Development of novel hydrogel based composites for bone tissue engineering applications

A thesis submitted for the degree of

Doctor of Philosophy

to the

Athlone Institute of Technology

by

John Killion, M.Sc.

Based on research carried out under the supervision of

Prof. Clement L. Higginbotham, Dr. Luke M. Geever &

Dr. James E. Kennedy

Materials Research Institute, Department of Polymer Engineering, Athlone Institute of Technology, Athlone. Ireland.

Declaration

I hereby declare that this thesis submitted to the Athlone Institute of Technology for the degree of Doctor of Philosophy, is a result of my own work and has not in the same or altered form, been presented to this institute or any other institute in support for any degree other than for which I am now a candidate.

John Killion

(Date)

Dedication

I dedicate this work to my parents, Tom and Mary Killion. Their inspiration and support have made this accomplishment possible.

Acknowledgements

During my graduate studies at Athlone Institute of Technology, I have met many great people and have developed numerous friendships. First of all I would like to thank my principle supervisor Prof. Clement Higginbotham for giving me the opportunity to carry out my graduate studies. Thank you for your invaluable input, positive attitude, support, The Higgs Bosons, numerous Christmas parties and of course the rugby games in Dublin with the lads. Next, I would like to thank my co-supervisors Dr. Luke Geveer (Lukie) and Dr. James Kennedy. Lukie, thank you for your guidance, support, proof reading and your kind-nature. I am sure there were times when you were fit to kill me, especially when I was trying to construct sentences for my first manuscript. Also, thank you for the motivation to run the Dublin City Marathon. James, thank you for all of the academic support and assistance and of course tag rugby. Also, I would like to thank my unofficial co-supervisor Dr. Declan Devine (Decie) for all the knowledge you shared with the group in the area of bone regeneration. Guys, thank you for everything- working with you all has helped me become a better scientist and person.

Further, I must extend thanks to my friends and colleagues who assisted me in various experiments: Laura Grehan (Athlone Institute of Technology) for cytotoxicity testing; Dr. Daniel Boyd and Dr. Sharon Kehoe (Dalhousie University) for the synthesis of bioactive glass; Dr. Martin Cloonan (Galway-Mayo Institute of Technology) in the assistance of synthesising maleic PVA; Mr Eoin Sheehan (Midlands Regional Hospital, Tullamore) in supplying clinical knowledge to our research group and Alan Murphy (Athlone Institute of Technology) for training on pieces of equipment in the contract services lab.

Many thanks to my friends in particular to the postgraduates in the bone group: Laura Grehan, Eilish Hoctor, Elaine Kenny and Tess Geever. Also, the other guys who had to put up with me throughout my studies: Kieran Murray, Jude Ngadaonye, Crevan O'Donnell, Noel Gately, Zhi Cao, Mikey Gunning, Josephat Izunobi, Chandrika Bhavanee, Guy Havet and Tommy Smith. I would like to thank the international students who spent time working with me in the lab: Nelly Gonzalez, Quentin Gourlay, Eleonore Mourad and Elodie Danet. Also, I would like to thank the other postgraduate colleagues in the Research Hub who have made the last three years so much fun.

I would also like to thank the staff in the Office of Research (Breda, Lorna, Karl, Anita and Siobhan). Anita, thanks for all the help in printing out the posters. Siobhan (Mammy of the Hub), thank you for the assistance in organising the trip to Malaysia.

Special thanks to my parents Tom and Mary Killion, for their inspiration, encouragement and financial support throughout my years and years of education. I am sure you are happy that I am one step closer to being self sufficient.

Last, but not least, I would like to thank my girlfriend Erin, for her love, patience and support. This certainly would not been possible without you. It has been a great experience, sharing my postgraduate years together with you.

Table of Contents

Declaration	Ι
Dedication	Π
Acknowledgements	III
Table of Contents	V
Abstract	XIII
Abbreviations	XV
List of Figures	XVIII
List of Tables	XXIV

Chapter 1: Literature review

1.1	Background		1
1.2	Tissue engineering		1
1.3	Bone		2
	1.3.1	Structure and material properties	2
	1.3.2	Bone regeneration	4
	1.3.3	Bone repair	5
		1.3.3.1 Biological bone grafts	6
1.4	Scaffo	old design requirements	7
	1.4.1	Biocompatibility	7
	1.4.2	Mechanical properties	8
	1.4.3	Vascularisation	9
	1.4.4	Degradation	10
	1.4.5	Bioactivity	10
	1.4.6	Sterilisation	11
	1.4.7	Manufacturing technology	12
1.5	Bioma	aterials	13
	1.5.1	Hydrogels	14
		1.5.1.1 Hydrogel crosslinking	15

		1.5.1.1.1 Chemical crosslinking	16
		1.5.1.1.2 Physical crosslinking	16
		1.5.1.3.3 Interpenetrating networks	18
	1.5.2	Hydrogels in tissue engineering	18
		1.5.2.1 Synthetic hydrogels	18
		1.5.2.2 Natural hydrogels	19
	1.5.3	Existing materials for bone regeneration	20
		1.5.3.1 Polymers	20
		1.5.3.2 Bioceramics	23
		1.5.3.2.1 Bioactive glasses	23
		1.5.3.2.2 Calcium phosphates	24
		1.5.3.3 Hydrogel composites	26
1.6	Fabric	cation techniques	27
	1.6.1	Photopolymerisation	27
	1.6.2	Solvent casting and particle leaching	28
	1.6.3	Gas foaming	29
	1.6.4	Phase separation	29
	1.6.5	Electrospinning	30
	1.6.6	Rapid prototyping	30
	1.6.7	Melt moulding	30
	1.6.8	Freeze drying	31
1.7	Biolog	gical considerations	31
1.8	Osteo	myelitis	32
1.9	Contro	olled drug delivery	33
	1.9.1	Mechanisms of drug release	34
		1.9.1.1 Diffusion controlled systems	34
		1.9.1.2 Swelling controlled systems	37
		1.9.1.3 Degradation controlled system	37
	1.9.2	Hydrogels in drug delivery	38

Chapter 2: Experimental details

2.1	Material selection 43		
2.2	Photo	polymerisation of samples	46
	2.2.1	Photopolymerisation I	46
	2.2.2	Photopolymerisation II	48
		2.2.2.1 Synthesis of maleic PVA	48
		2.2.2.2 Photopolymerisation of hydrogels	49
	2.2.3	Photopolymerisation III	50
		2.2.3.1 Synthesis of bioactive glass	50
		2.2.3.2 Synthesis of hydroxyapatite	50
		2.2.3.3 Hydrogel based composites	50
2.3.	Synthe	esis techniques	52
	2.3.1	Photopolymerisation	52
		2.3.1.1 UV chamber	52
		2.3.1.2 Handheld lamp	52
	2.3.2	Freeze drying	53
	2.3.3	Preparation of aqueous salts and pH buffer solutions	54
2.4	Chara	cterisation techniques	54
	2.4.1	Swelling studies	54
	2.4.2	Distance between crosslinks and mesh size calculations	55
	2.4.3	Gel fraction measurement	56
	2.4.4	Attenuated total reflectance Fourier transform infrared spectrum	ectroscopy
			56
	2.4.5	Nuclear magnetic resonance	57
	2.4.6	Thermal analysis	57
		2.4.6.1 Differential scanning calorimetry	57
		2.4.6.2 Dynamic mechanical thermal analysis	58

	2.4.6.3 Thermogravimetric analysis	58
2.4.7	Rheological measurements	59
	2.4.7.1 Rheological test I	59
	2.4.7.2 Rheological test II	59
	2.4.7.3 Rheological test III	59
2.4.8	Uniaxial tensile testing	60
2.4.9	Compression testing	60
	2.4.9.1 Compression test I	61
	2.4.9.2 Compression test II	61
2.4.10	In vitro biomineralisation study	61
2.4.11	Scanning electron microscopy with energy-dispersive X-ra	ıy
	spectrometry system	62
2.4.12	X-ray diffraction	63
2.4.13	In vitro antibacterial activity (disc diffusion assay)	64
2.4.14	Drug release studies	65
2.4.15	Toxicological assessment	65
	2. 4.15.1 Preparation of complete culture media	65
	2.4.15.2 Cell harvesting via trypsinisation	66
	2.3.15.3 In vitro cytotoxicity testing	66
	2.4.15.4 Positive control cytotoxicant	67
	2.4.15.5 Elution test (MTT endpoint)	67
2.4.17	Statistical analysis	67

Chapter 3: Results and discussion

3.1	Evaluation of PEG and PPG based hydrogels as a potential scaffold for	
	bone tissue engineering	69
3.1.1	Effect of molecular weight of PEGDMA and polymer c	concentration on
	hydrogels mechanical properties and thermal behaviour	for bone tissue
	engineering applications	69
3.1.1.1	Preface	69

3.1.1.2 Preparation of samples	70
3.1.1.3 Gel fraction measurement	71
3.1.1.4 Fourier transform infrared spectroscopy	73
3.1.1.5 Differential scanning calorimetry	74
3.1.1.6 Dynamic mechanical thermal analysis	76
3.1.1.7 Swelling studies	78
3.1.1.8 Mesh size	79
3.1.1.9 Rheological measurement	82
3.1.1.10 Uniaxial tensile testing	83
3.1.1.11 Cytocompatibility studies	84
3.1.1.12 The 3-(4, 5-dimethylthiazol-2yl)-2, 5-diphenyl-2 tetrazoliumbro	mid
(MTT Assay)	85
3.1.1.13 Summary	86

3.1.2 Incorporation of PPGDMA into PEGDMA precursor: Investigation of the mechanical properties and thermal behaviour of the hydrogel blends

			87
3.1.2.1 Pre	face		87
3.1.2.2 Pre	paratior	n of samples	88
3.1.2.3 Gel	l fractio	n measurement	89
3.1.2.4 Fou	urier tra	nsform infrared spectroscopy	90
3.1.2.5 Dif	ferentia	l scanning calorimetry	91
3.1.2.6 Sw	elling st	udies	92
3.1.2.7 Rh	eologica	al measurement	94
3.1	.2.7.1	Strain sweep	94
3.1	.2.7.2	Frequency sweep	96
3.1.2.8 Co	mpressi	on testing	96
3.1.2.9 Cyt	tocompa	atibility studies	98
3.1.2.10 St	ummary		99

3.2	Synthesis and photopolymerisation of maleic polyvinyl alcohol based	
	hydrogels	101
3.2.1	Preface	101
3.2.2	Synthesis of maleic PVA	102
3.2.3	Freeze drying	105
3.2.4	Fabrication of maleic PVA/PEGDMA hydrogels	106
3.2.5	Fourier transform infrared spectroscopy	106
3.2.6	Swelling studies	108
3.2.7	Compression testing	109
3.2.8	Rheological studies	110
3.2.9	Drug release	112
3.2.10	Cytocompatibility testing	114
3.2.11	Summary	115

3.3 Photopolymerisation and mechanical testing of hydrogel based composites

	116
3.3.1 Bioactive glass based composites	117
3.3.1.1 Photopolymerisation of BG composi	ites 117
3.3.1.2 Thermogravimetric analysis of BG c	composites 118
3.3.1.3 X-ray diffraction of BG composites	119
3.3.1.4 Differential scanning calorimetry of	BG composites 120
3.3.1.5 Fourier transform infrared spectrosc	opy of BG composites 120
3.3.1.6 Swelling studies of BG composites	121
3.3.1.7 Compression testing of BG composi	ites 122
3.3.1.7.1 Unconfined compressive lo	bading 122
3.3.1.7.2 Cyclic compressive loading	g 124
3.3.1.8 Rheological measurement of BG con	mposites 125

3.3.2	Beta-tricalcium phosphate based composites	128
3.3.2.1	Sample preparation of β -TCP composites	128
3.3.2.2	Thermal property analysis of β -TCP composites	129
3.3.2.3	FTIR and XRD analysis of β-TCP composites	131
3.3.2.4	Swelling studies of β -TCP composites	133
3.3.2.5	Compression testing of β -TCP composites	135
3.3.2.6	Rheological studies of β-TCP composites	137
3.3.3	Hydroxyapatite based composites	139
3.3.3.1	Thermal analysis of HAP composites	139
3.3.3.2	Fourier transform infrared spectroscopy of HAP composites	141
3.3.3.3	X-ray diffraction of HAP composites	142
3.3.3.4	Swelling studies of HAP composites	143
3.3.3.5	Compression testing of HAP composites	144
3.3.4	Summary of hydrogel based composites	146

3.4 Bioactive, antimicrobial and drug release properties	of hydrogel based
composites	148
3.4.1 <i>In vitro</i> biomineralisation study	149
3.4.1.1 Bioactive glasses	149
3.4.1.2 β -TCP hydrogel based composites	152
3.4.1.3 Hydroxyapatite hydrogel based composites	154
3.4.2 Drug dissolution	155
3.4.2.1 β-TCP hydrogel based composites	156
3.4.2.2 Hydroxyapatite hydrogel based composites	158
3.4.3 Antimicrobial analysis	159
3.4.3.1 β-TCP hydrogel based composites	160
3.4.3.2 Hydroxyapatite based composites	161
3.4.4 Summary	162

r	hv	droge	15

Appendix **B**: Swelling studies data for hydrogels and hydrogel based composites 220 Appendix C: Strain sweep data for hydrogels and hydrogel based composites

Appendix A: ATR-FTIR of hydrogels and hydrogel based composites

229

Publications

List of publications

4.

Conclusions

List of references

References

Appendices

Chapter 4: Conclusion

171

211

253

165

Abstract

The process of tissue engineering involves replacing and assisting in the healing of damaged tissues. Specifically for bone tissue repair, a clinical demand has developed for alternative materials to replace the existing bone grafting treatments. To date, various materials have been proposed, synthesised and fabricated as potential replacements, but none have been successful. Due to the continued deficiencies of current commercially available biological bone grafts, the search for alternative substitutes has recently come to the forefront of tissue engineering.

The primary objective of this thesis involved the synthesis, photopolymerisation and characterisation of novel hydrogels and hydrogel based composite scaffolds for bone regeneration. Poly(ethylene) glycol dimethacrylate (PEGDMA) was chosen as the main macromolecular monomer for the work described herein. The first stage of the work consisted of investigating the effect of varying the concentration and molecular weight of the macromolecular monomer PEGDMA on the properties of the resultant hydrogels. Results showed the mechanical properties were tunable and predictably altered by varying the pore size and crosslink density of the hydrogel. Additionally, biocompatibility studies on selected hydrogels revealed that cell viability was greater than 86% for all extraction concentrations. Further characterisation was carried out on polymer blends of PEGDMA and polypropylene glycol dimethacrylate (PPGDMA), since homopolymers are often insufficient in terms of mechanical strength. Following these studies, there was an attempt to develop hydrogels that mimic bone in terms of water content. This resulted in the use of a hydrophobic material, i.e. polypropylene glycol. Results revealed that the incorporation of PPG into the system decreases the mechanical strength of the hydrogels, which was observed for both the compression and rheological studies. The toxicological results showed that the aforementioned set of hydrogels was not suitable for implantation unless numerous time-consuming washing steps were performed.

Following from this, the next stage of the research, synthesis of photopolymerisable maleic polyvinyl alcohol was conducted through a one step reaction between maleic anhydride and polyvinyl alcohol (PVA) in toluene sulfonic acid/formamide mixed solvent. Synthesis was confirmed by nuclear magnetic resonance (NMR) and Fourier transform infrared spectroscopy (FTIR). NMR results showed the hydroxyl groups of PVA were acylated by maleic anhydride. Subsequent photopolymerisation of the maleic PVA hydrogels resulted in a weak material that dissolved easily. As a result, PEGDMA was incorporated into the system to improve the material's strength.

In the final body of work, mechanical and bioactive properties for novel hydrogel based composites were investigated. Bioactive glass, β -tricalcium phosphate and hydroxyapatite were incorporated at varying ratios. Compression tests and rheological studies revealed that each individual bioceramic improved the compressive strength for each of the hydrogel based composites compared to the control hydrogel. The increase in compressive strength was subject to the

concentration of bioceramic and the crosslinking between individual bioceramics and PEGDMA. Biomineralisation studies revealed that the control hydrogels did not exhibit bioactive properties, as shown by the absence of an apatite layer after being submerged in simulated body fluid. An apatite layer was formed on all hydrogel based composites where a bioceramic was incorporated. Drug release studies showed that the release of the drug varied depending on the concentration of the bioceramic as well as the molecular weight of the polymer and the drug. Antibacterial studies demonstrated the ability of the hydrogel based composites to control the release of incorporated antibiotics, which could potentially reduce the risk of osteomyelitis by enabling bacterial inhibition.

Abbreviations

ACP	Amorphous calcium phosphate
ASTM	American Society for Testing and Materials
ATR-FTIR	Attenuated Total Reflectance Fourier Transform Infrared
	Spectroscopy
BG	Bioactive glass
CAD	Computer-aided design
CSD	Critical size defect
СТ	Computed tomography
DA	Diacrylate
DI	Distilled water
DMA	Dimethacrylate
DMEM	Dulbecco's Modified Eagle Medium
DMSO	Dimethyl sulfoxide
DMTA	Dynamic mechanical thermal analysis
DSC	Differential scanning calorimetry
ECM	Extracellular matrix
EDTA	Trypsin-ethylenediamine tetra-acetic acid
EDX	Energy-dispersive X-ray
FCS	Foetal calf serum
FDA	Food and drug administration
FDM	Fused deposition modeling
FTIR	Fourier transform infrared spectroscopy
G'	Storage modulus
G"	Loss modulus
HAP	Hydroxyapatite
HCA	Hydroxycarbonate apatite layer
HEMA	Hydroxyethylmethacrylate
IPN	Interpenetrating polymer network

T @ 104	1 1 1 1 1 1 1 4
Irgacure® 184	1-hydroxycyclohexylphenylketone
Irgacure 2959	4-(2-hydroxyethoxy)phenyl-(2-hydroxy-2-propyl)ketone
ISO	International standard organisation
KCl	Potassium chloride
1	Average value of the bond length between C-C and C-O
	bonds
LVE	Linear viscoelasticity
M _c	Molecular weight between crosslinks
M _n	Number average molecular weight
MIC	Minimum inhibitory concentration
MRI	Magnetic resonance imaging
MRSA	Methicillin-resistant Staphylococcus aureus
MTT	(3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
	bromide
M_W	Molecular weight
NIH 3T3	Mouse embryonic fibroblast cell line
NCCLA	National committee for clinical laboratory standards
NMR	Nuclear magnetic resonance
PBS	Phosphate buffered saline
PCL	Polycaprolactone
PDLLA	Poly-DL-lactide
PEG	Polyethylene glycol
PEGDA	Polyethylene glycol diacrylate
PEGDMA	Polyethylene glycol dimethacrylate
PLGA	Poly(lactic-co-glycolic) acid
PLLA	Polylactic acid
PMAA	Poly(methacrylic acid)
PPG	Polypropylene glycol
PPGA	Polypropylene glycol acrylate

PPGDA	Polypropylene glycol diacrylate
PPGDMA	Polypropylene glycol dimethacrylate
PVA	Polyvinyl alcohol
PVP	Polyvinylpyrrolidone
RP	Rapid prototyping
SBF	Simulated body fluid
SD	Standard deviation
Sem	Scanning electron microscope
SEM	Standard error of mean
SFF	Solid free form
SLS	Selective laser sintering
ТСР	Tricalcium phosphate
TE	Tissue engineering
TGA	Thermogravimetric analysis
UV	Ultra violet
W _d	Weight of the hydrogel in the swelling state
\mathbf{W}_{s}	Weight of the hydrogel in the dried state
XRD	X-ray diffraction

List of Figures

Chapter 1: Introduction

- Figure 1.1 Basic illustration of tissue engineering process
- Figure 1.2Cortical and trabecular bone
- Figure 1.3 Bone remodelling cycle
- Figure 1.4 Biocompatibility aspects between implant and the body
- Figure 1.5 Schematic of crosslinking methods for formation of hydrogels
- Figure 1.6 Methods of crosslinking hydrogels
- Figure 1.7 Schematic presentations of apatite formation of hydroxyapatite in SBF
- Figure 1.8 Comparison between convention and controlled drug release systems
- Figure 1.9 Diffusion controlled reservoir (a) and matrix (b) systems
- Figure 1.10 Drug release profile by diffusion of a matrix device
- Figure 1.11 Zero order controlled release profile of a reservoir type device
- Figure 1.12 Swelling process for chemically crosslinked hydrogels
- Figure 1.13 Different loading strategies for hydrogels

Chapter 2: Experimental details

- Figure 2.1 Chemical structure of polyethylene glycol dimethacrylate (PEGDMA)
- **Figure 2.2** Chemical structure of polypropylene glycol diacrylate (PPGDA)
- Figure 2.3 Chemical structure of polyvinyl alcohol (PVA)
- Figure 2.4Chemical structure of hydroxyapatite (HAP)
- **Figure 2.5** Chemical structure of tricalcium phosphate (TCP)
- **Figure 2.6** Chemical structure of bioactive glass (BG)
- Figure 2.7 Chemical structure of dexamethasone
- Figure 2.8 Chemical structure of vancomycin
- **Figure 2.9** Dr. Gröbel UV-Electronik GmbH UV box (left hand side) and UV handheld lamp (right hand side)

- **Figure 2.10** Virtis Freeze Drier (left hand side) and schematic diagram of freeze drying process (right hand side)
- Figure 2.11 Perkin Elmer Spectrum One ATR-FTIR (left hand side) and schematic diagram of FTIR (right hand side)
- Figure 2.12 TA Instruments 2010 DSC (left hand side) and DSC schematic diagram (right hand side)
- Figure 2.13 Advanced Rheometer AR1000 (left hand side) and schematic diagram of setup (right hand side)
- **Figure 2.14** Lloyd Lr10K Plus Series twin column machine in tensile mode (left hand side) and compression mode (right hand side)
- Figure 2.15 Mira scanning electron microscope (left hand side) and Bal-Tec SCD 005 sputter coater (right hand side)
- Figure 2.16 Bruker AXS D8 DISCOVER diffractometer (left hand side) and schematic diagram for XRD (right hand side)

Chapter 3: Results and discussion

- Figure 3.1 FTIR spectra of PEGDMA 400 and its respective hydrogels
- Figure 3.2 FTIR spectrum of surface solution
- Figure 3.3 Differential scanning calorimetry thermograms of PEG600A-D samples (top) and differential scanning calorimetry thermograms of PEGDMA samples at constant macromolecular monomer concentrations having various molecular weights (bottom)
- Figure 3.4 Storage modulus vs. temperature plot at 1Hz for selected hydrogels
- Figure 3.5 Tan delta vs. temperature plot at 1Hz for selected hydrogels
- Figure 3.6 Swelling studies for PEGDMA 1000 at various polymer concentrations
- Figure 3.7 Swelling studies showing the affect of molecular weight on hydrogels water uptake ability

- Figure 3.8 Molecular weight between crosslinks and pore size diameter of hydrogels with variation in molecular weight
- **Figure 3.9** Storage modulus for hydrogels of various molecular weights and associated macromolecular monomer concentration
- **Figure 3.10** Cell viability of NIH/3T3 cells after 24hr exposure at 37°C to various concentrations of PEGDMA hydrogels aqueous solutions as assessed by direct contact testing with the MTT endpoint where n=9±SEM
- Figure 3.11 FTIR spectra of macromolecular monomers PEGDMA and PPGDMA and photopolymerised PPG/PEG400 hydrogel
- Figure 3.12 DSC thermographs of PPG/PEG600A-C hydrogels
- Figure 3.13 Swelling studies for PPG/PEG600A-C hydrogels
- Figure 3.14 Typical strain sweep plots for PPG/PEG400A-C hydrogels
- Figure 3.15 Frequency sweep results for hydrogels PPG/PEG600A-C
- Figure 3.16 A typical plot for unconfined compression test for PPG/PEG400A-C hydrogels
- **Figure 3.17** Cell viability of NIH/3T3 cells after 24hr exposure at 37°C to various concentrations of PPG hydrogel aqueous solutions as assessed by direct contact testing with the MTT endpoint where n=9±SEM
- Figure 3.18 Schematic representation of maleic PVA
- **Figure 3.19** ¹H NMR spectrum of maleic polyvinyl alcohol
- **Figure 3.20** ¹³C NMR spectrum of maleic polyvinyl alcohol
- Figure 3.21 FTIR spectra of PVA before and after the reaction with maleic anhydride
- Figure 3.22 Maleic PVA product after freeze drying
- Figure 3.23 FTIR spectra of maleic PVA, PEGDMA hydrogel, PVA1000 1:1 hydrogel and PVA1000 1:3 hydrogel
- **Figure 3.24** Equilibrium swelling percentage for PVA1000 hydrogels (top) and PVA600 hydrogels (bottom)
- Figure 3.25 Strain plot for PVA/PEGDMA blends

- **Figure 3.26** Frequency sweep results for PVA/PEGDMA blends
- Figure 3.27 Drug release studies for PEG600 maleic PVA samples
- Figure 3.28 Cell viability of NIH/3T3 cells after 24hr exposure at 37°C to various concentrations of PVA1000 1:3 hydrogel aqueous solutions as assessed by direct contact testing with the MTT endpoint where $n=9\pm$ SEM
- **Figure 3.29** Schematic representation of the process used to fabricate the hydrogel based composites
- Figure 3.30 TGA's for (top) control hydrogel and (bottom) 5wt% bioactive glass loadings
- **Figure 3.31** X-ray diffraction of control hydrogel PEG1000A, hydrogel based composite PEG1000A G20 and bioactive glass powder
- Figure 3.32 FTIR spectra for bioactive glass powder, hydrogel composite and control hydrogel
- Figure 3.33 Stress at limit results for bioactive glass hydrogel based composites
- Figure 3.34 Young's modulus results for bioactive glass hydrogel based composites
- Figure 3.35 Cyclic testing for selected bioactive glass hydrogel composites
- Figure 3.36 Storage modulus results for bioactive glass hydrogel based composites
- Figure 3.37 Frequency sweep results for bioactive glass hydrogel based composites
- Figure 3.38 Stress sweep results for bioactive glass hydrogel based composites
- Figure 3.39 FTIR spectra of unevenly distributed bioceramic within hydrogel based composite
- **Figure 3.40** DSC thermographs of the variation in β -TCP loadings
- **Figure 3.41** FTIR spectra for β-TCP powder (a), control hydrogel (b), hydrogel composites at 5wt% (c), and 20wt% loadings (d)

- **Figure 3.42** X-ray diffraction of control hydrogel and hydrogel based composites at different loadings
- **Figure 3.43** Swelling studies data for β -TCP PEG1000A hydrogel based composites
- **Figure 3.44** Swelling studies data for hydrogel based composites at β-TCP 20wt% loadings
- **Figure 3.45** Young's modulus results for β -TCP based hydrogels
- **Figure 3.46** Stress at limit results for β -TCP based hydrogels
- Figure 3.47 Storage modulus results for β-TCP based hydrogels in strain sweep mode
- **Figure 3.48** Storage modulus results β -TCP hydrogel based composites in frequency sweep mode
- Figure 3.49 Tan delta results β -TCP hydrogel based composites in frequency sweep mode
- Figure 3.50 TGA analysis of hydroxyapatite hydrogel composites at 5wt% (a) and 20wt% (b) loadings
- **Figure 3.51** FTIR spectra for control hydrogel (a), 5wt% hydrogel composite (b), 20wt% hydrogel composite (c), and HAP powder (d)
- **Figure 3.52** XRD patterns of hydrogel composites at 5wt% (a), 20wt% (b) and HAP powder (c)
- Figure 3.53 Stress at limit results for HAP based hydrogels
- Figure 3.54 Young's modulus results for HAP based hydrogels
- Figure 3.55 Cyclic testing results for HAP based hydrogels
- Figure 3.56 SEM image and EDX spectra of bioactive glass powder (a), hydrogel based composite PEG600A G20 before (b) and after (c) hydrogel based composite PEG600A G20 soaked in simulated body fluid
- Figure 3.57 FTIR spectra for hydrogel based composite PEG600A G20 before and after being soaked in simulated body fluid

- **Figure 3.58** SEM micrographs of control hydrogel (a), β -TCP hydrogel based composite before (b) and after (c) soaking in simulated body fluid
- **Figure 3.59** X-ray diffraction of hydrogel based composite PEG600A T20 before (a) and after (b) immersion in SBF
- **Figure 3.60** X-ray pattern of hydrogel composite PEG1000A H20 before (a) and after (b) immersion in SBF and HAP powder (c)
- **Figure 3.61** Effect of β -TCP loadings on the release of dexamethasone from hydrogel based composites
- Figure 3.62 Release of vancomycin from hydrogel based composites with different β -TCP loadings
- Figure 3.63 Dexamethasone release profile for hydroxyapatite based hydrogels
- Figure 3.64 Vancomycin release profile for hydroxyapatite based hydrogels
- **Figure 3.65** Antimicrobial studies of hydrogel composite PEG600A T20 in the absence (a) and loaded with vancomycin (b-d)
- **Figure 3.66** Antimicrobial studies of hydrogel composite PEG600A H20 in the absence (a) and loaded with vancomycin (b-d)

List of Tables

Chapter 1: Introduction

- **Table 1.1**Mechanical properties of cortical and trabecular bone
- **Table 1.2**Classification of tissue response to biomaterials
- Table 1.3
 Advantages and disadvantages of hydrogels as scaffolds in tissue engineering
- Table 1.4
 Natural and synthetic polymers used for bone tissue engineering applications

Chapter 2: Experimental details

- **Table 2.1**Formulated composition of PEGDMA with distilled water prior to
photopolymerisation.
- Table 2.2
 Formulated precursor compositions of PPGDMA and PEGDMA

 prior to photopolymerisation
- **Table 2.3**Formulated precursor compositions of maleic PVA, PEGDMA and
distilled water precursors prior to photopolymerisation
- **Table 2.4**Formulated precursor compositions of PEGDMA, distilled water and
bioceramics prior to photopolymerisation
- **Table 2.5**Comparison in ion concentration of human plasma and prepared SBF
solution (A) and reagents masses used to formulate SBF solution (B)
- **Table 2.6** Composition of NIH/3T3 complete culture medium

Chapter 3: Results and discussion

- Table 3.1Gel fraction and glass transition temperature of crosslinkedPEGDMA/H2O hydrogels
- Table 3.2
 Molecular weight between crosslinks, crosslink density and mesh size of hydrogels
- **Table 3.3**Mean tensile results for PEGDMA 600

- **Table 3.4**Gel fraction, glass transition and swelling study results for
crosslinked hydrogels
- **Table 3.5**Mean ± SD values for mechanical testing for crosslinked hydrogels
- **Table 3.6** Mechanical properties for PVA/PEGDMA hydrogels
- **Table 3.7**Gel fraction, glass transition and swelling percentage for hydrogels
and hydrogel based composites
- **Table 3.8** TGA analysis for β -TCP hydrogel based composites
- **Table 3.9** Band assignments for β -TCP powder and PEGDMA
- Table 3.10Mean \pm SD data for percentage swelling and glass transition for β -
TCP hydrogel based composites
- **Table 3.11**Mean ± SD data for percentage swelling and glass transitiontemperatures for hydroxyapatite hydrogel based composite