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INTRODUCTION

Non-invasive genetic sampling through the collec-
tion of animal-shed hair or feathers has become fun-
damental for genetic monitoring and conservation of
vulnerable species, providing a viable and powerful
alternative to blood or tissue sampling (Taberlet et al.
1997, Schwartz et al. 2007). In the marine environ-
ment, DNA has been obtained non-invasively from

seal scat (Reed et al. 1997), dolphin faecal plumes
(Parsons et al. 1999), cetacean blows (Frère et al.
2010) and, more recently, from water samples to
detect harbour porpoises through environmental
DNA (eDNA) (Foote et al. 2012). Current literature
focuses mainly on the remote collection of marine
mammal genetic material, with little attention paid to
sampling protected elasmobranchs in a way that
avoids disturbance.
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ABSTRACT: Large-scale genetic sampling by non-invasive methods is of vital importance for the
conservation of vulnerable or elusive species. In the marine environment, non-invasive genetic
sampling can provide a powerful alternative to conventional biopsies. We designed and imple-
mented mucus swabbing for a free-ranging elasmobranch, thereby demonstrating the utility of
this method in the field. We report the first attempt at mucus collection from 30 plankton-feeding
basking sharks Cetorhinus maximus from 3 spatially distinct ‘hotspots’ in Irish waters. C. maximus
DNA was successfully extracted and verified using DNA barcoding of the mitochondrial DNA
cytochrome c oxidase 1 gene (99% sequence similarity) and basking shark species-specific multi-
plex PCRs derived from the nuclear ribosomal internal transcribed spacer 2 locus. Mitochondrial
control region sequencing (1086 bp) showed that Irish samples were dominated by 2 haplotypes
previously found to be globally distributed. Additionally, 1 novel haplotype was defined from
western County Kerry. On-going genetic tagging will eventually provide more accurate estimates
of global basking shark population structuring, abundance and behavioural ecology.
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The filter-feeding basking shark Cetorhinus max-
imus is the world’s second largest fish and is classified
on the IUCN Red List as ‘Vulnerable’ worldwide and
‘Endangered’ in the Northeast Atlantic (NEA) region
(www.iucnredlist.org/details/39340/0, reviewed in
Sims 2008). In 2000, the basking shark was listed in
Appendix III of the Convention on the International
Trade in Endangered Species (CITES), and was up-
graded in 2002 to CITES Appendix II, which requires
monitoring through licences to ensure that trade can
be sustained without detriment to wild populations.
Currently, it is one of only 8 sharks with protective
legislation of this type. Although circumglobally dis-
tributed, the western European shelf provides a key
habitat, with persistent seasonal aggregations or
‘hotspots’ in areas of higher zooplankton abundance
closely associated with frontal areas around SW Eng-
land, NW Scotland, Ireland and the Isle of Man
(Berrow & Heardman 1994, Sims & Quayle 1998,
Sims et al. 2000, Southall et al. 2005, Witt et al. 2012).
Satellite tracking has revealed that basking sharks in
the NEA overwinter on the continental shelf and shelf
edge in deeper waters and frequent stratified coastal
waters mainly during summer (Southall et al. 2006).
They are capable of trans-equatorial and transoceanic
movements (Gore et al. 2008, Skomal et al. 2009),
thereby demon strating potential for long-distance
dispersal. The little biological data available and pre-
liminary mitochondrial DNA (mtDNA) analyses sug-
gest that basking shark global population structure is
panmictic, exhibiting low worldwide genetic variabil-
ity with no differentiation between ocean basins
(Hoelzel et al. 2006). However, previous genetic stud-
ies have been constrained, relying on low numbers of
tissue samples opportunistically collected from infre-
quent strandings or by-catch. To reveal basking
shark social structure during aggregations and inves-
tigate potential seasonal site-fidelity, successful ge-
netic tagging relies on rapidly sampling multiple in-
dividuals within a shoal at spatially and temporally
independent hotspots. As relatively little is known
about basking shark life-history strategies (Sims
2008) such a sampling design could enhance detec-
tion of consistent patterns of genetic differentiation
(Waples 1998).

Genetic tagging can provide a powerful tool,
revealing contemporary patterns of gene flow, popu-
lation size and mating strategies in marine animals
(Palsbøll 1999). Conventional tags or natural marks
can be lost or can change over time, whereas a
genetic signature allows for 100% tag retention and
significantly reduces the cost and time associated
with studying highly vagile species (Andreou et al.

2012). However, traditional sampling techniques such
as skin biopsies or fin clips are more difficult in the
protected basking shark: not only do they require
expensive equipment and highly specialized tagging
skills that require official licences, but they are also
less successful due to the hard skin of Cetorhinus
maximus. This has potential to induce disturbance of
an individual’s behaviour within an aggregation,
making mucus collection the preferred option for
legislative bodies charged with protection and
licensing of work on threatened species.

A non-destructive genetic sampling procedure
using body mucus placed on FTA® cards (reagent-
loaded papers) has been described from laboratory-
kept teleost fish (Livia et al. 2006), and validated in a
protocol designed to investigate contamination risks
associated with high-density groups of small cichlids
(Le Vin et al. 2011). Hoolihan et al. (2009) were able
to modify this method for live-caught teleosts. Here,
going beyond laboratory conditions, we demonstrate
the feasibility of collecting skin mucus swabs from
free-ranging elasmobranchs. Basking sharks natu-
rally secrete a thick mucus (slime) covering their
entire skin surface (Matthews & Parker 1950), which
has been suggested as a potential DNA source (Sims
2008), but has yet to be tested.

In this study, we report the first successful attempt
to collect elasmobranch mucus in the field and its
efficacy for genetic analyses. We demonstrate the
potential of mucus swabs as a vehicle for large-scale
population genetic monitoring of basking sharks, an
approach which may be applicable to other protected
sharks, skates and rays where there is a need to
assess changes in population dynamics and identify
ecologically important sites. Here we test the utility
of basking shark mucus swabs using 2 maternally
inherited mtDNA genes (cytochrome c oxidase sub-
unit I [COI] and the control region [CR]), and the
nuclear ribosomal internal transcribed spacer 2
(ITS2) region sequences. Mucus swabbing proved to
be a simple, reliable, relatively non-invasive method,
requiring minimal training to obtain samples yield-
ing good-quality DNA from the target species, with
the benefits of reduced costs, time and disturbance
associated with sampling vulnerable sharks.

MATERIALS AND METHODS

Sample locality and collection

Mucus samples were collected from Irish coastal
waters, which, together with their continental shelves,
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present an important seasonal habitat for basking
sharks in the NEA (Berrow & Heardman 1994).
Mucus was first obtained in 2008 during a basking
shark tagging study in County (Co.) Donegal, Ire-
land, when a shark struck the side of a boat with its
tail after being tagged, leaving behind a sample of
black slime. This was removed from the boat’s bow,
stored in 70% ethanol, and genomic DNA was suc-
cessfully extracted. This formed the basis for devel-
opment of a sampling methodology as follows. Upon
detection of a basking shark at the surface, the shark
was approached slowly from the side. The sampling
device involved a mop handle and an extendable
pole with a coarse pan scourer or a cotton cloth
attached by cable ties to the handle (Berrow & John-
ston 2009; our Fig. 1). Skin mucus swabs were col-
lected by gently rubbing the scourer/cloth along the
shark’s dorsal side, from front to back, or its dorsal
fin. There was no risk of breaking the skin, as only
surface mucus was recovered. The scourer/cloth was
removed and easily replaced for the next sampling
attempt. Small amounts of mucus were needed for
genetic analysis, and 1 stroke per shark proved to be
sufficient. Samples were stored in 99% ethanol at
4°C. A total of 30 mucus samples were collected
between 20 May and 14 July 2010 off Co. Donegal (n
= 19), Co. Cork (n = 5), and Co. Kerry (n = 6), Ireland
(Fig. 2). No reaction to the sampling procedure was
recorded for most sharks, whilst some exhibited a
mild reaction best described as a  ‘startle’ response,
thought to be due to the close proximity of the boat

and touching the shark with the pole, rather than dis-
comfort associated with the sampling attempt.
Depending on the county in which they were sam-
pled, differently coloured conventional number tags
were deployed for mark-recapture. Simultaneous
tagging ensured that individuals were not resam-
pled. Size and sex were assessed, when possible,
using a pole-mounted camera, and geographic loca-
tion was recorded by an onboard global positioning
system (GPS). Additionally, 2 basking shark tissue
samples were obtained from incidental by-catch —
one off Co. Donegal and one off Co. Dublin.

DNA extraction, amplification and quantification

Mucus was taken directly from the scourer or,
alternatively, a 1 cm2 piece of mucus-covered cloth
was used for DNA extraction. Total genomic DNA
was extracted from 30 mucus samples and 2 by-catch
tissue samples using either the Qiagen® DNeasy tis-
sue kit or proteinase K digestion and standard phe-
nol-chloroform procedures (Sambrook et al. 1989).

A 652 bp fragment from the 5’ region of the mtDNA
COI gene was amplified for DNA barcoding (Hebert
et al. 2003) using the FishF2 and FishR2 primers from
Ward et al. (2005). PCRs were performed in a Biome-
tra T-Gradient thermocycler consisting of an initial
denaturation step of 95°C for 5 min, followed by
35 cycles of 45 s at 94°C, 60 s at 50°C, 60 s at 72°C,
and a final extension phase of 10 min at 72°C. The
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Fig. 1. Sampling procedure, using scouring pads (showing black mucus) attached to an extendable pole by cable ties to obtain 
mucus from basking sharks Cetorhinus maximus (Berrow & Johnston 2009)
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40 µl reaction mix contained 1× PCR buffer, 200 µM
deoxynucleotide triphosphates dNTPs, 1.5 mM
MgCl2, 0.3 µM of each primer, 0.5 U of Taq DNA
polymerase (Bioline) and 10 ng genomic DNA. PCR
products from 8 mucus samples and 1 Cetorhinus
maximus tissue sample (control) were visualized on a
1% agarose gel, purified (QIAquick PCR purification
kits, Qiagen®) and bidirectionally sequenced (Beck-
man Coulter Genomics). A se quence similarity
search was performed in GenBank using the BLAST
algorithm.

PCR amplifications to recover the full mtDNA CR
(1086 bp) used primers CMARH-F and CMARH-R
(Hoelzel et al. 2006) in 40 µl mixtures consisting of 1×
PCR buffer (Bioline), 200 µM dNTPs, 1 mM MgCl2,
0.2 µM of each primer, 0.4 U Taq DNA polymerase
(Bioline) and 2.5 µl genomic DNA template. Cycling
conditions consisted of an initial 5 min denaturation
at 95°C, followed by 35 cycles of 45 s at 94°C, 1 min
30 s at 55°C, 1 min 30 s at 72°C, and a final extension
phase of 8 min at 72°C. One positive control (tissue
sample) and 1 negative control were used during
each set of PCRs to assess band size and contamina-

tion. A total of 12 samples failed to amplify and,
therefore, 2 internal, CMARH-F1 and CMARH-R2
primers were used (Hoelzel et al. 2006), which
involved performing 2 additional and separate PCRs
(CMARH-F & CMARH-R2 ~550 bp and CMARH-F1
& CMARH-R ~1000 bp) to give a final composite
sequence of 1086 bp. PCR amplifications were per-
formed in a 30 µl reaction mix consisting of 20 ng
DNA, 1× PCR buffer (Bioline), 200 µM dNTPs, 0.3 µM
of each primer, 1 mM MgCl2 and 0.7 U Taq DNA
polymerase (Bioline). PCR conditions were as de -
scribed above; however, the annealing temperature
was 56.7°C for CMARH-F-R2 and 46.8°C for
CMARH-F1-R. All 32 amplified products were puri-
fied using QIAquick PCR puri fication kits (Qiagen®)
and bidirectionally se quenced (Beckman Coulter
Genomics). Samples showing new haplotypes were
re-amplified and sequenced to verify polymorphisms
(nomenclature as in Hoelzel et al. 2006).

Mucus samples were amplified in a multiplex PCR
with shark ITS universal primers FISH5.8SF and
FISH28SR (Pank et al. 2001), and 2 internal basking
shark-specific primers BSK328F and BSK503F using
20 to 200 ng DNA template following Magnussen et
al (2007), with a negative and 2 positive controls
(Irish and New Zealand tissue samples). A subset of 9
mucus samples and the 2 positive controls were
amplified with the ITS2 FISH5.8SF and FISH28SR
primers to produce a 1400 bp amplicon, and were
gel-extracted using QIAquick gel extraction kit
 (Qiagen®). All 11 samples were bidirectionally se -
quenced to give 486 bp partial 5.8S rDNA-ITS2
region se quences for direct comparison with those in
GenBank (Magnussen et al. 2007).

Sequence analyses

Sequences were edited using Proseq V.3.0 and
aligned in Clustal X V.1.8.3 (Thompson et al. 1997) us-
ing default parameter settings. A neighbour- joining
tree was constructed using mtDNA COI sequences in
MEGA V.5.03 (Tamura et al. 2011) using the Kimura
2-parameter (K2P) model (Kimura 1980), with 10 000
bootstrap replicates; 2 great white shark Carcharodon
carcharias sequences were used as an outgroup
(Wong et al. 2009). DnaSP V.4.5.0 (Librado & Rozas
2009) was used to estimate nucleotide diversity (π),
haplotype diversity (h), and for detection of polymor-
phic sites for both mtDNA COI and CR sequences. A
haplotype network for the mtDNA CR region was
constructed using the median-joining (MJ) algorithm
in Network V.4.5.1 (Bandelt et al. 1999).
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Fig. 2. Cetorhinus maximus. Locations for collection of
 mucus samples from basking sharks between 20 May and 

14 July 2010
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RESULTS AND DISCUSSION

To confirm the presence of Cetorhinus maximus
genomic DNA, 8 mucus samples (from the 3 different
sites; Fig 2) and 1 tissue sample were selected for
barcoding using mtDNA COI gene sequences, with
BLAST searches returning 99 to 100% sequence
identity with C. maximus for all samples. In addition,
sequences were pasted into the BOLD (Barcode of
Life Data system) (www. barcodinglife. com/ index.
php / IDS_ Open Id Engine) search engine, again veri-
fying 100% matches to C. maximus. Aligning the 9
Irish COI sequences with 44 global C. maximus COI
sequences available in GenBank revealed 6 polymor-
phic sites defining 5 COI haplotypes (h = 0.528 ±
0.069 SD, π = 0.00176 ± 0.00032 SD) which show a
worldwide distribution. The Irish samples showed 2
of the 5 haplotypes reported in Wong et al. (2009)
(our Fig. 3); Hap_2 was found in Co. Donegal (n = 1)
and Co. Kerry (n = 2) samples, while Hap_4 was
found in all 3 Irish  samples (Co. Donegal, n = 3; Co.
Kerry, n = 1; Co. Cork, n = 2).

Twenty-three mucus samples and 1 by-catch tissue
sample from Ireland were successfully sequenced for
the mtDNA CR. These samples were dominated by 2
haplotypes (BS1 and BS2; the tissue sample dis-
played BS2), in common with those from other ocean
basins and exhibited extremely low nucleotide and
moderate haplotype diversity (h = 0.533 ± 0.105,
π = 0.00069 ± 0.00021), concordant with Hoelzel et al.
(2006) (our Table 1, Fig. 4). However, 1 new haplo-
type (BS7) was defined from a single Co. Kerry indi-
vidual (Table 1).

All 11 Irish 486 bp 5.8S rDNA-ITS2 region se-
quences were identical to the 10 globally distributed

reference basking sharks (GenBank accession no.
EF194106) from Magnussen et al. (2007), confirming
nuclear DNA can be amplified and se quenced from
mucus samples. Similarly, both sets of primers
for multiplex PCRs consistently pro duced species-
 diagnostic amplicons from the mucus  samples.

Findings from both mtDNA gene regions and the
ITS2 sequences suggest little global population
structure and low genetic variability. High rates of
gene flow are characteristic of large, highly mobile
elasmobranchs, especially from areas lacking any
apparent physical barriers to movement.

This study reports the utility and first successful
field collection of mucus samples for population
genetic analysis of an endangered shark species.
Rather than relying on samples collected opportunis-
tically, and in accordance with current conservation
practices, we demonstrate the utility of mucus sam-
ples as a non-invasive and rapid technique to obtain
genetic samples from multiple geographic hotspots
for this species within 1 season.

To the best of our knowledge, the sampling tech-
nique described here provides the least harmful and,
simultaneously, the most cost- and resource-efficient
way of collecting samples from some elasmobranchs.
Mucus glands are numerous and common in fish
skin (Shephard 1994), so collection of mucus swabs
should be considered for other vulnerable elasmo-
branch species, such as the whale shark Rhincodon
typus or the manta ray Manta birostris, species that
spend time either at or near the surface, and are slow
moving or approachable by divers. Taberlet et al.
(1999) argued that the term ‘non-invasive sampling’
should be restricted to DNA material taken from
what is ‘left behind’ by an animal. Therefore, our
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Fig. 3. Cetorhinus maximus. Neighbour-joining tree of 53 global basking shark mitochondrial DNA cytochrome c oxidase sub-
unit I (COI) sequences (652 bp). Two great white shark Carcharodon carcharias (C.c.) COI sequences were used as an out-
group. The values displayed are bootstrap support values (only >50% are shown) derived from 10000 iterations using the
Kimura 2-parameter model. Two haplotypes are found in the Irish basking shark samples (Hap_2 and Hap_4). Haplotype 4
seems to be the most common haplotype worldwide. Regions are ATL: Atlantic; CL: Chile; DO: Dominican Republic; EC:
Ecuador; IT: Italy; NOR: Norway; NZ: New Zealand; SA: South Africa; TR: Turkey; UN: unknown; US: United States of Amer-
ica; and IR (Ireland), Co. Donegal; IR*: Co. Cork; IR**: Co. Kerry. The by-catch tissue sample from north of Co. Donegal is in-
cluded within IR. All COI sequences were taken from Wong et al. (2009), except for accession nos. GU805881 (origin: Italy)
(submitted 2010 to the EMBL/ GenBank/ DDBJ databases) and HQ167642 (origin: Turkey) (E. Keskin unpubl.). Scale bar: 

number of substitutions per site
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method would not fit this strict criterion. However,
here we did not break the skin and did not induce a
significant, immediate behavioural response (such as
displacement or deep dives), indicating that mucus
sampling does not cause undue distress to individu-
als. Observations of sampled sharks showed that
most resumed feeding on the surface <1 min after
sampling. Consequently, we would argue that not
only is our method non-destructive, but it can also be
referred to as non-invasive.

Regarding the limitations of mucus swabs, there is
always a risk of amplifying microbial DNA when

extracting mucus samples, resulting in DNA low in
target template. However, the subsequent use of spe-
cies-specific markers and advances in DNA bar -
coding can usually overcome this issue (Holmes et al.
2009, Wong et al. 2009). Although some samples
were of lower DNA quantity and quality, >75% of
the samples amplified successfully, demonstrating
the utility of mucus samples for DNA extraction and
sequencing. Future development will involve nu -
clear marker discovery, microsatellites and single
nucleotide polymorphisms (SNPs), for basking shark
genotyping, providing additional tools to elucidate
global population connectivity. These markers hold
the promise of improved genotyping from degraded
DNA (Morin & Mccarthy 2007, Helyar et al. 2011),
such as that obtained with mucus swabs.

The basking shark is listed as a UK BAP (Biodiver-
sity Action Plan) species, and research into the bask-
ing shark’s population status, as well as the collection
of biological material, is encouraged (JNCC 2012). At
present, mucus swabs provide a viable alternative to
collecting DNA invasively, and because population
samples can be collected over short time periods eas-
ily, with minimal equipment and training, such col-
lections may prove more obtainable and informative
than isolated opportunistic samples. Further spatio-
temporal mucus sampling of Cetorhinus maximus
geographic hotspots could assist in identifying key
sites and management units (Moritz 1994, Palsbøll et
al. 2007), eventually allowing new insights into bask-
ing shark population dynamics and social patterning.
We conclude that the ability to genotype populations
from mucus fulfils several prerequisites for effective
conservation management of highly mobile, marine
mega-vertebrates (Morin et al. 2004).
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Hap                 Polymorphism position                               Sampling area and haplotype frequency
        182       450       639       794       877       887       966     NWA   NEA    MED    PAC      SA      CAR       IR       IR*      IR**

BS1     T         A         G         G         C         C          −           5           3           −         13         −           −         12         2           2
BS2     ·           ·           ·           A           ·           ·           ·           6           2           4         10         −           −           2           2           −
BS3    C         G         A           ·           ·           ·           ·           3           1           −           5           −           1           −           −           −
BS4    C           ·           ·           ·           ·           ·           ·           1           1           −           4           1           −           2           −           1
BS5     C           ·           ·           A           ·           ·           A          −           −           −           1           −           −           −           −           −
BS6     ·           ·           ·           A           ·           ·           A          −           −           −           1           −           −           −           −           −
BS7     ·           ·           ·           ·           T          T           ·           −           −           −           −           −           −           −           −           1

Table 1. Cetorhinus maximus. Polymorphic nucleotide sites and defined haplotypes in mitochondrial DNA control region
(1086 bp) sequences of 24 Irish basking sharks, including 6 previously defined haplotypes and frequencies from Hoelzel et al.
(2006). Polymorphism position refers to the light-strand sequence along the 1086 bp sequences from Hoelzel et al. (2006). The
dash at nucleotide position 966 indicates a deletion. Hap: haplotype; dots indicate same nucleotide position as Haplotype BS1.
Sampling areas are NWA: Northwest Atlantic; NEA: Northeast Atlantic; MED: Mediterranean; PAC: Pacific Ocean; SA: South
Africa; CAR: Caribbean. Mucus samples from Ireland are IR (Ireland), Co. Donegal; IR*: Co. Cork; IR**: Co. Kerry. The by-
catch tissue sample from north of Co. Donegal is included within IR. Dashes under ‘Sampling area and haplotype frequency’ 

indicate absence of a haplotype in a sampling area

Fig. 4. Cetorhinus maximus. Statistical median-joining net-
work of the 7 global basking shark haplotypes across vari-
ous oceanic regions (NWA, NEA, MED, PAC, SA, CAR, IR,
see Table 1), including 24 Irish sequences. The number of
Irish (IR) individuals displaying each haplotype is indicated.
The network shows evidence for global panmixia among
different oceans, dominated by 2 haplotypes, BS1 and BS2.
Most Irish samples from this study share BS1 (n = 16); other-
wise, no structure is evident among the 3 hotspots. One new
haplotype from County Kerry, BS7 (n = 1) was defined. Sin-
gle mutational steps are assumed between haplotypes un-
less indicated by black dots. Circle sizes are proportional to 

haplotype frequencies
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