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Abstract 

The process of tissue engineering involves replacing and assisting in the healing of 

damaged tissues. Specifically for bone tissue repair, a clinical demand has 

developed for alternative materials to replace the existing bone grafting treatments. 

To date, various materials have been proposed, synthesised and fabricated as 

potential replacements, but none have been successful. Due to the continued 

deficiencies of current commercially available biological bone grafts, the search for 

alternative substitutes has recently come to the forefront of tissue engineering.  

The primary objective of this thesis involved the synthesis, photopolymerisation and 

characterisation of novel hydrogels and hydrogel based composite scaffolds for bone 

regeneration. Poly(ethylene) glycol dimethacrylate (PEGDMA) was chosen as the 

main macromolecular monomer for the work described herein. The first stage of the 

work consisted of investigating the effect of varying the concentration and 

molecular weight of the macromolecular monomer PEGDMA on the properties of 

the resultant hydrogels. Results showed the mechanical properties were tunable and 

predictably altered by varying the pore size and crosslink density of the hydrogel. 

Additionally, biocompatibility studies on selected hydrogels revealed that cell 

viability was greater than 86% for all extraction concentrations. Further 

characterisation was carried out on polymer blends of PEGDMA and polypropylene 

glycol dimethacrylate (PPGDMA), since homopolymers are often insufficient in 

terms of mechanical strength. Following these studies, there was an attempt to 

develop hydrogels that mimic bone in terms of water content. This resulted in the 

use of a hydrophobic material, i.e. polypropylene glycol. Results revealed that the 

incorporation of PPG into the system decreases the mechanical strength of the 

hydrogels, which was observed for both the compression and rheological studies. 

The toxicological results showed that the aforementioned set of hydrogels was not 

suitable for implantation unless numerous time-consuming washing steps were 

performed. 

Following from this, the next stage of the research, synthesis of photopolymerisable 

maleic polyvinyl alcohol was conducted through a one step reaction between maleic 

anhydride and polyvinyl alcohol (PVA) in toluene sulfonic acid/formamide mixed 

solvent. Synthesis was confirmed by nuclear magnetic resonance (NMR) and 

Fourier transform infrared spectroscopy (FTIR). NMR results showed the hydroxyl 

groups of PVA were acylated by maleic anhydride. Subsequent photopolymerisation 

of the maleic PVA hydrogels resulted in a weak material that dissolved easily. As a 

result, PEGDMA was incorporated into the system to improve the material’s 

strength.  

In the final body of work, mechanical and bioactive properties for novel hydrogel 

based composites were investigated. Bioactive glass, β-tricalcium phosphate and 

hydroxyapatite were incorporated at varying ratios. Compression tests and 

rheological studies revealed that each individual bioceramic improved the 

compressive strength for each of the hydrogel based composites compared to the 

control hydrogel. The increase in compressive strength was subject to the 
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concentration of bioceramic and the crosslinking between individual bioceramics 

and PEGDMA. Biomineralisation studies revealed that the control hydrogels did not 

exhibit bioactive properties, as shown by the absence of an apatite layer after being 

submerged in simulated body fluid. An apatite layer was formed on all hydrogel 

based composites where a bioceramic was incorporated. Drug release studies 

showed that the release of the drug varied depending on the concentration of the 

bioceramic as well as the molecular weight of the polymer and the drug. 

Antibacterial studies demonstrated the ability of the hydrogel based composites to 

control the release of incorporated antibiotics, which could potentially reduce the 

risk of osteomyelitis by enabling bacterial inhibition. 
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