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Abstract

Commercially reared bumblebees are often deployed for fruit,
vegetable, and seed crop pollination. Commercial bumblebee
pollination contributes significantly to economic and nutritional
security; thus, maintaining healthy stocks should be a priority
for bumblebee producers. Honey bee—collected pollen is used
as a nutritional source for bumblebee rearing, but potential
contamination of pollen with pathogens requires mitigation to
limit spread of infectious diseases. Gamma irradiation is the
primary means of sterilizing pollen, but limitations, including
off-site access to cobalt-60, warrant exploration into alterna-
tives. Sterilization technologies used in the food safety and
medical device sectors, such as pulsed UV and electron beam,
offer options with the potential to deliver safe, effective, and
less restrictive mitigation. Adopting these alternatives could
ultimately support healthy bumblebee stocks and reduce
pathogen transmission to other bees.
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Introduction

Contamination of pollen with pathogens: a source of
opportunity

Bumblebees reared commercially, mainly Bombus impa-
tiens and Bombus terrestris, are essential contributors to
global food production. Visitation of greenhouse, high
tunnel, and field crops such as tomatoes, peppers,

cucurbits, and soft fruits by bumblebees results in
highly efficient pollination. This pollination efficiency is
partly explained by the ability of bumblebees to buzz
pollinate or produce thoracic vibrations that trigger the
release of pollen held tightly within the anthers of these
flowering plants [1]. Moreover, bumblebee colonies can
be produced year-round in commercial facilities, and
containment of individual colonies in small, transport-
able units simplifies deployment to meet growers’
demand. There are more than one million bumblebee
colonies reared globally every year, and pollination by
commercially produced bumblebees increases crop yield
and quality, promoting economic and nutritional secu-
rity [2—4].

Initiating bumblebee colonies artificially requires that
queens be confined to small nesting boxes provisioned
with food (Figure 1). Diet quality and quantity are
essential for queen nesting success and subsequent
colony growth [5—8]. Unlike managed honey bees
(e.g. Apis mellifera), artificial diets are not available to
successfully rear bumblebee colonies [3]. Queens
cannot forage freely during rearing confinement; there-
fore, their diet is provided to them and consists of sugar
solution, which serves as a source of carbohydrates, and
pollen harvested from honey bee colonies, which pro-
vides proteins, lipids, and micronutrients (Figure 2).

One concern of feeding commercially reared bumble-
bees honey bee—collected pollen is pathogens in pollen.
Honey bee—collected pollen can be contaminated with
viruses (e.g. black queen cell virus and deformed wing
virus), bacteria (e.g. Paenibacillus larvae, the causative
agent of American foulbrood), fungi (e.g. Ascosphaera
apis, the causative agent of chalkbrood disease), Micro-
sporidia (e.g. Nosema spp.), and protozoa (e.g. Crithidia
spp.) [9—12]. Pathogens found in honey bee—collected
pollen can infect bumblebees, which may pose a risk of
transmission among managed and wild bee populations
[9,10,13—18]. Although our understanding of the
impact of pathogens on bee health is best characterized
in managed bees [19,20], much remains unknown about
their effects on several thousand species of wild bees
[13,21—24]. As pathogens are a leading contributor to
declining populations of both managed and wild bees
[25—27], there is a precedent for mitigating infection
and transmission in honey bee—collected pollen provi-
sioned to commercial bumblebee colonies.
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Figure 1
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An early stage in the development of a bumblebee colony reared artifi-
cially. A queen incubates the brood raised atop a mass of honey bee—
collected pollen. Two of the first workers have emerged to the adult stage
and will assist the queen in caring for the brood. Photo Credit: Elaine
Evans.

Figure 2
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Collected pollen dislodged from the corbicula of honey bee foragers that
have returned to their colony. A pollen-trapping device placed on the
colony restricts the passage of returning pollen foragers into their nest,
causing the pollen to become dislodged from their corbiculae. Significant
quantities of pollen ‘pellets’ are harvested using this mechanism. Trapped
pollen is the primary source of nutrition for rearing bumblebees. Photo
Credit: University of Minnesota Bee Laboratory.

Challenges and potentially disruptive pollen
sterilization technologies

Reducing the incidence and spread of pathogens among
bumblebee colonies reared commercially is a priority for
producers. Goulson and Hughes [3] illustrate critical
control points in the flow of pathogens among managed

bees where abatement is possible and that could reduce
transmission to other bees. Honey bee—collected pollen
is a point for control in this scheme [3]. The most
common approach to sterilizing pollen is exposure to
gamma irradiation [28]. Although effective, there are
drawbacks to this technology (see the following sec-
tion). Limitations of gamma treatment prompt explo-
ration of alternative technologies, especially those used
in the medical device and food production sectors
(Table 1), for their efficacy in inactivating bee patho-
gens. Before technologies are adopted to treat honey
bee—collected pollen, studies should establish effective
doses and determine whether there are adverse effects
on nutritional quality and associated dietary microbiota
[29—-32].

Biological surrogates and complementary techniques to
optimize sterilization processes for honey bee—collected
pollen

Researchers have historically approached sterilization
efficacy through biological surrogates, such as Bacillus
spp- endospores [33—35] or oocysts of waterborne pro-
tozoa [36,37]. Biological surrogates are innocuous mi-
crobes exhibiting greater resistance to applied
inactivation stresses and provide a safe substitute over
intended target pathogens for validating sterilization
processes [38]. For example, a biological surrogate is
exposed to conditions of a sterilization process, and the
inability of the surrogate to grow in culture after treat-
ment confirms the process is effective. Biological sur-
rogates used in the food safety and healthcare sectors
could serve as calibrators for adapting sterilization pro-
cesses against complex pathogens that affect bees
[39,40]. Biological surrogates would help resolve factors
mediating inactivation of target pathogens, such as
highly infectious P /Jarvae spores. These factors are
multifaceted and include operational (e.g. applied
dosage, system configuration, nonthermal modality),
environmental (e.g. temperature, pH, water activity),
and biological considerations (e.g. amount of organic
matter, diversity and abundance of parasites present,
inclusion of recalcitrant life stages) [41,42]. The addi-
tion of highly sensitive and specific molecular tech-
niques, such as quantitative polymerase chain reaction
(gPCR), and cell culture could complement the use of
surrogates and permit reliable post-treatment quantifi-
cation of the pathogen load and reduction in viability
and infectivity [38,41]. The appropriateness of com-
plementary # vitro systems will depend on the cell line
selected. In the case of bees, demonstrating inhibition
of infectivity and growth of treated pathogens using cell
lines established from bee tissues could be highly useful
[43]. Moreover, modeling inactivation Kkinetics of
treated-bee pathogens by flow cytometry would help
evaluate sterilization modalities as it will provide real-
time cellular and molecular mechanistic information
underpinning the killing process [35,44].
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Table 1

Properties of different decontamination approaches considered for treating honey bee—collected pollen.?

Process considerations

Hydrogen peroxide
vapor (VH20,)

Ethylene oxide (EO)

Pulsed UV light

Moist heat

Electron beam

Gamma irradiation

Methodology

Efficacy of process

Penetration

Material compatibility

Turnaround time

Process

Putative mechanisms of
pathogen inactivation

Limitation

Penetration of sterilant
gas

Efficacy confirmed by
biological indicators
and/or process
monitoring

Limited penetration; gas-
permeable packaging/
product design
required

Good material
compatibility except
cellulose-based
materials

One-day processing

Complex process that
introduces VH>0,
under vacuum or
aerosol

Potent oxidizer of
proteins, but
mechanism is not fully
understood.

Complex process
requiring monitoring
and control, not for in
situ application

Penetration of sterilant
gas

Efficacy confirmed by
biological indicators
and/or process
monitoring

Gas-permeable
packaging and
product design
required

Broad material
compatibility

Conventional treatment
requires 9—10 days.

Complex process;
variables include time,
temperature,
humidity, and [EQ].

Proteins, enzymes, and
nucleic acid alkylation
(targets sulfhydryl
groups)

Toxic residuals
(carcinogenic and
teratogenic), not
recommended for in
situ

Surface irradiation

Variable, but efficacy
confirmed by
biological indicators or
dosimetry

Limited penetration

Broad material
compatibility

Relatively short,
typically <1 h
depending on the
dose

Simple, rapid process;
delivery of UV (J/cm?)
in an enclosed
chamber

Irreversible damage to
RNA affecting
replication and
infection

Operator safety due to
UV exposure, shading
issues, can be used in
situ

Penetration by uniform
heating

Efficacy confirmed by
biological indicators
and/or process
monitoring

Suitable for treatment of
packaged products
but depends on
material sensitivity

Broad material
compatibility, but heat
can affect nutrients in
pollen

Relatively short,
typically <1 h

Simple, rapid process;
duration depends on
time, temperature,
and RH.

Thermal aggregation of
viral nucleocapsid and
membrane proteins

Limited by thermal
sensitivity of materials
(e.g. pollen)

lonizing energy from
electron beam

Efficacy confirmed by
biological indicators

Efficient penetration at
bulk densities
between 0.05 and
0.03 g/cc

Negative effects are less
pronounced or
eliminated based on
packaging.

Very short, several
minutes depending on
the dose

Complex process;
variables include scan
height, processing
speed, number of
passes, beam-
product alignment

Extensive degradation
of RNA and DNA —
but yet to elucidate
mechanisms properly

Not often used in situ but
more as an external
contract service

Irradiation using photons
from radioisotopes

Process parameters
confirmed using
dosimetry

Penetration at high
densities (>0.4 g/cc)

Broad material
compatibility except
plastics such as
acetals, PTFE,
polypropylene

Relatively short, several
hours depending on
the dose

Simple process;
variables include time
and isotope load.

Extensive degradation
of RNA and DNA
molecules

Adversely affects
material, not
recommended for in
situ

PTFE, polytetrafluoroethylene; RH, Relative humidity.

2 Modified from the study by McEvoy and Rowan [317].
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Gamma irradiation

Although various sterilization technologies are applied
toward mitigating pathogens found in honey bee—
collected pollen and equipment, gamma irradiation
using cobalt-60 is the current standard [28]. Gamma
irradiation causes irreparable breaks in nucleic acids and
has been reported to inactivate several bee pathogens,
including some but not all bee viruses [45—48]. Gamma
treatment has been evaluated as safe for food production
for more than 30 years (US Food and Drug Administra-
tion; URL: https://fda.gov/food/buy-store-serve-safe-
food/food-irradiation-what-you-need-know), and direct
exposure of bees or nest materials does not affect bee
survivorship [28,49]. Gamma treatment improves food
safety and extends the shelf life by reducing or elimi-
nating microorganisms. Furthermore, treatment does
not make foods radioactive, compromise nutritional
quality, or noticeably change taste, texture, or appear-
ance (US Food and Drug Administration; URL: https://
fda.gov/food/buy-store-serve-safe-food/food-irradiation-
what-you-need-know). Gamma irradiation facilities can
accommodate large batch sizes, and treatment is
compatible with high-density materials, with excellent
penetration into nonuniform packaging [33]. However,
treatment must be conducted at regulated facilities,
requires relatively long processing periods (hours), and
potentially degrades products through the release of
heat. Owing to the shortage of cobalt-60 supply, medical
devices are given priority for gamma treatment, making
it prudent to investigate alternative approaches for
pollen sterilization.

Hydrogen peroxide in vapor form

Vaporized hydrogen peroxide (VHP) is an environmen-
tally gaseous process used for sanitation of hospitals and
health-care facilities [51,49]. The mode of action stems
from the generation of free hydroxyl radicals that cause
oxidation of DNA, proteins, and lipids [52]. It is effective
against adenovirus and avian flu virus [53] and sporicidal
when distributed evenly into areas where manual clean-
ing i1s impractical [54]. There are two types of VHP
sterilization: exposure to 30—35% vapor produced by
heating hydrogen peroxide (H;O;) or evaporation of
H;0; droplets from a 5—7% aerosol. These treatments
have long been explored for use in factories for packaging
and machinery sterilization [55] and decontamination of
meat processing facilities, with varying, but potential,
efficacy, against Listeria monocytogenes [51]. VHP is most
efficacious on inanimate objects but would likely be un-
suitable for pollen treatment as exposure to condensate
or heat (55—60 °C) would cause structural damage to
pollen [55] and nutrient degradation (Eakins and Rowan,
personal communication, December 9, 2020).

Moist heat
Moist heat uses either plant, process, or pure steam [56]
and is used in the pharmaceutical industry for vaccine

and medical device sterilization and in the food industry
for pasteurization. Most vegetative microorganisms are
inactivated between 55 and 65 °C using moist heat, with
more resistant microbes and spores requiring tempera-
tures >70 °C and 100 °C, respectively, to achieve
inactivation [56]. Owing to pollen’s organic nature and
denaturation of matrix proteins at >60 °C [57], moist
heat could be an obstacle, but further investigation is
warranted. As mentioned previously, pollen will form a
dough-like mass after exposure to condensate, which
may provide opportunistic microbes a substrate for
growth that leads to nutrient degradation and spoilage.
Studies should determine if bees are attracted to pollen
treated with moist heat.

Ethylene oxide gas

Ethylene oxide (EO) is a gaseous process traditionally
used for sterilization of spices and now predominately
for medical devices [58,59]. EO effectively diffuses
through solid matter without causing damage to heat- or
moisture-sensitive materials [58,60]. EO is an explosive,
highly flammable gas and is highly toxic, carcinogenic,
and mutagenic. It is an alkylating agent that interacts
with biomolecules, such as nucleic acids and proteins.
The addition of alkyl groups to these structures pre-
vents regular cellular activity and inhibits microbial
reproduction [61]. The compatibility of EO with
moisture-sensitive products is of potential interest for
pollen treatment. However, the generation of toxic by-
products, such as ethylene glycol, when EO interacts
with water, would require further safety considerations
[58,61]. Other potential drawbacks of EO include cost
and cycle length [58]. Despite the compatibility with a
broad range of materials, this modality will likely be
reduced or replaced because of ongoing environmental
and sustainability considerations.

Pulsed UV light

Pulsed UV (PUV) technology dissipates stored energy in
ultrashort bursts of broad-spectrum light. Currently, PUV
is used for high-throughput sterilization of packaging for
the food industry [38]. PUV inactivates various complex
pathogens [39,40], including those associated with bees
[62]. Brief PUVexposure reduces the viability of surrogate
oocysts of the trypanosome Cryptosporidium parvum [37]
and the trypanosome Crithidia bombi, a common
bumblebee parasite [62]. PUV is considered nontoxic and
environmentally friendly based on an increased under-
standing of the relationship between the UV dose and
inactivation of cellular mechanisms [38,41,63]. PUV can
be delivered from a fixed source 7z situ or in an adjustable
configuration via a handheld device to achieve maximum
exposure; however, penetration depth is limited by
nontarget materials obstructing the flow of UV radiation
[38]. These drawbacks could restrict usage to surface
disinfection, but PUV has several advantages compared
with gamma irradiation, including z situ application and
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relatively short processing time. Further studies are
required to determine the potential of PUV for pollen
sterilization.

Electron beam

High-energy electrons emitted from an accelerator
(E-beam) are an alternative to gamma irradiation
[33]. E-beam operates through standard electricity,
negating the need for radioactive isotopes [33], and is
a continuous process technology for sterilizing medi-
cal devices and pharmaceuticals [64]. E-beam reduces
bacterial pathogens on fresh foods, including Bacillus
cereus endospores using doses of 3.65 kGy (broccoli)
and 4.8 kGy (red radish) [65]. It also reduces porcine
epidemic diarrhea virus in contaminated feed [66]
and causes minimal changes to powdered infant for-
mula [67]. E-beam lacks the penetrative power of
gamma sterilization, and as an # sizu process, there is
potential for recontamination of treated products
during redistribution [65]. Despite these drawbacks,
E-beam has several advantages compared with gamma
irradiation and includes short exposure periods (mi-
nutes), fast cycle time, flexible batch size, even dis-
tribution of dose, simple validation, no quarantine,
and real-time monitoring. Rapid processing of low-
density materials and greater operational flexibility
can make E-beam a cost-effective approach for pollen
treatment.

Conclusions

Development and application of effective, nonthermal
sterilization of contaminated pollen would be a poten-
tially powerful tool to help sustain the health of com-
mercial bumblebee stocks and reduce pathogen
transmission to other managed and wild bees. Currently,
there is a lack of efficacy data for emerging sterilization
technologies, and research that addresses the complex
morphology and culture requirements of bee pathogens
is needed. This review highlights the potential benefits
of alternatives to gamma irradiation for pollen treat-
ment, but additional studies should address appropriate
dosage, treatment configurations, and mechanistic in-
formation underpinning cellular and molecular damage
to pathogenic microorganisms and viruses. There re-
mains a reliance on using live bees to confirm treatment
effect; however, advances in # vitro diagnostics may
enable surrogate approaches as a screening tool. Novel
processes will be informed by applying technology,
policy, and society readiness level framework that con-
siders the intended environment and sustainability of
innovation. Ultimately, the deployment of sustainable
decontamination technologies to treat honey bee—
collected pollen used to rear bumblebees would
contribute a vital countermeasure to reduce pollinator
decline.
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