
ISSC 2013, LYIT Letterkenny, June 20–21

Cryptography using Evolutionary Computing

J. Blackledge∗, S. Bezobrazov∗∗, P. Tobin† and F. Zamora††

∗†School of Electrical ∗∗Department of Computer Science
and Electronic Engineering Brest State Technical University

Dublin Institute of Technology, Ireland Brest State Technical University, Belarus

††Department of Electronic Engineering
University of Baja California, Mexico

E-mail: ∗jonathan.blackledge@dit.ie ∗∗bescase@gmail.com
†paul.tobin@dit.ie ††fzamora@uabc.edu.mx

Abstract — We present a method of generating encryptors, in particular, Pseudo Ran-
dom Number Generators (PRNG), using evolutionary computing. Working with a sys-
tem called Eureqa, designed by the Cornell Creative Machines Lab, we seed the system
with natural noise sources obtained from data that can include atmospheric noise gen-
erated by radio emissions due to lightening, for example, radioactive decay, electronic
noise and so on. The purpose of this is to ‘force’ the system to output a result (a non-
linear function) that is an approximation to the input noise. This output is then treated
as an iterated function which is subjected to a range of tests to check for potential cryp-
tographic strength in terms of a positive Lyapunov exponent, maximum entropy, high
cycle length, key diffusion characteristics etc. This approach provides the potential for
generating an unlimited number of unique PRNG that can be used on a 1-to-1 basis.
Typical applications include the encryption of data before it is uploaded onto the Cloud
by a user that is provided with a personalised encryption algorithm rather than just
a personal key using a ‘known algorithm’ that may be subject to a ‘known algorithm
attack’ and/or is ‘open’ to the very authorities who are promoting its use.

Keywords —Coding and Encryption, Evolutionary Computing, Multiple Algorithms, Per-
sonalised Encryption Engines

I Introduction

In Patrick Mahon’s secret history of Hut 8 - the
Naval Section at Bletchly Park (Station X) from
1941-1945 - it is stated that [1]: The continuity of
breaking Enigma ciphers was undoubtedly an es-
sential factor in our success and it does appear to
be true to say that if a key has been broken regularly
for a long time in the past, it is likely to continue
to be broken in the future, provided that no major
change in the method of encryption takes place.
This statement relates to the famous Enigma en-
cryptor used by German armed forces from the
mid-1930s until 1945 and, to a lesser but equally
important extent, the more advanced Lorenz en-
cryptor used from mid-1942 onwards for high-level

communications between the German High Com-
mand in Berlin and Army Commands through-
out occupied Europe. The issue of the ‘method
of encryption’ relates to the Kerckhoff-Shannon
Principle, namely, A crypto-system should be se-
cure even if everything about the system, except
the key, is public knowledge [2] or as stated more
succinctly by Claude Shannon The enemy knows
the system. This paper shows how evolutionary
computing could be the key to breaking with the
Kerckhoff-Shannon principle. To this end, we pro-
vide a short back-ground to the case which con-
textualises the issue and then considers the use
of a evolutionary computing system called Eureqa
[3] for generating ciphers using input data streams



consisting of natural noise.

II The Kerckhoff-Shannon Principle

The Kerckhoff-Shannon Principle has been the
foundation of cryptographic research for many
decades and emphasis has and continues to be
placed on the exchange of the keys (of increasing
length) to operate (i.e. encrypt/decrypt data) spe-
cific symmetric and asymmetric algorithms that
have proven cryptographic strength. However, it
is well known that many cryptographically strong
algorithms and/or the keys used to ‘drive’ them
have been broken in practice. The reasons for this
are as varied as the encryption methods used, at
least, those that are known about.

New encryption algorithms and system are of
course the subject of continuing research but, ir-
respective of this, there are a number of practi-
cal reasons for abiding by the Kerckhoff-Shannon
Principle. These include the following: (i) the al-
gorithm is a good one, e.g. it is robust and crypto-
graphically strong; (ii) legacy code and the proce-
dures and protocols associated with the use of an
algorithm; (iii) the expense associated with chang-
ing the algorithm(s). However, there is another
issue which we call the Enigma Syndrome. This re-
lates to the concern that an encryption algorithm
is often the product of the very authorities who
want it to be used, so called because of the value
that the stock pile of Enigma machines had after
1945 in terms of gaining intelligence from govern-
ments world-wide which, at the time (i.e. from the
late 1940s and the early 1950s), were encouraged
to use it and early derivative of it [4]. Form the
late 1950s to date, issues of this type led to the
development of new cipher bureaux’s world wide
whose focus was and continues to be to generate
new and unique encryption algorithms for use by
the governments they represent.

Since the end of the cold war in the early 1990s,
and, with the rapid development of computing and
communications technology, many new companies
have been established to either sell existing encryp-
tion systems and/or develop new approaches to
data security. This led to the Regulation of Inves-
tigatory Powers (RIP) Act in the UK, for example,
introduced in 2000 to regulate the powers of public
bodies to carry out surveillance and investigation
including the interception of communications, tak-
ing into account technological changes such as the
growth of the internet and strong encryption in-
troduced by the new generation of ciphers being
developed at the time.

Although the RIP act was introduced for im-
portant and valid reasons, it highlights an issue
that defines two principal landmarks in the his-
tory of Cryptography. If the years of 1900-1945
are taken to be the ‘Battle of the Code Makers

verses the Code Breakers’ then from 1945-date we
have and are continuing to witness the ‘Battle
between the Code Makers verses the Code Con-
trollers’. In this context, and, with regard to the
relatively recent introduction of Cloud computing,
one of the principal issues of Cloud users is the
security of the data that they uploaded onto the
Cloud and whether standard commercially avail-
able encryption algorithms are secure enough for
this purpose. Within the context of the Cloud
Security Alliance [5] the following issues are be-
coming important: (i) the perception that many
encryption schemes that abide by the Kerckhoff-
Shannon principle are weaker than publicly ac-
knowledged; (ii) the Enigma Syndrome. Even if
point (i) above could be proved not to be an issue
to the satisfaction of users, with regard to point
(ii), a principal question has become: How can
we trust the code controllers? One answer to this
question is to ‘generate our own codes’.

Irrespective of the technical challenges associ-
ated with users generating and/or using their own
code (i.e. encryption algorithms), there is another
over-riding factor that is important to understand
and is compounded in the following quotation [6]:
Cryptology is like literacy in the Dark Ages. In-
finitely potent, for good and ill, yet basically an
intellectual construct, which by its nature will re-
sist efforts to restrict it to bureaucrats and others
who deem only themselves worthy of such privi-
lege . In this regard, we explore how Evolutionary
Computing has the potential for ‘democratising’
data encryption by allowing individuals to acquire
or even develop their own personalised encryption
algorithms rather than relying on a personal (pri-
vate) key alone to ‘drive’ a standardised algorithm
open to public scrutiny. The context for attempt-
ing this is based on the following forecasts: (i) by
2016, annual global IP traffic is forecast to be 1.3
Zettabytes (1 Zettabyte = 1 Trillion Gigabytes);
(ii) by 2016, there are expected to be 3.4 Billion In-
ternet Users which amount to approximately 45%
of the world’s projected population. One of the
consequences of these forecasts is the urgent need
for ICT solutions to drive research priorities in the
H2020 programme [7], for example, with regard to
internet data security and, in particular, the se-
curity of personal data by application of unique
encryption algorithms for encrypting data before
it is uploaded into the Cloud through applications
such as Dropbox and MS Office 365.

III Complexity, Randomness and Chaos

Algorithmic complexity and chaos underpin the
development of modern encryption algorithms
along with mathematically definable concepts such
as unpredictability and entropy, for example. The
design of any crypto system can be interpreted in



terms of designing a key-dependent bijective trans-
formation that generates a data stream or ‘string’
which is bit-for-bit unpredictable to an observer
with finite resources [8]. Crypto systems (which in-
corporate the design of Pseudo Random Number
Generators (PRNG), the structure of an encryp-
tion algorithm that uses PSNG and key exchange
protocols, for example) are predicated on the gen-
eration of time series or digital signals which are
typically based on an intreated function (the al-
gorithm). Upon the encryption of data using the
algorithm and its transmission and/or storage, a
cryptanalyst will be expected to have access to the
time series and the algorithm under the Kerckhoff-
Shannon Principle (i.e. the algorithm has been
made publicly available for public scrutiny). The
time series is not a compact subset of the trajec-
tory (intermediate states are hidden) and the iter-
ated function is taken to have a secret parameter
(the key).

An ‘algorithm’ is designed to have a number
of properties that provide cryptographic strength
which, on a generic basis, are taken to include ‘ran-
domness’, ‘unpredictability’ and ‘complexity’ [8].
More specifically, these properties include ensur-
ing that the time series are uniformly distributed
(with no bias toward any trajectory, thereby pro-
viding a maximum entropy cipher), a high positive
Lyapunov exponent (ensuring that the trajectory
becomes chaotic within a few iterations), a high
cycle length and good diffusing properties so that
different keys (involving a change of a single bit)
produce different ciphers in which all bits of the bit
stream have an equal likelihood of changing their
state [9].

A ‘perfect PRNG’ can be used to generate ‘per-
fect security’ if the cipher text is absolutely un-
predictable to an external observer, i.e. all pos-
sible outcomes (states, sub-trajectories etc.) are
equiprobable and do not depend on the previous
states. In other words, the state sequence has
a uniform probability distribution and no corre-
lations (matching patterns). The concept of ab-
solute unpredictability is equivalent to true ran-
domness and related to ‘white noise’. In prac-
tice, cryptographic systems only provide a cer-
tain level of data security that is usually much
lower than that of a (theoretically) perfect sys-
tem. This is due in part to the need to develop
encryption algorithms that are practicably usable,
primarily for reasons of cost effectiveness. In this
context, it is necessary to deal with ‘pseudo’ con-
cepts in which pseudo-random number sequences
cannot be efficiently distinguished from uniform
noise and where computationally unpredictable se-
quences cannot be predicted with available com-
puter resources. This involves a range of concepts
that need to be quantified to produce the theo-

retical framework for designing and assessing en-
cryption algorithms and includes: (i) algorithmic
complexity which considers the length of the short-
est algorithm producing a cryptographic sequence
where, on an intuitively basis at least, the inter-
nal complexity of the system provides (external)
unpredictability; (ii) algorithmic randomness in
which the output sequence is equal to the length of
the sequence and is computationally incompress-
ible containing no recognisable matching patterns
or redundancies. A diagrammatic illustration of
the relationship between these concepts is given in
Figure 1.

With reference to Figure 1, we note that a purely
random system is also algorithmically random.
However, the concepts of pseudo and algorithmic
randomness are different. A pseudo-random string
is generated with a compact seed, but the exter-
nal observer is not able (practically) to reconstruct
the generator and predict the sequence. In other
words, the string is highly compressible for autho-
rised communication parties, but computationally
incompressible for the adversary. In the general
case, an algorithmic random string can be pre-
dicted by a probabilistic machine.

Fig. 1: Relationship between the concepts of real
randomness, algorithmic randomness and pseudo

randomness [9].

The randomness of a string can be ‘measured’
using properties such as the algorithmic complex-
ity or the entropy which is taken to be a measure
of the uncertainty about the exact state of any el-
ement of the string and where this measure is the
same for all elements in the string. Quantitatively,
the Shannon information entropy is in direct pro-
portion to the algorithmic complexity where, in
ergodic systems, the statistical properties of a sin-
gle sequence coincides with that of all sequences,
emitted by a PRNG. The randomness measure for
chaos is the Kolmogorov-Sinai entropy [4] which
is a multi-resolution integration of Lyapunov ex-
ponents. In practice, entropy is maximised if the
cipher produces an output that is uniformly dis-
tributed or else can be post-processed to produce
a new output that is uniformly distributed with-
out significant data redundancy. In comparison



with a ‘fully predictable system’ where all states
are known and with a complexity of 1, a ‘fully un-
predictable system’ (i.e. ‘delta uncorrelated white
noise’) is an infinite source of information, infinite
complexity and entropy. These are the theoretical
extremes and real cryptographic systems lie some-
where in-between: they are complex enough to be
unpredictable by an external observer, but not too
much to be reproducible. In this context there are
two principal source types that can be considered
as discussed in the following sections.

a) Natural Noise

Natural noise (e.g. environmental noise available
from a range of sources) is highly dimensional with
infinitely many states and independent variables.
However, in generally, the entropy of such a system
may not maximal because of its self-organisational
properties and correlations. This is because many
noise sources are random self-affine strings, the
fractal geometric properties (in a statistical sense)
being a well known and a fundamental property
of many forms of natural noise. There are crypto-
graphic applications using natural chaos; for exam-
ple, Intel’s hardware-based PRNG captures ran-
domness from the thermal noise of the computer.
Such random sequences are used only in key gen-
eration, not in encryption, because they are not
reproducible.

There is an important historical example of the
use of natural noise. This relates to the SIGSALLY
(Green Hornet) encryptor developed by AT &
T Bell Labs used by Prime Minister Winston
Churchill and President Franklin Roosevelt for 1-
to-1 transatlantic communications from 1942-1946
[4]. The encryptor was based on the addition of
noise to voice signals to produce a output (ana-
logue) signal with minimal a signal-to-noise ratio,
scrambling the speech signals over all frequency
bands. The source of the noise was derived from a
vacuum tube by recording the output of the tube
(given no input signal) on a phonograph record.
The result was a recording of electronic noise which
was used to mask voice signals through addition
of the recorded noise. The technology required to
apply this approach in practice involved the time
registration associated with the addition and sub-
traction of the noise source in a two-way sense.
The distribution of these noise sources (i.e. the
recorded media) was strictly controlled for obvious
reasons. However, provided this ‘control’ was not
comprised, the system represented a one-time pad
and was effectively impossible to attack success-
fully. Even today, such a cipher would be difficult
to attack using Bayesian strategies, for example,
on the assumption that a statistical model for the
Probability Density Function of the additive noise
can be acquired and/or on assuming that the noise

is fractal, thereby providing a model for the Power
Spectral Density Function (PSDF) of the cipher.

b) Natural Chaos

Low-dimensional chaotic noise has infinitely many
states but a small number of independent vari-
ables. Nevertheless, such systems cannot be ap-
plied directly to digital encryption because they
cannot be implemented on a finite-state machine.
It is only possible to apply an approximation to
a chaotic system using a (typically nonlinear) it-
eration function working to finite floating point
precision which yields a limited cycle length after
which the string is repeated, a consequence that
is common to all PRNG implemented on a digi-
tal computer. For applications to cryptography,
the aim is therefore to find the best numerical im-
plementation of a chaotic system which maximises
the cryptographic strength of the cipher subject to
minimum algorithmic complexity.

c) Pseudo Chaotic Encryption

The use of pseudo chaos for designing ciphers is
now well known, acknowledged and widely used.
The origins of this approach date back to the early
1950s when Claude Shannon explicitly mentions
the basic stretch-and-fold mechanism now associ-
ated with chaos and as used in cryptology. There
was then a ‘silent period’ until the late 1980s when
emphasis was placed on implementing standard-
ised symmetric and asymmetric encryption algo-
rithms commercially such as the Digital Encryp-
tion Standard (DES which was later modified to
the DES3 by encrypting with a key K1, decrypt-
ing with another keyK2 and then encrypting again
with K1 in order to triple the length of the oper-
ational key without changing the algorithm) and
the Rivest, Shamir & Adleman (RAS) algorithm
(which requires a Public Key Infrastructure to be
established for the generation, management and
certification of the keys), respectively. Following
the popularisation of chaos theory in the 1980s,
it started to be applied to cryptography in the
1990s when some 30 publications appeared sug-
gesting various ciphers but focusing on the appli-
cation of analogue circuits for real time applica-
tions in spread-spectrum based military commu-
nications, for example. This included the use of
Fractal Modulation [4], for example, used to hide
the spread spectrum in natural RF noise. How-
ever, since 2000 the application of ‘digital chaos’
for encrypting data has grown exponentially with
many chaotic maps being suggested by various au-
thors and the development of multi-algorithmic
systems to encrypt data on a randomised block-
by-block basis [9].

There are many disadvantages in using chaos for
cryptography especially with regard to the need to



compute the cipher to high floating point precision
subject to the inclusion a partitioning strategy ap-
plied to the state space in order to provide a max-
imum entropy string (a necessary post-processing
step which generates redundancy in the floating
point input, thereby waisting CPU time). The
principal value of chaos is the ability to create
many different algorithms. This is of course possi-
ble with conventional random number generators
(such as Knuth M-algorithm) but chaos provides
greater diversity in terms of the functions avail-
able (other than the mod function, for example).
The problem is that, to date, in order to produce
a library of different algorithms, they have had to
be designed ‘by hand’ often by modifying specific
and well known chaotic iteration functions such
the logistics map (modified by Matthews to pro-
duce the so called Matthews map which stretches
the key space [9]) or by ‘trial and error’, i.e. ‘in-
venting’ nonlinear Iteration Function Systems and
testing them for their properties with regard to
cryptographic strength. The tests required for
cryptographic strength which all ‘modified’ and/or
‘invented’ maps must pass, include the following:
(i) large positive Lyapunov exponent relative to
a known algorithm with accepted cryptographic
strength, e.g the Advanced Encryption Standard
(AES) [4]; (ii) the potential for generating a uni-
formly distributed cipher, i.e. can the output of
a chaotic map be partitioned to produce a ci-
pher with a completely uniform discrete Probabil-
ity Density Function (without waisting too much
data); (iii) the Power Spectral Density Function of
the cipher is uniformly distributed thereby mak-
ing a spectral attack redundant; (iv) the auto-
correlation of the (digital) cipher is a (Kronecker)
delta function indicating that there are no corre-
lation’s within the length of the cipher set to be
used for encryption and thus, the cycle length is
beyond the upper limit that has been set; (v) the
CPU time required for the floating point computa-
tions (typically to double precession) is acceptable
for the given hardware.

The most important point in the list above are
points (ii), (iii) and (iv). This is because, an in-
finite and truly random string has no statistical
bias, a delta autocorrelated function and an infi-
nite and uniform power spectrum (white noise).
With regard to point (ii), for example, assuming
the existence of one-way 1:1 functions, there can
exist probability distributions, which are not uni-
form and are not even statistically close to a uni-
form distribution, but are, nevertheless, compu-
tationally indistinguishable from a uniform distri-
bution [10]. Hence, checking for equal probability
of the states is fundamental. A high (but strictly
positive) Lyapunov exponent is preferable because
the iteration function it is taken to characterise

will generate chaotic trajectories within a few it-
erations. However, these tests do not guarantee
the diffusive properties of a cipher, namely, that
the PRNG is ‘Structurally Stable’. Ideally, we
require an algorithm that has (almost) the same
cycle length and Lyapunov exponent for all ini-
tial conditions. Most of the known pseudo-chaotic
systems do not possess this property and there is
no rigorous analytical method, as yet known, for
assessing this property. This is an important prob-
lem because without solving it, it is not possible to
guarantee that a crypto system based on a deter-
ministic chaotic algorithm or set of algorithms will
always produce uncorrelated strings for any and
all keys. Another issue is that of algorithmic com-
plexity which cannot be commuted, i.e. there is
no universal solution for simplifying programs and
for proving that the length is minimal. We cannot
apply this definition directly to compare the com-
plexity of cryptographic sequences or algorithms.
Nevertheless the theoretical applications are very
important. In particular, the Kolmogorov com-
plexity provides a unified approach to the problem
of data compressibility [4].

Subject to these important and, as yet, unre-
solved issues, although the applications of ‘digital
chaos’ has yielded commercially realisable prod-
ucts it is not scalable. In this paper we explore
the use of evolutionary computing to scale up the
process by using natural noise as the input to an
evolutionary process. In this sense, we explore a
way of automating and diversifying the approach
to produce a potentially unlimited number of one-
time-pads using a range of noise sources in anal-
ogy with the Green Hornet transatlantic scram-
bling principle of 1942-46, discussed earlier.

IV Evolutionary Computing

Evolutionary Computing is associated with the
field of Computational Intelligence, and like Artifi-
cial Intelligence, involves the process of continuous
optimisation. Artificial Intelligence aims, through
iterative processes, to compute a set of optimal
weights that determine the flow of information (the
amplitude of a signal at a give node) through a net-
work that simulates a simple output subject to a
complex input. In this sense, an Artificial Neu-
ral Network (ANN) simulates a high entropy in-
put with the aim of transforming the result into a
low entropy output. However, this process can be
reversed to generate a high entropy output from
a low entropy input. In this sense, a ANN can
be used to generate a cipher by simulating natu-
ral noise once it has been trained to do so. To
use a ANN in this way, the cryptographer requires
knowledge of the ANN algorithm and the weights
that have been generated through the training pro-
cess (i.e. the input of the noise sources used to



generate the weights). Figure 2 shows an exam-
ple of the input noise (obtained from recordings of
atmospheric noise provide by [11]) and the ANN
simulated output. The type of ANN that is used
for this process is crucial and it has been found
that a ‘Radial Basis ANN’ is best suited for the
purpose, details of which lie beyond the scope of
this paper. Given this statement, the precise ANN
algorithm becomes analogous to a PRNG in con-
ventional cryptography and the weights are equiv-
alent to the key.

Fig. 2: Example of training a ANN to simulate a genuine
random number stream: Original noise (above), and ANN

approximation (below).

While an ANN approach to generating ciphers
is of value in special cases, it does not provide
the same flexibility in terms of using a formu-
laic approach to designing PRNG using iterated
(nonlinear) functions. To do this an evolution-
ary algorithms approach is required in which a
population-based, stochastic search engine is re-
quired that mimics natural selection. Due to their
ability to find excellent solutions for convention-
ally difficult and dynamic problems within accept-
able time, evolutionary algorithms have attracted
interest from many areas of science and engineer-
ing. The application of evolutionary algorithms
to cryptology as presented in this paper is, to the
best of the authors knowledge, an original concept.
Full details of the approach used and the results
obtained to date lie beyond the scope of this pa-
per and will be published elsewhere. However, in
the following section we present an example re-
sult based on the processing steps quantified in
the schematic shown in Diagram 1.

Noise Source: (e.g. Atmospheric Noise)
↓
Evolutionary Computing System
↓
Function ↔ Approximation to Noise Source
↓
Post Processing (of Iterated Function)
↓

Cipher−→

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Positive Lyapunov Exponent �
Uniformly Distributed Statistics �
Uniformly Distributed PSDF �
Acceptable Cycle Length �
Acceptable CPU Time �
...

Diag. 1: Schematic of the processes for evolving a cipher.

V Example Result

We report on one of a growing database of ci-
phers being generated using Eureqa developed at
the Cornell Creative Machines Lab (Cornell Uni-
versity, USA). The system iteratively develops a
nonlinear function to described complex input sig-
nals usually associated with experimental data on
a chaotic system. If genuine random (delta uncor-
related) noise is input into the system, then from
a theoretical point of view, no nonlinear function
should be found on an evolutionary basis. Thus,
inputting natural noise is a way of ‘cheating’ the
system to ‘force’ it to provide a result that may be
suitable (on an iterative basis) as a PRNG (subject
to the tests outlined in Diagram 1). The input used
can be obtained from any available source, online
or otherwise.
For this study, we use the data available from

RANDOM.ORG which, to date, has generated
1.28 trillion random bits for the Internet commu-
nity [11]. Figure 3 shows an example screen shot of
the Eureqa system used to generate the following
iteration functions for cipher generation

ci+1 = 129.68+68.41 sin(ci sin(cos(cos(1.54+ ci)))

+ sin(sin(2.54 + ci + 85.75c−1
i )

− cos(2.23 cos(0.63ci)))) (1)

The highly non-linear iteration function given by
equation (1) is the result of Eureqa undertaking
over 100 iterations (using 250 noise samples ran-
domly selected from the data bases available at
RANDOM.ORG) to evolve the result, taking ap-
proximately 23 hours using a Intel - Xeon 2.40 GHz
Processor to do so. While equation (1) provides a
valuable iterator (subject to normalisation so that
c(i) ∈ (0, 1]∀i and post-processing based on the
tests described in Diagram 2), it can not provable
that this equation is structurally stable, i.e. that
a cryptographically strong cipher is guaranteed for
any floating point value of c0 between 0 and 1, say,
irrespective of the precision of c0. Thus is impor-
tant because c0 (which seeds and thereby initiates
the cipher stream) could, for example, be gener-
ated by a Hash function from a low bit private
key and possibly fail at some point in the future
for lack of structural stability. However, this is in
keeping with many other PRNG.



Fig. 3: Screen shot of Eureqa used for evolving nonlinear
functions suitable for cipher generation.

VI Conclusions

Practical cryptography is based on passing known
statistical tests, e.g. [12] which is designed to en-
sure the pseudo-random property of a generator,
pseudo-random sequences being taken to be used
instead of truly random sequences in most cryp-
tographic applications. This paper introduces a
way of designing algorithms for generated pseudo
random (chaotic) sequences using truly random
strings to evolve an iterator that is taken to be an
approximation to these sequences. This approach
pays no attention to the algorithmic complexity of
the iterator which is one of the main problems in
the application of chaos to cryptography. Neither
does it consider the structural stability of the it-
erator or its algorithmic complexity. However, it
does provide a practical solution to the problem of
developing a large database of PRNG for the ap-
plication of personalising encryption algorithms for
strictly 1-to-1 communications or ‘1-to-Cloud’ (en-
crypted) data storage. By using evolutionary com-
puting systems such as Eureqa seeded with noise,
it is possible to generate a nonlinear function f
with appropriate control parameters. Using this
function in an iterative form with an additional
transformation g say, and a partition function σ,
a PRNG suitable for encrypting data can be con-
structed. The combined effect of g and σ is that
of a hard-core predicate. However, the one-step
unpredictability does not guarantee that the out-
put sequence will be unpredictable when an adver-
sary has access to a sufficiently long sequence. In
other words, the vast number of samples can, on a
theoretically basis at least lead to the predictabil-
ity. With these provisos, the work reported in this
paper demonstrates that evolutionary computing
provides the potential for generating an unlimited
number of ciphers which can be personalised for
users to secure their ‘Data on the Cloud’. Algo-
rithms can be published so that the approach con-
forms to the Kerckhoff-Shannon Principle as in the

example provided, i.e. equation (1), in the knowl-
edge that a new set of evolutionary computed al-
gorithms can be developed. Since 2012 over 300
ciphers have been produced in this way, and, in
summary, the technique may present a technical
solution to the ‘democratisation of the cipher bu-
reaux’.

Acknowledgments

Jonathan Blackledge is supported by the Sci-
ence Foundation Ireland Stokes Professorship Pro-
gramme. Segei Bezobrazov is funded by the Eras-
mus Mundus Action II co-operation and mobility
programme EWENT (East-West European Net-
work on Higher Technical education) managed by
Warsaw University of Technology, Poland. The au-
thors are grateful to Dr Marek Rebow at Dublin
Institute of Technology for arranging the authors
collaborative research programme.

References

[1] O. Hoare, Enigma: Code Breaking and the
Second World War - The True Story through
Contemporary Documents, Introduced and
Selected by Oliver Hoare, UK Public Records
Office, Richmond, Surrey, 2002.

[2] A. Kerckhoff, “La cryptographie militaire”,
Journal des Sciences Militaires, Vol. IX, pp.
583, January 1883, pp. 161191, February
1883.

[3] Eureqa, “A software tool for detecting
equations and hidden mathematical re-
lationships in your data”, Cornell Cre-
ative Machine Lab, USA, 2013, http://

creativemachines.cornell.edu/eureqa

[4] J. M. Blackledge, Cryptography and Steganog-
raphy: New Algorithms and Applications,
Centre for Advanced Studies Text-books,
Warsaw University of Technology, ISBN: 978-
83-61993-05-6, 2012.

[5] The Cloud Security Alliance https://

cloudsecurityalliance.org/, 2013.

[6] Cloud Risk, http://www.securesql.info/

?tag=quotes, A Thinking Man’s Creed for
Crypto, Vin McLellan, 2013.

[7] The Horizon 2020 Programme http:

//ec.europa.eu/research/horizon2020/

index_en.cfm?pg=h2020, 2013.

[8] N Ptitsyn, Cryptography using Deterministic
Chaos, De Montfort University, 2004

[9] J. M. Blackledge and N Ptitsyn, “On the
Applications of Deterministic Chaos for En-
crypting Data on the Cloud, Third Interna-



tional Conference on Evolving Internet, IN-
TERNET 2011, 19-24 June, IARIA, Luxem-
bourg, ISBN: 978-1-61208-008-6, 78-87, 2011.

[10] L. Kocarev. Chaos and cryptography, 2001,
http://rfic.ucsd.edu/chaos/ws2001/

kocarev.pdf.

[11] RANDOM.ORG: True Random Number Ser-
vice, 2013, http://www.random.org

[12] A. Rukhin, J. Soto, J. Nechvatal, M. Smid,
E. Barker, S. Leigh, M. Levenson, M. Vangel,
D. Banks, A. Heckert, J. Dray, and S. Vo “A
statistical test suite for the validation of ran-
dom number generators and pseudo random
number generators for cryptographic applica-
tions”. NIST, 2001. http://csrc.nist.gov/
rng/rng2.html.


