
PRISENIT – A Probabilistic Search Recommendation Algorithm to Improve Search

Efficiency for Network Intelligence and Troubleshooting

Mikel Zuzuarregui
* #

, Enda Fallon
#
, MingXue Wang

*
, John Keeney

*
, Paul Jacob

#

*
 Network Management Laboratory

Ericsson Software Campus

Athlone, Ireland

{mikel.zuzuarregui, mingxue.wang,

john.keeney}@ericsson.com

Software Research Institute

Athlone Institute of Technology

Athlone, Ireland

{efallon, pjacob}@ait.ie

Abstract— When searching for data in a telecommunications

network management application, large search result sets are

common. In order to refine the results to retrieve useful

information existing systems normally require additional user

intervention such as appending or removing a search keyword,

adding a filter, grouping results, etc.. This work proposes a

Probabilistic Search Recommendation Algorithm to Improve

Search Efficiency for Network Intelligence and

Troubleshooting (PRISENIT). PRISENIT is a query-based

recommendation algorithm intended to improve search

efficiency and usability for telecommunication system

management. PRISENIT is an extension of an item-based

collaborative filtering algorithm. It uses correlation-based

similarity and users’ implicit feedback in order to improve

search efficiency. It learns from previous experiences in order

to optimize decision-making. Currently there exists no known

query-based recommender adaptation mechanism for network

management. Existing search engines use previous user

searches to make a suggestion based on the keyword.

PRISENIT not only considers search terms, it also considers

the influence of filters and features in order to makes network

searches more efficient as it removes the necessity for users to

manually choose search features or search filters.

Experimental results show that PRISENIT can improve user

experience in a telecommunications management environment.

Keywords - recommender system; item-based collaborative

filtering; query-based recommender; network management

I. INTRODUCTION

With the ever increasing volume of telecommunications
data (end user data, performance metrics, and alarms), big
data and information retrieval (search) technologies have
gained attention by telecom equipment vendors [1][2]. In
network management systems traditional SQL-based data-
retrieval techniques are mainly used. Such systems however
are performance limited for unstructured telecom data such
as network node logs, alarm text and trouble ticket messages.
Increasingly enterprise search technologies are capable of
handling both structured data from corporate databases and
unstructured data sources and have potential for management
analysis. The characteristics of telecommunications network
data however, volume, complexity and differing lifespans
create challenges when developing network analysis
solutions.

This work particularly focuses on how a search interface
can be improved to assist network troubleshooting.
PRISENIT can learn from previous experiences and interact

with human decision techniques. In the case of system error,
it can implement autonomic system reconfiguration. Unlike
existing search approaches, PRISENIT considers not only
query terms (keywords) but also search filters and
presentation features. In other commercial solutions it is
possible for users to manually store and maintain interaction
templates. Within the PRISENIT approach common searches
are automatically learned and recommended. PRISENIT uses
correlation-based similarity and combines implicit feedback
from the user in order to improve search efficiency for
network intelligence and troubleshooting. Such learning and
query suggestion is not currently available for
telecommunication or network management domains. Data
Analytics approaches (e.g. OLAP tools) also support the user
to define custom search-based reports (custom filters and
features to present results). However, these reports are not
automatically learned, tuned or recommended to the user. As
the searched data changes, or preferred ways of interacting
with the system changes, our system learns and recommends
new queries (terms, filters and features). PRISENIT speeds
up network management system interactions for common or
routine management tasks, and also learns best practices for
troubleshooting, reducing skill requirements and cost in
solving management issues.

In summary, the key problem is that users usually require
multiple additional iterative search actions or steps after an
initial query, such as appending or removing a keyword,
adding a filter to find results, and then selecting presentation
features to appropriately present the results. This makes
search-based management complex to use and tedious and
time consuming for users, while also expending system
resources performing searches that are unnecessary.

We empirically evaluate PRISENIT with data from
experimental evaluations undertaken at the Ericsson research
lab. The system was evaluated using Ericsson network
management engineers. Results illustrate the enhanced
search interactivity of the PRISENIT approach.

The remainder of this paper is organized as follows.
Section II will introduce related work about how to
personalize search engine interfaces. Section III shows the
architecture and methodology of the recommender system.
Section IV will show the system application. In section V,
we discuss the usability of the recommender system, and
point out how a prototype implementation was developed
and operated, before concluding in section VI.

II. RELATED WORK

A. Search engine

The explosive growth of Web search services has
triggered an increasing demand for web personalization
systems in order improve end user Web browsing
experience. In the recent years such systems have become
ubiquitous. Typically such systems take advantage of data
about the users’ past behaviors or usage. Web
personalization can typically be categorized in three
categories: Web Utilization Miner (WUM), user profiling
and recommender systems.

Web mining techniques have been analyzed for several
years. In [3] the authors investigate the importance of a
suitable data set. They introduce a novel model for
improving web-mining using semantic web and synaptic
web. In [4] the impact of semantic web to improve web
mining experience is examined by presenting a weight
estimation process with span time, request count and access
sequence details.

A number of approaches have been investigated in the
area of user profiling. In [5] the authors provide a framework
and findings in mining web-usage/navigation information
from website log files, involving user profiles and external
data describing the ontology of the web content. In [6] the
authors propose description-logic based semantic user
modelling for spatial web personalization. Recently,
ontologies have been applied to obtain user profiles in [7].

B. Web personalization

The challenge of Web personalization and usability can
be addressed by recommender system approaches.
Recommendation systems use information filtering to assist
a user in a decision-making process by giving some
suggestion that may benefit the user based on previous
experience of that user and similar users. The suggestion
could be about products, information or services by learning
user preferences. A number of studies focus on
recommendation systems and web personalization, e.g. using
ontologies [8] or sequential web access patterns [9].

C. Recommender system

Recommendation systems first appeared circa 1997 [10].
In general, all the recommender systems are based on the
analysis of item attributes, user attributes or user behavior. A
recommendation system must predict the utility of a
candidate item in comparison to alternatives.

Collaborating Filtering was proposed by Rich [11] and
has been applied in many commercial web sites. It consists
of n users and m items connected by user ratings of items.
Ratings can be explicit (e.g. based on feedback) or implicit
(e.g. based on uptake). Implicit feedback is more difficult to
determine however it can usually provide more information
and context than explicit feedback.

In [12] a query language for network search is
introduced. The search space is represented with objects as a
set of attribute-value pairs, additionally showing that the
method allows distributed execution.

Previously in [13] we investigated the applicability of
recommender systems to assist Network Operations Centre
operators for network management systems. In this paper we
create a monitoring and trouble-shooting system for network
managers.

PRISENIT is unique in that it focuses on using a search
engine for network management to improve network
intelligence and troubleshooting by recommending improved
query-based searches. It shows the user how to change the
search parameters to reach a possible better solution, as well
helping to efficiently show more meaningful information for
particular use cases.

III. PRISENIT ALGORITHM

A. Transaction log

A transaction log is a log file of the communications
between a system and the user of that system. It has two
main parts: a) Search query: A search query part represents
the complete user search requirements; b) Rating: the rating
part is the feedback of result of the search

The query part is a vector that can be

further divided into three components; terms, filters, and
features. These three parts cover the user requirement of
different aspects of a search.

 is a user query which is composed of a number of
keywords or terms. Terms are a series of characters that the
users type in the search box within a query separated by
space.

 is a set of filters applied on the search results such as a
specified time range or restrictions on the data source, etc.

 describes presentation features with different settings

to describe how the result is presented. For example, the
result is sorted by time or by ranking score, the result is
faceted by a node or/and severity, etc.

The rating part is a user rating of the results returned
from the query part. It is measured by user interaction /
behavior with result (i.e. time spent interpreting/using the
results, using scrolling, click-through, and so on).

B. The recommendation calculation

The search recommendation is based on past user search
experience. PRISENIT calculates a recommendation score
for records in the translation log for a target user input query.
Fig. 1 illustrates the mechanism utilized by PRISENIT when
calculating recommendation scores.

Within PRISENIT the computation of similarity of a
query is composed of the amalgamation of the similarly of
each component of the query using a pluggable correlation

mechanism. Taking the term component as an example,
the computation of similarity value of terms of a target query
with terms of a comparing query is undertaken using the

Pearson correlation coefficient . Similarly, we
compute the similarity between the filter and feature element

using the similar and functions. In contrast,

a set of common filters or common features is used for the
measure. The selection of the Pearson correlation within
PRISENIT is based on [14][15].

The search rating is based on the end user interaction

with the suggested results. A user action is a measure of
some type of user interaction; mouse-overs, click-throughs,
viewing different results pages, scrolling windows and time
spent on the page, etc.

 . (1)

 is a weight factor applied to each type of user

interaction, . A higher weight is applied to user

actions which apply directly to results; clicking on results or
comparing actions such as time spent on the page.

In order to consider user feedback on search
recommendations, a score is calculated based on both the
similarity of the query and the rating.

 . (1)

Finally, the queries with the top recommendation scores
are used to create the search recommendation. The
recommended search is a combination of each component of
the search query. It considers all terms, filters and features in
order to create a new query.

 . (1)

The union is over the queries with the highest scores.
Table 1 illustrates the queries that are stored in the

database. PRISENIT uses those queries as the basis for
comparison. Table 2 illustrates the operation of the
PRISENIT recommendation algorithm using the queries
from Table 1. In this example, the queries with the most
similarity are 2, 3 and 5.

C. Architecture

In this work PRISENIT is designed based on Apache
Solr

1
. Management data files are constantly retrieved from a

managed network and then indexed for searching. The data
includes fault data (FM), configuration actions (CM), and
performance data (PM). Data files are retrieved from the
Hadoop

2
 RDBMSs and XML data stores used in the Ericsson

system. Fig. 2 illustrates the architecture of the PRISENIT
recommendation system within the overall architecture.

The main feature of this kind of system is the ability to
predict the additional search actions or steps that may be
required by users to extract required information. As a result,
all useful additional steps that may be required by a user are
suggested and can be applied in a single action. PRISENIT
learns previous user search interactions and experiences to
give suggestions for new search queries.

w1

∑

Synaptic Weights

∑

w
2

w
3

w
4

Correlation

Correlation

Correlation

∏ Recommendation

�_�1

�_�2

�_�3

�_�4

�	

�

��

��_�	

��_�

��_��

��
�

=1

Figure 1. PRISENIT Architecture

1 http://lucene.apache.org/solr/
2 http://hadoop.apache.org/

Figure 2. Overall System Architecture Incorporating PRISENIT

Algorithm 1 Recommendation calculation

Input: Q String with the query
Output: String with the recommendation
Initialization finalScores;
1: split the query into terms, filters and features;
2: queries = retrieveSetsOfQueriesWithRatings();
3: for each queries do
4: = Correlation(terms , queriesi,terms);

5: = Correlation(filters , queriesi,filters);
6: = Correlation(features , queriesi,features);

7: = + + ;

8: normalizedPerformanceMetricsRatings(timeSpent, scrolling, click,
numClicks);
9: ri = (× wTime) + (× wClick) + (× wScrolling) +
(× wNumClicks);
10: finalScores = × ri;
11: return buildRecommendation(finalScores, k);

Method: buildRecommendation(finalScores, k);
1: retrieve from database k queries with the highest scores, split into
terms, filters and features
2: create a string with unique terms
3: create a string of unique filters taking care about their compatibility
4: create a string with unique features
5: join terms, filters and features into one string to create a query
6: return query

Query to Solr:

Term: failure OR Conditioner

Filters: wt=json & rows=50 & start=0 & facet.field=RNC &

facet.field=data_source & hl.fl=* & hl.snippets=3 &

fl=RNC,index_id,RBS & facet.field=Object_of_reference &

facet.field=additional_info

Features: facet=true & hl=true

Recommendation:

Term: failure OR rnc80 OR rnc95

Filters: wt=json & rows=50 & start=0 & facet.field=RNC &

facet.field=data_source & facet.field=Problem_text & hl.fl=*

& hl.snippets=3 & fl=RNC,index_id,RBS &

facet.field=Object_of_reference &

facet.field=additional_info

Features: facet=true & hl=true

TABLE I. QUERIES IN THE DATABASE

id terms filters features

1
rnc50 OR

uncorrelated
wt=json & rows=50 & start=0 & facet.field=RNC & facet.field=data_source & hl.fl=* & hl.snippets=3

& facet.field=Problem_text & fl=RNC,index_id,RBS
facet=true & hl=true

2
failure OR

rnc80
wt=json & rows=50 & start=0 & facet.field=RNC & facet.field=data_source & hl.fl=* & hl.snippets=3

& facet.field=Problem_text & fl=RNC,index_id,RBS
facet=true & hl=true

3 failure
wt=json & rows=50 & start=0 & facet.field=RNC & facet.field=data_source & hl.fl=* & hl.snippets=3

& facet.field=Problem_text & fl=RNC,index_id,RBS
facet=true & hl=true

4 uncorrelated
wt=json & rows=50 & start=0 & facet.field=RNC & facet.field=data_source & hl.fl=* & hl.snippets=3

& facet.field=Problem_text & fl=RNC,index_id,RBS
facet=true & hl=true

5
rnc95 OR

failure
wt=json & rows=50 & start=0 & facet.field=RNC & facet.field=data_source & hl.fl=* & hl.snippets=3

& facet.field=Problem_text & fl=RNC,index_id,RBS
facet=true & hl=true

TABLE II. RECOMMENDATION PROCESS

id r Final Score

1 -0.6667 -0.1581 1 0.1752 0 1 1 0.7333 2.1333 0.438

2 0 -0.1581 1 0.8418 0.8863 0 1 0.8667 2.7758 2.1047

3 0.5 -0.1581 1 1.3418 0.9516 0 0 0.3333 1.5946 3.3547

4 -0.5773 -0.1581 1 0.2645 0.9499 0 0 0.4 1.6599 0.6613

5 0 -0.1581 1 0.8418 0.9734 0 1 0.6667 2.6454 2.1047

Network management data has certain characteristics that
affect its usefulness: Certain network events may only be
valuable within a certain time range before going stale (e.g.
last 5 minutes); Alarms may be sorted by severity; Search
results may be grounded to make sense; and some keyword
combinations may not have matching results.
In summary, the key advantages are:

• Reducing the complexity and time (interaction)
needed for users to find final results and to improve
search efficiency

• Reducing the use of system resources by avoiding
unnecessary queries

IV. SYSTEM APPLICATION

The main goal of this search architecture is to assist the
user to find and solve network problems with fewer
interactions with the search interface. To demonstrate a
prototype front-end search interface, we used third party web
interface called HUE

3
 from Cloudera. We developed a new

standard search interface, and a new widget to optionally
view and use recommended queries recommended by the
recommender system. The search system can then be
invoked with wither the user’s query or the recommended
query.

Data that is connected with the user and the queries are
stored in a RDBMS database. We also have Ericsson
network management data indexed in Apache Solr to test the
system and see the results and possible recommendations.
We choose Solr instead or an RDBMS because existing

management data is not updated (read-only), rather new data
is constantly inserted. In this scenario an indexing
mechanism is more effective than a traditional database
approach, thus allowing faster data retrieval.

The recommender module works as an independent
plugin. If it is activated, it returns and presents
recommendations depending on the query that the user
performed. This is a pluggable and extensible approach.
After every search, the user will be presented with an
optional recommendation and different results, facets, charts
and so on depends on what was chosen before. If the user
clicks on a chart, a filter is applied, thus creating a new query
to Solr. Therefore, the user will then have an updated
recommendation.

As an example scenario: In a mobile telecoms network a
Radio Network Controller node (RNC) is responsible for
controlling and managing multiple base stations in a wireless
network (UMTS). If a node (network element RNC75) has a
problem, and assuming that previous troubleshooting the
user usually finds that the problem is somehow liked to a
problem in node RNC85, the system will over time learn and
create an association between RNC75 and RNC85. This
means that the next time that the user searches for RNC75
the system will recommend examining data from RNC75
and RNC85 to troubleshooting the problem.

Another possible scenario is when an OSS engineer is
searching for alarms. If she usually sorts the results by
priority, next time the system will recommend this sort
criterion.

3 http://gethue.com/

The main advantage with this system is that the user can
find the optimal result with fewer iterations. In the previous
system the user needed to look for a specific RNC or fault.
Then, in the result section, he needed to examine partial
results and check if there were any other RNCs correlated
with this issue. In addition the user would have to apply the
filters that she wants. With PRISENIT, such interactions are
learned and next time offered to the user. The only thing that
the user has to do is to select the recommended search.

V. EXPERIMENTAL EVALUATION

For the evaluation of PRISENIT, we used data from an
alarm list, performance counter values, logs and performance
event logs derived from a text network in an Ericsson test
lab.

A. Performance

For all evaluations we used a Ubuntu 12.04 (precise) 64-
bit system with Intel® Core™ i5-2540M CPU @ 2.6GHz x
4 and 4GB of RAM.

Fig. 3 shows the time that the system needed to create a
new suggestion for the user, depending on how many queries
are analyzed. The experiments were conducted multiple
times and averaged in order to compensate for other random
factors that may influence the response times (such us usage
of the system). In this case we can appreciate that the
increase of response time of the system is somewhat linearly
related to the number of existing queries stored in the
database. According to [16], the tolerable waiting time it is
around 2 seconds, so the response time of system remains
acceptable. In real network management deployments, there
should be little need to examine queries more than a few
days old, so a limitation to examine only several thousand
existing relevant queries is reasonable.

In our deployments the terms are often short and tend to
be composed by one or two keywords. In this system, the
filter part of the queries often has more data. For example, in
our system there are many facets to show results grouped by
specific fields with specific filed filters, such as sorting,
limits, type and so on.

B. Usability and usefulness

We conduct our usability assessment using a
questionnaire. In this case, usability focuses on the
effectiveness of the system for network intelligence and
troubleshooting from the point of view of the end user
(network engineers). We select the System Usability Scale
(SUS) [17] because it is technology agnostic, making it
flexible enough to asses a wide range of interface
technologies, and allows quick and easy assessment of the
usability of a given system.

In [18] it is stated that a sample of 12 users is sufficient
to provide correct findings (i.e. the same score as a larger
sample) 90–100% of the time and a sample of only 10 users,
75–80% of the time. Moreover, the original SUS instrument
is composed of 10 statements that are scored on a 5-point
scale of strength of agreement, among which odd questions
are positive statements and the rest are negative. Final scores
for the SUS can range from 0 to 100, where higher scores
indicate better usability. Table 3 shows our SUS results.

TABLE III. SUS SCORING INSTRUMENT

 Users

Queries
1 2 3 4 5 6 7 8 9 10 11 12 Average

q1 4 5 4 4 3 5 5 5 3 4 5 4 4.25

q2 2 1 2 2 2 2 1 1 1 2 1 3 1.67

q3 3 5 3 3 4 5 4 5 5 4 4 5 4.17

q4 1 1 3 3 4 2 2 2 4 1 1 2 2.17

q5 3 5 4 5 5 5 5 5 5 5 4 5 4.67

q6 1 1 1 1 2 1 1 1 1 1 1 1 1.08

q7 5 4 4 4 5 5 5 5 4 4 4 4 4.42

q8 2 1 2 2 2 1 1 1 2 1 2 1 1.5

q9 4 5 3 4 4 5 4 5 3 5 5 5 4.33

q10 1 1 2 2 3 2 2 3 2 1 2 1 1.83

Scores 80 97.5 70 75 70 92.5 90 92.5 75 90 87.5 87.5 83.96

Figure 3. Online time necessary to generate the suggestion varying

the number of analyzed queries.

The survey was completed by network engineers.
Evaluating our system, table 3 shows an average score of
83.96. When converted to percentiles [19] this score means
that we can get a grade A for our system. Using the scale
used in [20] the grade of our system would be grade B.
Moreover, the system would be described as “good” and
would be considered acceptable. Besides, some of the
participant (OSS engineers) point out that this system was
much better that what they have at this moment. They said
that it is easier to use, more intuitive and the recommender
part can help them for troubleshooting.

VI. CONCLUSION AND FUTURE WORK

The main purpose of this work is to develop a system to
improve search efficiency for network monitoring and
troubleshooting and to make user experience easier and more
efficient by reducing costly human interaction with the
system.

While this paper focuses on finding a comprehensive and
robust approach to calculate the similarity between user
interactions, such an approach will contribute significantly in
a wide variety of telecom network management use cases
apart from alarm filtering and correlation. The system is
capable of dynamically creating associations between
attributes. Furthermore, the system updates these
associations as the user necessities are changing.

Moreover, this system is extendable and pluggable. The
actual system can work without the recommender system.
Hence, the user can choose if he wants to see a
recommendation or not.

From our evaluation we saw that the overhead of the
system increases somewhat linearly with the number of
previous searches stored. Therefore it will be necessary to
create a mechanism to periodically remove searches that are
found not to be reusable or widely relevant.

It would also be interesting to compare this approach to
one where recommendations are generated for terms, filters
and features separately, rather than generating an entire
query. This could be achieved by creating separate
recommendations with single action-based weightings for
terms, filters and features. On the other hand, another
possible approach would be to use different weightings to
increase the importance of term similarity rather than
filter/feature similarities.

It is also planned to enhance this approach with a
prediction mechanism to proactively present recommended
searches before or as interesting faults or events occur in the
network.

REFERENCES

[1] Wang, M., Handurukande, S. B., and Nassar, M., “RPig: A scalable
framework for machine learning and advanced statistical
functionalities,” Cloud Computing Technology and Science
(CloudCom), 2012 IEEE 4th International Conference on, pp. 293-
300, December 2012.

[2] Ben-Yitzhak, O., Golbandi, N., Har'El, N., Lempel, R., Neumann, A.,
Ofek-Koifman, S., Sheinwald, D., Shekita, E., Sznajder, B., and
Yogev, S., “Beyond basic faceted search,” Proceedings of the 2008

International Conference on Web Search and Data Mining, pp. 33-
44, 2008.

[3] Azad, H. K. and Abhishek, K., “Semantic-Synaptic Web Mining: A
Novel Model for Improving the Web Mining,” Communication

Systems and Network Technologies (CSNT), 2014 Fourth
International Conference on, pp. 454-457, April 2014.

[4] Sampath, P., Ramesh, C., Kalaiyarasi, T., Banu, S. S., and Selvan, G.
A., “An efficient weighted rule mining for web logs using systolic
tree,” Advances in Engineering, Science and Management (ICAESM),
2012 International Conference on, pp. 432-436, March 2012.

[5] Nasraoui, O., Soliman, M., Saka, E., Badia, A., and Germain, R., “A
Web Usage Mining Framework for Mining Evolving User Profiles in
Dynamic Web Sites,” Knowledge and Data Engineering, IEEE
Transactions on, vol.20, no.2, pp. 202-215, Feb 2008.

[6] Yang, Y., Aufaure, M., and Claramunt, C., “Towards a DL-Based
Semantic User Model for Web Personalization,” Autonomic and

Autonomous Systems, 2007. ICAS07. Third International Conference
on, pp. 61-61, June 2007.

[7] Zhou, X., Wu, S.-T., Li, Y., Xu, Y., Lau, R. Y. K., and Bruza, P. D.,
“Utilizing Search Intent in Topic Ontology-Based User Profile for
Web Mining,” Web Intelligence, 2006. WI 2006. IEEE/WIC/ACM
International Conference on, pp. 558-564, December 2006.

[8] Zhuhadar, L., Nasraoui, O., Wyatt, R., and Romero, E., “Multi-model
Ontology-Based Hybrid Recommender System in E-learning
Domain,” Web Intelligence and Intelligent Agent Technologies, 2009.

WI-IAT '09. IEEE/WIC/ACM International Joint Conferences on,
vol.3, pp. 91-95, September 2009.

[9] Zhou, B., Hui, S. C., and Chang, K., “An intelligent recommender
system using sequential Web access patterns,” Cybernetics and

Intelligent Systems, 2004 IEEE Conference on, vol.1, pp. 393-398,
Dec 2004.

[10] Resnick, P. and Varian, H. R., “Recommender systems,”
Communications of the ACM, vol.40, no.3, pp. 56-58, 1997.

[11] Rich, E., “User modeling via stereotypes*,” Cognitive science, vol.3,
no.4, pp. 329-354, 1979.

[12] Uddin, M., Stadler, R., and Clemm, A., “A query language for
network search,” Integrated Network Management (IM 2013), 2013
IFIP/IEEE International Symposium on,, pp. 109-117, May 2013.

[13] Keeney, J., van der Meer, S., and Hogan, G., “A recommender-
system for telecommunications network management actions,”
Integrated Network Management (IM 2013), 2013 IFIP/IEEE
International Symposium on, pp. 760-763, May 2013.

[14] Tapucu, D., Kasap, S., and Tekbacak, F., “Performance Comparison
of Combined Collaborative Filtering Algorithms for Recommender
Systems,” Computer Software and Applications Conference

Workshops (COMPSACW), 2012 IEEE 36th Annual, pp. 284-289,
July 2012.

[15] Bobadilla, J., Serradilla, F., and Gutierrez, A., “Recommender
systems: Improving collaborative filtering results,” ICT and

Knowledge Engineering, 2009 7th International Conference on, pp.
100-106, Dec 2009.

[16] Nah, F. F.-H., “A study on tolerable waiting time: how long are Web
users willing to wait?.,” Behaviour & Information Technology,
vol.23, no.3, pp. 153 - 163, 2004.

[17] Brooke, J., “SUS-A quick and dirty usability scale,” Usability
evaluation in industry, vol.189, pp. 194, 1996.

[18] Tullis, T. S. and Stetson, J. N., “A comparison of questionnaires for
assessing website usability,” Usability Professional Association
Conference, pp. 1-12, 2004.

[19] Bangor, A., Kortum, P., and Miller, J., “Determining what individual
SUS scores mean: Adding an adjective rating scale,” Journal of
usability studies, vol.4, no.3, pp. 114-123, 2009.

[20] Sauro, J., A practical guide to the system usability scale: Background,
benchmarks & best practices, Measuring Usability LLC, 2011.

View publication statsView publication stats

