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A B S T R A C T

To understand how data resolution impacts inference on mixed fisheries interactions we developed a highly
resolved spatiotemporal discrete-event simulation model MixFishSim incorporating: i) delay-difference popula-
tion dynamics, ii) population movement using Gaussian Random Fields to simulate patchy, heterogeneously
distributed and moving fish populations, and iii) fishery dynamics for multiple fleet characteristics based on
population targeting under an explore-exploit strategy. We applied MixFishSim to infer community structure
when using data generated from: commercial catch, a fixed-site sampling survey design and the true (simulated)
underlying populations. In doing so we thereby establish the potential limitations of fishery-dependent data in
providing a robust characterisation of spatiotemporal distributions. Different spatial patterns were evident and
the effectiveness of a simulated spatial closure was reduced when data were aggregated across larger spatial
areas. The simulated area closure showed that aggregation across time periods has less of a negative impact on
the closure success than aggregation over space. While not as effective as when based on the true population,
closures based on high catch rates observed in commercial data were still able to reduce fishing on a protected
species. Our framework allows users to explore the assumptions in modelling observational data and evaluate
the underlying dynamics of such approaches at fine spatial and temporal resolutions. From our application we
conclude that commercial data, while containing bias, provides a useful tool for managing catches in mixed
fisheries if applied at the correct spatiotemporal scale.

1. Introduction

Fishers exploit a variety of fish populations that are heterogeneously
distributed in space and time. Fishers generally only have partial
knowledge of species distributions and so limited control over what
species they select when fishing in ‘mixed fisheries’. This results in
catches of vulnerable species and species with low-quota. These species
may be thrown overboard in a process called discarding and discarding
catches that are not recorded leads to biased perception of the effects of
fisheries on ecosystems. Ultimately the unaccounted discards limit our
ability to control fishing mortality (Alverson et al., 1994; Crowder
et al., 1998; Rijnsdorp et al., 2007) and the ability to manage biological
and economic sustainability of fisheries (Batsleer et al., 2015; Ulrich
et al., 2011).

There is increasing interest in technical solutions such as gear

adaptations and spatial closures as measures to reduce discarding of
unwanted catches (Bellido et al., 2011; Catchpole and Revill, 2008;
Cosgrove et al., 2019; Kennelly and Broadhurst, 2002). Adaptive spatial
management strategies have been proposed as a way of reducing over-
quota discards (Dunn et al., 2014; Holmes et al., 2011; Little et al.,
2015). However, to reduce unwanted catch through spatial measures
requires an in-depth understanding of the spatiotemporal dynamics of
the fishery.

Effective spatial management requires implementation at appro-
priate spatial scales. These spatial scales shape the trade-offs between
protection of populations and economic impacts on fisheries
(Dunn et al., 2016). In mixed fisheries, the problem is to identify a scale
that promotes species avoidance for vulnerable or low-quota species
while allowing continuance of sustainable fisheries for available quota
species. Identifying the appropriate spatial scale remains challenging
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because collecting data on fish distribution at high temporal and spatial
resolutions is expensive and difficult. Proxies for the spatial distribu-
tions are usually inferred from fisheries-dependent data or from fish-
eries-independent data. Fisheries-dependent data includes all data on
catch and effort from commercial fishing operations while fisheries-
independent data includes data collected on board scientific research
vessels.

Inferences on fish distributions are hampered where spatial and
temporal information is coarse. Sampling designs for scientific research
vessel surveys generally aim for unbiased estimates of local abundance.
However, high costs of these surveys generally results in restrictions in
terms the number of samples. As a result, sampling is usually restricted
to a few weeks a year, and sampling stations are usually coarsely
spaced. Moreover, the gear chosen for the survey determines the se-
lectivity for certain species and size classes within fish communities.
This selectivity determines the usefulness of relative occurrence in
survey catches as proxies for abundances in the fish communities.

Proxies for spatial distribution derived from commercial fisheries in

theory allow for much larger sample sizes. These commercial fisheries
are often at sea throughout the year, making may fishing hauls.
However, spatial information from fisheries is often limited because
data on catch and effort is collected or aggregated across larger gridded
areas (Branch et al., 2005). If spatially aggregated data does not allow
identification of spatial features it may lead to poorly designed spatial
management measures that are ineffectual or have unintended con-
sequences (Costello et al., 2010; Dunn et al., 2016). For example, in-
creased benthic impact on previously unexploited areas from the cod
closure in the North Sea were observed without the intended effect of
reducing cod exploitation (Dinmore et al., 2003; Rijnsdorp et al., 2001).

Even where high-resolution spatiotemporal information is available
(see e.g. Bastardie et al., 2010; Gerritsen et al., 2012; Lee et al., 2010;
Mateo et al., 2017) commercial catch per unit of effort may still be
biased because of fisheries dynamics. Fishers establish favoured fishing
grounds through an explore-exploit strategy (Bailey et al., 2019;
Rijnsdorp et al., 2011) where they search for areas with high catches
and then use experience to return to areas where they have experienced

Fig. 1. Schematic overview of the simulation model. Blue boxes indicate fleet dynamics processes, the green boxes population dynamics processes while the white
boxes are the time steps at which processes occur; t = tow, tmax is the total number of tows; (Recr), (Pop Movement), (Pop Dynamics) logic gates for recruitment
periods, population movement and population dynamics for each of the populations, (Past Knowledge) a switch whether to use a random (exploratory) or past
knowledge (exploitation) fishing strategy.
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high catch in the past. This leads to inherently biased sampling where
target species are over-represented in the catch because fishers exploit
areas of high abundance. For effective adaptive spatial management the
effects of spatiotemporal aggregation in data and fishery targeting need
to be understood.

To understand the effect of spatiotemporal aggregation of data and
fishery targeting on our perception of spatial abundance of different
fish populations we ask two fundamental questions regarding inference
derived from observational data:

1. Do different sources of sampling-derived fisheries data reflect the
underlying community structure?

2. How do data aggregation and data source impact on the success of
spatial fisheries management measures?

To answer these questions we i) develop a simulation model where
population dynamics are highly-resolved in space and time, using a
Gaussian spatial process to define suitable habitat for different popu-
lations. As the precise locations of the fish are known directly rather
than inferred from sampling or commercial catch, we can use the po-
pulation model to validate how inference from fisheries-dependent and
fisheries-independent sampling relates to the real community structure
in a way we could not with real data. We ii) compare, at different
spatial and temporal aggregations, the real (simulated) population
distributions to samples from fisheries-dependent and fisheries-in-
dependent catches to test if these are a true reflection of the relative
density of the populations. We then iii) simulate a fishery closure to
protect a species based on different spatial and temporal data ag-
gregations.

We use these evaluations to draw inference on the utility of com-
mercial data in supporting management decisions.

2. Materials and Methods

A discrete-event simulation (DES) model of a hypothetical fishery
was developed as a software package (MixFishSim). The modular ap-
proach enabled efficient computation by allowing for sub-modules
implemented on time-scales appropriate to capture the characteristics
of the different processes (Fig. 1). Sub-modules to capture the full
system comprised: 1) population dynamics, 2) recruitment dynamics, 3)
population movement, 4) fishery dynamics.

Population dynamics for any number of species, as chosen by the
user, operate on a daily time-step (with recruitment occurring only
during defined seasons for each population), while population move-
ment occurs on a weekly time-step, with the fishing module operating
on a tow-by-tow basis (i.e., multiple events a day).

2.1. Population dynamics

The basic population level processes were simulated using a mod-
ified two-stage Deriso–Schnute delay difference model that models the
fish populations in terms of aggregate biomass of recruits and mature
components rather than keeping track of individuals (Deriso, 1980;
Dichmont et al., 2003; Schnute, 1985). A daily time-step was chosen to
discretise continuous population processes on a biologically relevant
and computationally tractable timescale. Population biomass growth
was modelled as a function of previous recruited biomass, intrinsic
population growth and recruitment functionally linked to the adult
population size. Biomass for each cell c was incremented each day d as
follows (see Table 1 for all parameter details):
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where ρ is Ford’s growth coefficient shown to be equal to −e K when K is
the Brody growth coefficient, the rate at which the asymptote is ap-
proached from a von Bertalanffy growth model (Schnute, 1985). −WR 1 is
the average weight of fish prior to recruitment, while WR is the average
recruited weight. αd represents the proportion of fish recruited during
that day for the year, while Rc y c, ˜ ( ) is the annual recruits in year y for cell
c.

Mortality Zc,d can be decomposed to natural mortality, Mc,d, and
fishing mortality, Fc,d, where both Mc,d and Fc,d are instantaneous rates
with Mc,d fixed and Fc,d calculated by solving the Baranov catch equa-
tion (Hilborn and Walters, 1992) for Fc,d:

=
+

− − +( )C
F

F M
B· 1 e ·c d

c d

c d c d

F M
c d,

,

, ,

( )
,c d c d, ,

(2)

where Cc,d is the summed catch from the fishing model across all fleets
and vessels in cell c for the population during the day d, and Bc,d the
daily biomass for the population in the cell. Here, catch is the sum of
those across all fleets and vessels, = ∑ ∑= =C E Q D· ·c d fl

FL
v
V

fl v c d fl c d, 1 1 , , , ,
fl with

fl and FL the fleet and total number of fleets, v and Vfl the vessel and
total number of vessels per fleet respectively and Efl, v, c, d and Qfl fishing
effort and catchability of the gear, and Dc,d is the density of the popu-
lation at the location fished.

2.2. Recruitment dynamics

Recruitment is modelled as a function of adult biomass. In
MixFishSim, it can either take the form of a stochastic Beverton–Holt
stock recruitment relationship, or a stochastic Ricker stock recruitment
relationship. The Beverton–Holt relationship is defined as(Beverton and
Holt, 1957):
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where α is the maximum recruitment rate, β the spawning stock bio-
mass (SSB) required to produce half the maximum stock size, S current
spawning stock size and σ2 the variability in the recruitment due to
stochastic processes. The stochastic Ricker form (Ricker, 1954) is:
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Table 1
Description of variables for population and recruitment dynamics sub-modules.

Variable Meaning Units

Population dynamics
Delay-difference model
Bc,d Biomass in cell c and day d kg
Zc,d Rate of total mortality in cell c for day d d-1

Rc y, ˜ Annualy recruited fish in cell yr-1

ρ Ford’s growth coefficient yr-1

WtR Weight of a fully recruited fish kg
−WtR 1 Weight of a pre-recruit fish kg

αd Proportion of annually recruited fish recruited during
day d

-

Baranov catch equation
Cc,d Catch from cell c for day d kg
Fc,d Rate of fishing mortality in cell c on day d −d 1

Mc,d Rate of natural mortality in cell c on day d −d 1

Bc,d Biomass in cell c on day d kg
Recruitment dynamics

R̃c d, is the number of fish recruited in cell c for day d −d 1

α the maximum recruitment rate (Beverton Holt) or
maximum productivity per spawner (Ricker)

number fish

β the stock size required to produce half the maximum
rate of recruitment (Beverton Holt) or density
dependent reduction in productivity per capita of SSB

number fish
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where α is the maximum productivity per spawner and β the density-
dependent reduction in productivity as the SSB increases.

2.3. Population movement dynamics

Population movement is a combination of directed (advective)
movement where at certain times of year the population moves towards
spawning grounds by increasing the probabilities of moving into the
spawning grounds from adjacent cells, and random (diffusive) move-
ment, governed by a stochastic process where movement between ad-
jacent cells is described by a set of probabilities. Stochastic probabilities
are affected by the suitability of habitat, temperature in a cell and the
thermal tolerance of a population to that temperature.

The combined process results in a population structure and move-
ment pattern unique to each population, with population movement
occurring on a weekly basis. Modelling population movement on a
weekly timescale reflects that fish tend to aggregate in species-specific
locations that have been observed to last between one and two weeks
(Poos and Rijnsdorp, 2007b). Therefore this process approximated the
demographic shifts in fish populations throughout a year with seasonal
spawning patterns (Figure S1).

To simulate fish population distribution in space and time a
Gaussian spatial process was employed to model habitat suitability for
each of the populations on a 2d grid. We first defined a Gaussian
random field process, ∈S c c{ ( ): },2� where for any set of cells ⋯c c, , ,n1
the joint distribution of = ⋯S S c S c{ ( ), ( )}n1 is multivariate Gaussian
with a Matérn covariance structure, where the correlation strength
weakens with distance controlled by two parameters, with ν a scale
parameter in the units of distance and κ a shape parameter which de-
termines the smoothness of the process. We use the most commonly
used Matérn covariance structure as it is a flexible form that contains
the exponential and double exponential as special cases and it enables
us to model the spatial autocorrelation observed in animal populations
where density is more similar in nearby locations (F. Dormann et al.,
2007; Poos and Rijnsdorp, 2007b; Tobler, 1970).

We change the parameters to implement different spatial structures
for the different populations using the RandomFields R package
(Schlather et al., 2015). We define a stationary habitat field with an
anisotropic pattern (to simulate a depth gradient) and combine it with a
temporally dynamic thermal tolerance field to imitate two key drivers
of population dynamics without modelling the processes explicitly.
Each population was initialised at a single location, and subsequently
moved across the entire space according to a probabilistic distribution
based on habitat suitability (represented by the normalised values from
the GRFs), temperature tolerance and distance from current cell:
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Where dI,J is the euclidean distance between cell I and cell J, λ is a given
rate of decay, Habc,p is the index of habitat suitability for cell c and
population p, with Tolc, p, wk the temperature tolerance for cell c by
population p in week wk (see below).

During pre-defined weeks of the year the habitat suitability is
modified with user-defined spawning habitat locations, resulting in
each population having concentrated areas where spawning takes
place. The populations then move towards these cells in the weeks prior
to spawning, resulting in directional movement towards the spawning
grounds.

A time-varying temperature covariate changes the interaction be-
tween time and suitable habitat on a weekly time-step. Each population
p was assigned a thermal tolerance with mean, μp and standard devia-
tion, σp so that each cell and population temperature tolerance is de-
fined as:
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Where Tolc, p, wk is the tolerance of population p for cell c in week wk, Tc,
wk is the temperature in the cell given the week and μp and σp the mean
and standard deviation of the population temperature tolerance (see
Table 2 for variable descriptions).

2.4. Fleet dynamics

Fleet dynamics were broadly categorised into three components.
Fleet targeting determined the fleet catch efficiency and preference to-
wards a particular population; trip-level decisions determined the initial
location to be fished at the beginning of a trip; and within-trip decisions
determined fishing locations within a trip. This results in an explore-
exploit strategy for individual vessels to maximise their catch from an
unknown resource distribution (Bailey et al., 2019). The decision to use
an individual based model for fishing vessels was taken because fishers
are heterogeneous in their location choice behaviour due to different
objectives, risk preference and targeting preference (Boonstra and
Hentati-Sundberg, 2016; Van Putten et al., 2012). Therefore fleet dy-
namics are emergent from individual dynamics rather than pre-defined
group dynamics.

2.4.1. Fleet targeting
Each fleet of nfl vessels was characterised by both a general effi-

ciency, Qfl, and a population specific efficiency, Qfl,p which are each
bound by [0,1]. The product of these parameters [Qfl · Qfl,p] affects the
overall catch rates for the fleet and the preferential targeting of one
species over another. This, in combination with the parameter choice
for the step-function defined below (as well as some randomness from
the exploratory fishing process) determined the preference of fishing
locations for the fleet.

2.4.2. Decision about where to fish at the start of a trip
Several studies (for a review see Girardin et al., 2017) have con-

firmed past activity and past catch rates are strong predictors of fishing
location choice. For this reason, the fleet dynamics sub-model included
a learning component, where a vessel’s initial fishing location in a trip
was based on selecting from previously successful fishing locations.
This was achieved by calculating an expected revenue based on the
catches from locations fished in the preceding trip as well as the same
month periods in previous years and the travel costs from the port to
the fishing grounds. Then a vessel chooses randomly from the top 70 %
of fishing events (defined as the ‘threshold’) in terms of expected profit
within that season.

2.4.3. Decision about where to fish within a trip
Fishing locations within a trip are initially determined by a modified

random walk process. As the simulation progresses the within-trip de-
cision become gradually more influenced by experience gained from
past fishing locations (as per the initial trip-level location choice),

Table 2
Description of variables for population movement sub-module.

Variable Meaning Units

Thermal tolerance
Tc, wk Temperature for cell c in week wk ∘C
μp Mean of the thermal tolerance for population p ∘C
σp Standard deviation of thermal tolerance for population p ∘C
Population movement model
λ Decay rate for population movement -
Habc,p Habitat suitability for cell c and population p -
Tolc, wk, p Thermal tolerance for in cell c at week wk for population p -
dI,J Euclidean distance between cell I and cell J -
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moving location choice towards areas of higher perceived profit. A
random walk was chosen for the exploratory fishing process as it is the
simplest assumption commonly used in ecology to describe optimal
animal search strategy for exploiting heterogeneously distributed prey
about which there is uncertain knowledge (Viswanathan et al., 1999).
In a random walk, movement is a stochastic process through a series of
steps. These steps have a length, and a direction that can either be equal
in length or take some other functional form. The direction of the
random walk was also correlated (known as ‘persistence’) providing
some overall directional movement (Codling et al., 2008).

For our implementation of a random walk directional change is
based on a negatively correlated circular distribution where a favour-
able fishing ground is likely to be “fished back over” by the vessel re-
turning in the direction it came from. The step length (i.e. the distance
travelled from the current to the next fishing location) is determined by
relating recent fishing success, measured as the summed value of fish
caught (revenue, Rev);

∑=
=

Rev L Pr·c d
p

P

c d p p,
1

, ,
(7)

where Lc,d,p is landings of a population p, and Prp price of a population.
All population prices were kept the same across fleets and seasons.
Here, when fishing is successful vessels remain in a similar location and
continue to exploit the local fishing grounds. When unsuccessful, they
move some distance away from the current fishing location. The
movement distance retains some degree of stochasticity, that can be
controlled separately, but is determined by the relationship:
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where Le is the step length, β1, β2 and β3 are parameters determining
the shape of the step function in its relation to revenue, so that, a step
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where Brt is the bearing at time t, k the concentration parameter from
the von Mises distribution that we correlate with the revenue so that

= +k Rev RefRev max( 1/ )· ,k where maxk is the maximum concentration
value, k, and RefRev is parametrised as for β3 in the step length function.
Details of the variables, meaning and units for fleet dynamics are pro-
vided in Table 3.

2.4.4. Local population depletion
Where several fishing vessels exploit the same fish population

competition is known to play an important role in local distribution of
fishing effort (Gillis and Peterman, 1998). If several vessels are fishing
on the same patch of fish, local depletion and interference competition

will affect fishing location choice of the fleet as a whole (Poos and
Rijnsdorp, 2007a; Rijnsdorp, 2000). To account for this behaviour, the
fishing sub-model operates spatially on a daily time-step so that for
future days the biomass available to the fishery is reduced in the areas
fished. The cumulative effect is to make heavily fished areas less at-
tractive as a future fishing location choice as reduced catch rates will be
experienced.

2.5. Fisheries-independent survey

A fisheries-independent survey is simulated where fishing on a
regular grid begins each year at the same time for a given number of
stations (a fixed station survey design). Catches of the populations at
each station are recorded but not removed from the population (catches
are assumed to have negligible impact on population dynamics). This
provides a fishery independent snapshot of the populations at a regular
spatial intervals each year, similar to scientific surveys undertaken by
fisheries research agencies.

2.6. Software: R-package development

The simulation framework is implemented in the statistical software
package R (R Core Team, 2017) and available as an R package from the
author’s github site (www.github.com/pdolder/MixFishSim).

3. Model calibration

We calibrate MixFishSim to investigate the influence of data ag-
gregation on spatial inference.

3.1. Population models

We calibrated the simulation model for four example populations
with different demographics, growth rates, natural mortality and re-
cruitment (Table 4). Habitat preference (Figure S7) and (temperature
(Figures S9, with temperature tolerance S10) defined to be unique to
each population resulting in differently weekly distribution patterns
(Figures S1-S3). In addition, each of the populations was assumed to
have two defined spawning areas that result in the populations moving
towards these areas in pre-defined weeks (Figure S8) with population-
specific movement rates (Table 4). The population demographics were
chosen to broadly represent three mobile low-medium value groundfish
species and one high value species with low mobility, with the dy-
namics hypothetical but might be expected in a typical demersal
fishery.

3.2. Fleet calibration

Fleets were calibrated to reflect five different characteristic fisheries
with unique exploitation dynamics (Table 5). By setting different
catchability coefficients (Qfl,p) we create different targeting preferences
between the fleets and hence different spatial dynamics. The learned
random walk process implies that within a fleet different vessels have
different spatial distributions based on individual experience. The step
function was calibrated dynamically within the simulations as the
maximum revenue obtainable was not known beforehand. This was
implemented so that vessels take smaller steps when fishing at a loca-
tion that yields landings value in the top 90th percentile of the value
experienced in that year so far (as defined per fleet in Table 5).

Fishing locations were chosen based on random search and, with
increasing proportion as time progressed, experience of profitable cat-
ches built up in the same month from previous years and from the
previous trip. ‘Profitable’ in this context was defined as the locations
where the top 70 % of expected profit would be found given revenue
from previous trips and cost of movement to the new fishing location.
This probability was based on a logistic sigmoid function with a lower

Table 3
Description of variables for fleet dynamics sub-module.

Variable Meaning Units

Rev Revenue from fishing tow €
RefRev Reference revenue for determining the step function €
Lp Landings of population p kg
Prp Average price of population p €.kg−1

Le Step length for vessel -
Br Bearing degrees
k Concentration parameter for von mises distribution -
β1 shape parameter for step function -
β2 shape parameter for step function -
β3 shape parameter for step function -
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asymptote of 0 and upper asymptote of 0.95, and a slope that ensures
the upper asymptote (where decisions are mainly based on past
knowledge) is reached approximately halfway through the simulation.

3.3. Survey settings

The survey simulation was set up with a fixed gridded station design
with 100 stations fished each year, starting on day 92 and ending on
day 112 (5 stations per day) with same catchability parameter ( =Q 1p )
for all populations. This approximates a real world survey design with
limited seasonal and spatial coverage.

3.4. Example research question

To illustrate the capabilities of MixFishSim, we investigate the in-
fluence of the temporal and spatial resolution of different data sources
on the reduction in catches of a population given spatial closures. To do
so, we set up a simulation to run for 50 years based on a 100 × 100
square grid (undetermined units), with five fleets of 20 vessels each and
four fish populations. Fishing takes place four times a day per vessel
and five days a week, while population movement is every week.

How does sampling-derived fisheries data reflect the underlying

population structure?
To answer this question we compare different spatial and temporal

aggregations of the true population distributions to:

a) Fisheries-independent data: The inferred population density from
a fixed-site sampling survey design as commonly used for fisheries
monitoring purposes;

b) Fisheries-dependent data: The inferred population density from
our fleet model that includes fishery-induced sampling dynamics.

We allow the simulation to run unrestricted for 30 years, then im-
plement spatial closed areas for the last 20 years of the simulation based
on data (either derived from the commercial catches, fisheries-in-
dependent survey or the true population) used at different spatial and
temporal scales.

The following steps are undertaken to determine closures:

1. Extract data source (true population, commercial or survey),
2. Aggregate according to desired spatial and temporal resolution,
3. Interpolate across entire area at desired resolution using simple bi-

variate interpolation using the interp function from the R package
akima (Akima and Gebhardt, 2016). This is intended to represent a
naive spatial model of catch rates, without knowledge of the spatial
population dynamics.

4. Close area covering top 5 % of catch rates.

In total 28 closure scenarios were run that represent combinations
of:

• Data types: Commercial logbook data, survey data and true popu-
lation,

• Temporal resolutions: Weekly, monthly and yearly closures,

• Spatial resolutions: 1 x 1 grid, 5 x 5 grid, 10 x 10 grid and 20 x 20
grid,

We implemented a series of spatial closures targeted at reducing
fishing mortality on population 3, given the different data sources and
spatial and temporal resolutions above. We use the effectiveness of
these closures in reducing fishing mortality as a way of evaluating the
trade-offs in data sources and resolution. Survey closures were on an
annual basis only, as this was the most temporally resolved survey data
available. We evaluated the factors contributing to the success of the

Table 4
Population dynamics and movement parameter settings.

Parameter Pop 1 Pop 2 Pop 3 Pop 4
Habitat quality

Matérn ν 1/0.015 1/0.05 1/0.01 1/0.005
Matérn κ 1 2 1 1
Anisotropy 1.5,3,-3,4 1,2,-1,2 2.5,1,-1,2 0.1,2,-1,0.2
Spawning areas (bound box) 40,50,40,50; 80,90,60,70 50,60,30,40; 80,90,90,90 30,34,10,20; 60,70,20,30 50,55,80,85; 30,40,30,40
Spawning multiplier = 10
Movement λ = 0.1
Population dynamics
Starting Biomass 1e5 2e5 1e5 1e4
Beverton-Holt Recruit α 6 27 18 0.3
Beverton-Holt Recruit β 4 4 11 0.5
Beverton-Holt Recruit σ2 0.7 0.6 0.7 0.6
Recruit week 13-16 12-16 14-16 16-20
Spawn week 16-18 16-19 16-18 18-20
K = 0.3
wt = 1

−wtd 1 = 0.1
M (annual) 0.2 0.1 0.2 0.1
Movement dynamics
μp 12 15 17 14

σp
2 8 9 7 10

Table 5
Fleet dynamics parameter setting.

Parameter Fleet 1 Fleet 2 Fleet 3 Fleet 4 Fleet 5
Targeting preferences pop 2/4 pop 1/3 - pop 4 pop 2/3

Price Prp1 = 100
Price Prp2 = 200
Price Prp3 = 350
Price Prp4 = 600
Qp 0.01 0.02 0.02 0.01 0.01
Qp 0.02 0.01 0.02 0.01 0.03
Qp 0.01 0.02 0.02 0.01 0.02
Qp 0.02 0.01 0.02 0.05 0.01
Exploitation dynamics
β1 1 2 1 2 3
β2 10 15 8 12 7
β3, the landings value nth

quantile
90 90 85 90 80

step function rate 20 30 25 35 20
Past Knowledge = TRUE
Threshold 0.7 0.7 0.7 0.7 0.7
Fuel Cost 3 2 5 2 1
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closures through a regression tree (using the R package REEMtree
(Sela and Simonoff, 2011)) to identify the factor most contributing to
differences in fishing mortality before and after the closure.

4. Results

4.1. Emergent simulation dynamics

Individual habitat preferences and thermal tolerances result in dif-
ferent spatial habitat use for each population (Figure S5) and conse-
quently different seasonal exploitation patterns (Figure S6).

It can be seen from a single vessels movements during a trip that the
vessel exploits three different fishing grounds, each of them multiple
times (Fig. 2A), while across several trips fishing grounds that are

further apart are fished (Fig. 2B). These different locations relate to
areas where the highest revenue were experienced, as shown by Fig. 2C,
where several vessels tracks are overlaid on the revenue field.

Vessels from the same fleet (and therefore targeting preference) may
exploit some shared and some different fishing grounds depending on
their own personal experience during the exploratory phase of the
fishery (Fig. 2C). This results from the randomness in the correlated
random walk step function, with distance moved during the exploita-
tion phase and the direction stochastically related to the revenue ex-
perienced on the fishing ground (Fig. 2D).

Fig. 2. (A) The fishing locations (points) and movements (lines) of a single vessel during a trip overlaid on the revenue of a fishing site (landings x price; darker
purple = higher revenue); (B) the fishing locations of the vessel over several trips (value field changes over the period so not shown). Note that movements are a
mixture of correlated random walk (solid lines) and experience-based (dashed lines), and that the field is wrapped on a torus so that opposite sides of the spatial
domain are considered spatially close; (C) the locations of multiple vessels from the same fleet overlaid on the value field, (D) the realised step distance and turning
angles for a single vessel over the simulation.
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4.2. How does sampling-derived fisheries data reflect the underlying
population structure?

Catch composition aggregated at different spatial resolutions from
each of the data sources (average seasonal patterns over a ten-year
period) highlights different patterns in perceived community structure
depending on the data source and aggregation level (Fig. 3). The finer
spatial grid for the true population (top left) and commercial data (top
middle) show visually similar patterns, though there are large un-
sampled areas in the commercial data from a lack of fishing activity
(particularly in the lower left part of the sampling domain). Survey data

at this spatial resolution displays very sparse information about the
spatial distributions of the populations. The slightly aggregated data on
a 5 x 5 grid shows similar patterns and, while losing some of the spatial
detail, there remains good consistency between the true population and
the commercial data. Survey data starts to pick out some of the similar
patterns as the other data sources, but lacks spatiotemporal coverage.
The spatial catch information on a 10 x 10 and 20 x 20 grid lose a
significant amount of information about the spatial resolutions for all
data sources, and some differences between the survey, commercial and
true population data emerge.

Different perceptions of the proportion of each stock in an area are

Fig. 3. Data aggregation at different spatial resolutions over a ten year period. The figure shows catch composition at each spatial unit represented by a square pie
chart of the four populations. The area of each colour is proportional to the weight of each population caught in that unit. Figure produced using the R package
‘mapplots’ (Gerritsen (2014)).
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seen when we aggregate the data at different timescales, with weekly
(top), monthly (middle) and yearly (bottom) catch compositions from
across an aggregated 20 x 20 area showing different patterns (Fig. 4). In
the true population, the monthly aggregation captures the major pat-
terns of composition seen in the weekly data with the percentage of
different populations in the catch having similar mean and standard
deviations (Table 7). In the weekly and monthly data population 2
dominates. However, some of the variation was lost when aggregated to
an annual level, as indicated from the lower standard deviations
(Table 7).

Weekly commercial data shows some of the same patterns as the

true population, though population 1 is less well represented and some
weeks are missing catches from the area. Here, weekly and monthly
compositions were nearly identical (Fig. 4; Table 7). Yearly values had a
similar mean but smaller standard deviation. The survey data was only
available on an annual basis, and showed again a slightly different
composition from the true population and the commercial data; in
particular a greater proportion of population 4 (Fig. 4).

Fig. 4. Proportion of each population (y axis) for data aggregated at different temporal resolutions. Data is aggregated over a ten-year period for an area 20 x 20.
Each bar represents either a week, month or year respectively.
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4.3. How does data aggregation and source impact on spatial fisheries
management measures?

In most cases the fishery closure was successful in reducing fishing
mortality on the species of interest (population 3; Fig. 5; Table 6). In-
terestingly the largest reductions in fishing mortality happened im-
mediately after the closures, following which the fisheries “adapted” to
the closures by finding new areas of high abundance to fish. This led to
fishing mortality increasing again, though not to past levels (Fig. 5).
The exception to the success was the closures implemented based on the
coarsest spatial (20 x 20) and temporal resolution (yearly) that was
ineffective (i.e. failed to reduce fishing mortality) with all data sources.
As expected, closures based on the simulated population distribution
were most effective, with differing degrees of success using the com-
mercial data. Fishing mortality rates on the other species changed in
different proportions, depending on whether the displaced fishing effort
moved to areas where the populations were found in greater or lesser
density.

The factor most contributing to differences in fishing mortality be-
fore and after the closure was the population (72 % showing that the
closures were effective for population 3), followed by spatial data re-
solution (21 %), data type (7 %) with the least important factor the
timescale ( < 1 %). In general the finer the spatial resolution of the

data used the greater reduction in fishing mortality for population 3
after the closures (Fig. 6). The notable outliers are the commercial data
at the coarsest spatial resolution (20 x 20) at a yearly and weekly
timescale, where closures were nearly as effective as the fine-scale re-
solution. In this case the closures were sufficiently large to protect a
core area of the habitat for the population, but this was achieved in a
fairly crude manner by closing a large area - including area where the
species was not found (Figure 7) that may have consequences in terms
of restricting the fishery in a much larger area than necessary. We found
that these trade-offs existed, with high catches maintained with an ef-
fective closure when the highest resolution data was used, with the
effect being linear when the true population distribution was known
and also persisting for closures based on commercial information
(Figure 8).

5. Discussion

Our study presents a new highly resolved fisheries simulation fra-
mework to evaluate the importance of data scaling and considers po-
tential bias introduced through data aggregation when using fisheries
data to infer spatiotemporal dynamics of fish populations.
Understanding how fishers exploit multiple heterogeneously distributed
fish populations with different catch limits or conservation status re-
quires detailed understanding of the overlap of resources; this is diffi-
cult to achieve using conventional modelling approaches due to species
targeting in fisheries resulting in preferential sampling (Martínez-
Minaya et al., 2018). Often data are aggregated or extrapolated which
requires assumptions about the spatial and temporal scale of processes.
Our study explores the assumptions behind such aggregation and pre-
ferential sampling to identify potential impacts on management advice.
With modern management approaches increasingly employing more
nuanced spatiotemporal approaches to maximise productivity while
taking account of both the biological and human processes operating on
different time-frames (Dunn et al., 2016), understanding assumptions
behind the data used - increasingly a combination of logbook and po-
sitional information from vessel monitoring systems - is vital to ensure
measures are effective.

5.1. Simulation dynamics

We employ a simulation approach to model each of the population
and fishery dynamics in a hypothetical ‘mixed fishery’, allowing us to i)
evaluate the consequences of different aggregation assumptions on our
understanding of the spatiotemporal distribution of the underlying fish
populations, and ii) evaluate the effectiveness of a spatial closure given
those assumptions.

Our approach is unique in that it captures fine scale population and
fishery dynamics and their interaction in a way not usually possible
with real data and thus not usually considered in fisheries simulations.
While other simulation frameworks seek to model individual vessel
dynamics based on inferred dynamics from VMS and logbook records
(Bastardie et al., 2010), or as a system to identify measures to meet
particular management goals (Bailey et al., 2019), our framework al-
lows users to explore assumptions in modelling observational data and

Table 6
Fishing mortality effects of the closure scenarios on population 3 (ordered by
most effective first). The fishing mortality rate before the closure was 1.08.

Scenario No F after
closure

% F change data type timescale resolution

9 0.29 -73.47 True Population Weekly 1.00
10 0.29 -72.94 True Population Monthly 1.00
11 0.35 -68.04 True Population Yearly 1.00
45 0.58 -46.70 Commercial Yearly 20.00
1 0.58 -46.21 Commercial Weekly 1.00
23 0.59 -45.27 True Population Weekly 5.00
2 0.59 -45.06 Commercial Monthly 1.00
7 0.60 -44.48 Survey Yearly 1.00
24 0.61 -43.20 True Population Monthly 5.00
3 0.64 -40.82 Commercial Yearly 1.00
25 0.65 -39.94 True Population Yearly 5.00
17 0.67 -38.11 Commercial Yearly 5.00
15 0.71 -34.38 Commercial Weekly 5.00
43 0.71 -34.31 Commercial Weekly 20.00
16 0.73 -32.58 Commercial Monthly 5.00
51 0.78 -27.92 True Population Weekly 20.00
37 0.78 -27.76 True Population Weekly 10.00
39 0.79 -26.98 True Population Yearly 10.00
38 0.81 -25.47 True Population Monthly 10.00
21 0.81 -25.21 Survey Yearly 5.00
35 0.81 -25.05 Survey Yearly 10.00
44 0.87 -19.91 Commercial Monthly 20.00
52 0.88 -18.39 True Population Monthly 20.00
30 0.96 -11.06 Commercial Monthly 10.00
29 0.98 -9.80 Commercial Weekly 10.00
31 1.03 -4.36 Commercial Yearly 10.00
53 1.06 -1.64 True Population Yearly 20.00
49 1.07 -1.01 Survey Yearly 20.00

Table 7
Mean and standard deviation of proportions of each species at different levels of temporal aggregation.

Data type Timescale Population 1 Population 2 Population 3 Population 4

Commercial Monthly 0.047(0.014) 94.435(1.47) 3.122(1.468) 2.396(0.444)
Commercial Weekly 0.047(0.016) 94.426(1.514) 3.117(1.563) 2.411(0.498)
Commercial Yearly 0.051(0.001) 94.388(0.205) 3.021(0.175) 2.539(0.046)
True Population Monthly 9.225(3.872) 83.287(5.522) 3.624(1.151) 3.864(1.519)
True Population Weekly 9.358(3.992) 83.165(5.596) 3.567(1.233) 3.91(1.592)
True Population Yearly 9.899(0.173) 82.25(0.308) 3.821(0.119) 4.031(0.05)
Survey Yearly 0.372(0.005) 87.667(0.193) 0.729(0.02) 11.232(0.172)
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to evaluate the underlying dynamics of such approaches at fine spatial
and temporal scales. This offers the advantage that larger scale fishery
patterns are emergent properties of the system and results can be
compared to those obtained under a statistical modelling framework.

Typically, simulation models that treat fish as individuals are fo-
cussed on exploring the inter- and intra- specific interactions among
fish populations (e.g. OSMOSE; Shin et al. (2004)) in order to under-
stand how they vary over space and time. Our focus was on under-
standing the strengths and limitations of inference from catch data
obtained through commercial fishing activity with fleets exploiting
multiple fish populations. This shows how realised catch distributions
may differ from the underlying populations, as identified by
Gillis et al. (2008). As such, we favoured a minimum realistic model of
the fish populations (Plagányi et al., 2014) taking account of environ-
mental but not demographic stochasticity, while incorporating detailed
fishing dynamics that take account of different drivers in a mechanistic
way.

Demographic stochasticity arises due to individual-level variability
in time to reproduction and death. This form of stochasticity is often
modelled by drawing random time intervals from a given distribution
(Gillespie, 1977). The impact of demographic stochasticity depends on
the population size, with the effects expected to decrease with in-
creasing population size (Lande et al., 2010). This contrasts with en-
vironmental stochasticity, which affects all population sizes and is
present at the population level in our model by variability in recruit-
ment.

We take account of heterogeneity in fleet dynamics due to different
preferences and drivers similarly to other approaches (Fulton et al.,
2011), but at an individual vessel rather than fleet level. We do not

explicitly define fleets as rational profit maximisers at the outset, but
consider there are several stages to development of the fishery; in-
formation gathering through search where the resource location is not
known, followed by individual learnt behaviour of profitable locations.
This provides a realistic model of how fishing patterns are established
and maintained to exploit an uncertain resource through an explore-
exploit strategy (Bailey et al., 2019; Mangel and Clark, 1983).

5.2. How does sampling-derived fisheries data reflect the underlying
population structure?

Our results demonstrate the importance of considering data scale
and resolution when using observational data to support management
measures. We find that understanding of the community composition
dynamics will depend on the level of data aggregation and its important
to consider the scale of processes; including population movement
rates, habitat uniformity and fishing targeting practices if potential
biases in data are to be understood and taken into account (Fig. 2 and
S5).

Our simulation shows that, despite biases introduced through the
fishing process, the commercially derived data could still inform on the
key spatial patterns in the community structures where the fisheries
occurred, which was spatially limited due to the “hotspots” of com-
mercially valuable species being fished. Similarly, despite even spatial
coverage the survey captured some of the same spatial patterns as the
true population, but missed others due to gaps between survey stations
limiting spatial and temporal coverage (Fig. 3). This provides a chal-
lenge when modelling unsampled areas in inferring species distribution
maps, though these limitations may be overcome by understanding the

Fig. 5. Comparison of closure scenarios effect on fishing mortality trends. Line colour denotes timescale, while linestyle denotes spatial resolution. The vertical
dashed line indicates the onset of the spatial closures.
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relationship between the species and habitat covariates where these are
known at unsampled locations (Robinson et al., 2011).

5.3. How does data aggregation and source impact on spatial fisheries
management measures?

From our simulations spatial disaggregation was more important
than the temporal disaggregation of the commercial data. This reflects
the fact that there was greater spatial heterogeneity over the spatial
domain than experienced in given locations over the course of the year
(Figure S5).

The yearly data assumes the same proportion of each population
caught at any time of the year due to the data aggregation. This as-
sumption introduces ‘aggregation bias’ as the data may only be re-
presentative of some point (or no point) in time. The monthly data
shows some consistency between the real population and commercial
data for population 2 - 4, though population 1 remains under-re-
presented. On an annual basis, interestingly the commercial data under
represents the first species while the survey over represents species 1.
This is likely due to the biases in commercial sampling, with the fish-
eries not targeting the areas where population 1 are present and the
survey sampling areas where population 1 is more abundant than on
average. This indicates that fixed closures, at the right resolution, when
based on commercially derived data have the potential to reduce
fishing mortality. The likely cost of poor spatial and temporal resolution
is associated with reduced effectiveness and potentially closing fishing
opportunities for other fisheries (Figure 8).

Two contrasting real world approaches in this respect were the
spatial closures to protect cod in the North Sea. In one example, large
scale spatial closures were implemented with little success due to effort
displacement to previously unfished areas (Dinmore et al., 2003), while
in another small scale targeted spatiotemporal closures were considered
to have some effect in reducing cod mortality without having to disrupt
other fisheries substantially (Needle and Catarino, 2011). These

examples emphasise the importance of considering the right scale and
aggregation of data when identifying area closures and the need to
consider changing dynamics in the fisheries in response to such clo-
sures.

Our study showed that fishing rates on other populations also
changed (both up and down) as a side-effect of closures to protect one
species. This indicates the importance of considering fishing effort re-
allocation following spatial closures, and our simulation allows us to
consider the spatiotemporal reasons for these changes.

5.4. Model assumptions and caveats

We modelled the population and fleet dynamic processes to draw
inference on the importance of data scale and aggregation in under-
standing and managing mixed fisheries and their impact on multiple
fish populations. In doing so, we necessarily had to make a number of
simplifying assumptions.

Fish populations in our simulations move in pre-defined timescales
and according to fixed habitat preferences and temperature gradients
(Figures S7, S9). Our assumptions in calibrating the model (movement
rates, temperature tolerances) will have a direct impact on our con-
clusions on the relative importance of spatial and temporal processes.
These assumptions could be explored in a future study by varying the
parameters and assessing the robustness of our conclusions. For our
example application we have chosen movement rates to reflect ag-
gregation periods observed in past studies (Poos and Rijnsdorp, 2007b).

In addition, we have assumed that fishing vessels are not restricted
by quota and therefore discarding of species for which vessels have no
quota or that are unwanted is not taken into account. This is likely to be
a significant source of bias in any inference using commercial data and
should also be explored. For example, MixFishSim could be altered to
allow for spatiotemporal appraisal of the impact of discarding on fisher
behaviour and underlying populations via inclusion as discarding be-
haviour, or through move-on rules or cessation of fishing activity when

Fig. 6. Comparison of closure scenario effectiveness based on different spatial and temporal resolutions.
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quota is exhausted.

5.5. Future applications of MixFishSim

We consider that the increased availability of high resolution catch
and locational information from commercial fisheries will make it a key
source of data for ensuring management is implemented at the right
scale in future. For example, identifying hot-spots for bycatch reduction
or identifying spatial overlaps in mixed fisheries (Dedman et al., 2015;
Dolder et al., 2018; Gardner et al., 2008; Little et al., 2015; Ward et al.,
2015). Our simulation model has the potential to test some of the as-
sumptions behind the modelling approaches in identifying such hot-
spots and indeed behind spatiotemporal modelling in general, e.g.
comparing GAMs, GLMMs, Random Forests and geostatistical models
under different data generation processes as exampled by
Stock et al. (2019).

Other novel applications of our framework could be: testing dif-
ferent survey designs given multiple species and data generating as-
sumptions (Xu et al., 2015); commercial index standardisation methods
and approaches and understanding of appropriate scales and data ag-
gregations and non-proportionality in catch rate and abundance
(Harley et al., 2001; Maunder and Punt, 2004); exploring assumptions
about the distribution of natural mortality and fishing mortality
throughout the year and importance of capturing in-year dynamics in
estimating stock status (Liu and Heino, 2014); at-sea sampling scheme
designs to deliver unbiased estimates of population parameters (Cotter
and Pilling, 2007; Kimura and Somerton, 2006); adaptive management
(Dunn et al., 2016; Walters, 2007); testing the ability of commonly
employed fleet dynamics models such as Random Utility Models to
capture fine scale dynamics and understand their importance
(Girardin et al., 2017); and as a detailed operating model in a man-
agement strategy evaluation (Mahévas and Pelletier, 2004).

6. Conclusions

MixFishSim provides a detailed simulation framework to explore the
interaction of multiple fisheries exploiting different fish populations.
The framework enables users to evaluate assumptions in modelling
commercially derived data through comparison to the true underlying
dynamics at a fine spatial and temporal scale. Understanding these
dynamics, the limitations of the data and any potential biases that may
be introduced when making inference on spatiotemporal interactions
will enable users to identify weaknesses in modelling approaches and
identity where data collection is needed to strengthen inference.

Our application shows that inference on community dynamics may
change depending on the scale of data aggregation. There is an im-
portant balance in ensuring that the data are sufficiently spatially and
temporally disaggregated that the main features of the data are cap-
tured, yet maintaining enough data coverage that the features can be
distinguished. We found greater spatial than temporal heterogeneity.
When using aggregated data to define spatial closures coarser temporal
resolution (months instead of weeks) could still achieve the same re-
sults in reducing exploitation rates of a vulnerable species at the highest
temporal resolution data. Conversely, reducing the spatial resolution
had a negative effect on the effectiveness of the measures though, im-
portantly, there was still some benefit even with coarse spatial resolu-
tion.

While case-specific, our findings emphasise the need to understand
population demographics, habitat use and movement rates in designing
any closure scenario based on observational sampling. This information
can then be used to set the bounds on data aggregation used in mod-
elling studies aimed at informing the management measures.
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