]

}
if (XYZ == 2)
{

m pAcross[1]
m pAcross[1]

}

// start creating the grid here
m_pGridEnd = new PATH;
m_pGridEnd->pNextNode = 0;
// create the first node on the grid
m_pGridPath = new PATH;
m_pGridPath->north = false; // a non binary value;
m_pGridPath->west = false;
m_pGridPath->cost = O.Of;
m_pGridPath->coordinates.x = -1;
m_pGridPath->coordinates.y = -1;
m_pGridPath->pNextNode = m_pGridEnd;
findOptimalPath();
// m_vPathResult holds the merged signals.
// copy the new timewarped signal to the result CMorphData object,
for(int m = 0; m < a.m_noSamples; m++)
{

result.m_pBandPassArray[i].SignalBone[j].time[m] = m_vPathResult[m].x;
i f (XYZ == 0)

c :\DarraghBuild\src\graph.cpp 3
result.m_pBandPassArray[i].SignalBone[j].pSigEuler[m].x = (m_vPathResult[m].y);

}
if(XYZ == 1)
{ result.m_pBandPassArray[i].SignalBone[j].pSigEuler[m].y = (m_vPathResult[m].y);
}
i f (XYZ == 2)
{ result.m_pBandPassArray[i].SignalBone[j].pSigEuler[m].z = (m_vPathResult[m].y);
}

}
// delete the across and down arrays
delete [] m_pAcross;
m_pAcross = 0;
delete[] m_pDown;
m_pDown = 0;
// delete the start and end nodes of the grid
delete m_pGridEnd;
mjoGridEnd = 0;
delete [] m_pNewPathNode;
m_pNewPathNode = 0;
delete m_pGridPath;
m_pGridPath = 0;

}
}

}
// reassign the time values to force the timewarp.
timeReassignment(a, result);

}

/
/ /
// CSederberg::crossProduct
// Takes 2 points and returns their cross product
/ /
/

float CSederberg::crossProduct(MYPOINT a, MYPOINT b)
{

return (a.x * b.y) - (b.x * a.y);
}

/
/ /
// CSederberg::dotProduct
// Takes 2 points and returns their dot product
/ /

c :\DarraghBuild\src\graph.cpp 4
111

float CSederberg::dotProduct(MYPOINT a, MYPOINT b)
{

return (a.x * b.x) + (a.y * b.y);
}

/
/ /
// CSederberg::calculateWork
// Calculates the work at a node on the grid.
/ /
/

float CSederberg::calculateWork(PATH * node)
{

// These weights give a ratio of the 2 cost components - bending and stretching.
// they can be altered to give different timewarping results,
float bendWeight = 5. Of;
float stretchWeight = l.Of;
// firstly, check if the coordinates of the point are 0,0, if so, return 0 for the work,
if((node->coordinates.x == 0) && (node->coordinates.y == 0))
{

return 2.Of;
}

// check both other corners and set their cost to be higher than the nodes north and west of them
i f ((node->coordinates.x == 0) && (node->coordinates.y == (m_NoDownPoints - 1)))
{

PATH * temp;
temp = findNode(0, m_NoDownPoints - 2);
return temp->cost * 1.1;

}

if((node->coordinates.x == (m_NoAcrossPoints - 1)) && (node->coordinates.y “ 0))
{

// should not be able to access this node as it is on the upper right corner,
return node->pParent->cost * 1.1;

>

II if i is 0, point is on the j axis, work is i dimensional
if ((node->coordinates.x == 0) && (node->coordinates.y < (m_NoDownPoints - 1)))
{

// stretching work is between this node and its parent,
if (node->coordinates.y == 1)
{

node->north = true;

c :\DarraghBuild\src\graph.cpp 5
node->west = false;
PATH * stretchingPoint;
stretchingPoint = findNode(0,0);
return (stretchingWork(node->I, node->J, stretchingPoint->I, stretchingPoint->J) * stretchWeight)

+ stretchingPoint->cost;
}
node->north = true;
node->west = false;
PATH * bendingPoint;
PATH * stretchingPoint;
bendingPoint = findNode(0, node->coordinates.y - 2);
stretchingPoint = findNode(0,node->coordinates.y - 1);
return ((stretchingWork(node->I, node->J, stretchingPoint->I, stretchingPoint->J) * stretchWeight) +

(bendingWork2(node->I, stretchingPoint->I, bendingPoint->I, node->J, stretchingPoint->J, bendingPoint->J) * bendWeighttf
)

+ stretchingPoint->cost);//
I

// if j is 0, point is on the i axis, work is 1 dimensional
if ((node->coordinates.y == 0) && (node->coordinates.x < (m_NoAcrossPoints - 1)))
{

// stretching work is between this node and its parent,
if (node->coordinates.x == 1)
{

node->north = false;
node->west = true;
return (stretchingWork(node->I, node->J, node->pParent->I, node->pParent->J) * stretchWeight)

+ node->pParent->cost;
}
node->north = false;
node->west = true;
return (stretchingWork(node->I, node->J, node->pParent->I, node->pParent->J) * stretchWeight) +

(bendingWork2(node->I, node->pParent->I, node->pParent->pParent->I, node->J, node->pParent->J, node->pParent->pParent
->J) * bendWeight)

+ node->pParent->cost ;
}

// if the point is 1,1, there is no bending, only stretching.
i f((node->coordinates.x == 1) && (node->coordinates.y == 1))
{

node->north = true;
node->west = true;
PATH * stretchingPoint;
stretchingPoint = findNode(0,0);
return (stretchingWork(node->I, node->J, stretchingPoint->I, stretchingPoint->J) * stretchWeight)

+ stretchingPoint->cost;
}

c :\DarraghBuild\src\graph.cpp 6
// if the point is (2,2) there is no vertial or horizontal bending
if ((node->coordinates.x == 2) && (node->coordinates.y == 2))
{

PATH * bendingPoint;
PATH * diagionalPoint;
float upDiagional;
float diagionalDiagional;
float acrossDiagional;
bendingPoint = findNode(0,0);
diagionalPoint = findNode(1,1);
upDiagional = (stretchingWork(node->I, node->J, diagionalPoint->pNextNode->I, diagionalPoint->pNextNode->J) * stretchWeight) /

+
(bendingWork2(node->I, diagionalPoint->pNextNode->I, bendingPoint->pNextNode->I, node->J, diagionalPoint->pNextNode->J, /

bendingPoint->pNextNode->J) * bendWeight)
+ diagionalPoint->pNextNode->cost;

diagionalDiagional = (stretchingWork(node->I, node->J, diagionalPoint->I, diagionalPoint->J) * stretchWeight) +
(bendingWork2(node->I, diagionalPoint->I, bendingPoint->I, node->J, diagionalPoint->J, bendingPoint->J) * bendWeight)
+ diagionalPoint->cost;

acrossDiagional = (stretchingWork(node->I, node->J, node->pParent->I, node->pParent->J) * stretchWeight) +
(bendingWork2(node->I, node->pParent->I, diagionalPoint->pParent->I, node->J, node->pParent->J, diagionalPoint->pParent->tf

J) * bendWeight)
+ node->pParent->cost;

float min;
min = upDiagional;
node->north = true;
node->west = false;
if(diagionalDiagional < min)
{

node->north = true;
node->west = true;
min = diagionalDiagional;

}
i f(acrossDiagional < min)
{

node->north = false;
node->west = true;
min = acrossDiagional;

return min;
)

// if the point is (m_NoAcrossPoints, 1) then]ust calculate the diagional
if((node->coordinates.x == m_NoAcrossPoints) && (node->coordinates.y == 1))
{

PATH * pDiagional;

c :\DarraghBuild\src\graph.cpp 7
pDiagional = findNode((int)node->coordinates.x - 1, (int)node->coordinates.y - 1);
node->north = true;
node->west = true;
return (stretchingWork(node->I, node->J, pDiagional->I, pDiagional->J) * stretchWeight) +

(bendingWork2(node->I, pDiagional->I, pDiagional->pParent->I, node->J, pDiagional->J, pDiagional->pParent->J) *
bendWeight)

+ pDiagional->cost;
i

// if the point is (1, m_NoDownPoints) then just calculate the diagional
if ((node->coordinates.x == 1) && (node->coordinates.y == m_NoDownPoints))
{

PATH * pDiagional;
PATH * pBendingPoint;
pDiagional = findNode((int)node->coordinates.x - 1, (int)node->coordinates.y - 1);
pBendingPoint = findNode((int)node->coordinates.x - 1, (int)node->coordinates.y - 2);
node->north = true;
node->west = true;
return (stretchingWork(node->I, node->J, pDiagional->I, pDiagional->J) * stretchWeight) +

(bendingWork2(node->I, pDiagional->I, pBendingPoint->J, node->J, pDiagional->J, pBendingPoint->J) * bendWeight)
+ pDiagional->cost;

*

// if the point is (x,l> the vertial stretching is infinate - don't calculate it
if(node->coordinates.y == 1)
{

float diagionalBack;
float backDiagional;
PATH * bendingPoint;
bendingPoint = findNode((int)node->coordinates.x - 2, (int)node->coordinates.y - 1);
backDiagional = (stretchingWork(node->I, node->J, node->pParent->I, node->pParent->J) * stretchWeight) +

(bendingWork2(node->I, node->pParent->I, bendingPoint->I, node->J, node->pParent->J, bendingPoint->J) * bendWeight)
+ node->pParent->cost;

diagionalBack = (stretchingWork(node->I, node->J, bendingPoint->pNextNode->I, bendingPoint->pNextNode->J) * stretchWeight) +
(bendingWork2(node->I, bendingPoint->pNextNode->I, bendingPoint->I, node->J, bendingPoint->pNextNode->J, bendingPoint->J)

* bendWeight)
+ bendingPoint->pNextNode->cost;

if (diagionalBack < backDiagional)
I

node->north = true;
node->west = true;
return diagionalBack;

}

c :\DarraghBuild\src\graph.cpp 8

else
{

node->north = false;
node->west = true;
return backDiagional;

}
}

//if the point is (l,y) the horizontal stretching is infinate - don't calculate it
i f(node->coordinates.x == 1)
{

float upDiagional;
float diagionalUp;
PATH * bendingPoint;
PATH * upPoint;
PATH * diagionalPoint;
bendingPoint = findNode((int)node->coordinates.x - 1, (int)node->coordinates.y - 2);
upPoint = findNode((int)node->coordinates.x , (int)node->coordinates.y - 1);
diagionalPoint = findNode((int)node->coordinates.x - 1, (int)node->coordinates.y - 1);
upDiagional = (stretchingWork(node->I, node->J, upPoint->I, upPoint->J) * stretchWeight) +

(bendingWork2(node->I, upPoint->I, bendingPoint->I, node->J, upPoint->J, bendingPoint->J) * bendWeight)
+upPoint->cost;

diagionalUp = (stretchingWork(node->I, node->J, diagionalPoint->I, diagionalPoint->J) * stretchWeight) +
(bendingWork2(node->I, diagionalPoint->I, bendingPoint->I, node->J, diagionalPoint->J, bendingPoint->J)
+ diagionalPoint->cost;

if(upDiagional < diagionalUp)
{

node->north = true;
node->west = false;
return upDiagional;

}
else
4

node->north = true;
node->west = true;
return diagionalUp;

}
}

// if the point is (m_NoAcrossPoints, m NoDownPoints)
if((node->coordinates.x == m_NoAcrossPoints) && (node->coordinates.y == m_NoDownPoints))
{

PATH * bendingPoint;
PATH * diagionalPoint;

bendWeight)

c :\DarraghBuild\src\graph.cpp 9

float upUp;
float upDiagional;
float diagionalUp;
float diagionalDiagional;
float diagionalAcross;
float acrossDiagional;
float acrossAcross;
bendingPoint = findNode((int)node->coordinates.x - 1, (int)node->coordinates.y - 2);
diagionalPoint = findNode((int)node->coordinates.x - 1, (int)node->coordinates.y - 1);
upUp = (stretchingWork(node->I, node->J, diagionalPoint->pNextNode->I, diagionalPoint->pNextNode->J) * stretchWeight) +

(bendingWork2(node->I, diagionalPoint->pNextNode->I, bendingPoint->pNextNode->I, node->J, diagionalPoint->pNextNode->J, /
bendingPoint->pNextNode->J) * bendWeight)

+ diagionalPoint->pNextNode->cost;
upDiagional = (stretchingWork(node->I, node->J, diagionalPoint->pNextNode->I, diagionalPoint->pNextNode->J) * stretchWeight /

) +
(bendingWork2(node->I, diagionalPoint->pNextNode->I, bendingPoint->I, node->J, diagionalPoint->pNextNode->J, bendingPoint/

->J) * bendWeight)
+ diagionalPoint->pNextNode->cost;

diagionalUp = (stretchingWork(node->I, node->J, diagionalPoint->I, diagionalPoint->J) * stretchWeight) +
(bendingWork2(node->I, diagionalPoint->I, bendingPoint->I, node->J, diagionalPoint->J, bendingPoint->J) * bendWeight)
+ diagionalPoint->cost;

diagionalDiagional = (stretchingWork(node->I, node->J, diagionalPoint->I, diagionalPoint->J) * stretchWeight) +
(bendingWork2(node->I, diagionalPoint->I, bendingPoint->pParent->I, node->J, diagionalPoint->J, bendingPoint->pParent->J) /

* bendWeight)
+ diagionalPoint->cost;

diagionalAcross =(stretchingWork(node->I, node->J, diagionalPoint->I, diagionalPoint->J) * stretchWeight) +
(bendingWork2(node->I, diagionalPoint->I, diagionalPoint->pParent->I, node->J, diagionalPoint->J, diagionalPoint->pParentZ

->J) * bendWeight)
+ diagionalPoint->cost;

acrossDiagional =(stretchingWork(node->I, node->J, node->pParent->I, node->pParent->J) * stretchWeight) +
(bendingWork2(node->I, node->pParent->I, diagionalPoint->pParent->I, node->J, node->pParent->J, diagionalPoint->pParent->Z

J) * bendWeight)
+ node->pParent->cost ;

acrossAcross = { stretchingWork(node->I, node->J, node->pParent->I, node->pParent->J) * stretchWeight) +
(bendingWork2(node->I, node->pParent->I, node->pParent->pParent->I, node->J, node->pParent->J, node->pParent->pParent->J) \£

* bendWeight)
+ node->pParent->cost ;

float min = upUp;
node->north = zrue;
node->west = false;
i f(upDiagional < min)
{

node->north = true;
node->west = false;
min = upDiagional;

}

c :\DarraghBuild\src\graph.cpp 10
i f (diagionalOp < min)
{

noae->north = true;
node->west = true;
rain = diagionalOp;

}
i f (diagionalDiagional < min)
{

node->north = true;
node->west = true;
min = diagionalDiagional;

}
-:(diagionalAcross < min)
{

node->north = :::e;
node->west = * :
min = diagionalAcross;

}
if(acrossDiagional < min)
{

node->north = raise;
node->west = true;
min = acrossDiagional;

}
if(acrossAcross < min)
{

node->north = false;
node->west = true;
min = acrossAcross;

}
return min;

// if the point is (2, m_MoDownPoants calculate back and diaaional
if({ node->coordinates.x == 2) && (node->coordinates.y == m_NoDownPoints))
{

PATH * bendingPoint;
PATH * diagionalPoint;

float diagionalOp;
float diagionalDiagional;
float diagionalAcross;
float acrossDiagional;

bendingPoint = fi ndN o d e d , m_NoDownPoints - 2);
diagionalPoint => f ind Nod ed, m_NoDownPoints - 1);

diagionalOp = (stretchingWork(node->I, node->J, diagionalPoint->I, diagionalPoint->J) * stretchWeight) +
(bendingWork2(node->I, diagionalPoint->I, bendingPoint->I, node->J, diagionalPoint->J, bendingPoint->J) * bendWeight)

c :\DarraghBuild\src\graph.cpp 11

+ diagionalPoint->cost;
diagionalDiagional = (stretchingWork(node->I, node->J, diagionalPoint->I, diagionalPoint->J) * stretchWeight) +

(bendingWork2(node->I, diagionalPoint->I, bendingPoint->pParent->I, node->J, diagionalPoint->J, bendingPoint->pParent->J)/
* bendWeight)

+ diagionalPoint->cost ;
diagionalAcross = (stretchingWork(node->I, node->J, diagionalPoint->I, diagionalPoint->J) * stretchWeight) +

(bendingWork2(node->I, diagionalPoint->I, diagionalPoint->pParent->I, node->J, diagionalPoint->J, diagionalPoint->pParenttf
->J) * bendWeight)

+ diagionalPoint->cost;
acrossDiagional = (stretchingWork(node->I, node->J, node->pParent->I, node->pParent->J) * stretchWeight) +

(bendingWork2(node->I, node->pParent->I, diagionalPoint->pParent->I, node->J, node->pParent->J, diagionalPoint->pParent->tf
J) * bendWeight)

+ node->pParent->cost;
float min = acrossDiagional;
node->north = false;
node->west = true;
i f(diagionalAcross < min)
{ node->north = true;

node->west = true;
min = diagionalAcross;

}
if(diagionalDiagional < rain)
{

node->north = true;
node->west = true;
min = diagionalDiagional;

}
if(diagionalUp < min)
{

node->north = true;
node->west = true;
min = diagionalUp;

}
return min;

}

// if the point is (X>2, m_NoDownPomts) calculate back and diagional
i f((node->coordinates.x >2) && (node->coordinates.y == m_NoDownPoints))
{

PATH * bendingPoint;
PATH * diagionalPoint;
float diagionalUp;
float diagionalDiagional;
float diagionalAcross;
float acrossDiagional;
float straight;

c :\DarraghBuild\src\graph.cpp 12

bendingPoint = findNode((int)node->coordinates.x - 1,(int)m_NoDownPoints - 2);
diagionalPoint = findNode((int)node->coordinates.x - 1, (mt)m_NoDownPoints - 1);
diagionalUp = (stretchingWork(node->I, node->J, diagionalPoint->I, diagionalPoint->J) * stretchWeight) +

(bendingWork2(node->I, diagionalPoint->I, bendingPoint->I, node->J, diagionalPoint->J, bendingPoint->J) * bendWeight)
+ diagionalPoint->cost;

diagionalDiagional = (stretchingWork(node->I, node->J, diagionalPoint->I, diagionalPoint->J) * stretchWeight) +
(bendingWork2(node->I, diagionalPoint->I, bendingPoint->pParent->I, node->J, diagionalPoint->J, bendingPoint->pParent->J)

* bendWeight)
+ diagionalPoint->cost;

diagionalAcross = (stretchingWork(node->I, node->J, diagionalPoint->I, diagionalPoint->J) * stretchWeight) +
(bendingWork2(node->I, diagionalPoint->I, diagionalPoint->pParent->I, node->J, diagionalPoint->J, diagionalPoint->pParenttf

->J) * bendWeight)
+ diagionalPoint->cost;

acrossDiagional = (stretchingWork(node->I, node->J, node->pParent->I, node->pParent->J) * stretchWeight) +
(bendingWork2(node->I, node->pParent->I, diagionalPoint->pParent->I, node->J, node->pParent->J, diagionalPoint->pParent->tf

J) * bendWeight)
+ node->pParent->cost;

straight = (stretchingWork(node->I, node->J, node->pParent->I, node->pParent->J) * stretchWeight } +
(bendingWork2(node->I, node->pParent->I, node->pParent->pParent->I, node->J, node->pParent->J, node->pParent->pParent->J)

* bendWeight)
+ node->pParent->cost;

float min = acrossDiagional;
node->north = false;
node->west = true;
i f(diagionalAcross < min)
{

node->north = true;
node->west = true;
min = diagionalAcross;

}
if(diagionalDiagional < min)
{

node->north = true;
node->west = true;
min = diagionalDiagional;

}
xf(diagionalUp < min)
{

node->north = true;
node->west = true;
min = diagionalUp;

}
if(straight < min)
{

node->north = false;
node->west = true;

c :\DarraghBuild\src\graph.cpp 13
min = straight;

}
return min;

// if the point is (m_NoAcrossPoints, 2) . . .
if((node->coordinates.x == m_NoAcrossPoints) && (node->coordinates.y == 2))
{

PATH * up;
PATH * bendingPoint;
float upDiagional;
float diagionalUp;
float diagionalDiagional;
float diagionalAcross;
up = findNode(m_NoAcrossPoints, 1);
bendingPoint = (m_NoAcrossPoints - 1, 0);
upDiagional = (stretchingWork(node->I, node->J, up->I, up->J) * stretchWeight) +

(bendingWork2(node->I, up->I, bendingPoint->I, node->J, up->J, bendingPoint->J) * bendWeight)
+ up->cost;

diagionalUp = (stretchingWork(node->I, node->J, up->pParent->I, up->pParent->J) * stretchWeight) +
(bendingWork2(node->I, up->pParent->I, bendingPoint->I, node->J, up->pParent->J, bendingPoint->J) * bendWeight)
+ up->pParent->cost;

diagionalDiagional = (stretchingWork(node->I, node->J, up->pParent->I, up->pParent->J) * stretchWeight) +
(bendingWork2(node->I, up->pParent->I, bendingPoint->pParent->I, node->J, up->pParent->J, bendingPoint->pParent->J)

bendWeight)
+ up->pParent->cost ;

diagionalAcross = (stretchingWork(node->I, node->J, up->pParent->I, up->pParent->J) * stretchWeight) +
(bendingWork2(node->I, up->pParent->I, up->pParent->pParent->I, node->J, up->pParent->J, up->pParent->pParent->J) *

bendWeight)
+ up->pParent->cost;

float min;
min = diagionalAcross;
node->north = true;
node->west = true;
if(diagionalDiagional < min)
{

node->north = true;
node->west = true;
min = diagionalDiagional;

}
if(diagionalOp < min)
{

node->north = true;
node->west = true;
min = diagionalUp;

c :\DarraghBuiId\src\graph.cpp 14

}
if(upDiagional < min)
{

node->north = true;
node->west = false;
min = upDiagional;

}
return min;

}

// if point is (m_NoAcrossPoints, y > 21...
i f(node->coordinates.x == m_NoAcrossPoints)
{

PATH * up;
PATH * bendingPoint;
float upUp;
float upDiagional;
float diagionalOp;
float diagionalDiagional;
float diagionalAcross;
up = findNode(m_NoAcrossPoints, 1);
bendingPoint = (m_NoAcrossPoints - 1, 0);
upDp = (stretchingWork(node->I, node->J, up->I, up->J) * stretchWeight) +

(bendingWork2(node->I, up->I, bendingPoint->pNextNode->I, node->J, up->J, bendingPoint->pNextNode->J) * bendWeight)
+ up->cost;

upDiagional = (stretchingWork(node->I, node->J, up->I, up->J) * stretchWeight) +
(bendingWork2(node->I, up->I, bendingPoint->I, node->J, up->J, bendingPoint->J) * bendWeight)
+ up->cost;

diagionalUp = (stretchingWork(node->I, node->J, up->pParent->I, up->pParent->J) * stretchWeight) +
(bendingWork2(node->I, up->pParent->I, bendingPoint->I, node->J, up->pParent->J, bendingPoint->J) * bendWeight)
+ up->pParent->cost;

diagionalDiagional = (stretchingWork(node->I, node->J, up->pParent->I, up->pParent->J) * stretchWeight) +
(bendingWork2(node->I, up->pParent->I, bendingPoint->pParent->I, node->J, up->pParent->J, bendingPoint->pParent->J) * /

bendWeight)
+ up->pParent->cost;

diagionalAcross = (stretchingWork(node->I, node->J, up->pParent->I, up->pParent->J) * stretchWeight) +
(bendingWork2(node->I, up->pParent->I, up->pParent->pParent->I, node->J, up->pParent->J, up->pParent->pParent->J) *

bendWeight)
+ up->pParent->cost;

float min;
min = upUp;
node->north = true;
node->west = false;
if(diagionalAcross < min)
{

c :\DarraghBuild\src\graph.cpp
node->north = true;
node->west = true;
min = diagionalAcross;

}
if(diagionalDiagional < min 1
{

node->north = true;
node->west = true;
min = diagionalDiagional;

}
if(diagionalDp < min)
{ node->north = true;

node->west = true;
min = diagionalDp;

}
if(upDiagional < min)
{

node->north = true;
node->west = false;
min = upDiagional;

}
return min;

}

// if the point is on the second row (x, 2) there is no vertical stretching
if(node->coordinates.y == 2)
{ PATH * up;

PATH * bendingPoint;
float upDiagional;
float diagionalUp;
float diagionalDiagional;
float diagionalAcross;
float acrossAcross;
up = findNode((int)node->coordinates.x, 1);
bendingPoint = findNode((int)node->coordinates.x - 1, 0);
upDiagional = (stretchingWork(node->I, node->J, up->I, up->J) * stretchWeight) +

(bendingWork2(node->I, up->I, bendingPoint->I, node->J, up->J, bendingPoint->J) * bendWeight)
+ up->cost;

diagionalUp = (stretchingWork(node->I, node->J, up->pParent->I, up->pParent->J) * stretchWeight) +
(bendingWork2(node->I, up->pParent->I, bendingPoint->I, node->J, up->pParent->J, bendingPoint->J) * bendWeight)
+up->pParent->cost;

diagionalDiagional = (stretchingWork(node->I, node->J, up->pParent->I, up->pParent->J) * stretchWeight) +
(bendingWork2(node->I, up->pParent->I, bendingPoint->pParent->I, node->J, up->pParent->J, bendingPoint->pParent->J) *

bendWeight)

c :\DarraghBuild\src\graph.cpp 16
+ up->pParent->cost;

diagionalAcross = (stretchingWork(node->I, node->J, up->pParent->I, up->pParent->J) * stretchWeight) +
(bendingWork2(node->I, up->pParent->I, up->pParent->pParent->I, node->J, up->pParent->J, up->pParent->pParent->J) * /

bendWeight)
+ up->pParent->cost ;

acrossAcross = (stretchingWork(node->I, node->J, node->pParent->I, node->pParent->J) * stretchWeight) +
(bendingWork2(node->I, node->pParent->I, node->pParent->pParent->I, node->J, node->pParent->J, node->pParent->pParent->J)

* bendWeight)
+ node->pParent->cost;

float min;
min = diagionalAcross;
node->north = true;
node->west = true;
if(diagionalDiagional < min)
{

node->north = true;
node->west = true;
min = diagionalDiagional;

}
if(diagionalUp < min)
{

node->north = true;
node->west = true;
min = diagionalUp;

}
if(upDiagional < min)
{

node->north = true;
node->west = false;
min = upDiagional;

}
i f(acrossAcross < min)
{

node->north = false;
node->west = false;
min = acrossAcross;

}
return min;

}

// if the point is on the second column (2,y) there is no horizontal stretching,
i f(node->coordinates.x == 2)
{

PATH * up;
PATH * bendingPoint;
float upUp;
float upDiagional;

c :\DarraghBuild\src\graph.cpp 17
float diagionalDp;
float diagionalDiagional;
float diagionalAcross;
float acrossDiagional;
up = findNode((int)node->coordinates .x, (int)node->coordinates.y - 1);
bendingPoint = findNode((int)node->coordinates.x - 1, (int)node->coordinates.y - 2 };
upUp = (stretchingWork(node->I, node->J, up->I, up->J) * stretchWeight) +

(bendingWork2(node->I, up->I, bendingPoint->pNextNode->I, node->J, up->J, bendingPoint->pNextNode->J) * bendWeight)
+ up->cost;

upDiagional = (stretchingWork(node->I, node->J, up->I, up->J) * stretchWeight) +
(bendingWork2(node->I, up->I, bendingPoint->I, node->J, up->J, bendingPoint->J) * bendWeight)
+ up->cost;

diagionalUp = (stretchingWork(node->I, node->J, up->pParent->I, up->pParent->J) * stretchWeight) +
(bendingWork2(node->I, up->pParent->I, bendingPoint->I, node->J, up->pParent->J, bendingPoint->J) * bendWeight)
+ up->pParent->cost;

diagionalDiagional = (stretchingWork(node->I, node->J, up->pParent->I, up->pParent->J) * stretchWeight) +
(bendingWork2(node->I, up->pParent->I, bendingPoint->pParent->I, node->J, up->pParent->J, bendingPoint->pParent->J) * \£

bendWeight)
+ up->pParent->cost;

diagionalAcross = (stretchingWork(node->I, node->J, up->pParent->I, up->pParent->J) * stretchWeight) +
(bendingWork2(node->I, up->pParent->I, up->pParent->pParent->I, node->J, up->pParent->J, up->pParent->pParent->J) * t/

bendWeight)
+ up->pParent->cost;

acrossDiagional = (stretchingWork(node->I, node->J, node->pParent->I, node->pParent->J) * stretchWeight) +
(bendingWork2(node->I, node->pParent->I, up->pParent->pParent->I, node->J, node->pParent->J, up->pParent->pParent->J) *

bendWeight)
+ node->pParent->cost;

float min;
min = upUp;
node->north = true;
node->west = false;
if (diagionalAcross < rain)
{

node->north = true;
node->west = true;
min = diagionalAcross;

}
i f(diagionalDiagional < min)
{

node->north = true;
node->west = true;
min = diagionalDiagional;

}
i f(diagionalUp < min)
{

node->north = true;

c :\DarraghBuild\src\graph.cpp 18

node->west = true;
min = diagionalUp;

}
if(upDiagional < min)
{

node->north = true;
node->west = false;
min = upDiagional;

}
if(acrossDiagional < min)
{

node->north = false;
node->west = true;
min = acrossDiagional;

}
return min;

PATH * bendingPoint;
PATH * diagionalPoint;
float upUp;
float upDiagional;
float diagionalUp;
float diagionalDiagional;
float diagionalAcross;
float acrossDiagional;
float acrossAcross;
bendingPoint = findNode((int)node->coordinates . x - 1, (int)node->coordinates.y - 2);
diagionalPoint = findNode((int)node->coordinates.x - 1, (int)node->coordinates.y - 1);
upUp = (stretchingWork(node->I, node->J, diagionalPoint->pNextNode->I, diagionalPoint->pNextNode->J) * stretchWeight) +

(bendingWork2(node->I, diagionalPoint->pNextNode->I, bendingPoint->pNextNode->I, node->J, diagionalPoint->pNextNode->J, /
bendingPoint->pNextNode->J) * bendWeight)

+ diagionalPoint->pNextNode->cost ;
upDiagional = (stretchingWork(node->I, node->J, diagionalPoint->pNextNode->I, diagionalPoint->pNextNode->J) * stretchWeight /

) +
(bendingWork2(node->I, diagionalPoint->pNextNode->I, bendingPoint->I, node->J, diagionalPoint->pNextNode->J, bendingPoint/

->J) * bendWeight)
+ diagionalPoint->pNextNode->cost;

diagionalUp = (stretchingWork(node->I, node->J, diagionalPoint->I, diagionalPoint->J) * stretchWeight) +
(bendingWork2(node->I, diagionalPoint->I, bendingPoint->I, node->J, diagionalPoint->J, bendingPoint->J) * bendWeight)
+ diagionalPoint->cost;

diagionalDiagional = (stretchingWork(node->I, node->J, diagionalPoint->I, diagionalPoint->J) * stretchWeight) +
(bendingWork2(node->I, diagionalPoint->I, bendingPoint->pParent->I, node->J, diagionalPoint->J, bendingPoint->pParent->J)/

* bendWeight)
+ diagionalPoint->cost ;

diagionalAcross = (stretchingWork(node->I, node->J, diagionalPoint->I, diagionalPoint->J) * stretchWeight) +

c :\DarraghBuild\src\graph.cpp 19

(bendingWork2(node->I, diagionalPoint->I, diagionalPoint->pParent->I, node->J, diagionalPoint->J, diagionalPoint->pParentZ
->J) * bendWeight)

+ diagionalPoint->cost;
acrossDiagional = (stretchingWork(node->I, node->J, node->pParent->I, node->pParent->J) * stretchWeight) +

(bendingWork2(node->I, node->pParent->I, diagionalPoint->pParent->I, node->J, node->pParent->J, diagionalPoint->pParent->/
J) * bendWeight)

+ node->pParent->cost;
acrossAcross = (stretchingWork(node->I, node->J, node->pParent->I, node->pParent->J) * stretchWeight) +

(bendingWork2(node->I, node->pParent->I, node->pParent->pParent->I, node->J, node->pParent->J, node->pParent->pParent->J) /
* bendWeight)

+ node->pParent->cost;
float min = upDp;
node->north = true;
node->west = false;
if(upDiagional < min)
{

node->north = true;
node->west = false;
min = upDiagional;

}
if(diagionalUp < min)
{

node->north = true;
node->west = true;
min = diagionalUp;

}
if(diagionalDiagional < min)
{

node->north = true;
node->west = true;
min = diagionalDiagional;

}
if(diagionalAcross < min)
{

node->north = true;
node->west = true;
min = diagionalAcross;

}
if(acrossDiagional < min)
{

node->north = false;
node->west = true;
min = acrossDiagional;

}
if(acrossAcross < min)
{

node->north = false;
node->west = true;

c :\DarraghBuild\src\graph.cpp
min = acrossftcross;

)
return min;

}

/
/ /
// CSederberg::stretchingWork
// Takes in 4 points and returns the work required to stretch one line to the other
/ /
/

float CSederberg::stretchingWork(MYPOINT a, MYPOINT b, MYPOINT c, MYPOINT d)
{

const float Cs = 0.5f;
// This is a constant and is used so the bending work doesn't have
// too great a say in the algorithm,
const float Ks = .If;
// the exponential to infer a degree of elasticity into the stretch
const float Es = 1;
float work; // the value to be returned,
float LO;
float LI;
// need to multiply up the y values by about 10,000 otherwise they don't
// have an impact on the length of a segment and the work value comes out
// at almost 0, as both lines will be pretty much the same length,
float average = (a . y + b . y + c . y + d . y) / 4;
int count = 0;
int scale = 1;
int intAverage = (int)average;
_f(average != 0)
i

while (intAverage == 0)
(

average = average * 10;
intAverage = (:nt)average;
count++;

}
}
if (count != 0)
{

scale = pow(10, count);
}

c :\DarraghBuild\src\graph.cpp
a.y = a.y * scale;
b.y = b.y * scale;
c.y = c.y * scale;
d.y = d.y * scale;
LO = sqrt(pow(a.x - c.x, 2) + pow(a.y - c.y, 2));
LI = sqrt(pow(b.x - d.x, 2) + pow(b.y - d.y, 2));
// work function
work = fabs(LO - Ll)/5;
if(work < 0)
{

work = work * - 1;
}
return work;

>

/
/ /
// CSederberg::plotPath
// Keeps making new nodes and calculating their cost.
/ /
/

void CSederberg::plotPath()
{

m_pNewPathNode = new PATH[m_NoDownPoints * m_NoAcrossPoints];
for(int j = 0; j < m_NoDownPoints; j++)
{

for (int i = 0; i < m NoAcrossPoints; i++)
i

m pNewPathNode[! j * m NoAcrossPoints) + i].I.x = m pAcross[i].x ;
m_pNewPathNode[(j * m NoAcrossPoints) + i].I.y = m pAcross[i].y ;
m pNewPathNode[(j * m NoAcrossPoints) + i].J.x = m pDown[j] • x;
m pNewPathNode[(j * m NoAcrossPoints) + i].J.y = m_pDown[j] ■ y;

m pNewPathNode[(j * m_NoAcrossPoints) + i].coordinates.x = (float)i;
m pNewPathNode[(i * m NoAcrossPoints) + i].coordinates.y = (float)j ;
// now insert the new node before the tail
if(((j * m NoAcrossPoints) + i) = o ;
{

m_pGridPath->pNextNode = m_pNewPathNode;
m_pNewPathNode[0].pParent = m_pGridPath;
m_pNewPathNode[0].pNextNode = m_pGridEnd;
m__pGridEnd->pParent = &m_pNewPathNode[0];

}

c :\DarraghBuild\src\graph.cpp 22

else
{

if(((j * m_NoAcrossPoints) + i) == (m_NoDownPoints * m_NoAcrossPoints))
{

m pGridEnd->pPa rent = &m^pNewPathNode[m^NoDownPoints * m NoAcrossPoints];
m pNewPathNode[(j * m NoAcrossPoints) + i]..pParent = &m pNewPathNode[(j * m NoAcrossPoints) + i - 1] ;
m pNewPathNode[(j * m NoAcrossPoints) + i - 1].pNextNode = &m pNewPathNode[(j * m NoAcrossPoints) + i] ;
m pNewPathNode[(j * m NoAcrossPoints) + i] .pNextNode = m pGridEnd;

m pNewPathNode[(j * m NoAcrossPoints) + i].pParent = &m pNewPathNode[(j * m NoAcrossPoints - 1) + i] ;
m pNewPathNode[(j * m^NoAcrossPoints - 1) + i].pNextNode = &m pNewPathNode[(j * m NoAcrossPoints) + i] ;
m pNewPathNode[(j * m NoAcrossPoints) + i].pNextNode = m pGridEnd;
m pGridEnd->pParent = &m pNewPathNode[(j * m NoAcrossPoints) + i];

}
}
m_pGridEnd->pParent->cost = (calculateWork(m_pGridEnd->pParent));

}
}

PATH * currentNode = m_pGridPath->pNextNode;
// if the pNextNode is 0, we have reached the tail node,
while (currentNode->pNextNode != 0)
{

currentNode->cost = currentNode->cost;
gridInfo<<currentNode->cost<<",";
if(currentNode->coordinates.y != currentNode->pNextNode->coordinates.y)
{

gridInfo<<"\n";
}
currentNode = currentNode->pNextNode;

}
gridInfo<<"\n";
// reuse current node,
float cost = O.Of;
PATH * costingNode;
currentNode = m_pGridEnd->pParent;
do
{

// no need to check work values - must go in a certain direction
if((currentNode->coordinates.x == 0) && (currentNode->coordinates.y == 0))
{

/ / at the (0,0) position - do nothing;
}
if(currentNode->coordinates.x == 0)
{

c :\DarraghBuild\src\graph.cpp
// at the side of the grid - force up
currentNode->north = true;
currentNode->west = false;
m_vOptimalPath.push_back(currentNode->coordinates);

}
if(currentNode->coordinates.y == 0)
{

//at the top of the grid - force across
currentNode->north = false;
currentNode->west = true;
m_vOptimalPath.push_back(currentNode->coordinates);

}
if((currentNode->coordinates.x == 1) && (currentNode->coordinates.y == 1))
{

// at position (1,1) - force diagional
currentNode->north = true;
currentNode->west = true;
m_vOptimalPath.push_back(currentNode->coordinates);

}
// must check work values - direction is unset.
if((currentNode->coordinates.x == 1) && (currentNode->coordinates.y == 0))
{

// need to check diagional and up
// diagional
costingNode = findNode(currentNode->coordinates.x - 1, currentNode->coordinates.y - 1);
cost = costingNode->cost;
currentNode->north = true;
currentNode->west = true;
costingNode = findNode(currentNode->coordinates.x, currentNode->coordinates.y - 1);
if(costingNode->cost < cost)
{

currentNode->west = false;
}
m_vOptimalPath.push_back(currentNode->coordinates);

)

if((currentNode->coordinates.x == 0) && (currentNode->coordinates.y == 1))
{

// need to check diagional and side
// diagional
costingNode = findNode(currentNode->coordinates.x - 1, currentNode->coordinates.y - 1);
cost = costingNode->cost;
currentNode->north = true;
currentNode->west = true;
costingNode = findNode(currentNode->coordinates.x — 1, currentNode->coordinates.y);
if(costingNode->cost < cost)
{

//cost = costingNode->cost;
currentNode->north = false;

c :\DarraghBuild\src\graph.cpp 24
}m_vOptimalPath.push_back(currentNode->coordinates);

}
MYPOINT previousPoint;
bool across = true;
bool up = true;
// we need to check if the choice of the next node is restriced by an up or across movement.
// however, if we are just starting, this won't be an issue. The start is detected by looking
// at the next node variable of the current node - this will point to the end node on startup,
if(currentNode->pNextNode == m_pGridEnd)
{

// need to check diagional, side and up
// diagional
costingNode = findNode(currentNode->coordinates.x - 1, currentNode->coordinates.y - 1);
cost = costingNode->cost;
currentNode->north = true;
currentNode->west = true;
//up
costingNode = findNode(currentNode->coordinates.x , currentNode->coordinates.y - 1);
if(costingNode->cost < cost)
{

cost = costingNode->cost;
currentNode->west = false;

}
// side
costingNode = findNode(currentNode->coordinates.x - 1, currentNode->coordinates.y);
if(costingNode->cost < cost)
{

currentNode->north = false;
currentNode->west = true;

}
m_vOptimalPath.push_back(currentNode->coordinates);

}
else
t

i f((currentNode->coordinates.x > 1) && (currentNode->coordinates.y > 1))
t

// before doing anything - check what the previous point was - from this decide if either
// up or across moves are illegal.
previousPoint = m_vOptimalPath[m_vOptimalPath.size() - 1];
// Diagional
if(((previousPoint.x - 1) == currentNode->coordinates.x) && ((previousPoint.y - 1)

.y))
<

across = true;
up = true;

}
if(((previousPoint.x) == currentNode->coordinates.x) && ((previousPoint.y - 1) ==

== currentNode->coordinatesZ

currentNode->coordinates.y)

c :\DarraghBuild\src\graph.cpp 25
{

across = false;
up = true;

}
if(((previousPoint.x - 1) == currentNode->coordinates.x) && ((previous Point.y) == currentNode->coordinates.y) 1/

I
across = true;
up = false;

f:

// need to check diagional, side and up
// diagional
costingNode = findNode(currentNode->coordinates.x - 1, currentNode->coordinates.y - 1);
cost = costingNode->cost;
currentNode->north = true;
currentNode->west = true;
/ / up
if (up == true)
{

costingNode = findNode(currentNode->coordinates . x, currentNode->coordinates . y - 1) ;
if(costingNode->cost < cost)
{

cost = costingNode->cost;
currentNode->west = false;

}
}
// side
if(across == true)
{

costingNode = findNode(currentNode->coordinates.x - 1, currentNode->coordinates.y);
if(costingNode->cost < cost)
{

currentNode->north = false;
currentNode->west = true;

}
}
m_vOptimalPath.push_back(currentNode->coordinates);

}
// if the point has x < 1 or y < 1 it needs to be forced along to the origin,
else
{

if((currentNode->coordinates.x == 1) && (currentNode->coordinates.y > 1))
t

currentNode->north = true;
currentNode->west = false;
m_vOptimalPath.push_back(currentNode->coordinates) ;

}:

c :\DarraghBuild\src\graph.cpp 2

else
{

if ((currentNode->coordinates.x > 1) && (currentNode->coordinates.y == 1))
{

currentNode->north = false;
currentNode->west = true;
m_vOptimalPath.push_back(currentNode->coordinates);

}
}

}
}
// move the currentNode on to the new cheapest node
if((currentNode->north == true) && (currentNode->west == true))
{

currentNode = findNode(currentNode->coordinates.x - 1, currentNode->coordinates.y -1);
}
else
{

if ((currentNode->north == true) && (currentNode->west == false))
{

currentNode = findNode(currentNode->coordinates.x, currentNode->coordinates.y - 1);
}
else
{

if ((currentNode->north == false) && (currentNode->west == true))
(

currentNode = findNode(currentNode->coordinates.x - 1, currentNode->coordinates.y);
}

}
}

}
while ((currentNode->coordinates.x != 0) && (currentNode->coordinates.y != 0));
if((currentNode->coordinates.x == 0) && (currentNode->coordinates.y == 0))
{

// at the (0,0) position - push this point onto the queue
m_vOptimalPath.push_back(currentNode->coordinates);

}
}

/ /
/ /
// CSederberg::insertPathNode
// Handles next node pointers and parent pointers when a new node xs instered.
/ /
/

void CSederberg::insertPathNode(PATH *pPreviousNode, PATH * pNewNode)
{

c :\DarraghBuild\src\graph.cpp 2

PATH * pNextTemp;
PATH * pParentTemp;
pNextTemp = pPreviousNode->pNextNode;
pParentTemp = pPreviousNode;
pPreviousNode->pNextNode = pNewNode;
pNewNode->pNextNode = pNextTemp;
pNewNode->pParent = pParentTemp;
pNextTemp->pParent = pNefaNode;

/ /
/ /
// CSederberg::findNode
// Returns a pointer to the node at (x,y)
/ /

PATH * CSederberg::findNode(int x, int y)
{

return &m_pNewPathNode[(m_NoAcrossPoints * y) + x];
}

/ /
/ /
// CSederberg::findOptimalPath
// Fills a vector array with the optimal path from (0,0) to (m_NoAcrossPoints, m_NoDownPoints)
/ /
/

void CSederberg::findOptimalPath()
{

if(m_vOptimalPath.empty() != true)
{

m_vOptimalPath.clear();
}
if(m_vPathResult.empty() != true)
{

m_vPathResult.clear() ;
}
DIRECTION immediate = diagional;
DIRECTION further = diagional;

// this puts all the points in and gets the best path through them.
plotPath();
// empty the function vector
m_vFunctionVector.clear();

c :\DarraghBuild\src\graph.cpp 2

int size = (int)m_vOptimalPath.size();
MYPOINT result;
int outputPosition = 0;
int pathPosition = 1;
// left moves recordes how many times we move left on the grid, so we know which across point
// to map to a down point in the case of a substution.
int leftMoves = 0;
// similaryly for moving down
int downMoves = 0
bool exit = false
do
{

// clear the function vector
m_vFunctionVector.clear ();
// diagional
MYPOINT diagPointl;
MYPOINT diagPoint2;
diagPointl = m_vOptimalPath[size - 1 - pathPosition];
diagPoint2 = m_vOptimalPath[size - pathPosition];
if((diagPointl.x == diagPoint2.x + 1)

&& (diagPointl.y == diagPoint2.y + 1))
{

// This is where merging the pose and the animation signals occurs
// Currently, it is set to shift the animation about the pose
// A 50/50 blend should be coded here.
// shifting
// get the average value of the down signal
float average = O.Of;
for(int i = 0; i < m_NoDownPoints; i++)
{

average = average + m_pDown[i].y;
}
average = average/m_NoDownPoints;
float shift = m_pAcross[0].y - average;
// next point is on a diagional - straight swap
MYPOINT pointToPush;
pointToPush.x = m_pAcross[(int)m_vOptimalPath[size - pathPosition].x].x ;
//Put in the shift line when mixing a pose with an animation
pointToPush.y = m_pDown[(int)m_vOptimalPath[size - pathPosition].x].y + shift;
m_vPathResult.push_back(pointToPush);

c :\DarraghBuild\src\graph.cpp 2

pathPosition++;

// across
else
{

MYPOINT acrossPointl;
MYPOINT acrossPoint2;
MYPOINT pushingPoint;
acrossPointl = m_vOptimalPath[size - 1 - pathPosition];
acrossPoint2 = m_vOptimalPath[size - pathPosition];
if((acrossPointl.x == acrossPoint2.x + 1)

&& (acrossPointl.y == acrossPoint2.y))
{

// push the point to the averaging vector
pushingPoint = m_pAcross[(int)acrossPoint2.x/*leftMoves*/];
m_vFunctionVector.push_back(pushingPoint);
// while the next point is across as well, push it to the fuction vector
do
{

// push point to function vector
pushingPoint = m_pAcross[(int)m_vOptimalPath[size - 1 - pathPosition].x];
m_vFunctionVector.push_back(pushingPoint);
pathPosition++;
if((size - pathPosition) == 0)
{

exit = true;
}
else
{

if ((m_vOptimalPath[size - 1 - pathPosition].x == m_vOptimalPath[size - pathPosition].x + 1)
&& (m_vOptimalPath[size - 1 - pathPosition].y == m_vOptimalPath[size - pathPosition].y))

{
exit = false;

}
else
{

exit = true;
}

}
} while(exit == false);
exit = false;
result = average(m_vFunctionVector) ;
m_vPathResult.push_back(result);
m_vFunctionVector.clear() ;
pathPosition++;

}
// down

c :\DarraghBuild\src\graph.cpp 3
else
{

bool two0r4 = false;
m_vFunctionVector.clear();
MYPOINT downPointl = m_vOptimalPath[size - 1 - pathPosition];
MYPOINT downPoint2 = m_vOptimalPath[size - pathPosition];

if((downPointl.x == downPoint2.x)
&& (downPointl.y == downPoint2.y + 1))

{ m_vFunctionVector.push_back(m_pAcross[(int)downPoint2.x - 1]);
if ((int)downPoint2.x < m_NoAcrossPoints)
{

m_vFunctionVector.push_back(m_pAcross[(int)downPoint2.x]);
}
else
{

m_vFunctionVector.push_back(m_pAcross[(int)downPoint2.x - 1]);
}
// check that the value is in range
two0r4 = true;
if ((int)downPoint2.x + 1 < m_NoAcrossPoints)
{

m_vFunctionVector.push_back(m_pAcross[(int)downPoint2.x + 1]);
}
else
{

m_vFunctionVector.push_back(m_pAcross[(int)downPoint2.x - 1]);
}

// need to scale up the y values so they aren't considers a straight line
// first, get the average of the points
int count = 0;
int scale = 1;
float average = O.Of;
bool scaledEnough = false;
bool abort = false;
int r;
for(r = 0; r < m_vFunctionVector.size(); ++r)
{

float number = m_vFunctionVector[r].y;
if((number < 0.0000001) && (number > -0.0000001))
{

abort = true;
}

}
if(abort == false)
{

c :\DarraghBuild\src\graph.cpp 31

do
t

for (int q = 0; q < m_vFunctionVector.size 0; q++)
{

average = m_vFunctionVector[q].y * pow(10, count);
if (average > l.OOOOOOf)
{

scaledEnough = true;
}

}
if(scaledEnough == false)
{

count++;
)

}
while (scaledEnough == false) ;

// need to reduce the value of count by 1, as it has been increased once after the
// counting was meant to finish,
if (abort == true)

scale = 0;
else

scale = count;
scale = pow(10.Of,scale);
for(int s = 0; s < m_vFunctionVector.size(); s++)

m_vFunctionVector[s] .y = m_vFunctionVector[s].y * scale;

// this should return a bspline
// figure out how many down moves are carried out
// insert each down move into the bspline and get a value out
// this value goes into the result
bSpline cSpline;
// this gets the bSpline object
// list out the values of the m_vFunction vector - for debugging only
MYPOINT firstSplinePoint = m_vFunctionVector[0];
MYPOINT secondSplinePoint = m__vFunctionVector[1];
MYPOINT thirdSplinePoint = m_vFunctionVector[2];
cSpline = getBSpline(m_vFunctionVector);
int noUps = 1;
float increment = O.Of;
MYPOINT splinePoint;
do
{

c :\DarraghBuild\src\grapn.cpp 32
pathPosition++;
noUps++;
if ((size - pathPosition) == 0)
{

exit = true;
I
else
i

_f((m_vOptimalPath[size - 1 - pathPosition].x == m_vOptimalPath[size - pathPosition].x)
&& (m_vOptimalPath[size - 1 - pathPosition].y = m_vOptimalPath[size - pathPosition].y + 1))

{
exit = false;

)
else
{

exit = true;
}

)

} while(exit == false);
exit = false;
// noUps has the number of up moves.
// this should be divided into 3
increment = 3/(float)noUps;
II previous x/time value - this is needed as the spline function returns values between
II 0 and 3. This will mess up the time of the samples, so they need to be offset by
// the time of the sample before the b spline occurs.
// This time should be set to the value that was last pushed to the result vector.
int previousTimeSize = m_vPathResult.size();
zlzi- previousTime = m_vPathResult[previousTimeSize - l].x;
rlcs- functionVectorSize = m_vFunctionVector.size();
// take values from the spline here
float UValue = 2.Of;
// the number of points is one less than the number of up moves because
// the first point in the up moves is a diagional move from the previous point
// and as such, is treated as a diagional move,
int numberOfOutputPoints = noUps ;
if (two0r4 == true)
[

// subtract 2 from the number of elements in the function vector
numberOfOutputPoints;
increment = l.Of • fur.ct. nr.Ve ̂ torSizf-• / (numberOfOutputPoints + 1);

>
else
{

c :\DarraghBuild\src\graph.cpp 33
// subtract 4 from the number of elements in the function vector
numberOfOutputPoints;
increment = functionVectorSize / (numberOfOutputPoints + 1);

}
twoOr4 = false;
int pointsOutput = 0;
while (pointsOutput != numberOfOutputPoints)
{

splinePoint = cSpline.getOResult(UValue);
// undo the scale
splinePoint.y = splinePoint.y / scale;
// debug variables
float endTime = m_vFunctionVector[m_vFunctionVector.size() - l].x;
float startTime = m^vFunctionVector[2].x;

// end debug variables
m_vPathResult.push_back(splinePoint);
pointsOutput++;
DValue = UValue + increment;

)
)
pathPosition++;

)
}

}
while (pathPosition < size - 1);
// push a straight average of the last 2 points.
MYPOINT lastResultPoint;
// The time of the last point will be the same as the time of one of the last samples
// The rotation of the last point will be an average of the 2 last samples.
lastResultPoint.x = m_pAcross[m_NoAcrossPoints -l].x;
lastResultPoint.y = (m_pAcross[m_NoAcrossPoints - l].y + m_pDown[m_NoDownPoints - l].y) / 2;
// The range of values in m_vPathResult needs to be 0-31, but its 0-30, so taking an average between point 29,
// and the value destined for 30, and putting that in 30 and the point for 30 in 31.
int pathsize = m_vPathResult.size() ;
float x = m_vPathResult[pathsize-1].x;
float y = m_vPathResult[pathsize-1].y;
MYPOINT average;
// x holds the time of the second last sample,
average.x = x;
average.y = (y + lastResultPoint.y) / 2;
m_vPathResult.push_back(average);
m_vPathResuit.push_back(lastResultPoint);
int PathResultSize = m_vPathResult.size();
m_vOptimalPath.clear() ;

c :\DarraghBuild\src\grap&-cpp
/ /
11
// CSederberg::average
// Takes in a vector of numbers, and returns the average of the numbers
/ /
/ /

MYPOINT CSederberg:¡average(std::vector<MYPOINT> Svalue)
t

int. i = (int) value. size () ;
float sumX = O.Of;
float sumY = O.Of;
for(mt j = 0; j < i; j++)
t

sumX = sumX + value[j].x;
sumY = sumY + value[j].y;

)
MYPOINT mean;
mean.x = sumX/i;
mean.y = sumY/i;
return mean;

>

/
/ /
// CSederberg::bSplineEvaluator
II Takes in a vector of numbers and forms a bSpline from them.
// Returns the center of the Spline.
/ /
/

MYPOINT CSederberg: .-bSplineEvaluator (std: : vector<MYPOINT> &value)
{

bSpline cSpline;
II get the size of the vector
int i = (int)value.size();
// iterate through the value vector passing each point into a bspline object,
fort int j = 0 ; j < i; j++)
{

cSpline.enterControlPoint(value[j]) ;
}
return cSpline.getUResult((float) (i+l)/2);

}

/
/ /

c :\DarraghBuild\src\graph.cpp
// CSederberg::getBSpline
// Takes in a vector of numbers and retuns a bSpline from them.
/ /
/

bSpline CSederberg::get3Spline(std::vector<MYPOINT> svalue)
{ bSpline cSpline;

// get the size of the vector
int i = (int)value.size();
// iterate through the value vector passing each point into a bspline object,
for (int j = 0; j < i; j++)
{

cSpline.enterControlPoint(value[j]);
}
return cSpline;

Î

/ /
/ /
// CSederberg::bendingWork2
// Takes in 6 points, to form 2, 2 semgent lines. Gets the difference in angles
// between the 2 lines.
/ /
/

float CSederberg::bendingWork2(MYPOINT a, MYPOINT b, MYPOINT c, MYPOINT d, MYPOINT e, MYPOINT
{

II check if one point is a local minimum, and if the other is a local maximum
// if this is the case, one of the angles needs to be inverted before getting
// the cos as per the paper
bool invert = false ;
bool firstmax = false;
bool firstmin = false;
bool secondmax = false;
bool secondmin = false;
if((b.y > a.y) && (b.y > c.y))
{

firstmax = true;
}
else
{

if ((b.y < a.y) && (b.y < c.y))
{

firstmin = true;
Ì

c :\DarraghBuild\src\graph.cpp
}

i t ((e.y > d.y) & & (e.y > f.y))
I

secondmax = ::_e;
)
else
{

if ((e.y < d.y) && (e.y < f.y))
E

secondmin — :rue;
}

}

if ((firstmax ==) && (secondmin == t n e))
{

invert = -rue;
)
else
1

i: ((firstmin ==) && (secondmax true))
{

invert = true;
}
else
{

invert = Eslss;
}

)

float average = (a . y + b . y + c . y + d . y + e . y + f . y) / 6;
iti count = 0;
int. scale = 1;
m t intAverage = (m t) average ;

if(average != 0)
{

v (intAverage == 0)
{

average = average * 10;
intAverage = (i.i :) average ;
count++;

}
)
i f (count != 0)
{

scale = pow(10, count);
)

c :\DarraghBulld\src\graph.cpp
// scale up the y values by 100000 as they are too small
// when compared to the time between samples
//int scale = 10000;
a.y = a.y * scale;
b.y = b.y * scale;
c.y = c.y * scale;
d.y = d.y * scale;
e.y = e.y * scale;
f.y = f.y * scale;
// take the first 3 points, centre them at [0,0]
a.x = a.x - b.x;
a.y = (a.y - b . y) ;
c.x = c.x - b.x;
c.y = { c.y - b.y);

b.x = O.Of;
b.y = O.Of;

float hypOne = sqrt((a.x * a.x) + (a . y * a.y));
float cosOne;
floa~ sinOne;
float firstAngle;
MYPOINT anglePoint;
// if the hyp is 0, a is at the origin. Assume its on the posivite x axis giving
// cos = I and sin = 0.
.f (FloatAlmostEquals(hypOne, O.Of))
{

cosOne = I.Of;
sinOne = O.Of;
firstAngle ■* 3.1415920f;

J
else
!

cosOne = a.x/hypOne;
sinOne = a.y/hypOne;

// anglePoint holds c after it has been rotated to refelect a being lined up with the
anglePoint.x = (cosOne * c.x) + (sinOne * c.y);
anglePoint.y = (-sinOne * c.x) + (cosOne * c.y);

// FloatAlmostEquals(0.f, O.f);
// If the point lies on the y axis (x == 0) then the angle is 90 degrees.
// this would be a divid by 0 - giving infinity, the atan of which is 90.
if(FloatAlmostEquals(anglePoint.x, O.Of))

axis.

c :\DarraghBuild\src\graph.cpp 3
4

i f (FloatAlmostEquals(anglePoint.y, 0.Of))
{

firstAngle = 3.1415920f,- // 180 degrees
}
else
{

if(anglePoint.y > 0)
{

firstAngle = 1.7123889f; // 90 degrees in radians.
}
else
{

firstAngle = 4.712388f; // y is negative, 270 degreese.
}

}
}
// point is not on the x axis, there will be no divide by 0.
// need to suss out what quadrant the point is in.
// first quadrant
else
{

if((anglePoint.x > 0) && (anglePoint.y >= 0))
{

firstAngle = atan(anglePoint.y / anglePoint.x);
)
else
I

II second quadrant
if((anglePoint.x < 0) && (anglePoint.y >= 0))
{

firstAngle = atan(anglePoint.y / anglePoint.x) + 3.1415920f;
}
else
{

// third quadrant
if((anglePoint.x < 0) && (anglePoint.y < 0))
{

firstAngle = atan(anglePoint.y / anglePoint.x) + 3.1415920f;
}
// forth quadrant
else
{

firstAngle = 6.2831853f - (atan(anglePoint.y / anglePoint.x));
Í

c :\DarraghBuild\src\graph.cpp 39
d.x = d.x - e.x;
d . y = (d . y - e.y);
f.x = f.x - e.x;
f.y = (f.y - e.y);
e.x = 0.0 f;
e . y = O.Of;
float hypTwo = sqrt((d.x * d.x) + (d.y * d.y));
float cosTwo;
float sinTwo;
// if the hyp is 0, a is at the origin. Assume its on the posivite x axis giving
// cos = 1 and sin = 0.
float secondAngle = O.Of;
if(FloatAlmostEquals(hypTwo, O.Of))
{

cosTwo = l.Of;
sinTwo = O.Of;
secondAngle = 3.1415920f;

}
else
{

cosTwo = d.x/hypTwo;
sinTwo = d.y/hypTwo;

// anglePoint holds f after it has been rotated to refelect d being lined up with the
anglePoint.x = (cosTwo * f.x) + (sinTwo * f.y);
anglePoint.y = (-sinTwo * f.x) + (cosTwo * f.y);
// If the point lies on the y axis (x == 0) then the angle is 90 degrees.
// this would be a divid by 0 - giving infinity, the atan of which is 90.
if(FloatAlmostEquals(anglePoint.x, O.Of))
{

if(FloatAlmostEquals(anglePoint.y, O.Of))
{

secondAngle = 3.1415920f; // 180 degrees
}
else
{

if (anglePoint.y > 0)
{

secondAngle = 1.5707963f; // 90 degrees in radians.
}else
{

secondAngle = 4.7123889f; // y is negative, 270 degreese.

axis .

c :\DarraghBuild\src\graph.cpp 4
}

}
}
// point is not on the x axis, there will be no divide by 0.
// need to suss out what quadrant the point is in.
// first quadrant
else
Í

iff (anglePoint.x > 0) && (anglePoint.y >= 0))
{

secondAngle = atan(anglePoint.y / anglePoint.x);
}
else
{

// second quadrant
iff (anglePoint.x < 0) & & (anglePoint.y >= 0))
{

secondAngle = atan (anglePoint.y / anglePoint.x) +
}
else
1

// third quadrant
(anglePoint.x < 0) && (anglePoint.y < 0))

{
secondAngle = atan (anglePoint.y / anglePoint.x

}
// forth quadrant
else
{

secondAngle = 6.2831853Í - (atan(anglePoint.y
}

i
)

}
)
//neaatate second angle on invert beir.c true.
if(invert == true)
{

secondAngle = secondAngle * -1;
Í

float kb = 0.5f;
float eb = l.Of;
float bendingCost = kb * pow(fabs(firstAngle - secondAngle), eb)
i f(bendingCost < 0)
Í

bendingCost = bendingCost * -1;
1
returr bendingCost;

3.141592 Of;

) + 3.141592Of;

/ anglePoint.x));

c :\DarraghBuild\src\graph.cpp 41

}

/ /
/ /
// CSederberg::timeReassignment
// Maps the points m the signal from the time warping to the times created in the
// timewarping.
/

void CSederberg::timeReassignment(CMorphData &a, CMorphData Sresult)
{

for (in® i = 0; i < a.m noFrequencyBands; i++)
I

for (int j = 0 ; j < a.m noBoneTracks; j++)
{

■foi (i r . z k = 0; k < a . m_noSamples; k++)
{

result.m_pBandPassArray[i] .SignalBone[j] .time[k] » a .m_pBandPassArray[i] .SignalBone[j] .time[k] ;
}

}
I

}
} // end namespace IE

c :\DarraghBuild\src\CMWApp.h 1
// Confidential Information of Tore Interactive Limited. This software contains code, techniques and know-how
// which is confidential and proprietary to Tore. Not for disclosure or distribution without prior written consent.
// All Rights Reserved. Use of this software is subject to the terms of an end user license agreement.
// Instinct Engine (C) Copyright 2002/2005 Tore Interactive Limited.
fifndef
fdefine

_CMWAPP_H_
CMWAPP H

#include <ieCore/Application.h>
finclude <ieCore/System.h>
finclude <ieCore/IDiagnostics.h>
finclude <ieCore/Utils/CEntityComponentRef.h>
finclude <ieGraphics/IGraphics.h>
finclude cielnput/IInputManager.h>
finclude <ieSound/IChannelManager.h>
finclude <ieConsole/IConsole.h>
finclude cieModels/IBones.h>
••■include <ieModels/IAnimation.h>
#include CieMaths/Quaternion.h>
»inc.uce <ieMaths/Vector.h>
finclude "CWarping.h"
namesoace IE
{

criasi CMWApp : public Input::IlnputEventHandler,
public Models::IBonesController

{
public:

CMWApp()
: m_pGraphics (0),

m_plnput{0),
m_pSoundChannelMgr(0),
m_pConsole (0),
m_NumBones(0),
m_pRotations (0),
m_pPositions (0),
m_pBinding(0),
m_pTimer(0)

{>

ieResult update();
ieResult init ();
ieResult shutdown();

c :\DarraghBuild\src\CMWApp.h

private:
ieResult initEntityManager(IEntityManager * pEntMgr);
ieResult updateAnimations(float Time);
ieResult writeTextO;

ieResult Examplel();
ieResult MotionWarpUpdate();
//Input functions
ieResult handlelnputEvent(ieConstStr szType,

const IEvent * pEvent);

bool getKey(int key);
//IBonesController
virtual ieResult registeredController(Models::IBones* pBones);
virtual ieResult unregisteredController(Models::IBones* pBones);
virtual ieResult updateController(Models::IBones* pBones);
virtual ieConstStr getControllerName() (return ieS("CMWApp");}

//IBonesListener
virtual ieResult handleBonesStructureChange(Models::IBones* pBones)
virtual ieResult handleBonesChange(Models::IBones* pBones);
virtual ieResult handleBonesShutdown(Models::IBones* pBones);
Graphics :: IGraphics * m_jpGraphics ;
Input::IInputManager * m_plnput;
Sound::IChannelManager * m^pSoundChannelMgr;
Console::IConsole * m_pConsole;
IDiagnostics * m_pDiagnostics;
CEntityComponentRef<Graphics::ISceneVisibility> m_SceneVis;
IEntityManager * m_pEntityMgr;
CEntityComponentRef<Models::IAnimation> m_AnimWalk;
CEntityComponentRef<Models::IAnimation> m__AnimPose;
CEntityComponentRef<Models::IBones> m__Bones;
ieUIntl6 m_NumBones;
VECTOR* m_pPositions;
QUATERNION* m_pRotations;
const ielnt!6* m_pBinding;

c :\DarraghBuild\src\CMWApp.h
ITimer *
CWarping

};

} - eric namespace IE

ler.dif // CMWAPP H

m_pTimer;
m_Warping;

3

c :\DarraghBuild\src\CMWApp.cpp
//===
// Inclu
//======
finclude
finclude
finclude
finclude
finclude
finclude
include
finclude
finclude
finclude
finclude
finclude
finclude
finclude
finclude
finclude
finclude
finclude
finclude
finclude
finclude

des
<ieCore/IFileManager.h>
<ieCore/Time.h>
<ieCore/Utils/CPackage.h>
<ieGraphies/ComponentIDs. h>
<ieGraphics/ISetup.h>
<ieGraphies/IDisplay.h>
<ieGraphics/IScene.h>
<ieGraphics/ILight.h>
<ieGraphics/IMaterial.h>
<ieGraphics/IDebug.h>
<ieGraphics/ITexture.h>
•CieGraphics/ScriptValueTypes . h>
<ieGraphics_DX9/ISetup_DX9.h>
<iePhysics/IEnvironment.h>
<ieMaths/Mathsütility.h>
<ieCore/Log.h>
<ieCore/Utils/CEntityRef.h>
CieCore/Utils/CEntityComponentRef.h>
<ieInput/ICommandMapper.h>
<ieCore/IUpdateSet.h>
<ieCore/IResourceManager.h>

finclude "CMWApp.h"
finclude "common.h"
namespace IE
{

ieResult CMWApp::init()
{

IE_TRACE
ieResult ier;
if (Failed(ier = GetComponentlnstance(Graphics::CID_GRAPHICS, Graphics::IID_GRAPHICS, (void**)&m_pGraphics)))
{

return ier;
}

// draw loading screen
Graphics::ISetup_DX9 * p_setup;
if (Succeeded(m_pGraphics->getSetup()->getlnterface(Graphics : :IID_SETUP_DX9, (void**)&p_setup)))
{

if (IDirect3DDevice9 * p_d3d_device = p_setup->getDirect3DDevice ())
{

Graphics::ITexture * p_texture;

c :\DarraghBuild\src\CMWApp.epp 2

_ r (Succeeded(m_pGraphics->getTextureManager()->loadTexture(ieS("core/textures/LoadingScreen"), Graphics : :
TEXTURE_FLAG_NO_MIPMAP, &p_texture)))

{
p_texture->activate(0) ;
struct VERTEX
{

float x;
float y;
fioat z;
float rhw;
fioat u;
float v;

float z = 0.5f;
float r'nw = l.Of;
ielnt8 adapter;
ielntl6 mode;
i: (Failed(ier = m_pGraphics->getSetup()->getActiveAdapterAndMode(Sadapter, «.mode)))
{

return ier;
}
IE::Graphics::ADAPTER_MODE info;
if (Failed(ier = m_pGraphics->getSetup()->getAdapterAndModeInfo(adapter, mode, Sinfo)))

return ier;
}
float w = info.width;
float h = info.height;
VERTEX verts [] =
{

0, 0, z, rhw, 0, 0,
w, 0, z, rhw, 1, 0,
w, h, z, rhw, 1, 1,
0, h, z, rhw, 0, 1

};

WORD indices[] =
{

0, 1, 2,
0, 2, 3

};

p_d3d_device->SetVertexShader(NULL);
p_d3d_device->SetPixelShader(NULL);
p_d3d_device->SetFVF(D3DFVF_XYZRKW | D3DFVF_TEX1 I D3DFVF_TEXCOORDSIZE2(0));

c :\DarraghBuild\src\CMWApp.cpp

m_pGraphics->getDisplay()->beginScene();
m_pGraphics->getDisplay()->clear(0, Graphics::RGB_RED, Graphics::CLEAR_TARGET | Graphics::CLEAR_ZBUFFER | Graphics::

CLEAR_STENCIL);
p_d3d_device->DrawIndexedPrimitiveUP(D3DPT_TRIANGLELIST,

0,
4,
2,
indices,
D3DFMT_INDEX16,
verts,
sizeof(VERTEX));

tn_pGraphics->getDisplay()->endScene();
m_pGraohics->getDiSDlay{)->present() ;

>
}

}

ieConstStr sz_autoexec = GetSystemConfigVal(ieS("Core.autoexec"));
if (sz_autoexec)
{

ExecuteCommandFile(sz_autoexec);
)

f (Failed (ier = GetCoraponentlnstance (xeS ("Diagnostics") ,
IID_DIAGNOSTICS,
(void**)&m_pDiagnostics)))

{
return ier;

}

i/ initialize input
.f (Failed(ier = GetComponentlnstance(ieS("Input"),

Input::IID_INPUT_MANAGER,
(void**)&m_plnput)))

{
return ier;

)
m_pInput->registerEventF.andler(s:5-::_cas-<Input : :IInputEventHandler*>(this));
i: (Failed(ier = GetComponentlnstance(ieS("Console"),

Console::IID_C0NS0LE,
(void**)Sm_pConsole)))

return ier;
}

m_pConsole->setActive(false) ;

c :\DarraghBuild\src\CMWApp.cpp
// Initialize sound
if (Failed(ier = GetComponentlnstance(ieS("SoundChannelManager") ,

Sound::IID_CHANNEL_MANAGER,
(void**)&m_pSoundChannelMgr)))

{ return ier;
1

m_pSoundChannelMgr->reset();
if (Failed(ier = m_SceneVis.acquire(GetActiveEntityManager(),

ieS("SceneVis"),
Graphics::CID_SCENE_VISIBILITY,
Graphics::IID_SCENE_VISIBILITY)))

{
//...has a valid .entities file been loaded? Should we print out a warning / debug message?
IE_L0G1(LOGTYPE_WARNING, ieS ("Unable to acquire SceneVis from EntityManager. Has the correct .entities file been specified?")

return ier;
}

// Test file searching
IResourceManager * p_resource_mgr;
if (Succeeded(GetComponentlnstance(ieS("ResourceManager") ,

IID_RESOURCE_MANAGER,
(void**)&p resource^mgr)))

t
FIND_FILE_HANDLE h_find;
FILE_INFO * p_info = p_resource_mgr->findFile(true, ieS("*.template"), ieS("templates"), ieS("*.svn"), &h_find);
if (p_info)
i

while (p_info)
{

IE_L0G2(LOGTYPE_DEBUG, ieS("Found file: "), p_info->szName);
p_info = p_resource_mgr->findNextFile(h_find);

}

p_resource_mgr->endFindFile(h_find);

}
/ / = „ ™ = = = ™ =

// Create stick entity instance
//=============!==============I=======t,=======:e===================================

GetEntityManager(0, &m_pEntityMgr);
CEntityRef stick_man;

c :\DarraghBuild\src\CMWApp.cpp 5

//Create a stickman from the core/stickman template
if (Failed(ier = stick_man.create(m_pEntityMgr, ieS("FirstStickMan"), ieS("core/StickMan"))))
{

return ier;
}

//Grab helper classes
if (Failed(m_AnimWalk.acquire(m_pEntityMgr, ieS("FirstStickMan.Animationl"), Models::IID_ANIMATION)})
{

return IE_F_ERROR;
}

if (Failed(m_AnimPose.acquire(m_pEntityMgr, ieS("FirstStickMan.Animation2"), Models::IID_ANIMATION)))
<

return IE_F_ERROR;
}

//Grab bones data
if (Failed(m_Bones.acquire(m_pEntityMgr, ieS("FirstStickMan.Bones"), Models::IID_BONES)))
{

return IE^F_ERROR;
}

if (Failed(m_Bones->registerController(this, 10)))
return IE_F_ERR0R;

i

//Init the warping object with the source and target animation
m_Warping.init(m_AnimWalk, m_AnimPose);
return ier;

}

//One to one mapping between bones and animation.
//Note, in all cases bones contain one extra bone, the "origin" (used for moving the
//entire skeleton). This is assigned index 0. When applying animations with a one to one
//mapping, it is necessary to "shift" up one index value to accommodate this.
ieResult CMWApp::Examplel()
{

: r.- operation;
operation = 9;
ieUIntl6 i;
for (i = 1; i < m_NumBones; ++i)

c :\DarraghBuild\src\CMWApp.cpp 6

switch { operation)
{
case 1:
// To view the walk animation:

m_AnimWalk->getPosition(i-1, &m_pPositions[i]);
m_AnimWalk->getRotation(i-1, &m_pRotations[i]);
break;

case 2:
// To view the sampled animation

m_AnimWalk->getPosition(i-1, &m_pPositions[i]);
m_Warping.getRotation(i-1, &m_pRotations[i], m_Warping.getTime());
break;

case 3:
// To view the pass band animation

m_AnimWalk->getPosition(i-1, &m_pPositions[i]);
m_Warping.getPassBandRotation(i-1, &m_pRotations[i], m_Warping.getTime());
break;

case 4:
// To view a strand of the low pass

m_AnimWalk->getPosition(i-1, &m_pPositions[i]);
m_Warping.getLowPassRotation(i-1, m_pRotations[i], 3/*Low pass band*/, m_Warping.getTime());
break;

case 5:
/ / T o view the pose

m_AnimPose->getPosition(i-1, &m_pPositions[i]);
m_AnimPose->getRotation(i-1, &m_pRotations[i]);
break;

case 6:
/ / T o view the time warped animation

m_AnimWalk->getPosition(i-1, &m_pPositions[i]);
if((m_AnimWalk->getTime() >=2.Of) && (m_AnimWalk->getTime() <= 6.Of))
{

iti_Warping. getMorphedRotation (i-1, &m_pRotations [i] , m_Warping. getTime ()) ;
}
else
{

m_AnimWalk->getRotation(i-1, &m_pRotations[i]);
}
break;

case 7:
// to view the warped animation blended with the walk animation

m_AnimWalk->getPosition(i-1, &m_pPositions[i]);

c :\DarraghBuild\src\CMWApp.cpp 7
if((m_AnimWalk->getLocalTime() >=2.Of) && (m_AnimWalk->getLocalTime() <= 6.Of))
{ m_Warping.getBlendedWarpRotation(i—1, m_pRotations[i], m_AnimWalk->getLocalTime());
}
else
{ m_AnimWalk->getRotation(i-1, &m_pRotations[i]);
}
break;

}
}

//If the bones after all operations are in local space, then multiply their matrices
//into world space.
m_Bones->multiplyBonesUsingParents ();

return IE_S_OK;
}

//Setting bone position and rotation via a mapping between the bones and animation.
//This is more flexible than one to one mapping, but also slightly more expensive.

ieResult CMWApp::MotionWarpUpdate()
{

ieUIntl6 i;
for (i = 1; i < m_NumBones; ++i)
{

m_Warping.getPosition(i-1, &m_pPositions[i], m_Warping.getTime());
m_Warping.getRotation(i-1, &m_pRotations[i], m_Warping.getTime());

}

//If the bones after all operations are in local space, then multiply their matrices
//into world space.
m_Bones->multiplyBonesUsingParents();
return IE S OK;

)

//IBonesControiler
ieResult CMWApp::registeredController(Models::IBones* pBones)
{

//Same as bones changed
return handleBonesChange(pBones);

}

c :\Darragh3uild\src\CMWApp.cpp

ieResult CMWApp: :unregisteredController(Models: :IBones* pBones)
{

//Same as bones shutdown
return handleBonesShutdown(pBones);

}

ieResult CMWApp::updateController(Models::XBones* pBones)
{

//Set absolute times
m_AnimWalk->setTLme(m_pTimer->getTimeSeconds());
//m_Warping.setTime(m_Warping.getTimeii * 0.04f, m_AnimWalk) ;
m_Warping.setTime(m_AnimWalk->getLocalTime{), m_AnimWalk);
Examplel();
return IE_S_OK;

}

ieResult CMWApp::handleBonesStructureChange(Models::IBones* pBones)
{

//Same as bones change
return handleBonesChange (pBones) ;

}

ieResult CMWApp::handleBonesChange(Models::IBones* pBones)
{

//Get bones memory
_ f (Failed(m_Bones->getBonePositions(&m_pPositions)))
{

returr. IE_F_ERROR;
}
;f (Failed(m_Bones->getBoneRotations(&m_pRotations)))
{

returr. IE_F_ERROR;
)

//Store number of bones
m_NumBones = m_Bones->getNumBones();
//Set root bone tc origin
m_pPositions[0] = O.Of;
m_pRotations[0] .identity();
//Get the model manager
Models::IModels * p_models;

(Failed(GetComponentlnstance(Models::CID_MODELS,
Models::IID_MODELS,
(void**)&p_models)))

8

c :\DarraghBuild\src\CMWApp.epp 9

{
return IE_F_ERROR;

)
//Grab a binding from the walk animation tc the bones
Models::HSTRING_ARRAY_ID bones_hstring_array = Models::INVALID_HSTRING_ARRAY_ID;
m_Bones->getStringHandleArray(&bones_hstring_array);
Models::HSTRING_ARRAY_ID anim_hstring_array = Models::INVALID_HSTRING_ARRAY_ID;
m_AnimWalk->getStringHandleArray(&anim_hstring_array);
if (Failed(p_models->getStringHandleArrayBinding(bones_hstring_array,

anim_hstring_array,
0,
&m_pBinding)))

{
return IE_F_ERROR;

}
return IE S OK;

ieResult CMWApp::handleBonesShutdown(Models : :IBones* pBones)
{

m_pBinding = 0;
m_NumBones = 0;
m_pRotations = 0;
m_pPositions = 0;
return IE S OK;

ieResult CMWApp::initEntityManager(IEntityManager * pEntMgr)
{ CEntityComponentRef<IUpdateSetController> update_controller;

if (Failed(update_controller.acquire(pEntMgr, ieS("Update"), ieS("Controller"),
{

return IE_F_ERROR;
}
CEntityComponentRef<IUpdateSetController> preview_controller;
if (Failed(preview_controller.acquire(pEntMgr, ieS("Preview"), ieS("Controller"
{

return IE_F_ERROR;

m_pTimer = update_controller->getTimer();
ITimer * p_preview_timer = preview_controller->getTimer();
m_pTimer->pause();
update_controller->setActive(false);

IID UPDATE SET CONTROLLER)))

, IID_UPDATE_SET_CONTROLLER)))

c:\DarraghBuild\src\CMWflpp.cpp
p_preview_timer->tesume();
preview_controller->setActive(true);
m_pGraphics->setTime(p_preview_timer->getTimeSeconds () , p_preview_timer->getUpdateDeltaTimeSeconds ()) ;
pEntMgr->update() ;
m_pGraphics->update(m_SceneVis.getlnterface() , 0) ;
NewFrarae();
DpdateTimers(GetLastFrameDelta());
m_pTxmer->resume();
update^controller->setActive(true);
p_preview_timer->pause() ;
preview_controller->setActive(false);
retur: IE_S_OK;

}

bcc CMWApp:: getKev (:r.r key)
(

return (HIWORD(GetAsyncKeyState(key)) != 0);
)

ieResult CMWApp::update()
{

IE_TRACE
II Check for escape key
f (getKey(VK_ESCAPE))

t
return IE_S_EXIT_SYSTEM;

}

// Reset mouse over game window
SetCursorPos (320, 256);
// Update frame and timers
NewFrame()t
.i (m_pGraphics->get$cripting()->getRecord())
{

UodateTimers(m_pGraphics->getScripting()->getRecordFrameTime());
}
else
{

UpdateTimers(GetLastFrameDelta());
}

U Update console
i; (Failed(m_pConsole->update()))

\DarraghBuiId\src\CMWApp.cpp
{

return IE_S_EXIT_SYSTEM;
}

// Update input
if (Failed(m_plnput->update ()))
{

return IE_S_EXIT_SYSTEM;
}

// Get entity manager
IEntityManager * p_ent_mgr = GetActiveEntityManager();
if (!p_ent_mgr)
{

return IE_F_NO_ACTIVE_ENTITY_MANAGER,;
}

// Update entities
static bool first = true;
if (first)
{

first = false;
initEntityManager(p_ent_mgr);

>

ieResult ier = p_ent_mgr->update();
if (Failed(ier) ||

ResultEquals(ier, IE_S_EXIT_SYSTEM))
{

return ier;
i

// Update diagnostics
m_pDiagnostics->update ();

II Update graphics
m_pGraphics->setTime(m_pTimer->getTinieSeconds(), m_pTimer->getUpdateDeltaTimeSeconds ())

7 (Failed(m_pGraphics->update(ra_SceneVis.getlnterface())))
{

return IE_S EXIT_SYSTEM;
1

// Update sound
if (Failed(m_pSoundChannelMgr->update()))

return IE_S EXIT_SYSTEM;
}

c :\ParraghBuild\src\CHWApp.cpp
II Write text
writeText();
return IE_S_OK;

}

ieResult CMWApp::shutdown()
{

!E_SceneVis . clear () ;
m_Warping.shutdown();
m_Bones.clear () ;
ir.^AnimWalk.clear () ;
m_AnimPose.clear() ;
return IE_S_OK;

>

ieResult CMWAd d ::writeText()
{

QUATERNION quaternion_rotation;
m_AnimWalk->getRotation(26, &quaternion_rotation);
EULER euler_rotation;
euler_rotation.x = O.Of;
euler_rotation.y = O.Of;
euler_rotation . 2 = O.Of;
ir._oGraDhics->getDebug () ->drawText (Graphics::RGB_BRIGHT_GREEN,

ieSPX: %f\ni: %f\nZ: %f\n"),
euler_rotation.x*57.2957 795,
euler_rotation.y*57.29577 95,
euler_rotation.z*57.2957795);

return IE_S_OK;
}

ieResult CMWApp::handleInputEvent(ieConstStr szType,
cor.st IEvent * pEvent)

{
// Toggle console on ?! key press
:r (StringCompare(szType, Input::EID_DEVICE) == 0)
{

cons: Input::DEVICE_EVENT * p_device_event = GetEventlnterfaceCcons: Input::DEVICE_EVENT>(pEvent) ;
(p_device_event->devicelndex ==• 1
p_device_event->controllndex — 37 &&
p_device_event->data. switchVal)

{ m_pConsole->setActive(!m_pConsole->getActive());
}

}
return IE S OK;

c : \DarraghBuild\src\CMWApp. epp___ ___ _______________________^

