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S u m m a ry

In this thesis, firstly, a comprehensive review of all the existing solar powered 

refrigeration systems has been presented.

Following this four different approaches in solar powered refrigeration were 

examined by developing four different prototype systems and assessing their 

individual performances. A number o f major breakthroughs, in the field o f solar 

powered refrigeration were achieved.

Also a high output solar powered desalination unit was developed using the ground

breaking multi-cycle intermittent solar powered cooling technique used for rapid 

condensation and increased output.

Three papers have been published in connection with the works described in this 

thesis. The new pioneering approaches used in solar powered refrigeration and water 

desalination are the subject o f two patent applications.
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Abstract

Stand alone solar powered refrigeration and water desalination, two o f the most popular 

and sought after applications o f  solar energy systems, have been selected as the topic of 

research for the works presented in this thesis.

The water desalination system based on evaporation and condensation was found to be 

the most suitable one to be powered by solar energy. It has been established that high- 

output fast-response solar heat collectors used to achieve high rates o f evaporation and 

reliable solar powered cooling system for faster rates o f condensation are the most 

important factors in achieving increased outputs in solar powered desalination systems.

Comprehensive reviews o f  Solar powered cooling/refrigeration and also water 

desalination techniques have been presented. In view o f the fact that the Institute o f 

Technology, Sligo has a well-established long history o f research and development in the 

production of state o f the art high-efficiency fast-response evacuated solar heat collectors 

it was decided to use this know how in the work described in this thesis. For this reason 

achieving high rates o f evaporation was not a problem. It was, therefore, the question o f 

the solar powered refrigeration that was envisaged to be used in the solar powered 

desalination to facilitate rapid condensation o f the evaporated water that had to be 

addressed first.

The principles o f various solar powered refrigeration techniques have also been reviewed. 

The first step in work on solar powered refrigeration was to successfully modify a



conventional refrigerator working on Platen-Munters design to be powered by high- 

output fast-response evacuated solar heat collectors. In this work, which was the first 

ever successful attempt in the field, temperatures as low as —19°C were achieved in the 

icebox.

A new approach in the use o f photovoltaic technology to power a conventional domestic 

refrigerator was also attempted. This was done by modifying a conventional domestic 

refrigerator to be powered by photovoltaic panels in the most efficient way. In the 

system developed and successfully tested in this approach, the power demand has been 

reduced phenomenally and it is possible to achieve 48 hours o f  cooling power with 

exposure to just 7 hours o f sunshine.

The successful development o f the first ever multi-cycle intermittent solar powered 

icemaker is without doubt the most exciting breakthrough in the work described in this 

thesis. Output o f 74.3kg o f ice per module with total exposure area o f 2.88 m2, or 

25.73kg per m2, per day is a major improvement in comparison to about 5-6kg o f ice per 

m2 per day reported for all the single cycle intermittent systems. This system has then 

become the basis for the development o f a new solar powered refrigeration system with 

even higher output, named the “composite” system described in this thesis.

Another major breakthrough associated with the works described in this thesis is the 

successful development and testing o f the high-output water desalination system. This 

system that uses a combination of the high-output fast-response evacuated solar heat 

collectors and the multi-cycle icemaker. The system is capable o f producing a maximum 

o f 141 litres o f  distilled water per day per module which has an exposure area o f 3.24m2,



or a production rate o f 43.5 litres per m2 per day. Once again when this result is 

compared to the reported daily output o f 5 litres o f  desalinated water per m per day the 

significance o f  this piece o f work becomes apparent.

In the presentation o f many o f the components and systems described in this thesis CAD 

parametric solid modelling has been used instead o f photographs to illustrate them more 

clearly.

The multi-cycle icemaker and the high-output desalination systems are the subject o f two 

patent applications.
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Nomenclature

Eh Emissive power or radiosty Wm'2

a  Stefan-Boltzmann constant 5.6705IE-8 Wm^K"4

T  Temperature / Thickness K or °C / mm

X Wave length A

Rs Sun’s radius 1.496E11 m

Es Radiosty o f sun Wm'2

Ts Surface temperature o f  sun K or °C

E± Solar flux on a horizontal surface Wm"2

Esc Solar constant 1353 Wm'2

z  Transmission coefficient

Ri,R2 Radii o f curvature m

n Index o f fraction

F  Focal length m

C2D Concentration ratio in a two dimensional concentrator

Cio Concentration ratio in a three dimensional concentrator

Qc Acceptance angle 0 or rad

Ra Rayleigh number

q Heat flux per unit time W

L Characteristic dimension, the width o f the channel m

p Density kgm'3

viii



y Volumetric expansion o f a fluid m m"3K

cp Specific heal o f a iluid for a constant pressure J k g ’K-1

Dynamic viscosity kgnf'sec'

k Thermal coefficient o f conductivity W nf'iC 1

P Pressure Nm ’2

F Liquid filled in a heatpipe

Z Total thermal resistance K V 1

COP Coefficient o f  performance

T Temperature K o r °C

Ta Absorber temperature K or °C

Te Evaporator temperature K or °C

Md Distillate product kg sec'1

Mb Recirculation ilow kgsec'1

h Enthalpy k Jk g 1
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C h a p te r  1

In t ro d u c t io n

1.1 Background

The sun is the source o f  life and energy for all o f  the earth inhabitants. Most o f  the 

energy resources are direct or indirect results o f solar energy. Chemical energy is formed, 

through the photosynthesis process, when the sun’s rays falls on plants. This chemical 

energy helps in the growth and function o f plants. Animals in turn derive their energy 

from plants. Without the sun, plants could not grow, and life would cease to exist. For 

hundreds o f millions o f years before man first trod the earth, plants and simple-celled 

organisms had flourished. After they had died and decayed, they gradually formed 

deposits of coal, oil, and natural gas [1]. Wind results when uneven solar heating o f the 

atmosphere occurs. Wave, hydroelectric, OTEC wave and biogas are the resultants from 

solar energy. Solar energy also determines the temperature o f the earth and its 

surrounding atmosphere (various climatic conditions in various spot o f the planet).

Utilisation o f solar radiation, as a source o f energy is not new idea and can be referenced 

to ancient history with some numerous authentic evidences in the historical literature [2]. 

Perhaps one o f the most impressive examples is the optical system devised by 

Archimedes. The system consisted o f big concentrating mirrors, specifically designed, to
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repel the invading Roman fleet. In fact it is reported that he had written a book named 

“On Burning Mirrors” but unfortunately no copy remains today [3].

Mankind dependence on solar appliances has forced various inventors to devise systems, 

which are directly applicable in particular instances. Again here are numerous examples 

reported but highlighting them here is beyond the scope o f this work.

It is worth pointing out that despite the ancient history o f  the appliances and systems, 

using solar and other renewable energy resources, they have not managed to make any 

significant impact in the world market up to now. Perhaps the most convincing argument 

to this is the fact that they did not meet the most basic requirements for a product (or 

system) to be commercially viable. High cost and lack o f sufficient features to be used by 

great number o f consumers are some o f the most important factors leading to their present 

status.

The oil embargo in 1973-74 drew the world’s attention to our heavy dependence on fossil 

fuels especially oil. In fact the questions associated with fossil fuels such as their limited 

reserves, environmental & political problems and the associated hazards with nuclear 

energy have given more urgency to more meaningful utilisation o f solar and other 

renewable energy resources. The exploitation o f solar energy is a genuine contribution in 

this respect, particularly “low temperature” applications. Its application is clean, 

environmentally friendly and it is an abundant and ceaseless energy source.

One of the central questions for the long term, as far as sensible solar appliances are 

concerned, is transition to renewable energy. At present the situation does not seem 

promising in terms o f  both quality and competitiveness. According to the very optimistic 

estimations renewable energies make up between 14% to 20% o f the world total energy, 

comprising mainly hydropower [4].
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To this effect research into commercially viable solar appliances has gained more 

urgency. The works described in this thesis is concerned with design development and 

evaluation o f solar powered systems particularly solar cooling and solar desalination 

systems.

1.2 Basic Concepts of Solar Energy

Sun is a normal middle age star, formed by gravitational forces between its constituents 

and is kept from collapse by pressure o f its released radiation. As shown in figure 1.1 the 

sun comprises four regions which are core, radiation zone, convection zone and 

photosphere.

Solar energy is electro-magnetic radiation produced as a result o f thermonuclear fusion in 

the interior core o f the sun, at an estimated temperature o f  27 million°F. Nuclear fusion is 

a nuclear reaction in which nuclei are joined together to constitute heavier nuclei and 

make a heavier element, with the simultaneous release o f energy. A simple description o f 

a nuclear fusion reaction in the sun’s core region was initially expressed as [5]:

l 4
4 H => He + 2e+ + 2v + y

1 2

3



fyücrosort illustrsirion " '
Fig. 1.1 Sun and its different régions: Core, Radiation zone, Convection 
zone, and Photosphere.
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As shown in the above equation four hydrogen atoms combine to form one helium atom, 

two positrons and two neutrinos. The imbalance in the reaction arises from the release o f 

energy in the form o f gamma radiation. The released energy through this process is in the 

order o f 26.72 MeV. Thus the sun is emitting electromagnetic thermal radiation.

However, the main fusion reaction involved occurs between the nuclei o f  the two 

hydrogen isotopes, namely, Deuterium and Tritium. The reaction between two hydrogen 

isotopes Deuterium (D) and Tritium (T) in the sun’s core region can be depicted as

follows:

D + T ^  * Ha + n + Enargy

1 .2 .1  Radiation Physics

Matter emits incoherent electromagnetic radiation, usually referred to as thermal or heat 

radiation. The radiated power depends on the temperature and material properties. The 

emissive power is given by Stefan-Boltzmann law:

Eb = e. er. T* (1.1)
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where Eb is the emissive power known as radiosty, e is emissivity presenting the object 

properties, a  is the Stefan-Boltzmann constant equal to 5.6705Is 10' Win2K and T is 

absolute temperature. For a black body the value of e  is equal to unity.

According to Plank’s law the monochromatic emissive power from a black body can be 

expressed as following:

Ci

Ebx= -------------------- (1.2)

X5(eC2/lTs-l)

where Cy is 3.742xl08W.pm4/m2 and C2 is equal to 1.4387xl04pm.K.

By integration of Ebx over wave length, A, the total radiation can be obtained:

00 Ci A 5 d/1

EbX= /    (1.3)
0 (ec^ . i )

or:

Ebx = Const xT* (1.4)

This shows that Plank’s law is consistent with Stefan-Boltzmann law.

The energy flux received from the sun out of the earth’s atmosphere is constant known as

the extraterrestrial solar constant or simply the solar constant. According to the data

confirmed by NASA (NASA standard data) the solar constant is equal to 1.3530 kWm"2

[6]. Assuming the sun to be a spherical black body emitting homogeneously to space, the 

radiant flux can be expressed as follows:

0 s—47iRs.Es or Qs=4nRs <j  . Ts4 (1.5)
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where Rs is the sun’s radius equal to 6.96x108m, Es is the radiosity o f the sun and Ts is the 

temperature of photosphere.

Figure 1.2 shows the diagram of solar ray’s reaching the earth. According to conservation 

law of energy:

4 tiR s 2-E s  =  4 ttD e s 2.E sc  (1.6)

in which Esc is the solar constant, Des is the distance between earth and sun equal to 

1.496xlOnm. The value of Es and Ts can be calculated:

Es = 63.2 MWm'2 & 7>=5,777K

Therefore, the radiation coming from the sun is equivalent to that from a black body at a 

temperature of 5800K.

The spectrum o f solar radiation on the earth can be categorised as follows: 

O Ultraviolet (X< 3500Â)

© Visible (3500Â<^< 7000Â)

© Infrared (X>7000Â)

7



The ratios of total solar insolation in the earth surface are 2%, 51% and 47% for 

ultraviolet, visible and infrared, respectively [7]. Any hot object radiates energy in the 

form of electromagnetic wave.

Figure 1.3 shows the terrestrial and extraterrestrial solar energy flux at different 

wavelengths of light. The solar radiation curves peak at the wavelengths of yellow light 

in the visible section. Hence, the sun appears to be yellow. The area under the 

extraterrestrial solar radiation flux is equal to solar constant.

Radiation
intensity

'UV * Visible 1 Near-infrared

Fig. 1.3 Solar radiation at different wavelength of light

Solar radiation is received at the earth’s surface after being subjected to the attenuation, 

reflection and scattering in earth’s atmosphere. Solar radiation through its travel to earth 

is weakened by absorption. In good weather conditions, highest quantity o f the sun’s 

energy received at the surface of the earth is, at best, 1000W/m2.

Solar radiation in the atmosphere splits into two categories: direct (or beam) radiation and 

diffuse (or scattered) radiation. Direct radiation is the part o f solar radiation that strikes a

8



surface without change of direction in traversal o f the atmosphere. Scattered radiation is 

the non-directional component of solar radiation induced by Rayleigh scattering, dust, 

cloud, aerosols and the content of water and CO2 in the atmosphere. The global or total 

radiation is referred to the sum of beam and diffuse radiation.

A simple way to distinguish the beam and diffuse radiation is that the sun’s image can be 

formed through concentrating the beam component but with the scattered component of 

the solar radiation cannot form an image of sun. The ratio o f direct radiation to diffuse 

radiation varies with time and location. On an overcast day, the diffuse radiation exceeds 

the beam radiation. The amount of direct radiation diminishes as air pollution hikes. For 

a large city the ration of the direct radiation to diffuse radiation may only be on the order 

of 2 [8],

The attenuation of solar radiation passing through the atmosphere relies on various 

independent factors. The solar flux falling on a horizontal surface on earth can be 

expressed as following [9]:

Ej_ Tsc ■ Tfta ■ T03 • Ĝa ■ ?Wa■ Âe Ci- Esc (1 **7)

where E± is solar flux on a horizontal surface, Esc is solar constant and t, represents the 

individual transmission coefficients. The x-indexes are described as following:

- Ra: Rayleigh scattering by molecules of the air.

- O3: is absorption by ozone.

- Ga: absorption by uniformly mixed gases.

- Wa: absorption by water vapour.

- Ae: extinction by aerosol particles.

- C,: extinction by cirrus clouds.

Except cirrus scattering, scattering and absorption are strongly dependent on wavelength.

9



Figure 1.4 describes a breakdown of the absorptive and reflective losses due to the 

atmospheric attenuation.

1.2.2 Global D istribution o f Solar R adiation

The distribution of solar energy incident on the earth relies on the geographical situation. 

The geographical weather alternations are resulted from the earth’s atmosphere. Weather 

modifies geographical distribution of solar flux extensively. Variation in solar flux caused 

by clouds has a great influence on the performance of a solar system. If solar thermal 

collectors are assumed as linear transducers o f the sun’s energy then the average flux can 

be predicted from the average system performance.

The global annual iso flux contours of solar radiation is drawn in figurel.5. The regions 

having the highest solar flux lie in two latitude bands, at approximate 20-30°N and 20- 

30°S. There are very high insolation area’s extending over Africa, The Middle East, India, 

Central South America, southern Mexico, USA and Australia. This global distribution is 

a function of both angle of incident and weather condition. Both of these 

independent variables

10



40km (nominal lim it ol earth's atmosphere)

Absorbed
(lost)

11 -30%

Scattered to
space (lost) 
1.6— 11%

Ozone 
2 0 -4 0  km

Ozone

Air 
molecules 
0 - 3 0  km

Water
vapor

0 - 3  km

Lower 
dust 

0 - 3  km
Air

molecules

Scattered to earth 
5 -2 6 %  

(d illuse insolation)

Jet plane (12 km ) 

^•Balloon (25  km)Direct to earth 
i- K  8 3 -3 3 %  
j .J  (beam insolation)

Clouds

Water vapor 
and lower 
dust layer

Fig. 1.4 Atmospheric attenuation of solar radiation
(Reproduced from W.B. Stine and R. W. Ftarrington, 1985, 
Solar Energy fundamentals and design with computer 
application, New York, Wiley, p.84. Fig 4.9)
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fluctuate during the year. Figuresl.6.a.b.c.d show the global iso flux counter of four 

different months [10].

However, this never precludes the application of solar energy in regions with lower 

insolation. It is in fact in this context, that the design of better solar energy collection and 

distribution systems has begun to make utilisation of solar energy a feasible option.

Fig. 1.5 Global distribution of the annular solar radiation, falling on a horizontal 
surface at the ground level - Measurements are in terawatt hours per km2 per year
(Source: International Solar Collectors, Inc.)
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M ARCHD A I L Y  T O T A L  F L U X  O F D I R E C T  +  S C A T T E R E D  S U N L IG H T  ON A H O R IZ O N T A L  S U R F A C E

Fig. 1.6.a Global isoflux counter for March.

Fig. 1.6.b Global iso flux counter for June.
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D A I L Y  T O T A L  F L U X  O F  D I R E C T  +  S C A T T E R E D  S U N L IG H T  ON A  H O R IZ O N T A L  S U R F A C E  ( M j/ m 2d a y )  S E P T E M B E R

Fig. 1,6.c Global isoflux counter for September.

Fig. 1.6.d Global isoflux counter for December.

D A I L Y  T O T A L  F L U X  O F  D I R E C T  +  S C A T T E R E D  S U N L IG H T  ON A H O R IZ O N T A L  S U R F A C E  ( H J / r a  d a y )
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1.3 Solar Options and Constraints

Solar energy can be considered as an alternative, or even a substitute, for the conventional 

sources of energy in many cases. However, one must be convinced that there are 

acceptable reasons for turning from conventional to renewable energy resources such as 

solar energy. Hence persuasive answers must be found to the following questions:

O Why change?

© Why solar energy?

© What are the advantages and disadvantages of solar energy?

There is some chilling statistic in relation to the increased reliance on fossil fuel for our 

energy production. The world energy consumption has been increased dramatically in 

20th century. Over 50 years, fossil fuel consumption has increased fivefold, from 

approximately 57 exajoules in 1937 to around 282 exajoules in 1988 [11].

Fossil fuels are linked to severe environmental problems. Fossil fuels account for 90% of 

SO2 and NOx emission into atmosphere. Green house effect, global warming, acid rains 

and severe climate change especially during the recent decades are directly related to 

consumption of fossil fuels. Apart from the environmental problems, due to depleted oil 

reserves the oil era will come to an end very soon [12].

Replacement of fossil fuels for nuclear energy is considered not to be a straight forward 

and trouble free option. As the result o f Chernobyl accident at least 9 million people have 

been affected in three Republics of former Soviet Union [13]. In total, over 160,0000 km2 

are contaminated in the three republics, Belarus, Ukraine and Russia. In Belarus 30% of 

country is contaminated with caesium 137 with 46,000km2 exceeding 1 curie/km2 [14]. 

When a nuclear power plant is shut down, virtually all o f its parts must be encapsulated
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for at least 22000 years. It is therefore worth exploring the solar and other renewable 

energy options with a much research as possible.

In contrast, solar energy offers some advantages. These advantages can be summarised as 

following:

O It is abundant and ceaseless: It is estimated that the sun will stay in the main sequence 

more than five billion years radiating energy at about the same rate. The annual 

energy of the sun received by earth is in the order of 1 x 1018 kWh.

© Environmentally sensitive and safe: Unlike nuclear energy which is faced with 

dramatic environmental problems such as nuclear accidents, or fossil fuels 

environmental problems; solar energy is clean, noiseless and safe.

© Save resources: By using the renewable energy resources such as solar energy, the 

reliance on fossil fuels will eliminate.

O It protects against inflationary fuel costs and possible fuel shortage.

© Easy installation and virtually maintenance free: Installation of solar energy 

equipment is relatively easy, and since there are few mechanical or electrical moving 

parts, the maintenance expenses are relatively low.

However, despite the above-mentioned advantages, the application of solar energy is 

restricted due to a number of problems.

The initial argument against is that solar energy is expensive. High cost of the existing 

solar systems is the most important question to be addressed. Although the usage of solar 

heating panels are cost effective with an acceptable payback period but still there is long 

way to go on this issue. Applicability of solar assisted systems is restricted because of 

expenses for collectors and auxiliary systems such as storage, conversion and distribution 

systems. It is therefore, goes without saying that the only way to make solar option
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commercially viable is to come up with practical reliable solar powered systems and 

appliance affordable by a large portion of population.

Another argument against solar energy is the intermittent nature and fluctuations and the 

dilute nature of solar energy flux. The sun is just usable for few hours during a day. Also 

as pointed out earlier the solar energy flux on earth’s surface varies due to geographical, 

climate and seasonal changes. Another limiting factor in this respect is low density of 

solar energy flux. The maximum solar energy intensity assumed for design of solar 

system is in the order of 1000KW/m2. This requires the enlargement of the collection 

area or increasing the energy flux density with assistance of concentrating systems.

In addition to the above-mentioned factors, government legislation and policies have 

given advantages to fossil fuels. Many countries directly or indirectly subsidies fossil 

fuels and nuclear power. This includes tax write-off (e.g. UK oil sector’s oilrig 

decommissioning costs are offset against tax), direct subsidies (e.g. German coal support 

through a levy), preferential R&D support, and pricing systems which encourage the 

status quo. The sums are not insubstantial, amounting to more than £9 billion for the UK 

nuclear industry between 1990-1998 and more than $40 billion per annum in the USA 

[15].

17



1.4 Conversion M ethods of Solar Energy

Almost all the reported applications of solar energy are based on direct conversion of 

solar energy into:

(a) electricity, known as photovoltaic principle or PV, and

(b) heat, known as photothermal.

These topics are extensively researched and reported in literature [16,17]. They are only 

being briefly described.

1.4.1 Photovoltaic (or PV) Energy Conversion

In photovoltaic energy conversion the energy of the sun is directly converted into d.c 

electricity. This is done by using especially designed diodes, known as PV cells. Because 

this conversion is only possible when the diode is used in its so-called " reverse bias" 

mode operation they have very low efficiencies. The overall efficiencies of the widely 

used systems are less than 10-15% and those of most elaborate technology, high 

efficiency cells made from arsenide alloys, is 29.5% for a one-sun cell and 30.2% for a 

concentrator cell at 180 suns [18]. Their costs vary from US$4-7 per watt for the popular 

modules and more than US$500 per watt for the most advanced one [19].

Because of the cost constraints there is still a fair way to go before their application can 

break new grounds.
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1.4.2 Phototherm al Energy Conversion

In photothermal systems solar energy is directly converted to heat. The conversion is 

done using either concentrators or specially designed materials known as absorber or 

especially enclosure. The efficiency of these conversion systems is much higher than that 

of PV systems. They range from 25% to over 80%. The cost o f photothermal systems is 

phenomenally lower than that of PV systems.

1.5 Broad Description o f Solar Powered Applications

Both PV and photothermal systems have their own limited applications that are reported 

extensively in literature [20,17]. It must be pointed out that because of higher efficiencies 

and lower costs photothermal systems enjoy much broader applications compared to PV 

systems.

1.5.1 Application of PV  conversion

Up to about 20 years ago the only noticeable application of PV systems were in space 

technology. However, since the late 1970s applications of PV systems broke new 

grounds in vaccine preservation, rural electrification, and telecommunication, etc [21]. It 

is interesting to note that despite the high cost PV systems are, indeed, a viable option in 

locations far away from main grid network [22].
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1.5.2 Applications of Phototherm al Conversion

The application of photothermal systems dates back to ancient times. They were mainly 

heating buildings and drying. Since mid 1970s the applications of photothermal systems 

become more wide spread. The first phase of this era was in generation of moderate 

temperature <80°C water for general domestic and commercial needs. Several new 

applications reported in drying crops, cooking, cooling, and more exciting than all 

generation of electricity by generation of superheated steam [23,24,25,26].

1 .6  P r e s e n t a t io n

The main theme of the work presented in this study is concerned with potentially viable 

solar appliances from a commercial viewpoint. Solar powered refrigerators and 

desalination systems are two main applications that form the main part of the present 

work.

Since generation of thermal energy form the core of the energy supply in appliances 

described here a comprehensive review of solar heat collection system is presented in 

chapter 2. In view of the fact that the efficiency o f solar heat collection system depends, 

very strongly, on the speed of removal o f the collected heat from the collector to the 

"application point" heatpipes which are the most relevant mechanism of heat transfer (as 

far as the speed of the removal o f heat from the collectors are concerned) are reviewed 

and their merits are also assessed in chapter 2.
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In chapter 3 the principle o f operation of the refrigeration systems and a review on 

various efforts and studies that has been accomplished to adopt refrigeration technologies 

with the solar energy are presented.

Chapter 4 is concerned on the solar desalination technologies. In this chapter a review on 

distillation processes, non-thermal desalination techniques and different solar powered 

desalination systems is presented.

Chapter 5 is concerned with the development, construction and evaluation of the 

performance of the new solar power refrigeration.

Chapter 6 is focused on modification of a household refrigerator, which operates based on 

vapour comparison cycle, to be adopted with solar energy.

Chapter 7 and 8 present the works that have been done on intermittent calcium chloride -  

ammonia adsorption refrigeration system. The refrigeration systems are block icemakers, 

which are capable of production of substantial amount of ice for small communities.

Chapter 9 describes the details o f  the design of the new solar powered desalination 

system. The constructional details and evaluation of the performance of the system are 

also presented.

Finally, chapter 10 contains final conclusions and discussions, and also, suggestions for 

future works.

Three scientific papers have been published as the result of the research works presented 

in this thesis. The titles of these papers are:

• A Continuous Cycle Solar Thermal Refrigeration System
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• A Comprehensive Outlook on Solar powered Cooling Systems

• High-Output Solar Powered Desalination System 

Appendix I includes a copy of each paper.
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C h a p t e r  2

M e th o d s  o f  S o la r  H e a t C o lle c t io n



Chapter 2

M ethods of Solar H eat Collection

2 .1  I n t r o d u c t i o n

The first step in application of solar energy is the collection and conversion of solar 

radiation. The two main tasks in the design of solar energy systems are:

O Collect and convert as much as possible of solar radiation.

© Transfer and distribute the generated energy (heat) with minimum energy losses.

For implementation of the above-mentioned tasks several factors can be considered to 

improve the performance of the solar collection system. First, because of the dilute nature 

of solar energy, it is desirable to increase the density o f solar radiation. This can be 

accomplished with the assistance o f the focusing or concentrating systems. The second 

issue is to minimise the energy losses from the solar collector, and consequently, attain 

higher temperatures and efficiencies. To achieve this target, a proper insulation is an 

important factor. Also with the application o f vacuum technology in evacuated tube 

collectors the convection and conduction heat losses between absorber surface and glass 

cover is eliminated. The third category that helps to improve the efficiency of a solar 

energy collecting system is concerned to absorber surface. Absorber surfaces with specific
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optical selectivity have been developed to minimise the radiative losses. Such a design is 

often called “selective absorber surface”. This terminology has been reported in several 

articles and reference [27] is only one among many. Selectivity in the broadest definition 

refers to use of separation of the input solar spectrum from the thermal infrared emitted by 

the collector and by the environment to emphasise the desired effect [28].

2 .2  F o c u s i n g  L e n s e s

Focusing lenses may be incorporated with solar heat collectors or PV modules to increase 

the intensity of the sunlight striking the collecting surface. The performance of these 

systems relies on of the refraction of light at the interface between the air and medium of 

the lens. Although by application of focusing lenses, the solar energy intensity on the 

absorber surface can be increased, but they can only utilise the direct component of the 

total radiation. The principal of concentration in a lens is demonstrated in figure 2.1.

Fig. 2.1 Schematic diagram of a lens
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For a thin lens, in which the thickness of the lens is small in comparison to the focal length

of the system, the focal length, F, can be calculated as follows:

1 1 1
 ------= ( n - l ) ( ---------------- J (2.1)

F Rj R2

where Ri and R2 are radios of curvature for the front and rear surfaces and n is index of

refraction of material from which the lens is made.

For a thick lens in which the thickness of lens is considerable in comparison to the focal 

length of the optical system, the equation o f focal length can be expressed as follows:

1 1 1 n-1 T
 = ( n - l ) ( ----------------) + ( - ----- - ) ( -------- -) (2.2)

F Ri R2 n R1R2

where T is the thickness o f the lens.

It must be noted that the above equations refer to the focal length of the paraxial rays.

Ordinary lenses are rarely used because of their weight and high cost. Thus, special designs 

of focusing lenses are suggested [29],

One of the interesting designs of focusing lenses, especially for PV systems, is the Frensel 

lens, which features a miniatures saw-tooth design, as shown figure 2.2 [30]. When the 

teeth run are straight rows, the lenses act as line focusing concentrators; and when the 

teeth are arranged in concentric circles, light is focused at central point.
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Fig. 2.2 Schematic diagram of a Frensel lens
(Reproduced from Photovoltaic Fundamentals, Cook, G. et. al,
1990, US Department of Energy, p53)

Another design of focusing lenses is the cylindrical lens [31]. These systems are 

appropriate for solar energy collection systems as their line focus can be matched to an 

absorber pipe. Figure 2.3 shows the schematic of a cylindrical lens.

A special type of cylindrical lens is the water-filled pipe collector. As shown in figure 2.4 

the incoming radiation at an incident angle //, is refracted at an angle uj, and after the 

second refraction the ray strikes the optical axis.

2 .3  C o n c e n t r a t i n g  M i r r o r s

In addition to focusing lenses, concentrating mirrors can be utilised to increase the 

intensity of solar radiation. Perhaps one of the simplest designs for increasing the solar 

energy intensity is the usage of the auxiliary side mirrors, known as booster mirrors. This 

optical system, booster mirrors, is usually incorporated with the flat plate collectors to
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Fig. 2.3 Schematic of a cylindrical lens Fig. 2.4 A water-filled type cylindrical lens



achieve higher generating temperatures. Also application o f booster mirror in PV panels 

has been reported [32]. Although booster mirrors just softly increase the solar intensity, 

but due to their geometry, they can just softly increase the intensity of radiation. To obtain 

higher intensities of solar radiation over the collection area, or in other word to increase 

the concentration ratio, different profiles o f concentrating mirrors have been developed by 

inventors. This section is concerned on different types of concentrating mirrors and their 

practical working.

2 .3 .1  P a ra b o lic  C o n cen tra tors

Figure 2.5 shows a line imaging parabolic concentrator, and is so called because an image 

of sun is formed at its focus. The collector consists o f a cylindrical parabolic mirror 

segment, which focus the radiation onto absorber tube placed on the focal line o f the 

concentrator.

fa ra b o lic -T n iu g h  C o llecto r 

Kyat

PKiibitltf

Fig.2.5 A parabolic trough collector



There are various types of absorber tubes, which can be incorporated with the 

concentrator, including [33]:

O black absorber tube with glass sheathing 

© transparent tube with black absorber liquid 

© transparent tube with absorber star arrangement

In the transparent tube with absorber star arrangement, through the star arrangement of 

the absorber the absorption coefficient is improved by multiple reflection. If the absorber 

has an absorption coefficient (a) of 0.8, an absorption coefficient o f 0.96 and 0.99 would 

be achieved after double and triple reflection, respectively. As shown in figure 2.5 the 

concentrator can be used with a tracking system to achieve higher efficiencies and 

temperatures. Tracking systems can be either single axis- trackers or dual-axis trackers. 

Although a concentrator with a tracking system can achieve higher temperature, but it is 

more expensive and requires regular maintenance and a parasite power to operate.

Perhaps the most important application o f parabolic concentrators is in electrical power 

generation, known as line focus or distributed collector power generation system. In a 

typical line focus power plant the reflective surface of a parabolic trough concentrates 

sunlight onto a receiver tube located along the trough’s focal line and warms up a working 

fluid which is circulated through the absorber pipe. The troughs are normally designed to 

track the sun. Concentration ratios o f parabolic troughs range from 10 to 100, and 

temperature range up to 400°C. In Southern California, nine operational plants of line 

focus systems, initially developed by LUZ Ltd, are producing a total capacity o f 354MW 

to the utility grid [34], These solar electric generating systems use thermal oil as a heat 

transfer fluid. Oil is pumped through a series of conventional heat exchangers which 

generate superheated steam of 390°C to derive a turbine.
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2.3.2 Compound Parabolic Concentrators

The compound parabolic concentrator is a non-imaging concentrator sometimes known as 

Winston cusps. The CPC consists o f two symmetrical parabolic reflectors, which funnel 

the solar radiation from the aperture to the absorber. The two parabolas must satisfy two 

conditions: i- the focus of one half-parabolic profile must be placed on the other, and ti

the profile must be tilted inwards until their tops are parallel to the cusp axis. Figure 2.7.a 

shows the cross sections of a symmetrical two-dimensional nontruncated CPC.

The maximum concentration ration in a two dimensional CPC is expressed as follows:

1
C2D—  (2.3.a)

sin 6C

where 0C is the acceptance angle.

Although the concentration ratio of a CPC is relatively high, but in contrast to a simple 

parabola a CPC is very deep, and therefore it requires a large reflector area. This 

disadvantage can be offset to some extent. At the upper points of the parabolas in a CPC, 

the concentrator profile is parallel to the concentrator central axis. Thus, the upper ends 

of the reflectors contribute little to the radiation reaching the absorber, and can be 

truncated, as shown in figure 2.7.b.

The truncation reduces the reflector area and at the same time it also allows the some rays 

with larger angle of incidence to reach the absorber. This means the acceptance angle of 

the concentrator is increased, and consequently, the concentration ratio is brought down. 

Therefore, limited truncation affects the acceptance angle a little, but it does change the 

concentration ratio and the average number of reflections undergone by radiation before it
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Fig. 2.7 Compound Parabolic Collector : (a) nontruncated CPC, (b) truncated CPC



To achieve higher concentration ratios, a CPC can be used as a second stage concentrator. 

In this design, the reflection from the first stage which is a simple parabola functions as the 

source for the second stage or CPC [36]. Further investigation by Rabel and Winston 

showed that a elliptical profile, known as compound elliptic concentrator or simply CEC, 

achieves maximal concentration when used as a second stage concentrator for a flat 

absorber [37]. Figure 2.8 illustrates the application of a CEC as a second stage 

concentrator.

Also a three dimensional of the CPC can be designed by rotating the profile about its axis 

of symmetry. In this case the concentration ratio is:

1
C3D=   (2.3.b)

Sin 6c

2.3.3 Concentrators with Involute

Trombe (1957) introduced an optical system, which consisted of a cusp mirror with a 

special profile and an absorber pipe. Later in 1972 Meilnel independently discovered the 

same properties of such an optical solar collection system. The profile of the curve is the 

locus of a string unwrapped from about a circular receiver. The resulted profile is depicted 

in figure 2.9. The instantaneous profile radius of the curvature is the length of the 

unwrapped portion of the string with the centre of the curvature at its point o f tangency 

with the circle, which is also the local normal o f the cusp. The equation of the resulted 

profile, involute, can be described as follows:

reaches the absorber surface. The effect o f truncation has been extensively studied [35].
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Fig. 2.8 Off-axis parabolic trough compound elliptic concentrator



x = a (  cos <p + (j) sin <j>)  & y  = a ( sin <f>- (j) cos (j)) (2.4)

Figure 2.10 demonstrates the schematic o f a Trombe-Meinel cusp. The absorber geometry 

coincides with the circle. The acceptance angle in this case would be equal to n. Thus, 

the collector functions like a flat plate collector. The concentration ratio, ratio of aperture 

area to receiver surface area, is unity, and therefore, two dimensional Trombe-Meinel cusp 

is not really a concentrator. Still it has the advantage of minimising the heat loss surface of 

the receiver. In this case, 7id is the total perimeter of the receiver, whereas, for a flat plate 

collector of the same aperture, the effective receiving portion would be only the top of the 

heat absorbing surface, leaving the entire bottom surface open for heat losses.

It is possible to improve the flux concentration. Meinel suggested that the cusp could be 

expanded with the addition of a circular or parabolic tangent curve [38], Also the profile 

can be modified, so that the local normal remains a position just sufficient to reflect the
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incident ray tangent to the receiver surface. This design with a manual tracking system 

was used by Menon [39].

Fig. 2.10 Schematic of an involute cusp

In contrast with CPC concentrators, these collectors have a lower concentration ratio. 

CPC can offer reasonably a good concentration ratio with flat receivers, and in this case 

the involute cusp is not a suitable choice. However, Involute cusp is competitive to CPC 

in the applications involving tubular absorber. Also, involute cusp like CPCs (or CECs) 

can be used as a second stage concentrator. This design has been studied and used in a 

solar furnace by Inayatullah and Menon [39,40].
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2 .4  F l a t  P l a t e  C o l l e c t o r s

Flat plate collectors are the most extensively used solar heat collectors. These collectors 

are inherently simple and relatively cheap, and therefore, they are extensively used. These 

collectors are generally designed for applications with moderate generating temperatures, 

up to 100°C above ambient temperature [41J. Flat plate collectors utilise both diffuse and 

direct radiations, therefore they can function in cloudy or hazy conditions, however, they 

might not be able to generate a desired temperature in these conditions. The applications 

that flat plate collectors can be used are in provision of hot water, space heating, air 

conditioning and industrial process heating. The main drawbacks of these collectors are 

their low efficiencies and low generating temperatures.

2.4.1 Basic Principles o f Operation of the F lat Plate Solar Collectors

A basic flat plate collector is just a flat metal sheet appropriately blackened that could lose 

significant amounts of heat to ambient, particularly in the presence of wind. As shown in 

figure 2.11, a typical flat plate collector comprises of the following parts:

1 - Transparent cover. This is a plane glass sheet that provides the thermal protection for 

the absorber and also keeps rain and dirt away from the blackened surface. If water 

enters into the space between the collector and the cover glass it evaporates and 

subsequently condenses on the under side o f the glass sheet, and consequently lowers 

the collector efficiency. The covers must be also air-proof to minimise the convection 

losses. A collector might not have any cover (bare collector), or it might be
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Fig.2.11 Configuration of a typical flat plate collector with its 
longitudinal and cross sections.
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incorporated with one or more transparent covers. The number of transparent covers 

depends on many factors, but the main one is the temperature deference between the 

absorber surface and ambient temperature. For low temperature differences, 

AT<80°C, fewer numbers of glass plate (single- glazing) are suggested. For higher 

temperature differences, AT>80°C, larger numbers of transparent covers (double- 

glazing) are suggested. However, the augmented number of covers increases the 

prices o f collector and reduces the quantity o f incoming solar radiation to the 

absorber.

2- Absorber plate: A metal blackened surface, which collects the solar energy and 

subsequently converts it to thermal energy. The absorber plate material can be 

copper, aluminium or galvanised iron. Special absorber surfaces, known as selective 

surface, might be used to increase the absorber efficiency and temperature. There are 

a number of design principles and physical mechanisms in order to create selective 

solar absorbing surface. Some of these patterns and their properties are described as 

follows [42]:

© Semiconductor-metal tandems can provide the desired spectral selectivity in which 

short wave length radiation is absorbed in a semiconductor with the bandgap 

around 0.6eV, and because of underlying metal it has low thermal emittance.

© Multilayer absorbers can be adopted to become efficient selective absorbers. An 

example of these absorbing surfaces is AI2O3/M0 /AI2O3, which was first used in 

space technology.

© Metal- dielectric composite coating is made up of metal particles embedded in a 

dielectric host. This design takes the advantage of flexibility of solar selectivity, 

regarding to the constituents, thickness o f coating, proportion of constituents,
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The Textured surfaces can offer a high solar absorbance by multi-reflection. The most 

popular examples of texture surfaces are dendritic tungsten, texture copper, nickel, and 

stainless steel. The texture surface design is also used in the photovoltaic cells to 

minimise reflectance losses. Figure 2.12 shows six different coating and surface 

finishes for selective surfaces.

orientation o f particles and size o f the particles.
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Fig. 2.12 Schematic diagram of six different 
coating and surface treatment for selective

3- Flow tubes: The generated heat in the absorber surface is conducted via the flow tubes 

to working fluid. The working fluid is a liquid, commonly water that flows 

throughout the flow tubes. In the case that working fluid is a gas, commonly air, 

flow tubes are replaced with gas conduits (Figure 2.13).

There are number of variant designs that can be used for flow tubes [43], Figure 2.14 

shows two different designs of flow tubes. In one configuration, flow tubes are 

routed in parallel, using inlet and outlet headers, and another design is the serpentine 

pattern. Also heatpipe is utilised to transfer the generated heat from absorber surface 

[44],
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4- Insulation material-. The insulation reduces the conduction heat loss from the bottom 

of the absorber plate. The insulation materials could be glass, glass wool, or foams. A 

minimum 4" conventional insulation material provides enough insulation [45].

5- Enclosure: The Enclosure contains the absorber, the flow pipes and the insulation 

materials.

2.4.2 Flat Plate Collectors with Convection Suppresser

The performance of a collector can be improved by reducing the convective and radiative 

losses. As pointed out earlier radiative losses may be reduced by application of selective 

absorber surfaces and selective windows. There are also several methods which can be 

implemented to suppress the convection losses.

Convection is buoyancy effect that moves the heated air upward. If the heated surface 

faces down, the air layers are stable up against the heated surface, and therefore, the heat 

loss is just based on conduction. Based on this theory, the collector could be faced 

downward and the solar radiation can be beamed on to the collector surface using a 

mirror. Although this method eliminates the convection heat losses, it is restricted as a 

result o f the reflective losses of the mirror. Therefore, this procedure is suitable when a 

concentrating mirror is already being used and the reflective losses are relatively small 

compared to the convective losses.
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Also the convection heat loss depends on the shape of the heated surface and the tilt of the 

collector. The largest convection heat loss is from horizontal position. The convection 

heat losses in vertical position is 0.8 of that of the horizontal position.

Application of a second of transparent cover might assist to reduce convection losses 

between the absorber and outer glass cover. Arkon Company, in Denmark, marketed a 

flat plate collector, which used a double walled transparent cover of polycarbonated [46].

A honeycomb structure, as shown in figure 2.15, can be utilised to suppress the convection 

and radiative losses [47]. In a small vertical channel the convection does not begin until a 

certain finite temperature difference between the top and bottom of the channel. The 

convection occurs when a the Rayleigh number exceeds a minimum value, where the 

Rayleigh number can be defined as follows:

Ra = qL3 pgycp//uk2x (2.5)

where:

- q is heat flux per unit time (W)

- L is characteristic dimension, the width of the channel (m)

- p is fluid density (kgm'3)

- y  volumetric expansion of the fluid (m3rh 3K'!)

- cp specific heat of the fluid at constant pressure (Jkg^K'1)

- /u dynamic viscosity (kgm'1 sec'1)

- £ thermal coefficient of conductivity (Wm'K'1)

- x length of the channel (m)
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The suppression of convection would be effective only for small temperature differences 

between the bottom and top of the honeycomb. If the absorber temperature rose beyond a 

certain limit, then the value of the q would cause the Ra value to exceed the limit and 

convection would begin. The variation of convection heat loss for a honeycomb structure 

is shown in figure 2.16.

Also honeycomb structure reduces the radiative heat losses.

2 .5  E v a c u a t e d  T u b e  C o l l e c t o r s

The performance of a solar collector can be further improved if the air in the gap between 

the absorber and glass cover is evacuated. This would eliminate the convection losses 

between the absorber and transparent cover. Due to atmospheric pressure and the 

technical problem related to sealing, construction of an evacuated flat plate collector is not 

possible. The main problem is the fact that the flat glass sheet and other flat walls of the 

collector will cave in as a result o f the atmospheric pressure outside the collector. This 

problem can be solved by using the vacuum tubes, since a glass formed as a tube has much 

higher compression strength than one or two glass plates supported against another one 

[48]. Although evacuated tube collectors can achieve higher generating temperatures and 

efficiencies compared to flat plate collectors, but these kind of collectors due to 

application of vacuum technology are more expensive and hermetically more complex than 

flat plate collectors.
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2.5.1 Thermal Conductivity Through an Evacuated Glass Tube

The heat loss due to molecular conductivity in a collector is independent o f the internal 

pressure over a large range, and is indicated by following equation [49]:

Qc=4.186. A. (dT/dx) (2.6)

where:

- A is conductivity of the gas

- dT/dx is temperature gradient per unit of length

When the molecular mean free path is greater than collector dimensions, the heat loss 

decreases linearly with decrease of pressure, as following:

4 a  273.2
QC= . . . . . ------- . n M.P. (--------- -)1/1. (Tj-To) (2.7)

3 (2 -a) To

where:

- Tj is the temperature of the hot surface (absorber) (K)

- T0 is the temperature of the cold surface (glass tube) (K)

- P  is the internal pressure (mbar)

- is free molecule heat conductivity at 0°C (W.m‘2.mbar’1.K‘1)

- a  is the accommodation coefficient o f the hot surface

The percentage of heat loss due to molecular conductivity against the internal pressure is

2 Tshown in figure 2.17. As shown in the graph, for the internal pressure less than 10‘ torr

(1.33224xl0'2mbar) the molecular thermal conductivity, drops dramatically.

T International standard term which replaces the old term of millimeters of mercury; (ImmHg = ltorr = 
1.33224mbar).
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Fig. 2.17 Heat losses due to molecular conductivity versus internal pressure

As a result of the discussion presented above an evacuated heat collectors must be 

evacuated to levels of less than 104 torr (1.33224x 1 O^mbar), if elimination of conduction 

and convection losses is to remain in force.

It is important that the pressure inside the evacuated tube will rise as a result of permeation 

of gases, helium in particular, and also as a result of outgassing [50]. The outgasing from 

the internal components is dominated by the selective surface. A study of gas evolution 

from selective surfaces at about 280°C revealed that the bulk of outgassed species are 

H20 , CO, H2 and N2. These gases can be absorbed by a suitable getter to maintain the 

pressure inside the collector under 10‘4 torr (1.33224><10'4mbar).

2.5.2 Basic Evacuated Collectors

The first evacuated tube collector was built in 1961 by Speyer, which consisted of a strip 

of a flat plate absorber containing incoming and outgoing pipes enclosed in an evacuated 

tube [51]. The original Speyer design used a glass tube that had the lower half aluminised

46



to redirect some of the solar flux that missed the absorbing tube structure. Figure 2.18 

demonstrates a typical evacuated tube heat collector based on Speyer design, without the 

reflector. The most important problem at the time was metal glass connection which was 

overcome quit well by manufacturers of apparatus.

Since then different designs of evacuated collectors have been introduced. One of these 

designs is the evacuated collector with two glass tubes. Two different designs of this type 

of evacuated collector are shown in Figures 2.19 a and b [52], In the first design the 

vacuum region is the space between the two glass tubes, avoiding the problem of vacuum- 

tight glass-metal seal. The inner glass tube is blackened, or covered with selective coating, 

to act as the absorber. The fluid injection pipe is placed inside of the inner glass tube. In 

the second design, a copper (or aluminium) tube/fin, incorporated with a U-type fluid tube, 

is placed inside the second glass tube. Recently, in a collaboration between the University 

of Sydney of Australia, Peking University of China and Turbosun Company a series of 

high performance evacuated solar collectors based on this design have been marketed [53]. 

The outer surface of the inner tube is sputtered with an advanced selective surface, which 

assists to achieve high temperatures, up to 500°C. Some other designs of evacuated tube 

collector are introduced in reference [54],
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Fig. 2.18 An Evacuated solar collector based on Speyer design

Glass envelope

Absorbing surface
A b s o r b e r  

F l u i d  l i n e s

E v a c u a  t e d  
region

G l a s s  e n v e l o p e



Class envelope 

Absorbing surface

B a c k  r e f l e c t o r

S p l i c e  b e t w e e n

Evacua ted 
region

Inner glass envelope

Glass envelope

fluid
i n j e c t i o nLube

ine miri’ac*»

(a)

Inner Tube Vacuum Space Outer Tube

Aluminium Fin Advanced Collector Tube U-Type Copper Branch

(b)

Fig. 2.19 Evacuated collectors with two glass envelopes
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2.5.3 High Efficiency Evacuated H eatpipe Collector

Perhaps the most efficient design of evacuated tube collectors is the evacuated heatpipe 

solar tube which consists of a heatpipe inside a vacuum-sealed tube. The heatpipe is a heat 

transfer device which is able to transfer large amount o f energy with a minimum 

temperature difference between heat input and heat output. In view of the fact that 

heatpipes are an extremely important component in high efficiency solar heat collectors a 

brief review of heatpipe technology is presented in section 2.5.3.1.

As shown in figure 2.20 each tube contains a sealed metal pipe attached to a blackened 

metal strip. The condenser of the heat pipe protrudes out from the top of the glass tube 

[55].

There are two alternatives for the absorber fin and heatpipe assembly. The first choice is 

the system whereby the heatpipe is sandwiched inside an aluminium absorber fin. This 

ensures a full contact between the absorber strip and the heatpipe. In the second choice 

heatpipe is stitch welded to the absorber. In this approach the only thermal contact 

between the heatpipe and the absorber fin is via the thin stitch line of welding between the 

two. There are also different designs of the condenser of the heat heatpipe.
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Fig. 2.20 A typical evacuated solar collector with heatpipe (designed by Ecotherm)
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2.5.3.1 H eatpipes

The concept of heatpipe was first introduced by R. S. Gaugler in 1942 [56]. Heatpipes are 

passive heat transfer devices, which operate by a process of evaporation and condensation 

of a fluid circulating within a sealed cavity. A typical heatpipe consists o f two main 

sections, namely evaporator and condenser. Many heatpipes also have an adiabatic region, 

which separates the evaporator and the condenser. Some heatpipes are incorporated a 

wick lining to improve working fluid circulation. Figure 2.21 shows the cross section of a 

typical heatpipe.

Fig. 2.21 Cutaway section of a heatpipe

The liquid/vapour phase change induced by applying of heat, enables large energy levels to 

be transmitted in the vapour phase, when a minimal temperature gradient exists. 

ISOTERIX Ltd. has introduced heatpipes that operates at an overall temperature
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difference of less than 2°C [57]. The pipe generally has the length to diameter ratio (L/D) 

in the range of 10 to 100 [58]. In the case that L/D < 10 the heat transfer device is called 

vapour chamber. Heatpipes have been constructed with diameters varying from 2mm up 

to almost lm and with length to diameter ratios from 0.1 up to 450. In theory, the 

pressure inside the pipe is constant, and therefore, the temperature of boiling fluid is the 

same as condensing fluid. However, for efficient operation a temperature deference is 

demanded between the boiling and condensing part. Another temperature difference is 

required to transfer heat sufficiently from the heat sink and to the evaporator. In fact, 

what makes the heatpipe unique is that it can transfer a large amount of heat as compared 

to a solid bar of materials with high thermal conductivity. For example, a cylindrical 

heatpipe can be designed to have an effective axial thermal conductivity 300 time that o f a 

copper bar having the same dimension [59].

The operating fluid is circulated with assistance o f different forces including capillary 

forces, gravitational forces, rotationally induced forces and sometimes electrostatic or 

osmotic forces.

The main advantages of the heatpipe are summarised as following:

O Long operation life.

© Since there is only a minute amount of liquid present, there is little possibility of 

corrosion.

© A Heatpipe is a unit with high thermal conductance.

© A Heatpipe is an appropriate heat transfer device for applications with low temperature 

gradients between the heat sink and the heat source.

Since heatpipes are high conductance devices, they have been successfully used in high
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efficiency solar collectors in both flat plate and evacuated tube types.

2.5.3.1.1 Basic Theory o f  Heatpipe

The heatpipe must be designed to achieve a maximum effective pumping pressure. In the 

typical heatpipes used in solar collectors, the effective pumping pressure is made up of 

three components, namely the capillary (Pc), axial (Pa), and the normal (Pn) pressure. 

Figure 2.22 shows the free diagram o f a heatpipe.

As shown in free diagram, the pumping pressure can be calculated as following [60]:

The three components in the right side of the above equation are given as follows:

Condenser

Fig. 2.22 Longitudinal diagram of a heat pipe

Pp=Pc+Pa+Pn (2.8)

2 a
Pc= (2.9)

Pa=pi.g.L.sin(/> (2.10)
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Pn=pI.g.Dv.COS</> (2 .1 1 )

where:

- a  is the surface tension.

- rc is the radius o f the wick.

- pi is the density o f the liquid.

- L is the length o f the pipe.

- Dv is diameter o f the vapour space.

- <p is the angle o f  pipe makes with horizontal.

In the absence o f weak structure, the pumping pressure is just as the resulted from a 

positive gravitational head. This can be expressed as follows:

Pp=Pa+Pn (2.12)

2.5.3.1.2 Classification and Applications

Heatpipes are categorised according to deferent characteristics, such as the temperature 

range o f operation, the degree o f thermal resistance variation, geometrical characteristics 

o f the heatpipe, elements o f construction.

Heatpipes are classified based on their operating temperature in three categories, as 

follows [61]:
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O High temperature heatpipes, 355°C < T < 2725°C. The working fluids for this 

temperature range are: Mercury, Caesium, Potassium, Sodium, Lithium, Gallium, 

Silver and Indium.

© Moderate temperature range heatpipes, -150°C <  T < 355°C, where the working 

fluids for this temperature rang are: Acetone, Ammonia, Freon, Methanol, Water, 

Dowtherm.

© Low temperatures are cryogenic heatpipes with operating temperatures ranging 

between -267°C < T < -150 °C. The working fluids for this temperature range are: 

Hydrogen, Neon, Nitrogen, Oxygen and Methane.

The type of heatpipe applied in the solar collectors belongs to the medium temperature 

range heatpipes. In solar collector’s design the condensation zone is at the higher level 

than evaporator section, and therefore, the gravitational force helps the circulation of 

condensed fluid. Hence, commonly solar collators the heat transfer device is without wick 

structure and it is known as two phase-closed thermosyphon.

Application of heatpipe is not restricted as a heat transfer medium in solar collectors and 

they are used in extensive range of applications. Heatpipes are designed to satisfy one or 

more of the following conditions:

© Perform as a very high thermal conductance.

© Achieve an isothermal surface at low thermal impedance, thermal flattering.

© Act as a thermal flux transformer.

© The ability to keep a constant source temperature under condition of heat input 

fluctuations.

© Behave as a thermal diode or switch.
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2.5.3.1.3 Two phase-closed Thermosyphon

Two phase-closed thermoshyphon is a heat transfer device, which performs same function 

as heatpipe in which circulation of liquid instead of capillary forces relies on gravity forces. 

Therefore, the condenser must be situated at a higher level than the evaporator. The 

thermo syphone must not be confused with gravity assisted heat pipe, since the circulation 

of the working fluid in gravity assisted heatpipes is resultant from the combination of the 

capillary and the gravity forces [62]. A typical thermosyphon comprises of a circular tube 

with uniform cross section and a working fluid. The inclination angle varies between 5° to 

90°. Figures 2.23.a and 2.23.b show the cut away sections of a vertical and tilted 

thermosyphon, respectively.

In a thermosyphon, liquid must be distributed uniformly over part of evaporator not 

covered by pool. In the case of inclined thermosyphon, used in solar collectors, to 

improve the liquid contact with evaporator surface, creating spherical grooves or 

installation of a wick lining along the evaporator section is suggested.

The quantity of working fluid in the tube is an important factor in the performance of the 

thermosyphon. The insufficient amount of liquid inside the tube leads to dryout and excess 

must be avoided because any liquid carried up into the condenser reduces the performance 

by rendering the covered area of the condenser virtually useless. The liquid filled defined 

as the ratio of the volume of the liquid in an unheated pipe, Vi, to the volume of the 

vapour:
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Fig.2.23.b Cross section of a tilted heatpipe
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V,
F - -------

A le
(2.13)

The heat transfer via heatpipe can be characterised with the overall thermal resistance. The 

relationship between the heat transfer rate and overall thermal resistance can be expressed 

as follows:

AT
Q = (2.14)

The thermal resistance diagram of a thermosyphon depicted in figure 2.24. The values of 

thermal resistors can be estimated by using equations driven in literature [63],

Evaporator liquid-vapour 
interface

Evaporator film 
(transverse resistance) <  ‘ 3

Evaporator wall 
(transverse resistance)

Source-evaporator 
external surface <  zi

Tv

-AAA-

Vapour pressure 
drop

‘io

Wall
(axial resistance)

Heat source

Condenser wpour-liquid
*6 ^  interface

Condenser film 
(transverse resistance)

Condenser wall 
(transverse resistance)

!> Condenser external 
*9 S  surface-sink

QI

Heat sink

Zi and Z9 The thermal resistance between the heat source and evaporator and between condenser 
and heat sink.

Z2 and Z8 The thermal resistance across the thickness of the container wall in the evaporator and 
the condenser.

Z3 and X12 The internal thermal resistance of the and the condensing fluid

Z4 and Zg The thermal resistance occurs at vapour—liquid interface in the evaporator and 
condenser.

z 5 The effective thermal resistance due to the pressure drop of vapour as it flows from 
evaporator to condenser.

Zio The axial thermal resistance of the wall of the container.

Fig. 2.24 The thermal resistance diagram of a thermosyphon
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2.5.3.1.4 Selection o f  Working Fluid

One of the important factors in the function of a heat pipe (or thermosyphon) is related to 

the working fluid’s properties. The selected fluid must have a melting point temperature 

below and a critical point temperature above the operating temperature. The critical, 

normal melting and boiling temperatures of a number of working fluids is reported in table 

2.1. Recently, environmentally friendly substitutes for some of the CFC gases have been 

introduced.

Operating
Temperature

Critical 
temperature (°C)

M elting 
poin t (°C)

Boiling 
Point (°C)

Acetone
(C3H 60)

236 -95 56

Ammonia
(NH3)

132 -78 -33

Freon 11 
(CClz)

198 -111 24

Methanol
(CH4)

240 -94 65

Water
(H20 )

1165 0 100

Table 2.1 Critical, normal melting and boiling points for working fluids of moderate 
temperature heatpipe ( Heat and Electricity from solar Energy, Solar Enrgie- Technik 
GmbH)

2.5.3.1.5 Operating Limits

Although heat pipe is a very high thermal conductance heat transfer device, but the rate of 

heat transfer along a heatpipe (thermo syphon) is subjected to a number of maxima, known
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as “operating limits” [64]. These limits are originated from the fluid mechanics principles 

and resulted from a break down or a rate limit in circulation of a working fluid.

The lowest limit at any given operating temperature defines the maximum rate o f heat 

transfer at the operating temperature. The operating limit in two phase closed 

thermosyphon are expressed as follows:

Entrainment limit

As vapour and liquid flow in the opposite directions, a shear force exists at the liquid- 

vapour interface. If the vapour velocity is adequately high, a limit can be reached when 

liquid is tom from the liquid-vapour interface of the wick and entrained in the vapour.

Drvout limit

When the liquid fill is not sufficient to cover all the pipe wall above the pool, most of the 

liquid evaporates before it reaches the pool and leads to dryout.

Sonic limit

In a heatpipe, the vapour stream accelerates and decelerates, as a result of addition and 

removal of the vapour, respectively. This causes velocity variations along the pipe. The 

maximum mass flow rate is attained when the exit velocity of evaporator reaches the local 

sonic velocity.
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When operating a heat pipe or thermosyphon at a pressure below atmosphere, the pressure 

drop of the vapour may be significant in comparison with the pressure in the evaporator.

Boiline limit

The boiling limit occurs when a stable film of vapour is formed between liquid and the 

evaporator surface. The boiling limitation is a limitation of radial heat flux density, while 

others are limitations of the axial heat flux.

2.6 Composite Evacuated Collectors

Evacuated collectors can be incorporated with line focus concentrators to achieve higher 

temperatures and efficiencies. This combination is known as composite evacuated 

collector.

O’Gallaher et al. (1980) have shown that for a tubular absorber, the reflector shape leading 

to a maximum absorption of radiation by cylindrical absorbers is an involute [39]. The 

characteristic and geometry of the concentrator with involute profile is discussed earlier in 

section 2.3.3.

Although integration of evacuated tube collectors and reflectors yields to higher 

temperature, but this increases the associated expenses of these systems.

It must be pointed out that since reflectors can only perform under direct sunshine 

conditions these systems are not suitable under diffused solar radiation.

Vapour pressure limit
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2 . 7  C o n c l u s i o n

In summary, the solar heat collection system can be listed as follows:

1 - Flat plate collectors.

2 - Evacuated tubes

3 - Concentrating collectors

4 - Composite Evacuated collectors

Selection of an appropriate solar heat collection system relies on several factors including 

generating temperature, application, costs and climate condition. Each of the above- 

mentioned systems has some advantages and disadvantages in contrast to others. Flat 

plate collectors are suitable for applications with moderate generating temperature (up to 

100°C). These systems can utilise both direct and diffuse components of solar radiation, 

and they are relatively cheap. The main drawbacks of these collectors are their poor 

efficiency and limited generating temperature.

For application with generating temperature higher than 120°C evacuated tubes are a 

perfect selection. These collectors can produce temperatures up to 500°C. Due to 

application of vacuum technology the heat losses from the collector are minimised, and the 

collector enjoys a high efficiency. Also they can perform in cloudy climates. The main 

drawbacks for these systems is their high initial cost and their relatively complex 

manufacturing process.

Concentrating collectors like evacuated tubes, are also used in applications with high 

generating temperatures. Although these systems enjoy high efficiencies, but they can not
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perform under cloudy climates, since they can only utilise the direct component o f the 

solar radiation. To achieve higher temperature and efficiencies, concentrators can be 

coupled with tracking systems . However, this increases the total cost of the system and 

also the tracking system requires regular maintenance.

The last category of solar heat collection systems is the composite evacuated tubes. 

Although these systems are very efficient, and they can generate very high temperatures, 

but they are restricted due to their high costs (higher than evacuated tubes), and due to the 

limits of concentrators.
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C h a p t e r  3

R e v ie w  o f  S o la r  C o o lin g  S ys te m s



Chapter 3

Review  of Solar C ooling System s

3 .1  S o la r  C o o l i n g

Cooling systems have taken a major part in improvement of living standards and 

development in the world. The necessity o f cooling systems applications is extended in 

many fields such as food and medicine preservation, air conditioning etc.

Refrigeration and air conditioning are two distinct but related fields in cooling. 

Refrigeration in the engineering sense can be described as “maintaining a system at a 

temperature less than the temperature of the surrounding” [66]. Thus, refrigeration is the 

process of removal o f heat from a low temperature sink to a high temperature sink. Air 

conditioning is defined as “provision of a comfortable indoor environment by 

replenishing, heating, cooling, humidifying, or dehumidifying the atmosphere” [67].

According to Clausius statement of second low of thermodynamic “It is impossible to 

construct a device that operate in a cycle and produces no effect other than transfer of 

heat from a cooler body to a hotter body” [68], This statement is related to refrigerator 

(or heat pump) and states that it is impossible to construct a refrigerator without an input 

of work.

Conventional refrigeration systems are driven either by electricity or with the heat
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generated from burning fuels. Unfortunately the dilute nature o f  the solar energy that 

reaches our planet and also its intermittent nature make it impractical and commercially 

viable to operate the existing conventional cooling and refrigeration systems with solar 

energy. However, it would be a fare comment to say that solar cooling and refrigeration 

is nothing other than modification o f some o f the available conventional technologies to 

be powered by solar energy. In fact the main theme o f the challenge in the field o f  solar 

powered cooling is the Research & Development to result a practical and commercially 

viable system.

In recent years, great attention is shifted toward solar cooling appliances and considerable 

R&D programmes have been focused to develop a viable alternative cooling systems. 

Although solar cooling technologies have not, so far, improved enough to make them 

commercially viable, but they can be competitive in special applications. These systems 

are viable and practical in the isolated and remote regions o f  world that have no access to 

a utility grid and suffer from inadequacy o f fuel transportation. The potential areas that 

solar cooling can be successfully applied, so far, are storage o f vaccine, food preservation, 

ice production and air conditioning.

There are five main types o f design in autonomous solar power refrigerators. The 

processes by which cooling is obtained include mechanical vapour compression, vapour 

absorption, humidification-dehumidification (desiccant cooling), adsorption and vapour 

jet. The systems described in this chapter are those with greatest potential for adoption to 

solar power.
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3.2 V apour C om p ression  C oolin g  System s

Vapour compression cooling cycle is the most known refrigeration cycle, being used in 

domestic and many other refrigeration systems. The flow diagram o f a conventional 

vapour compression system is brought in figure 3.1. The refrigeration cycle can be 

divided into two zones, high and low pressure zones. The incoming low-pressure 

refrigerant vapour from evaporator is pressurised in compressor. This compression (or 

pressurisation) process is associated with an increase in temperature. An ideal 

compression is assumed as a reversible and adiabatic process. However, a real 

compression process is neither reversible nor adiabatic, as a result o f changes o f 

refrigerant entropy due to heat transfer between the compressor and environment. After 

compression, the high pressure refrigerant vapour flows into the condenser and by 

contacting to the condenser walls gets cold and condenses. Then the liquid refrigerant 

passes through the expansion valve, and partially evaporates. The complete evaporation 

occurs in evaporator when the low pressure liquid absorbs the heat from the low 

temperature sink (or cooling box). The refrigerant vapour returns to compressor and 

cycle repeats.

Conventional vapour compression systems are electrical powered. They have also been 

adopted with solar energy. In this case, the system is operated either by PY panels in 

which solar energy provides the required electrical power for operation o f compressor, or 

the generated heat o f photothermal conversion powers a heat engine driving the 

compressor. Perhaps the main advantage is that the refrigeration system could be built 

from commercially available components using the standard layout.
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Fig. 3.1 A conventional vapour compression refrigeration system



For adoption o f a conventional compression cooling system with PV panels several 

modifications and changes must be accomplished. The a.c. compressor must be replaced 

with a special d.c. powered compressor. However, by application o f an inverter, there is 

no need to change the a.c. compressor with a d.c. compressor. Also because of the 

intermittent nature and continuous variation o f solar insolation presence o f batteries and a 

regulator is necessary. The schematic o f a Photovoltaic refrigeration system is shown in 

figure 3.2.

A particular novel new approach to the development o f  a new exciting low cost 

modification o f existing conventional compression cooling system was carried out in IT 

Sligo by the author. The assessment o f the new novel approach together with that o f the 

engineering economics o f the project indicates a new and exciting development in the 

field o f solar cooling and refrigeration with reliability and cost-effectiveness being the 

major governing parameters. The development and evaluation o f this new novel systéftl 

is discussed in details in Chapter 7.

Photovoltaic powered refrigeration systems enjoy number o f advantages and suffer from 

some disadvantages. PV systems are reliable and they require low maintenance costs. 

However, the price o f generated electricity by PV technology is still high. Also the 

efficiency o f the solar cells used in such applications is quite low and glides between 15% 

to 20% at low light and full sunshine, respectively. It must be noted the price o f 

photovoltaic has been decreased dramatically, over the past years. According to a report 

from the World Bank in just 15 years the price o f photovoltaic models had a decrease by 

a factor o f 10 [69], PV systems are commercial in cases that extending the power lines is 

very expensive (more than one-quarter mile away from grid) and for optimum system 

performance PV modules should at least have a full daily exposure about 5 hours,
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Fig. 3.2 Schematic of a photovoltaic powered refrigeration system



all year. Therefore, it can be argued that PV systems are desirable in especial applications 

in the remote regions. Perhaps preservation o f vaccine can be referred as the most 

important application o f PV powered refrigerators [70,71,72].

The second option to run a vapour compression refrigeration system with the assistance 

o f solar energy is to couple the compressor with a heat engine. A typical solar thermal 

powered vapour compression system consists o f these subsystems: 1- solar collector 

array. 2 -  heat engine. 3 -  a vapour compression refrigeration system. There are two 

types o f heat engines, which have been suggested and incorporated with vapour 

compression systems: Rankine heat engine and Sterling & Bryton heat engine. Sterling- 

Bryton heat engines perform superior at energy input temperatures over 200°C, whereas 

Rankine heat engine is more efficient at temperatures below this temperature. Hence, 

Rankine engines are more interested and most efforts on adoption o f a vapour 

compression cooling systems with solar-thermal power have been focused on this type o f 

heat engine. A typical Rankine engine vapour compression cooling system is depicted in 

figure 3.3.

Prigmore and Barber introduced a solar powered Rankine cooling system [73]. The 

system used 58m2 o f flat plate collector which was coupled to the 3 ton (10.6 kW) 

Rankine cooling system. The evaporating temperature was 7°C and condensing 

temperature o f 20°C was recorded. The Rankine cycle efficiency was about 11%. A COP 

of 7.4 for air conditioning and a total solar COP o f 0.2 were quoted.

The solar thermal powered vapour compression systems encounter with some drawbacks 

and disadvantages. The efficiency o f a heat engine is limited with unachievable Carnot 

efficiency (rf=l- T l/T h ) and for increasing the efficiency higher generating temperature is 

required which cannot be produced by flat plate collectors. Also the energy losses of
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photothermal conversion lower the overall solar COP. Aside from the poor performance, 

heat engines are relatively complicated and require regular maintenance.

Fig. 3.3 Schematic diagram o f a solar driven Rankine engine Vapour compression 
cooling system (Engineering principles and concepts for active solar systems, Solar 
Energy Research Institute, Hemisphere p. 90)
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3.3 D esiccan t C oolin g  System s

In regions with high humidity, the ambient air contains a large amount o f moisture. This 

moisture is a serious problem for both human comfort and air conditioning systems. 

Therefore, in places with high humidity direct evaporative cooling systems are not 

suitable for human comfort and health. For places with this climate condition, desiccant 

cooling systems are desirable.

In a typical desiccant system, the moisture, latent load, in the process air is removed by a 

desiccant material in a dehumidifier. A sensible cooler like a heat exchanger or an 

evaporative cooler reduces the temperature, sensible load, o f  the dried process air. The 

desiccant material in the dehumidifier is regenerated. Therefore, the basic component of 

a desiccant cooling system are as follows: 1 - a dehumidifier, 2 - a sensible cooler, 3 - a 

regenerator.

Desiccant systems enjoy a number o f advantages. Because o f separate humidity and 

temperature control better humidity control is possible. Also application o f CFCs is 

reduced when a desiccant system is incorporated with a vapour compression cooling 

system or eliminated when it is coupled with an evaporative cooler.

A desiccant material must satisfy a number o f  properties including noncorrosivity, 

nontoxicity, and chemical stability. Desiccant materials are either solid or liquid. In solid 

desiccant systems, air is directed through the bed o f desiccant, which is loaded in a 

rotating disc. The disc rotates between the regeneration air steam and process. In liquid 

desiccant systems, the air is dehumidified by contact with a strong solution o f liquid 

desiccant on removal o f  moisture and weakens the solution. The dilute solution is then 

directed to a regenerator, where heat drives the moisture and strengthens the solution.
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The minimum required generating temperature for solid desiccant is about 70°C, and in 

the case o f liquid desiccant is around 50°C to 60°C [74],

Desiccant cooling systems split into open cycle systems and close cycle systems, where 

desiccant material can be either solid or liquid.

Open cycle systems have been investigated extensively, and different design 

configurations have been proposed. Among several open-cycle solid desiccant systems, 

Penington (Ventilation cycle), and Recirculation cycle have been paid more attention. 

The schematic diagrams o f these systems are shown in figures 3.4 and 3.5. In the 

ventilation mode fresh air is continuously introduced into the conditioned space and 

exhausted to the ambient air. In recirculation mode the output air from the conditioned 

space is reintroduced after being reconditioned. Analytical studies indicated a superior 

performance o f  ventilation cycle to recirculation cycle [75]. Hence, most o f the works on 

open cycles with a solid desiccant have been carried out on Penington cycle. American 

Solar King Co. , in 1984, introduced a packaged desiccant cooling/heating system for 

residential application [76]. The system used a lithium chloride impregnated honeycomb 

wheel that could be regenerated with solar energy or natural gas. A thermal COP around 

1 was achieved with a nominal 3 to 4 ton cooling effect.

These systems have been discussed in more details by Kreith & kreider [77] and Pesaran 

et. al [78].
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Fig. 3.4 Schematics o f  the ventilation cycle

Fig. 3.5 Schematics o f the recirculation cycle
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As pointed out, in open cycle liquid desiccant systems liquid desiccant is splashed over 

incoming air and absorbs the moisture. Then the diluted solution is directed to a 

regenerator where heat is applied and strengthens the solution again. An example o f an 

open cycle liquid desiccant system is given in figure 3.6.

Pump

Fig. 3.6 Example o f a liquid desiccant cooling system

Liquid desiccant systems have not been extensively investigated in past, because o f their 

predicted modest COP. However, liquid desiccants enjoy some advantages over solid 

desiccants. As energy stored in the form o f chemical energy rather than thermal energy, 

the reliance on the continuous thermal energy is reduced, and the amount o f energy stored 

is greater. Liquid desiccants do not require complex dehumidifier geometries as the 

desiccant is usually sprayed over the incoming air and can be regenerated on relatively 

inexpensive open-flow collectors or tanks. Liquid desiccant systems also offer greater 

design flexibility than solid systems because the component can be installed in different 

locations and the liquid can be pumped between them. The main draw back o f liquid 

systems is their large size at low capacities. They can also have carry over problems or
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corrosion problems if not designed properly.

In fact, there are a few solar powered liquid desiccant cooling systems worthy to mention. 

A commercially available liquid desiccant cooling system has been reported using 92% 

tetraethylene glycol solution. The system was coupled with flat-plate collector arrays with 

generating temperature o f about 80°C with a thermal COP o f 0.5 [79]. A group o f 

researchers in Colorado State University have investigated and field-tested a solar 

powered liquid desiccant system which employed commercially available dehumidifying 

equipment using trithylene glycols as desiccant [80],

The operation o f closed cycle solid desiccant cooling systems is similar to that o f 

thermally activated heat pump. The cooling and heating effects are achieved by 

evaporation and condensation o f  an absórbate (as refrigerant) on the walls o f  desiccant 

container. The major investigation on this system is contributed to the Zeopower [81].

3.4  A d sorp tion  C oolin g  System s

Adsorption is defined as a reversible process by which molecules o f a fluid are fixed onto 

a solid matrix, typically a surface or a porous material. It must be noted that there is no 

chemical combination between the fluid and solid substance. Adsorption cycles for 

refrigeration were first introduced in early 1900’s by Plank and Kuprianoff [82]. An 

adsorption cooling unit consists o f a condenser, an evaporator plus one or several 

absorbers. The main difference between vapour compression cycle and adsorption cycle 

is that the mechanical compressor in vapour compression cycle is replaced by a thermal 

compression system. Figure 3.7 illustrates how an adsorption cooling cycle operates.
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Because o f adsorbent loading, adsorption cycle operates intermittently.

The cycle operates in two phases. Initially system is in the low pressure, and, the 

temperature is equal to the ambient temperature. As the adsorber is heated up, pressure 

increases. Although in theory during the pressurisation, concentration is assumed to be 

constant, but in fact, pressurisation process gives associated decrease in concentration. 

As more heat applied to the absorber, the temperature continues to increase and more 

refrigerant is desorbed. When pressure o f the system reaches to the saturation pressure, 

the refrigerant condenses. As more heat is put into adsorber more refrigerant is drawn off 

and condenses. In this stage, the pressure o f  the system is stabilised. This phase stops 

when the desired adsorbent temperature is attained. At this stage refrigerant 

concentration in adsorber is minimum.

The second phase starts when adsorber is cooled back or releases heat. This causes the 

pressure drops from the condensation pressure down to the evaporation pressure. This 

period is equivalent to the expansion in compression cycle. As the adsorber continues 

rejecting heat to the ambient, it starts adsorbing the surrounding gas. Since the pressure in 

the evaporator is less than the saturation pressure o f the liquid refrigerant some o f the 

refrigerant evaporates and causes the cooling effect.

Adsorption cooling systems are inherently simple. For operation o f these systems no 

auxiliary electricity or cooling water is required and there is no moving component in the 

system. Also they avoid certain problems associated with basic intermittent absorption 

system such as need for a rectifier, and liquid seals and check valves to ensure mixing o f 

solution during absorption. Since they eliminate use o f CFCs and HCFCs, these systems 

are environmentally sensitive. The main disadvantages o f these systems are intermittent 

nature o f the cycle and large amount o f  the adsorbent/refrigerant, even for a small load.
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Solar energy has received a great interest as an energy source for the operation of 

adsorption cooling systems. This is primarily due to the intermittent nature o f the 

adsorption cycle coinciding with the nature o f the energy source, sun. Different designs 

o f solar adsorption systems have been introduced by researchers and various 

refrigerant/adsorbent pairs have been investigated.

An intermittent charcoal-methanol adsorption system was designed and constructed and 

tested in AIT (Asian institute o f technology) [83], The system was using 15 copper tubes 

with the length o f 1.2 m and diameter o f 54mm housed in a galvanised iron sheet with a 

single glass cover as solar collectors, with effective area o f lm 2 with efficiency varies 

between 33% to 44%. The collector tubes contain 17.8kg activated charcoal. The system 

was using a water-cooled condenser. Evaporator temperature is reported below -7°C with 

minimum -12°C for some nights, and system was capable to produce 4kg ice per night. 

Some modifications on the initial design were accomplished. Modifications were: 

redesigning of the receiver and the evaporator for improvement o f  ice production and 

handling the greater amount o f methanol, replacement o f copper tube with the other type 

o f metal tube to prevent formation o f formaldehyde and dimethyl ether.

Also some studies on activated carbon has been carried out in University o f Warwick. 

Critoph reported the design and manufacturing o f a prototype ammonia carbon adsorption 

unit [84]. The adsorber consisted o f 15 stainless steel tubes, each 2m length with o.d of 

42mm and 1.1mm wall thickness covered with a selective coating. The unit was tested 

under several laboratory conditions. For the sinusoidal variation over 10 hours with a 

peak o f 942 W/m2 a maximum collector temperature o f 145°C was achieved, after 5 hours 

insoltaion. For this test the collector was isolated from the cold box for six hours whilst 

the collector allowed to cool down. Then the isolated valve was opened to achieve the
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maximum rate o f cooling. The evaporator temperature dropped rapidly to -1°C with 

production o f 3Kg ice. A cycle COP o f 0.22 and an overall radiation COP o f 0.06 have 

been calculated.

Recently, Critoph and Telto reported a study o f a adsorption cooling system with different 

collectors [85]. The types o f collector were single glazing, double glazing and single 

glazing with transparent insulation material which is a 1 OOrnm polycarbonate honeycomb. 

The collector comprised fifteen 44mm o.d stainless tubes 2m in length with collecting 

area o f 1.43m2. The surface was coated with selective surface film (a=0.93). The 

condenser was stainless steel tube with 12.5mm in diameter and length o f 2m coiled 

above the receiver in a water tank. The solar simulator consisted o f 48 incandescent 

100W lamps with the maximum radiation equal to 969W/m2. The radiation was 

increased from zero at 6:00 a.m. to a maximum 960W/m2 in the midday and falling to 

zero at 6:00 p.m. the result o f the tests are tabulated as follows:

Parameter Single glazing Double glazing Single glazing with TIM

Cycle time (h) 24 24 24

Condensing temperature (°C) 46 32 40

Evaporating temperature (°C) 0.9 0.7 0.9

Ammonia mass collected (g) 968 1109 723

Solar heat input (MJ) 19.8 19.8 13.8

Refrigerating load (MJ) 1.2 1.4 0.9

Solar COP 0.061 0.071 0.065
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Z. Chang and L.Z. Fu constructed a solar assisted carbon-methanol adsorption system 

[86]. The solar collector-adsorber comprises o f  the absorber in the shape o f a steel 

rectangular box covered with selective paint (a  >0.9, e<0.65) and a single glass cover 

with a V corrugated transparent Mylar film. Also the collector had two windows in the 

lower and upper sides for cooling the adsorber during the night. The absorber contained 

17Kg o f activated carbon. The tests revealed that the desorption started at 10:00am and it 

ceased at 4:00pm. The maximum collector temperature o f 105°C during the test period 

was recorded and a maximum Solar COP o f 0.111 against a collector temperature o f 80°C 

with the ambient temperature varying in the range o f  11-25 was estimated. They also 

carried out a computer simulation analysis. It was defined that a maximum COP of the 

adsorption cycle (around 0.5) can be reached under the desorbing temperature o f 110°C.

Another refrigerant-adsorbant pair which has been studied by researchers is the zeolite- 

water pair. An early design o f a solar powered zeolite-water adsorption cooling system 

have been investigated by Zeopower Company and Tchernev [87]. The system was using 

0.7m2 o f  flat plate collector holding 36Kg zeolite. The maximum collector temperature o f 

121°C and a solar COP in the range o f 0.12-0.15 were reported. A space o f volume 0.1m3 

was cooled with production o f 6.8Kg inaccessible ice. Further investigation on zeolite- 

water pair has been done by Grenier et.al [88], The unit was a 12m3 food preservation 

using 0.8m2 o f flat plate collectors with 23 kg zeolite 13X. An overall solar COP of 

0.097 for the system was recorded.

Also adsorption cycle studies on activated carbon- freon and zeolite- freon have been 

reported [89,90].
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3.5 Absorption Cooling Systems

Absorption cooling systems operate based on the same principle as the adsorption cooling 

systems. Michael Faraday discovered that some vapours like ammonia can be sorbed by 

solids or liquids such as silver-chloride at low temperature and desorbed in high 

temperature. Therefore, the compression work would be reduced if refrigerant is 

dissolved in medium liquid before compression process and drawn off after compression. 

However, it must be noted that desorption is an endothermic process, and therefore, heat 

is required to draw off the absórbate, or refrigerant, from absorbent.

3.5.1 Continuous Pum ped A bsorption Cooling System s

The continuous pumped cycle is the most commercial and popular design o f absorption 

cooling systems. In this design the presence o f a pump for creating the required pressure 

difference between the low pressure side and the high pressure side o f the system is 

necessary. The schematic diagram o f a continuous pumped refrigeration unit is shown in 

figure 3.8. The strong solution is pumped via the solution heat exchanger to the 

generator. By introducing heat to the absorbent-refrigerant solution in the generator 

(boiler) the refrigerant is desorbed. Depending on the refrigerant-absorbent pair, a 

rectifier column may or may not be required following the generator. The refrigerant 

vapour flows into the condenser and condenses. The liquid refrigerant passes through the 

expansion valve and partially evaporates. The complete evaporation occurs in the 

evaporator and causes the cooling effect. Finally, refrigerant vapour moves toward the 

absorber and it is absorbed by the incoming weak solution from the generator.
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The continuous pumped system can be designed to respond with more flexibility to 

expected variations in solar insolation. So as, it can continue to operate at declining 

temperature in the afternoon o f a clear day. These systems are desirable for larger 

capacity requirements (50-1000kW). However these systems are associated with feed 

pump problems. This mechanical part is generally in hydraulic form and noisy with a 

relatively high maintenance expense and low performance. It also requires a parasite 

power for operation.

Selection o f the absorbent-refrigerant pair depends on factors like application, generating 

temperature, efficiency, cost. Desirable characteristics for an absorbent-refrigerant pair 

can be listed as follows:

O Low viscosity to reduce pump work.

© Good chemical and thermal stability.

© Low operation and low pumping power 

© Inertness, non-corrosiveness, non-toxic, non-flammable.

© A refrigerant more volatile than the absorbent in order to be separated from absorbent 

easily in the generator.

© A refrigerant that has a large latent heat so that the circulation rate can be kept at the 

minimum.

© Absence o f solar phase absorbent.

O f common refrigerant-absorbent pairs, the pair NH3 -H2 O is being used for low 

temperature application and the pair HjO-LiBr is being used for air conditioning. The 

evaluation and dependence o f performance o f these two systems on the solar heated 

generating temperature have been well investigated and studied by researches [91,92]. 

The H20-LiBr systems can be operated with lower generating temperatures (89°C to
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93°C) compared to that o f the NH3-H2O (121°C to 149°C). In the NH3-H2O absorption 

systems a rectifier column is required to prevent water vapour entering to the evaporator 

where it could freeze, while in the H^O-LiBr systems there is no need o f a rectifier 

column. In the H^O-LiBr systems, because o f refrigerant properties temperatures below 

4°C can not be obtained. Also the FLO-LiBr pair might suffer from crystallisation 

problems if not designed properly.

Kaushik conducted a comparative study between NH3-H2O and NH3-LiN03 pairs [93]. It 

was resulted that the NH 3-LiN03 achieves higher COP than that o f NH3-H20  in the both 

single and two stage systems, especially at higher generating temperatures.

Several solar assisted continuous pumped absorption systems have been developed by 

inventors. An early design o f solar continuous absorption system was introduced by 

Chung et. al. (1953) using R21-TEG-dimethyl pair [94], The overall cycle COP indicated 

by test results was in the range o f 0.28-0.34. Later, Duffie and Sheridan (1963) adopted a 

commercially available technology H20-LiBr unit with solar energy [95]. The overall 

COP varied between 0.11 and 0.15 with the evaporator temperature in the range o f 9°C to 

13°C. The cooling effect o f 0.056 ton/m2 o f  collector was recorded.

More recently, Sloetjes (1988) presented a solar powered absorption unit [96]. The unit 

was capable to produce 13kW o f cooling continuously for 5.5 hours o f sunshine, or 3kW 

mean over 24 hours. The solution pump was driven by conventional power.

There are also a number o f modified and special designs o f absorption system that can be 

used to obtain lower temperatures and achieve higher COPs. These designs are referred 

to multistage and complex absorption cycles. Some o f these cycles are listed as follows 

[93,97]:

86



1 - M ulti s ta se  absorption

In vapour compression cooling systems, to achieve very low temperatures, cascade 

systems, in which a series o f refrigerants with progressively lower boiling points are 

coupled in a series o f single stage units, are suggested [98], Similar to vapour 

compression systems, single stage absorption systems can be cascaded. The most 

common design in this case is to couple two single stage absorption unit together which is 

known as two stage absorption cooling system. In this case, the first stage (or 

refrigeration unit) is used to provide the cooling effect for the absorber o f the second 

stage. Hence, the evaporating temperature in the first stage is almost equal to the second 

stage absorber temperature (TEi=Ta2). Figure 3.9 explains a typical two stage absorption 

cooling system. The refrigerant-absorbent pair can be different or same in stages. For 

applications which require temperatures above 0°C such as air conditioning use o f the 

pair LiBr-H20 in both stages is commonly recommended and for temperatures below 0°C 

dual fluid systems are recommended. H2O- LiBr according to its higher coefficient o f 

performance and modest generating temperature at about 80°C minimum which is 

attainable by flat-plate collectors is appropriate for first stage. To achieve o f temperature 

below 0°C pairs like NH3-H20  and NH3-LiN03 can be suggested for the second stage.

2 - Double effect generation absorption

Another design to increase COP o f absorption cycle is to incorporate a second generator 

(effect) which is known as double effect generation. The first prototype unit was built in 

South West Research Institute in 1956-58. Figure 3.10 shows a schematic diagram o f this 

design. The required heat for the second generator is supplied by condensation o f the 

refrigerant vapour which is generated in the first generator. For condensing the 

refrigerant in the second generator, pressure must be increased, and subsequently,
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pressure and temperature o f the first stage generator must be increased. Hence, in a 

double effect generation system, three different pressure zones as following are existed:

i- The low pressure zone in the evaporator and the absorber, ii - The medium pressure 

zone dominating in the condenser and the second effect generator, iii - The high pressure 

zone in the first generator. To achieve the maximum COP, all the refrigerant vapour 

produced in the first stage generator must be condensed in the second stage generator, 

and the generated heat from condensation must match with the required heat for the 

second stage generator. Although this cycle achieves higher COPs compared to a single 

effect cycle, but it requires higher operating temperatures (<160°C) which can be only 

generated by concentrating and evacuated tube collectors.

Most o f the efforts on development o f  this type o f the cooler have been conducted by 

Yazaki Corporation in Japan, which marketed an H20-LiBr Chiller based on this cycle. 

Also a number o f studies was conducted on different types o f  refrigerant-absorbent pairs. 

Philips argued that the NH3-H2O pair is not well suited to air-cooled double-effect 

operation [99]. Other pairs that have been studied are R21 -dimethyl formamide, R22- 

dimethyl formamide, R22- dimethyl ether and a theoretical COP up to 1.82 has been 

obtained [100].
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Fig. 3.9 Flow diagram o f a two stage absorption cooling system

Fig. 3.10 Schematic o f  a double effect generation absorption cooling cycle
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3 - D ouble e ffect absorption co o lin z  system

Figure 3.11 illustrates the operation o f the double effect absorption cooling system. In 

this design, two solution circuits known as primary circuit and secondary circuit are 

existed. The refrigerant vapour is generated in the primary circuit enters to the evaporator 

by way o f the reflux condenser, condenser and expansion valve. The first cooling effect 

occurs in the evaporator. After leaving the evaporator, the refrigerant enters to the 

secondary solution circuit and is absorbed in the resorber. The solution boils in the 

desorber and produces the secondary cooling effect.

Despite the required higher operating temperatures some efforts have been done to adopt 

these systems with solar energy. Tanaka in 1977 proposed an absorption unit that works 

in double effect by using ftiels at a higher COP and in single effect using solar energy so 

as to achieve an overall higher COP [101]. Two absorption unit based on Tanka design 

have been built. Figure 3.12 shows the schematic o f this type o f  absorption chiller. 

When solar radiation is not high enough, plant can operate under double effect absorption 

system, with a cooling load o f 20kW and COP o f 1.1. As the solar energy is high enough, 

the plant is converted to solar powered single effect absorption, with the cooling load of 

30KW and 0.6 in COP.

3.5.2 Interm ittent Basic A bsorption Cooling System s

The operation o f intermittent basic absorption system is similar to the adsorption cooling 

systems. Figure 3.13 describes the refrigeration cycle. The refrigeration cycle operates in 

two phase. Phase I includes pressurisation and desorption processes. As heat is applied
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Fig. 3.11 Schematic o f  the double effect absorption cooling cycle

Collector

Fig. 3.12 Single-Double effect convertible absorption chiller o f H20-LiBr type
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to the absorber, the pressure and the temperature o f the system increase gradually 

(pressurisation). As more heat is applied some refrigerant is driven out(desorption). 

Depend on the absorbent-refrigerant pair presence o f rectifier column is required or not. 

As the pressure rises a little from saturation pressure, the refrigerant vapour by contact to 

the condenser wall (which is in equilibrium with ambient) gets cold and condenses. 

Finally, the liquid refrigerant flows into the receiver. The check valve is adjusted to 

allow the vapour to flow from boiler to condenser with negligible pressure drop.

Phase II includes depressurisation and adsorption. This phase starts when solution in 

absorber rejects heat to ambient. During depressurisation process the solution 

concentration is assumed constant. However, depressurisation is associated with some 

sorption. Additional pressure drop induces the absorbent to absorb the surrounding 

absrobate vapour. As the pressure drops from the saturation pressure, some refrigerant 

liquid in evaporator vaporises. The heat o f absorption heat is rejected to environment.

A convenient illustration o f intermittent basic absorption cycle is the graph o f temperature 

versus concentration, shown in figure 3.14.

These systems combine with some advantages including simplicity, absence o f a 

mechanical or moving parts, low maintenance cost and low operating temperature (up 

tol20°C). In addition liquid systems have superior heat transfer to solid adsorbent. 

However, their cyclic nature might be a disadvantage. All such solar systems have a 

diurnal cycle with heating during day and cooling during the night.

Number o f studies on intermittent absorption systems have been conducted in AIT (Asian 

Institute of Technology). Exell (1978) introduced an aqua-ammonia solar powered 

refrigerator. The system was using an integrated collector/generator with the collecting 

area o f 1.44m2 [102], An auxiliary plane mirror was applied to increase the intensity o f
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solar radiation on the collector surface. In a typical sun day, the efficiency o f  28% for the 

solar energy collection system was recorded, The refrigerator was charged with 19Kg 

solution, and generation started at 11am. A cycle COP o f 0.26 and a solar COP of 0.07 

were reported. Production o f 4.2 Kg/m2 ice as the cooling effect o f was reported.

Later (1981), Exell introduced two prototype models, one with a tube-in-sheet collector 

like the early design, and the other one with non-focusing cylindrical concentrating 

reflectors mounted below the finned riser tube [103]. Both model had total collecting 

area o f 5m2 incorporated with flat mirrors hinged to the east and west edge of collector. 

To provide sufficient solution for a full day’s operation model II was fitted with a 

reservoir from which fresh solution was to be supplied to the collector during generation. 

Both system were charged with 65-67Kg o f solution with concentration o f 0.46. On a 

sunny day the first prototype model was capable to produce 28Kg ice from 28°C initial 

temperature. A COP in order o f 0.14 was estimated for the 5m2 o f collector area, or for 

the total collecting area a COP o f 0.07 was reported. Since mirrors were less effective 

during the high scattered radiation and low direct insolation the performance o f system 

was very sensitive to solar radiation pattern. Consequently, in a day with the same overall 

insolation, but greater diffuse component COP decreased from 0.14 to 0.09. The 

generation started at 10 am about 4 hours after sunshine. The performance of the second 

plant was in order o f 1 to 2% lower in comparison with the first model.

Exell (1984) reported the design and construction o f a village-size refrigerator [104]. The 

plant was able to produce lOOKg ice per day. In this design the reservoir tubes containing 

the solution were placed to either side o f the solar window. The thermosyphon action 

causes the circulation o f liquid within the collector. The collector comprised twelve flat 

plate panels with total 25m2 in area. The condenser was constructed o f 66m o f 0.5"
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stainless steel cooled by water bath. The evaporator was a gravity circulation type 

suitable for circulating o f 51kg refrigerant during the night. The solar COP 0.11 o f was 

reported.

Agrawal et. al. conducted a study on solar intermittent absorption system using freon 22 

(CHC1F2)- dimethyl formamide (R22-DMF) pair [105], The system was able to cool 

down 60Kg water from a temperature o f 30°C to 15°C daily. They argued that the use o f 

pair R22-DMF eliminates the associated problems with NH 3-H2O (or H20-LiBr) such as 

corrosion, infallibility, high volatility and salting out.

3.^.3 Interm ittent R egenerative Absorption C ooling System s

The first intermittent regenerative absorption cooling cycle was developed by Trombe 

and Foex (1957). This design enjoys the advantages o f a circulating solution in the 

generator, allowing reclaim of sensible heat, and simplicity o f  an intermittent system with 

requiring minimum intricate parts and no active solution pump [106]. A modified system 

based on the Trombe and Foex design is shown in figure 3.15. The intermittent 

regenerative absorption system is similar to the continuous pumped absorption system. 

The main difference is the replacement o f the mechanical feed pump with a bubble pump. 

Similar to the intermittent basic absorption system absorption and desorption in this 

system are preceded by pressurisation and depressurisation, respectively. The operation 

o f the system can be described as follows. The strong solution boils in Boiler tube/ 

Bubble pump. The associated reduction in bulk density creates a thermo syphonic 

pressure head which draws up the reach solution from the upper part o f the reservoir. The
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generated vapour partially condenses in the rectifier. In the absence o f a transfer tank 

separator vessel does the removal o f solution mass during desorption phase. Use o f a 

transfer tank assists to reduce the separator size, which in term, increases the performance 

o f the system Finally, the refrigerant vapour passes through the condenser and drops into 

the reservoir. The condenser is mounted in the reservoir vessel, as the condensation heat 

can be removed by the same cooling circuit for removal o f  absorption heat. During 

absorption phase refrigerant evaporates along the evaporator, and finally refrigerant 

vapour is re-absorbed in the lower part o f absorber.

Fig. 3.15 Schematic o f  intermittent regenerative absorption system

These systems have advantages o f a circulating solution in a generator, recovery o f 

sensible heat, and simplicity, absence o f mechanical pump, low maintenance. Intermittent 

nature and large absorbent-refrigerant solution even for low capacity can be mentioned as
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the most disadvantages o f these systems.

Van Passen (1986) in university o f  Delft, Netherlands designed and constructed an 

intermittent regenerative system [107]. The system was coupled with flat plate 

collector/generator with area o f 1.63m2. A cooling capacity o f 2.6MJ against the solar 

COP of 0.1 was recorded.

3.5.4 Diffusion Absorption (Platen-M unters) Cooling System s

In 1922 Swedish engineering students, Baltzar von Platen and Carl Munters, from the 

Royal Institute o f  Technology in Stockholm, presented, an invention, a refrigeration 

system using a new and brilliant application o f the absorption process. The cycle is 

known as diffusion absorption (or Platen-Munters) cycle. In diffusion absorption systems 

the pressure difference between the low pressure side and the high pressure side is 

provided by assistance o f an inert gas in the system. Although the total pressure in the 

system is constant, the partial pressure o f the refrigerant and the inert gas varies along the 

system.

Figure 3.16 shows the schematic diagram of a Platen-Munters cycle. The strong solution 

boils in generator and rises to the rectifier (or separator), water returns to the absorber, 

and ammonia moves toward the condenser. In the condenser, ammonia rejects its latent 

heat to the surrounding and condenses. Then the liquid ammonia flows through a liquid 

trap to evaporator. In the evaporator ammonia corresponding to its low partial pressure 

evaporates as the inert gas (hydrogen) flows over the refrigerant, ammonia. As ammonia 

evaporates, its partial pressure along the evaporator increases gently, and therefore
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evaporation temperature rises gradually. The mixture o f hydrogen and ammonia flows 

down through a heat exchanger to the absorber, and the ammonia vapour is reabsorbed 

into the cold water solution. From the absorber hydrogen corresponding to its lower 

density rises back to the evaporator, while the ammonia-in-water solution flows into the 

generator to complete the cycle.

Fig. 3.16 The schematic diagram o f a diffusion absorption refrigeration system

According to Harvey diffusion absorption cooling is inherently less efficient due to 

greater pressure drops experienced in the gas transport process and undesirable heat flow 

from the absorber to the evaporator due to gas circulation [108]. However, when power 

consumption is low the efficiency is not the prime consideration.

Cullimore introduced a modified solar powered diffusion absorption cooling system 

based on Electrolux refrigerator [109]. The normal COP o f the cycle was 0.23. For 

decreasing o f generating temperature from 186°C to 130°C, solution concentration was 

increased from 35% to 55% and total pressure reduced from 26 bar to 19 bar. The 

maximum (electrical) COP that could be obtained under any conditions was 0.13 if all
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cooling below ambient is accounted, and 0.05 if only cooling below 0°C was accounted. 

The system was incorporated with solar collectors, using evacuated tube collectors with 

area o f 3m2. An oil circuit thermosyphone was transferring heat from collector to the 

generator. Cooling period o f about five hours was recorded. The solar COP is not 

recorded but it is expected to be below 0.01.

Hinotani and Sanyo Company (1984) investigated and reported an experimental solar 

Platen-Munters refrigerator [110]. Type o f collector for this purpose comprised o f 

evacuated tube collectors enclosing with parabolic concentrating mirror with 

concentrating ratio o f 1.5. The generator was incorporated with a bubble lift pump. 

Evaporator temperature less than -15°C during most o f  the cycle was recorded which can 

be assumed as the temperature at the end o f evaporator and a temperature o f 0°C for 

cooling box was recorded.

Gutierrez (1988) in Mexico reported an effort on conversion o f conventional diffusion 

absorption to solar powered [111]. The selected refrigerator system was a 250 litres 

capacity, which was using gas burner to produce generating temperature o f 160°C. The 

burner was replaced with 2.5 m2 o f flat plate solar collectors. To reduce the boiling 

temperature to 105°C the solution concentration increased from 32% to 42%. Since the 

new circulation ratio (weak solution circulated per unit mass refrigerant generated) was 

expected to be 5 times larger than original, therefore, the solution heat exchanger was 

replaced with a bigger version. A number o f  tests under different controlled laboratory 

conditions were conducted.

A new solar powered refrigeration system, based on Platen-Munters, has been developed 

as part o f the research programme presented here. This development is described in 

Chapter 5 and the outstanding results have been presented in the Congress o f the World
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Renewable Energy Network and published by Pergamon Press.
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R e v i e w  o f  S o l a r  D e s a l i n a t i o n  T e c h n i q u e s

4.1 Introduction

Desalination is the process used to supply fresh water from seawater or brackish water. 

Drinking water contains dissolved solids in the range o f 0.05% to 0.15% dissolved solids. 

The average concentration o f salt in seawater is 3.44% [112]. However, due to climate 

and seasonal conditions and geographical situation, this concentration has large variations.

In the desalination treatment, energy is required to separate water and salt. Only part of 

input energy is used for separation o f water and salt, and so, the efficiency the process is 

limited.

In general, desalination technologies fall in two main categories. The first category is 

referred to desalination processes in which heat is applied to vaporise water. In these 

processes different distillation methods are used for purification o f water. The efficiency 

o f distillation processes is limited by Carnot efficiency ( t | = 1- T l / T h ) .  However, in practice 

the actual efficiency is considerably lower than Carnot efficiency. Second category refers 

to non-thermal desalination processes, which do not use distillation methods to provide 

fresh water. There are several methods to separate impurities from water. These methods 

are reverse osmosis, electrodialysis and freezing. Non-thermal desalination processes are
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suitable for production o f potable water from brackish water, as cost effectiveness o f these 

systems decrease with increase o f  water salinity.

Although the technical process for desalting water has been known for a long time, but the 

process was too expensive. One o f the continuing needs for desalted water was on ocean

going ships. Aside from carrying stores o f water, some attempts were made to distil the 

water with the heat o f  ship’s cook stove or engine. This technique was use in 19th century 

and it was partially successful since the expense involved to produce potable water was 

relatively high. Another step in development o f destination plants were obtained in 1940s 

during the second world war when various military establishments in arid areas to supply 

their troops with fresh water. After the war, due to industrialisation and population 

growth, the demand o f fresh water has been growing steadily. Nowadays, water scarcity 

has become a reality especially in countries in arid and semi-arid regions o f  the world. The 

status o f fresh water demand and supply has been discussed in literature [113]. Therefore, 

because o f the limited natural resources o f fresh water, desalination processes have 

become more interested and many R&D programmes have been conducted.

Large and medium size scale desalination plants are operated with fossil fuels, electricity 

and some times nuclear energy [114]. Although large scale desalination technologies are 

fairly developed and many plants are now operating, but more than half o f the erected 

plants are installed in Middle-East countries, because o f their rich oil resources.

Because distillation processes require medium-grade heat, solar energy can be regarded as 

a potential thermal energy source, particularly in small and medium size desalination 

plants. Small-scale solar powered desalination systems are commonly suggested for 

household demands. The application o f small solar powered desalination plants is mainly
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concerned for small communities in the remote regions o f  the world. For the larger 

demands o f fresh water hybrid systems are suggested [115]. Solar desalination has also 

been investigated and considered for supply o f the fresh water in the developed countries, 

especially southern European countries [116].

4.2 Distillation M ethods

Over 60% o f the world desalting water is produced by distilling fresh water from the sea 

[117]. Distillation is a process in which heat is first applied to vaporise a liquid and then 

heat is extracted to condense the vapour. Distillation is a method to separated two or 

more dissolved substances with different evaporation temperature from a solution. A 

typical distillation process consist o f  three discrete steps:

O Vapour formation

© Removal o f  the vapour from liquid surface 

© Condensation o f vapour

Distillation can be achieved via the different methods. The most extensive used 

desalination methods are presented as follows [118]:

7- Single effect distillation

In the single effect distillation the seawater is distilled only once to produce fresh water.
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2- Multiple effect distillation

A multiple effect distillation plant consists o f  several evaporators operating at different 

pressures. Figure 4.1 shows the flow diagram o f such a system. The incoming water 

partially evaporates in the first effect (vessel) and moves toward the second evaporator. 

The generated vapour releases its latent heat and condenses. This heat is utilised for 

additional evaporation in the second effect, at a lower pressure and temperature. Hence, 

further evaporation occurs in successive effect, each at lower temperature and pressure. It 

must be noted that the seawater feed to undergo multiple boiling without supplying the 

additional heat after the first effect. Presence o f a pump is necessary to deliver the fresh 

water at atmospheric pressure. Also sort o f pumping system is required to exhaust the 

steam space o f evaporator.

This process was used in some o f the early designs o f desalination plants. It was later 

replaced by multi- stage flash (MSF) units, discussed below, due to cost factor and their 

higher efficiencies.

3- Flash distillation

In this process seawater is first preheated and subsequently it is exposed to a pressure 

lower than its vapour pressure. The vapour flashes off from the warm water. Figure 4.2 

shows the flow diagram o f a multi-stage flash desalination plant. As shown, seawater is 

heated in a vessel called brine heater. Then the heated water is directed to a chamber 

known as the first stage. The sudden introduction o f the heated water into the chamber 

causes it to flash rapidly. The phase change from liquid to vapour incorporates with a 

temperature drop in brine, which reduces the process efficiency. This problem can be
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solved with introducing multiple stages. Typically, a multiple effect flash desalination can 

contain from 4 to about 40 stages.

4- Vapour compression desalination

In this method saline water is first boiled in one side o f a heat transfer barrier. The 

generated vapour is then compressed. The compression can be done either by a 

mechanical compressor or a steam jet. The compressed steam is returned to the outer side 

o f heat transfer barrier and condenses. The latent heat resulted from condensation is used 

to vaporise more water in the tube. The distil is removed through a heat exchanger to the 

storage. Figure 4.3 shows the schematic diagram o f a vapour compression desalination 

unit.

5- Membrane distillation

It is possible to concentrate aqueous solutions o f  non-volatile dissolved substances by 

microporous membrane impermeable for water but permeable for water vapour. As the 

name implies, the membrane distillation process combines both the use o f distillation and 

membranes. In this process, the saline water is warmed and evaporates. The generated 

vapour is exposed to a membrane that can pass vapour but not water. After vapour passes 

through the membrane, it cools down and condenses. The water can not pass through the 

membrane and it is trapped and can be collected as the output o f the plant. Figures 4.4 a 

and b illustrate the operation of the membrane desalination unit. The main advantages o f 

membrane distillation are its simplicity and the need for a small temperature differential for 

operation.
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There are also some special designs, which are actually special designs o f  the above- 

mentioned distillation systems. Figure 4.5 shows the flow diagram o f a desalination 

system, namely vertical tube falling film, proposed by Aqua-Chem [119].

4.3 Non-Therm al Desalination Techniques

Non-thermal desalination methods are referred to processes which do not utilise thermal 

energy to vaporise the saline water. The main application o f  these systems is in some 

industrial application in which demineralisation is used to produce ultra pure product.

The main non-thermal desalination processes are reverse osmosis, electrodialysis and 

freezing. As pointed out these processes are commonly suited for desalting o f low to 

medium salt concentration, and therefore, they are not suitable for seawater desalination.

4.3.1 Electrodialysis

The electro dialysis process is primarily used for treatment o f  water with salinity between 

500 to 1000 mg/litre. The electrolysis process is based on the following principles:

• When a salt is dissolved in water, it breaks up into ions, which are positively (cationic) 

or negatively (anionic) charged. When a potential gradient is applied between two 

electrodes, ions are forced to migrate between the electrodes.

• Semi-permeable membranes can be deployed alternatively to permit selective passage 

of either anions or cations.
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The early electrodialysis units consisted o f three-compartment electrolyte cells in which the 

central compartment was defined by membranes, which were not significantly ion selective 

[120]. In 1940, Meyer and Strauss suggested a multi-stack electrodialysis using ion- 

selective membranes [121]. The desalination effect is achieved by the actions o f series o f 

cells separated by alternating pairs o f cationic and anionic membranes. These stacks can be 

in turn connected hydraulically in series or parallel [122]. The schematic o f a multi-stack 

electrodialysis desalination unit with ion-selective membranes is illustrated in figure 4.6.
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Fig. 4.6 Movement of ions in the electrodialysis process

The early ion-selective membranes were not commercially viable, and also they were not 

mechanically strong or chemically stable. The other main problem was that membranes 

with high ion-selectivity had also had high electrical resistance and those which had low 

resistance also had low selectivity. Ten years after introducing the first ion-selective 

membranes, Juda and McRac introduced ion-selective membranes, which did not have the 

associated problems with early ion-selective membranes [123].
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Modem cation-selective membranes typically consist o f  polystyrene having negatively 

charged sulphonate groups chemically bonded to most o f  the phenyl groups in the 

polystyrene. The negative charges o f  the sulphonate groups are electrically balanced by 

positive charged counter-ions. Anion selective membranes typically consist o f 

insolubilised polystyrene having positively charged quaternary ammonium groups 

chemically bonded to the most o f the phenyl groups in the polystrene. In this case, the 

counter-ions are negatively charged and are the principal carriers o f  the electric power 

[124].

Figure 4.7 illustrates the basic component o f  an electrodialysis unit. The raw feed water 

must be pre-treated to prevent materials that could harm the membranes or clog the 

narrow channels in the cells from entering the membrane stack. The feed water is 

circulated through the stack with low pressure pump with enough power to overcome the 

resistance o f the water as it passes through the narrow passage. The post treatment 

process comprises stabilising water and preparing it for distribution.

Fig. 4.7 Basic components of an electrodialysis plant
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4 . 3 . 2  R e v e r s e  O s m o s i s

Reverse osmosis is the process where salts are separated from water by use o f hydrostatic 

pressure forcing the water through a semi-permeable membrane, named permeator, to 

separate the feed water from salt. As shown in figure 4.8, the basic components o f a 

reverse osmsis process are: 1- Pretreatment, 2- Pressurisation pump, 3- Membrane 

assembly and 4- Post-treatment.

Discharge

Fig. 4.8 Basic components of a reverse osmosis plant

In comparison to distillation and electrodialysis, reverse osmosis is relatively new, and its 

technology dates back in 1952 in the University o f Florida, when two researchers 

demonstrated the desalination properties o f cellulose acetate membranes [125]. Following 

a R&D programme in the mid 1960’s reverse osmosis devices were commercialised with 

introduction o f spiral configuration and hollow tubes, figure 4.9. Since then capacities o f 

reverse osmosis plants have been rapidly increased, with a continuous decrease in cost o f 

fresh water produced [126].

An intensive study to evaluate different solar desalination processes has been carried out 

[127]. The result o f the study indicated that the RO desalination plant operated by PY, 

was superior to the others including: Solar still, ME evaporation plant, MF plant and 

electrodialysis system.
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Fig. 4.9 Spiral wound membrane element construction

4.3.3 Freezing

In the freezing desalination process, dissolved salts are naturally exclude during the 

formation o f ice crystals. Seawater can be desalinated by cooling water to form crystals 

under controlled conditions. Before the entire mass o f water is frozen, the mixture is 

washed and rinsed to remove the salts in the remaining water or adhering to the ice crystal 

[128],
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A small number o f plants have been built over the past 40 years, but the process has not 

been commercially successful. The largest plant using the freezing process for the 

production o f potable water is located in Wrightville Beach in the USA with productivity 

o f 200,000 gallon/day [129]. Another example o f  a freezing desalting plant was an 

experimental solar powered unit constructed in Saudi-Arabia [18]. The schematic o f a 

freezing plant is shown in figure 4.10.
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4.4 Solar Distillation Technologies

The simplest and cheapest type of solar desalination system is the single effect basin type 

o f solar still. The history o f solar stills dates back at least to 1872 when a plant, with 

4747m2 and capacity o f  19m3/day, was installed in Chile [130]. Since then various designs 

and modifications has been carried by inventors. A typical solar still consists o f  a glass 

cover, metal pan, insulation, enclosure and distillation trough. Figures 4.11 a  and b 

present single and double slope solar still, respectively.

1 — G lass cover
2 — M eta l pan
3 -  Enclosure
4 -  D istilla te

Trough

Fig. 4.11 Schematics of basin type solar still: (a) single slope, (b) double slope

The operation o f basin type solar still is based on the “green house” effect. The solar 

radiation falls on the glass cover. Most proportion o f solar radiation is transmitted 

through the glass cover and rest o f  it is reflected or absorbed. The transmitted radiation 

strikes the water surface. Portion o f this radiation is reflected and remainder is absorbed 

via the water mass and metal pan. Most o f  the absorbed radiation by metal pan is 

transferred to the water mass and rest o f  it is lost to the atmosphere through the insulation 

material. The water warms up and evaporates. The generated vapour by contacting to the 

glass cover gets cold and condenses in the inner surface o f  the glass cover and trickles
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The efficiency o f the single effect basin type o f  solar still is relatively low, mainly due to 

the rejection o f heat to the atmosphere. The main operating variables effecting the 

performance o f a solar are expressed as insolation intensity, ambient temperature, brine 

depth, slope o f cover, vapour tightness o f the unit, heat losses through the base and the 

wind speed [131].

To increase the efficiency and productivity o f conventional basin type solar steel a number 

o f modifications and different designs o f  basin type solar steels have been presented by 

inventors [132,133,134], Two configurations o f solar still, conical and pyramid types has 

been built and tested in university o f Agriculture Fasialabad in Pakistan [135]. The conical 

solar still was comprised o f a blackened circular container enclosed by a transparent 

conical shaped plastic cover. The water container o f the pyramid type solar still was 

squared shaped covered with pyramid shaped glass cover. The pyramid solar still was 

capable to produce 161.47 ml/m2/day and 469.48 ml/m2/day in winter and summer, 

respectively. The average productivity o f conical type solar still was 200.98 ml/m2/day for 

winter and 569.61 ml/m2/day for summer. More recently, an inverted absorber solar still 

were introduced in co-operation between the University o f Ulster, Northern Ireland, and 

the L.N. Mithila University, India [136], The solar energy collection systems comprised o f 

an inclined asymmetric line axis parabolic concentrator, with a concentration ratio o f 1.5 

and an acceptance angle o f 120°, integrated with a secondary reflector. The distillate 

collected from this system during a six-hour period was 350militres. Fath proposed and 

conducted a theoretical study on a double effect basin type solar still, in which the released 

latent heat from the first stage is used for further evaporation in the second stage [137], 

The distillation unit consisted o f a second effect still connected to a single sloped solar still

down under its gravity.

117



incorporated with a shutter type reflector. On the base o f numerical analysis it was found 

that the unit was capable to produce 10.7 kg/m2 per day o f water in the real life cycle 

during the summer.

Despite all the efforts, the efficiency o f the basin type solar stills ranges between 45% and 

55% and they need constant attention to operate properly. These operational problems 

have been discussed in details in literature [138].

The parabolic type solar still is an alternative design to basin type solar still. Basically, a 

simple parabolic solar still consists o f a parabolic trough incorporated with an absorber 

tube and a condensation section. The solar radiation is concentrated over absorber tube 

and converted to heat. The temperature o f  saline water by passing through the absorber 

tubes increases and water partially evaporates. Finally, the vapour condenses in the 

condensation section, which might be a heat exchanger or a condensation-separation unit. 

This type o f solar still has been marketed by BSAR SOLAR Company [139]. Figure 4.12 

illustrates the desalination unit with its operating specifications. More investigation on this 

type of solar still was carried out in M u’tah university in Jordan [140]. A maximum 

productivity o f 0.17kg/m2hr was reported and the plant efficiency was found 

experimentally to be 12.7% in average. The collector efficiency was calculated in order of 

22.3%. The flow diagram and configuration o f the plant are depicted in figure 4.13.
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S O L A R  S T I L L  -  H O T  W A T E R  S Y S T E M
SYSTEH SPECIFICATIONS;

S ize  ...........................  30 In  X 16 f t  -C o lle c to r
V e is h t ......................  135 pounds -C o lle c to r
Area . ......................  37 Square Feet
C o n centra tion  . . .  12 Suns ( 12: 1)
Rim A n g le ............... 95 Degrees
Temperature ........ 38-124*0 (100-254'F)
P r e s s u r e ............... .. Up to  32 PSI
E f f i c i e n c y .............  40% a t  124’ C
R e fle c to r  . . . * . . . .  A lum in izod  A c r y lic  on 

Lam inated Hood
R e c e iv e r    3/4 inch  Copper Pipe
G lasing  . . . . . . . . .  Pyrex  G lass

35 rtm OD , 2 mm Wall 
Heat Exchanger . .  S in g le  W all Steam 

condonset
T racking  .................. P a te n te d  S irig lo  Axis

C o n to rlesa  D r iv e -  1/B 0 ill' 
In d u c tio n  n o to r ,
110 VAC or 12 DC.

C o n tro ls     cdS sun Sensor And
Tliocm U toc Temp, sonsoro 
w ith  CMOS 1C D ig i t a l  
c o n t r o l le r ,  12 vdc 

C irc u la t io n  ........... steam Plow

B o ile r  Blow Down . . .  So leno id  c o n tro lle d  
B o ile r  D ra in  Down 
Each N ight

B o ile r  Leve l ...............  F lo a t S w itch c o n tro lle d
Feedwater S o leno id  

Freeze P ro te c t io n  . .  Therm ostat C o n tro lle d
Feedwater Traco Heating  
And B o ile r  D ra in  Down

System L if e   ............. 20 Years (E s tim a ted )
S p a c e  H e a t i n g  ...................  O p t i o n a l  T h e r m o s t a t

C o n tro lle d  Steam 
condensing Fan C o ll  
u n its

i n s t a l la t io n  . . . . . . .  Do i t  Y o u rs e lf  (1 Han Day)

PRRFORHANCE» Average Annual (Hcasurod)

Power ................................ 3.000 BTO /  Ur07a w atto
Energy  .......... .. 24,000 o tii /  o nr pay

7,023 W att lira  /  iMy
Annual Energy ............  87.6 Therms2,563 K ilo w a tt lira  
D i s t i l l e d  W ater . . . .  2.9 G a llo n s  /  Day

1,050 G a llo n s  /  Yo.u

Fig. 4.12 The parabolic solar still marketed by BASAR SOLAR
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1 : c o l l e c t o r  t u b e  ; 2 i g l o s s  c o v e r ;  3 : p a r u b u l i c  r u i l o c t o i -  ; 

4 ; f l e x a b l o  t u b a  ; 3 :T c o n n o n t l o n ;  0: bearing ; 1 \ separation mill
e o n d a n s a t i o n  u n i  t ; 8  : f r a m e ;  9 : f i r a t  h o a t  o x c l i t n n e r ;  10: t i l t i n g  

m o c h a n l B m  ; 1 1 : s e c o n d  b o a t  e x c h a n g e r .

Flow diagram shon'ing tlio flow of water 
and the location of thorraocouple9.

Fig. 4.13 The parabolic type solar still installed M u’tah university, Jordan
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Also number o f studies and works has been done on solar assisted multiple (or single) 

stage/effect desalination systems. Joyce and et.al. proposed a single effect solar powered 

desalination system, using CPC solar collector [141]. A prototype electrical powered 

single effect distillation system was built and tested. The test results indicated a maximum 

productivity o f 2kg/h o f distilled water. Hamed and Al-Jebri conducted a study on a 

multieffect stack desalination system [142]. The plant consisted o f three sub-systems, 

including solar heat collectors, hot water storage and 18 effect. The system was able to 

produce 120m3/day o f fresh water. The result o f mathematical modelling confirmed that 

the accuracy o f  the model is reasonably good. The schematic diagram o f the plant is 

brought in figure 4.14. More recently, El-Nashar conducted a theoritical study on multi

effect stack type distillation systems in order to optimise the design o f the plant and reduce 

the cost o f fresh water produced [143]. The main variables in the simulation program 

were the collector area, accumulator capacity and the number o f  effects o f the evaporator. 

The evaporator capacity was assumed 1200m3/day. Based on the results o f this study it 

was claimed that drop in collectors cost to 50% o f its basic value can result in a drop in 

cost from $4.77/m3 to $3.03/m3. It was also estimated a maximum accumulator capacity 

ratio o f 0.2 as the highest limit o f accumulator. Sun utility network, Inc. marketed a 

30,000gallon/day solar powered multistage flash desalination system. The unit is 

incorporated with evacuated solar collector or uses a solar pound to gather the solar 

energy [144]. Also the company introduced a solar assisted mobile desalination unit with 

productivity o f 13,000gallon/day. The heat source for driving the unit is obtained by 

evacuated solar collector and/or waste heat from the cogeneration system that produces 

electrical power. ISC Inc. has also proposed a hybrid desalination unit [145], The 

desalination plant is a diesel multi-effect unit i.e. is retrofitted with solar trough 

concentrators. The company claimed that each solar trough is capable to produce
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Fig. 4.14 Schematic diagram o f the multi-effect desalination plant proposed by Hamed and Al-Jebri.



Bier and Plantikow conducted a study on solar powered desalination by membrane type 

distillation [146]. A prototype unit was built and tested on the island o f Ibiza/Spain. 

WRPC in a corporation with Tekenaka Co. and Organo Co. has developed a membrane 

desalination unit [147]. The unit was capable o f production o f average 40 litres o f distilled 

water per hour.

173MJ/hour i.e. is enough for production o f 120galon/day o f fresh water.

4.5 Double Chamber Evaporation Condensation System

The newest addition to the family o f solar powered desalination based on evaporation and 

condensation was developed at University o f Harare in Zimbabwe. The development of 

this system was reported in a paper presented at the Congress o f  World Renewable Energy 

Network at Reading England in 1994 by Saghafi [148]. Although the reported system was 

very crude the results reported in connection with this system clearly indicated the 

promising nature o f this design. An improved version o f this design with added energy 

recovery mechanism has been developed as part o f the present research programme. This 

development and the results o f its operational performance are presented in chapter 9. The 

improved version with added energy recovery is rated as a significant development o f this 

project.
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Developm ent of a Continuous Cycle Solar Therm al Refrigeration System

C h a p t e r  5

5.1 Introduction

The comprehensive review of all possible and probable solar cooling systems presented in 

chapter 3 clearly indicates that the Platen-Munters refrigerator (commonly known as 

Electrolux refrigerator) is the most suitable system to be powered by solar energy. 

Perhaps the most convincing reason is the fact that the required pressure is resulted from a 

partial pressure o f the refrigerant in the system, and therefore, there is no need for a 

compressor or a pump to create the required pressure difference. However, despite this 

unique attractive features, there has been no report o f any attempt to the effect that this 

approach ever being tried and tested under real life solar power conditions. Furthermore, 

in a comprehensive paper published by Critoph [149] it has been claimed that Platen- 

Munters approach is not suitable to be powered by solar energy. The reasons presented 

were technical complications associated with any large system of this design, low COP and 

lack o f reliable solar power suitable for satisfactory operation. It is very important to 

highlight the following facts in relation to the above paper:

i- All the findings of the paper were based on purely theoretical estimation and not based 

on actually developing and testing the performance o f a solar powered system o f this 

design,
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ii- The only source o f power considered was flat plate solar heat collectors (which are 

incidentally associated with the lowest efficiencies in the family o f solar heat 

collectors).

After several private communications between supervisor o f this project with the author o f 

the above-mentioned article Ref. [149] with the great depth o f expertise available at the 

Solar Energy Research Centre at the Institute o f Technology o f Sligo in the fields o f the 

advanced high- efficiency solar heat collectors and also in ancillary solar thermal systems 

and technologies successful adoption o f the Platen-Munters refrigerator to solar energy is 

indeed a worthwhile piece o f research work.

Two prototype Solar Powered Platen-Munters refrigeration systems have been developed 

and tested as part o f the present research programme. The details o f development, 

evaluation and performance results o f the prototypes systems are presented in this chapter. 

The excellent results obtained clearly prove that with deployment o f appropriate 

modification techniques Platen-Munters system is, indeed, a viable option in solar cooling. 

The results o f this development were presented as a scientific paper in the Congress o f the 

World Renewable Energy Network and has been published by Pergamon Press. A  copy of 

this paper is presented in the Appendix.
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5.2 C on stru ction a l D eta ils

5.2.1 The Refrigerator

The refrigerator was a small commercially available Electrolux design unit, known as the 

so-called “bedroom refrigerator”. This unit is routinely being produced by a company in 

Poland. The source o f power o f this refrigerator is an 80W electrical heater. The main 

point in the successful operation o f this refrigerator is to run it with a continuous and 

adequate (not than 80W) o f power. Furthermore, according to the manufacturer’s 

instruction the unit must be kept in a totally horizontal.

The electrical heating element was disconnected and removed from the refrigerator system, 

special heat transfers devices were then manufactured to provide the collected solar heat to 

the refrigerator, for each o f the two prototypes made.

5.2.2 Solar Heat Collection System

As pointed out earlier in this chapter two prototypes were produced, in this approach. 

The only difference between the two was the type o f solar heat collectors used. The first 

prototype was powered by the thermal energy collected from the sun using a non-tracking 

concave reflector, successfully developed and tested by Menon [150]. In fact, there is a 

great deal o f knowledge about this type o f collector at the Solar Energy Research Unit at 

the Institute o f Technology o f Sligo. This Knowledge was fully perfected by Valizadeh
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[151] who used this type o f collector in a storage type solar powered cooker. A  schematic 

diagram o f this system is shown in figure 5.1.

After the successful development and testing o f the first prototype where the suitability o f 

Platen-Munters design to solar energy was established in practice in the solar heat 

collection system o f the prototype was replaced by advanced evacuated, high-efficiency 

collector incorporating heat pipe. The particular know-how and technology in relation to 

the production o f this type o f collectors were developed by Valizadeh [152]. A ll the test 

results obtained and presented in this thesis in connection with suitability o f the operation 

o f Platen-Munters refrigerators to solar energy are obtained using this particular type o f 

collectors, for the size o f refrigerator used 5 collector tubes equivalent to about lm 2 o f 

collector area was used.

5.2.3 Transfer of Heat from the Collector to the Refrigerator

Transfer o f heat from the non-tracking reflector system (used in the first prototype) to the 

refrigerator was secured using peanut oil tried and tested for the first time as discussed in 

Ref. [151] at the Solar Energy Research Centre at Sligo.

In  the second prototype a special heat exchanger was designed and manufactured to 

transfer the collected heat from the evacuated collector to the refrigerator. This heat 

exchanger was machined out o f two slabs o f 12.5mm thick aluminum. Each slab contained 

grooves where the condenser o f the collectors could be sandwiched. A photograph o f this 

heat exchanger is presented in figure 5.2.
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Captions: 1 - pane of glass, 2 - compound parabolic concentrator,
3 - special oil for thermal battery, 4 - the battery tank, 5 - evaporator of the 
heat pipe, 6 - the refrigerator, 7 - condenser of the heat pipe, 8 - lower 
level storage tank, 9•- hand pump.

Fig. 5.1 Schematic diagram o f the solar heat collection-storage system coupled with the 

refrigerator
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Fig. 5.2 The aluminum slabs o f the heat exchanger



It must be pointed out that the prior to the deployment o f the above-mentioned heat 

exchanger several attempts were made to transfer heat from the condensers o f the 

collectors to the refrigerator using a manifold pipe (containing peanut oil) where the 

condensers were clamped to. Since it was difficult and costly to use a reasonably priced 

pump to transfer the heated oil (whose temperature was above 150°C) it was hoped to use 

the thermosyphon principle. However, after several trials this approach proved 

unsuccessful as the heat loss associated with this approach was to high for any satisfactory 

operation of the system.

5.2.4 Thermal Insulation

Initially, during the development and testing o f the first prototype, no attempt was made to 

assess the effect o f extra thermal insulation on the performance o f the refrigerator. 

However, during the evaluation o f the performance o f the second prototype it was noticed 

that lower temperatures could be achieved for lower temperatures o f the environment 

surrounding the refrigerator.

This observation then opened the way to add more layers o f thermal insulation materials to 

the existing 10-15mm thick layers. For this reason layers o f glass fibre materials o f various 

thickness were wrapped around the refrigerator and the lowest temperatures obtained, 

inside the refrigerator, for each case was recorded. It was found that an extra layer of 

about 150mm thick produced the lowest temperature. However, due to constructional 

constraints thickness layer o f 100mm was the most practical parameters.
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It  must be pointed out that the insulation materials to the refrigerator could only be added 

to the top, front and the two side faces o f the refrigerator. It  was impossible to insert any 

to the back (where the pipe works are mounted and also to the bottom. The reason that 

nothing was done to the bottom face was due to logistic constraints for the test set up.

5.2.5 Solar Powered Air Cooling Tower System for Enhancing Heat 

Removal

In  order to expect the best realistic result it must be remembered that every effort must be 

made to take on board all the adverse points as far as the real life operation o f such a 

refrigerator is concerned. In  this connection one o f the most important factors to be 

considered is that the environments under which a refrigerator o f this kind may operate 

have, usually, an ambient temperatures o f 40-45°C and perhaps with high humidity. Under 

these conditions it was thought that it would be an advantage if  an artificial air circulation 

system is added on to the condenser part o f the refrigerator to speed up the removal of 

heat to the atmosphere. For this purpose a simple chimney was designed and mounted to 

the back o f the refrigerator. This chimney was designed to be in the form o f an inverted 

funnel. It was to be mounted to the back o f the refrigerator in a vertical position with the 

broad end o f this funnel very close to the ground so that the air is sucked in from the broad 

end and travel upward toward the narrow end. The funnel was fixed to the back o f the 

refrigerator in such a way that heat dumping condenser is perfectly in the direction o f the 

upward movement o f the airflow.

131



The upward movement o f the air was secured by connecting a spiral pipe to the inner wall 

of the inverted funnel shape chimney. This spiral pipe covered up to l / 8th o f the very top 

part o f the chimney. Solar heated water was circulated in this spiral pipe using the 

standard thermosyphon principle. As the air in the top part o f the chimney was heated up, 

due to the hot spiral pipe then it rose to higher levels and this way a simple but very 

effective air draft system was created.

Since the solar heated spiral pipe was mounted at the very top o f this chimney, and way 

above the condenser o f the refrigerator, there was no danger o f the heat reaching it. A  

narrow pipe providing a small quantity o f cooling water (0.25 litre/hour) on the condenser 

was also used an additional auxiliary heat removal system.

This way a simple, but very effective, cooling tower was used to speed up the removal o f 

heat from the refrigerator. A  diagram o f this cooling tower is shown in figure 5.3.

5.3 E va lu ation

It  was very important to establish a general relationship between the temperatures o f so- 

called “hot side” and “cold side” o f the system. The hot side is the manifold (or the 

condenser o f the evacuated solar heat collector) and the temperature at which the collected 

heat is actually applied to the heat intake part o f the refrigerator. In  total 6 thermocouples 

were connected to the system. Thermocouples Ti and T2 were connected to the hot side 

whereas thermocouples T 3 to T 6 were connected to the cold side. Three thermocouples T3 

to T5 were connected to the pipe containing refrigerant inside the icebox (at its entrance,
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Fig. 5.3 Schematic of the Solar Powered Air Cooling Tower System



middle and exit points) and T 6 was detecting the temperature inside the refrigerator, but 

outside the icebox.

For both Prototypes tested it was observed that the actual sign o f cooling, which was 

taken as the start o f the drop o f temperature in the ice box, appeared as soon as the 

temperature o f the heat applied to the generator o f the refrigerator reached a range o f 

110°C-115°C. For the second prototype, this point was reached after 90 minutes of 

exposure o f sunshine whereas in the first prototype this point was reached after longer 

duration o f exposure. However, because o f the storage capability o f the collector system 

used the cooling continued after the sunset. As pointed out earlier, the simplicity and ease 

of operation o f the evacuated heat collectors used made this operation more attractive, 

both from practical and commercial view points. A  view o f the pipe works at the back of 

the modified refrigerator is presented in figure 5.4. The place where the aluminium heat 

exchanger is to be connected to is marked.

5.4 T ests R esu lts and D iscu ssion s

The first set o f tests were carried out without usage o f any additional thermal insulation 

material on the walls o f the refrigerator. The cooling effect started after 90 minutes of 

exposure. After about 6 hours o f exposure temperatures o f 7°C and -9°C were obtained in 

the refrigerator and icebox respectively. The results o f test are presented in figure 5.5.

It is important to note that this result is a very exciting development because the range o f 

the temperatures obtained are well within (and even better than) those of commercially 

available refrigerators.
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Fig. 5.4 A view o f the pipe work at the back o f the refrigerator



TE
MP
ER

AT
UR
E 

(-C
)

A -- ta (Second point in the Icebox)

f~ ] = r s  (Third point in the Icebox)

= TS (Inside the Cabinet)

O  -  V'3 (First point in the Icebox)

TIME (MINS.)

 .
360 45 0

Fig. 5.5 Test Results of the system without additional insulation material
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In the next set o f the experiment insulation materials with thickness o f about 100mm were 

placed on the front, two sides and top faces o f the refrigerator as discussed in section 

5.2.4. It was interested to note that under this condition the actual cooling and drops in 

temperatures on the cold side taken place at much faster rate. The result o f this set o f tests 

is presented in figure 5.6. It  can be seen that after 4 hours o f exposure the temperature o f 

the interior o f the refrigerator dropped to 0°C and that o f the icebox dropped to -13°C.

This result which shows a drop o f 7°C in the refrigerator (from 7°C down to 0°C) and a 

drop o f 4°C in the ice box (from -9°C down to -13°C) is another exciting proof o f 

suitability o f Platen-Munters design to be powered by solar energy if  appropriate and 

correct components and modifications are used. This proves that sufficient cooling power 

does exist under the right conditions. The results indeed show that cooling power to 

achieve temperatures in the range o f lower than -1.5°C in the interior o f the refrigerator 

and lower than -15°C in the ice box is routinely possible.

In  another set o f tests where the effect o f spraying water on the condenser o f the 

refrigerator was investigated about 20-40cm3 o f water was sprayed on the condenser in 10 

minutes intervals. This approach has improved both the speed o f cooling and the final 

temperatures achieved. The temperature o f the interior o f the refrigerator reached 0°C by 

about 30 minutes, and that o f the icebox reached -13°C, by about 60 minutes, compared to 

the previous case respectively. Furthermore, the ultimate temperatures achieved after 

about 5 hours o f exposure were less than -3°C and -17°C in the interior and the icebox o f 

the refrigerator, respectively. The results o f this series o f tests are presented in figure 5.7.
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Fig. 5.6 Test results for the refrigerator with 100mm thick of insulation material
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The effect o f the combined water spraying and air blow using a cooling chimney was 

investigated in another sets o f tests. The results o f this approach are given in figure 5.8. It 

can be seen that the effect o f the simultaneously water spraying and ventilation has been 

faster removal o f heat from the condenser, hence shorter cooling time and lower 

temperatures were achieved.

5.5 C onclusions

The results o f the evaluation clearly indicated that Platen-Munters design is indeed very 

suitable to be powered by solar energy. This is for the first time that the merits o f this 

have been put to test in practice. There is now no doubt that there is high levels o f cooling 

power in solar powered Platen-Muntems refrigeration system. This finding clearly indicate 

that the system lends itself to generate enough cooling power sufficient for more than the 

times it is exposed to sunshine. In order words it seems possible to use refrigerators o f 

this type for long hours if  they are to be used in conjunction with appropriate storage 

system where the cooling power can be stored.
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Fig. 5.7 Test results for the water spraying with 10 minutes intervals
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Fig. 5.8 The results o f the simultaneous water spring along pipe works at the back o f the 
refrigerator and air ventilation
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A New Approach in Using Photovoltaic Power in Refrigeration

C h a p t e r  6

6.1 In trodu ction

The idea o f application o f photovoltaic panels to power commercially available 

refrigerators is nothing new. In fact, a lot o f commercial developments have been carried 

out for various programmes financed by the bodies affiliated to the United Nations under 

various aid programmes. The operation o f almost all such system is based on connecting 

an existing commercial refrigerator (without any meaningful modification) to a 

photovoltaic panel via an inventor to convert the d.c. power o f the photovoltaic panels to

a.c, power. A  battery system is also used to store power when the solar energy is not 

available.

The size o f the photovoltaic panels for such systems is inevitably very large, and 

consequently, the overall cost o f systems is too high to be assessed in a commercial sense. 

Even the small vaccine refrigerators, developed for various United Nations programmes, 

are far too expensive to be remotely considered as a competitor to the existing household 

refrigerator. The power requirement for the refrigerator and the limited efficiencies o f the 

existing photovoltaic panels clearly indicates that a significantly larger size o f 

photovoltaic arrays is needed for such systems. In  fact, the larger required size o f the
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photovoltaic panels is the most significant factor that contributes to increase the cost o f 

systems o f this kind. It, therefore, becomes clear that for attempts so far made for there is 

no commercially viable future in powering household refrigerators by photovoltaic 

panels. However, a programme o f research investigating various design modifications to 

the existing household refrigerators aimed at substantial reduction in input power can be 

taken as the first significant step forward. The work described in this chapter is 

concerned with an investigation and assessment o f a number o f novel approaches aimed 

at paving the way forward for the use o f significantly smaller sized photovoltaic panels to 

power household refrigerators, in remote regions where there is no mains electricity 

supply.

6.2 D escrip tion  o f  the P lan  o f  A ction

The programme o f work in which the possibility o f using photovoltaic panels to power a 

refrigerator as the first step towards commercial viability is planned as follows:

O Investigation o f all factors that contribute significantly to the input energy demand, in 

order to aim at reducing at the size o f the required photovoltaic panels.

©  Development o f an appropriate mechanism to obviate the need for the battery that is 

used for the storage, and subsequent usage o f the electrical power, generated by 

photovoltaic panels.

©  Design and construction o f a working prototype based on the findings o f step 1 and 2.

©  Evaluation o f the performance o f the prototype.

These factors are described in detail in the rest o f this chapter.
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6.3 In vestigation  on  the F actors A ffectin g  th e In p u t P ow er  

D em and

The main factors that contribute to the input power demand can be listed as follows:

O Efficiency o f the refrigeration system 

© Heat gain o f the refrigeration cabinet 

©  Energy losses from the system

6.3.1 Efficiency of the Refrigeration System

The factor that directly influences the efficiency o f the refrigeration system is the 

coefficient o f performance, abbreviated as COP. The COP o f the system is dependent on 

the outside ambient temperature, temperature o f the refrigerator cabinet and efficiencies 

o f all the components used.

6.3 .1.1 Temperature Difference between the Cabinet and Outside Atmosphere

So far, as the temperatures o f the refrigerator cabinet and the outside ambient are 

concerned, it is a well-known fact that the COP is inversely proportional to the difference 

between these two temperatures. In  other words higher COPs can be achieved as the 

temperature difference between the inside o f the cabinet and the outside ambient, through
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which heat is to be pumped, reduces. In  order to achieve the smallest possible

temperature difference between the refrigerator cabinet and outside ambient the following

two approaches are thought to be most appropriate:

O increase the size o f the evaporator, and

©  increase the size o f condenser

o f the refrigerator system.

This is because an increase in the size o f the evaporator helps with improved collection o f 

heat from the inside o f the refrigerator cabinet, and an increase in the size o f the 

condenser w ill speed up the dumping o f the heat collected from the inside o f the cabinet. 

It would, therefore, be easier for the system to pump heat from the inside cabinet to the 

outside cabinet.

6.3 .1.2 Utilising the Evaporator and Condenser of the Refrigerator for Longer 

Periods at Higher COPs

The COP o f the refrigerators depends on the maximum utilisation o f the evaporator and 

the condenser over longer periods. This means that the speed o f the pumping o f the heat 

from the inside o f the cabinet to the outside ambient must be totally in harmony with the 

cooling load demand. The cooling load demand depends on the quantity o f the food in 

the refrigerator cabinet, the ambient temperature and the frequency o f the opening and 

closing o f the cabinet door.
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It has been decided that using a compressor with variable speed, whereby it could 

accelerate during high cooling demand and decelerate during low demand, w ill be the 

most appropriate step to achieve the desired goal. This is because as a result o f the 

acceleration and deceleration during high and low load demands the evaporator and 

condenser w ill be used for longer periods and w ill perform at higher COPs.

6.3 .1.3 Saving Energy Wasted by Sub-Cooling

It has been found that the starting and stopping temperature settings o f the compressors 

and the temperature differentials are also important parameters in the COP o f 

refrigerators. A  more efficient and precise control o f these temperatures could bring 

about a saving o f waste energy by sub-cooling.

It has been thought that using an electronic thermostat w ill facilitate the desired control 

thus leading to an improved COP.

6.3.1.4 Improving the Liu »id to Gas Ratio in the Capillary and Recovering Unusable 

Energy

The capillary in a refrigerator passes liquid more rapidly than gas. In  this respect an 

improvement in the liquid to gas ratio can, therefore, increase the mass flow rate o f the 

refrigerant. This in turn improves the efficiency o f the refrigerator.
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The introduction of a heat exchanger to recover available cooling from the suction line 

can bring about an improvement in the liquid to gas ratio o f the mix in the capillary tube. 

This point can be substantiated by referring to the graph in figure 6.1, where the 

temperature and pressure distribution in the capillary tube is shown. The temperature is 

constant until it reaches the critical point 2 where the first bubble appears. This critical 

point can be brought further down, by additional cooling, which w ill result in a better 

refrigerant flow rate through a reduction in resistance.

Fig. 6.1 Pressure and Temperature distribution along a typical capillary tube
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6 .3 .2  H e a t  G a i n  o f  t h e  R e f r i g e r a t o r  C a b i n e t

The heat gain o f the refrigerator cabinet depends very strongly on the following factors:

O  The outside cabinet temperature,

©  The temperature difference between the outside ambient temperature and the 

refrigerator cabinet, and

©  The surface area o f the cabinet walls exposed to the outside world, and the thermal 

conductivity o f the walls o f the insulating material.

It  is easily recognisable that the only parameters worth investigating is the degree o f 

thermal insulation between the inside and outside o f the refrigerator cabinet, as discussed 

in point 3 above. .

In  all the household refrigerators investigated the wall thickness o f the thermal insulation 

material used is, at best, about 30mm. Figure 6.2 shows a typical characteristic o f cellular 

polyurethane, which is the most commonly used thermal insulation because o f its higher 

insulation property and low cost. This graph presents the effect o f the thickness o f the 

material over the annual energy consumption for a 200 litre refrigerator when the 

compressor runs for 2.8 hours. It can be seen that an increase o f 45mm, from 30mm, in 

thickness o f the thermal insulation material energy consumption drops from about 

720kWh down to about 340kWh, or a reduction o f over 52%. This graph clearly 

illustrates that better thermal insulation can significantly reduce heat gain hence reduce 

the energy demand in refrigerators. It is important to highlight the significance o f this 

result in the case o f refrigerators being powered by photovoltaic panels. This is because 

the extra cost o f the thickness o f the thermal insulation material is significantly lower
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compared to the cost o f the extra panel size and storage facility for the collected electrical

energy from the photovoltaic panels.

Insulation Thickness Vs Energy Consumption / Year
E

Insulation Thickness In mm

Fig. 6.2 Insulation material thickness versus Energy consumption

6.3.3 Elimination of the need for the Electrical Battery and Inverter

There are three main reasons that give credibility to the idea o f eliminating the need for 

the electrical battery and inverter. They are:

O  loss o f power as a result o f using the battery

©  loss o f power as a result o f using the inverter, and

©  the costs associated with the battery and the inverter and also their maintenance.
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However, the implementation o f this approach means that the compressor o f the 

refrigerator must be replaced by a d.c. one. Apart from the technical argument it must be 

pointed out, that as d.c. compressors are not mass produced to the scale which a.c. are, 

d.c. compressors are more expensive. The commercial merit o f the usage o f the more 

expensive d.c. compressor in the overall context o f cost benefit discussion w ill be 

assessed later in this chapter. A t this stage it is worth investigating this approach with 

particular focus on technical aspects o f the argument. It would be then that the overall 

merit approach could be realistically assessed.

6.3 .3.1 Technical Aspects 

a) E lim in a tin g  o f  th e  B a tte r y

As pointed out earlier not a great deal o f innovation has gone into the refrigeration 

systems powered by photovoltaic panels so far. The block diagram o f such a system has 

already been shown in figure 3.2. In  this system a conventional refrigerator that must 

operate with mains a.c. electricity is to be powered by a photovoltaic panel. Since the 

output o f the photovoltaic panel is always a d.c. voltage an inverter is needed to convert 

the d.c. voltage to mains a.c. to power the refrigerator. However, although it may look 

straightforward enough, the system suffers from a number o f drawbacks. The main 

disadvantages o f such an approach are the considerable power losses associated with 

using the battery and the inverter as well as with the maintenance o f such devices. There 

is also a problem associate with usage o f batteries with particular reference to the required 

short charging period. Although there are several attempts by various companies to 

address this problem and a number o f batteries have been marketed as “solar batteries” it
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has been seen in practice that this problem does not seem to be completely resolved. 

Despite these problems it must be pointed out that the main technical advantage o f the 

system shown in figure 3.2 is the fact that a commercially available refrigerator can be 

used without the need for any modification.

Although the elimination o f the battery (and the inverter for that matter) has the 

advantage o f cost reduction and removes the need for maintenance, it introduces a 

number o f new problems. A  major part o f the research programme reported in this 

chapter is how to address these problems. Among all the questions perhaps the most 

important ones to be addressed are:

©  how can a d.c. power o f the photovoltaic be used to power a conventional household 

refrigerator?, and

© how can the refrigerator operate satisfactorily during the long hours that there is no 

solar irradiation i.e. night?

Once d.c. power is to be used to operate any conventional refrigerator it immediately 

necessitates the replacement o f the a.c. compressor with an equivalent d.c. one. Although 

this approach solves one set o f problems, as outlined above, it raises a number o f new 

points to be taken in account.

The most fundamental questions to be considered refer to the variable nature o f the output 

power o f the photovoltaic panel. Due to the fact the incident solar radiation is not 

uniform throughout the sunshine hours, how does a d.c. compressor perform under 

variable input power?

Also the question o f the need for cooling power during the times when there is no or 

insufficient solar radiation, such as nighttime, becomes a problem if  an alternative



approach is not adopted. A  thermal (cold) storage mechanism is thought to be a 

satisfactory approach. This is possible with the use o f a suitable phase change material 

with high energy density, which w ill occupy minimal space inside the refrigerator 

cabinet. This approach has the advantage o f higher conversion efficiency, lower cost and 

greater life expectancy.

6.4  T he Q uestion  o f  C ost

The approaches discussed above that result in significant reduction in the size o f the 

photovoltaic panel, elimination o f electrical battery and d.c. to a.c. inverter brings about 

very significant cost reduction in the overall system. However, a number o f new 

problems that necessitate design modification bring about their own cost. A ll these 

questions are addressed in section 6.6 o f this chapter.

6.5 P ractica l E va lu a tion s o f  the S u ggested  D esign  

Im provem en ts

A full description o f all the major points that can contribute to significant improvement, 

in terms o f reduction o f the input power demand, in conventional household refrigerators 

has been presented in Section 6.3. The various recommended points have been arrived at 

after a thorough theoretical assessment o f the design features o f household refrigerators. 

In this section the various suggested design improvement are evaluated. The maximum
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cabinet temperature for these experiments was 42°C. Three sets o f refrigerators namely 

lOOlitres, 1561itres and 250 litres refrigerators were used as test models.

6.5.1 Thermal Insulation

As pointed out earlier in Section 6.3 the thickness o f the thermal insulation materials (that 

are less than 30mm) is not sufficient to provide any satisfactory resistance to heat flow  

from outside the cabinet to the interior o f the refrigerator cabinet. The effect of the 

thickness o f the thermal insulation materials on reduction o f heat gain o f the refrigerator 

cabinet was assessed for following cases. In  all the cases cellular polyurethane has been 

used as the thermal insulation material. It  must be highlighted that particular attention 

was paid to find the optimum thickness for each case and not indulging in “over 

engineering” by not going for excessive thickness. This way the cost effectiveness o f this 

approach was always ensured.

In the first set o f experiments a 100 litre refrigerator was used. The wall thickness o f the 

thermal insulation material was varied in stages o f 5mm, from 30mm. The performance 

of each test was compared against a conventional 100 litre with 30mm insulation 

material. It was found that 75mm o f wall thickness produced the best result and any 

further increase did not produce any significant improvement. It  was found that 

increasing the wall thickness o f the thermal insulation material from 30mm to 75mm the 

input power demand o f the refrigerator showed a drop o f 33%.

In  the second set o f tests the same procedure was repeated for a 1561itre refrigerator. In  

this case it was found that the optimum results was obtained when the wall thickness o f
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the thermal insulation material was 125mm. The reduction in the input power demand 

was about 36%.

In the third set o f experiments a 2501itre refrigerator was used as the test model. After 

repeating the entire procedure, a thickness o f 125mm resulted in the optimum 

performance, and the reduction in the input power demand was about 30%.

6.5.2 Increased Evaporator Size

Increasing the size o f the evaporator proved not to be as straightforward as increasing the 

wall thickness o f the thermal insulation material. For this reason it was decided to 

increase the evaporator to twice that o f the original size for each o f the 3 test cases.

It was found that for the lOOlitre size the saving in input energy was about 7.6%. For the 

156 and 250 litre sizes the saving was in the order o f 7.3% and 6.9%, respectively.

6.5.3 Waste Energy Recovery

As pointed out in section 6.3 recovery o f available cooling from the suction line improves 

the liquid to gas ratio o f the mix in the capillary tube. In  order to achieve this goal, 

transfer o f heat from the capillary tube to the vapour coming from the evaporator is an 

obvious step. To this end a heat exchanger was introduced in the suction line with 

capillary tube coiled inside. This approach has resulted in 2.3% reduction in energy 

demand.
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6 .5 .4  T e m p e r a t u r e  C o n t r o l

Mechanical thermostats were found unsuitable for satisfactory control o f temperature and 

efficient operation o f the refrigerator. This is because they have wide differentials or 

hysteresis. Although they favour the o ff period required to equalise the high and low 

pressures, they are unsuitable as far as prevention o f waste energy is concerned. The 

wide differentials (that cause wastage o f energy) cause over-cooling and over-heating. 

Electronic thermostats, because o f their more accurate control characteristics and 

temperature sensing capabilities, have been found more capable o f preventing this 

wastage o f energy.

It is worth pointing out that in a system with thermal energy storage the latent heat is 

stored at a constant temperature by changing phase. Therefore to make maximum use of 

thermal energy storage the compressor should start and stop immediately after and before 

the phase change. W ith an electric thermostat the set point and differential can be 

adjusted to suit the evaporator and refrigerator temperatures. It was not easy to arrange 

the set point and differential in order to adjust to suit the evaporator and refrigerator 

temperatures to achieve the most desired operation. This is because the freezing and 

thawing processes occur at separate interface locations. They are the evaporator storage 

medium interface when thawing and the storage medium cabinet air interface when 

freezing. It therefore required sensing at these two interfaces.

In practice it has been found that with storage the compressor cycling is far less frequent. 

The losses due to overcooling and overheating o f thermostatic hysteresis are minimal.
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6 .5 .5  T h e r m a l  ( C o l d )  S t o r a g e

Bridging the time gap between the availability and use o f energy is an essential part of a 

refrigerator if  it is to be powered by solar energy. The idea o f using an electrical battery 

was to address this issue. However, since usage o f photovoltaic panels as a power source, 

minimisation o f the size o f the photovoltaic panels, elimination o f electrical batteries and 

inverters with particular focus on cost reduction are the main themes o f the work 

described in this Chapter an alternative mechanism o f storage o f energy must be adopted.

Thermal storage is the model substitute approach. This is because both the output and 

input o f such a storage system are thermal energy and there w ill be no losses due to 

intermediate electromechanical energy conversion. In this connection phase change 

material is the answer because space is at a premium in refrigerators. For this reason 

larger size refrigerators are more practical for the implementation o f this technique. The 

criteria in selection o f the most suitable phase change material are melting point, specific 

heat, latent heat, heat o f fusion, chemical and physical stability, toxicity, availability and 

compatibility with the container material and cost. Water was selected as the most 

obvious choice. The most significant deciding factors are its higher latent heat energy, 

non-toxic characteristics and cost.

The container for the phase change material (water) was designed with particular 

attention to the capacity and configuration. The importance o f these factors w ill now be 

briefly discussed.

The capacity o f the thermal (cold) storage is dictated by the availability, the cooling load 

and the capacity o f the refrigeration system. In determining the cooling load the most 

important point is to generate enough cold storage to provide sufficient cooling, during



the sunshine hours, so that cooling is maintained in the refrigerator cabinet for 36 hours. 

Obviously, the capacity increases with the thermal load but a good design takes care o f 

this point. The design o f the container is based on its ability to act as an effective heat 

exchanger. In this respect it must release all its stored energy effectively to maintain the 

desired temperature inside the refrigerator cabinet for a period o f 24 hours for a sunshine 

duration o f 7 hours.

6.5.6 Design and Evaluation of Performance of a Prototype

On the basis o f the findings from all the points described earlier in this chapter a 

prototype was designed and its performance was evaluated under “real life conditions”. 

This matter is described in this sub-section.

6.5.6.1 Choice of Capacity

It was initially intended to construct a 250 litre capacity prototype. However, the fact that 

it is intended to use the output d.c. power o f a photovoltaic panel directly to power the 

refrigerator the question o f a suitable compressor, with particular reference to availability 

and cost, had to be addressed very carefully. First o f all, d.c. compressors are the only 

type that can be used. At the time o f construction o f the prototype it was not easy to find 

a d.c. compressor with a power rating about 280 Watts within our budgetary constraints. 

In fact, the question o f cost, indeed, had to be considered very carefully as the potential 

commercial viability o f the end product is a major theme o f the present work. After some
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careful consideration modification o f a 156 litre, based on the findings o f the points 

described earlier, was thoughL to be the most suitable approach in the construction o f the 

prototype.

The accurate size o f the container for the thermal (cold) storage was calculated as 

follows:

The daily energy requirement=487Whr/day

Assuming the total sunshine hours to be 7 hours.

Then the required thermal energy storage is:

487 (24-7)
-------------------- »345W .hr

24

With the enthalpy o f fusion o f water being:

333.8kJ/kg
----------------------= 92.7W.hr/kg

3.6

then the quantity o f the water required:

345W.hr
----------------------=  3.72kg
92.7W.hr/kg

It, therefore, becomes possible to maintain the refrigerator cabinet temperature around 

4°C over a 24 hours period with only 3.72kg o f thermal (cold) storage.
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At this stage it is important to point out that as the ice thaws its specific heat changes. In  

other words the specific heat o f ice is 2.1kJ/kg°C whereas that o f water is 4.23kJ/kg°C. 

This, obviously, affects the rate o f heat transfer. For this reason allowance must be made 

by increasing the thermal (cold) storage by more than 100% to provide more than twice 

as large a heat transfer surface area. The volume o f the phase change material (water) 

used was, therefore, taken as 10 litres. Since this had to be accommodated inside the 

cabinet then the power rating o f the compressor must be estimated for a 156 litre 

refrigerator. The question o f the power requirement for charging phase change material 

w ill now be addressed.

In  order to achieve a temperature o f 4°C inside the cabinet under an ambient temperature 

o f 40°C for a refrigerator with 125mm thick wall o f polyurethane the energy requirement 

for a 156 litre refrigerator is about 487Whr/day. Assuming about 7 hours o f solar 

radiation the cooling load is:

487Whr/day
-----------------------= 69.57W

7hr

Since 60W  d.c. compressors were readily available at reasonable costs it was decided to 

use two 60W  d.c. compressors in the prototype and investigate the performance. It has 

been envisaged that these compressors are adequate to cool the cabinet and charge the 

phase change storage.

The evaporator and condenser were chosen to be 200% and 300% the size for the 

conventional similar capacity refrigerator, respectively. The electronic thermostat switch 

used was a conventional Radionics switch. The recovery o f available cooling from the 

suction line was secured by coiling the capillary tube inside the line. There was no 

alternation done to the refrigeration line and the conventional refrigerant was left intact.
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6.5.6.2 Performance

The refrigerator was filled with perishable food items such as milk, butter, cheese, fruit, 

meat and fresh vegetables. A  thermocouple was also placed inside the cabinet. The 

photovoltaic panels purchased were made o f amorphous silicon. The panels were capable 

o f producing 70 W at 12volts d.c. for each compressor.

In  the evaluation of the performance o f the prototype the temperature o f the ambient and 

the cabinet were recorded at regular intervals o f 30 minutes. The refrigerator door was 

opened for 6 times during each run with each opening not lasting more than 1.5 minutes. 

The test was conducted for 15 runs. Each run lasted for 48 hours and at the end o f every 

7 hours o f exposure o f the photovoltaic panels to the sunshine the panels were 

disconnected from the refrigerator and remained so for 41 hours. A t the end o f the each 

run the cabinet door was left open until all the ice in the thermal storage container was 

fully thawed and its temperature rose to above 25°C. The temperature o f all the foodstuff 

(apart from the milk and meat) was also allowed to rise above 25°C. The surface o f the 

photovoltaic panels was cleaned at the start o f each run. Figure 6.3 shows the variation of 

the temperature inside the cabinet during a 48 hour operation. It was observed that after 4 

hours and 50 minutes o f operation o f the compressors the phase change material reached 

the predetermined status and switched o ff automatically. In other words the compressors 

need to operate for only 4 hours and 50 minutes to maintain the refrigerator temperature 

for a period o f about 24 hours. The spikes in figure 6.3 represent the time when the 

refrigerator door is opened for about 1.5 minutes and then closed.

The graph clearly indicates that it is, indeed, possible to maintain the refrigerator 

temperature below 4°C with smaller size for the container o f the phase change material
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for 24 hours duration. It is also important to point out that for lower ambient 

temperatures the case becomes more attractive,

Another important point to highlight is the potential for further improvement in the 

performance o f such a system. This can be explained as follows:

The cooling load demand varies with ambient temperature. The output power o f the 

photovoltaic panels varies in such a way that it is at its maximum during the mid-day 

hours. It is in fact during this period that the cooling load and the ambient temperature 

are at their maximum. For this reason a variable speed compressor w ill be a perfect 

match to the system. This is because the compressor speed could accelerate during high 

cooling demand periods. This way both the evaporator and condenser w ill be utilised for 

longer periods that w ill inevitably improve the coefficient o f the performance. However, 

it proved impossible to source a d.c. compressor with variable speed when the research 

programme was in progress. An alternative approach to cater for variable output o f 

photovoltaic panel is implemented in the research work described in Chapter 8.
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Fig. 6.3 Variation of the temperature inside the cabinet during a 24 hour operation
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6.6 D iscussion

As a result o f the research work presented in this chapter it has now been firm ly 

established that the approach adopted so far whereby conventional refrigerators are 

powered by a photovoltaic panels via battery and inverter is not the most cost effective 

and energy efficient approach in solar refrigeration. The presented discussion is, 

therefore, about how advantageous the solar refrigeration system based on the new design 

idea compared with the current approach described in this chapter. This is because the 

superiority o f the new design over the systems using photovoltaic panels, battery and 

inverter is now a foregone conclusion. This point has already been addressed earlier in 

this Chapter both from the technological and costs point o f view. The new design is 

undoubtedly a major step forward in improving the commercial potential o f solar power 

refrigeration systems powered by photovoltaic panels for rural regions where the supply 

of mains electricity is either non-existent or very intermittent and unreliable.

Another important point to be discussed is how the new design refrigerator compares with 

conventional refrigerators using mains a.c. as their source o f power. The discussion on 

this issue must, therefore, be centred on increased cost o f the new design and savings that 

the reduced input energy brings about.

6.6.1 The Question of Increased Cost

Perhaps it would be most appropriate to address the question o f the increased cost in 

terms o f following points:
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©  New design in relation to improved efficiency, and 

©  d.c. compressors

For the prototype designed and tested the photovoltaic panels were chosen to provide 140 

Watts o f power at 12 volts d.c. Although the efficiency o f amorphous silicon panels are 

lower than that o f the other types o f photovoltaic panels the fact that the cost o f the 

amorphous panels is about US$3.00/W att compared to US$7.00/W att for the nearest 

competitor made amorphous silicon panels very attractive. The costs for the amorphous 

photovoltaic panels to provide 140W o f output power, and those o f installation frames 

and brackets came to about €461 (or US$452 based on the exchange rate o f €1 =  

US$0.98).

To implement the ideas o f the new design necessitates usage o f extra materials. However 

since the manufacturing procedure for the mass production o f the new design w ill be very 

close to that o f the conventional refrigerators there w ill not be a significant increase in 

production cost. It  would, therefore, be reasonable to assume a cost increase o f about 6%.

As far as d.c. compressors are concerned they are more expensive that their a.c. counter

parts. This is because they are not produced in as large o f a volume as the a.c. 

compressors are. A  full survey o f costs o f compressors showed that d.c. compressors, on 

average are about 20%-25% more expensive. Here again, in order to discuss the question 

o f cost in a critical manner the upper figure o f 25% is being taken into account.

O Photovoltaic panels
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6 .6 .2  S a v i n g  D u e  t o  R e d u c t i o n  i n  E n e r g y  D e m a n d

It  has been shown in this chapter that each stage o f design improvement has resulted in a 

certain level o f reduction in the energy demand. The most significant points are in 

relation to using thicker walls for thermal insulation, thermal (cold) storage, larger 

evaporator &  condenser, and the heat recovery from the suction line. The reductions 

related to thermal insulation, larger evaporator &  condenser and heat recovery are found 

to be 36%, 7.3% and 2.3%, respectively. The energy reduction in relation to thermal 

(cold) storage turns out to be a by-product o f the design. For this reason it was not 

deemed necessary to present a figure. In other words, the major breakthrough here is the 

smart design that has facilitated the required cooling power for the refrigerator to function 

satisfactorily over a 24 hour period.

6.6.3 Final Cost Calculation

The overall cost discussion can be based on the argument that once the photovoltaic 

panels are paid for and installed there w ill be no running cost associated with them. It 

would, therefore, be necessary to see whether the saving associated with the elimination 

of the running cost o f the refrigerator has any significant impact on the commercial 

viability o f the new design.

A  conventional 150 litre refrigerator requires a maximum o f 1400 W.hr/day in area where 

the ambient temperature varies between 20°C to 40°C. I f  the cost o f the electricity 

required to run a 150 litre refrigerator in Ireland is taken into account as the basis for
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calculation then for the case in hand annual running cost and the calculation leading to 

potential viability can be presented as follows:

The annual power requirement =  1400 W.hr/dayx365 =  511 kW/year

The cost o f each kW .hr (kilowatt.hour) for domestic users o f energy = €0.12 after taking 

into account the rate, service demand charge and service capacity charge as specified by 

the Electricity Supply Board. On this basis the saving w ill be €64.9 per year.

The 6% increase in the cost for implementation o f the new design ideas must not be 

worked out against retail price o f a conventional refrigerator. Instead it must be worked 

out against the cost o f materials used in mass production. For the retail price o f €305 the 

cost o f the materials for each refrigerator cannot be over €102. The 6% extra cost is, 

therefore, around € 6 .10.

For the d.c. compressor the extra 25%, which is the current figure for the difference 

between d.c. and a.c. compressor, is about €31.75.

The extra cost involved, therefore, is the sum o f the following figures:

€432 (for the panels) + €6.1 (for the new design) + €31.75(for the d.c. compressors) =  

€469.85

The saving per year =€64.9  

The payback time = 7.2 years.

It  must be noted that the above figure has arrived at without taking a discount-cash-flow 

analysis.
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6.7 Conclusions

It has been established that there is, indeed, a more practical and reasonable lower cost 

approach to the way photovoltaic panels are being used to power conventional 

refrigerators.

As far as the comparison between this new solar powered refrigeration system and the 

conventional a.c. mains powered refrigerators is concerned the cost o f the new system is 

far too expensive for the new design to be considered as a competitor. This is because the 

cost o f the new system is about 154% more expensive compared to the conventional 

refrigerators. The fact that there is no running cost associated with the new design makes 

the design attractive up to some point but the payback time o f 7.2 years is still too long to 

make it a viable commercial proposition. However, it does not mean that the new design 

can be disregarded completely. This is because the useful lifetime o f the photovoltaic 

panels is over 20 years and the useful lifetime o f conventional refrigerators is normally 

about 15 years. In this context the fact that there w ill still be at least over 8.3 years o f life 

left in the system after the payback time gives the new design strong merits as far a 

commercial viability is concerned.

There are also a number o f important points that need careful attention. The new 

advances in the manufacturing o f photovoltaic panels promises a cost per watt in the 

region o f around US$1.00, due to the new Cadmium Telluride cells. This w ill 

undoubtedly bring the overall cost down by about €280 and the payback time goes down 

to 3.84 years. This figure speaks for itself in terms o f commercial viability. Another 

point that is worth pointing out is that if  a greater demand develops for d.c. compressors 

then their costs w ill inevitably come down. It would, therefore, be reasonable to claim
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that pay back times o f about 3.3 years are not too far away. Finally, in rural areas where 

there is no reliable supply o f mains electricity the new design, indeed, offers the most 

attractive option in refrigeration.
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Chapter 7

D e s i g n  a n d  D e v e l o p m e n t  o f  a  S t a n d - A l o n e  

M u l t i - C y c l e  I n t e r m i t t e n t  S o l a r  P o w e r e d

B l o c k  I c e m a k e r  P l a n t



Design and Development of a Stand-Alone Multi-Cycle Intermittent 

Solar Powered Block Icemaker Plant

C h a p t e r  7

7.1 In troduction

Nowadays the idea o f solar powered cooling and refrigeration is one o f the most 

attractive ideas in the field o f application o f solar energy not only in the developing 

countries but also in the developed countries. It is therefore, easy to see why the idea 

o f solar powered cooling and refrigeration has attracted so much interest among the 

researchers and technologists.

In view o f the fact that solar energy is available on an intermittent basis a great 

majority o f all the works carried out so far have been concerned with intermittent 

systems. In  these systems various conventional cooling and refrigeration systems 

were modified to operate in conjunction with the intermittently available solar 

radiation. The simplest o f all the conventional cooling and refrigeration systems to be 

adopted were those using liquid absorbents such as water-ammonia, or lithium  

bromide-water and physical absorption systems such as methanol in activated 

charcoal. Once again, it has to be emphasised that the only reason for the usage of
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these systems were their simplicity and certainly not their coefficient o f performance 

(COP). The higM & COPs reported for all the above systems have been reported 

[153-158] to be in the range o f 0.02 to 0.12.

Systems using physical absorbents such as calcium chloride in conjunction with 

ammonia, on the other hand, did not receive the same initial interest among the 

researchers despite their higher inherent COPs. This was primarily because o f a 

number o f practical problems associated with such refrigeration systems using solid 

absorbent such as calcium chloride in conjunction with ammonia. However, in more 

recent works these problems have been reported to be solved [159].

It has now been realised that intelligently designed systems with better COPs are the 

only way forward if  the question o f solar powered cooling and refrigeration is to be 

taken seriously. The higher COP w ill offset any marginal initial extra cost.

In this chapter design and performance o f a new novel solar powered multi-cycle 

intermittent ice making system is described. The novel system uses an advanced 

evacuated solar heat collector in conjunction with calcium chloride-ammonia mixture 

and ancillary photovoltaic peripheral technology. Increased yield and relatively low 

cost are the most advantages features o f the new novel design.
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7.2 Background to Refrigeration Systems Using Calcium Chloride -  

Ammonia Mixture

The history o f the application o f calcium chloride-ammonia mixture for refrigeration 

dates back to the late 1920s. A  number o f practical problems had to be tackled at the 

time in Research and Development stage. The problems as outlined by Chinappa 

[159] are:

O Poor heat transfer to and from the solid adsorbent

©  The solid absorbent swells up to 3-4 o f times its original size when it absorbs 

ammonia

©  The absorbent tends to lose its crystalline structure and break up into powder, 

which makes subsequent absorption difficult.

©  The solid absorbent is packed into regions less accessible to ammonia, which 

causes a decrease in absorbing capacity with cycling.

The system proved very reliable once all the above problems were sorted out by the 

early 1930s. Siemens-Protos successfully manufactured and marketed household 

refrigerators using intermittent absorption systems using calcium chloride -  ammonia 

mixtures in the 1930s and 1940s. The system was abandoned in the late 1940s when 

the so-called Electrolux patents expired.
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7 .3  A  B r i e f  T h e o r e t i c a l  D e s c r i p t i o n  o f  t h e  C a l c i u m  C h l o r i d e  -

Ammonia Cooling and Refrigeration Systems

Calcium chloride absorbs a total o f eight moles o f ammonia in four steps. The steps 

are:

i- CaCl2 + N H 3 <=> CaCl2(N H 3)

ii- CaCl2(N H 3) + N H 3 <=> CaCl2(2N H 3)

iii- CaCl2(2NH3) + 2N H 3 « -  CaCl2(4N H 3)

iv- CaCl2(4NH3) + 4N H 3 CaCl2(8N H 3)

In  the cases related to all solar powered cooling and refrigeration systems reported so 

far the source o f heat has been flat plate collectors. In  view o f the limited energy 

conversion efficiencies associated with flat plate collectors and the moderate ultimate 

obtainable working temperatures only six moles can be cycled, working with flat plate 

collectors as their source o f energy. In this respect only reactions iii and iv described 

above are applicable to solar powered cooling and refrigeration using flat plate 

collectors. This phenomenon is shown in figure 7.1.

The heat o f reaction is approximately twice that o f the latent heat o f vaporisation 

which sets an upper lim it for the obtainable coefficient o f performance (COP) o f the 

process o f about 0.5. The actual COP is, however, lower because o f the losses caused 

by the heating o f the absorber from the absorption temperature to the desorption 

temperature.
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Fig. 7.1 Calcium chloride -  ammonia equilibrium
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As shown in figure 7.1 the reaction temperatures are determined by the pressure in the 

system. The desorption temperatures are somewhat higher than those needed in a 

water-ammonia system, and one does not have the freedom, offered by latter system, 

o f choosing the concentration according to the specific evaporation and condensation 

temperatures. In view o f the fact that the thermal capacity o f the calcium chloride is 

smaller than that of the strong solution o f water and ammonia mixture a higher COP 

can be obtained with the calcium chloride -  ammonia system. Unlike water - 

ammonia, or other systems with liquid absorbent where the COP is very sensitive to 

changes in the evaporation and condensation temperature, the COP o f the calcium 

chloride -  ammonia system is only slightly effected by such changes.

7.4 System s U sing H igh -E ffic ien cv  E vacuated  S olar H eat 

C ollector T ubes

In order to obtain sufficiently high rates o f reaction in calcium chloride-ammonia 

mixture a certain superheating o f the absorbent during desorption is necessary. This 

point is also shown in the equilibrium diagram o f figure 7.1. In  order to detach and 

cycle the two strongly bound moles to the solid, temperatures excess o f 200°C are 

required. It is, indeed, for this particular reason that flat plate collectors are not 

capable o f cycling the last two moles.

The high efficiency fast response evacuated solar heat collectors developed at the 

Institute o f Technology, Sligo is capable o f supplying operating temperatures o f over 

250°C, routinely. The solar selective absorber material used in this type o f collector is
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the highly stable cobalt oxide on aluminium, developed at the Indian Institute of 

Technology, Delhi [160]. It produces stagnation temperature over 300°C. This type 

of collector is ideal as the source o f heat for calcium chloride -  ammonia mixtures. 

The application o f this type o f collector has been the main step in the design o f the 

novel multi-cycle icemaker. The excellent results obtained very clearly prove a major 

breakthrough brought about by using this type o f collector.

7.5 A n O verv iew  o f  the N o v el In term itten t S tan d -A lon e  

M u lti-C ycle  S olar P ow ered  B lo c k  Ice  P lan t

The design idea leading the development o f the novel multi-cycle stand alone 

intermittent solar powered block ice plant stems from the successful trial o f a single 

cycle intermittent system developed by Sunice company [161] and tested in Gambia 

in 1989. In this system 12 modules o f generator using double glazed flat plate solar 

heat collector were used. These collectors were capable o f delivering heat at 90°C to 

the calcium chloride -  ammonia mixture. Each module contained 4.2kg o f ammonia 

and the system was capable o f production o f 100kg o f ice per day. In view o f the fact 

that 4.2kg o f ammonia is sufficient to freeze about 10kg o f ice the output o f the 

system proved very satisfactory. In  this analysis the output was over 83% o f the 

expected 120kg o f ice per day.

Due to technological advancements in the fields o f stable selective absorber material 

and in the design and development o f highly efficient evacuated solar heat collectors
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at Institute o f Technology, Sligo it was decided to explore the possibility o f

developing the novel multi-cycle system.

7.5.1 Brief Description of the Overall System

A  schematic diagram o f the overall system is presented in Figure 7.2. The system

comprises the following parts:

i- Generator modules with each module comprising 10 evacuated solar heat

collector tubes. Each collector tube contains the housing for the calcium

chloride -  ammonia mixture and the evaporator o f an internal cooling system

using R 11 refrigerant.

ii- Condensers for ammonia circuits with air coolant pipes welded to its outer

surface.

iii- Condenser o f R 11 circuit for the internal cooling with air coolant pipes welded

to its outer surface

iv- A bi-stable solenoid valve to be used for the starting and stopping o f the

internal cooling for the commencement o f absorption and desorption,

respectively.

v- Evaporator for the Ammonia Circuit (block icemaker part).

vi- A  flow meter to record the flow rate o f liquid ammonia into the reservoir

before it is allowed to flow into the evaporator o f the block icemaker plant.
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vii- The housing o f the plant

viii- Pond o f water for storage o f cold water to help to cool the condensers o f 

ammonia and the internal cooling circuits.

ix- Air circulating pumps to cool air from the inside o f the pond to the condensers 

described in (ii) and (iii) above.

x- Electrical system comprising o f photovoltaic panels, battery and timer circuit.

xi- An electronic integrator to signal the end o f the desorption cycle and the start 

o f the refrigeration.

xii- Shading system to prevent the generator from receiving solar irradiation 

during absorption o f vaporous ammonia, and

xiii- Bi-stable solenoid stoppers.

The function o f the parts listed above are described in Section 7.6
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Photovoltaic panels

Collector arrays

Control unit

Fig. 7.2 The schematic diagram o f the system
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7.6 D escrip tion  o f  the V ariou s P arts o f  th e P lan t

7.6.1 The Generator Tube

The term generator in this context is referred to as the part o f the plant where 

ammonia is boiled o ff the solid -  ammonia mixture. Since it is intended to develop a 

multi-cycle system the generator must be capable o f boiling o ff all the ammonia from  

calcium chloride -  ammonia mixture in the shortest possible time. For this reason the 

mixture o f solid -  ammonia has to receive the maximum possible thermal energy from 

the solar irradiation. In  view o f the fact that there is considerable expertise present at 

the Institute o f Technology, Sligo in high-output evacuated solar heat collectors an 

evacuated tube generator was the most obvious option. The housing for the solid - 

ammonia mixture is an extruded aluminium profile o f the shape shown in figure 7.3. 

The length o f the profile is 1.9m. The inner diameter o f the inner tube is 15mm and 

its wall thickness is 2.5mm. It is connected to the outer tube by 6 fins. The thickness 

of each fin is 2.5mm. The outer tube has an O.D. o f 80mm and its I.D . is 75mm. The 

space between the inner and outer tube is the housing for the solid -  ammonia 

mixture. The inner tube is for cooling purpose when the solid is to be cooled down to 

appropriate temperatures in order to facilitate absorption o f the ammonia vapour at the 

end o f each cycle. The outer surface o f the extruded aluminium is coated by cobalt 

oxide selective coating. There are three reasons for the use o f aluminium as the 

profile. They are:
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Fig. 7.3 The housing for the solid - ammonia mixture
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©  It can easily be produced by extrusion 

©  Its low cost, and

© Cobalt oxide selective coating can easily be deposited on aluminium.

The above-mentioned dimensions for the housing o f the solid -  ammonia were chosen 

in order to allow for the expansion o f the calcium chloride when it absorbs the 

ammonia. As pointed out earlier its volume can expand to 3-4 times o f that its 

original volume (when it is dry) as it absorbs ammonia. In  order to be on absolute 

safe side and facilitate repeated cycles o f usage o f the solid over many years the 

housing is designed to tolerate expansion o f as high as 10 times. This also increases 

the collector area which in turn accelerates the desorption o f ammonia from the solid 

during the desorption phase. The choice o f dimension for the inner tube and thickness 

o f the fins have been based on providing the necessary cooling power for the dry solid 

to facilitate efficient absorption.

The problems associated with the interaction o f calcium chloride and ammonia that 

can adversely affect the solid as outlined earlier in this Chapter has been addressed 

using the approach suggested by Iloeje [162]. This is achieved by making a mixture 

o f calcium chloride and Portland cement (CajSCU). The mixture was 80% calcium 

chloride and 20% Portland cement. The aluminium profile containing the solid was 

placed inside a 2. lm  long borosilicate tube o f 100mm O.D. The wall thickness o f the 

glass tube was 2.6mm. Two concentric stainless steel bellows o f 15mm and 80mm 

I.D . where connected (by ultrasonic welding) to either end o f profile. A  nickel 

chromium iron alloy flange with an 80mm hole to accommodate the 80mm O.D. 

bellows were used at either end o f the glass tubes. The flange was T IG  welded to the 

80mm O.D. bellows. The flange was then fused to the neck o f the glass tube at either
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end o f the glass tube using thermal compression technique for a hermetically sealed 

glass to metal fusion. The volume between the extruded aluminium part and the inner 

wall o f the glass tube was evacuated down to 2X  10'5 mbar and then sealed off.

Ten o f these evacuated tubes with a distance o f 120mm between them were mounted 

in an aluminium box covered by a pane o f glass to form one module. Each generator 

tube was integrated with a highly polished involute aluminium reflector to reflect the 

solar irradiation to the to the back o f the aluminium profile o f generator tube. The 

arrangement o f a tube and a reflector, known as one Generator Unit, is shown in 

figure 7.4. The reason behind using the glass pane was to facilitate cleaning and 

removing dust on regular basis without damaging the highly polished surface o f the 

reflector and also the generator tubes. It must be pointed out that if  the modules were 

to be used without any protection against dust and dirt then it would be necessary to 

clean the reflectors and the generator tubes regularly and frequently. This would, 

especially, result in scratching and adversely effecting its reflecting characteristics o f 

the reflectors. A  cutaway view o f generator tubes in a module and a fully completed 

module are shown in figures 7.5.a and 7.5.b.

182



Fig. 7.4 The generator Tubes and the reflectors
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Figure 7.5.a A  cutaway view o f generator tubes in a module
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Figure 7.5.b A  folly developed generator module
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7 .6 .2  T h e  R e f r i g e r a t i o n  C i r c u i t

A simple illustration o f the block icemaker is schematically depicted in figure 7.6. A  

cellar type room o f about 5 metres under outside ground level is an integral part o f the 

icemaker. The “generator module” and its shading screen together with the 

photovoltaic panels are mounted on the top o f the cellar housing (A  full description o f 

the shading system is presented later in this subsection). The reason behind the usage 

o f cellar room is the fact that the temperature inside the cellar is always in the range o f 

16-20°C while the ambient temperature outside the cellar is about 32°C in the shade at 

ground level. The cellar, therefore, provided a unique cooling facility to the 

refrigeration circuit were placed inside cellar:

O the condenser o f the internal cooling circuit

©  the reservoir o f the refrigerant o f the internal cooling circuit,

©  the condenser o f the ammonia circuit,

©  the reservoir o f the ammonia circuit

©  the evaporator o f the block ice maker (the ice box), and

©  a pond containing 5 cubic metres o f water and two submerged air heat exchanger 

metallic coils at the bottom o f the cellar.
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Fig 7.6 The principle o f the operation o f the absorption system
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Metallic pipes at a distance o f about 25mm apart were welded to the outside wall o f 

both condensers. The bottom ends o f these pipes were left open. Each manifold was 

supplied with cool air from the submerged heat exchanger coils from the pond at the 

bottom o f cellar. This arrangement facilitated as a very effective cooling mechanism 

for the condensers. Two d.c. air circulating pumps powered by photovoltaic panels 

provided the coolant air to the condensers.

The ammonia vapour generated during the desorption phase in the evacuated 

generator tubes is liquefied in the condenser and finds its way, by gravity, to the 

ammonia reservoir before it is allowed to flow into the evaporator o f the block ice 

maker. The refrigerant vapour emerging from the internal cooling pipe o f the 

generator tubes is liquefied in the condenser and then finds its way, by gravity to its 

reservoir.

The liquefied ammonia goes to the receiver and evaporator that are placed at the 

bottom o f the cell. A  flow meter is placed at the lowest point o f the condenser coil. 

The output o f the flow meter is connected to an integrator to measure the quantity o f 

the liquefied ammonia that flows to the evaporator.

In order to facilitate absorption o f the ammonia vapour, emerging from the evaporator 

of the icemaker circuit, by the calcium chloride inside the evacuated generator tube it 

is necessary to cool the calcium chloride to temperatures in the range o f 25°C or less. 

This is achieved by incorporating a separate cooling system. The evaporator o f this 

cooling system, that has been called the “internal cooling”, is the 15mm I.D . finned 

tubing inside the extruded aluminium housing o f calcium chloride. As pointed out 

earlier, the condenser o f this cooling system is also in the cellar housing. This 

condenser is also air-cooled the in the same manner as the condenser o f the ammonia
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circuit. A  4mm I.D . pipe connects the reservoir o f the internal cooling circuit to the 

bottom o f the internal cooling pipe in the extruded aluminium profile via a bi-stable 

valve. The cooling is switched on by the opening o f the bi-stable solenoid valve 

connected between the condenser and the evaporator. As the valve opens the liquid 

refrigerant is fed to the bottom o f the internal cooling tube. As the liquid travels to 

the 15mm I.D . tube from the 4mm I.D . pipe it rises up and is turned into vapour. This 

action generates the required internal cooling.

7.6.3 S h a d in g  S ystem

By 10 am on a good day all the ammonia is boiled o ff from the generator modules and 

at this time it is appropriate to activate the internal cooling refrigeration cycle. This 

can be achieved primarily by preventing the evacuated generator tubes from receiving 

any solar radiation. In  order to do this the modules must be shaded completely so that 

no solar incident reaches the evacuated tubes.

The shading is facilitated by a screen made o f 2.2m long 20mm O.D. hollow 

fibreglass tubes o f 1 mm wall thickness. There are 2 grooves at either ends o f these 

pipes and they are at a distance o f 10mm from the nearest end. The depth and the 

width o f the grooves are 0.25mm and 2mm, respectively.

These grooves are used to interconnect the fibreglass tubes as closely as possible to 

each other by a nylon cord. This arrangement provided the most ideal flexibility to 

the screen as it moves on or o ff the module.
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Wooden pulleys were mounted along both sides o f the module, at distances o f about 

74cm from each other. Both ends o f the fibreglass tubes rest and slide over these 

pulleys and the middle part o f the tubes on an aluminium rod with inverted U-shaped 

supports to prevent sagging o f the tubes. This arrangement provided the ideal 

structure for the positioning and movement o f the screen over the modules. Figure 

7.7 shows the arrangement o f the above parts for ideal positioning and movement of 

the screen on/or o ff the module. This structure also prevents the movement of the 

fibreglass shading screen to the right or left. In  other words it takes care o f careful 

positioning o f the screen on the module frame. Seeing as there are some small gaps in 

between the fibreglass pipes o f the screen there w ill be a small amount o f solar 

irradiation that could reach the module tubes, from the gaps between adjacent 

fibreglass while the screen is on. In  order to prevent this event a second screen of 

similar type and support structure was placed right above the first screen. W ith this 

arrangement no direct sunshine w ill reach the generator module.
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The movement o f this screen over and away from the module is secured by dropping a 

spherical weight o f 5kg to one o f the baskets connected to each end o f the shading 

system. Each screen, therefore, is connected to a basket at each end to accommodate 

the weight in question

Perhaps it would be best to describe the operation o f the mechanism used to drop the 

weight into the appropriate baskets and makes the screen move on or away from the 

modules by referring to the diagrams shown in figures 7.8.a and 7.8.b.

Once the need for the shading arises an electrical signal w ill be received at the 

“holding station”. The holding station consists o f a holding pipe, a standby box, a 

standby shell and the outlet door. The holding pipe is at a slight angle with respect to 

horizontal, and it contains 3 o f the spherical weights. A  small stop is mounted at the 

end o f this holding station. The wall at the outlet o f this box is hinged and forms a 

door that pivots around the hinge. It can be closed or opened by moving a small 

stopper rod that is activated by a bi-stable solenoid.

The spherical ball in the box sits inside the “standby” shell. This standby shell is a 

segment o f spherical shell whose inner diameter is almost equal to the outside 

diameter o f the spherical weight. The depth o f the shell is roughly equal to half o f its 

radius. This shell is manufactured from casted aluminium with a rod protruded from 

the centre o f the outside wall o f the shell, in one piece. The shell can therefore pivot 

around the central hole. The standby box contains the standby shell and the outlet 

door. There are two 10mm diameter holes along the central line o f the bottom o f the 

box. The holes are situated in the direction o f movement o f the spherical weights 

from the holding pipe to the outlet door o f the standby box. One o f the holes is 

positioned at the exit side o f the station box and the other one is at its inlet side. In  the
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stand by mode the stopper at the exit side is up and the one at inlet hole is down. 

When the need to move the screen arises the stopper at inlet moves up and, 

simultaneously, the one in exit move down. The stoppers are 7mm rods and are 

connected to a mechanism that pivots in such a way that the action o f one is 180° out 

o f phase with that o f the other. The stopper mechanism is activated by the bi-stable 

solenoid. Therefore, in the stand by mode, when there is no need to move the screen, 

the positions o f the stoppers at the bottom o f the standby shell are as follows:

O the one nearest to the inlet o f the standby box is down, and 

© the one nearest to the hanging door o f the basket is up.

In  this arrangement the standby shell is in such a position that prevents the ball from 

moving toward the hanging door o f the standby situation. When the time for moving 

the screen arrives, the position o f the stopper changes from the standby mode and the 

ball moves to the basket. The distance by which the up and down movements o f the 

rods are adjusted is carefully selected so that the weight can easily drop into the 

basket o f the moving screen which is o f the same size as the standby box o f the 

standby station mentioned above.

The basket has an open inlet wall and the bottom o f this basket has a square piece o f 

aluminium o f 15mm thickness that can pivot around an axis fixed to the sidewalls o f 

the basket that is an integral part o f the basket.
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Fig. 7.8.a The position o f holding station prior the need for moving o f the shading 

screen arises

Fig. 7.8.b The position o f holding station when the need for moving o f the shading 

screen arises



This basket is placed into a long vertical wooden box and as the weight is dropped in 

it, it moves down the long vertical box and the distance that it should move is worked 

out to be sufficient enough to allow the screen to cover the entire generator module. 

Figure 7.9 shows the position o f the ball in the basket as it falls into the basket and 

travels along the vertical box. There is an opening on one face o f this long box where 

the basket is to arrive at the end o f its downward journey. A  similar size opening is at 

the bottom o f the opposite face o f the long box to allow the weight to leave the basket 

and long box. At the bottom o f the long box there is a stopper rod that helps the 

bottom floor o f the basket to tilt towards the outlet opening o f the long box. This 

means as the basket reaches the end o f the distance it has to travel the spherical 

weight easily finds its way out o f the basket and the long box. Figure 7.10 shows the 

position o f the ball and the aluminium sheet as the basket reaches the end o f the long 

box. The screen remains over the generator module up to the end o f the refrigeration 

cycle which is worked out to be about 80 minutes. A  similar arrangement is used at 

the opposite end o f the screen to move it away from the generator and starts the 

generation cycle all over again. W ith this arrangement it is then possible to activate 

more than one full refrigeration cycle during the day. Figures 7.11 .a and 7.11 .b show 

a generator module incorporated with the shading system before and after the shading 

cover moves over it the module.
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F ig . 7 .9  T h e  p o s it io n  o f  th e  b a ll  a n d  the  re v o lv in g  sheet as the  b a ll fa lls  in to  the

basket

Fig. 7.10 The position o f the ball and the revolving sheet as the sheet hits the stand 

bar at the end o f long box
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Fig. 7.11.a The position o f the shading cover at the end o f the absorption phase and 

start o f the desorption phase
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Fig. 7.1 l.b  The position o f the shading cover at the end o f the desorption phase and 

start o f the absorption phase
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7 .6 . 4  T h e  E l e c t r i c a l  P a r t

There are a number o f components that are actuated by d.c. electrical signal in the 

block icemaker. In  view o f the fact that the system is intended to be used in remote 

areas where the supply o f mains electricity is highly unreliable at best and non

existent under most circumstances, it was decided to use photovoltaic panels in 

conjunction with a battery storage system. As photovoltaic systems are very 

expensive the electronic systems were designed specially to consume the least amount 

o f power and for the shortest possible time. This has been achieved by using the bi

stable solenoid relays and interlinking them to each other as much as possible to 

reduce power consumption. Furthermore, the photovoltaic panels used are amorphous 

silicone panels with proven track record o f stability. The battery used is a long-life 

tractor battery which can be used in conjunction with panels without any adverse 

reaction.
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7 .7 Technical Data

7.7.1 Q u a n tity  o f Solid  in  E a c h  G e n e ra to r  T u b e

As pointed out earlier in this Chapter special care is needed to make sure that the solid 

calcium chloride does not undergo degradation as a result o f the generation o f 

ammonia and refrigeration. This question has already been addressed by Ileoje [162], 

For this reason calcium chloride was mixed with Portland Cement to form a solid 

mixture with 80% calcium chloride and 20% Portland Cement. Since the volume o f 

calcium chloride can increase 3-4 times that o f its dry state as a result o f absorbing 

ammonia special attention was paid to the quantity o f the solid mixture placed in the 

housing o f the solid in the evacuated generator tube. For this reason the volume o f the 

mixture o f dry calcium chloride and Portland cement for each generator was 

calculated to be 702cm3. W ith six separate parts in the housing for the solid ammonia 

mixture in each generator tube about 117cm3 o f dry solid mixture was placed in each 

subsection o f the housing o f each generator tube.

7.7.2 Q u a n tity  o f  A m m o n ia  in  E a c h  G e n e ra to r  T u b e

The quantity o f liquid ammonia for each generator tube was worked out to be about 

lkg which is sufficient for freezing 2.38kg o f ice. Each module is, therefore, capable 

o f freezing about 23 kg o f ice per cycle on a good day. In  view o f the fact that it is 

possible to get as high as 4 cycles per day each module is potentially capable o f
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producing more 100kg o f ice. A ll the above calculations are based on the assumption 

that only 6 moles o f ammonia w ill be desorbed. In  view o f the fact that with high 

temperatures achievable from the evacuated tubes the possibility o f desorption o f 

more than 6 moles is always there. In  this respect higher output o f ice respected.

7.7.3 V ac u u m  a n d  P re s s u re  D a ta

Both the internal cooling system (in which R l l  was used as refrigerant) and the 

ammonia circuit was first evacuated to 2><10'5 mbar and leak tested first. The 

ammonia circuit was pressure leak tested to 30><105 Pa (30bar) and the internal 

cooling circuit is tested under a pressure o f 3 x 105 Pa (3bar).

The reason o f using R 11 refrigerant was the availability o f the refrigerant at the test 

site at the time.

7 .7 .4  L evel o f V a c u u m  in  th e  G e n e ra to r  T u b e

The Glass tube o f the generator tube is evacuated down to 2x 1 O'5mbar and sealed. A  

200g barium getter maintains this level o f vacuum after the tube is sealed o ff from the 

evacuation system.
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7.8 D e sc rip tio n  o f  th e  O p e ra tio n  o f th e  S ystem

The combination o f the generator tubes and the reflector allows maximum collection 

o f thermal energy from the solar radiation. In view o f the fact that the glass envelope 

is evacuated down to 2x 10'5mbar there w ill be no loss o f heat due to the conduction 

or convection. The question o f heat loss by radiation is addressed by using cobalt 

oxide as the selective coating. Since this selective coating is highly stable at high 

temperatures (up to 800°C), the absorber surface temperature can rise as high as 

250°C without any adverse effect. This type o f arrangement o f the generator tubes in 

a 10 tube module receives enough energy to boil o ff all the ammonia from the solid 

by 10:00-10:30 am on a good sunny day during so-called “Low Season”. A t this 

instance the output signal from the electrical integrator circuit connected to the flow  

meter, mounted between the condenser and evaporator o f the ammonia circuit, 

triggers the end o f the boiling o ff phase o f ammonia from the solid and the start o f the 

absorption phase. It is, therefore, possible to run two cycles in the low season. In  the 

so-called “High Season” the desorption phase w ill be completed by about 9:30 am and 

it w ill be possible to run as high as four cycles. It is, therefore, possible to achieve 3 

cycles between the low and high seasons.

As soon as the end o f the desorption phase is signalled to the electronic control 

system, trigger signals w ill go out from the control system which activates the 

following:

O pulling the shading screens over the generator tubes module.

©  activating the internal cooling by opening the bi-stable valve in the system, and
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In  the internal cooling system R11 vapour is liquefied at the condenser and the liquid 

is fed to the bottom o f the 15mm I.D . tube in the extruded aluminium profile which is 

inside the generator tube. The liquid is converted into vapour in this tube and 

generates a cooling effect which cools the calcium chloride. This action, in turn, 

brings about a reduction in pressure in the ammonia circuit, which in turn causes the 

ammonia in the circuit to boil o ff in the evaporator o f the icemaker (the icebox) and 

bring about temperatures in the range o f -15°C to -25°C which causes the formation o f 

block ice around the evaporator. This action continues for about 80 minutes until all 

the ammonia is boiled o ff in the evaporator and absorbed by calcium chloride. A t this 

stage the electronic control system sends appropriate signals which switch o ff all the 

internal cooling system described above, pulls the shading screen away from the 

generator module and the desorption cycle starts again. The above procedure is 

repeated for each cycle.

7 .9  Trial Unit

In  order to assess the performance o f the block icemaker under real life conditions 

two different sites in India were chosen. The first site was chosen at Jallindar in 

Punjab which enjoys four seasons through the year. The second was in Trivandrum in 

Kelara which has one hot humid season through the year. In  this system a simple 

housing with wall heights o f 2.5m in front and 3.5m in the rear was used. The 

estimation o f these heights was based on allowing easy and trouble-free o f the 

movement o f the shading screen over and away from the modules. The height o f the

©  p u m p in g  the c o ld  a ir to  the  co n d e n se r o f  th e  in tern a l c o o lin g  system .
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housing is 7.5m in total with about 4m o f the height under ground level. Temperature 

in hot summer days can go to as high as 45 °C. However, the temperature at night in 

the high season, summer, could go as low as 14°C. For this reason there was actually 

no need for the internal cooling in the final cycle o f the day. However, it was decided 

to run the system without relying on the use o f the low night time temperature. This 

was done deliberately in order to assess the performance o f the system under more 

unfavourable conditions. In  the months o f November, December, January and 

February the maximum day time temperature, in Jallindar, can be as low as 10°C and 

the night time temperature can go to about freezing. However, both sides enjoy more 

than 320 days o f sunshine in a year.

The roof o f the housing was chosen so as to be large enough to accommodate 3 

modules o f generators side by side. The size o f photovoltaic panel used was 6 panels 

with a power rating o f 24W  each. As pointed out earlier a maintenance free tractor 

battery was used for storage o f the d.c. power output from the photovoltaic panels.

7 .1 0  Tests Results

The performance o f the system has been assessed from November 2000 to September 

2001. In the months o f November up to January a maximum o f two cycles per day 

achievable. The quantity o f ice produced was about 43kg o f ice per day. This figure 

was well below the predicted one. In  other words the output ice was approximately 

32% o f the expected value for two cycles. The reason behind the poor performance 

was investigated thoroughly and eventually the cause was narrowed down to the 

source of the water that was to be frozen. The water was being supplied from a
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shallow (14 metre deep) well and after analysing its composition the water contained 

salts and other minerals in it that were approximately 8-14 times higher than the 

figures recommended for the drinking water. It  was then decided to use the treated 

drinking water from the town.

The trial was repeated with the town water during the months o f January and 

February. Again it was only possible to achieve two cycles per day. The output o f 

the plant went up to about 115-120kg o f ice per day for the two cycles. It was then 

decided to use town water from then on for the rest o f the test period.

In  the months o f March, April and May it was possible to achieve 3 cycles per day 

and the productivity went up to about 192-197kg o f ice per day. From mid May to 

approximately mid August it was possible to run four cycles daily, with a maximum 

output o f 217-223kg o f ice per day. From mid August the number o f cycles per day 

went down to three.

In  terms o f percentage value the output for two cycles for 2 cycles per day reached 

between 83% and 87% o f the expected figure. For three cycles per day the output 

reached between 80% and 82% o f the expected figure. Finally, for the 4 cycles per 

day operation the output has been in the range o f 71% to 73%.

7 .1 1  Conclusion

The main theme behind the work presented in this chapter was to design and develop 

a multi-cycle intermittent stand-alone solar powered block icemaker. It is worth
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pointing out that no successful development and trial o f such a system has been 

reported so far. Among all the available single cycle intermittent systems calcium 

chloride -  ammonia system was chosen as the basic system for the operation. Higher 

coefficient o f performance and the fact that this system is not affected very much due 

to changes in the evaporation and condensation temperatures are the most important 

reasons for choosing calcium chloride -  ammonia systems. A  number o f practical 

problems associated with calcium chloride -  ammonia mixture which have caused 

researchers to look at alternative cooling systems has been successfully addressed in 

the design o f the system reported in this chapter.

A  novel, and at the same time very simple and practical, multi-cycle system has been 

proposed and developed. This system has undergone real-life trial tests and its 

performance has been assessed. The system is capable o f producing up to four full 

cycles per day.

In the summer months 4 full cycles o f operation have resulted in the production of 

217kg to 223kg o f ice per day and in the months where only two cycles are possible 

115kg to 120kg o f ice has been produced. In  terms o f percentage values the ice 

production is between 71% and 73% o f the expected value in the summer months and 

between 83% and 87% in the winter months. The reason for the slightly lower output 

in the four cycles per day operation is due to the fact that in the fourth cycle all the 

ammonia was not boiled o ff the solid.

It is interesting to note that in all the solar power intermittent refrigeration systems 

(with all being single cycle) the maximum quantity o f ice produced per square metre 

of solar collector area has been 6kg per day maximum. The fact that the production
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rate as high as 223kg highlights the significant breakthrough brought about by this 

novel system.

It is worth pointing out that the increased production is not solely due to more cycles 

per day. In fact it is also due to the deployment o f stable solar selective coating 

(cobalt oxide) and high vacuum technology which have resulted in higher 

temperatures to facilitate desorption o f significantly higher quantities o f ammonia 

from the adsorbent, calcium chloride, in relatively short times.

This novel system opens a new chapter in practical solar powered cooling and air 

conditioning systems.
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C h a p t e r  8

D e s i g n ,  C o n s t r u c t i o n  a n d  E v a l u a t i o n  o f  a  N o v e l  C o m p o s i t e  S o l a r  P o w e r e d

8 .1  Introduction

The exciting results obtained from the performance o f the multi-cycle intermittent solar 

thermal powered block icemaker system described in previous Chapter, which is the only 

functional system o f its kind, is undoubtedly the most significant breakthrough in the field of 

solar powered cooling and refrigeration. After careful assessment o f the system it is believed 

that to explore the possibility o f using photovoltaic technology in the system with view to 

increasing the output o f the novel multi-cycle intermittent solar thermal system would be 

worthwhile attempt. The name “composite” is used for the system because it is powered both 

by solar thermal and photovoltaic technologies.

A  small system has been designed developed and successfully tested. In  this chapter the 

details o f design and construction and the results o f the performance evaluation tests are 

presented.
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8 .2  Description of the System

The system is a combination o f two different types o f solar powered cooling and refrigeration 

systems. One being the solar thermal powered section and the other one being powered by 

photovoltaic panels. The two sections are combined together in a novel way so that the 

efficiencies o f both sections are at their maximum and they complement each other to yield 

maximum output in the system.

8.2.1 T h e  S o la r  T h e rm a l S ec tio n

The solar thermal section o f the system is made o f a number o f evacuated solar heat collector 

units called the “generator” as in the previous Chapter. The only different between the 

“generator” used in this chapter and the one used in Chapter 7 is in the inner extruded 

aluminium pipe in the evacuated tube envelope. The inner aluminium pipe o f the 

“generators” used in here has an extra feature. A  spiral baffle fin is placed inside the inner 

aluminium tube to secure maximum heat transfer between the calcium chloride and the air. 

This extra feature is used in a dual-purpose fashion. It is used to accelerate the cooling o f the 

calcium chloride and Portland cement mixture in order to speed up absorption o f ammonia 

during and at the end o f each ice making cycle. This reduces the absorption period by, at 

least, 30 minutes. This pipe and baffle fin combination is also used to speed up the heating 

and consequently boiling o ff o f the ammonia from the calcium chloride and Portland cement 

mixture. This is achieved by pumping hot air into the pipe and baffle combination at the start 

of the desorption phase. The exact operation o f the extra cooling and heating is described in 

Section 8.3.
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8 .2 .2  T h e  P h o t o v o l t a i c  S e c t i o n

The photovoltaic section o f the system is a conventional domestic type refrigerator modified 

to be powered by photovoltaic panels. In  view o f the fact that the output o f the photovoltaic 

panel is a d.c. signal it is natural to use a d.c. compressor instead o f an a.c. one. W ith the 

deployment o f d.c. compressors, where the need for an inverter is eliminated, the power loss 

to operate the compressor w ill be brought down to a negligible level. Although this is a 

technically valid argument it was nevertheless decided to use a conventional refrigerator 

using an a.c. compressor. This necessitated using an inverter to convert the d.c. output o f the 

photovoltaic panels to an equivalent 220V mains signal. This was a somewhat difficult 

choice as deploying an inverter not only meant additional cost but also meant the loss of 

about 10% o f the power. The cost could be justified because d.c. compressors are much more 

expensive than the a.c. ones. What tilted the argument in favour o f a.c. compressors was that 

a conventional commercially available refrigerator could be used with very little 

modifications. Furthermore, the fact that no significant work was needed to be done in this 

approach made it more attractive in the design o f the so called the “Extremum System” 

described in Section 8.2.2.1, where more than one compressor was used.

At this stage it must be emphasised that the idea o f using a.c. compressors does not in any 

way undermines the novelty o f the approach used in the design o f the composite system. 

There is no reason why in the long term d.c. compressors could not be used. In  fact d.c. 

compressors were used in initial stage o f this work and a paper has been published on the 

findings o f the research work.

In order to obtain the maximum efficiency from the compressor it must receive the full input 

power it was designed to operate under. A  very important point to bear in mind when
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photovoltaic technology is being used to power the compressor is that the output power of 

photovoltaic panels is not constant during the day. There are, therefore, certain periods in a 

day where it would be delivering less than its rated output power. In this respect it would not 

be reasonable to expect a compressor with a certain power rating to be operating at its 

optimum efficiency when powered directly by photovoltaic panels without taking necessary 

steps to ensure that the compressor receives adequate input power. One can, therefore, 

conclude that the so-called “ON-OFF” system, where the compressor is ON when there is 

some input power and OFF when there is no input power, the compressor would not be 

operating at the optimum efficiency. This problem can be addressed to some extent by using 

a so-called “Extremum” system, where better efficiency, compared to the ON-OFF system, 

can be obtained. A description o f this approach being is presented now.

8.2.2.1 The Extremum System

In the Extremum system a number o f compressors are used in such a way that the sum o f 

their individual ratings is slightly less than the output power rating o f the photovoltaic panels. 

This slight difference is to allow for the slight power loss from the photovoltaic panels to the 

compressors’ unit. As pointed out the word “compressor unit” is referred to as the 

combination o f the individual compressors.

The photovoltaic panels chosen were o f the low-cost amorphous silicon type and sufficient 

panels were used to provide 1500W of output power. The output o f the panels was connected 

to a commercially available inverter. The output o f the inverter was connected to the 

compressor unit via an electronic control unit. This control unit continuously monitors the 

output power level o f the photovoltaic panel. A t the early hours o f the sunshine when the
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output power is low the control unit provides power to the first compressor only. This 

situation remains unchanged until the output o f the photovoltaic panels becomes higher than 

that the power rating o f the first compressor. As soon as the panels produce more power 

needed for the first compressor the control unit switches the extra power to the second 

compressor and turns it on. In  this process the first compressor naturally remains on. This 

process goes on as higher power is produced at the panels. As soon as the output power of 

the panel exceeds the level demanded by the first and second compressors, the control unit 

switches the extra power to the third compressor. As the output power o f the photovoltaic 

panel starts to drop from its peak value the control unit starts to switch o ff the compressors 

one by one until all eventually all compressors are off.

Three compressors, with a power rating o f lA Horsepower each, were cascaded in this work.

8.2.3 E n e rg y  S to ra g e  S ection

The energy storage section contains two storage tanks. The first storage tank is for storing 

hot water and the second one for storage o f cold water. The size o f the hot water storage tank 

is about 30 litres and that o f the cold water storage tank is 100 litres. They are both heavily 

insulated by 100mm thick polystyrene foam frozen on their entire outer surface. Both the hot 

water and cold water storage tanks contain heat exchanger coils to allow air to go through 

them for pre-heating and also cooling o f the calcium chloride and Portland cement mixture in 

the evacuated generator tubes. The source o f heating and cooling for both these storage tanks 

is the compressors. Each compressor is designed as a heat pump where it takes energy from 

cool tank and after compressing it in delivers the thermal energy.
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8 .3  Description of the Operation of the Composite System

The schematic diagram o f the composite system is given in figure 8.1. As pointed out above 

the composite system is a modified version o f the novel multi-cycle system described in 

Chapter 7 working in parallel w it P.V. powered extremum system. The composite system is, 

therefore, partially powered by photovoltaic panels.

In  this respect all the stages related to the operation o f the multi-cycle system remain equally 

valid for the Composite System. The icebox contains two separate exchanger coils one 

belonging to the solar thermal part and the other to the photovoltaic part o f the system. Each 

compressor has its own separate circuit.

The heat pump action starts to remove energy from the icebox and it also cools the water 

storage tank. The warm end o f the heat pump heats up the water in the hot water storage 

tank.

The temperature o f the cold-water storage can go down to about 8°C and the temperature o f 

the hot water storage can go to about 90°C.
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C o lle c t o r  arrays

Fig. 8.2 Schematic diagram o f the Composite System
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These storage tanks are used for rapid heating and rapid cooling o f the calcium chloride and 

Portland cement mixture o f the multi-cycle system. The coolant air enters the cold-water 

storage tank after it leaves the heat exchangers which are placed in the ponds. This 

arrangement allows cold are o f about 8°C-10°C to reach the condensers and housing o f the 

solid mixture in the evacuated generator tubes. Hence faster condensation o f ammonia in the 

condensers and faster absorption o f ammonia by the solid mixture become possible. This 

arrangement allowed the 4th cycle to be completed by 4:00pm.

8 .4 Testing and Evaluation

The performance o f the system was tested under “real life” conditions for a period o f 10 days. 

The Extremum system, as pointed out, was designed to cool down the condenser o f ammonia 

circuit to accelerate the condensation o f ammonia and also to cool down the condenser o f the 

internal cooling system in order to speed up the absorption o f ammonia. The total amount of 

ice produced was in the range o f 330-335kg ice per day for four cycles.

8 .5 Conclusion

The significance o f the works described in this Chapter may be considered in terms o f 

successful design and operation o f the extremum system in the first instance. There is no 

significant degree o f innovation in relation to the combination o f the multi-cycle and 

extremum system. It is only natural to expect higher output when the two systems are 

combined together. However, what is o f innovative significance is the fact that the
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absorption and desorption phases of the intermittent multi-cycle system are shortened 

significantly, in the composite system. This, in turn, has made it possible to get, at least, 4 

cycles in the multi-cycle system before 4:00pm in the day.

What is important at this stage is to look at the question o f cost benefit in relation to this new 

approach, the composite system, compared to the multi-cycle system described in Chapter 7. 

The total cost o f a multi-cycle refrigeration system is in the range o f €25000. This 

includes the costs for generator modules, housing, shading system photovoltaic panels &  

control unit and refrigeration system. The extra cost o f the composite refrigeration system 

compare to the intermittent multi-cycle refrigeration system can be addressed to the 

deployment of the extremum system. For the extremum system there is a need for 1500W of 

output power from the photovoltaic panels. Furthermore, the cost o f the required compressor 

system and the electronic control unit must also be included in the analysis. The total extra 

cost is:

€9000 (photovoltaic panels for 1500W) + €760 (compressor system) + €360(control unit and 

the refrigeration system) = €10070.

It can be seen that the extra cost o f combining the extremum system to the multi-cycle system 

is about €10070. As pointed out earlier the maximum output o f the multi-cycle system is 

about 223kg o f ice per day and that o f the composite system is 335kg o f ice per day. In order 

words the composite system is able to produce about 112kg o f ice per day.

Now the important question to address is to find out whether production o f 112kg o f ice at an 

extra cost o f €10070 is commercially justified. This question can be addressed by referring 

to the unit cost o f ice. The cost o f 1kg o f ice is about €0.11. Hence 112kg o f ice w ill cost 

€12.32. The commercial benefit o f ice is therefore, €12.32 per day and allowing 320 days per 

year the annual benefit is about €3942.4. In  order to work out the payback time one has to
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include the cost o f borrowing in the calculation. I f  the rate o f borrowing is taken about 8% 

then the cost o f borrowing €10070 over 2.5 years will be €2014. Now the question is how 

long w ill the payback time for€I0070 + €2014 = €12084. A simple calculation reveals a 

period o f just above 3 years.

At the end, it is important to emphasise that the composite system is a breakthrough in 

techno logical achievement by itself as far as high output stand-alone solar powered ice 

making systems are concerned.
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9 .1  Introduction

The ever-dwindling supply o f the fresh water supply and the inevitable hardship that this 

trend might bring about makes the question o f solar powered desalination more urgent 

than ever. The fact that good quality drinking water is being retailed at prices way above 

those o f refined petroleum products, such as petrol and diesel, for equal volumes proves 

that drinking water should not be treated as a “cheap” commodity.

There have been several attempts by solar scientists and technologists to develop solar 

powered water desalination plants or systems. However, none o f the reported systems 

have been reliable and practical enough to be used in any meaningful and significant way. 

This is because water has been treated as a commodity that enjoyed no significant 

commercial respect for a long time and this perception seems to be evident even in the 

last decade when it came to the design o f solar powered desalination systems. In  other 

words the most important factor that appears to have been the main influence on 

researchers in the design o f nearly all solar powered desalination systems that have been
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reported so far has been cost. In  this respect as far as solar powered desalination is 

concerned the end users have always been assumed to be the most deprived inhabitants of 

the most impoverished regions o f the world. The end user is, therefore, assumed to have 

no financial ability to pay for his/her drinking water. It goes without saying that once this 

idea was allowed to be the most important deciding criterion in the design then cost 

became the only deciding factor. A ll the solar powered desalination systems had to be 

inevitably o f extremely low cost. In this respect all the reported systems, which were 

designed to be very cheap, turned out to have a maximum output of about 5 litres per 

square metre o f collector per day. A ll the reported systems o f this type have been 

intermittent and with a single cycle for every 24 hour period. In these systems the 

evaporation takes place during the day time sunshine hours and the condensation takes 

place at the night time.

In the novel system reported in this chapter the idea o f cost has been taken on board 

together with increased reliability and output yield at the design stage. This system is, 

without doubt, a major pioneering breakthrough in the field o f solar powered desalination. 

The cost o f the system is, indeed, justifiable with reference to the quantity o f fresh water 

it can provide per day and the cost o f similar quality drinking water marketed by various 

suppliers worldwide.

9 .2  Brief Review of the Available Techniques

There have been numerous articles, papers and reports on water desalination techniques. 

Perhaps the most elegant review on various up-to-date techniques is the one presented by 

El-Bahi [163]. He has outlined the most popular water desalination systems as; M ulti-
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Stage Flash (M SF) process, M ulti-Effect Boiling (M EB ), Vapour Compression (VC ), 

Reverse Osmosis (RO) and Electrolysis Desalination (ED ). A ll these systems are 

powered by conventional (non-solar) energy. It is important to highlight that the 

operation o f all the large plants is based on high input energy. In this respect their 

running cost is also a major factor (in addition to the substantial initial capital outlay) in 

assessing their overall commercial viability. However, despite the huge cost implication 

the rate o f installation o f various conventional energy based systems has been consistently 

increasing over the last 15 years.

As far as solar powered water desalination techniques are concerned nearly all reported 

cases o f passive design o f one kind or other [164-165]. The reason for this approach has 

been presented above in Section 9.1. They are solar stills o f different design and the 

maximum reported yield associated with them is about 5 litres o f desalinated water per 

square metre o f the system exposed to the sunshine. In  fact the main factor for this low 

yield is the lack o f appropriate condensation facility. This is because although the 

evaporation phase can take place during the sunshine hours the condensation phase can 

only take place at night time when the temperature drops to a level for it to happen. In  

view o f the fact that there w ill always be a limited space to collect the evaporated water 

the rate o f evaporation slows down significantly in the absence o f condensation. Another 

factor contributing to the low yield is the limited input solar energy that can be supplied 

to the seawater in the shallow pond at the bottom o f the still where the evaporation must 

take place. This is due to the fact that the system is a passive one. In some reported cases 

black plastic beads coated with a mat black paint are placed in the shallow pond to absorb 

more energy and hence increase the evaporation rate. However, despite the fact that this 

approach has brought about some initial increase in the rate o f evaporation there could not 

be any significant increase in the overall output yield o f the system. Again, this can only
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be attributed to the fact there was no cooling during the evaporation to help the 

condensation o f the evaporated water.

9 .3  Background to the Design of the High-Output Novel Active 
System

The main inspiration for design o f the novel active system described in this chapter stems 

from the work reported by Saghafi [166]. A  schematic diagram o f the system is shown in 

figure 9.1. In  this system an array o f flat plate solar heat collectors heats up the seawater. 

The heated water is then showered in the evaporation chamber o f the system. The 

evaporation chamber contains a number o f jute cloth trays made out of stainless steel 

frames. The jute cloth trays were then placed inside the evaporation chamber at various 

levels about 15cm apart. As the heated seawater was showered onto the first jute cloth 

tray on the top it went trough the jute cloth to the trays in the lower levels. In  doing so a 

portion o f the heated seawater turned into vapour and salt accumulated on the jute cloth 

trays.

The vapour o f the evaporation chamber is then directed to the condensation chamber 

where it cools down. The seawater flowed through a coil placed inside the condensation 

chamber on its way to the flat plate collectors. This coil formed a heat exchanger to cool 

the condensation chamber to accelerate the condensation o f the vapour emerging from the 

evaporation chamber. This simple, but very innovative, system became the basis for the 

design o f the active high output system, described in this chapter.
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Fig. 9.1 The Proposed Solar Powered desalination plant by Saghafi
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9 .4  Description of the Novel Active H igh-Output System

As pointed out above the system described in this chapter is a modified version o f the 

basic system described in section 9.3. There are several new features used in its design 

that help to increase the output yield significantly. These features are described in details 

in this section. The flow diagram o f the system is given in figure 9.2.

9.4.1 T h e  W a te r  H e a tin g

The seawater was heated by a bank o f high-efficiency evacuated solar heat collectors 

developed at the Institute o f Technology, Sligo. Unlike the flat plate collectors used by 

Saghafi these evacuated collectors are able to heat the seawater to about 90°C very 

rapidly. In  order to cut cost and also avoid heat losses it was found to be most 

appropriate to pump this heated water to the evaporation chamber directly, without 

storing the heated water prior to entering the evaporation chamber.

The array o f solar collectors used contained 10 evacuated collector tubes each with a 

length o f about 2m and an outside diameter o f about 100mm. The absorber fm inside the 

glass tube was a thin (0.26mm thick) copper sheet coated with the selective coating 

material, black chrome. The fm was shaped in the form o f semi-cylinder with diameter of 

about 90mm and length o f 1,8m. This arrangement provided an angle o f incidence o f 90° 

between the rays o f the sun and the absorber fm for the entire sunshine hours. The 

perpendicular “effective” surface o f the absorber fin, nevertheless, remained about
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Drain

Fig. 9.2 Flow diagram o f the Composite desalination plant
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0.162m2 per tube. The curved shaped fin has also been found to be useful in the 

collection o f some o f the diffused solar rays. The fin is welded to a copper heatpipe. The 

heatpipe is 12mm O .D ., 10mm I.D . and its length including its condenser is about 2.25m. 

In order to increase the heat collection capability o f each tube a second fin and heatpipe 

assembly was also placed inside the glass tube to cover the empty space behind the first 

fin. With this arrangement the collector tube can absorb and convert the energy o f the 

solar irradiation that passes through the gap between the evacuated tubes and shine on the 

reflectors placed behind the array o f collector tubes. Figures 9.3.a and 9.3.b demonstrate 

a cutaway view and a completed collector tube with an involute reflector, respectively. 

The ten tubes were integrated with ten involute reflectors and mounted into a box with a 

glass pane with a 200mm distance between the tubes in the box. The reflectors were made 

out o f anodised aluminium. As the reflectors were highly polished the reflection factor 

was greater than 90%. The open end o f the involute reflectors was 220mm and they were 

each 1.8m long. This arrangement o f the collectors and reflectors is known as the solar 

collector module. The solar collector module is shown in figure 9.4. The first fin and the 

heatpipe assembly were exposed to the direct sunshine to collect the direct and diffuse 

incidence rays o f the sun and the second one was to collect the rays emerging from the 

reflector. The glass pane covering the collector module was to keep the collector tubes 

and especially the reflectors clean and protected from dust and other undesirable coatings. 

There are therefore two condensers o f the heatpipe that are coming out o ff the metal 

flange o f the glass to metal seal in each evacuated collector tube.

Another element o f the water heating section is the waste heat energy recovery system. 

This system is described in Sections 9.4.3 and 9.4.4.
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Fig. 9.3.a The cutaway view o f the solar heat collector and the involute reflector
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Fig 9.4 The solar collector module
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9 .4 .2  E v a p o r a t i o n  C h a m b e r

The evaporation chamber is similar to the one reported by Saghafi. However there is one 

additional feature that has been used in the new system and that is the thermal insulation. 

In order to keep the output yield o f the desalinated water one o f the most important steps 

is to reduce the energy loss from the evaporation chamber to the ambient as much as 

possible. To this end the entire evaporation chamber was covered with 100mm thick o f 

thermal insulation material.

9.4.3 C o n d e n sa tio n  C h a m b e r

The condensation chamber is another box covered with 100mm thick o f thermal 

insulation all around its walls. The thermal insulation is to prevent the ambient heat 

getting into the condensation chamber.

In  view o f the fact that the condensation o f the vapour in the chamber brings about release 

o f the latent heat from the vapour it is very important to remove this released energy from 

the chamber as soon as possible. This is done with the use o f a number o f heatpipes that 

are the building block o f the energy recovery system described in section 9.4.4.

As mentioned earlier one o f the most important novel features o f the entire system is the 

rapid condensation that takes place in the condensation chamber. The source o f cooling 

is a multi-cycle icemaker system similar to that described in Chapter 7. A  heat exchanger 

coil containing circulating cold water at about 5-7°C is placed inside the condensation 

chamber to secure rapid condensation.
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9 .4 .4  W a s t e  H e a t  R e c o v e r y  S y s t e m

As pointed out above it is very important to make sure that the latent heat, released as a 

result o f condensation o f the water vapour in the condensation chamber, is rapidly 

removed from the chamber. The rapid transportation o f the released energy from the 

condensation chamber is secured by using a number o f copper heatpipes. As one might 

expect each heatpipe has an evaporation and condensation section. The evaporator o f the 

heatpipe (where the released energy is absorbed by the heatpipe) is placed inside the 

condensation chamber and the other side o f the heatpipe, the condenser, is outside the 

condensation chamber, so that the latent heat is removed from the condensation chamber. 

The condenser o f the heatpipe is placed inside the pipe transporting the seawater to the 

solar heat collectors. The seawater, is therefore, preheated by the energy removed from 

the condensation chamber. Without this arrangement the released heat would have gone 

to waste.

Another section o f the waste heat recovery system is the seawater not evaporated in the 

evaporation chamber which collects at the bottom o f the chamber. This was due to the 

fact that the collected water at the bottom o f the evaporation chamber is much warmer 

than the seawater emerging from the sea. This warm salty water is pumped to the solar 

heat collector circuit to be heated again to 90°C and showered into the evaporation 

chamber again. The combination o f these heat recoveries has a great positive impact on 

the effectiveness o f the solar heat collectors, and so, helps to heat up larger volumes o f 

the seawater, and therefore, enhances the output o f the system.
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9 .4 .5  E l e c t r i c a l  S y s t e m

The source o f electrical energy needed to operate the pumps have been photovoltaic 

panels made o f amorphous silicon. The output 12V d.c. o f the panels is fed to an ordinary 

tractor battery. The reason for the choice o f the tractor battery was its ability to withstand 

the fast charging rate o f the battery. A  car battery usually gets too hot during charging by 

the photovoltaic panels and might explode. The pumps used are, therefore, d.c. pumps.

9 .5  Theoretical Calculation Heading to Estimation of the 
Output of the System

The theoretical calculations are presented under two headings:

O Total thermal power collected by the solar heat collectors modules 

© Quantity o f the desalinated water

The details o f these calculations are now being presented. It is worth pointing out that all 

the presented calculations are based on the most conservative assumptions.
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9 .5 .1  P o w e r  C o l l e c t e d  b y  t h e  M o d u l e  o f  t h e  S o l a r  H e a t  C o l l e c t o r s  T u b e s

Assuming an overall efficiency o f 60% for the absorber fin, over the range o f operating 

temperatures, an effectiveness o f 70% due to shadowing, and considering 90% o f global 

incident can pass trough the glass pane, the heat collected by the front fin o f the collector 

tubes per tube, Pf ,w ill be:

Pf = 0.6 x 0.162m2 x 0.9kW/m2 x 0.9 x 0.7 = 0.0551kW

In this calculation the effective surface area o f the curved fin is 0.162m2 and the effective 

available solar power is taken as 0.9kW /m2.

In calculation o f the power collected by the rear fin per tube, Pr, a reflection efficiency of 

the reflector 90% is considered. Again, an overall efficiency o f 60% for the absorber fin, 

an effectiveness o f 70% due to shadowing, and 10% losses o f incident rays undergo by 

going through the glass pane is assumed. W ith an effective surface area o f the curved fin 

0.162m2 and the effective available solar power o f 0.9kW /m 2, the power collected by the 

rear fin per tube can be calculated as follows:

Pr = 0.9 x 0.9 x 0.9kW /m2 x 0.6 x 0.162m2 x 0.7 = 0.0496kW

The total power collected by each collector tube, Pc, is then:

Pc = P f+ P r = 0.0551 + 0.0496 = 0.1047kW

T h e  to ta l p o w e r, P t, fo r  the 10 tu b e -re fle c to r  u n it is  then:

P t = P c x 10 = 1 .0 4 7 1 k W
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9 .5 .2  C a l c u l a t i o n  o f  Q u a n t i t y  o f  t h e  D e s a l i n a t e d  W a t e r

The quantity o f the desalinated water can be calculated by working out the quantity o f the 

seawater that can be heated to about 90°C before reaching the evaporation chamber this 

can be done easily by using the well known formula:

Q = m x C (02-00

where:

Q is the input energy

C is the specific heat capacity o f the seawater 

02 is the final temperature 

0i is the initial temperature 

m is the quantity o f seawater

In  view o f the fact that it is not possible to have the exact value o f C for various types of 

seawater the well documented value o f the specific heat capacity for 20% salt brine (C =

3.559 kJ/kg.K) is taken as the acceptable value.

The input power is Pt = 1.0471 kW.

In  this respect energy collected per hour is 1.0471Wh.

Since lOOOkJ = 0.277778 kWh, then the input energy, Et, is worked out by:

1000 x 1.0471kWh
Et = ----------------------------------= 3769.56 kJ

0.277778
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The initial temperature, 0 i, is taken as 30°C and the final temperature, 02, is taken as 

90°C. The initial quantity (volume) o f the water, m i, to reach 65°C in an hour is worked 

out from:

3769.56 =  mi x 3.559(90- 30)

3769.56
m, = -------------------=  17.65 litres /hour

213.54

In  these calculations one litre o f the brine is taken to be almost equal to 1kg.

As the time goes on the recovered energy, that would otherwise have gone to waste, w ill 

increase the initial temperature. This is estimated to reach a value o f about 45°C, in about 

one hour. From then on the quantity o f the water at 90°C, in2, is then worked out by:

3769.56 =  m2 x 3 .559(90 -45 )

or:

3769.56
m2 = -------------------=  23.54 litres /hour

3.559 x 45

It is important to note that after the first hour the initial temperature, 0 l5 must be taken at, 

at least, 45°C. This is due to the contribution from the heat recovery system. In  this 

respect the total quantity o f processed seawater, V t, must be taken as:

V t = mi + 6m2

In this expression the second term in the right side o f the equation, 6m2, indicates the 6 

hours o f operation after the first hour. V t in other words a total o f 7 hours o f operation is 

taken into account per day. Is then worked out as:

V t = 17.65 + 6 x 2 3 .5 4  = 159 lit/day
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Allowing about 4 litres o f loss per hour then the expected output, Vo, is:

V 0= 1 5 9 - 7 x 4  = 131 lit/day

9 .6  Evaluation of the Performance of the System

The performance o f the system was evaluated under two conditions. The first set o f 

evaluation tests were carried out in the laboratory at the Institute o f Technology, Sligo, 

and fmal evaluation under real life condition.

9.6.1 E v a lu a tio n  C o n d u c te d  in  th e  L a b o ra to r y

The first set o f tests were conducted on the first trial system were developed to investigate 

whether the design is a workable one or not.

In this trial system the seawater was used as the only source o f cooling to help 

condensation o f the water vapour. In  this arrangement seawater from the sea was pumped 

through a heat exchanger placed in the condensation chamber. The outlet o f the heat 

exchanger was connected to the inlet o f the solar heat collector module. In the initial set 

of tests an output volume o f about 64 litres per day was achieved. Various attempts were 

made to increase the output. Eventually an additional cooling by simply spraying the 

exterior walls o f the condensation chamber with the seawater was tried. The temperature 

of the seawater for this job was about 22°C. It  was found that this additional cooling 

improved the output to about 108 to 111 litres per day. This exciting result strengthened
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the author’s belief that a reliable and efficient cooling is the ultimate key in improving the 

output o f the system. This idea lead to the design o f the “Ultimate System”.

9.6.2 T e s t R esu lts  o f  th e  U ltim a te  S y stem

The ultimate system using the composite system in conjunction with the extremum 

system, described in Chapter 8, was put to the test in the coast line o f Trivandrum in the 

south o f India for a period o f 15 days.

The seawater temperature in this coastline was between 26-30°C for the 15 days the 

system was under test. It  was found that after about 35-40 minutes from the start o f the 

operation the temperature o f the preheated water reached a steady state value o f about 39- 

41°C. In  this respect the top temperature o f 90°C was reached very easily after passing 

through the solar heat collector module. The quantity o f the desalinated water obtained 

per day turned out to be about 139-141 litres. This is turned out to be higher than the 

predicted value.

9.6.3 A nalysis  o f  th e  O u tp u t  W a te r

The distilled water was analysed at the Science laboratories o f the Institute of 

Technology, Sligo and the results are now being presented. The tests in relation to these 

results were conducted several times to spot any variation from the normal observations. 

Table 9.1 shows the general overview o f the results. In  these analysis minerals have been 

removed to trace levels from the “Solar” sample.
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Ciiicin !)> Mngnes'ntnt Sodium 1*01 ussiti m Chloride St lip June \  i ira re Conductivity
(uS)

Sea Water 500 1000 12000 900 21000 3000 100 5000

BaHygowan 1 14 16 15 28 15 9 -

Tipperary 37 23 25 17 - 10 0.5 409

IT Distilled <! • :()3 <1 <1 <1 <1 <1 4

Distillate <1 <0.3 <2 <2 <1 <1 <1 14.5

Table 9.1 Laboratory results (Plasma Tech - IT  Sligo): Comparison o f mineral content in solar distillate, mineral water 
(typical concentrations



The test looked at the concentration o f Calcium, Magnesium, Sodium, Potassium, 

Chloride, Sulphate, Nitrate and also the conductivity. As can be seen from the result the 

outcome o f this research programme has been very successful in both the quality o f the 

distilled water and also the quantity. This is a very exciting result because all the existing 

solar stills using more solar input power can only produce a maximum o f 5 litres per day 

under most favourable conditions.

It is worth pointing out that there has been no attempt made on pre-treatment (such as 

filtration). There is every reason to foresee that the pre-treatment can speed up the 

evaporation hence improve the output even further. It  is also possible to expect higher 

yield i f  the evaporation takes place in a chamber with a pressure lower than atmospheric 

pressure.

9.6.4 S a lt C o llec tio n

As a result o f the downwards flow o f the heated sea water where it goes from one tray of 

the jute cloth to the next one it under goes a filtration process. As a result o f the filtration 

salt is collected on these trays. The trays are mounted on a rack, which can be slotted in 

and out o f the evaporator chamber. The rack can be replaced every 24 hours, and the 

collected salt can be removed mechanically i.e. by shaking.
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9.7 Conclusion

* 9
The exciting result o f 139-141 litres per module per day, or 43.5 litres per m compared to 

5 litres per m2 per day for all solar stills reported to date is impressive.

This phenomenal increase in the output is due to the performance o f the features used in 

the system. They are high-output solar heat collectors, waste heat recovery and the rapid 

condensation system. It  is important to highlight the fact that while the deployment o f the 

waste recovery and high-output evacuated heat collectors played a major role in the 

increased output the contribution o f the rapid condensation system is, undoubtedly the 

most significant one. This is because it is the rapid condensation that eliminated the 

stagnation and saturation situation o f the evaporation and, thereby, opened the way for 

more evaporation (and subsequent condensation) to take place.

It is interesting to note that the output turned out to be more than the calculated value. 

Perhaps the most important factors contributing to the discrepancy are:

O The system was operating for more than 7 hours,

©  The quantity o f the wasted heated water was less than the predicted quantity, and 

©  The preheated water reached a temperature o f 45°C in much shorter length o f time 

than expected.

It is important not to compare the output o f this novel system with that o f the reported 

solar stills in terms o f output per square metre o f collector. This w ill not necessarily be a 

fair assessment because the system described here is far more elaborate and sophisticated 

than solar stills.
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The analysis o f the output water shows that the quality o f the output water compares very 

well with the best available processed and spring water currently available. In  this 

respect the cost o f the system (although higher than solar stills) is justifiable in view o f 

the quality and quantity o f the output o f the system.
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Chapter 10

G e n e r a l  D i s c u s s i o n  a n d  C o n c l u s i o n



C h a p t e r  1 0

G e n e r a l  D i s c u s s i o n  a n d  C o n c l u s i o n

1 0 .1  Discussion

Solar powered refrigeration/cooling and solar powered water desalination are, without 

doubt, among the most attractive applications o f solar energy systems. While it is 

acknowledged that solar powered cooking is another very desirable application the 

above-mentioned two applications have always been the focus o f attention for 

researchers in the last two decades. Perhaps the most important point to be 

highlighted in this thesis is that it was deemed absolutely essential to move away from  

the scenario that solar energy applications must be centred on absolute low cost. This 

is because the ever-dwindling source o f conventional energy and also the alarmingly 

diminishingly supply o f fresh water with all the economic and socio-political 

problems it brings about necessitate a fresh approach in solar powered desalination 

and refrigeration. It has been highlighted in the work described in this thesis that it is 

only by combination o f solar heating and solar cooling that high output water 

desalination systems can operate satisfactorily. The approach adopted in the works 

described in this thesis has been not to ignore the fact that a suitably designed solar 

powered desalination and refrigeration can be commercially very attractive 

propositions so far as they can pay for themselves in a reasonable length o f time. The
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work initially started with the design and development o f a continuous cycle solar 

powered refrigerator based on modifying the Munters-Von Platten system to be 

powered by high-efficiency evacuated solar heat collectors. This groundbreaking 

work, which is the first ever approach o f its kind, provided temperatures as low as 

-19°C in the icebox o f the refrigerator. Among all the new features used in this work 

is a novel solar powered air circulation system to assist cooling at the condenser o f the 

refrigerator. The novel feature o f this air circulation system is that it uses no pump o f 

any kind. The only source o f energy used in it is the heat collected by the solar heat 

collectors. No such system has ever been reported to be used anywhere. The 

application o f this system has been proven to improve the performance o f the 

refrigerator by reducing the temperature in the icebox from about -10°C down to 

-19°C.

In another approach an existing household refrigerator has been modified to operate 

with d.c. power from photovoltaic panels without using a storage battery. The fact 

that existing household appliances have been used and modified for the job stems 

from the idea o f using tried and tested technologies to bring the cost down as much as 

possible without compromising performance.

It is now envisaged that the cost o f the design modification for both the above 

refrigeration systems w ill be very reasonable if  they are to be mass-produced. It is 

important to note that the sources o f power for both the above systems (evacuated 

heat collectors and photovoltaic panels) are the most expensive components used in 

them. However, the cost o f these items is going down rapidly. As a result o f the 

surveys conducted it is now quite possible to expect photovoltaic panels be produced 

at a cost o f about US$1.5 per watt in the next 5 years. The cost o f evacuated solar
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collectors has come down by about 50% in the last 12 years. This reduction in cost is 

expected to continue. Bearing in mind the fact that the useful effective lifetime o f the 

evacuated collectors and photovoltaic panels is greater than 20 years it becomes clear 

that the future commercial prospects for these systems are very promising.

The development o f the extremum cooling system and the way it has been used to 

work in conjunction with the ground-breaking pioneering works on development of 

the first-ever multi-cycle intermittent solar powered block icemaker is perhaps the 

most outstanding work among all the works reported in this thesis. The application o f 

this composite block icemaker in the novel solar powered desalination system opened 

a new chapter in the solar powered systems. It is envisaged that it w ill attract 

significant new interest in high cost applications such as air conditioning. The fact 

that the composite block icemaker produces more ice as the sun gets hotter is perhaps 

the most significant feature o f the system that can be effectively used in air 

conditioning.

The production o f about 140 litres o f desalinated water per day with a system using 

one module with the effective heat collection area o f 3.24m2 to evaporate and lm 2 o f 

collector area to generate the cooling power to condense the evaporated water vapour 

is a major pioneering work. This is a major departure from all the existing techniques 

that can only produce about 5 litres o f water per day. The design o f the system is such 

that it can be used in large scale operation by simply interconnecting the cooling 

systems o f a number o f such plants to be operated as one cooling system for increased 

output and economising on the cost o f the needed cooling system.
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1 0 .2  O v e r a l l  C o n c lu s io n

In the work described in this thesis the main focus has been potential commercial 

viability. In this respect the systems chosen as the relevant topics are solar powered 

refrigeration/cooling and solar powered desalination. This, by no means must be 

interpreted as the only application because in addition to the above-mentioned 

projects there are other applications that are very popular and attracted the attention o f 

the researchers for a fairly long time and solar powered cooking is one such 

application among many.

Perhaps the most interesting point to be highlighted here is that all the applications 

described in this thesis have promising commercial attraction but, at the same time, 

the multi-cycle composite block icemaker turned out to be the key system. This is 

because its application turned out to have a major impact on increasing the output o f 

the novel water desalination system described as part o f  the work in this thesis.

As far as the commercial viability o f  the novel multi-cycle composite system is 

concerned the matter can be addressed in two ways:

(i) In the fie ld  o f  a ir cond ition ing: It is an established fact that during 

the peak demand hours (mid day) the main utility supply system is 

under severe pressure. This is not only a feature for under

developed countries but also highly developed countries. San 

Francisco is a typical example. It goes without saying that the unit 

cost o f the mains power will be at its maximum premium to the
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end user. It is, therefore, possible to appreciate that the multi

cycle block icemaker, whose output will be at its maximum during 

the peak demand hours, is ideally suited to this particular 

application.

To meet the ever-increasing demand for the peak hours the Utility 

must upgrade the power generation capacity. The commercial 

viability o f  the multi-cycle icemaker, to supplement the existing 

air conditioning systems, can be appreciated if the cost of 

upgrading the power generation capacity o f the Utility is 

compared with the overall cost o f  individual multi-cycle 

icemakers. At this stage it is not possible to provide a figure for 

multi-cycle block icemakers manufactured on a mass production 

basis. However, it will not be an exaggeration to say that the 

overall cost o f the multi-cycle icemaker will be a very small 

fraction o f the cost o f  upgrading the Utility power generation 

capacity. This analysis on a report published in 1994 by APS 

(Advance Photovoltaic Systems) o f  New Jersey USA, where it 

was argued that it would be more cost effective to boost up the 

grid powered by photovoltaic panels to meet the peak demand for 

air conditioning in San Francisco rather than upgrading the power 

generation capacity o f  the Utility.

(ii) The econom ics o f  p ro d u c in g  ice : The multi-cycle composite 

system is capable o f producing about 190kg o f ice per day. The 

cost o f ice, in the market where there is adequate mains power is
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about US$0.1 per kg. However, in remote regions where the 

supply o f mains power is not adequate or non-existent then the 

price will be much higher. I f  one adopts a very conservative 

approach and considers 300 days o f operation per year with a 

basis production capacity o f about 190kg ice per day, then annual 

quantity o f ice produced will be 190 x 300 = 57000kg.

Once more, if a price o f US$0,065 per kg o f ice is to be 

considered, in order to present highly conservative analysis, the 

saving such a system brings about will be US$3,705 per year. In 

this respect after 5 years o f operation the financial contribution o f 

the system will be 5 x US$3705 = US$18525. The cost o f 

construction o f the system, under the worst scenario in a remote 

region o f a developing country will not be over US$25,000 under 

the worst conditions. In this analysis the payback time will be 

about 6 years and 9 months.

It must be emphasised that this analysis is based on a scenario 

where reliable and sufficient mains electricity is readily available. 

It can, therefore, be seen that for regions where the mains supply 

is either non-existent or unreliable and intermittent the price o f ice 

per kg will be higher than the figure given above. The payback 

time will then be much shorter than 6 years and 9 months.
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10 .2 .1  P a y b a c k  T im e  fo r  the C o m p o s ite  D é s a lin is a t io n  S ystem

The average volume o f desalinated water that the composite system is capable o f 

producing is about 140 litres per day. Again, in order to present the most conservative 

analysis, 300 days o f operation per year is assumed and the ex-works price o f drinking 

water is taken as US$0.2 per litre. The annual volume o f desalinated water is 

therefore 140 x 300 = 42000 litres per year. With the cost o f  water at US$0.2 per litre 

the plant is capable o f  producing 42000x US$0.2 = US$8400 worth o f water. In 5 

years o f operation the system will be producing 5 x US$8400 = US$42000 worth of 

water. The cost o f constructing the desired composite solar powered desalination 

plant will not be over US$50000 under the most unfavourable conditions. In this 

analysis the payback time will be about 5 years and 11 months.

It must be emphasised in the analysis presented above the figures used are those 

related to the worst case and, at the same time, for conditions under which reliable 

mains supply is available. In reality the price o f processed drinking water is higher 

than US$0.2 per litre ex-works. Taking this point into account and also a more 

realistic figure for the unit cost o f  the energy in regions where supply o f mains 

electricity is either non-existent or intermittent, at best, the payback period for the 

composite solar powered desalination system will be much better than 5 years and 11 

months.

Once again it would be appropriate to highlight the fact that the useful lifetime o f all 

the components used in the novel multi-cycle block icemaker and the novel composite 

water desalination system are over 20 years. It is, therefore, possible to appreciate
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that the commercial prospect o f these systems is even more promising than the 

analysis presented in this Chapter.

10.3 Suggestion for Future Workswm — ^ ^ i — ^

The systems described in this thesis have all been the first successful attempt o f its 

kind. It is, therefore, logical to expect that there is a good deal o f work that can be

attempted to improve the performance o f the systems and, at the same time, reduce

their unit costs. The most obvious steps are:

(i) To investigate the possibility o f eliminating the 

evacuated solar heat collectors and the reflector 

assembly that is used in conjunction with these 

collectors, by using planar heatpipes heated by non

tracking compound parabolic reflectors. The planar heat

pipes can be placed inside the evaporation chamber o f 

the water desalination plant. It is an established fact that 

compound parabolic reflectors can produce heat in 

excess o f  400°C, as reported by Mennon [167], It 

therefore seems possible to pour seawater directly on the 

planar heatpipe placed inside the evaporation chamber 

and produce vapour by flash evaporation. This research 

necessitates development o f  a planar heatpipes that can 

transfer heat in the range o f more than 300°C.
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(ii) I f  it proves impossible to develop planar heatpipes to 

operate at temperatures o f  300°C+ then it would be 

worth looking at the performance o f  the system by using 

two or three planar heat pipes, capable o f  operating at 

about 260°C to 280°C. In  this approach the heatpipes 

can be placed at various heights in the evaporation 

chamber.

(iii) In order to increase the rate o f evaporation it is worth 

looking at the usage o f  vacuum pumps to reduce the 

pressure at the evaporation chamber. Perhaps the most 

obvious attempt would be using a vacuum pump known 

as a “water pump”. It is worth pointing out that this 

“water pump” does not refer to a pump which pumps 

water in a circuit. It is a simple pump that uses water to 

produce fairly soft vacuum, and finally;

(iv) It is also worth looking at filtration o f the seawater, 

hence removing some the floating impurities, prior to 

pumping it to  the evaporation chamber. This might 

lower the evaporation temperature.
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A p p e n d ix  I

There have been three publications in relation to the work described in this thesis. They 

are:

1- A Continuous Cycle Solar Thermal Refrigeration System

Presented in the 4th Renewable Energy Network in Denver, Colorado, USA, June 

1996.

2- A Comprehensive Outlook on Solar Powered Cooling Systems 

Presented at the International Conference o f  the World Renewable Energy 

Network, Sharjah, UAE, Feb 2001.

3- High-Output Solar Powered Desalination System

Presented at the International Conference o f the World Renewable Energy 

Network, Sharjah, UAE, Feb 2001.

These papers are presented in this Appendix.
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A B S T R A C T

A  P laten-M unters refrigerato r has been m odified  to operate w ith  heat 
collected from  solar energy conversion in  a solar therm al continuous cycle  

refrigeration  system. The results show that tem peratures as lo w  as -1 9 °C  
are routinely achievable. The incorporation o f  a solar therm al battery can  

increase the refrigeration  period to as long as 10  hours to  provide cooling  

pow er fo r as long as 36 hours.
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1. Introduction
S olar pow ered refrigeration  and cooling is one o f the m ost im portant 
applications o f solar energy technology. The po ten tia l positive im pact 
o f solar cooling and refrigeration  on the quality  o f life  o f a great portion  
o f the w o rld  population, and its snow ball e ffect on the w o rld  econom y 
has been investigated b y  m any w orkers [1 -4 ]. U n fortunate ly , the 
engineering and technological developm ents in  the fie ld  o f  solar cooling  

and refrigeration  has not m oved fo rw ard  fast enough to m ake this 

application com m ercially viab le. H o w ever, the encouraging research 

and technological developm ents that has taken place in  the last 10  years  

w hich  have resulted in  several w orking  solar pow er coo ling  and 

refrigerator m odels [5 -8 ] are the most positive indicators that research  

and developm ent in  this fie ld  is, indeed, w o rth  pursuing.



I t  is now  beyond any doubt that the question o f  storing and distribution  

o f perishable food stuffs can be addressed in  a m uch m eaningful w ay i f  

re liab le  and cost-effective cooling systems can be, m ore easily, 
deployed. This, together w ith  the increase in  the cost o f conventional 
fuel and its distribution, and the fact that a great m a jo rity  o f the w orld  

population, whose liv in g  standards are being underm ined by these 
increases, live  in  areas w ith  very high annual sunshine hours add to the 
argum ent that a suitable and cost-effective solar p o w er refrigeration  
system  can prove com m ercially viable. B asically , there are five  
d ifferen t types o f design in  autonomous solar pow er refrigerators and 

these are thoroughly investigated in  several pub lications [9 -1 4 ], A  

critica l rev iew  o f a ll the reported w orks by the authors revealed that the 
P laten-M unters is po ten tia lly  the m ost prom ising system  fo r solar 
pow ered refrigeration  system i f  the sully o f p o w er and tem perature can  
be m ade to rem ain constant in  the range requ ired  by the design. In  fact 
the reason w hy the P laten-M unters system has not been successfully 

adopted fo r energy has been outlined in a recent pub lication  [15] and its 
d iffic u lty  o f m aintain ing the correct liqu id  and gas flo w  rates w ith in  the 

system  w hen driven by a source o f variable p o w er and tem perature.
The w o rk  reported in  this paper is concerned w ith  a solar pow er 
refrigeration  system using a P laten-M unters design in  conjunction w ith  a 
solar energy co llection  and storage system coupled to  a fast response 

heat p ipe fo r the transfer o f  the stored energy to the refrigerator. The  
system  is capable o f 10  hours o f refrigeration  w ith  the potential to 

provide cooling fo r over 36 hours.

2. Description of the system

The system com prises a solar heat collection, solar therm al battery, heat 
transfer, P laten-M unters refrigerator cycle, and heat re jection  parts.

2 .1  Solar heat co llection
The solar heat co llector can be either advanced evacuated solar heat 
collectors or non-tracking compound parabolic reflec to r. The 

reason fo r the developm ent o f these collectors is their re liab ility  and 

a b ility  to produce high tem perature co llected heat.

2 .2  Solar therm al battery
This section is a w e ll insulated storage tank containing a special 
type o f o il w h ich  is non-degradable in  the operating tem perature o f  

about 200 °C .



2.3  H ea t transfer
The transfer o f the collected and stored solar energy to the 

refrigerator is done b y  a sim ple heat pipe. The evaporator o f the 

heat p ipe is inside the solar therm al battery and its condenser is 
therm ally coupled to the evaporator o f the refrigerator. The  

tem perature layering  investigations revealed  that the required  
tem perature is obtainable at a certain depth range inside the therm al 
battery tank. A  therm ostatically controlled va lve  at the bottom  o f  
the therm al storage tank allow s the o il w hose tem perature is no 

longer useful fo r the operation to drain into another tank. This w ay  
the tem perature at the evaporator o f the heat p ipe rem ains at about 

2 0 0 °C  as long as there is sufficient heated o il in  the tank o f the 

therm al battery.
The com bination o f the above m entioned 3 parts is now  a w e ll tried  
and tested system  w hich  was developed fo r he firs t tim e at Sligo  

R egional Technical C o llege and reported in  a paper in  1994 [16 ].

2 .4  The refrigerator
The refrigerator used was a com m ercially ava ilab le  P laten-M unters  

design m odified  to  take the required energy fro m  the solar heat 
collector or therm al battery. In  order to m axim ise the output o f the 
refrigerato r it soon becam e apparent that the question o f its thefm al 
insulation need special attention. This is because the quantity o f  
heat gain o f  the refrigerato r from  its surrounding environm ent is 

proportional to the surface area o f  its w a ll, the d ifference betw een  
its inside and outside tem peratures and the therm al conductivity o f 
therm al insulation m ateria l used. I t  soon becam e clear that the 
therm al insulation o f the availab le refrigeration  is not adequate by  
any stretch o f the im agination. F o r this reason it  w as found that in  

order to proceed p roperly  w ith  this pro ject it  w as absolutely  
essential to fin d  the optim um  thickness fo r m axim um  cost-effective  

perform ance.
Th is w as done b y  covering the refrigerator w ith  therm al insulation  
m ateria l o f vary ing  thickness and assessing its perform ance. (The  

assessment procedure is described in  Section 3 o f  this paper). I t  
w as found that fo r thickness o f around 75m m  the energy reduction is 

about 35% . F o r thickness around 100m m  the energy reduction was 

around 4 2 %  and no significant gain w as observed fo r higher 

thickness. A s a result o f  this study the refrigerato r was w rapped  

w ith  10 0 m m  th ic k  therm al insulation m ateria l during the entire  

program m e.



Figure 1

Captions: 1 - pane of glass, 2 - compound parabolic concentrator,
3 - special oil for thermal battery, 4 - the battery tank, 5 - evaporator of the 
heat pipe, 6 - the refrigerator, 7 - condenser of the heat pipe, 8 - lower 
level storage tank, 9 - hand pump.
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A nother m odification adapted to the refrigerato r was to fit an 

inverted funnel shape “chim ney” to condenser and the rest o f the 

pipe w orks at its back. The broad end o f this contraption contains 
the condenser and the rest o f the pipe w orks at the back o f the 

refrigerator w h ile  the narrow  end is at about, at least, 1 .2  metres 

above the condenser. This is to encourage the a ir m ovem ent and 
speed up the rejection  o f heat from  the condenser. A  diagram  o f  
the system is shown in  Figure 1 and Figure 2 shows the diagram  o f  

the refrigerator circuit.

3. Results and Evaluation

In  order to co llect the necessary data to assess the perform ance o f the 

system a to ta l o f 6 therm ocouples w ere connected to  the system. 
Therm ocouples 1-2 w ere connected to the h igh tem perature end o f the 

systems and therm ocouples 3 -5  w ere connected inside the ice box and 
the last one was fixed  outside the ice box but inside the refrigerator. A  
to ta l o f over 50 test runs w ere conducted to check the repeatab ility  o f  

the results. The results reported here are concerned w ith  the d irect 
coupling o f the collected heat to the evaporator o f the refrigerator 
circuit. This is because the m ost im portant po in t w as to see w hether a 

system like  this could produce any useful cooling cycle. Furtherm ore  
the solar therm al battery is now  a w e ll proven technique and it can on ly  

im prove the perform ance reported here.

The firs t set o f results w ere obtained w ith  no add itional therm al 
insulator m aterial on the w alls o f the refrigerator. The result is 
presented in  Figure 3. I t  is clear that the coo ling  action started after the  

system was exposed to 90 m inutes o f solar rad iation  and tem perature o f  

as lo w  as -1 0 °C  w as being achieved in  the ice  box. I t  was interesting  
to note that once the refrigerator was covered b y  100  m m  th ick o f  
therm al insulation cover the perform ance o f  the system  im proved  

dram atically w ith  tem peratures o f as low  as -1 6 °C  in  the ice box and - 
3 °C  in  the, refrigerator w as routinely achievable. The results o f this  
series o f tests are presented in  Figure 4. N o  further im provem ent w as  

observed w ith  therm al insulation covers o f th icker than 100m m .

The next question to  address was to see w h ich  m ethod o f rejection o f  
heat from  the refrigerator circu it (b low ing  a ir, w ate r spraying, or both) 
can prove m ost effective as fa r as the overall perform ance o f the system  

is concerned. For this reason each one o f these approaches
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w ere tried  and the results are presented in  Figures 5 and 6 . The w ate r 

spraying was repeated every 10  m inutes on the condenser o f the 

refrigerator circu it only. The results show that the spraying on its ow n  

is sufficient enough to produce the optim um  cooling. (T h e  graph 

shown in  Figure 5 shows the results o f the w ate r spraying approach and 

the graph o f figure 6 shows the results o f the com bined w ater spraying  
and a ir ven tilation  approach). I t  is interesting to note that tem peratures  

as lo w  as -1 9 ° in the ice box and tem peratures as lo w  as -4 °C  in  the  
refrigerator is achievable. These results c learly  show  that air 

ven tila tion  does not produce any noticeable advantage. Furtherm ore, 
the sparing o f the entire p ipe w orks at the touch o f the refrigerator has 

some slight advantage by speeding up the cooling action. The w ate r 
spraying action was repeated fo r every 20 m inutes and, at a later test, 
fo r every 30  m inutes and the results are shown in  F igure 7 (fo r every 10 
m inutes), F igure 8 (fo r every 20  m inutes), and F igure 9 (fo r every 30  

m inutes). These results show that the only e ffec t was some slight 
im provem ent on the speed o f cooling but the fin a l tem peratures 

rem ained the same.

The results clearly show that the m odification  and adaptation o f the  
Platen-M unters design o f refrigeration  system  to solar energy is now  

possible w ith  the high output collectors. The perform ance o f the 
system  can be further im proved by the incorporation o f  the solar therm al 
battery by storing the excess energy during the peak sunshine hours and 
using it  fo r longer refrigeration  cycles. This system is currently under 

investigation and the prelim inary results obtained so fa r indicate that it  is 
feasib le to expect about 10  hours o f cooling cycle w ith  the system.
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Abstract

In this paper a general review and assessment of all the solar powered systems using solar 
thermal and photovoltaic as their source of power, reported so far, has been presented first. A 
thorough investigation of the potential of calcium chloride and ammonia in a solar powered 
intermittent refrigeration system has been conducted and the merits of this approach are 
highlighted. It has been found that deployment of high efficiency evacuated heat collectors, as 
the source of power, can facilitate more than two cycles for each 24 hours period. Regarding the 
potential of photovoltaic panels in solar cooling systems it has been found that the maximum 
efficiency with lowest possible cost is possible by eliminating the need for the storage of solar 
d.c. power. A system based on this idea has been designed and tested, and we call it an 
"Extremum System”. In this system all the components used are available off-the-shelf and the 
cooling can be achieved by using a novel control system where maximum output can be 
achieved for any input power. Finally, it has been found that a sustainable solar powered 24 
hours cooling system is possible by combining the high-efficiency intermittent solar thermal 
system with the extremum photovoltaic system.

Key words

Refrigeration, Absorption, Vapour Compression, Photovoltaic. Compressors, Extremum, Heat 
pump, Refrigerant, Absorbent and Composite.

1- Introduction

Solar powered cooling is, without doubt, one of the most desirable applications of solar energy in 
several regions enjoying high rates of solar irradiation. Considerable energies and resources are 
constantly being put into research and development in this field to make the idea a commercial 
reality. Although there has been some considerable technological breakthroughs (1-4) there are 
several difficulties that has prevented the researchers to achieve the desired goal. Technological 
complexities and the extremely high cost have been the major cause for lack of total success so 
far.

In this paper after brief review of all the reported systems in Section 2 a trial low cost intermittent 
system has been designed and tested. For the first time ever it has been practically been proven 
that an intermittent system can have more than one cooling cycle for every 24 hours. This major 
breakthrough is described in Section 3.

As far as the application of photovoltaic in solar cooling is concerned a new and novel technique 
has been used in the design of a system that uses standard components currently in use in 
refrigeration systems. A novel control system facilitates maximum possible efficiency out of the
system for any given input power. This new system which also eliminates the need for storage of



solar electricity is, without doubt, the lowest cost system of its kind described in Section 4. A 
combination of the systems described in Sections 3 and 4 is discussed in Section 5. This 
combination is potentially capable of providing solar cooling for 24 hours for 6-7 hours of solar 
irradiation.

Finally, acknowledgement is presented in Section 6.

2- Brief Literature Review

The literature survey of all the reported systems reveals that solar cooling can be divided into two 
main categories; namely solar thermal and photovoltaic. Since the reporting of all of the systems 
is beyond the scope of the work presented in this paper the most up-to-date papers/thesis(es) 
concerned with solar cooling are included in this brief review. One of the most relevant works in 
this field is presented in literature review of a M.Sc. thesis completed by A. F. Kothediwala (5). 
Perhaps one of the most significant set of works in the field of solar cooling were completed by 
Critoph who has developed and tested various solar thermal powered cooling systems and 
published a valuable reviews in the field (6-10). A comprehensive review of solar thermal cooling 
systems is reported in a Ph.D. thesis completed by Harvey (11). Sayigh and McVeigh (13) have 
published the most valuable book containing several papers in the field of solar cooling. Perhaps 
the most up-to-date review has been completed by Best and Ortega (14) where different solar 
cooling systems have been outlined.

It is interesting to note that in all the reported cases there are no reports of a tried and tested of a 
practical and composite design incorporating the merits of more than one technique. The 
present paper is concerned with a step-by-step approach leading to the design of a practical 
composite solar powered cooling system.

3- High Output Intermittent System

The brief review presented in Section 2 reveals that intermittent-absorption system with liquid 
absorbent, particularly water/ammonia (H20/NHa) systems have overall COP of from 0.05 to
0.07. In terms of ice making the performance corresponds to about 4kg of ice per 24 hours, and 
1m2 of collector area. Approximately the same performance has been reported for an 
intermittent cycle utilising methanol in activated charcoal.

Using a solid absorbent (calcium chloride) and ammonia as the refrigerant, COP of 0.10 is 
routinely achievable (15).

Calcium chloride absorbs a total of eight moles of ammonia in four steps. It is important, 
however, to note that the first two moles are too strongly bound to calcium chloride to be driven 
off at temperatures of 75°C-80°C. In this respect only six moles can be cycled if flat plate heat 
collectors is to be used as the source of energy. It was found that when evacuated solar heat 
collectors were used as the source of energy a temperature of about 120°C was routinely 
achievable. This extra gain of the collector can facilitate a higher rate of reaction.

If the system is to be used as a sole single cycle one ( one cycle per 24 hours duration) a COP of 
better than 0.1 is possible. However, since the high efficiency of the evacuated collector causes 
total desorption of all the ammonia moles after about 3.5 hours of solar irradiation it was found 
possible and feasible to consider the idea of getting more than one full cycle per 24 hours 
duration, if an adequate system of condensation is designed for the refrigerant.



3.1 Description of the system

The schematic diagram of the system is given in Fig. 1. The calcium chloride/ammonia mixture 
was placed in the long pipes, mounted inside the evacuated tubes and welded to absorber plate 
of the collector. This diagram is, of course, a conventional intermittent system with one cycle per 
each 24 hours duration. However, there are two features that makes the present design a novel 
one. They are:

i - deployment of a high efficiency evacuated collector as the source of energy, and

ii - a simple, but very effective, system cooling for condensing the evaporated refrigerant at the
condenser.

c
~  • ) 
Evaporator

Fig. 1

The simple cooling system was achieved by using water at temperatures of about 14°C-18°C 
poured on condenser. The water is pumped using a pump with photovoltaic panel. The cool 
water pours over the condenser and as this action starts a fan coil (also powered by photovoltaic 
panel) becomes active to speed up the removal of heat from the condenser. A simple switch 
activated by a thermostatic valve activates the water pump and the fan coil. It is possible to get 
up to 3 full cycles on a good day, of cooling during the daytime hours. However, if the solar 
conditions are not ideal to get 3 cycles per day then the third cycle will take place at night hours, 
with this system a target of 18kg of ice per 24 hours for 1m2 of solar collectors has been routinely 
achieved.

4- Photovoltaic cooling system

The application of photovoltaic panels to power conventional refrigeration systems is not new. In 
these systems solar electricity is fed to a conventional refrigerator via an inventor or fed directly 
to a modified refrigerator using d.c. compressor. The ultimate parameters in deciding to choose 
one of these approaches are cost and simplicity & reliability of the system. The idea of using a 
conventional refrigerator and an inventor seemed more attractive. However, after careful



consideration of costs and all other technical points the “d.c. compressor” option became more 
attractive. It is important to point out that the costs of d.c. compressors are coming down as the 
demand is now increasing. It was, therefore, decided to use d.c. compressor in an otherwise 
conventional heat pump.

After investigating all aspects related to efficiency of a heat pump it was decided to design a 
system to have the maximum possible efficiency at various times of the day. This is because the 
efficiency of the compressor will be at its maximum when it receives its maximum rated power. 
In view of the fact that the output power of a photovoltaic panel is not constant at various hours 
of the day called the "Extremum” cooling system was designed.

4.1- Description of the Extremum System

The difference between the so called Extremum system and a conventional system is that in the 
latter there is one compressor and it comes on as the power is switched on and goes off when 
there is no power. This system is, obviously, designed when the input power to the compressor 
remains reasonably constant. Since the output power of photovoltaic panel is not constant during 
the sunshine hours a conventional system will to be operating with maximum efficiency.

In Extremum System the compressor is made out of a number of smaller compressors 
connected in parallel. In the early morning hours, as photovoltaic panel starts to produce 
electricity and its output power is low only one of compressors is activated. As the output power 
of the panel is increased and there is more power beyond the demand of the first compressor 
then the second compressor kicks in. This procedure repeats itself for higher powers engaging 
compressor No.3, 4 etc. As the output power of the panel decreases the reverse action takes 
place. In this system all the compressors will be operating near their maximum rated 
efficiencies.

5- The Ultimate Composite System

The Ultimate Composite System is a combination of both the systems described in Section 3 and
4. The basic system is one described in section 3 with the only difference being the cooling 
system of the condenser. The cooling power for the condensation of the evaporated refrigerant 
is achieved using the cooling power of Extremum Cooling System described in Section 4. Since 
the heat pump system produces heat at its "warm side” then this heat is used as part of thermal 
energy to drive off the ammonia moles from the calcium chloride. The combination of this heat 
and output heat of the evacuated collectors brings about a more favourable condition to drive off 
the refrigerant from the calcium chloride at faster rate. This combination of two systems bring 
about much faster evaporation and condensation. It has been possible to produce more than 
30kg of ice per 24 hours duration for a system containing 1m2 of solar panel.

5.1 Evaluation and Performance

The performance of the system has been evaluated in a number of field trial tests. The trials 
were conducted in two different regions with totally variable levels of humidity.

In the high humidity region the level of humidity was over 95% and in low humidity region the
figure was at about 40%-50%.

The following output yields were routinely obtained for the composite system in the two regions:



• High-humidity region: 20-23.5 kg of ice per 24 duration for
1 every square metre of collector area.

• Low-humidity region: 23-26 kg of ice per 24 duration for
1 every square metre of collector area.

No tests were conducted in the regions with humidity levels less than 40%. However, the yield is 
expected to be better than 26kg of ice per 24 hours cycle.
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Abstract

The main theme of the idea behind the design of the solar powered desalination system reported 
in this paper is based on the findings of a thorough investigation concerning the designs and 
performances of all the solar powered desalination systems reported by 1997. The conclusions of 
the investigation highlighted the most important parameters that contribute to the restrictions of the 
limited output yields of the systems. In fact, the principles of operations of all the reported systems 
are based on evaporation ad condensation of the sea water.

It has been found that the only way the output yield can be increased is by adopting appropriate 
technologies in order to increase evaporation temperature, reduce the condensation temperature 
and recover a high percentage of the energy that, otherwise, go to waste. This has become 
possible by incorporating high output planar heat pipes, concentrators and d-c heat pumps. This 
revolutionary new approach has resulted in phenomenal increase in the output yield and, 
therefore, is a major proof that the present system is, indeed, a commercial reality.

Key words

Desalination, yield, output, saline, distilled, heat pipe, heat pump, evaporation, condensation and 
heat exchanger.

1- Introduction

There have been several attempts by solar scientists and technologists on using of the sun’s 
power to convert the seawater to drinking water. It would be beyond the scope of the works 
described in this paper to go into the history of solar powered desalination systems. It has been 
decided to concentrate on all the works reported in the last 25 years in order to form an accurate 
and up-to-date picture concerning the principles of operation, performance and all the constrains 
of all the solar powered desalination plants of the modern times. This is presented in Section 2 of 
this paper. The findings of this investigation paved the way to the design of the solar powered 
desalination systems reported in this paper. This is presented in Section 3 of this paper. In fact, 
the final system, which is a new approach in the general approach to the design of solar powered 
desalination, is an evolution of the initial system designed and evaluated by authors of this paper 
in 1997. Section 4 of this paper is concerned with the evaluation of the performance of the most 
recent design. The exciting high yield of system that strengthens the argument that present 
system does indeed make solar powered desalination system a commercial reality is presented in 
section 4. Finally, acknowledgement is presented in Section 5.



The fact that water has always been the most vital commodity in sustaining life, water desalination 
has gain immense importance in recent years, as the supply of the fresh water is going down. It is, 
therefore, not surprising that water desalination has become a topic that has received the attention 
of great number of researchers, in the past 25 years in particular. Perhaps the most elegant 
concise review on various on various up-to-date techniques has been presented by El-Buhi (1). 
The most important of all the available techniques can be out lined as: Multi-Stage Flash (MSF) 
process, Multi-Effect Boiling (MEB), Vapour Compression (VC), Reverse Osmosis (RO) and 
Electrolysis Desalination (ED).

As far as the solar water desalination techniques are concerned nearly all the reported works in 
the field have been passive design of one type or the other (2-6). The reason behind this 
approach seems to be low cost and "simple” technology as the prime users were though to be 
people remote regions of the third world countries. However, in view of the authors of this paper, 
the fact that good quality drinking water is, in great majority of countries, more expensive than 
some popular refined petroleum products (at list by a factor of 2) and also the dwindling supply of 
good quality drinking water world-wide dictate that the question of solar powered desalination 
needs a new approach. For this reason an active system incorporating some advanced 
technologies has been the main theme of the research work presented in this paper.

2- Brief Review of the available Techniques

3- Description of the System

The main Inspiration for the design of the system described in this paper stems from excellent 
work presented by M. Saghafi in Third Congress of the World Renewable Energy Congress in 
Reading, England in 1994 (7).

In brief, the system, described by Saghafi, comprises a flat plate collector, evaporation chamber 
and condensation chamber. The sea water is heated by the collector and is then showered down 
in the evaporation chamber containing a number of jute clothe webs spaced at various levels in 
this chamber. As the hot seawater is poured down in this chamber a good percentage of it is 
evaporated here. The vapour is then directed to the condensation chamber. The cooling power in 
the condensation chamber is secured by the incoming seawater, prior to reaching the solar 
collector. The potable water is collected from the condensation chamber.

In developing the system described in this paper it soon became apparent to the authors of this 
paper that a careful design of the system using the technologies developed at our laboratories in 
Sligo and adopting them to the system reported by Saghafi can open a new horizon in solar 
powered desalination approach. In our design every effort has gone into the idea that the output 
of the system must be as high as possible. The factors that determine increased output are:

i - increasing the quantity of water vapour in the evaporation chamber by increasing the
temperature of the hot seawater to be showered down in the evaporation chamber. This was 
achieved by using high-efficiency evacuated collectors instead of flat plate.

ii - compensating for the drop in hot sea water temperature as it passes through the jute cloth
webs to lower levels in the evaporation chamber. Incorporation of a number of heat pipes, 
with their condensers placed in the lower levels of evaporation chamber. The evaporator part 
of the heat pipes were placed outside the desalination unit and heated by the excess heat 
produced by the evacuated collectors and the heat pump .

iil - Increasing the speed of condensation. This was achieved by using a so-called “Extremum” 
heat pump developed by the authors of this paper and also presented to this conference.

It is now easy to see that the heat recovery arrangement described in step (iv) above also 
facilitates further assistance to the idea of increasing the quantity of water vapour described in 
step (i).



The heat pump and circulation pumps were powered by low cost amorphous silicon photovoltaic 
panels.

4- Evaluation of the Performance of the System

It is worth pointing out that the novel design of the system facilitates excellent harmony between 
the production of vapour and condensation. This means as the dosage of the incoming solar 
radiation increases, which brigs about higher quantity of vapour, the heat pump will operate at 
higher power levels and produces more cooling power.

A system using 1m2 of evacuated collector and 1kW of photovoltaic panel has been found to 
produce an average quantity of 28-34 litres of distilled water per hour. It is important to note that 
another factor that contributes to this high output is the ability of heat pump to absorb considerable 
amount of thermal energy from the surrounding ambient.

It is envisaged that the performance of the system can be further improved by optimising the sizes 
of the evacuated collectors' area and the compressor power of the heat pump. Initial 
investigations point out that the existing 1kW extremum heat pump is capable of coping with, at 
least, 15% increase in the quantity of the generated water vapour. Based upon the work 
completed so far output yields of up to 50 litres of distilled water will not be impossible.
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Appendix II



Appendix I I

The development o f the Solar Powered Multi-Cycle Intermittent Block Icemaker and the 

Development o f the Composite Solar Powered Desalination System are the subject of two 

separate patent applications.


