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Background
Planktonic bacteria are capable of forming biofilms, which are described as microbial aggregates 
embedded within a matrix of extracellular polymeric substances (EPS) and are found attached to 
abiotic or biotic surfaces (1,2). The EPS contains exopolysaccharides, nucleic acids , proteins and lipids 
forming a protective matrix surrounding bacterial cells (3). Bacteria attach to the EPS facilitating cell-
cell communication and cell-surface interactions (4). The biofilm matrix is important in maintaining 
the biofilm lifestyle, it has an influence on microbial behaviour, virulence and tolerance to 
antimicrobials (5,1).

Significance of biofilms 
Biofilms are responsible for many infections ranging from chronic wounds, cystic fibrosis, urinary 
tract infections, dental caries, periodontitis, medical device implications, orthopaedic implant failure 
and dental implant failure. Biofilms possess more bacteria per gram compared to planktonic states  
and have the ability to withstand 500 to 1000 times the concentration of biocides and antibiotics 
killing their planktonic counterparts (6,7,8). Biofilms within the oral cavity are responsible for initiation 
of gingivitis, dental caries and the progression of periodontal disease (9).

Oral Biofilm Formation
The oral microbiome is a complex environment inhabited by a range of bacteria, archaea, fungi, 
protozoa and viruses (10,11). The oral cavity represents the second largest microbiome in the human 
body (12) . There are now 775 prokaryotic taxa identified in the oral cavity according to the eHOMD
database (13).

The oral cavity offers a perfect location for the growth of microorganisms. It provides a warm 
environment without temperature fluctuations. Saliva maintains a pH of 6.5-7, provides moisture 
and transports nutrients as well as containing adhesive components constituting the acquired 
pellicle  to which bacteria can attach (14) . 

Oral biofilms can form on the many niches such as soft tissues including the gums, cheeks, gingival 
sulcus, tongue, hard and soft palate. Hard surfaces such as teeth and dental restorative materials 
can also be colonised by biofilms alternatively called “Dental Plaque” (15). Biofilm formation in the 
oral cavity displays organisation, microbial succession and are formed in a sequential manner (16,17). 
Biofilm development on a substratum involves four stages, initial attachment of cells onto the 
surface, early development, maturation and finally dispersal of planktonic cells (18,4).

Tooth surfaces are coated by the acquired enamel pellicle to which primary colonisers bind such as 
Streptococci spp., Actinomyces spp., Veillonella spp. and Neisseria spp. on tooth surfaces (5). When 
microcolonies adhere EPS is produced and secondary colonisers such as Streptococci , 
Fusobacterium nucleatum and Porphyromonas gingivalis populate the biofilm. Biofilms mature 
and cell-cell communication  known as and quorum sensing (QS) occurs. Finally biofilms often 
breakdown and bacteria are released back into their planktonic state. 

Figure 1.1. Biofilm formation
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Figure 2.1. Fatty acid chemical structures

Figure 2.2. Confocal Laser Scanning Microscopy method 

Discussion
• Preliminary results suggests that with increasing carbon chain length antimicrobial 

activity  improves.  

• LCFA’s have displayed adequate antimicrobial effects. 

• Polyunsaturated LCFA Linoleic and Monounsaturated LCFA Oleic acid  have displayed 
most promising antibacterial properties with MIC’s < 0.078 mM and zones of inhibition 
being displayed for Kirby Bauer test. 

• This may be due to the chemical formula containing double bonds.

• Linoleic acid has also revealed antibiofilm properties.   

• EtOH at a concentration of 4% does not have significant effect on bacterial growth. 
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Results

Figure 3.1. Standard curve used to determine CFU/ml S. mutans.

Figure 3.2. MIC of Octanoic, Capric, Undecanoic, Lauric, Myristic,    Figure 3.3. Kirby Bauer 100mM Linoleic acid 
10% EtOH. 

Figure 3.4. Effect of Palmatic acid, Undecanoic acid 
and Linoleic acid on S. mutans biofilm development  

Project Overview 

Figure 1.2. Project overview 
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Figure 3.5. Effect of EtOH at varying concentrations 
on S. mutans 

Challenges 
• Fatty acids are not soluble in H2O therefore an alternative solute 

without antimicrobial effects must be chosen. 
• EtOH at 4% does not have a significant impact on viability and normal 

growth kinetics, however incomplete solubility of FAs is observed at 
this concentration.

• Incorporation of fatty acids onto dental materials. 

Future work
• Alternative solutes such as DMSO, Ethyl acetate will be evaluated. 

• Efficacy of fattyacidsagainst monospecies and multispecies biofilms. 

• Combining fattyacids to determine synergistic antimicrobial and 

antibiofilm effects. 

• Addition of antimicrobial fatty acids onto titanium disks to evaluate 

biofilm inhibition. 


