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Abstract

Wireless sensor networks (WSNs) are critically resource-constrained due to wireless sensor
nodes’ tiny memory, low processing units, power limitations, and narrow communication
bandwidth. The data reduction technique is one of the most widely used techniques to
reduce transmitted data over the wireless sensor networks and to minimize the sensor
nodes’ energy consumption, particularly, the entire network in general. This paper
proposes a reliable dual prediction data reduction approach for WSNs. This approach
performs data reduction through two phases: the data reduction phase (DRP) and data
prediction phase (DPP). The DRP is mainly to decrease the number of transmissions
between the sensor node and the sink node, thereby minimizing energy consumption. It
also detects faulty data and discards them at the sensor node. The discarded faulty data
at the sensor nodes are replaced by estimated values at the sink node to maintain data
reliability. DPP runs at the sink node or base station, which works in synchronization with
the sensor nodes. This phase is responsible for predicting the non-transmitted data based
on the Kalman filter. The simulation results demonstrate that the proposed approach is
efficient and effective in data reduction, data reliability, and energy consumption.

1 INTRODUCTION

Owing to the dramatic change in humankind’s lifestyle, WSNs
have become a commonly used technology for data collection
in various applications. Monitoring is one of the most WSNs
applications used to perform over different environments and
processes. WSNs consist of thousands of nodes, which are used
to sense a specific phenomenon or event. These nodes are usu-
ally randomly or systematically deployed in targeted areas to
collect physical parameters information, such as temperature,
pressure, humidity, vibration, noise level, and vital signs. Moni-
toring applications are essential in environmental, health care,
governmental, industrial, and military applications [1–4]. The
data collected by monitoring applications are required to flow
continuously over time. However, wireless sensor nodes are
tiny devices with extreme computational and energy limitations.
Wireless sensor nodes’ batteries are limited for a finite period
of time, depending on many factors (e.g., the number of data
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transmissions). Consequently, prolonging network lifetime is
one of the most important research topics in WSNs [5,6].

Due to the limitations mentioned above, the data collected
by wireless sensor nodes are enormous, some of which may
be unnecessary and faulty. The continuously collected data are
highly correlated due to the observed phenomena’ physical
nature [7,8]. In other words, most of the collected observations
are not exclusive, and the deviation between them and the pre-
viously collected readings has no significant entropy. Therefore,
discarding the transmission of unnecessary collected data sub-
stantially decreases energy consumption in WSNs. This results
in prolonged network lifetime, as most energy is dissipated in
the data transmission process [1,9,10]. Therefore, one of the
proposed solutions to this issue was to reduce the number of
data transmissions over wireless networks [11,12]. However, it
minimizes the network overhead at the same time [13]. To lessen
the volume of transmitted data, various state-of-the-art methods
have been proposed, including data aggregation (DA) [14–16],
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data compression (DC) [17,18], adaptive sampling [19–21], or
data prediction (DP) [22–24].

Nevertheless, DP is a more preferred and efficient approach,
as it can realize a significant data suppression ratio (SR) com-
pared with other techniques [1]. The DP concept is to exploit
the temporal collected data by finding a correlation between a
previous set of collected data and building a prediction model
that can predict the future measurements to be similarly corre-
lated. This can be achieved by discarding the transmissions of
the newly collected data that can be estimated at other ends,
such as cluster heads, sinks, base stations, edge nodes, or clouds.
The exploiting operation can be done at the sensor nodes by
running a prediction algorithm where collected data is com-
pared with predicted values. If the predicted data are accurate
enough (based on the system’s needs), the current measure-
ment transmission will be cancelled. Thus, the sensor nodes
only transmit non-predicted values to the sink node. In this case,
the prediction algorithm is no longer accurate unless the sink
can reproduce the non-transmitted readings.

Nevertheless, some earlier proposed prediction-based data
reduction techniques may cause an increase in nodes’ com-
putational operations. Some algorithms are not applicable in
real-world monitoring WSNs due to the sensor node compu-
tational and memory limitations. This paper aims to explore a
new prediction-based data reduction approach to improve the
data reduction performance in transmission reduction, data reli-
ability, and energy consumption. The main contributions to this
paper are twofold:

∙ Developing a data reduction algorithm, which aims to
decrease the number of data transmissions from the sensor
nodes to the sink nodes. The collected data will be discarded
transmission if it’s redundant, predictable, or faulty, as dis-
cussed in Section 3.

∙ Developing a data prediction algorithm that runs at the sink
node based on the Kalman Filter to predict non-transmitted
data from end nodes while maintaining data reliability.

The remainder of this paper is organized as follows: Section
2 provides an overview of the recently proposed data reduction
algorithms. The system description and assumptions are dis-
cussed briefly in Section 3. Next, the proposed data reduction
approach is discussed in Section 4. In Section 5, the simulation
results are presented in comparison with various counterparts.
Finally, Section 6, based on our findings, gives a brief conclusion
for the article, along with further study directions.

2 RELATED WORK

Data reduction is a technique used to decrease data transmis-
sion in WSNs, thus prolonging networks’ lifetimes and reduc-
ing network bottlenecks. There have been diverse state-of-the-
art approaches dedicated to increasing WSNs longevity. The
authors in [25] proposed a new data transmission reduction
algorithm based on the dual prediction model to decrease the
amount of data transmitted to the sink node. The proposed

approach aims to prolong the network lifetime by combin-
ing data reduction with the adaptive sampling rate technique.
The authors in [1] proposed a two-tiers data prediction frame-
work based on dual prediction (DP) and data compression (DC)
schemes. The DP tier aims to minimize the data transmissions
from sensor nodes to their cluster heads. Simultaneously, the
DC tier is proposed to decrease the communication from clus-
ter heads to the base station. Additionally, the authors have
used neural networks (NNs) and long short-term memory net-
works (LSTMs) for data predictions at the DP tier. Although
this approach has reduced the data transmissions by up to 54%,
the energy consumption and data accuracy were compromised.

For In-networking based data reduction, the authors in [26]
proposed error-aware data clustering (EDC). The proposed
EDC contains three different adaptive modules that allow users
to choose a module that suits their required data quality. Based
on temporal data redundancy, the main contribution of this
technique was to remove the temporal data correlation using
different techniques such as histogram-based data clustering
(HDC), Recursive Outlier Detection, Smoothing (RODS), and
Verification of RODS (V-RODS). The proposed EDC reduces
the amount of data redundancy and detects faulty data that may
happen in WSNs. Another in-networking approach is proposed
in [27]. The proposed approach contains two layers, namely, data
filtering and data fusion layers. The data filtering layer aims to
minimize the number of transmissions. At the same time, the
data fusion layer is based on the minimum square error crite-
rion to fuse the data. It is worth mentioning that this approach
is based on the Kalman Filter for data prediction at the edge
node, which is a part of the techniques we used in this paper.
Another distributed data predictive model (DDPM) is proposed
in [28], aiming to increase energy efficiency by reducing data
transmissions over WSNs. The DDPM model is based on a
finite impulse response filter combined with a recursive least
squares adaptive filter.

The least-mean-square (LMS) algorithm is also used for data
reduction in WSNs. In [29], the authors proposed a data reduc-
tion method based on two decoupled least-mean-square (LMS)
windowed filters that combined convexly with different sizes.
The proposed method estimates future readings in both sink
and sensor nodes. The data transmission occurs if the cur-
rent reading value has a significant deviation from a predefined
threshold. Another prediction-based data reduction approach
is proposed in [30]. This approach exploits hierarchical least-
mean-square (HLMS) for data reduction in WSNs. HLMS is
used to predict values at sensors and sink nodes individually. In
addition, the working mechanism HLMS was proposed, and the
mean-square error was analysed. While the interactive HLMS
protocol and prediction algorithm are designed for both sink
and sensor nodes. In [31], the authors proposed a prediction-
based data reduction technique. The proposed method aims
to reduce the data transmission by establishing a relationship
between sensor readings. Therefore, the sensor node is exempt
from sending a massive volume of data during a predefined
duration. Instead of transmitted collected data, the CH is sup-
posed to predict the non-transmitted data and thus minimize
the energy consumption of WSN. In [32], the authors aim to
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prolong network lifetime by decreasing the amount of wireless
sensor data transmission. Therefore, a data transmission reduc-
tion scheme has been proposed based on machine learning. The
presented machine learning-based data transmission reduction
scheme is specified for IoT network applications.

In [33], a machine learning-based data reduction approach
(MLDR) for WSNs is proposed. The proposed MLDR is mainly
proposed for enhancing the environmental data reduction of
agriculture applications. Same as many DP schemes, the pre-
diction is done simultaneously in both sensor and sink nodes.
Another deep learning-based distributed data mining (DDM)
model is proposed in [34]. DDM aims to increase the network
energy efficiency by minimizing data transmissions. Firstly, the
wireless network is divided into several layers based on a combi-
nation of recurrent neural network (RNN) and long short-term
memory (LSTM) RNN-LSTM. These layers are then placed
on the sensor nodes. In addition, the fusion centre overhead
is reduced to decreasing the number of transmissions. In [35],
the authors proposed a fuzzy-based clustering and machine
learning-based data reduction in WSNs to increase the life
span of the networks. The proposed method exploited machine
learning to extract similar sensed data and discard it. Also, the
Fuzzy Inference System is used to form suitable clusters based
on the update cycle calculated. Another machine learning-based
data reduction is proposed in [36]. The proposed method aims
to decrease energy harvesting by using the K-mean algorithm
as the network’s basis clustering process. In addition, the num-
ber of data transmissions is decreased by using the optimal fixed
packet size.

Since approaches in [6] (hereafter referred to as DP_LSTM),
[27] (hereafter referred to as DDR-IoT), and [28bib28] (here-
after referred to as LMS) carry out the data reduction process
based on dual prediction in both sensor and sink nodes, we
chose them as benchmarks for evaluating the performance of
the proposed approach.

Unlike the approaches mentioned above, the proposed
approach’s strength lies in its ability to detect faulty data while
increasing data reliability and reducing the number of transmis-
sions. Many state-of-the-art approaches have been proposed for
data reduction in WSNs, but the data reliability is compromised.
In this paper, the proposed approach considers the fact that
WSNs collected data are apt to faultiness and unreliability. Thus,
data reduction and faulty data detection are proposed in this
paper while enhancing data reliability.

3 SYSTEM DESCRIPTION AND
ASSUMPTION

3.1 System description

Consider a WSN of N sensor nodes, S = {s1, s2, …, sN}, and
M sink nodes located in the same sensing area. These nodes are
deployed systematically or randomly such that each sensor node
si senses and transmits its readings to one of the sink nodes at
a predefined time t. In this paper, a data reduction approach
is proposed such that the similarly (correlated and redundant)

FIGURE 1 The network model example

collected data by the sensor node are discarded. It is assumed
that only the deviated readings from the predefined threshold
will be forwarded to the sink node. After that, the sink node is
supposed to predict the non-transmitted readings and forward
all the received and predicted readings to the gateways. The pre-
sented network model scenario of this proposed approach is
illustrated in Figure 1. As can be seen, the sensor nodes’ main
task is to monitor the targeted environment, collect observa-
tions, and send them to the sink node. On the other hand, the
sink nodes aim to receive the transmitted observations, predict
the non-transmitted observations, and send them to the gate-
way. Finally, the gateway received the collected data and sent
them to the end-user.

It is worth mentioning that the data transmission protocol
has not been considered in this research. Instead, we assumed
the communication between the sensor and the sink node
is device-to-device communication. So, for instance, the data
transmitted from the sensor node reaches the sink node in a
timely manner. If no data is received at a given time t, it is
assumed to be discarded at the reduction phase (at the sensor
node level). Hence, the data prediction phase (DPP) will predict
the non-transmitted data. Furthermore, according to [36,37],
data transmission is the main factor in energy consumption of
the WSNs. Therefore, the proposed approach to energy con-
sumption is calculated based on the number of readings trans-
mitted from sensor nodes to the sink node.

Figure 1 shows that the links between the end nodes (sen-
sor node) and the sink node are depicted in black. The data
reduction phase proposed an algorithm to reduce the number
of transmissions. In contrast, the links between the sink node
and the gateway are depicted in red. The data prediction phase
is used to reproduce the non-transmitted readings.

3.2 System assumption

Due to the fact that each WSN has its own special factors that
affect the network performance, such as the targeted sensed
phenomena, targeted monitoring events, type of the node (static
or mobile), the proposed approach has its assumptions as
follows:

∙ All the sensors in the network are stationary.
∙ The sensors are randomly or systematically distributed in the

sensing environment.
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∙ The data sampling rate is fixed for all nodes.
∙ Same as the sensing process, the transmission process is done

timely. In other words, the data transmissions between sen-
sors and sinks reach timely.

∙ Unlike the sensor nodes, the sink nodes have no power, mem-
ory, or processing limitations.

4 PROPOSED APPROACH

Transmitting the entire sensed data is not a good idea in
many cases. Data reduction is the key to solving some WSNs
issues, including minimizing energy consumption and eliminat-
ing redundant data. In this regard, a data reduction mechanism
has been proposed for many state-of-the-art types of research.
In this paper, a two-phases dual prediction data reduction
approach is proposed to control and minimize the data trans-
missions on the sensor side and reproduce the non-transmitted
data on the sink side.

4.1 Data reduction phase (DRP)

The DRP aims to decrease the number of data transmissions
between the sensor nodes (end nodes) and the sink nodes. In
the presented scenario, the links between every sensor node si

and its corresponding sink node are used to achieve the aimed
reduction. The DRP is based on three techniques that are imple-
mented in every sensor node algorithm. The presented sensor
node algorithm steps are as follows:

4.1.1 Data equality (DE)

Data equality (DE) is the first step of the DRP algorithm to
check whether the new sensed reading is equal to the previous
reading or not, as specified by Equation (1):

zt − lx−1 = 0 (1)

where zt is the current reading, and lx−1 is the previous reading.
Firstly, DRP cached a predefined number of readings l of each

sensor node in the network and transmitted them to the sink
node. After that, each new sensed reading zt at time t of sensor
si is compared with the previously collected reading lx−1 by the
same sensor node. Thus, the current reading zt is discarded if no
change is detected. Otherwise, the second step of the proposed
algorithm will start processing.

4.1.2 Data deviation computation (DDC)

Data deviation computation (DDC) after DRP assures that the
current sensed reading zt has some deviation from the previous
reading lx−1 DDC aims to compute the value of this deviation
and transmit or discard the reading accordingly. Indeed, in the

proposed DRP, two different processes are proposed to calcu-
late the DDC. The first process aims to calculate the deviation
between the current sensed reading zt and the previous readings
lx−1 based on Equation (2). If the deviation between zt and lx−1
less than the user predefined emax, then the data transmission
will be discarded, and the cache will be updated. Otherwise, the
second DDC process starts. A DCC is presented to calculate
the deviation of the current sensed reading from their predicted
values. Since Kalman-Filter estimated values are highly accurate,
the idea behind this process is to compare the current read-
ing zt with the Kalman-Filter-based estimated value est, which is
almost the same as the previous reading. The deviation between
zt and est is calculated by Equation (3). If deviation Edev is bigger
than the predefined user threshold emax, then zt is transmitted to
the sink node; else, the zt data transmission is discarded, and the
cache is updated:

Vdevt = zt − lx−1 (2)

Edevt = |zt − estt | (3)

4.1.3 Faulty data detection (FDD)

FDD is used to eliminate the transmission of faulty sensed read-
ings. Indeed, wireless sensor nodes are prone to failure due to
the limitations of their resources. Therefore, assuring the col-
lected data to be fault-free is essential for data accuracy and reli-
ability. In this step, the proposed FDD technique is based on
Equations (4)–(6). Since WSNs are apt to faults, fault detection
is an essential process. Unlike many state-of-the-art data reduc-
tion approaches, the proposed approach considers fault detec-
tion processes:

dis =

n∑
i=0

||zt − li
|| (4)

corr = ||dis − (|lmax − lmin
|| (5)

zt =

{
transmitted i f dis < 𝜃

discarded otherwise
(6)

where zt denotes the current sensed reading, 𝜃 is a user pre-
defined value based on the application needs, and lmax, lmin are
the maximum and minimum cached readings, respectively. dis

denotes the distance between the current reading and the cached
values. The corr is the deviation between the current sensed
reading with the pre-cached readings to the deviation between
the maximum cached reading with the minimum cached read-
ing. According to Equations (4)–(6), faulty data transmission
is discarded, and the cache is updated with the estimated
value.

Algorithm 1 complexity is O(1) and it represents the pro-
posed DRP, and the operational flow chart of DRP is illustrated
in Figure 2.
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ALGORITHM 1 Data reduction phase (DRP)

4.2 Data prediction phase (DPP)

In WSNs, all the data received by the sink node are sensed,
produced, and transmitted by the sensor node. Typically, the
sink nodes are more capable in terms of processing units,
energy, and transmitters and perform tasks better than the sen-
sor nodes [24]. Therefore, the proposed approach’s main goal
is to balance the data reduction and energy consumption on
one side and the data reliability and accuracy on the other
side. The proposed DRP focuses on data reduction in WSNs,
as illustrated in Algorithm 1, by minimizing the data trans-
missions to the sink. Thus, the sink node received data are
incomplete compared to the data collected by sensor nodes,
which, in turn, affects the WSN data accuracy and reliability.
To overcome these issues, DPP is proposed to predict the non-
transmitted data at each time interval based on the Kalman
filter.

DPP was developed to predict the non-received read-
ings of sensor node si. In DPP, data prediction is the pro-
cess of reproducing the non-transmitted readings based on
the pre-received cached readings. Similar to DRP, every l

reading of sensor si is cached by DDP. The l cached val-
ues will be updated by the received reading at time t of
each sensor node si. If there is no reading received, the
DPP will predict the reading based on two techniques:
neighbouring-based prediction (NP) and self-based prediction
(SP). Algorithm 2 presents more explanation of the cached
values.

FIGURE 2 The operational flow chart of the proposed data reduction
phase (DRP)

ALGORITHM 2 Data prediction phase (DP)

4.2.1 Neighbouring-based prediction (NP)

The non-transmission between the sensor node and the sink
node may happen for two reasons. It may be reduced dur-
ing the process of the proposed DRP by faulty or predictable
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readings. In contrast, the second reason may happen due to
network failure. In case of failure or faulty, the predicted read-
ing may not be accurate enough. To avoid this scenario and
increase prediction accuracy, the NP aims to check whether one
of the targeted sensor neighbouring nodes is transmitting read-
ings. In the case of one or more neighbouring transmit read-
ings, the algorithm calculates the Jaccard similarity between the
targeted sensor and its neighbours based on Equation (7). If
the similarity is less than the predefined emax then the repro-
duced non-transmitted reading process (predicted value) will
be based on the neighbour’s received reading. Otherwise, the
self-based prediction process will predict the non-transmitted
readings:

J
(
si , s j

)
=

|||si ∩ s j
||||si ∪ s j | =

|||si ∩ s j
||||si | + |||s j

||| − |||si ∩ s j
|||

(7)

4.2.2 Self-based prediction (SP)

This technique aims to predict the non-transmitted readings
passed through the first step. Indeed, the nature of the network
plays a critical role in determining the prediction technique. In
some wireless sensor networks, the sensor nodes are spatially
redundant, which increases the similarity. In contrast, some
others are established systematically to avoid such redundant
problems. Nevertheless, the proposed data prediction algo-
rithm evaluates the prediction in both cases. Both NP and SP
used the Kalman Filter for data prediction. As mentioned in
the system description section, each sink node received data
from n sensor nodes. After the initial setup of the proposed
approach at the sink node, the DPP collects the sensor nodes’
information such as sensor location coordinates, sensor sens-
ing range, sensor neighbouring, etc. In this paper, both the
sensor and sink nodes are required to be preconfigured to
operate synchronously. Therefore, the sink node runs each
time to check out whether the targeted sensor node readings
are received or not. If no readings are received, the Kalman
filter will be used to forecast the non-received values. In
fact, the Kalman filter estimated values have two different
initializations. If the targeted sensor neighbours have readings,
then the Kalman filter updated value will be the neighbour
readings based on Equation (8). Otherwise, the updated value
of the Kalman filter will be the last reading of the targeted
sensor:

sr =

{
KF .update (Nlast ) |Slast − Nlast | > emax
KF .update (Slast ) otherwise

(8)

where sr is the non-received reading, Nlast is the neighbour’s last
received reading, and Slast is the targeted sensor’s last received
reading. Algorithm 2 complexity is O(n*m) and it represents the
proposed DPP, and the operational flow chart of the DPP is
illustrated in Figure 3.

FIGURE 3 The operational flow chart of the proposed data prediction
phase (DPP)

5 IMPLEMENTATION AND RESULTS

The proposed approach is evaluated and compared with three
prediction-based data reduction approaches: DP_LSTM, DRR-
IoT, and LMS. The comparison is done based on three aspects:
data reduction percentage, data prediction accuracy, and energy
consumption. One of the main contributions of the proposed
approach is detecting faulty readings and discarded transmitting
them. Thus, the selected data was tested in its normal situation
and with a faulty injection of 10%.

5.1 Datasets

In this paper, the dataset from Intel Berkeley research lab
(IBRL) is used. The dataset consists of real sensor nodes
that collected data between February and April, 2004. The 54
Mica2Dot sensor nodes were used to collect the surrounding
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weather data such as temperature, humidity, light, and voltage
data. These Mica2Dot sensor nodes are located in the IBRL
facilities, with a sampling rate of approximately 31 s. Only
10,000 collected humidity readings were included in the sim-
ulations. Sensors 1, 2 and 3 were used to evaluate the pro-
posed approach. For more information on the datasets used,
the reader is referred to [38].

5.2 Simulation setting

To validate the proposed approach under realistic WSN deploy-
ment conditions, the Intel Berkeley research lab data set was
presented for evaluation. The simulation code for the proposed
approach is written using the Python programming language.
Humidity readings from Intel Lab datasets were selected since
they are typical time-stamped weather data. Sensors 1–3 humid-
ity readings are used to evaluate the proposed approach. First,
downsampling and fitting are used to fit the missing data and
fill the gaps since some data points are faulty or missing in the
collected data. Second, we created a faulty dataset of the three
targeted sensors using Additive Gaussian noise (1 dB). Finally,
since prior information is needed for the Kalman filter to work
correctly, the first value of each sensor reading has been selected
for initializing the state x of the Kalman filter (the first reading
of each sensor).

It is worth mentioning that all benchmark approaches are
based on user predefined values. Therefore, the emax val-
ues are set as (0.03, 0.05, 0.07, and 0.09) for the proposed
approach, DP_LSTM, DDR-IoT, and LMS. In addition, the
aforementioned simulation settings are applied to the bench-
mark’s approaches, including DP_LSTM, DDR-IoT, and LMS.

5.3 Results and analysis

In this section, the obtained results from data reduction and
prediction algorithms are analysed using different emax values
(0.01, 0.05, 0.09). The proposed data reduction performance is
evaluated by comparing the input and output data size in per-
centage terms. Furthermore, to ensure the proposed approach’s
efficiency, it was evaluated based on ten thousand humidity
readings of sensors 1, 2, and 3. Moreover, the obtained results
of three well-known data reduction approaches are compared
with the results of the proposed approach to ensure the effec-
tiveness of the proposed data reduction approach. Data reduc-
tion percentage, data accuracy, and energy consumption are
the selected metrics for evaluating the results of the proposed
approach.

5.3.1 Data reduction

To calculate the data reduction, Equation (9) is used to calculate
the number of transmitted readings, and Equation (10) is used
to calculate the percentage of transmitted readings based on the

total number of readings:

TTR = TCR − NTR (9)

DPR =

|||||
(

TTR

TCR
∗ 100

)
− 100

||||| (10)

TTR is the total transmitted readings, TCR is the total col-
lected readings (the size of the dataset), NTR is the non-
transmitted readings, and DRP is the data reduction percent-
age. Tables 1–3 show the data reduction results of sensors 1, 2,
and 3, respectively. They exemplify the evaluation of the pro-
posed approach, DP_LSTM, DDR-IoT, and LMS with differ-
ent emax values of (0.03, 0.05, 0.07, 0.09). To graph the data
reduction in Tables 1–3, Figures 4 and 5 illustrate the proposed
approach performance in comparison with DP_LSTM, DDR-
IoT, and LMS emax = 0.05 and 0.09 in terms of data reduction.
Every figure has three subfigures (a), (b), and (c) to represent
sensors 1, 2, and 3, respectively. Moreover, different emax values
of 0.05 and 0.09 are used as shown in Figure 4 and 5, respec-
tively. The figures show that the proposed approach outper-
formed DP_LSTM, DDR-IoT, and LMS for real data with and
without injecting faults for sensors 1–3.

In the same way, Figure 6 represents the data reduction
of the proposed approach compared to DP_LSTM, DDR-
IoT, and LMS using different values of emax with the real
collected data without fault injection. Besides, Figure 7 illus-
trates the data reduction of the proposed approach compared
to DP_LSTM, DDR-IoT, and LMS using different values of
emax with fault injected data. Figure 7 clarify that the pro-
posed approach achieved a significant data reduction percent-
age with faulty data up to 6,196 readings with emax = 0.09 while
DP_LSTM, DDR-IoT, and LMS used the same emax and exact
data of 2,086, 1,999, and 2,088 readings, in sensor 1, respec-
tively. Besides, DP_LSTM, DDR-IoT, and LMS data reduction
percentages decreased dramatically in the case of injecting 10%
faulty data into the collected readings. On the other hand, the
proposed approach increases the number of reduction readings
up to 7514 with emax = 0.09, while DP_LSTM, DDR-IoT, and
LMS achieved reduction, of 5499, 5339 and 4471 readings in
sensor 1 with emax = 0.09, respectively. Similarly, the proposed
approach achieves better results than DP_LSTM, DDR-IoT,
and LMS in both sensors 2 and 3, as listed in Tables 2 and 3.
Figures 4 and 5 plot the humidity data as the y-axis and the sam-
ples as the x-axis. It’s noted that the proposed approach outper-
forms DP_LSTM, DDR-IoT, and LMS in terms of data reduc-
tion due to several reasons. First, all DP_LSTM, DDR-IoT,
and LMS used data prediction to reduce transmissions, while
the proposed approach to data reduction was based on three
techniques, as discussed earlier. Secondly, besides data reduc-
tion, the proposed approach discarded the faulty collected data
transmitted.

Besides, the data reduction percentage is represented based
on Equations (9) and (10). Furthermore, Equations (11) and
(12) are presented to calculate the data reduction accuracy per-
centage for the targeted sensors. Figure 6 illustrates the data
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TABLE 1 Comparison of the number of transmissions of the proposed approach, DP_LSMT, DDR-IoT, and least-mean-square (LMS) and for sensor 1

Normal data Faulty data

emax

No. of

readings

Proposed

approach DP_LSTM DDR-IoT LMS

Proposed

approach DP_LSTM DDR-IoT LMS

0.03 10,000 2342 1604 1341 333 2017 611 517 173

0.05 10,000 4840 3498 3271 2031 4278 1464 1339 1118

0.07 10,000 6734 4326 4108 3061 5961 1876 1773 1828

0.09 10,000 7216 5027 4857 3977 6433 2306 2197 2360

TABLE 2 Comparison of the number of transmissions of the proposed approach, DP_LSMT, DDR-IoT, and least-mean-square (LMS) and for sensor 2

Normal data Faulty data

emax

No. of

readings

Proposed

approach DP_LSTM DDR-IoT LMS

Proposed

approach DP_LSTM DDR-IoT LMS

0.03 10,000 2492 1840 1561 492 2025 568 467 277

0.05 10,000 5034 3961 3755 2692 4173 1420 1299 1589

0.07 10,000 6467 4839 4654 3649 5679 1778 1684 2338

0.09 10,000 7514 5499 5339 4471 6196 2086 1999 2988

reduction percentage of the proposed approach compared to
DP_LSTM, DDR-IoT, and LMS. It can be seen that a higher
value of emax increases the reduction percentage and vice versa.
Figure 6a represents the reduction percentage of sensor 1. The
achieved data reduction percentage of the proposed approach
is the highest compared to DP_LSTM, DDR-IoT, and LMS. As
can be seen in Table 4, the achieved data reduction percentage of
the proposed approach is between 24.92% and 75.14% for the
values of emax (0.03, 0.05, 0.07, 0.09). Concerning DP_LSTM,
it achieves a data reduction percentage between 18.4% and
54.99% using the same emax values of (0.03, 0.05, 0.07, 0.09). In
contrast, the data reduction percentage achieved by DDR-IoT
is between 15.61% and 53.39%. With regards to LMS, it shows a
data reduction percentage ranging between 4.92% and 44.71%.

Tables 4–6 summarize the simulation results of the archived
data accuracy and data reduction percentage for sensors 1, 2,
and 3, respectively. They clarify the comparison results of the
proposed approach with DP_LSTM, DDR-IoT, and LMS using
different emax values of (0.03, 0.05, 0.07, 0.09).

In the same way, Tables 5 and 6 illustrate the achieved
data reduction percentage of the proposed approach compared

to DP_LSTM, DDR-IoT, and LMS for both sensors 2 and
3, respectively. It can be seen that the proposed approach
reduction percentage ranges between 23.42%–72.16% and
24.99%–75.75%, respectively. The data reduction percentage
of DP_LSTM goes between 16.4% and 50.27%, as shown in
Table 5, and 6.72% and 53.75% in Table 6. Regarding DDR-
IoT, the data reduction percentage ranges between 13.41%-
48.57% and 13.51%-51.91% for Tables 5 and 6, respectively.
Finally, the LMS data reduction percentage is the worst over-
all approach, ranging between 3.33% and 39.77% in Table 5
and 5.27% and 45.34% in Table 6.

Figure 6a,6c plot the obtained data reduction results shown
in Tables 4–6. It is clear that the achieved data reduction per-
centage of the proposed approach is the highest compared with
DP_LSTM, DDR-IoT, and LMS, while DP_LSTM achieves a
higher data reduction percentage than DDR-IoT. In contrast,
LMS achieved a worst data reduction percentage than DDR-
IoT.

Once it comes to the data reduction percentage obtained
with faulty data, Figure 7a,b, show that the highest reduction
percentage is achieved by the proposed approach since fault

TABLE 3 Comparison of the number of transmissions of the proposed approach, DP_LSMT, DDR-IoT, and least-mean-square (LMS) and for sensor 3

Normal data Faulty data

emax

No. of

readings

Proposed

approach DP_LSTM DDR-IoT LMS

Proposed

approach DP_LSTM DDR-IoT LMS

0.03 10,000 2499 1672 1351 527 2116 579 474 300

0.05 10,000 5074 3778 3548 2631 4415 1371 1278 1718

0.07 10,000 6695 4652 4455 3707 5924 1736 1629 2325

0.09 10,000 7575 5375 5191 4534 6681 2200 2115 2918
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FIGURE 4 Comparison of the proposed approach, DP_LSTM,
DDR-IoT, and LMS for sensors 1, 2, and 3 with emax = (0.05) respectively. (a)
Data reduction percentage of sensor 1 with emax = 0.05, (b) data reduction
percentage of sensor 2 with emax = 0.05, (c) data reduction percentage of
sensor 3 with emax = 0.05

FIGURE 5 Comparison of proposed approach, DP_LSTM, DDR-IoT,
and LMS for sensors 1, 2, and 3 with emax = (0.05) respectively. (a) Data
reduction percentage of sensor 1 with emax = 0.09, (b) data reduction
percentage of sensor 2 with emax = 0.09, (c) data reduction percentage of
sensor 3 with emax = 0.09
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FIGURE 6 Data reduction percentage comparison of the proposed
approach, DP_LSTM, DDR-IoT, and LMS for sensors 1, 2, and 3 with
different emax values. (a) Data reduction percentage of sensor 1 without faulty
readings, (b) data reduction percentage of sensor 2 without faulty readings, (c)
data reduction percentage of sensor 3 without faulty readings

detection is one of the proposed approach’s contributions. On
the other hand, the LMS reduction percentage is higher than
DP_LSTM and DDR-IoT since it decreased the number of
transmissions based on the least square mean between the read-
ings. In other words, the proposed approach shows a signifi-
cant impact on data reduction with faulty data up to (66.81%)
with emax 0.09. Besides all DP_LSTM, DDR-IoT, and LMS, the
reduction percentage decreased dramatically when the collected
data was injected with 10% faulty readings.

As can be seen in Table 4, the proposed approach realizes
a data reduction percentage in the range between 24.92% and

FIGURE 7 Data reduction percentage comparison of proposed
approach, DP_LSTM, DDR-IoT, and LMS for sensors 1, 2, and 3 with
different emax values. (a) Data reduction percentage of sensor 1 with 10% faulty
readings, (b) data reduction percentage of sensor 2 with 10% faulty readings,
(c) data reduction percentage of sensor 3 with 10% faulty readings

75.14% for the values of emax (0.03, 0.05, 0.07, 0.09). Con-
cerning DP_LSTM, the achieved data reduction percentage is
in the range from 18.4% to 54.99% using the same emax val-
ues of (0.03, 0.05, 0.07, 0.09). In contrast, the data reduc-
tion percentage achieved by DDR-IoT, ranges between 15.61%
and 53.39 %. With regards to LMS, it shows a data reduc-
tion percentage ranging between 4.92% and 44.71%. In the
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TABLE 4 Comparison of proposed approach, DP_LSTM, DDR-IoT, and least-mean-square (LMS) for sensor 1

Data reduction percentage % Data Accuracy %

emax

Proposed

approach DP_LSTM DDR-IoT LMS

Proposed

approach DP_LSTM DDR-IoT LMS

0.03 24.92 18.4 15.61 4.92 98.8 74.12 86.83 88.42

0.05 50.34 39.61 37.55 26.92 97.66 64.23 82.77 76.39

0.07 64.67 48.39 46.54 36.49 96.07 56.81 77.12 74.51

0.09 75.14 54.99 53.39 44.71 94.56 48.26 69.41 71.92

TABLE 5 Comparison of proposed approach, DP_LSTM, DDR-IoT, and least-mean-square (LMS) for sensor 2

Data reduction percentage (%) Data accuracy (%)

emax

Proposed

approach DP_LSTM DDR-IoT LMS

Proposed

approach DP_LSTM DDR-IoT LMS

0.03 23.42 16.04 13.41 3.33 98.71 79.18 78.7 87.6

0.05 48.4 34.98 32.71 20.31 96.23 63.45 75.22 75.67

0.07 67.34 43.26 41.08 30.61 95.16 54.38 70.24 74.16

0.09 72.16 50.27 48.57 39.77 94.5 44.71 62.6 71.54

same way, Tables 5 and 6 illustrate the percentage of data
reduction achieved by the proposed approach compared to
DP_LSTM, DDR-IoT, and LMS for both sensors 2 and 3,
respectively. It can be seen that the proposed approach’s reduc-
tion percentage ranges between 23.42%–72.16% and 24.99%–
75.75%, respectively. The DP_LSTM data reduction percentage
ranges between 16.4%–50.27% in Table 5 and 16.72%-53.75%
in Table 6. Regarding DDR-IoT, the data reduction percent-
age ranges between 13.41%–48.57% and 13.51%–51.91% for
Tables 5 and 6, respectively. Finally, the LMS data reduction per-
centage is the worst overall approach, ranges between 3.33%–
39.77% in Table 5 and 5.27%–45.34% in Table 6.

Figure 6a,6c show the data reduction results obtained, which
are presented in Tables 4–6. The proposed approach achieves
a higher data reduction percentage than DP_LSTM, DDR-
IoT, and LMS, while DP_LSTM achieves a higher data reduc-
tion percentage than DDR-IoT. In contrast, LMS achieved
a worst data reduction percentage than DDR-IoT. Once it
comes to the data reduction percentage obtained with faulty
data, Figure 7a,7c show that the proposed approach achieved
a higher reduction percentage since fault detection is one of
the proposed approach’s contributions. On the other hand,

LMS achieved a better reduction percentage than DP_LSTM
and DDR-IoT since it decreased the number of transmissions
based on the least square mean between the readings. In other
words, the proposed approach shows a significant impact on
data reduction with faulty data up to (66.81%) with emax 0.09.
Besides all DP_LSTM, DDR-IoT, and LMS, the reduction per-
centage decreased dramatically when the collected data was
injected with 10% faulty readings.

5.3.2 Data accuracy

Data accuracy is the similarity between the collected readings
and the total transmitted readings, including predicted data.
Thus, after applying the proposed approaches, the deviation
between the obtained results and the input data. The data reduc-
tion accuracy percentage is calculated based on Equations (9)
and (10):

DD =

|||||
∑

TCR − (
∑

TTR +
∑

TER)∑
TCR

||||| ∗100 (11)

TABLE 6 Comparison of proposed approach, DP_LSTM, DDR-IoT, and least-mean-square (LMS) for sensor 3

Data reduction percentage (%) Data accuracy (%)

emax

Proposed

approach DP_LSTM DDR-IoT LMS

Proposed

approach DP_LSTM DDR-IoT LMS

0.03 24.99 16.72 13.51 5.27 99.06 76.79 86.13 88.37

0.05 50.74 37.78 35.48 26.31 98.52 67.31 82.36 77.09

0.07 66.95 46.52 44.55 37.07 97.85 55.09 77.43 75.72

0.09 75.75 53.75 51.91 45.34 97.18 45.75 68.56 72.49
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DA = (1 − DD) ∗ 100 (12)

where DD is the data deviation, TER is the total estimated read-
ings of the sensor si and DA is data accuracy. TTR denotes the
total transmitted readings, and TCR is the total collected read-
ings.

According to Tables 4, 5, and 6, the proposed approach
achieves a data accuracy percentage ranges between 98.80%–
94.56%, 98.71%–94.50%, and 99.06%–97.18%, respectively, for
the values of emax (0.03, 0.05, 0.07, 0.09). Regarding DP_LSTM,
it achieves the worst data accuracy percentage ranges between
74.12%–48.26%, 79.18%–44.71%, and 76.79%–45.75% as
shown in Tables 4, 5, and 6. With regard to DDR-IoT,
the data accuracy percentage ranges between 86.83%–69.41%,
78.70%–62.60%, and 86.63%–68.56%. While LMS shows a data
accuracy percentage ranges between 88.42%–71.92%, 87.60%–
71.54%, and 88.37%–72.49%.

Figures 8a, 8b, and 8c plot the obtained results shown in
Tables 4, 5, and 6 graphically. When it comes to data accu-
racy, it is clear that the data accuracy percentage of the pro-
posed approach is higher than DP_LSTM, DDR-IoT, and LMS.
In contrast, LMS achieves a higher data accuracy percentage
than DDR-IoT. In comparison, DP_LSTM achieved the worst
data accuracy percentage than DDR-IoT. Figures 8a, 8b, and 8c
show an illustrative demonstration of the obtained data accuracy
results presented in Tables 4, 5, and 6.

Once it comes to accuracy, the proposed approach outper-
forms DP_LSTM, DDR-IoT, and LMS for the following rea-
sons. First, the proposed approach considers that the transmit-
ted readings may be affected by packet drops and loss, which can
trouble the data prediction since the sink node cannot merely
determine the reason for not receiving packets. Second, unlike
the other approaches, the proposed approach discarded the
transmission of the faulty data. Finally, there is no data loss in
the proposed approach, while data comparison and fusion affect
data loss.

5.3.3 Energy consumption

Energy consumption plays an essential role in WSNs due to
sensor node resource limitations. We evaluate the proposed
approach’s energy consumption against DP_LSTM, DDR-IoT,
and LMS based on Equation (13) where TTR is the total trans-
mitted readings and Itx is the transmission current needed for
one reading:

Energy consumption = TTR ∗ Itx (13)

Figures 9a,c represent the proposed approach’s energy con-
sumption compared to DP_LSTM, DDR-IoT, and LMS in
case of fault-free data. According to the results depicted in
Figures 9a,c, the energy consumption achieved by the pro-
posed approach is between 50.01 and 151.06 MJ for sensor 1,
56.07 and 154.01 MJ for sensor 2, and 93.05 and 167.55 MJ
for sensor 3. DP_LSTM achieves energy consumption from

FIGURE 8 Data accuracy percentage comparison of proposed approach,
DP_LSTM, DDR-IoT, and LMS for sensors 1, 2, and 3 with different emax
values. (a) Data accuracy percentage of sensor 1, (b) data accuracy percentage
of sensor 2, (c) data accuracy percentage of sensor 3

93.77 to 169.76 MJ for sensor 1, 100.05 to 168.92 MJ for sen-
sor 2, and 93.05 MJ to 167.55 MJ for Sensors3. In contrast,
the energy consumption achieved by DDR-IoT ranges from
93.77 to 169.79 MJ for sensor 1, 103.47 to 174.21 MJ for sensor
2, and 96.75 to 174.01 MJ for sensor 3. Moreover, the energy
consumption achieved by LMS is ranges between 111.24 and
191.30 MJ for sensor 1, 121.18 and 194.5 MJ for sensor 2, and
109.97 and 190.590 MJ for sensor 3.
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FIGURE 9 Energy consumption percentage comparison of proposed
approach, DP_LSTM, DDR-IoT, and LMS for sensors 1, 2, and 3 with
different emax values. (a) Energy consumption percentage of sensor 1 without
faulty readings, (b) energy consumption percentage of sensor 2 without faulty
readings, (c) energy consumption percentage of sensor 3 without faulty
readings

In contrast, Figures 10a, represent the proposed approach’s
energy consumption compared to DP_LSTM, DDR-IoT, and
LMS if 10% of faulty readings are injected into the col-
lected readings. According to the results in Figures 10a, the
energy consumption achieved by the proposed approach ranges
between 76.53 and 160.45 MJ for sensor 1, ranging between

FIGURE 10 Energy consumption percentage comparison of proposed
approach, DP_LSTM, DDR-IoT, and LMS for sensors 1, 2, and 3 with
different emax values. (a) Energy consumption percentage of sensor 1 with 10%
faulty readings, (b) energy consumption percentage of sensor 2 with 10% faulty
readings, (c) energy consumption percentage of sensor 3 with 10% faulty
readings

71.76 and 160.61 MJ for sensor 2, and ranging between
66.77 MJ and 158.62 MJ for sensor 3. The DP_LSTM energy
consumption ranges between 159.23 and 189.76 MJ for sen-
sor 1, range between 154.80 and 188.90 MJ for sensor 2, and
ranges between 156.93 and 189.55 MJ for sensor 3. DDR-IoT
shows energy consumption between 160.98 and 191.80 MJ for
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sensor 1, a range between 156.99 and 190.72 MJ for sensor 2,
and a range between 158.64 and 191.66 MJ for sensor 3. More-
over, LMS achieved energy consumption between 141.08 and
195.62 MJ for sensor 1, between 153.717 and 197.719 MJ for
sensor 2, and between 142.49 and 195.16 MJ for sensor 3.

From Figures 9 and 10, we observed that the proposed
approach achieved better energy consumption than the other
approaches. It is also seen that increasing the value of emax will
decrease energy consumption and vice versa.

6 CONCLUSION AND FUTURE WORK

In this paper, a dual prediction data reduction approach is pro-
posed for WSNs. The proposed data reduction approach relies
on two phases. The first phase is devoted to data reduction
based on three techniques: Data equality and data deviation
computation and faulty data detection. The second phase is
based on the Kalman filter to improve the data reliability by
estimating the filtered out data of the sensor nodes. The main
objective of the proposed approach is to reduce the transmis-
sions while balancing the data accuracy and reliability.

The obtained results showed that the proposed approach
could reduce the data transmission by up to 75.75% while
maintaining data reliability. In addition to data reduction, the
proposed approach detects and eliminates faulty data. The
proposed approach is compared with three different data
prediction-based data reduction approaches, namely DP_LSTM
and DDR-IoT, and LMS using 10,000 humidity real-world col-
lected data. The proposed approach has achieved the highest
efficiency in terms of data reduction, data accuracy, and energy
consumption based on the obtained results. The future work
will be extended to reconstruct the missing data that may occur
due to the network’s failure.
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