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ABSTRACT
The study of morphology is a common means of biological grouping and classification. In recent years,
morphometric studies have been dominated by quantitative geometric-morphometric methods of data
extraction such as outline or landmark-based analysis. These methods are often used in conjunction with
various classification methods such as linear discriminant analysis (LDA) and random forests (RF) in order
to achieve inter- and intraspecific grouping based on environmental factors. Despite numerous studies
incorporating these data-extraction and classification methods, comparisons of the effectiveness of these
methods are largely lacking, especially for species which display low morphological variation. The aim of
this study was to compare the effectiveness of two data-extraction methods, elliptic Fourier analysis (EFA)
and generalized Procrustes analysis, and two classification methods, LDA and RF, using Littorina littorea as
the study organism. The results show that the principal component scores derived from EFA, provided the
optimal data input for classification while the greatest percentage of successfully classified individuals was
achieved using LDA. However, based on this study RF is the recommended classification method as it is
resistant to overfitting, makes no assumptions about the data, is well suited to morphometric data and pro-
duces similar rates of classification to LDA. The results are discussed in a biological context for L. littorea,
based on the environmental factors of zonation and shore exposure.

INTRODUCTION

The study of form and morphology has always been vital to taxo-
nomic classification. Even with recent advances in genetics, mor-
phological assessment is still the dominant means of species
grouping and classification. As such, methodological comparisons
for the extraction and analysis of morphological data are essential.
In recent decades, the study of morphology has been advanced by
the ‘geometric-morphometric revolution’, in reference to a family
of methods that use landmark- or outline-based methods to cap-
ture morphology as a set of Cartesian coordinates or outline con-
tours. This morphological information can then be compared
between populations or species using multivariate statistics (Rohlf
& Marcus, 1993; Adams, Rohlf & Slice, 2004). These methods have
been adopted for morphological analysis of numerous marine
invertebrate groups, such as gastropods (Primost, Bigatti & Márquez,
2016), bivalves (Sherratt et al., 2016) and polychaetes (Glasby &
Glasby, 2006).

Since the advent of this revolution, the literature has been
dominated by landmark-based Procrustes methods (Rohlf & Slice,
1990) such as generalized Procrustes analysis (GPA), which use
biologically homologous points to describe shape differences
between specimens. Even in the present day, far less attention is
paid to outline-based methods such as Fourier analysis and its suc-
cessor elliptic Fourier analysis (EFA). The fact that EFA has not
attracted the same widespread use can be attributed to a number

of reasons. First, the mathematical foundation underpinning EFA
is believed to be quite complex in contrast to that of Procrustes-
based methods (Schmittbuhl et al., 2003) and this perceived com-
plexity may have deterred early practitioners (Caple, Byrd &
Stephan, 2017). Second, early critics of the method pointed to the
fact that outline methods disregard biologically homologous points
and instead give equal weight to the entire structure. However,
both of these points have been tackled in recent years and with
the advent of user-friendly proprietary software (Iwata & Ukai,
2002), EFA has come into more widespread use, though still not
to the same degree as Procrustes-based landmark methods. The
early claim that EFA is an extremely powerful tool for morpho-
logical studies (Rohlf & Archie, 1984) has never been disproven. A
brief summary of both GPA and EFA is given below.

GPA uses points, or ‘landmarks’, which are biologically homolo-
gous between specimens, in order to capture shape (Rohlf &
Marcus, 1993). These points are then compared with their coun-
terparts on each specimen in order to determine how shapes vary.
As such, the derived shape depends entirely on the chosen land-
mark positions (Webster & Sheets, 2010). Hence, there is a need
to choose landmarks that are not only biologically meaningful, but
which can be placed with precision from specimen to specimen.
For some structures, this is extremely difficult. For example, most
gastropod species tend to have few discernible landmarks on their
shell surface. A solution to this has been to use ‘semilandmarks’,
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which are usually placed on a curve and optimally slid to achieve
minimum bending energy. In this way, they capture a point or
points which “acquire geometric homology or correspondence”
from specimen to specimen (Mitteroecker & Gunz, 2009: 242).
Another method is to superimpose a grid over each specimen and
anchor the extremities of the grid to biologically homologous
points, in order to provide consistent landmark positions. This
grid should be rescaled from specimen to specimen to ensure that
the same relative positions on each shell are being recorded
(Maddux & Franciscus, 2009; Vaux et al., 2017).

In contrast to GPA, EFA entails the decomposition of an object
outline into a sum of harmonically related ellipses (or harmonics;
Tracey, Lyle & Duhamel, 2006). This provides a set of four coeffi-
cients for each harmonic: the trigonometric (sine and cosine)
amplitudes of the X and Y increments (Haines & Crampton,
2000; Van Bocxlaer & Schultheiß, 2010). The more harmonics
that are used, the better the constructed outline adheres to that of
the original object (Kuhl & Giardina, 1982). As such, complex
shapes require more harmonics to be reconstructed than do simple
objects. Crampton (1995) recommended using the first eight harmo-
nics to capture the shape of a bivalve shell. However, the author
also cautioned that the number of harmonics to be used should be
carefully considered and that the use of unnecessary or statistically
insignificant harmonics may add ‘noise’ to the outline.

Once morphometric data have been extracted from the specimens
and compiled, a central aim of most morphometric-based studies is to
implement statistical procedures that find the greatest spatial differ-
ences between groups within the data. These spatial differences are
then used to split the groups according to shape and to provide input
for a classification or confusion matrix (Conde-Padín, Grahame &
Rolan-Alvarez, 2007; Van Bocxlaer & Schultheiß, 2010).

A method commonly employed to split groups based on shape
differences is linear discriminant analysis (LDA; Fisher, 1936), pro-
ducing axes that minimize the ratio of between-class and within-
class variation (Swets & Weng, 1996). Despite the vast amount
of morphometric-based literature implementing LDA as a tool
for classification (e.g. Valenzuela et al., 2004; Urra, Oliva &
Sepúlveda, 2007), very little attention has been given to the
assumptions of the test itself (Rexstad et al., 1990). Certain assump-
tions, such as multivariate normality and equal covariance matri-
ces for each class, are deemed difficult to achieve (Van Bocxlaer &
Schultheiß, 2010). Moreover, the number of samples within each
group must exceed the dimensionality of each data vector (number
of measurements of each sample) in order for the covariance esti-
mates to have full rank and thus be inverted. This problem is diffi-
cult to avoid in smaller morphometric datasets (for example,
restricting EFA to the first 10 harmonics results in 40 variables per
specimen) and methods of ordination such as principal component
analysis (PCA) or factor analysis are frequently used for dimen-
sionality reduction. Despite these issues, LDA is generally
regarded as being relatively robust to violations of certain assump-
tions of the test, namely multivariate normality and equal
population-covariance matrices (Lachenbruch & Goldstein, 1979;
Li, Zhu & Ogihara, 2006).

A solution to the problem of nonparametric classification is to
use a machine-learning tool. Machine learning refers to computer-
based methods that automate analytical modelling. One of the
most popular ensemble learning tools, random forests (RF) (Liaw
& Wiener, 2002), utilizes an ensemble of classification or regres-
sion trees to predict the dependent variable as a result of majority
vote or average assignment across trees (Breiman, 2001; Strobl,
Malley & Gerhard, 2009). Once appropriately tuned, RF allows
correlated predictor variables to obtain unbiased predictions and
estimates of variable importance, and to achieve group classifica-
tion (Dub et al., 2013).

Numerous methods of data extraction and classification have
been used to study a variety of marine molluscs (e.g. Monnet et al.,

2009; Sherratt, Serb & Adams, 2017). However, the extraction of
morphological data is a more straightforward task for some taxa
as opposed to others. For example, smooth-shelled caenogastropods
have few identifiable and homologous points that can be compared
across individuals, with the exception of the protoconch-teleoconch
boundary and gerontic features, which leave a record on the shell
(Johnston, Tabachnick & Bookstein, 1991). This is a problem when
attempting to compare morphological features across species or
ecotypes. Even more difficult is the morphological comparison
of species that display low levels of interspecific variation.

In this study, Littorina littorea (Linnaeus, 1758) is used as the sub-
ject, for two reasons. First, the species shows a low level of genetic
and ecophenotypic variation (Fevolden & Garner, 1987; Reid,
1996) and so the sensitivity of the method used to detect morpho-
logical differentiation can be determined by its ability to discrimin-
ate this species into groups reliably, based on shore exposure and
vertical zonation. Second, despite the vast body of literature con-
cerning L. littorea morphology (Kemp & Bertness, 1984; Cummins
et al., 2002; Cotton, Rundle & Smith, 2004), a thorough morpho-
metric study exploring the effects of shore exposure and vertical
zonation is lacking for the species.

Littorina littorea is a dioecious, intertidal caenogastropod. The
species has an almost ubiquitous presence on North Atlantic rocky
shores, where it is often the dominant macroalgal grazer (Lubchenco,
1983). Shell polymorphism between populations of L. littorea has been
studied extensively in the past (review by Reid, 1996) and even over
distances of hundreds of kilometres the species has been found to
exhibit only very slight morphological variation (Johannesson, 1992).
This lack of clear differentiation between allopatric populations is
attributed to the planktotrophic mode of reproduction and prolonged
larval dispersal phase (Johannesson, 1988). This results in high gene
flow between populations (Yamada, 1987). However, morphological
differences are still achievable through the implementation of a plas-
tic phenotype (Hollander et al., 2006). These morphological differ-
ences are known to depend on a variety of environmental factors
such as shore exposure and zonation, both of which will be explored
here.

The aims of this study are (1) to compare the traditional classifi-
cation method of LDA with the ensemble-learning method of RF
to determine which method has greater discrimination success, (2)
to provide a comparison of morphometric data extraction for the
analysis of a gastropod species with low levels of sympatric and
allopatric morphological variation and (3) to provide the first thor-
ough geometric morphometric study of L. littorea, taking into
account the factors of shore exposure, zonation and sex.

MATERIAL AND METHODS

Sample site and collection

Littorina littorea specimens were collected from Blackhead (53°9′
5.0004′′N, 9°16′6.9996′′W) and Flaggy Shore (53°9′29.736′′N,
9°5′27.384′′W) on the west coast of Ireland. Blackhead and
Flaggy Shore are exposed and sheltered shores, respectively. Fifty
specimens were taken from the upper and lower intertidal zones
of each site (n = 200) using haphazard quadrat sampling. Samples
were taken in February 2017. Individuals with damaged or eroded
shells were discarded, and only adult specimens were used. Since
shell growth in this species is indeterminate, adulthood was
assessed by shell height, according to the method used by Williams
(1964), Saier (2000) and De Wolf, Blust and Backeljau (2001).
Individuals with shell height ≥12 mm were considered adults, as
that is the length at which sexual maturity is generally reached
(Williams, 1964; Yamada, 1987). The specimens were killed by
freezing (−20 °C) in order to preserve the reproductive organs and
to avoid any damage to the shells. Soft parts were removed from
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shells by detaching the columellar muscle. Once removed, the spe-
cimens were sexed based on the presence/absence of a penis.

Landmark collection

Shells were digitized in 2D using a Canon EOS 1200D SLR cam-
era mounted on a tripod. Each shell was photographed with the
aperture facing directly upwards and with the columella along the
vertical axis. Shells were placed on a bed of white cement powder,
which provided support and contrast. In order to compensate for
a lack of type I (Bookstein, 1997) biologically homologous land-
marks, a virtual grid (constructed using Adobe Illustrator) was
superimposed over each image to aid in the identification of land-
marks. This was adapted from the method used by Maddux &
Franciscus (2009) and Vaux et al. (2017). The position of the grid
was defined by biologically homologous structures on each individ-
ual, i.e. the final suture on the right side of the body and the most
extreme point of the lower basal lip. Anchoring the grid at these
homologous points and rescaling the grid from sample to sample
provided consistent locations for digitization along the outline of
each individual. Landmarks were applied to the points where the
grid lines intersected the shell. In addition, the apex of the shell
(the protoconch is rarely preserved in this species) and the penulti-
mate suture both on the right and left side of the body were also
landmarked. The shells were landmarked using TPSDIG2 soft-
ware (Rohlf, 2010). This provided a set of X and Y Cartesian
coordinates that contained the size and shape information for
each specimen. To remove variation due to size, position and
orientation, the coordinates were subjected to generalized least-
squares Procrustes superimposition (Rohlf & Slice, 1990). This
removed all confounding information that was not directly
related to shape and provided a set of Procrustes residuals for
use in the analysis.

Outline digitization

Shells were digitized using the same method as above, with one
exception. In order to extract just the outline, the shells were
secured to a glass panel in a constant position and lit from beneath
using an LED spotlight. This provided a silhouette of each shell.
The chain code was extracted by binarizing the images and auto-
matically tracing the curve of each specimen. This chain code was
used to compute normalized elliptic Fourier descriptors based on
the first harmonic. This provided a set of 20 harmonics, each con-
taining four coefficients (n = 80). By visual inspection, it was deter-
mined that the first ten harmonics were sufficient to capture
accurately the relatively simple shell shape. The first harmonic
(which contains size and rotation information) was removed. This
left 36 Fourier coefficients (harmonics 2–10) which could be ana-
lysed using conventional multivariate methods. Removal of nonin-
formative harmonics (noise) also greatly reduced the size of the
overall dataset. This was important as the data were later analysed
using LDA, which requires a matrix inversion of the pooled
covariance matrix. Data reduction is particularly important for
EFA, as the Fourier coefficients are composed of the trigonometric
amplitudes of the X and Y increments, which generally results in
large numbers of variables. Shell outlines were extracted and nor-
malized elliptic Fourier descriptors were calculated using various
packages within the software suite SHAPE v. 1.3 (Iwata & Ukai,
2002; Tracey et al., 2006).

Statistical analysis

To classify individuals into groups, a number of different methods
were employed. We refer to the four populations sampled from
different exposures and zonations as: exposed–lower (EL),
exposed–upper (EU), sheltered–lower (SL) and sheltered–upper

(SU). Individuals were also assessed to determine if sexual shape
dimorphism was present.

Multivariate statistical analyses were carried out using the
Procrustes residuals for the GPA data and Fourier coefficients for
the EFA data. To ordinate and visually explore the data, PCA
was used, as it is simply an ordination method that makes no
assumptions about the data. Also, it subjects the data to a rigid
transformation so that no information is lost. A broken-stick test
(Jackson, 1993) was used to determine which principal compo-
nents (PCs) were statistically significant for each dataset. Warped
outline-deformation grids along PC1 and PC2 were generated for
the GPA data, while contour deformations were generated for the
EFA data in order to visualize morphological changes along the
axes of greatest variation. Warped outline-deformation grids were
constructed in TPSRELW v. 1.67 (Rohlf, 2007) and contour
deformations in SHAPE v. 1.3 – PrinComp (Iwata & Ukai, 2002).

Similarity between the two different methods was assessed
through the correlation of pairwise distances. Euclidean distance
matrices were constructed from both the GPA residuals and the
EFA coefficients. Both distance matrices were assessed for similar-
ity through the use of a Mantel test. This test randomly permu-
tates columns and rows to provide matrix correlations for
unrelated matrices (Smouse, Long & Sokal, 1986). This correl-
ation was used to infer how similar or dissimilar the two different
methods were, based on the r-test statistic. The Mantel test was
carried out with 9,999 permutations. The data were assessed for
multivariate normality by computing Mardia’s skewness and kurtosis
(Mardia, 1970), in addition to a Doornik and Hansen omnibus test
(Doornik & Hansen, 2008). Orthogonal PCs were extracted from
the Procrustes residuals and the Fourier coefficients.

LDA was carried out on the raw EFA coefficients/GPA resi-
duals, maximum PCs and on a variable number of PCs. To pre-
vent overfitting, the number of PCs was incrementally reduced
until the highest jack-knifed cross-validation group assignment per-
centage was achieved for each group. This method was used based
on the findings of Sheets et al. (2006). All multivariate statistics
were computed using PAST v. 3.15 (Hammer, Harper & Ryan,
2008).

RF was adopted, because the method is extremely resistant to
overfitting of the data and it requires very little tuning to produce
the optimal classification algorithm, compared with methods such
as Support Vector Machines which, despite their incorporation into
a number of recent morphometric studies (Santos, Guyomarc’h &
Bruzek, 2014), are regarded as more difficult to train to produce
reliable classification. RF classification rate also improves with larger
datasets, which are often found in morphometric-based studies deal-
ing with large numbers of variables per sample (Díaz-Uriarte & De
Andres, 2006). RF was carried out on the raw EFA coefficients and
GPA residuals, the maximum number of PCs for both methods, and
also a variable number of PCs for both methods. The number of
PCs used as input was again incrementally reduced until the highest
cross-validated classification percentage was achieved. Here, tenfold
cross-validation was employed. This method splits the data into
training and testing sets and then provides an average of the results
for each split in order to give an indication of the effectiveness of a
model. The model was run with 100 iterations (trees). RF analysis
was conducted using WEKA v. 3.8 (Hall et al., 2009).

RESULTS

Visual inspection of the PCA scatter plots for both GPA (Fig. 1)
and EFA (Fig. 2) indicated that both methods recorded similar
levels of variation in the dataset. The Mantel test revealed that the
distance matrices of the Procrustes residuals and the Fourier coef-
ficients were positively correlated with the r statistic, indicating
weak positive correlation (r = 0.327, P = 0.0001). This suggests
that the two datasets are relatively similar. The broken-stick test
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revealed the first four principal components to be statistically sig-
nificant for both EFA and GPA. Individuals appeared to cluster
most clearly based on zonation, rather than shore type. SU and

EU individuals clustered together, as did SL and EL individuals.
The clustering based on zonation was most apparent for the PCA
based on EFA coefficients (Fig. 2). Shape deformations generated

Figure 1. Principal components analysis scatterplot of Procrustes residuals showing morphological variation of shells of Littorina littorea individuals based on
zonation and shore exposure. Shape deformations are included to show morphological change along principal component 1 and principal component 2.
Abbreviations: E–L, exposed lower shore; E–U, exposed upper shore; S–L, sheltered lower shore; S–U, sheltered upper shore.

Figure 2. Principal components analysis scatter plot of Elliptic Fourier coefficients showing morphological variation of shells of Littorina littorea individuals
based on zonation and shore exposure. Closed-contour shape deformations are included to show morphological change along principal component 1 and
principal component 2. Abbreviations: E–L, exposed lower shore; E–U, exposed upper shore; S–L, sheltered lower shore; S–U, sheltered upper shore.
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for GPA revealed the morphological variation along the first two
principal components. Upper-shore specimens displayed a broader
shell with more pointed apex, as opposed to a narrower shape
with a flatter apex for lower-shore specimens. As the aperture was
recorded using GPA, deformations in aperture shape could also
be visualized. This was not possible for EFA, in which structures
inside the shell contour (i.e. the aperture) were not recorded. For
the EFA contour deformations, individuals displayed a slightly
narrower shell with a taller spire, in moving from negative to posi-
tive along PC1. No evidence of sexual dimorphism was found
through PCA group separation or LDA (results not shown).

Based on the Mardia multivariate normality and Hansen and
Doornik omnibus tests, the data were found not to adhere to a
normal probability distribution function, indicating that the data
were significantly nonnormal. As such, the assumptions of the
LDA were deemed to be violated. However, the test is known to
be robust to violations of both multivariate normality and equal
covariance matrices for each class (Lachenbruch & Goldstein,
1979), performing well in both dimensionality reduction and clas-
sification despite these violations (Li et al., 2006). For this reason,
and in the interest of comparing the method with RF, LDA was
still carried out.

The optimal number of PCs to use for the LDA was found by
incrementally reducing the number of PCs until the jack-knifed
cross-validated number of correctly assigned individuals peaked
(Table 1). For EFA, the optimal number of PCs was found to be
17, while for GPA the optimal number was 28. Before reducing
the PC numbers used, strong evidence of overfitting was found.
The highest classification success was found by using the first 17
PCs from the EFA coefficients, which correctly assigned 78%,
representing 156 individuals. LDA of the first 28 PCs from the
GPA residuals produced a slightly lower classification rate of 75%,
representing 150 individuals. The difference in classification rate
was therefore 3%, or six individuals. GPA required a greater
number of PCs than EFA in order to produce optimal results.

RF was used as a nonparametric means of classification. As
with LDA, a variable number of PCs were used in order to find
the highest classification percentage (Table 2). For EFA, the high-
est classification success was achieved when a variable number of

PCs were used. Reducing the data to the first 25 PCs produced a
classification rate of 75.5% (Kappa = 0.6733, mean absolute error =
0.2597), while for GPA the optimal input was the first 20 PCs,
which produced a classification rate of 61% (Kappa = 0.48, mean
absolute error = 0.2867). For GPA, the greatest classification suc-
cess was achieved with a RF analysis of the raw GPA residuals. RF
of the raw GPA residuals produced a classification rate of 65%
(Kappa = 0, mean absolute error = 0.375). However, a Kappa
value of zero indicates a poor model, or a result which could be
expected by chance (Carletta, 1996). Taking the optimal method
for both EFA and GPA (variable PCs), RF of EFA was 14.5%
more effective than that of GPA, equating to a difference of 29 cor-
rectly assigned individuals.

DISCUSSION

Two methods of data extraction were employed in this study: EFA
and GPA. Visual inspection of the PCA scatter plots for both the
EFA and GPA data indicate that both methods recorded similar
variation in the dataset, both methods revealing broader shell
shape in upper shore specimens. In addition, the Mantel test
showed that the distance matrices for both datasets were positively
correlated, indicating that the two data extraction methods, des-
pite their theoretical differences, recorded similar morphological
variation. The results of this study are consistent with the findings
of Van Bocxlaer & Schultheiß (2010), who found that EFA per-
formed better than semilandmark analysis in providing input for
classification. These authors also found that the optimal method
to employ for the analysis of gastropod shells depends on the level
of shell ornamentation, with semilandmark analysis performing
better with ornamented shells. However, for species with a rela-
tively simple shape and low levels of sculpture such as Littorina lit-
torea, EFA is the optimal method for obtaining morphological
data, as evidenced by the current study. Sheets et al. (2006) also
compared a number of morphometric methods, including
semilandmark-based methods and EFA, and found comparable
rates of classification success in all of them. However, these
authors were unable to use automatic outline detection, due to the

Table 1. Classification percentages produced by linear discriminant analysis.

Linear discriminant analysis

Data acquisition EFA coefficients and GPA

residuals

Maximum PCs Variable no. of PCs

Observed Cross-validated Observed Cross-validated No. of PCs used Observed Cross validated

EFA 86.5 74 86.5 74 17 82 78

GPA 86.5 68 86.5 68 28 84 75

Raw coefficients from elliptic Fourier analysis (EFA) and residuals from generalized Procrustes analysis (GPA); maximum principal components (PCs) and
variable numbers of PCs provided data input.

Table 2. Classification percentages produced by random forests.

Random forest analysis

Data acquisition EFA coefficients and GPA

residuals

Maximum PCs Variable no. of PCs

Training Cross-validated Training Cross-validated No. of PCs used Training Cross-validated

EFA 100 75 100 71 25 100 75.5

GPA 100 65 100 56.5 20 100 61

Raw coefficients from elliptic Fourier analysis (EFA) and residuals from generalized Procrustes analysis (GPA); maximum principal components (PCs) and
variable numbers of PCs provided data input.
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irregular shape of the material (feathers) and instead had to rely
on manual tracing of the curves. This may have introduced a
source of error that could explain the discrepancy in findings
between their study and that of Van Bocxlaer & Schultheiß
(2010).

In contrast to the comparative study by Sheets et al. (2006), the
method of data extraction employed in the current study had a
significant impact on classification. Data obtained through EFA
performed consistently better at a priori classification in comparison
with data obtained through GPA. This held true regardless of
whether the data used were raw residuals/coefficients or PC
scores, and regardless of the classification method used. This sup-
ports the findings of Van Bocxlaer & Schultheiß (2010), who
found that outline data provided the optimal input for the classifi-
cation of unornamented shells. Also, EFA was much quicker to
carry out than GPA. For EFA, the method of extracting morpho-
metric data from each of the shells was automated from binarized
images, whereas for GPA each shell required time-consuming
individual landmarking. This is not a major consideration for the
relatively small number of specimens used here (n = 200) but, for
morphometric studies with a greater number of samples and repli-
cates, speed becomes more important. Regardless of data collec-
tion method or classification method, the highest classification
percentages were obtained when using a variable number of PCs,
as also found by Sheets et al. (2006).

As a classification method, LDA superficially performed better
than RF analysis upon jack-knifed cross-validation. The highest
classification percentages were obtained when using a variable
number of PCs. The main purpose of carrying out LDA on the
data here was to provide a comparison for the RF. That the LDA
produced very similar classification rates to that of the RF suggests
that LDA is in fact somewhat robust to certain violations of the
test assumptions, as indicated by previous studies (Lachenbruch &
Goldstein, 1979; Li et al., 2006).

RF proved to be a relatively successful means of nonparametric
classification, producing comparable rates to LDA for the EFA
data. In order to produce the optimal results, a number of factors
within the model needed to be fine-tuned. A major factor influen-
cing classification rate was the number of iterations. RF proved
less effective in the classification of GPA data, despite efforts to
produce classification rates comparable to those of EFA data.
Based on this, RF is recommended for outline data which do not
adhere to multivariate normality or which otherwise do not meet
the assumptions of LDA. For landmark data, there may be prefer-
able machine-learning methods with the capability to produce bet-
ter classification results—such as SVMs (Van Bocxlaer &
Schultheiß, 2010) or logistic regression (Navega et al., 2015). Our
method did not achieve the extremely high rates of classification
(>90%) commonly reported in the literature (e.g. Calle et al.,
2002; Huber et al., 2011). However, many of the previous studies
have explored interspecific variation (e.g. Jaramillo‐O et al., 2015),
in which morphological differentiation is often more pronounced.
Future morphometric studies exploring relatively slight morpho-
logical variation, as in the present case of L. littorea, will likely
report lower rates of correct classification.

Visual inspection of PCA scatter plots for both EFA and GPA
data revealed that individuals of L. littorea showed a high degree of
morphological similarity. This is consistent with the low levels of
genetic variation between populations of the species reported in
previous studies (e.g. Fevolden & Garner, 1987; Hollander et al.,
2006). However, despite group separation being slight, differenti-
ation could still be observed, especially based on tidal zonation.
Upper-shore individuals displayed a broader shell with a more
pointed apex. This contradicted expectations, because in Littorina
species larger and broader individuals are usually more prevalent
on the lower shore (Cummins et al., 2002), where greater shell
girth acts as a defence against crushing predators such as Carcinus
(Johannesson, 1986). The protoconch and early whorls of the shell

of L. littorea are always sharply pointed (Reid, 1996), so the finding of
a flatter apex low on the shore could imply a degree of erosion of
the very tip, which is less pronounced at higher tidal levels.
Only mature adults were examined here, and this suggestion
would require testing with juvenile shells showing well-preserved
apices. Morphological separation based on exposure was not
clearly defined. This is consistent with the work of Janson (1987),
who found virtually no morphological variation between L. littorea
from exposed and sheltered shores. However, Cummins et al.,
(2002) reported a significant correlation between shell width and
exposure. No sexual dimorphism was detected in the present
study. Saur (1990) and De Wolf et al. (2001) also reported no dif-
ference in shell height between male and female L. littorea.
However, other authors (Moore, 1937; Van den Broeck et al.,
2007) have found evidence of sexual dimorphism. GPA warped
outline grids provided detailed shape deformations that included
shape information for structures within the shell contour, i.e. the
aperture. This is perhaps the greatest advantage of landmark-
based methods as opposed to outline-based methods. It is espe-
cially significant for caenogastropods, where aperture shape can
be highly variable depending on environmental factors and often
provides an important aid to classification. EFA deformations
were also generated for the closed contours, but revealed less
information of biological significance than those of the GPA.

Recommendations for future studies

Based on the results of this study, outline-based methods appear
preferable to landmark-based methods for the extraction of mor-
phological data when few unambiguously homologous points are
present. The subsequent classification approach that can be used
depends on whether the data meet or violate the assumptions of
LDA. In either case, RF is recommended because the method
makes no assumptions about the data, and is a straightforward
and robust method for classification as compared with LDA. In
addition, it may be more straightforward for most morphometric
practitioners to tune a RF model than to determine whether the
assumptions of LDA are violated (Karels, Bryant & Hik, 2004). It
is also recommended that, whether using LDA or RF, cross-
validation should be employed to ensure that statistical overfitting
does not occur. However, RF is well known to be resistant to over-
fitting (Breiman, 2001), especially when higher iterations are used,
and this is another reason to favour this method. Using an incre-
mentally reduced variable number of PCs resulted in the highest
classification rate regardless of the data extraction or classification
method used. If the goal of the study is to observe the exact fea-
tures which best distinguish between populations or groups of spe-
cimens, then GPA is preferable to EFA, because structures within
the 2D shell contour can be digitized, landmarked and then
visualized.

Our conclusions and recommendations are based on two data
extraction methods and two classifications, and aim to provide a
general guide for the analysis of gastropods with few clearly hom-
ologous landmarks. However, a wealth of data-extraction methods
exist in addition to the methods used here, each with variants of
their own. The same is true for classification methods—ensemble
learning is simply one suite within a broad range of machine-
learning methods. Future comparative studies to investigate the
effectiveness of various machine-learning methods are recom-
mended as this means of classification becomes increasingly popu-
lar in morphometric studies.
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