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Abstract — An exact nonnegative matrix decomposition algorithm is proposed. This
is achieved by 1) Taking a nonlinear approximation of a sparse real-valued dataset at a
given tolerance-to-error constraint, ε; Choosing an arbitrary lectic ordering on the rows
or column entries; And, then systematically applying a closure operator, so that all
closures are selected. Assuming a nonnegative hierarchical closure structure (a Galois
lattice) ensures the data has a unique ordered overcomplete dictionary representation.
Parts-based constraints on these closures can then be used to specify and supervise the
form of the solution. We illustrate that this approach outperforms NMF on two standard
NMF datasets: it exhibits the properties described above; It is correct and exact.
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I Introduction

In a seminal paper by Lee and Seung, the no-
tion of Non-negative Matrix Factorization (NMF)
was proposed as a way to find a set of basis func-
tions for representing non-negative data [1]. NMF,
claimed Lee and Seung, is useful for image artic-
ulation libraries made up of combinations of ar-
ticulations and poses. They claimed NMF found
the intrinsic “parts” of these images. This idea of
decomposing images, financial time-series [2], or
word corpuses into significant parts (basis func-
tions) and activations of these parts (indicator
functions) in the data ensemble has been enthusi-
astically applied; The application of NMF to Blind
Source Separation (cf. [3]) related tasks has been
frequently reported in these proceedings [4, 5, 6].

More recently, however, Donoho and Stodden
posed the two following fundamental questions [7]:
- “Under what assumptions is the notion of NMF
well-defined, for example is the factorization in
some sense unique?”
- “Under what assumptions is the factorization
correct, recovering the right answer?”

To begin to address these questions Donoho and
Stodden developed a geometric view of the NMF
generative model, and derived geometric condi-
tions under which the factorization was essentially
unique. They also formulated a class of images
which looked to satisfy these conditions. This class
of images was created by an NMF-style generative
model, where all different parts –building blocks
of the images– were exhaustively sampled. They
named this class of images a Separable Factorial
Articulation Family (SFAF). They claimed that
NMF of images from this family produced factor-
izations which were effectively unique.

By introducing one factor which did not obey
the conditions of a SFAF –into their ensemble of
images that had the SFAF properties– Donoho and
Stodden were only able to produce an approxi-
mately correct NMF. The reason that this solu-
tion was only approximately correct was that this
pathological factor appeared as a ghost function
in each factor in subsequent decompositions. It is
this ghost that we aim to eliminate in this paper.

Contribution 1: We show how to generate a
truly unique solution to the pathological SFAF
problem proposed by the Donoho and Stodden,
and call this approach Ghostbusters. This is an
important result: NMF is widely used. Having the
ability –even off-line– to determine the correct so-
lution is useful for retrospective analysis of NMF.

Contribution 2: We show for binary matrices,
a unique binary NMF can always be learned, irre-
spective of the properties embodied by the class of
problems in the SFAF. NMF is often applied to bi-
nary datasets by adding a small amount of additive
noise to ensure the dataset is in the nonnegative
orthant, more recently, by leveraging some non-
linearity in a heuristic approach to generate the
factorization [8, 9, 10, 11]. We contribute a binary
NMF that operates directly on binary data.

Most humans typically out-perform NMF when
decomposing Donoho and Stodden’s dataset into
parts. There is no framework which incorporates
the considerable amount of information available
to the user into an NMF decomposition. We in-
troduce an intuitive framework (which goes be-
yond introducing sparse priors) for incorporating
prior information (and representation selectivity)



into the decomposition via parts-based rules.

Contribution 3: We then contribute an algo-
rithm –suited to nonnegative datasets– to learn a
unique NMF subject to some target tolerance-to-
error, which is practitioner specified. This NMF
problem formulation has its interest, as it gives an
approximate (or exact) decomposition where the
approximation’s quality is user specified. Tradi-
tionally, the practitioner has little control over the
quality of the NMF approximation save for run-
ning the NMF routine (sometimes) exhaustively
until the approximation quality criteria is met.
Ghostbusters is slow, admittedly; However, we
point to a related paper which indicates how the
underpinning routine may be significantly sped-up
by parallelizing the decomposition without com-
munication between the different computational
resources [12] –a common failing of MapReduce
implementations of NMF [13, 14].

II Nonnegative Matrix Factorization

This paper deals with both binary-relational (as-
sociation) and nonnegative (intensity) matrices

which are denoted by X ∈ �M×N
01 and X+ ∈

�M×N
+ respectively. Applications where an over-

complete dictionary –a set of linearly dependent
vectors– which is tuned to a stimulus ensemble
X+, so that signals drawn from the ensemble
have sparse representations in the dictionary, arise
in source separation [15], finance and semantic
and sentiment analysis. Given the matrix X+,
NMF decomposes X+ into the product of two ma-
trices, W+ ∈ �M×R

+ and H+ ∈ �R×N
+ where

all matrices have exclusively nonnegative elements
(M > R,N > R). NMF-Frobenius’ objective is
the squared-�2 norm:

DF (X
+||W+H+) =

1

2

∑
m,n

|X+
m,n − [W+H+]m,n|2. (1)

A suitable step-size parameter, proposed by Lee
and Seung in [16], results in two alternating, mul-
tiplicative, gradient descent updating algorithms
(the datatype qualifier is leftout as it is clear from
the context):

W ← W �XHT �WHHT , (2)

H ← H �W TX �W TWH (3)

where � represents element-wise multiplication,
and � is element-wise division. The NMF solution
is generally not unique, or exact. For every invert-
ible A we have a potential factorization [17, 18],

X ≈ (WA)(A−1H). (4)

In the present paper, we aim to solve the unique-
ness problem and to address the inexactness of
NMF, and also for good measure, the permuta-
tion/scaling problem.

When A = PD, a permutation matrix P and
a diagonal matrix D, the elements or A−1 are the
reciprocal of the non-zero elements in A or zero;
Thus A−1 is also a permutation times a diagonal
matrix. The condition that W and H are non-
negative is not sufficient to eliminate the permu-
tation/scaling degree of freedom of NMF. In short,
we aim to learn W and H so that the matrix
A = I, is the canonical basis, and the solution
is exact, X = WH. This problem is expressed
concisely as follows:

Problem 1 (Unique, Exact, Permutation,
Scaling-free NMF): Given X ≥ 0, decom-
pose X into the factorization WH such that
X = WAA−1H, WA ≥ 0, A−1H ≥ 0 and the
matrix A has the form A = I.

III Introducing the Ghostly spectre:

NMF’s short-comings

We consider a binary image dataset in order to
introduce the uniqueness problem first. Donoho
and Stodden constructed a library of images show-
ing a stick figure with four limbs going through
a range of motions to illustrate the ideas of a
SFAF [7]. We will focus on this example, namely
the swimmers data-set as our touch-stone exam-
ple. Some of these swimmers are illustrated in
Fig. 1. White denotes zero, black denotes ones
in all figures. They consist of four body parts
(limbs); Each of these parts has four possible artic-
ulations, (horizontal left/right, up/down, diagonal
up/down). The limbs and articulations are illus-
trated in Fig. 2. We posit that in addition, this
set of parts should include a torso –the I-shaped
body part. It is this torso which causes incorrect
NMF decompositions.
In the swimmers dataset there are 256, 32 × 32

images. Each image contains a torso of 17 pixels
in the centre and four 5 pixel limbs. Using all
combinations of the four limbs gives the 256 image
dataset we use to illustrate our approach.
Remark: The torso component is present in each
swimmer in Fig. 1. However, this presence causes
a ghostly version of the I-shaped body part to ap-
pear in NMF decompositions (cf. Fig. 3).
The NMF generative model

X ≈ WH (5)

is a good candidate mixing model for these simple
image settings: each scene in Fig. 1 is composed
of standard limbs (in Fig. 2) in various articula-
tions. The rows of the matrix H should hold vari-
ous articulations of the limbs. The images in rows
of X ∈ �256×1024

+ consist of superpositions of the
parts, weighted by the values in the columns ofW .
When a part is present it has a positive activation;
When it is not, it has a zero activation.
Example: To illustrate the problem we wish to
solve, we run NMF for 5000 alternating iterations
on the swimmers datset and plot the parts learned
in the decomposition in Fig. 3. The problems with



Fig. 1: Swimmers dataset: A sample of the images taken
from Donoho and Stodden’s library of swimmers.

Fig. 2: Limbs of the swimmers dataset: All four limbs in
all four articulations that are used to construct the

swimmers are plotted. The torso is not plotted: The torso

is a separate part –A 17th part.

the derived solution are listed as follows: 1: Each
part is mixed with the torso (Donoho and Stod-
den label this torso a ghost); 2: Only 16 and not
17 parts are learned. Increasing the rank of the
decomposition does not improve the situation (by
demixing the torso); 3: The solution is not unique;
The solution is not exact; 4: The parts are per-
muted (randomly); 5: The dataset is binary (not
necessarily zeros and ones). Small random values
must be added to each matrix entry before decom-
position in order to ensure that the data is in fact
nonnegative (there are no zero values): the NMF
update rules are guaranteed to improve the ob-
jective monotonically if the data, and factors are
initialized to be nonnegative. 6: There exists no
NMF formulation which allows the user to add in-
formation about the torso into the decomposition.

IV Banishing the Ghostly Spectre:

Towards Ordered Closures

A unique NMF decomposition for the swimmers
exemplar problem is discussed. First we show that
NMF learns a mixture of rank-one approximations
of X; then we show that closures are rank-one ap-
proximations with appealing properties.

What is meant by unique here, is that any time
NMF is run, all four limbs in all four articulations
are learned (cf. Fig. 2) in the rows of the matrixH.
Moreover, the matrix H should be element-wise
binary, not element-wise nonnegative. In addition,
the torso should also be learned as a basis function

Fig. 3: NMF decomposition of the swimmers dataset: We
run NMF 5000 times on the swimmers datset and plot the
parts learned in the decomposition. Each part is mixed

with the torso, Donoho and Stodden’s ghost torso.

for this dataset in a row of H. This is the correct
solution; The underpinning criteria for correctness
here is that the decomposition is parts-based –the
parts are learned exactly.

To start, let’s view the binary matrix X consid-
ered by Donoho and Stodden as a binary relation-
ship between two sets of labels, which identify the
rows and columns of the matrix X. By definition,
R = {r1, r2, . . . , rM} and C = {c1, c2, . . . , cN} are
the sets of labels assigned to the rows and columns
of X. In words, the swimmer r1 activates the fol-
lowing sets of pixels {cn}. The torso’s presence in
the dataset is described by the set of pairs of labels

{{rm, cn}|r10 ≤ rm ≤ r22, rm ∈ Z, cn = r16}. (6)

Each pair gives the position of a “one” in the ma-
trix X which forms part of the torso. A similar set
of pairs-of-labels describes each limb in each artic-
ulation. Seventeen sets (of sets of pairs of labels)
describe the parts of the swimmers dataset.

Proposition 1 One interpretation of the NMF
mixing model is that it is the sum of an ensem-
ble of rank-one approximations of the dataset.

Example: There are many possible rank-one ma-
trices which may be used to represent X. The
torso and each swimmer part (in each articulation)
–denoted by the row vectors Hr,:– times their cor-
responding activation vector –the column vectors
W :,r– have the property that they are rank-one
approximations of the entire dataset. The swim-
mers dataset is made up of R = 17 parts-based
rank-one matrices. The problem lies in detecting
the correct ones.

Let’s be more selective. We defer mention of the
mechanism for incorporating selectivity via parts-
based rules until later. We are interested in the set
of rank-one matrices which are also closures.

Proposition 2 Each limb in each articulation
plus the torso, is a rank-one binary matrix, e.g.
(H torso,: +H leg left 1,:). Each of these rank-one bi-
nary matrices is a closure. Moreover, the torso is
also a separate closure.



Fig. 4: Some closures (1 - 16) from the swimmers dataset.

Fig. 5: Some closures (17 - 32) from the swimmers dataset.

To fix ideas, we give some examples of
these rank-one matrices (W :,activation de-
notes the corresponding activation vector):
W :,torsoH torso,:, W :,activation (H torso,: +H leg left 1,:) ,
W :,activation (H torso,: +H leg left 2,:). These matri-
ces describe some of the closures illustrated in
Figures. 4 and 5.
Remark: It is significant is that the torso is
present in this set of closures as a separate closure.
Moreover, there is an ordering on the closures. The
closures are plotted here using a permuted order-
ing for ease of illustration, starting with the torso
in the upper left hand plot, row-wise (the plot in
row one, column two is next). Each subsequent
closure includes a full-bodied torso –the torso is no
longer ghostly. By set subtraction we can remove
the effect of the torso from all closures save the
torso closure –the ghost is eliminated. It is this
parts-based rule that gives its name to this paper.
This subtraction is possible due to the properties
of closures.

To develop the relationship between the rank-
one approximations, closures and a framework for
parts-based rules we introduce some notation.

V The Ghostbusters Algorithm

Lectic ordering is defined ab initio by arranging
the labels {c1, c2, . . .} of X: the ordering may be
arbitrary. The default ordering is c1 < c2 . . . < cN .

We can apply the derivation operator on subsets
of R and C, respectively, XR and XC :

X ′
R = {c ∈ C | ∀r ∈ R : (r, c) ∈ X} (7)

X ′
C = {r ∈ R | ∀c ∈ C : (r, c) ∈ X}. (8)

We generate a closure by applying these derivation
operators twice, the mappings,

XR �→ XR,
′′ and XC �→ X ′′

C . (9)

These mappings have the properties that:

XC ⊆ C, XR ⊆ R,

X ′
R = XC , X ′

C = XR. (10)

Example: Application of the closure operator
on the rank-one swimmers’ limbs, yield closures
which consist of the limbs plus the torso.

All that is required now is a systematic method
to search for all possible closures in the swimmers
dataset. This method should preferably yield a
unique ordered set of closures.

Algorithm 1 AllClosure

Input: {{}, C},X, C,R: starting/stopping closures
Output: D: derived closures.
1: Initiate process: D = {}, aXC = {}.
2: while aXC is not the last closure C do
3: [aXC ] = NextClosure(R, C,X, aXC);
4: D ← D ∪ aXC ;
5: end while

Algorithm 2 NextClosure

Input: R, C,X, aXC

Output: aXC .
1: for cn from cN down to c1 do
2: if cn /∈ aXC then
3: bXC ← aXC ⊕ cn;
4: if aXC ≤cn bXC then
5: aXC ← bXC ;
6: break;
7: end if
8: end if
9: end for

We appeal to a procedure called NextClosure, a
well-known application of lattice and order theory
[19], to build the Galois lattice ofX, using an algo-
rithm proposed in [19, 20] and made more efficient
by distribution in [13] and again by parallelization
[12]. We then convert the lattice D into an ordered
ensemble-tuned dictionary H. This lattice has the
property that it is unique and complete. Starting
from the empty set XC = {}, given XC ⊆ C, and
cn ⊂ C, we may generate all closures by systemat-
ically applying the rule,

bXC = aXC ⊕ cn :=

((aXC ∩ {c1, . . . , cn−1}) ∪ {cn})′′, (11)

which augments the current closure, aXC , by con-
catenating successive elements of C (largest-to-
smallest) and keeping the resulting set, bXC , if it is
a closure and it is lectically smaller than any clo-
sure already mined, a condition which is verified
by checking:

aXC ≤cn bXC :⇐⇒ ∃cn(cn ∈ bXC , cn /∈ aXC ,

∀cj<cn(cj ∈ aXC ⇐⇒ cj ∈ bXC)). (12)



Algorithm 3 Ghostbusters

Input: X
Output: D,W ,H: derived closures, parts and acti-

vations matrices.
1: [D] = AllClosure(R, C,X, {, }, C);
2: Initialization process: generate a dictionary of

atoms H ∈ �|C|×N
01 by stacking row-vectors, which

are constructed by inserting ones in the entries
given by the sets D, and zeros elsewhere.

3: Check for ghosts: Construct the row vector

jn =
∑|C|

i=1 Hi,n.
4: De-ghost the ensemble tuned dictionary:

Hi,n =

{
0, if jn = |C|, and i > 1,

Hi,n, if jn �= 0, and i > 1.
(14)

5: Regularization via Parts-based rules. Encode
parts-based rules using encoding matrixH = EH.

6: if Sufficient rankH then
7: An exact binary decomposition of X+ is ob-

tained by solving for the matrix W ∈ �N
+ :

minimizeW (p,:)W (p, :)1,

subject to X(p, :)T = HTW (p, :)T ,

W (p, :) ≥ 0. (15)

8: else
9: Lee-Seung activation update for low-rank W .

10: Project X,H into nonnegative orthant if neces-
sary: W → W �XHT �WHHT .

11: end if

A property of NextClosure is that the closure set
is unique and complete [19, 20], and is indexed in
lectically increasing order using, rXC , where r =
1, 2 . . . , R,

1XC ≤ 2XC ≤ . . . rXC ≤ . . .RXC . (13)

This algorithm is described in Alg. 1 and 2. What
is appealing is that it is as simple to implement as
the NMF procedure.

The Ghostbusters algorithm is described in
Alg. 3. Eqn. 14 describes the removal of the om-
nipresent torso. It is one example of a parts-based
rule which is a general framework embodying the
parts-based selectivity mentioned above. We en-
code prior information to the solver (7-10 in Alg. 3)

using E ∈ �|C|×|C|
01 . We now solve

X = (WA)
(
A−1H

)
= W (EH) . (16)

To recover the swimmer parts we introduce addi-
tional constraints on the complexity of the parts
that are used by the activations, specificially, re-
strictions on the length of the maximum vector
norm, �0-norm of the closures, e.g �0(Hi,:) =
#{n|Hi,n �= 0}. In effect we are imposing Oc-
cam’s razor –the principle of parsimony– on the
closures and the activations using E by introduc-
ing ones on the diagonal for closures that satisfy
the constraints, and a zeros for the rest.

Once an ordered ensemble-tuned dictionary is
learned (steps 1-4 in Alg. 3), the corresponding
activations must be determined: this problem is
addressed (in this paper) by solving 1) a nonneg-
ative least-squares, or 2) a nonnegative linear pro-
gramming problem depending on the type of solu-
tion desired. The statistical interpretation of the
first approach is maximum likelihood estimation,
given linear measurements corrupted by noise –
regularization may also be considered. Regular-
ization is often used by the NMF community to
encourage a parts-based decomposition [21]. For
this swimmers dataset regularization is required.
Appealingly, an �0-norm regularization contraint
may be introduced here due to the binary form
of the closures. In the latter case, the activations
have a Laplacian prior and the observation model
is noise-free; This is interpreted as MAP estima-
tion. In both cases the matrix H generally has a
sparse structure which speeds up the computation
of W . Nonnegative and parts-based datasets are
frequently sparse. Solving for W is convex.

VI Empirical Evaluation and Discussion

We demonstrate a subtractive and a “complexity-
reducing” parts-based rule using the removal of the
omnipresent torso region in Donoho and Stodden’s
swimmers as a first test case. We then demonstrate
how complexity-reducing constraints may be ap-
plied more generally to Hoyer’s dataset (which has
no omnipresent factor): We apply bars-like con-
straints on neighbouring pixels. In both cases,
the incorporation of simple parts-based constraint
yield the exact solution. The first dataset is binary,
and the second is nonnegative. The motivation is
to show that 1) a range of prior information can
be incorporated into the solution and 2) NMF dis-
regards this information.

a) Unique and Correct Swimmers Decomposition

We run the Ghostbusters algorithm on Donoho
and Stodden’s swimmers dataset to demonstrate
that a unique and correct swimmers decomposition
is achieved for the pathological SFAF problem.

By inspection we have prior information: 1)
There are four limbs in four articulations (16 parts
in total); 2) The torso is omnipresent; 3) The
limbs vectors have low �0-norm. The principle of
Occam’s razor is incorporated when determining
the solution by selecting the 16 closures with the
smallest complexity, measured here using the �0-
norm, and also by removing omnipresent features
(encoded using E). We argue that this choice is
akin to selecting the parameter R for NMF, and
therefore justifiable: prior information about the
rank of the desired solution is incorporated by both
methods, it is done by Ghostbusters using a com-
plexity constraint. NMF, however, has no facility
for extracting an omnipresent feature because: 1)
The ghost learned in each NMF feature is not uni-
form in value in each parts vector or across each
parts vector (subtracting the average ghost may



cause the parts to become negative). See for ex-
ample the parts in Fig. 3; 2) Omnipresent vec-
tors are typically not uniform valued in the dataset
(similar problems to averaging and subtracting the
ghost torso arise). Ghostbusters generates a clo-
sure, which is the torso, which is easily removed
using parts-based rules, as illustrated above.

Complexity penalty parts-based rules are needed
as some closures are linear combinations of other
closures (cf. Fig. 6 and 7), the desired solution has
low parts complexity. We aim to learn a sparse de-
composition, but not decompositions which only
activate the torso and a single other closure (one
with four limbs in the correct particular articula-
tion –a closure which is a linear combination of
the limbs and articulations required). The total
ordered ensemble-tuned dictionary is highly over-
complete: what is required is a low-rank solution.

Comparison: The activations of the swimmers
dataset are generated using the NMF-Frobenius
update W → W � XHT � WHHT and 16
vectors, preserved by E, are plotted in Fig. 8.
We run the NMF-Frobenius update for 5000 it-
erations, noise (of machine error order) is added
to the dataset to ensure nonnegativity. Table 1
summarizes a comparison between Ghostbusters
and NMF. Runtimes are given for an octave im-
plementation on a 2.6GHz personal computer –
they are guideline figures. NMF is run for 5000
iterations; Using an alternative measure of conver-
gence, NMF may be stopped earlier. NMF suffers
from the scaling problem: the sparsity measure
of the W is therefore subject to this ambiguity.
However, NMF consistently leads to poorer spar-
sity measures in these experiments (the parts it
learns are mixed). NMF has a shorter runtime,
yet the torso is mixed with each part –the swim-
mers problem is not solved. NMF has consider-
able approximation error, which is measured using
(Eqn. 1), compared to Ghostbusters. The activa-
tions are approximately binary for Ghostbusters,
whereas the activations for NMF are nonnegative.
Note the �1-norm of W for NMF is uninforma-
tive as NMF suffers from the scaling ambiguity
(which may be addressed by row-normalizing H).
In short, Ghostbusters is slower but the solution is
correct and parts-based. Ghostbusters solves the
problem; NMF does not.

Discussion: The significance of this result is
explained.

1) The set of closures is unique, therefore the
matrix H is unique. Arbitrary parts-based con-
straints may be applied in an ordered manner in
Ghostbusters, this information is not (and cannot
be) incorporated into the NMF solution.

2) Ghostbusters does not suffer from the scaling
and permutation ambiguity; The matrix H is bi-
nary and unique. In addition, solving for W is
a convex optimization problem. NMF performs
an alternating minimization optimization which is
convex in W or H, but not in both factors.

3) The rank is encoded into the activation matrix

Fig. 6: Ghostbusters: Ordered closures (1 - 16) swimmers
dataset. Not all closures are linearly independent.

Fig. 7: Ghostbusters: Ordered closures (17 - 32) from the
swimmers dataset.

solver based on user constraints on the complexity
of the parts (using E). We can think of the rank
of the problem as the cardinality of the active set
of the optimization problem (the diagonal of E).

b) Binary Matrices and Nonnegative Matrices

The “bars” dataset was proposed by Hoyer in [15]
in order to motivate sparse nonnegative coding
problems. It is challenging for NMF as an over-
complete dictionary is required from a mixture of
parts. Regularization is used to address this chal-
lenge: the choice of a suitable weighting term for
the regularization parameter is difficult [21].

A second challenge lies in the fact that whilst
the parts are binary, they are mixed synthetically
with nonnegative values. However, parts-based
constraints recommend themselves to this problem
because the underlying parts are binary, and so we
address the problem of learning binary parts from
nonnegative matrices using Ghostbusters.

Nonnegative mixtures X+ ∈ �100×9 are mixed
(in Fig. 10) using the ground-truth bars, H ∈
�10×9 (reformulated as 3 × 3 matrices in Fig. 9)
and uniformly distributed nonnegative activations
W ∼ U(0, 1). Noise is uniformly distributed.

X+ = WH +N , Nm,n ∼ U(0, 0.1). (17)

There is no omnipresent part (similar to the torso)
in this dataset –this rule is not needed. The clo-
sures (36 excluding the empty closure) are com-
puted from the bars for comparison purposes and



Table 1: Comparison: Ghostbusters with NMF
Ghostbusters Swimmers Hoyer

Closures 626 (separate torso) 10/69/212
Run time 700.3s (closures) 2.38s
W -update 20s (5000its) 0.113s
Error 2 × 10−13 0

Convex in W –
Perm.-free � �
Scaling-free � �
Correctness � �

�1(W ) 1280 (W ∈ �256×17) 193.40

NMF Swimmers Hoyer

No. parts 16 (no separate torso) 10
Run time 59.924s (5000its) 15.6s (5000its)
Error 3.68 × 10−4 4.1 × 10−4

Perm.-free � �
Scaling-free � �
Correctness Mixed Mixed
�1(W ) 2014.2 (W ∈ �256×16) 492

Fig. 8: Activations W ∈ �256×17 for the swimmers
computed using parts-based encoding so that

X ≈ W (EH). The torso is omnipresent (rightmost col.)

plotted in Fig. 11 in order to show the ground-
truth closures. Parts-based rules are encoded in
E to consider the following observations which are
drawn by inspection of Fig. 10. This information
is disregarded by NMF.
- There are no omnipresent closures.
- The �0-norm of the salient parts is 3 or 6.
- There are 10 parts. These parts are bar-like
(parts have triplets-of-pixels that are horizontal or
vertical neighbours).

Problem 2 Given the matrix X+, decompose
X+ into W+ ∈ �M×R times H+ ∈ �R×N , sub-
ject to DF (X

+||W+H+) = 0, such that there is
no permutation or scaling, and the rows of H yield
a sparse signal representation.

To deal with the noise, a NonLinear Approxima-
tion (NLA) [22] of the sparse matrix X+ produces
its binary-relational counterpart, X, with approx-
imation error DF (0||(¬X)�X+) < ε, where ¬ is
element-wise negation,

Xm,n =

{
1, if X+

m,n > T,

0, otherwise.
(18)

In this paper, the threshold parameter T is found
quickly by application of the Armijo Rule or the
Bisection method.
Comparison: In total, 212 closures are obtained
from the NLA (Eqn. 18) of the mixture (Eqn. 17).
They are illustrated in Fig. 12 and maybe directly
compared with the closures computed using the
raw bars (in Fig. 11), as both sets of closures are
plotted in lectic ordering. What is clear is that

Fig. 9: Set of bars used to generate nonnegative mixtures.

Fig. 10: A sample of the mixed noisy bars data.

the closures in Fig. 12 have higher �0-norm. Sixty-
nine closures (in Fig. 12) satisfy the constraints
that �o(Hi,:) = 3 or �o(Hi,:) = 6; However we
may also encode bar-like constraints, Ei,i =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1, if (Hi,n = 1&Hi,n+1 = 1&Hi,n+2 = 1)

and �0(Hi,:) = 3 or 6,

or (Hi,n = 1&Hi,n+3 = 1&Hi,n+2×3 = 1)

and �0(Hi,:) = 3 or 6

0, otherwise.

Discussion: Only 10 closures satisfy the �0 and
bar-like constraints. Ghostbusters is once again
compared with Lee-Seung NMF in Table. 1 for
this dataset with no prior information, save the
rank R = 10. NMF’s sparsity regularization in-
volves trial-and-error tuning and is not performed
here. NMF does not determine the correct so-
lution; Ghostbusters does. During Monte Carlo
trials, a different set of stimulus-tuned closures is
learned by Ghostbusters for a given ε. Typically
the ground-truth closures are amongst this set.

This paper raises the question of how to include
a range of prior information into an NMF so that
NMF generates the appropriate parts-based rep-
resentation. Frequently, the solution can almost
be “picked-out-by-eye” and yet NMF frustrates by
learning a good parts-based solution, but not the
solution the user wants. The swimmers dataset is a
case-in-point. Allowing the user to encode a set of
criteria into the solver, in order to specify the type
of solution that is interesting to him, is a powerful
concept; It raises a fundamental question. Is this
technique supervised or unsupervised?

Decomposing the magnitude spectrogram of
speech is one problem NMF has been applied to.
The relationship between the inter-formant fre-
quency distances, though well-understood by the
community, is not used in NMF decompositions
[21]. As a result speech phones are sometimes sep-
arated into high frequency features and low fre-
quency features, as the appropriate rank is not
known, and the solution is not parts-based. We



Fig. 11: Sample of closures for the unmixed bars.

Fig. 12: Sample of closures for the mixed bars.

will investigate if improvement is speech repre-
sentations may be achieved by incorporating this
domain-expertise. By exploiting the binary data-
type of closures we have proposed a framework
which allows the user to be prescriptive when for-
mulating the desired form of the NMF solution.

VII Conclusions

The label “parts-based” implies that the data is
composed of simple building blocks, which may
often be identified by eye. Encoding parts-based
constraints in NMF algorithms is difficult: NMF
does not allow for this level of direct specificity. We
introduce a framework based on closure-finding.
Once a set of suitable closures has been identi-
fied, parts-based based constraints may be easily
incorporated into the optimization routine. Ghost-
busters has a number of advantages over NMF: 1)
It learns overcomplete representations; 2) It allows
for the encoding of arbitrary constraints; 3) It is
unique, correct, permutation and scaling free; 4)
It can learn sparser solutions which are exact.
This work was supported by SFI via 08/SRC/I1403
FAME SRC and 11/TIDA/I2024.
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