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A B S T R A C T   

Environmental change and fishing activity can produce directional trends in exploited fish populations with 
consequences for stock productivity. For herring in the Celtic Sea, size at age has been in steady decline since the 
mid 1980's. In the neighbouring herring stock off the Northwest coast of Ireland, reductions in size at age are 
noted after 1990. Here, gradient boosting regression trees were used to investigate trends in extended time series 
(1959–2012) of length-at-age across both populations and to identify important variables associated with the 
observed declines in size. The predominant signal detected was a non-linear negative relationship between adult 
size and mean Sea Surface Temperature during the first growing season. Herring length was negatively corre-
lated with the Atlantic Multidecadal Oscillation. Weaker associations with indicators of food availability and 
population size were also detected. Across both populations a marked decline in length was observed at the 
upper end of the temperature range (~14∘C in the Celtic Sea and ~13∘C in the Northwest). Declines in length and 
associations with temperature were more pronounced in the Celtic Sea population which may be vulnerable to 
increasing sea temperatures due to its position at the southern limit of the species distribution.   

1. Introduction 

Identifying drivers of change in complex ecological systems and 
quantifying their effects is a difficult task. Ecological systems are typi-
cally influenced by multiple drivers that may combine cumulatively or 
interactively (Crain et al., 2008) and often exert threshold or non-linear 
responses (Griffen et al., 2016; Sugihara and May, 1990). These drivers 
may directly impact the physiology of individual organisms or may 
exert indirect ecological impacts, for example via trophic interactions 
(Koenigstein et al., 2016). Attempts to explain biological responses of 
fish populations using empirical data must therefore look beyond cor-
relation with individual drivers account for additive and multiplicative 
effects while considering underlying mechanisms. 

In fish populations, biological responses to external pressures are 
often manifested through changes in growth rate. Directional changes 
in growth have been observed across many exploited fish populations 
(Baudron et al., 2011; Neuheimer et al., 2011; Neuheimer and Taggart, 

2010; van Walraven et al., 2010) and variously attributed to changes in 
the physical environment (typically temperature), food availability, 
population density and the selective effects of fishing (Audzijonyte 
et al., 2016; Conover and Munch, 2002; Law, 2000; Swain et al., 2007). 
Declines in growth lead to lower overall productivity via influences on 
survival, recruitment and fecundity (Brander, 2007). This creates an 
imperative to interrogate temporal change in growth, determine the 
combined effects of various potential contributing factors, and to im-
prove understanding of likely future responses to the combined influ-
ence of climate and fishing (Perry et al., 2010). 

Decreases in size at age over time have been observed in the Celtic 
Sea (CS) (ICES divisions divisions VIIa South, VIIg, VIIh and VIIj) and 
the North-West of Ireland (NW) (ICES divisions VIa South and VIIb-c) 
herring populations (Harma et al., 2012; Lynch, 2011). In the Celtic 
Sea, there has been a steady and pronounced decline in size at age since 
the mid 1980's. This has been highlighted as a significant concern for 
management due to impacts on stock yield (ISEC, 2019). Stock biomass 
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fell to an all-time low in 2019 and is currently below maximum sus-
tainable yield targets. In the Northwest population long-term trends are 
less pronounced than in the Celtic Sea, however, size at age has de-
creased in recent years relative to the 1990's. Biomass and recruitment 
are at very low levels and the stock is considered to be in a state of 
collapse (ISEC, 2019). Improved knowledge of the dynamics of these 
stocks and the influence of environmental change is therefore of critical 
importance. 

The increased availability of complex environmental datasets has 
stimulated interest in using machine learning techniques to explain 
patterns in ecological data (Olden et al., 2008; Peters et al., 2014). 
These developments are accompanied by ongoing debate about the 
relative merits of hypothesis-driven versus data-intensive scenarios 
(Elliott et al., 2016). However, when carefully curated, machine 
learning approaches can complement hypotheses-based research to 
elucidate complex non-linear relationships in ecological systems 
(Kelling et al., 2009; Muttil and Chau, 2007; Peters et al., 2014). 
Carefully supervised boosted regression trees are gaining favour in the 
ecological literature due to their superior predictive ability (Cameron 
et al., 2014; Escobar-Flores et al., 2013; Franklin et al., 2013; Leathwick 
et al., 2006; Maloney et al., 2012). For example, Leathwick et al. (2006) 
demonstrated that boosted regression trees improved predictive per-
formance relative to generalised additive models when applied to the 
analysis of fish species richness in relation to environmental variables. 
Furthermore, boosting approaches are more effective than other tree- 
based methods since they allow for combining many simple models to 
produce a powerful model (Hastie et al., 2009). Previous studies have 
used the boosted regression trees to gain insight into how fish popu-
lations and communities respond to environmental change via changes 
in abundance and diversity (Froeschke and Froeschke, 2016; Pittman 
et al., 2009; Trigal and Degerman, 2015). However, few studies have 
used this approach to model individual level responses such as growth. 

Here, we apply boosted regression trees to investigate a marked 
decline in herring growth in relation to potential environmental and 
fishery-related explanatory variables. We present an approach whereby 
all variables are chosen based on knowledge of the species' ecology and 
observed correlations. 

Our objectives are to: 1) disentangle effects of multiple drivers on 
herring growth; 2) demonstrate the advantages of combining a machine 
learning approach with ecological knowledge to identify the relative 
importance of various exogenous variables in a dynamic system. The 
advantages of this approach will be demonstrated using a unique long 
time-series of biological data. 

2. Materials and methods 

2.1. Study area and data 

Detailed biological and fisheries data have been collected from 
commercial herring landings since 1959 as part of Ireland's national 
fisheries monitoring programme. The data used in this study were from 
catches taken in the CS (ICES divisions VIIJ, VIIg and VIIaS) and the NW 
(ICES division VIaS) (Fig. 1). Samples were primarily from mid-water 
trawl catches (96% of the total). 

From spatially and temporally representative samples of the land-
ings, 50–100 herring were taken and biological characteristics were 
recorded (length to the nearest half centimetre interval, weight in 
grams [only after 1975], sex, maturity stage of the gonads and age). 
Total length of herring was reported to the nearest half centimetre 
below. To represent the midpoint of the size-class and to ensure con-
sistency with the analyses performed in the assessment of herring (ICES, 
2016), 0.25 cm were automatically added to each individual value. Age 
groups were determined using counts of winter rings in otoliths ac-
cording to standard ageing protocols. Fish for which no age estimate 
were available (e.g., otoliths broken, unreadable, lost) were excluded 
from further analyses (ca. 3% of the total sample). 

Fish were assigned to year classes (yc) based on otolith ring counts 
as follows: yc = ay − (r + 1), where ay is the assessment year and r is 
the winter ring count. The NW and the CS herring populations are 
comprised of both autumn and winter spawning components (ICES, 
2015). In autumn and winter spawning herring the first translucent ring 
is formed in the otolith during the fish's second winter. To account for 
this, 1 year is added to the ring count when assigning fish to year 
classes. 

In the CS peak spawning activity occurs between December and 
February and the assessment year runs from April 1st until March 31st. 
For this stock each year-class is referred to by the year in which 
spawning commences. So fish from the 2010 year class were spawned in 
the 4th quarter of 2010 and the first quarter of 2011. The traditional 
assessment year (January 1st to December 31st) applies to the NW 
herring stock. 

The subsequent analysis was conducted using data from 3 winter 
ring fish because this is the youngest age group that is fully recruited to 
the fishery (ICES, 2016) and for which samples from the commercial 
fishery can be assumed to be representative of the population. The final 
dataset included individual records for 35,629 herring from the CS 
population and 22,592 herring from the NW population. 

Temporal changes in length-weight relationships were examined to 
establish if observed changes in length of 3 ring herring coincided with 
changes in condition. The mean weight of a 27 cm fish was estimated 
from the length-weight relationship for each year (1975–2012) and 
area using least squares regression. The relationship between length 
and weight was modelled as: ln(W) = a + b ∗ ln (L), where W is fish 
weight in grams, L is fish length in cm and a and b are the parameters of 
the regression equation. The reference length of 27 cm was used be-
cause this was the average length of a 3 ring fish across the time series 
in both areas. 

Available data for other clupeid fish populations were obtained 
from stock assessment reports for the purpose of comparison with 

Fig. 1. Study area map showing the two Irish herring populations under study: 
CS for the Celtic sea populations (the ICES divisions VIIa-South, VIIg, VIIj) and 
NW for the North-West populations (ICES divisions VIIb and VIa-South). 
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trends in the two herring populations. The closest stocks for which 
biological data were available were: sardine ICES Divisions VIIIc and 
IXa (southern Bay of Biscay and Iberian coast) and sardine in ICES 
Divisions VIIIabd (Bay of Biscay). For these stocks, time series of 
weight-at-age-3 (ICES, 2017) were plotted alongside the mean weight 
of 3 ring herring in CS and NW herring (ICES, 2016). 

2.2. Broadscale relationships with climatic indices 

As a first step in the identification of potential drivers, correlations 
between herring growth and two broad-scale climate indices, the 
Atlantic Multi-decadal Oscillation (AMO) and North Atlantic Oscillation 
(NAO) were investigated. 

The AMO is an index of fluctuations in Sea Surface Temperature 
(SST) in the North Atlantic which is linearly detrended to remove the 
influence of anthropogenic climate change (Enfield et al., 2001). The 
AMO appears to alternate between positive and negative phases at a 
frequency of 60–80 years (Knight et al., 2006). The AMO influences 
marine organisms through direct effects of temperature, fluctuations in 
circulation patterns and changes in food availability (Edwards et al., 
2013; Nye et al., 2014). 

The NAO is an index of the difference in sea-level pressure differ-
ence between Iceland and either the Azores, Lisbon or Gibraltar. 
Cyclical fluctuations between positive and negative phases of the NAO 
are associated with changes in wind patterns, rainfall and temperatures 
(Rogers, 1997) with reported consequences for fisheries (Lehodey et al., 
2006). 

Proceeding from this we applied general linear models to determine 
if there was an association between the mean length of 3 ring herring 
from the CS and NW populations and the annual mean of the un-
smoothed AMO index or the winter NAO index (December–March) in 
the first year of life. To correct for temporal autocorrelation the sig-
nificance of the correlations were tested using an adjusted degrees of 
freedom, according to the modified Chelton method (Chelton, 1984;  
Pyper and Peterman, 1998), which is robust to Type I errors and less 
prone to Type II errors than methods based on pre-whitening or first- 
differencing (e.g. ARIMA) (Pyper and Peterman, 1998). 

2.3. Selection of explanatory variables for GBRT analysis 

While correlation analyses are useful for establishing association 
between a biological process and climate variability, investigation of 
relationships with local environmental conditions is required to build 
understanding of the mechanisms underlying the association (Nye 
et al., 2014). Here, gradient boosting regression trees (GBRT) were used 
to identify relationships between growth and various exogenous vari-
ables and to determine their relative strength. GBRT belong to a family 
of ensemble methods which employ a collection of simple additive re-
gression model predictions that are averaged to estimate the response 
(Hastie et al., 2009). GBRT form a supervised machine learning algo-
rithm, which naturally allows for complex nonlinear interactions be-
tween environmental drivers (Friedman, 2000) and do not require any 
assumptions on data distribution. When applying GBRT the relationship 
between the response and explanatory variables is not specified, instead 
a learning algorithm is used to find patterns in the data. Due to these 
flexible properties, GBRT were selected as a suitable method for iden-
tifying potential drivers of changes in growth across the two herring 
populations. 

Separate GBRT models were constructed for each population to 
predict fish length based on a set of explanatory variables representing 
the main drivers that could contribute to variability in growth of her-
ring (Table 1, Fig. 2). The inclusion of the two populations in the 
analysis facilitates a comparative investigation of their dynamics, al-
lowing us to distinguish broad scale change from processes operating 
locally within the CS. 

The response variable (length of 3 ring herring) reflects the 

combined influence of intrinsic and extrinsic factors operating over the 
entire life of the fish. The first growing season is a particularly im-
portant period and conditions during this critical phase can exert a 
lasting influence on lifetime growth trajectories (Brophy and 
Danilowicz, 2003; Vincenzi et al., 2008). Variation in juvenile growth is 
driven primarily by temperature (Ottersen and Loeng, 2000) and 
feeding conditions (Batten et al., 2016) with some evidence also of 
density dependence (Casini et al., 2006) and salinity effects (Berg et al., 
2018; Rajasilta et al., 2011). 

Mean monthly Reynolds Historical Reconstructed SST values 
(Reynolds et al., 2007) for the CS (48.5∘N-52.5∘N, 12.5∘W-4.5∘W) and 
NW (52.5∘N-56∘N, 14.5∘W-7.5∘W) were included as indicators of the 
temperature that herring were exposed to during their first growing 
season (average SST April–August). Among these Calanus copepods 
which are an important food source of juvenile herring (Huse and 
Toresen, 1996; Pedersen and Fossheim, 2008). Therefore, feeding 
conditions during the first growing season were described using indices 
of mean monthly abundance of Calanus finmarchicus,Calanus helgo-
landicus and all large copepods from three CPR standard areas (C3, C4, 
D4; (Richardson et al., 2006)). Salinity measurements (Ingleby and 
Huddleston, 2007) (average April–August) were included to reflect 
salinity conditions during the first growing season. To test for density 
dependent growth during the first year, estimates of recruitment from 
the stock assessment (ICES, 2014, 2015) were used as a measure of 
year-class strength. Total numbers of 2–9 ring fish (totalN) and span-
ning stock biomass (SSB) in the year of capture were also included as 
overall indices of population density. Two measures of fishing mortality 
were included to account for possible selective effects of fishing; 1) 
mean estimated fishing mortality (2–5 ring for CS and 3–6 ring for NW) 
in the year of capture Fbar and 2) mean lifetime fishing mortality for 
each year class of 3 ring fish Fcum. Finally, month of capture was in-
cluded as an explanatory variable to account for seasonal changes in 
length within each year. Variability in length between sampling dates 
within each month was low (CV 3%) and far less than the overall 
percentage change in annual mean length across the time series (CS 
14.6%, NW 15.8% difference between maximum and minimum length). 
Therefore this source of variation was not considered in the analysis. 

When missing values are encountered the GBRT model will exclude 
all data for the corresponding time period. To avoid this, missing values 
were replaced using forward fill to propagate the previous value for-
ward. The set of explanatory variables was reduced to remove highly 
correlated variables (r  >  0.8; the large copepod index was excluded as 
it was correlated with other zooplankton indicators). 

2.4. GBRT model specification 

Gradient boosting regression trees (GBRT) considers additive 
models of the following form: 

=
=

F x h x( ) ( )m
m

M

m m
1 (1) 

where γm is a learning rate and hm(x) are weak learners. 
GBRT uses decision trees of fixed size as weak learners. Decision 

trees have a number of abilities that make them valuable for boosting, 
namely the ability to handle data of mixed type and the ability to model 
complex functions. GBRT builds the additive model in a forward step-
wise fashion: 

= +F x F x h x( ) ( ) ( )m m m m1 (2)  

At each stage the weak learner hm(x) is chosen to minimize the loss 
function L given the current model Fm−1 and its fit Fm−1(xi) 

= +
=

F x F x L y F x h x( ) ( ) argmin ( , ( ) ( ))m m
h i

n

i m i m1
1

1
(3)  

GBRT attempts to solve this minimization problem numerically via 
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steepest descent: The steepest descent direction is the negative gradient 
of the loss function evaluated at the current model Fm−1 which can be 
calculated for any differentiable loss function: 

= +
=

F x F x L y F x( ) ( ) ( , ( ))m m m
i

n

F i m i1
1

1
(4)  

Where the step length γm is chosen using line search: 

=
=

L y F x
L y F x

F x
argmin , ( ) ( , ( ))

( )m
i

n

i m i
i m i

m i1
1

1

1 (5)  

The accuracy of gradient boosting can be improved by introducing 
randomisation into the procedure through taking randomly selected 
subsets of training data at each iteration (hence stochastic gradient 
boosting). 

For each tree the GBRT model makes splits that minimize the loss 
function L using the variable that contributes most in the reduction of 
the loss function. Variable Importance (VI) is computed as the nor-
malized total reduction of the loss function brought by that variable and 
based on the number of times a variable is used in the model, weighted 
by the squared improvement to the model, and averaged over the entire 
model. The more often the variable is used for splitting, and the more it 
improves the model predictions, the higher the VI score. 

2.4.1. Data splitting by randomisation 
For both populations, data were split randomly into two sets: train 

(50%) and test (50%). A two-part split is a general practice in machine 
learning, the purpose of which is to test the predictive performance of 
the model when presented with previously unseen data. In the present 

analysis, the biological datasets contained tens of thousands of in-
dividual observations each representing an individual fish. However, 
the environmental datasets had a much lower temporal resolution with 
all measurements except for month of capture aggregated annually. 
Therefore, if the data were split randomly at the level of individual, 
both sets very likely would contain individuals from all years and would 
not include previously unseen combinations of the explanatory vari-
ables. Such splitting could lead to overestimation of prediction cap-
ability on independent test data and may result in inadequate testing of 
the power of the model. To address this potential issue, two alternative 
randomisation approaches were employed at the data-splitting stage 
and the results were compared: randomisation by individuals (RI) and 
randomisation by years (RY). The RI data splitting was performed by 
randomly splitting all individual observations. This data splitting ap-
proach is generally considered optimum in machine learning as it does 
not introduce any systematic differences between the test and train 
datasets. To perform the RY data splitting, individual observations were 
grouped according to year of capture and years were randomly selected 
for inclusion in the train and test datasets. Although this may produce 
systematic differences between the test and train datasets, it ensures 
that the model is tested using previously unseen combinations of ex-
planatory variables and is therefore a more robust test of model per-
formance in this context. 

A potential drawback of the machine learning approach is that after 
the model is built using the training dataset, the parameters are opti-
mised based on how well the model performs on the test dataset. 
Therefore, prediction accuracy for previously unseen data may be 
overestimated. To perform a more robust test of prediction accuracy a 

Table 1 
Description, temporal resolution, source and accessed date of datasets used as potential variables to explain herring growth variability over time.      

Abbreviation Variable Source Weblink  

cfin C3 Calanus finmarchicus in areas C3, D4, C4 
(mean abundance in April–August) 

Sir Alister Hardy Foundation of Ocean Science CPR survey, in standard areas C3, 
D4, and C4. DOI https://doi.org/10.7487/2016.109.1.967 

https://www.sahfos.ac.uk/ 
cfin D4 
cfin C4 
chel C3 Calanus helgolandicus in areas C3, D4, C4 

(mean abundance in April–August) 
Sir Alister Hardy Foundation of Ocean Science CPR survey, in standard areas C3, 
D4, and C4. DOI https://doi.org/10.7487/2016.109.1.967 

https://www.sahfos.ac.uk/ 
chel D4 
chel C4 
Fbar CS Mean fishing mortality at 2–5 rings in 

assessment year of capture 
ICES Herring Assessment Working Group (HAWG) report 2015; Table 4.6.2.4 http://www.ices.dk 

SSB CS Spawning stock biomass in assessment 
year of capture   

recr CS Number of recruits (estimated at 1 ring 
stage) for each year class   

Fbar NW Mean fishing mortality at 3–6 rings in 
assessment year of capture 

ICES HAWG report 2015; Table 5.6.12 http://www.ices.dk 

SSB NW Spawning stock biomass in assessment 
year of capture   

recr NW Number of recruits (estimated at 1 ring 
stage) for each year class   

cumF NW Mean lifetime fishing mortality for each 
year class 

ICES HAWG report 2014; Table 4.6.2.13 http://www.ices.dk 

totalN NW Total numbers at age (in thousands) 2–9 
ring stage, in year of capture 

ICES HAWG report 2015; Table 5.6.14  

cumF CS Mean lifetime fishing mortality for each 
year class 

ICES HAWG report 2014; Table 4.6.2.13 http://www.ices.dk 

totalN CS Total numbers at age (in thousands) 2–9 
ring stage, in year of capture 

ICES HAWG report 2014; Table 4.6.2.14  

sst CS,NW Reynolds Sea Surface Temperature (∘C) Reynolds Historical Reconstructed SST (2∘ x 2∘ resolution) as derived from the 
Reynolds Optimally Interpolated SST (from the Advanced Very High Resolution 
Radiometer, AVHRR) and in-situ observations, available from the NASA Jet 
Propulsion Laboratory (extracted through Hydrax/OpenDAP server), provided 
by Reynolds, National Climatic Data Center 

https://www.esrl.noaa.gov 

sal CS,NW Salinity 5 m (PSU) MET Office Hadley Centre EN4 quality controlled ocean data version: EN.4.2.1. https://www.metoffice.gov.uk/ 
hadobs/en4/download-en4-2-1. 
html 

Month Month, included to account for a month 
of capture   

Spatial resolutions for the local environmental datasets are representative of the latitude and longitude where herring populations are found in the Celtic Sea and off 
the North-West of Ireland areas. Abbreviations C3, D4 and C4 refer to standard areas used in the CPR.  
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Fig. 2. Explanatory variables time series for the CS (a) and the NW (b).  
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three way split was also performed. The data were split (using the RI 
splitting approach) into train (50%), test (25%) and validation (25%) 
sets. The model was built, tested and optimised using the train and 
validation sets and the models performance was confirmed using the 
test set. 

For the two-part split hyperparameters were tuned using grid search 
which performs an exhaustive search over specified parameter values 
for an estimator. Grid search takes a set of possible values for each 
hyperparameter that should be tuned and evaluates a model trained on 
each element of the Cartesian product of the sets. It is an exhaustive 
search that trains and evaluates a model for each possible combination 
of the hyperparameter values supplied. This algorithm automatically 
generates the validation sets internally. So there is no need to generate 
a validation set to select the best model. 

For the three-part split the VI score on the validation set is used 
instead of the test set. Then one is allowed to tweak the values in the 
parameters grid to see if values that improve the score can be found. 
Once there is confidence that the validation score cannot be further 
improved via parameter tweaking (or feature engineering) one can 
evaluate the best model on the final test set (only once). In some in-
stances the final test score maybe lower than the validation score. In 
that case the test score is taken as the most realistic evaluation of the 
true generalization performance of the final model. 

2.4.2. Hyperparameters 
Hyperparameter tuning was done manually. As a starting point the 

learning rate was set as low as possible and the number of iterations as 
high as computationally feasible (Hastie et al., 2009). The learning rate, 
which is also called a shrinkage parameter, determines the contribution 
of each tree to the model. The maximum tree depth which reflects the 
degree of interaction in the model is usually low. GBRT performs best 
using fairly shallow trees, so-called tree stumps. 

For the RI models the same initial parameters were set for the 
analysis of the CS and NW datasets, then a grid search was performed 
on both datasets with a two-part split to give hyperparameters with the 
highest level of accuracy. These were as following: learning rate 0.05 
and maximum tree depth of 4 for both the CS and the NW models. The 
early stopping technique was used to determine when to stop the model 
training to avoid overfitting. Using early stopping the number of 
iterations required until convergence was 120 for CS and 106 for NW. 
Grid search was not required for a three-part splits, and further tuning 
of the parameters was done manually. 

For the RY models, in contrast to the RI models, the best performing 
models (based on MSE) were models with a slow learning rate of 0.005. 
Additionally, the NW model had a very shallow tree (tree depth of 2). 
The number of iterations was kept at 500. 

The tuned hyperparameters of the final models are shown in  
Table 2. 

2.4.3. GAM modelling of most influential parameters 
The top four most influential variables from the GBRT models (as 

indicated by VI scores) were included in a series of generalised additive 

models (GAMs) with the length (of 3 ring fish) as the response variable. 
The purpose of this analysis was to compare the predicted relationships 
between the two modelling approaches. The analysis was run using the 
mgcv package, version 1.8.28 (Wood, 2011) in R, version 3.6.1 (2019- 
07-05). Models were fit using thin-plate regression splines. Predictors 
were fit using smoother terms with a maximum of 4 degrees of freedom. 

3. Results 

3.1. Overall trends in length, weight and condition 

As previously reported (Harma et al., 2012; Lynch, 2011), mean 
length of 3 ring herring in the Celtic Sea showed a general increasing 
trend from 1960 to 1980 followed by a decline from 1981 to 2012 
(Fig. 3a). Temporal changes in length of herring from the North-West of 
Ireland were less marked but with a slight decline in length between 
1970 and 1980 (Fig. 3b). 

The observed declines in size (length and weight) at age, did not 
coincide with a decline in body condition at a standardised size. The 
mean weight of a 27 cm herring over the course of the available time- 
series was 166.8 g in the Celtic Sea (1969–2011) (Fig. 4) and 162.4 g 
(1975–2011) in the North-West of Ireland. The temporal trends in the 
mean weight at 27 cm indicated that the observed decline in length of 3 
ring herring did not coincide with a decline in condition. 

Mean-weight-at age data from ICES stock assessment reports re-
vealed recent (since the 1990's) fluctuations in weight at age across four 
stocks of clupeid. Trends in the mean weight-at-age 3 of sardine from 
commercial catches in the Southern Bay of Biscay and Iberian coast 
(ICES Divisions VIIIc and IXa) showed an increase in growth since 1990 
which coincided with a decrease in weight of Celtic Sea and North-West 
of Ireland herring during the same period (Fig. 5). In contrast, mean 
weight-at-age of sardine in survey catches from the rest of the Bay of 
Biscay (ICES Divisions VIIIa, b and d) have declined since 2000. 

3.2. Correlation with climate indices 

The mean annual AMO index in the first year of life was negatively 
correlated with mean length of 3 ring herring from both the CS 
(r = − 0.65, adjusted df = 10, p  <  0.001) and NW (r = − 0.39, 
adjusted df = 11, p  <  0.05) populations. There were no significant 
correlations between mean length and NAO for either population 
(p  >  0.05). The decline in size of Celtic Sea herring during the late 
1970's and the 1980's coincided with a steady increase in the AMO 
index and an eventual transition from a negative to a positive phase in 
the mid-1990's. Earlier increases in the size of Celtic Sea herring during 
the 1960's and 1970's corresponded with a negative phase of the AMO 
and a steady decrease until the mid-1970's (Fig. 6). The increase in the 
AMO index in the 1970's coincided with a decline in mean length of 3 
ring herring in the NW. From the mid 1990's an inverse relationship 
between AMO and length of NW herring was not apparent. 

3.3. GBRT model performance 

For the RI model the plot of MSE against number of iterations for the 
test data closely followed that of the train data indicating consistency in 
model performance across the test and train data. The difference be-
tween test MSE and train MSE was slightly greater for the NW than for 
the CS dataset. For the RY model there is a larger gap between test and 
train data. However, the difference between the train and test MSEs 
remained low (< 1) and prediction to independent data is unlikely to 
be compromised (Elith et al., 2008). Through the use of L1 regular-
isation technique we ensured that neither of the models was mainly 
affected by overfitting, which is often seen as a problem in statistical 
modelling. GBRT is generally superior to other methods in that regard 
(see e.g. comparisons with GLM, GAM and multivariate adaptive re-
gression splines, Elith et al., 2008; Leathwick et al., 2006). Stability of 

Table 2 
Tuned model parameters.       

Model splits Number of iterations Learning rate Tree depth  

RI CS 2 120 0.05 4 
RI CS 3 102 0.05 4 
RI NW 2 106 0.01 6 
RI NW 3 144 0.05 6 
RY CS 2 500 0.005 8 
RY NW 2 500 0.005 2 

Number of iterations was defined by early stopping. Subsample rate was 0.75% 
in all cases. Parameters for 2-part split were defined through grid search, 
whereas parameters for 3-part split were tuned manually.  
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the RY model was confirmed by rerunning the RY model ten times, 
using a different randomised test-train split each time and comparing 
the output. Neither the predicted relationships between the response 
and explanatory variables (as reflected in the partial dependence plots) 
nor the relative influence of the explanatory variables (as indicated by 
the variable influence plots) showed substantial variation between runs 
indicating that the model predictions were stable (Fig. 7a). 

The MSE values of all the RI models were lower than those for the 
corresponding RY models (Table 3, Fig. 7). This confirms that splitting 
at the level of the response variable (RI models) can lead to over-
estimation of the predictive capability of the model when explanatory 
variables are measured at a lower resolution than the response. The RY 
models provide a more robust test of the models' power by ensuring that 
the train and test sets contained unique combinations of explanatory 
variables. 

The R squared values also showed that the models provided a better 
fit to the data for the CS population (RY model: R2 = 24.67) compared 

Fig. 3. Mean-length of 3 ring fish in centimetres in CS (a) and in the NW (b), cm. Measurements are rounded to the nearest 0.5 cm except for the years 1967 (a) and 
1965–1974 (b). Solid line is a prediction obtained from RI model and dashed line is a prediction from RY model. Black dots are individual observations and the black 
line represents the observed mean length. 

Fig. 4. Mean estimated weight of a 27 cm herring for the CS (blue solid line) 
and the NW (green solid line) populations. The overall means for the time series 
are indicated by the dashed lines. (For interpretation of the references to colour 
in this figure legend, the reader is referred to the web version of this article.) 

Fig. 5. Mean weight of 3 ring herring for the CS (blue solid line), the NW (green 
solid line), sardine in divisions VIIIc, IXa (red dash-dot line) and divisions 
VIIIa,b,d (red dashed line). (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.) 

Fig. 6. The mean annual AMO index in the first year of life (red) and the mean 
length-at the 3 ring stage of herring in the CS (blue) and the NW (green). (For 
interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 
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to the NW population (RY model: R2 = 13.18). Overall, percentage 
explained variability was low. This reflects the high degree of in-
dividual variability in size that could not be accounted for by the ex-
planatory variables, which capture the mean conditions experienced by 
the population. 

3.4. Predicted trends in mean length 

For the CS population, mean length of 3 ring herring predicted by 
the GBRT models followed similar temporal trends to observed mean 
length although the estimates from the RY model showed some diver-
gence from the observed values, particularly in the mid 1970‘s and the 
1990’s (Fig. 3a). For the NW population the RY models tended to un-
derestimate mean length early in the time series and overestimate it 
later in the time series (Fig. 3b). 

3.5. Relative importance of the predictor variables 

Fig. 8 displays the estimated relative importance of each variable in 
the GBRT models for the CS and the NW populations. The importance of 
the predictors varied between the RI and RY models, however, some 
general trends were apparent. Sea surface temperature (SST) in the first 
growing season was the most important predictor of length of 3 ring 
herring in both the CS and NW populations. The high variable influence 
score indicates that relative to the other variables, SST was selected 
most frequently for splitting and had the largest influence on predictive 

power. 
For the CS population, the CPR estimated abundance of Calanus 

finmarchicus in area C3 was the second most important variable in both 
the RI and RY model although its influence much less marked than that 
of SST. Other descriptors of food availability (CPR estimated abundance 
of Calanus finmarchicus in area D4 and Calanus helogalandicus in areas 
C3 and D4) had only a minor influence on the model predictions for the 
CS population. Total population size made a small contribution to the 
predictions of both the RY and RI models while the importance of re-
cruit abundance was more minor. Salinity, fishing pressure (mean life 
time fishing pressure - cumF and fishing pressure in year of capture - 
Fbar) and month of capture also had only a very minor influence on the 
predictions of both models. 

For the NW population, variability in length was strongly associated 
with month of capture in both the RI and RY models, reflecting the 
expected increase in fish size as the year progresses. The next most 
important explanatory variable was mean lifetime fishing mortality. 
Density (Total N and recruitment), fishing pressure in year of capture, 
food supply (abundance of Calanus finmarchicus and Calanus helago-
landicus in area C4) and salinity also made minor contributions to the 
model predictions of the NW models. 

3.6. Partial dependence plots 

The partial dependence plots display, for a selection of the more 
influential predictors, the marginal effects of each predictor on length 
of 3 ring herring. In general, the RI and RY models detect similar re-
lationships between the predictors and the response although in some 
cases the RI model detected more complex relationships. This may re-
flect over-fitting of the data when splitting is implemented at the level 
of the individual (RI model) (Figs. 9a and Fig. 10a respectively). To 
avoid over emphasis on outlying data points, interpolations beyond the 
9th decile of the variable distribution were disregarded when inter-
preting the relationships between the predictors and response. 

3.6.1. Sea surface temperature and salinity 
In the CS population SSTs above 13.5∘C were associated with a 

Fig. 7. Performance of GBRT models with a two-part split for the CS (green) and the NW (blue). The number of boosting iterations on the x-axis is plotted against 
MSE on the y-axis. In the RI model (a) the MSE curve for train data closely followed the MSE curve for the test data. In the RY model (b) there is a larger gap between 
train and test datasets, however train and test lines are still parallel to each other, which indicates stability of the model. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this article.) 

Table 3 
MSE's and R2.      

Model splits MSE R2  

RI CS 2 0.92 66.25 
RI CS 3 0.93 66.26 
RI NW 2 1.20 46.11 
RI NW 3 1.16 47.50 
RY CS 2 2.39 24.67 
RY NW 2 2.13 13.18 
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decrease in length. In the NW population the partial dependence plot 
showed a similar trend as in the Celtic Sea with a marked decrease in 
growth occurring around 12.9 − 13∘C. For the NW population, length 
was predicted to increase with increasing salinity (RI and RY models), 
although the variable influence score indicated a weak effect (VI = 2.9 
and 6.5 for the RI and RY models respectively.). Salinity had a negli-
gible influence on length in the CS models (VI = 1 and 1.1 for the RI 
and RY models respectively). 

3.6.2. Density dependence 
For the CS population, the RI model predicted a decrease in length 

at higher population sizes which could be indicative of density depen-
dence. However, according to the RY model the relationship between 
length and population size was highly non-linear with fish length de-
creasing at moderate population sizes and then increasing as population 
size increased. Similarly, the RI model predicted a decline in length of 
CS herring as recruitment increased from moderate (0.3 x 109 in-
dividuals) to high levels (1.3 x 109 individuals) while the RY model 
predicted an increase in length at high recruitment levels. For the NW 
population both the RI and the RY models predicted a decrease in 
length when population size increased from low to moderate levels 
followed by an increase at high density. Contrary to the expectation of 
density dependant growth, both the RY and RI models predicted a po-
sitive relationship between length and recruitment of NW herring. 
Overall, the analysis did not detect strong evidence of density de-
pendant effects on growth in CS or NW herring. 

3.6.3. Food availability 
Relationships between length and food availability during the first 

growing season were variable and complex and often non-linear (Figs. 9 
and 10). For the CS population the predominant effect detected by both 
the RI and the RY models was a positive relationship between length 
and the abundance of Calanus finmarchicus in area C3. Negative re-
lationships with other food related variables (Calanus helogalandicus in 
area C3 and D4 and Calanus finmarchicus in area D4) were detected, 
but the variable influence scores indicated that these were of minor 

importance. For the NW population both the RI and the RY models 
predicted an increase in length at high abundance of Calanus heloga-
landicus in area C4, although the importance of this variable was lower 
for the RY model. The RY model predicted a negative relationship be-
tween length and the abundance of Calanus finmarchicus in area C4. 

3.6.4. Fishing pressure 
The strongest relationships with fishing pressure were observed in 

the NW population; the RY model predicted a decline in length as cu-
mulative mean lifetime fishing pressure increased from 0.04 to 0.12 
(predictions at higher fishing mortalities relied on less than 10% of the 
data and were not considered). The relationship predicted by the RI 
model was more complex and difficult to interpret. Other models pre-
dicted a positive relationship with Fbar but the Variable Importance 
scores (Fig. 8) suggested that the negative relationship with lifetime 
fishing pressure was the overriding effect. 

3.6.5. Month of capture 
Month of capture was included in the analysis to account for the 

increase in length as the season progressed. The expected increase in 
length was evident in the partial dependence plots for month of capture 
in the NW population. However, for the CS population the relationship 
was dome shaped. In this case April was treated as the first month of the 
year to align with the ageing convention for that stock. The partial 
dependence plot predicted a maximum length in October (month 7) 
which may reflect the dominance of the larger autumn spawning 
component in catches from that time of year. 

3.6.6. Two way interactions between temperature and month 
Two way partial dependence plots showed interactions between some 

pairs of explanatory variables. For the CS population, the dome shaped 
relationship between SST and month was most apparent at temperatures 
above 13.5∘C; at lower temperatures neither the RI or the RY model pre-
dicted a decline in length later in the year (Fig. 10a). In the NW population 
the increase in length over the course of the year was most pronounced at 
temperatures above 13∘C and commenced earlier in the year. 

Fig. 8. Relative Variable Importance for the CS (a), (c) and the NW (b), (d) populations. RI models (a), and (b) were calculated from one GBRT model, whereas RY 
models (c), and (d) were based on 10 GBRT models. The VI scores as a proportion of the maximum for each model are shown on the x axis. The numbers beside each 
bar indicate the VI scores as a percentage of the total for each model. The numbers beside each bar indicate the VI scores as a percentage of the total for each model. 
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Fig. 9. RI partial dependence plots for the CS (a) and the NW (b). One-way partial dependence plots indicate the model predictions after the influence of a predictor 
marginalizing over all other predictors. Two-way partial dependence plots indicate interaction effect of varying degree. The colours are based on the contour levels and 
increase from purple to yellow. The extreme values for the axes are created using low (0.05) and high (0.95) percentiles. The hash marks on x-axis represent the deciles of 
the corresponding variable distribution. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 10. RY partial dependence plots for the CS (a) and the NW (b). One-way partial dependence plots indicate the model predictions after the influence of a predictor 
marginalizing over all other predictors. Two-way partial dependence plots indicate interaction effect of varying degree. The colours are based on the contour levels and 
increase from purple to yellow. The extreme values for the axes are created using low (0.05) and high (0.95) percentiles. The hash marks on x-axis represent the deciles of 
the corresponding variable distribution. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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3.7. GAM modelling 

GAM fits for the top four most influential variables were similar to 
those generated by the GBRT models for both populations (Fig. 11). The 
best fitting models included all four variables. The R2 values were 
39.9% and 26.7% for the CS and NW respectively. Two-way interac-
tions between month and SST were also apparent in the GAM model 
fits, however the nature of the relationships were slightly different. In 
the CS, the decrease in size towards the end of the year was most ap-
parent at around 13∘C and less evident at higher and lower tempera-
tures. In the NW size increased earlier in the year at higher tempera-
tures. 

4. Discussion and conclusions 

This study aimed to disentangle the effects of multiple drivers of 
variability on size-at-age of two herring populations across five decades 
and to identify the most likely causes of observed declines in growth 
Celtic Sea and North-West of Ireland herring since the 1980's. The ad-
vantages of a machine learning approach were combined with simple 
correlation analyses and ecological knowledge. The analysis demon-
strated how GBRTs can be used to identify the relative importance of 
various exogenous variables in a dynamic system. GBRTs and GAMs 
detected similar relationships between length of 3 ring herring and key 
environmental and population related drivers and GBRT models accu-
rately predicted the main trends in mean length in both populations. 
While both methods can be used to detect non-linear responses, an 
added advantage of the GBRT approach is that the relationships be-
tween response and predictor variables and interactions between pre-
dictors do not need to be explicitly specified in the model (Leathwick 
et al., 2006). A potential drawback of GBRTs is that if an entirely data- 
driven approach is applied to the analysis, spurious relationships with 
no biological or ecological basis may be detected entirely by chance 
(Elliot et al. 2016). This was avoided in our analysis by selecting the 
predictor variables based on knowledge of the species' ecology and 
observed correlations with climatic indices. In addition, the robustness 
of the analysis was ensured by testing model predictions using combi-
nations of predictor variables that were held back during the model 
testing stage (the RY models) and by splitting the data into three sets 
(training, validation and testing) to evaluate performance of the RI 
model. That the detected relationships with the predictor variables and 
their relative importance were remarkably consistent across all of the 

approaches tested inspires confidence in the results. The relationships 
detected by the GBRT models are complex and interactive and do not 
necessarily indicate causation. However, many of the observed re-
lationships have a plausible ecological basis. The comparison of the 
Celtic Sea and North West herring populations shows both common 
responses to global drivers and more localised stock-specific relation-
ships. In particular, a marked decrease in length above a threshold 
temperature was detected in both populations. 

In the CS and the NW populations, length of 3 ring herring was 
negatively associated with mean AMO in the year after hatching. The 
observed negative correlation remained significant after correction for 
temporal auto-correlation and is consistent with previous reports of 
climate driven multi-decadal fluctuations in the distribution and 
abundance of small pelagic clupeids (Alheit et al., 2014). During a 
previous warm period, that coincided with a positive phase of the AMO 
(1930's–1960's), the abundance of herring in the English Channel (at 
the southern limits of the species distribution) decreased and its dis-
tribution contracted (Southward et al., 1988) while abundance of the 
more northerly Norwegian spring spawning herring population in-
creased (Toresen and Østvedt, 2000). Concurrent changes in the dy-
namics of other pelagic clupeids (anchovy, sardine, sardinella and 
sprat) and similar trends during the more recent warming period (after 
the mid-1990's) are indicative of climate driven ecosystem regime shifts 
that may be reflected in the AMO signal (Alheit et al., 2014; Edwards 
et al., 2013). The results of this study demonstrate that climatic fluc-
tuations may manifest as changes in fish growth as well as abundance. 
The association between fish size and AMO was stronger and more 
consistent in the Celtic Sea than in the Northwest; possibly indicating 
that the Celtic Sea population, existing close to the southern limit of the 
species' distribution, is thermally limited and more vulnerable to cli-
matic warming than the more northerly Northwest herring population. 

Fluctuations in AMO represent broad-scale environmental change 
that can affect multiple trophic levels with direct and indirect con-
sequences for fisheries. While the AMO is primarily an index of SST 
anomalies, it is also associated with regional fluctuations in precipita-
tion, wind patterns, ocean circulation wind mixing and stratification 
(Nye et al., 2014). AMO related increases in SST can intensify the im-
pact of climate change and directly impact on fish survival, growth and 
other physiological processes (Nye et al., 2009). The combined effects 
of the AMO on temperature, wind patterns and stratification are 
thought to drive decadal changes in global phytoplankton abundance 
(Martinez et al., 2009; Nye et al., 2014), while temperature changes 

Fig. 11. GAM fits for the top four most influential variables, as indicated by the variable importance scores from the GBRT models. Two-way partial dependence plots 
indicate interaction effect of varying degree. The colours are based on the contour levels and increase from purple to yellow. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this article.) 
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lead to changes in the distribution of zooplankton, with consequences 
for growth of planktivorous fish (Beaugrand et al., 2009; McGinty et al., 
2011). Several interacting mechanisms may therefore underlie ob-
served synchronicities between the AMO signal and pelagic fish popu-
lations. 

Here, the GBRT modelling approach provided a means to identify 
the variables that most likely underlie the observed association between 
the AMO index and herring length-at-age. The low to moderate R 
squared values associated with GBRT models (13.2–66.3%) and the 
GAMs (26.7–39.9%) reflected the fact that individual variability in 
length-at-age could not be accounted for by the explanatory variables 
which were measured with broad temporal and spatial resolution and 
with a degree of uncertainty that is not accounted for in the model. The 
herring time series extended back to the 1950's; highly spatially re-
solved data describing the environmental and biological drivers of 
growth are not available for this time period. Nonetheless, predicted 
mean-lengths from the GBRT models were close to the observed mean 
lengths for most of the time series (Fig. 3) and the observed decline in 
mean length of 3 ring herring in the Celtic Sea population after 1980 
was evident in the predictions from both the RY and RI models. The R 
squared values also showed that model predictions were more accurate 
for the Celtic Sea population than the Northwest population. This was 
not due to levels of individual variability in length-at-age which were 
similar for the two stocks. It may be that in the warmer waters of the 
Celtic Sea increasing temperatures have had a stronger limiting influ-
ence on growth of herring, while in the Northwest, other local drivers, 
not included in our analysis, might make a larger contribution to var-
iation in length-at-age. 

The predominant signal detected by all of the GBRT models was a 
negative association between length of 3 ring herring and SST during 
the first growing season (April–August). Both the GBRT models and the 
GAMs predicted a non-linear response to temperature; an increase in 
length at lower temperatures followed by a steep decline at the upper 
end of the temperature range was evident from the GAM fits while the 
GBRT detected a step-change in length above a threshold temperature. 
As expected, length of 3 ring herring was related to month of capture; in 
the NW population length increased throughout the year whereas in the 
Celtic Sea length increased to a maximum in October and then de-
creased, probably due to the increased contribution of the smaller sized 
winter spawning stock component to catches later in the year (Harma 
et al., 2012). The two way partial dependence plots from the GBRT and 
the GAM models indicated that the relationships between length and 
month of capture varied with temperature. The interaction between 
seasonal growth and temperature was complex and the detected re-
lationships varied between modelling approaches. The most consistent 
effect was an earlier increase in size of NW herring during warmer years 
which may indicate that the timing of seasonal growth is changing with 
increasing temperatures. 

At northern latitudes, growth of juvenile herring tends to increase 
with increasing temperature (Husebø et al., 2007). However, an ex-
perimental study conducted using herring from the south eastern North 
Sea recorded metabolic optimum at around 15–16.1∘C with a sub-
sequent decrease in metabolic rate occurring with further increases in 
temperature (Bernreuther et al., 2013). Water temperatures in the 
Celtic Sea and the Northwest are cooler than the south-eastern North 
Sea and the thermal optimum for these populations may therefore be 
lower due to genetic influences on growth and metabolism. Mean SST 
in August ranged from 15.1∘C to 18∘C in the Celtic Sea and from 13.4∘C 
to 15.7∘C in the Northwest. As sea temperatures rose due to the com-
bined effect of a positive phase of the AMO and climate change, herring 
were more likely to encounter temperatures that were sub-optimal for 
growth and metabolism, particularly in the Celtic Sea. In the absence of 
individual temperature histories, it is not possible to determine if this 
exposure would be sufficiently frequent or prolonged to produce such a 
pronounced decline in growth as has been observed in Celtic Sea her-
ring. However, it is plausible that the direct effects of increasing 

temperature on growth and metabolism could at least partly contribute 
to the decline. 

The results highlight how the response of a population to increasing 
temperature can vary to what is predicted for the species as a whole. In 
a cross-population examination of weight-length relationships, Brunel 
and Dickey-Collas (2010) observed that growth rate of herring was 
positively correlated with mean annual SST while asymptotic weight 
was negatively correlated. The authors proposed that global warming 
could lead to higher growth of young age classes, slower growth of 
older individuals and a shorter lifespan of herring. However, tem-
perature-growth relationships within populations were difficult to re-
solve; both negative and positive correlations were detected but many 
were non-significant. In Pacific herring (Clupea pallasai) a positive 
correlation between growth during the first year and SST broke down at 
higher temperatures and marked reductions in growth were observed in 
years when mean July–August temperatures exceeded 12.5∘C (Batten 
et al., 2016). In addition, Watanabe et al. (2008) showed that high 
temperatures during winter had a negative effect on growth of Hok-
kaido spring spawning Pacific herring which occupy the southern 
boundary of the distribution range for that species. In Atlantic herring 
populations, predicted positive temperature-growth relationships might 
not apply when temperatures exceed a certain population-specific 
threshold. This signals caution when extrapolating climate change ef-
fects from contemporary field observations and highlights the im-
portance of considering biological responses at distributional extremes. 

Changes in the growth of planktivorous fish populations can be 
mediated by trophic interactions via the influence of environmental 
processes on plankton abundance (bottom-up control) or due to 
changes in population density and food-competition (top-down con-
trol). Changes in size-at-age have been attributed to density dependence 
in Baltic Sea (Cardinale and Arrhenius, 2000) and George's Bank 
(Melvin and Stephenson, 2007) herring populations. In the North Sea, 
the influence of hydrographic conditions on plankton abundance drives 
short-term interannual variability in growth of larval and juvenile 
herring while long-term trends are driven by density dependence 
(Dickey-Collas et al., 2010; Heath et al., 1997; Shin and Rochet, 1998). 
In the present study, the abundance of some prey items during the first 
growing season was negatively correlated with length of 3 ring herring 
in both populations while relationships with recruitment strength were 
positive (NW population) or weakly negative (CS population). This is 
indicative of bottom-up control of food supply rather than density de-
pendence. A positive correlation between length and recruitment 
strength could arise if conditions which favour high survival during the 
first year are also favourable for subsequent growth. For both popula-
tions, negative relationships between length and adult population size 
in the year of capture were detected, indicating that adult growth is 
subject to density dependence. Overall, associations with food avail-
ability and density were detected but these were weak and of minor 
explanatory importance relative to the temperature effect. The results 
suggest that food availability and density do not exert a strong influence 
on temporal trends in length of Celtic Sea and Northwest herring. 

While length and weight at age declined markedly in Celtic Sea 
herring after the 1980's there was no concomitant decline in fish con-
dition index in either the Celtic Sea or Northwest population (mean 
weight at 27 cm: Fig. 4). This provides further indication that pro-
nounced changes in feeding conditions have not occurred. This is in 
contrast to the situation in the Baltic Sea; declines in weight-at-age of 
herring during the 1990's coincided with a decrease in condition and 
both were attributed to increasing densities of pelagic fish and con-
sequent reductions in food availability (Cardinale and Arrhenius, 
2000). Long-term studies have reported climate related shifts in the 
distribution of zooplankton species in the Northeast Atlantic with 
northward movement of temperature species such as Calanus helgo-
landicus and declines in boreal species like Calanus finmarchicus (Pitois 
and Fox, 2006). However, the abundance of these calanoid copepods in 
the Celtic Sea has remained relatively unchanged (Lauria et al., 2012;  
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Pitois and Fox, 2006). In addition, from 1986 to 2007, temporal trends 
in food availability were not linked to biomass of juvenile herring or to 
climate indicator (Lauria et al., 2012). It appears unlikely that the 
availability of calanoid copepods is a major driver of observed declines 
in growth of Celtic Sea herring. Nonetheless, it must be borne in mind 
that the CPR provides a spatially coarse index of plankton abundance 
and may not capture localised fluctuations in food availability, parti-
cularly within coastal areas inhabited by young feeding herring. 

Intensive fishing is predicted to alter the growth rate of fish popu-
lations directly, by selective removal of large and fast growing in-
dividuals from the population, or indirectly through selection for earlier 
maturation (Heino et al., 2015). Reductions in size-at-age due to the 
selective effects of fishing have been demonstrated in Atlantic cod 
Gadus morhua in the Gulf of St Lawrence (Swain et al., 2007). In the 
present study, mean lifetime fishing mortality contributed very little to 
variability in length of 3 ring herring in the Celtic Sea herring but was a 
relatively important explanatory variable in the models describing size 
variation in the Northwest population. For the NW population there 
was some evidence of a decline in length with increasing mean lifetime 
fishing pressure. For the CS population the detected relationship be-
tween length and mean lifetime fishing pressure was positive. It is likely 
that this association indicates temporal concurrence rather than cau-
sation; fishing effort was restricted during the 1980's and 2000's in 
response to declines in stock biomass which coincided with declines in 
size-at-age (ICES, 2016). Overall, the analysis did not find strong evi-
dence of fishing induced changes in size in the CS or NW herring po-
pulations although the abundance of populations has undeniably been 
affected by decades of intensive fishing pressure. 

Due to the nature of the herring fisheries, evolutionary responses to 
fishing may be relatively minor (Engelhard and Heino, 2004). In the 
waters around Ireland, herring are targeted predominantly by midwater 
pair trawls, primarily during the spawning season. Trawls are known to 
capture a wide range of length classes (Kuparinen et al., 2009). Length- 
dependant escapement of Baltic Sea herring from commercial trawls 
has been demonstrated for fish below 15 cm length (Suuronen et al., 
1997). However, escaped fish suffer high rates of mortality (Suuronen 
et al., 1996). Herring fisheries target aggregations of spawning or 
feeding adults (> 19cm) which tend to be spatially segregated from 
immature fish (Clarke et al., 2010; O'Donnell et al., 2015). It is plausible 
that probability of capture for mature herring on the spawning grounds 
is not strongly size dependant. However, experimental investigation of 
gear selectivity at the fishing grounds would be needed to confirm this. 
The possible contribution of fishing to declines in size-at-age of Celtic 
Sea herring could be further interrogated using the approach of Swain 
et al. (2007) who related back-calculated lengths-at-age to cohort 
specific estimates of fisheries induced selection while controlling for 
temperature and density related changes in growth. 

It is possible that the decline in growth of herring in the Celtic Sea is 
symptomatic of broad-scale changes in the pelagic ecosystem. Clupeid 
fisheries are characterised by variable abundance. In the past, cyclical 
changes in herring populations have coincided with alternate changes 
in sardine (Sardina pilchardus) populations, apparently in response to 
climatic fluctuations and associated ecosystem change (Alheit et al., 
2014; Southward et al., 1988). Although sardines occur in the Celtic Sea 
and are commercially exploited, the stock in this area is not assessed 
and there is no biological data available from scientific surveys or the 
commercial catch (ICES, 2017; Marine Institute, 2016). Available data 
for adjacent areas do indicate recent changes in the growth of sardine. 
Trends in weight-age indicate that growth rates of sardine in the 
southern Bay of Biscay and Iberian coast have increased since 1990, 
while growth rates in the wider Bay of Biscay area have decreased since 
2000. Without extended growth time-series, it is not possible to es-
tablish if these trends reflect a synchronous response to climatic drivers. 
However, the patterns indicate that closer monitoring of the distribu-
tion, growth and population dynamics of pelagic clupeids in the Celtic 
Sea is warranted, particularly as new fisheries develop. 

In summary, the results of the analysis indicate that the declines in 
size-at-age of Celtic Sea herring since the 1980's are most strongly as-
sociated with increasing sea temperatures as a consequence of climate 
change and with a positive AMO index. The more stable size-at-age 
trends in Northwest herring may reflect the stock's more northerly 
distribution and lower exposure to metabolically sub-optimal tem-
peratures, although that population also displays temperature related 
declines in size which indicate a vulnerability to future temperature 
rises. 

Analysis was performed:   

Platform version: Linux-4.4.0-31-generic-x86i_64- 
with-debian-stretch-sid   
Python 3.6.5 :: Anaconda, Inc.   
[GCC 4.4.7 20120313 (Red Hat 4.4.7-1)]   
Pandas version: 0.24.2   
Matplotlib version: 3.0.2   
sklearn version 0.20.2 
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