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Abstract - The “Internet of Things” has become a reality with 

projections of 28 billion connected devices by 2021. Much 

R&D is currently focused on creating methods to efficiently 

handle an influx of data. Flow based programming, where 

data is moved through a network of processes, is a model well 

suited to IoT. This paper proposes a dynamic, distributed 

data processing architecture, utilizing a flow based 

programming inspired approach. We illustrate a distributed 

configuration management protocol, which coordinates 

processing between edge devices and a central controller. Our 

proposed architecture is evaluated in a vehicle use case that 

predicts driver alertness. We present a scenario for reducing 

data on vehicular networks when the connectivity options are 

limited, while maintaining computational accuracy.  
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I. INTRODUCTION 

The “Internet of Things” (IoT) is a paradigm in which 

sensors, actuators, and devices will have internet 

connectivity. Traditionally, the majority of data processing 

occurred on the cloud, or a central controller. However, 

sending large amounts of data over limited bandwidth 

makes the centralized data mining process infeasible. The 

introduction of edge/fog computing, where edge devices 

come with the capability to process and analyse newly 

generated data, has introduced scenarios that involves the  

distribution of some of the data mining tasks from the cloud 

to the edge.  

    Flow Based Programming (FBP), can be viewed as a 

technology where an application is constructed as a 

network of asynchronous processes exchanging data 

chunks and applying transformations to them. Although 

first created at IBM in the late 1960s, there has been a 

noticeable increase in technologies inspired by the FBP 

paradigm recently. Projects such as NoFlo [1], NodeRed 

[2], and Apache Nifi [3] have begun to focus on the 

strengths of FBP and the processing of data flows, which is 

a major requirement of the modern data-driven 

applications, thus making it a viable programming model 

for this oncoming paradigm shift.  

    One of the prime advantages of FBP is its modularity, 

meaning the degree to which a system's components may 

be separated and recombined. Nate Edwards of IBM [4] 

coined the term "configurable modularity" to denote an 

ability to reuse independent components just by changing 

their interconnections. A main characteristic of a system 

that exhibits “configurable modularity” is that you can 

build them out of "black box" reusable modules. While it 

is necessary to connect them together, they do not have to 

be modified to make this happen [5]. 

As previously mentioned, the cloud-centric approach is 

still the most common approach used. However, this 

approach is not sufficient where time-critical processing is 

required. Network bottlenecks and high latency are 

problematic in many scenarios. For this reason, much work 

is underway to efficiently move as much processing as 

possible out to the edge. Currently, there are limitations in 

regards to platforms for developers to deploy and execute 

generic applications on IoT edge devices. This work 

proposes a novel architecture that supports dynamic 

adaption of IoT applications based on internal and external 

events and conditions. This is achieved through a 

combination of the FBP model and custom functions 

implemented on both the edge and central container.  

Our architecture acts as an ecosystem for developers to 

implement and manage generic IoT applications. Functions 

that perform real-time actions can be seamlessly 

incorporated or modified within our architecture. 

Parameters within the functions can be dynamically 

changed based on user input, local environmental 

conditions including, but not limited to, network 

connectivity, CPU and RAM usage, disk storage, etc.  

External factors such as weather or traffic activity may also 

impact the computation of the functions. FBP is 

advantageous in an IoT scenario due to its configurable 

modularity, as processes can be easily reconfigured and 

reconnected to adapt applications to different scenarios. 

    This work focuses on a connected vehicle use case. We 

evaluate a scenario whereby the vehicle can automatically 

send a subset of features to the central controller during low 



network connectivity. The central container can 

dynamically switch between a number of models, 

dependent on the incoming feature set. The dataset used for 

this work was initially proposed in a Kaggle competition 

called “Stay Alert! The Ford Challenge” [6]. The objective 

was to design a classifier that detects whether the driver is 

alert or not, employing data acquired from over 100 

participants while driving.  

    This paper is organized as follows. Section II discusses 

related work, followed by description of a reference 

architecture in Section III. An overview of candidate 

technologies is presented in Section IV, followed by our 

implementation architecture in Section V.  A scenario 

evaluation is presented in Section VI.  Conclusions and 

future work are described in Section VII. 

II. RELATED WORK 

A NECtar Agent is proposed in [7], a solution that 

automates the switching between different data handling 

algorithms at the network edge. The aim is to provide a 

solution for network-edge data reduction and achieves 

accuracies between 76.1 % and 93.8 % despite forwarding 

only 1/3 of the data items. 

    [8] Examines the benefits of data mining on the wireless, 

battery-powered, smart sensing devices at the edge points 

of IoT. The authors implement three specific algorithms: 

Linear Spanish Inquisition Protocol (L-SIP), ClassAct, and 

Bare Necessities (BN). These algorithms fall under GSIP, 

or General Spanish Inquisition Protocol (SIP). Under SIP, 

nodes only send unexpected information. The goal of this 

work was to transform data at source into valuable 

information, in turn reducing packet transmissions, energy 

use, and storage space.  Results showed packet reduction 

of between 95% - 99.98% demonstrating the importance of 

edge mining in an IoT environment.  

    Mobile Fog is proposed in [9]. MF is a high level 

programming model for IoT applications that are 

geospatially distributed, and latency–sensitive. The goal of 

this work is to ease deployment of IoT applications across 

multiple devices from the edge of the network to the cloud. 

It utilizes a dynamic node discovery process to associate 

devices together in a parent-child relationship. Mf is a 

hierarchical system that parent nodes lend their 

computation resources to process data received from child 

nodes. Due to its hierarchical system, MF supports load 

balancing between nodes while also allowing IoT 

applications to process data locally along the way from the 

edge to the Cloud.   

    Krikkit [10] is an open-source solution initiated by 

Cisco, but has been acquired by Eclipse. It is a 

publish/subscribe mechanism where rules are registered on 

the edge gateways that communicate with sensors.  It is in 

the process of specifying a data format and a mechanism 

for “telling the network-edge devices” which data to 

forward and how.  In [11] we propose a distributed data 

processing architecture for edge devices in an IoT 

environment. Our approach focuses on a vehicular trucking 

use case. The traditionally centralized Apache Storm 

processes such as calculating average speeds and 

aggregating driver errors are recreated on the edge devices 

using a combination of Apache MiNiFi and the user’s 

custom-built programs. However, communication was one 

directional in this use case.  Information was not sent from 

the central server to the edge devices.  

III. SYSTEM DESIGN 

This section discusses the dataflow that defines our 

reference architecture. The FBP model consists of three 

main components:  

Black Boxes:  Each black box, or process, in the 

application is an instance of a component that essentially 

receives some data, processes it and forwards the output to 

another black box, creating a dataflow.  

Bounded Buffers: These are the connections between the 

black boxes. Black boxes are connected to one to another 

through ports defined by their components. The black box 

receives data through an input port and transmits the result 

through an output port. 

Information Packets: The data that travels through the 

network, usually in the form of structured packets or 

streams of packets. They can be owned by only one black 

box at a time, which will either pass it along to the next 

process in the network or drop it.  

    Figure 1 illustrates the dataflow that connects the central 

container to the edge container. Information packets, in the 

form of control data, represented by a dotted line, are 

received from the service UI, external interfaces, or the 

main processing unit, and passed to the edge container. 

This information can influence the local computation.   

    Based on incoming information, the edge container may 

apply algorithmic calculations to incoming sensor data. 

This is performed by incorporating the user’s stored 

functions or functions downloaded from the central 

container. The parameters within these functions can be 



dynamically changed by internal environmental conditions 

or external factors, including user input.  Dependent on the 

scenario, different functions can be applied to the dataflow. 

It is also possible to run multiple functions asynchronously 

if necessary. The edge container returns the output to the 

central container, as represented by solid lines in figure 1.  

    On the central container, data is ingested through a 

specified communication port, before being routed to the 

main processing unit, comprised of the users more 

advanced programs, for further analysis. A service UI 

relays user requests into the dataflow, and is a means to 

view the output of the analysis. The configurable nature of 

FBP makes this architecture suitable for many use cases 

involving a large number of distributed connected devices, 

such as Points of Sales, Weather Detection Systems, Fleets 

of Vehicles and Network Systems. 

    The architecture also supports many other tasks 

including the following: 

1) Separating time relevant data that needs to be 

processed instantly from data that may be batched 

and analysed at a later stage. 

2) Structuring and transforming data while in 

motion. 

3) Data encryption and compression. 

 
Figure 1: Reference Architecture with description of dataflow between 

Central & Edge Container 

IV. TECHNOLOGY OVERVIEW 

Apache NiFi [3], is a data in motion technology that 

primarily uses flow based processing. NiFi provides a user 

friendly GUI and contains over 200 processors. Each 

processor performs an action on the passing data. NiFi 

processors are likened to FBP black boxes. The user can 

create a real time dataflow by dragging Processors onto the 

canvas. Each processor is individually configured before 

connecting them to the following processor. The built in 

NiFi processors can perform a multitude of actions such as 

ingesting, transforming, merging, compressing, and 

routing data. There is a collection of processors available 

for ingesting data from a multitude of sources including 

URLs, ports, databases, local file systems, and external 

sources such as edge devices. 

    NiFi was created by the National Security Agency 

(NSA), and acquired by Hortonworks, a data analytics 

software company. NiFi addresses many of the technical 

challenges associated with IoT. NiFi adds extra security to 

the transportation of data with built-in support for SSL, 

SSH, HTTPS, encrypted content and role-based 

authentication/authorization and handles a diversity of 

datatypes as described above. 

    Apache MiNiFi [12] is a sub project of NiFi that can 

perform the majority of NiFi’s actions. It is much more 

lightweight, just 40MB, and is optimized to perform on 

edge devices. MiNiFi does not have a UI, dataflows are 

created on the central NiFi server and downloaded onto the 

MiNiFi edge devices. Anaconda [13], a Python based Data 

Science distribution is used the build and load the machine 

learning models. Python codes are used to score the 

incoming data off the models, and perform computations 

on the edge containers. 

V. SYSTEM SETUP  

We evaluate a scenario in which data is continuously 

streamed from a vehicle to a central Nifi server. Figure 2 

represents an instance of our reference architecture for this 

use case. Apache Nifi, installed on a central container, 

ingests data from the edge container (with Apache Minifi 

installed) and routes the incoming data to the Anaconda 

platform where it is scored against a trained model, 

predicting driver alertness. This prediction can trigger an 

alert to the driver if drowsiness is detected. In case of 

network connectivity dropping, another model is available 

to successfully score an incoming subset of features. Nifi 

dynamically switches between models, dependant on the 

incoming features from the edge container. This 



architecture also provides a method for data to be batched 

on the edge device and sent in bursts over known Wi-Fi 

locations. This is an effective solution as bandwidth over 

LTE is expensive. 

    Minifi was installed on a Raspberry Pi representing the 

connected vehicle. A dataflow consisting of multiple NiFi 

processors were installed via MiNiFi. A SplitText 

processor followed by a ControlRate processor can be 

configured by the user to ingest the data from the test 

dataset and transmitted set intervals, emulating the vehicle 

transmitting data in real time. An UpdateAttribute 

processor is configured to assign each feature an attribute 

name, which allows the data to be split and routed 

separately in the next step. 

    The ExecuteStreamCommand processor is a powerful 

and versatile processor that can run a custom program 

within the Dataflow. In this scenario, we created an 

algorithm that detects a change in network connectivity, 

and transmits data dependant on network strength. The 

algorithm is implemented through a Python code. If 

network connectivity is very high or connected to Wi-Fi, 

all features are transmitted to the NiFi Server. If network 

connectivity is below 50%, a priority group of features is 

transmitted. These features were chosen based on the work 

of [14].  

    The Nifi server ingests the data from the vehicles, where 

a RouteText processor, configured with regular 

expressions, forwards the data to the relevant model. An 

ExecuteStreamCommand processor calls another custom 

python program to score the incoming data against a model. 

The python code implements Scikit-learn and Panda 

libraries [15] to perform prediction against the model.  The 

results of this prediction can be viewed through the service 

UI. If prediction is negative, an alert is sent to the driver or 

the fleet manager’s phone via a PutEmail processor.  

I. SYSTEM EVALUATION & RESULTS 

A training dataset was used to build the model and a 

separate test dataset used to test the model. Different 

models were tested, with an ExtraTreesClassifier model 

giving us the highest prediction accuracy. For this 

evaluation, priority features were determined using results 

from [14], which performed statistical analysis on the 

dataset.  The dataset used for this work consists of 30 

features. Eight of these features are Physiological and are 

represented with a P, (P1, P2, P3 etc).  11 are 

Environmental, represented with E. 11 are Vehicular 

Figure 2: Implementation Architecture showing scenario 1 and 2 as 

described in Evaluation Section 

 

features, and represented with V. For each observation, an 

output “IsAlert” is labelled with 1 indicating that the driver 

is alert or 0 if not alert. 

To test our system, data transmission was recorded in two 

scenarios. This was achieved by increasing the control rate 

at which data passed through the edge device. The quantity 

of data produced was controlled by setting the granularity 

of data production to 100 milliseconds and 500 Ms. The 

table below shows a comparison between the cloud-centric 

approach in which all data is transmitted, and our approach 

during low network connectivity in which a subset of 

features are transmitted. The table represents data 

transmission over a five minute period. 

Table 1: Comparison against cloud centric approach over a five 

minute period 

Data 

Intervals 

Cloud 

Centric 

Approach  

Dynamic 

Approach 

Total 

Data 

Reduction 

100 ms 402 kb 99.6 kb 75.33% 

500ms 80.6kb 19.9kb 75.69% 



     In our scenarios when network connectivity dropped, 

the priority features were transmitted, resulting in 75% 

reduction in data transmission, while still providing 

accurate predictions. In many cases, it may be optimal to 

only send the priority features at all times. However, many 

companies may want to receive and store all data when 

possible for future analytics. On a wider scale, data 

reduction on edge devices will play a pivotal role in the 

success story of IoT. 

Currently, there are a number other IoT development 

platforms available such as NodeRed and Apache Edgent.  

However, NodeRed does not have a general way for 

configuring applications dynamically [16], and Edgent 

currently doesn't provide any "deployment" mechanisms. 

However, it does recommend to FTP the application to the 

device and modify the device to start the application upon 

start-up [17].  

This next section will focus on the dynamic nature of our 

platform and how new functions and parameters can be 

seamlessly passed to the edge device, without breaking the 

flow of data processing.  

Two scenarios were executed to evaluate the performance 

of the service UI and external interfaces dynamically 

changing the output from the edge container. In both 

scenarios, the list of priority features to be transmitted in 

low network connectivity were changed. 

Scenario 1: The service UI  

NiFi comes with two useful processors, ListenTCP and 

PutTCP. These can be configured to ingest data from a 

specified port and send data to a specified port respectively.  

By Using Netcat [18], a computer networking utility tool 

for reading from and writing to network connections using 

TCP and UDP, allows us to pass requests directly into the 

dataflow. In this example, a new list of priority features is 

transmitted to the edge container via the Netcat terminal.  

This was achieved by replacing the existing subset of 

priority features on the edge container dynamically with the 

list received from the users input.  Figure 3 illustrates 

Netcat acing as a service UI, passing information through 

port 2020 into the dataflow, and   listening on port 3030 for 

the output. This system has opened up many options for 

future work.  

 
Figure 3: Illustration of Netcat acting as Service UI. 

Scenario 2: External Interface. 

As discussed, the functions on the edge container may be 

dynamically changed by external factors. To test this, a 

hypothetical scenario was set where the priority features 

are changed based on weather updates. A HTTP processor 

is configured on the central container to perform regular 

requests to an OpenWeather.API.  

In this scenario, we implement a custom python code on 

the central container that generates a new subset of priority 

features whenever rain is predicted by the 

OpenWeather.API. These new features are sent to the edge 

container, updating the priority list. Figure 4 shows the 

protocol involved for this scenario.  

 
Figure 4: Protocol showing dynamic change based on external factor 

(weather in this scenario) 

II. CONCLUSION & FUTURE WORK 

This work proposed a dynamic, distributed data processing 

architecture for an IoT environment. We evaluate a vehicle 

use case that predicts driver alertness. A dynamic protocol 



for adapting to network conditions is discussed. Two 

scenarios were evaluated that dynamically changed the 

priority feature set based on user input and external 

conditions.  

    Future work includes combining MiNiFi, NiFi and the 

user’s custom programs to allow edge containers to 

perform more advanced data mining tasks such as real time 

prediction locally, without the necessity of transmitting to 

a central server. This can be achieved by implementing 

pythons Scikit-Learn packages on the edge containers. In a 

similar scenario to the use case provided in this paper, we 

can then build the models on the central container and 

distribute it to the edge containers. A dataflow can be 

created on the edge container that can independently score 

the incoming sensor data against the model. More 

advanced data mining tasks may also be performed on the 

edge, further reducing data transmission. 
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