

A flexible decision support tool for MSY-based MPA design

Journal:	ICES Journal of Marine Science
Manuscript ID	Draft
Manuscript Types:	Original Article
Date Submitted by the Author:	n/a
Complete List of Authors:	Dedman, Simon; Galway Mayo Institute of Technology, Marine & Freshwater Research Centre Officer, Rickard; Galway-Mayo Institute of Technology, Science Brophy, Deirdre; GMIT, Clarke, Maurice; The Marine Institute of Ireland, Fisheries Reid, Dave; Marine Institute, Fisheries Science Services
Keyword:	Decision Support Tool DST, Marine Protected Area MPA, Maximum Sustainable Yield MSY, Elasmobranch, Boosted Regression Trees BRT, Escapement, Ray
	·

SCHOLARONE[™] Manuscripts

A flexible decision support tool for MSY-based MPA design

Simon Dedman^{a,b}, Rick Officer^a, Deirdre Brophy^a, Maurice Clarke^b, David G. Reid^b

5 a Marine and Freshwater Research Centre, Galway-Mayo Institute of Technology, Galway, Ireland; +1 415 944

6 7258, **b** Marine Institute, Rinville, Oranmore, Co. Galway, Ireland **Emails:** <u>simon.dedman@research.gmit.ie</u>

7 (corresponding author), <u>rick.officer@gmit.ie</u>, <u>deirdre.brophy@gmit.ie</u>, <u>maurice.clarke@marine.ie</u>,

8 <u>david.reid@marine.ie</u>

Abstract

ICES WGEF recommends that demersal elasmobranchs be managed using spatial proxies for Maximum Sustainable Yield. Here we combine escapement biomass - the percentage of the stock which must be retained each year to conserve it – with maps of predicted abundance of four ray species (cuckoo, thornback, blonde, and spotted), created using Boosted Regression Tree modelling. We then use a Decision Support Tool to generate location and size options for MPAs to protect these stocks, based on the priorities of the various stakeholders, notably the minimisation of fishing effort displacement. Variations of conservation/fishing priorities are simulated, as well as differential priorities for individual species, with a focus on protecting nursery grounds and spawning areas. The result is a complete software package that produces maps of predicted species abundance from limited survey data, allowing disparate stakeholders and policymakers to discuss management options within a mapping interface.

22 Keywords

- 23 Decision Support Tool DST; Marine Protected Area MPA; Maximum Sustainable Yield
- 24 MSY; Elasmobranch; Boosted Regression Trees BRT; Escapement; Ray

25 Abbreviations

Manuscripts submitted to ICES Journal of Marine Science

2		
3	26	• Bpa – Precautionary reference point for spawning stock biomass
4 5	27	BRT - Boosted Regression Tree
6 7	28	CPUE - Catch Per Unit Effort
8 9	29	DST – Decision Support Tool
10 11	30	GAM - Generalised Additive Modelling
12 13	31	GLM - Generalised Linear Modelling
14 15	32	• HR – Harvest Rate
16 17	33	ICES - International Council for the Exploration of the Sea
18 19	34	LPUE - Length Per Unit Effort
20 21	35	MARXAN - Marine spatially Explicit Annealing
22 23	36	MaxEnt - Maximum Entropy
24 25	37	MPA - Marine Protected Area
26 27	38	MSY - Maximum Sustainable Yield
28 29	39	TAC – Total Allowable Catch
30 31	40	WGEF - Working Group for Elasmobranch Fisheries
32 33		
34 35	41	1 Introduction
36	40	The large size and low focundity of elegenchronets such as rays malyes them especially
37 38	42	The large size and low fecundity of elasmobranchs such as rays makes them especially
39	43	vulnerable to fishing pressure (Baum et al., 2003; Ellis et al., 2005; Worm et al., 2013),
40 41	44	and decades of high fishing effort have reduced the size, range, and diversity of Irish
42 43	45	Sea rays (Brander, 1981; Rogers and Ellis, 2000; Walker and Hislop, 1998) such that
44 45	46	these data-limited stocks require appropriate fisheries management in order to reach
46 47	47	Maximum Sustainable Yield (MSY) by 2020 (Commission, 2013). Spatial management
48 49	48	tools explored by ICES WGEF (2012a) have been further developed (Dedman et al.,
50	49	2015, in review) using Boosted Regression Trees (BRT), BRTs outperform many other

- 2015, in review) using Boosted Regression Trees (BRT). BRTs outperform many other
- statistical methods (Elith et al., 2006, see also Dedman et al. (2015, in review) for
- comparisons). BRTs have a demonstrated ability to reveal species-level Catch Per Unit
- Effort (CPUE) maps for the Irish Sea based on limited data (Dedman et al., 2015), and

2 3	53	to identify candidate nursery ground and spawning areas (Dedman et al., in review), as					
4 5	54	well as amalgamate conservation priority areas for four species of differing vulnerability					
6 7	55	(Table 1).					
8 9	56	TABLE 1 LOCATION					
10 11	57	Locating areas of essential habitat for species is a key step in the process towards spatial					
12 13	58	management (Foley et al., 2010; Kelleher, 1999). However, implementing area closures,					
14 15	59	for example by creating Marine Protected Areas (MPAs), must be based on robust					
16 17	60	biological knowledge in order to correctly size and locate the closed areas, to maximise					
18 19	61	their chances of success (Agardy et al., 2011; Kelleher, 1999). In this study we					
20 21	62	demonstrate a method that links fishing mortality reference points (i.e. F^{MSY}) to life					
22 23	63	history traits (Zhou et al., 2012), as applied to these species by Shephard et al. (2015).					
24 25	64	This results in a per-species Harvesting Rate (HR_{MSY}), i.e. the percentage of the total					
26 27	65	stock biomass which can be sustainably removed each year. The inverse of this is					
28 29	66	therefore the percentage of total stock biomass which must be <i>retained</i> each year					
30 31	67	(escapement biomass).					
32 33	68						
34 35	69	A key objective in MPA design might be to minimise fishing fleet disruption and effort					
36 37	70	displacement by considering the impact on fisheries (Agardy et al., 2011; Klein et al.,					
38 39	71	2013; Suuronen et al., 2010), not least because displaced effort can have unpredictable					
40 41	72	and negative consequences on the stocks (Penn and Fletcher, 2010). Stakeholder					
42 43	73	involvement is an important consideration in MPA design (Kelleher, 1999). It increases					
44 45	74	the likelihood of compliance (Agardy et al., 2011), without compromising conservation					
46 47	75	goals (Klein et al., 2013). Giving fishermen and policy-makers equal access to Decision					
48 49	76	Support Tools (DST) enables all parties to explore spatial management options without					
50 51	77	compromising scientific quality, increasing the shared ownership of conservation					
52 53	78	outcomes.					

79 **2** Aims

54 55

56

Here we use the estimated proportions of population biomass that must be conserved annually to meet MSY (via HR_{MSY})(Shephard et al., 2015). We combine this information with fishing effort data and modelled ray CPUE maps to identify the location and size of habitat areas where management could protect the escapement biomass, while minimizing disruption to fishing activity and the displacement of effort, under a range of exploitation and conservation scenarios. We propose a target-based rationale for the size and location of protected areas for Irish Sea skates and rays, and present a DST that allows fishermen and policymakers to evaluate closed area options.

3 Methods

FIGURE 1 LOCATION

90 The predicted CPUE maps used as inputs were generated using the delta log-normalised 91 BRT-predicted CPUE mapping approach developed and described in Dedman et al. 92 (2015). This method machine-learns the relationship between six environmental 93 variables (temperature, depth, salinity, current speed, substrate grain size, distance to 94 shore) and ray CPUE from 1447 fishery-independent survey sites (ICES, 2013) then 95 predicts ray CPUE to the remainder of the Irish Sea based on the environmental variable 96 values there.

The conservation maps were produced by scaling the BRT-predicted CPUE maps
(Dedman et al., 2015) values' to 1 by dividing them all by the maximum value, then
adding them together, resulting in a single surface of predicted conservation importance
for these four rays in the Irish Sea (as per Dedman et al. (in review)). Predicted CPUE
maps and conservation maps were generated using survey data and CPUE covariates per
Dedman et al. (2015), and juvenile ray and eggcase reducing variables (predatory fish
CPUE, fishing effort, scallop dredging effort, whelk CPUE).

2		
3	106	For the closed area modelling, the BRT-predicted CPUE maps were scaled to 1, and
4 5	107	multiplied by per-species weighting factors if required. These weighting factors allow for
6 7	108	the manipulation of the relative importance of fishing and conservation and the
8 9	109	conservation weightings for each species can be set individually. To compare outcomes
10 11	110	under different management strategies we tested four different conservation: fishing
12 13	111	weighting scenarios. These were:
14 15	112	- Parity of conservation and fishing (1:1 ratio for all species)
16 17	113	- Primacy of conservation over fishing (10:1 ratio for all species)
18 19	114	- Primacy of fishing over conservation (1:10 ratio for all species)
20 21	115	And finally, to investigate the consequences of differing species conservation priority we
22 23	116	applied species-specific vulnerability weightings. These were derived from ICES WFEG
24 25	117	(2014) conservation status metrics, with negative elements being given a score of 1, and
26 27	118	benign elements 0. The elements were fishing pressure, stock size, and percent of
28 29	119	spawning in study area. There were then added together to give a total vulnerability
29 30 31	120	score of 2.5, 2.1, 1.4 and 0.6 for blonde, cuckoo, spotted and thornback ray
32	121	respectively. These scores were then all scaled to align the least vulnerable (thornback
33 34	122	ray) to 1, i.e. by dividing each by 0.6, to give final ratios of 4.17, 3.5, 2.33 and 1
35 36	123	respectively.
37 38	124	
39 40	125	Fishing effort was expressed on an inverted scale from 0 for maximum effort, to 1 for no
41 42	126	effort. It was then added to the CPUEs, creating a Combination Metric running from 0 (0
43 44	127	CPUE and maximum effort) to 2 (maximum CPUE and no effort). HR _{MSY} values for
45 46	128	cuckoo, thornback, and spotted ray were taken from Shephard et al. (2015); the value
47 48	129	for blonde ray, 0.08, was derived using Shephard's method.
49 50	130	
51 52	131	To evaluate alternative management priorities, species data were subsequently sorted
53 54	132	according to:
55 56	133	 Combination Sort: sorting by the aforementioned Combination Metric, high to
57 58	134	low;
59 60		,
00		

2 3	135	- Biomass Sort: sorting by CPUE, high to low; emphasising protecting areas on a
4 5	136	high biomass basis only
6 7	137	- Effort Sort: sorting the fishing effort data, low to high; emphasising protecting
8 9	138	areas on a low fishing effort basis only
10 11	139	- Conservation Sort: sorting the conservation data, high to low; emphasising
12 13	140	protecting areas on a high conservation basis only
14 15	141	- Weighting only affects the Combination Sort, since the Combination Metric is a
16 17	142	product of CPUE and effort, and the relationship between these is changed by the
18 19	143	weighting process.
20 21	144	To ensure that candidate protected areas contain the escapement biomass, the model
22 23	145	then sums the biomass until the cumulative total of biomass reaches the HR_{MSY}
24 25	146	proportion of that species' total biomass. These are then considered as the candidate
26 27	147	closed areas, which are then mapped, on top of the Combination Metric background.
28 29	148	Displaced effort is calculated as the effort in the closed area, and expressed as a
30 31	149	percentage of total effort.
32 33	150	For each sort type cumulative closed area maps are then calculated, starting with the
34 35	151	most vulnerable species. This initial closed area is then extended using the same
36 37	152	approach, until the <i>second</i> most vulnerable species' Bpa is reached. The process is
38 39	153	repeated sequentially for all species in order of their vulnerability. In some cases a
40 41	154	species' Bpa may already be reached by the cumulative closed area calculated for the
42 43	155	previous species. In this study, the Bpa is a theoretical concept, because we only
44 45	156	consider a subset of the extent of the four ray stocks.
46 47		
48 49	157	4 Results
49 50 51	158	The method of inverting scaled fishing effort and adding it to scaled CPUE results in
52 53	159	maps which clearly show the best and worst areas to close to protect each species while

minimally disrupting the fishery (Figure 2, right panel).

1		
2 3	162	FIGURE 2 LOCATION
4 5	163	
6 7	164	FIGURE 3 LOCATION
8 9	165	
10 11	166	Altering the rays: effort weighting markedly affects the amount of effort displaced by the
12 13	167	closed area, and the size of those closed areas, as anticipated (Figure 3). For cuckoo ray,
14 15	168	12.4% of effort is displaced by the area closure required to reach theoretical Bpa for this
16 17	169	species when both ray CPUE and fishing effort are scaled to 1 and combined (1:1 ratio;
18 19	170	centre panel of Figure 3). Giving the rays a weighting of 10 (10:1 ratio, left panel) shifts
20 21	171	some of the area closure onto areas of fishing effort, resulting in a total displaced effort
22 23	172	of 38.4%. Prioritising effort (1:10 ratio, right panel) results in a 3.3% displaced effort,
24 25	173	with the closed area avoiding sites of even low effort thus expanding across a greater
26 27	174	area of moderate ray CPUE.
28 29	175	
30 31	176	TABLE 2 LOCATION
32 33	177	
34 35	178	Table 2 shows the percentages of fishing effort that closed areas displace with under
36 37	179	different weighting scenarios, all under the Combination Sort scenario. These are given
38 39	180	for individual species and cumulative (multiple) species area closures. Weighting in
40 41	181	favour of rays (bottom row of columns three and four) understandably produces the
42 43	182	highest displacement of effort (95 and 78% respectively). Weighting in favour of effort
44 45	183	results in less displacement than weighting 1:1, as expected (25 and 41% respectively,
46 47	184	columns 2 and 1). One can see the effect of the weighting process when comparing the
47 48 49	185	individual-species closed area displacements (top four rows) for the 1:1 ray scores
50	186	(column one) to the per-species weightings (column four): blonde and cuckoo ray have
51 52	187	weightings of 4.17 and 3.5 respectively (column four header), which sees their closure
53 54	188	displacements rise from 35 to 73%, and 12 to 20% respectively. Spotted and thornback
55 56	189	ray have lower weightings (2.33 and 1 respectively) which sees spotted ray's
57 58 59 60	190	displacement rise from 7 to 11 and thornback ray's obviously unchanged.

2 3	191	
4 5	192	FIGURE 4 LOCATION
6 7	193	
8 9	194	With the default 1:1 ratio of ray CPUE to fishing effort, the closed areas produced by the
10 11	195	different sorting strategies are displayed in Figure 4, again for cuckoo rays only (see
12 13	196	Supplementary Material for all species). The Biomass Sort (Figure 4, top left panel)
14 15	197	displaces 58% of the fishing effort and covers a large area, tightly bunched around the
16 17	198	high fishing effort area fringes then spread over the deep water areas. The Effort Sort
18 19	199	(Figure 4, top right panel) displaces only 4% of the effort, but closes a larger area. The
20 21	200	Combination Sort (Figure 4, bottom left panel) displaces 12% of the effort while still
22 23	201	closing a very similar area to the Biomass sort. The Conservation Sort (Figure 4, bottom
24 25	202	right panel) displaces 92% of the effort and closes much of the Irish Sea.
26 27	203	
28 29	204	FIGURE 5 LOCATION
30 31	205	
32 33	206	Again with the default 1:1 ratio of ray CPUE to fishing effort, the <i>cumulative</i> closed areas
34 35	207	produced by the different sorting strategies are displayed in Figure 5, expanding from
36 37	208	the most to least vulnerable: blonde ray (black), cuckoo ray (red), spotted ray (green),
38 39	209	thornback ray (blue). The Biomass Sort (Figure 5, top left panel) displaces 99% of the
40 41	210	fishing effort, as this method places no importance on fishing effort. The Effort Sort
42 43	211	(Figure 5, top right panel) displaces 27% of the effort, but closes all of the Irish Sea
44 45	212	except the effort hotspots. The Combination Sort (Figure 5, bottom left panel) displaces
46 47	213	41% of the effort while still closing a similar area to the Biomass Sort, although
48 49	214	obviously it prioritises reducing effort displacement as well, so the main effort hotspot is
50 51	215	largely uncovered. The Conservation Sort (Figure 5, bottom right panel) displaces 95%
52	216	of the effort and closes much of the Irish Sea. The Biomass, Combination and
53 54	217	Conservation Sorts close off a large proportion of the Irish Sea, with the Biomass and
55 56	218	Conservation Sorts displacing the main fishing grounds as part of those closures. The
57 58 59	219	Effort Sort closes basically all of the Irish Sea except for the main fishing grounds,

2 3	220	including the very low ray productivity areas like the muddy nephrops grounds off 53.5					
4	221	to 54.5°N off the Irish coast, and in the North Eastern bays.					
5 6	221	to 54.5 N off the first coast, and in the North Eastern Days.					
7	222						
8 9	223	TABLE 3 LOCATION					
10 11	224						
12 13	225	Table 3 shows the percentages that closed areas displace fishing effort, for different					
14 15	226	species under different sorting scenarios, both as individual species and cumulative					
16 17	227	(multiple) species closures. The cumulative scores in the bottom row align with the final					
18 19	228	displacement percentages displayed in the legends in Figure 5. As one might anticipate,					
20 21	229	the Biomass and Conservation Sorts (columns two and four) have high displacement as					
22 23	230	they focus solely on the rays. Conversely the Effort Sort (column three) has low					
24 25	231	displacement as it focuses primarily on minimising effort displacement, similar to the					
26 27	232	effort-weighted Combination Sort (column two in Table 2). The Combination Sort					
28 29	233	(column 1 in Table 2) has a displacement a little higher than the Effort Sort but					
30 31	234	noticeably lower than the Biomass and Conservation sorts.					
32 33 34 35 36	235	5 Discussion					
37 38	236	5.1 Overview					
39 40	237	Managing vulnerable, data-poor elasmobranch species to MSY by 2020 is a challenge					
41 42	238	that may be addressed using spatial management approaches. We combined modelled					

CPUE – as a proxy for abundance – of four differentially vulnerable ray species with

average annual fishing effort from the fleet targeting those rays, and per-species HR_{MSY}

values. This produced a DST which allows stakeholders to evaluate the MPAs resulting

from a range of management priorities. This approach should help increase stakeholder

buy-in with the beneficial consequences for implementation and compliance, and thus increase the likelihood of success of the MPA.

5.2 Stakeholders and management BRT approaches have been demonstrated to identify modelled CPUE hotspots for these rays in this area, based on sparse data (Dedman et al., 2015, in review), but these results cannot support area closures such as MPAs without considering their likely effects on other stakeholders, especially the commercial fisheries sector. Some of the key principles of successfully siting MPAs are stakeholder engagement and avoiding effort displacement and non-compliance (Agardy et al., 2011; Fulton et al., 2015; Kelleher, 1999; Suuronen et al., 2010). Spatial modelling can act as a common ground to catalyse discussions between stakeholders with disparate objectives, address critical questions, and distil numerous opinions into a few clear and tractable aims (Fulton et al., 2015). Policymakers need models that integrate science into the management process, increase their available options, and help them identify the option that best meets their needs (Fulton et al., 2015; Pielke, 2007).

This DST approach could be used to address the problem in fisheries management whereby policymakers often adopt positions they feel will disappoint all parties as little as possible (Pope, 1983). Not only is it important to manage species to MSY because it's a minimally precautionary target to ensure stocks and biodiversity are maintained (Kaplan and Levin, 2009; Levin et al., 2009; Zabel et al., 2003), but we are legally mandated to do so by 2015, 2020 latest (Commission, 2013).

265 5.3 MSY underpinning and proxies

Typically this would involve calculating the F_{MSY} then using that figure to calculate a Total Allowable Catch (TAC) limit, based on the SSB, for a targeted single species, at the appropriate stock-specific spatial scale. However in this and many similar cases this is not possible either due to a lack of the data required to calculate a species' MSY, or because the management regime doesn't lend itself to single-species TACs. In this case study, this is because these rays are mostly caught as bycatch, and applying single-species TACs would increase discarding because the rays would become choke species (Schrope, 2010) to fleets primarily targeting other stocks (i.e. their TACs would be

depleted faster than the target species' TACs, preventing the fleets from any further
fishing for target species, since that would risk illegally catching more rays) (ICES WGEF,
2014). Because of these technical barriers to implementing the traditional MSY
approach, ICES has called for fisheries scientists to evaluate MSY *proxies* for stocks such
as these (Ellis et al., 2010; ICES WGEF, 2012a, 2012b).

279 5.4 Sorting methodologies revealing stakeholder viewpoints

The method developed in this paper incorporates the principle of MSY, using the HR_{MSY} proxy, in order to generate a biomass that must be protected in order to conserve the stock – but the shape and size of the closed area chosen to reach that biomass is not predefined. This allows for genuine stakeholder input into the decision-making process, whereby MPAs can be drawn up based on weighting factors agreed between scientists, based on e.g. ICES WGEF (2014) spawning and nursery areas extents, and fishermen, based on their first-hand understanding of the stocks. Recognising that conservation plans are prioritisations is a key aspect in spatial planning (Game et al., 2013). Different priorities can be built into the scenario design, such as individually weighting the rays based on their respective vulnerabilities, and balancing stock conservation against effort displacement minimisation. The results show that the Effort Sort (top right panel, Figure 4 and 5) achieved the least effort displacement while satisfying the theoretical Bpa threshold, but at a cost of the largest closed area (Figure 5 and Table 3). The Combination Sort (bottom left panel, Figure 4 and 5) achieved a balance between low effort displacement and closed area size, and is also beneficial since it allows for individual species vulnerability weightings, which are nullified in the other sorting techniques. The Biomass and Conservation Sorts (top left and bottom right panels respectively, Figure 4 and 5) both closed most of the Irish Sea in order to reach a theoretical Bpa threshold, with both displacing almost all of the fishing effort as well.

As discussed in the results section, weighting towards individual ray species or fishing
effort shifts the candidate closed areas in the resulting map, allowing stakeholders to

view the impact of their choices and their management priorities. The rationale used to change the weightings in this study were individual ray species vulnerability ratios (ICES WGEF, 2014) and simple 1:10 / 10:1 ray conservation: effort examples. Although based upon stock status metrics, these ratios were derived to demonstrate the changing outcomes produced under difference scenarios, and more scientifically defensible and mutually agreed figures would be required for actual operation. Factors like market value could be used here instead, allowing the inclusion of other management priorities into the modelling procedure, and thus the likely candidate closed area outcomes.

310 5.5 Closed area results and siting principles

The individual-species Combination Sort closed areas (e.g. central panel, Figure 3) align well with the arbitrary '50% maximum CPUE' closed area suggestion in Figure 8 of Dedman et al. (2015), but cover a notably larger area. The closed areas in this study are derived from HR_{MSY} calculations rather than an arbitrary cut-off, however, meaning that they are more reliably based on solid fisheries science foundations. They also align well with the peak CPUE 'conservation priority areas' in Figure 6 of Dedman et al. (in review), but again cover a greater area than just these peaks. The positional similarities across the three studies are not especially surprising since all three analyses are underpinned by the same datasets.

320 5.6 MSY and Spatial Management

This study suggests candidate closed areas using predicted CPUE maps created by BRT modelling of the full species (Dedman et al., 2015) or subset (Dedman et al., in review) databases. The base layer could also be provided by other means, as long as the data are in a simple gridded format. This gives one scope to use alternative methodologies to derive species abundance predictions, such as generalised linear or additive models (GLMs/GAMs (e.g. De Raedemaecker et al. (2012) and references therein), MaxEnt (Elith et al., 2011; Phillips et al., 2004), or MARXAN and its add-ons (Ball and Possingham, 2003; Watts et al., 2009). Delta log-normal BRTs are the best choice for this case study,

2
3 4 5
5
6
7
7 8
9
10
11
12
13
14
15
16
17
18
10
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
∠∪ 21
∠ I วว
22
23
24
25
26 27
27
28
29
30
31
32
33
34 35
35
36
36 37 38
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
55 56
50 57
57 58
59

60

however - see Dedman et al. (2015) for detailed comparisons and Elith et al. (2006) for
comparative performance metrics.

331

The closed area proposals generated by this approach advance the work of Dedman et al. (2015, in review) by underpinning them with the established fisheries science principles of escapement and MSY. This results in fine-scale MPA proposals which are much in demand (Warton et al., 2015), as small-scale MPAs are the most management relevant (Fulton et al., 2015). Fisheries managers and politicians do still need to be mindful of certain mitigating factors and opportunities before establishing MPAs based on these area proposals, however.

339

340 The approach detailed in this paper considers MPA-siting relative to its effects on the 341 displacement of fishing effort for the commercial fisheries sector (TR1 metier: otter trawl 342 and demersal seine with mesh size ≥ 100 mm) that targets these stocks, but doesn't yet 343 consider other stakeholders, like other fishery metiers, tourism, wind farms, and so 344 forth. Incorporating these elements could be achieved by factoring in certain areas as 345 pre-set closed areas (like wind farms and buffer zones around them), and summing the 346 losses for the other groups as we currently do for the TR1 metier. This would allow for a 347 more holistic appraisal of the effects of proposed areas closures, and invite 348 representative inclusion of those stakeholder groups.

349

350 We have framed the outputs of this study as leading to permanent MPAs – but this does 351 not necessarily need to be the case. Building on underlying maps of the CPUEs of 352 juvenile and adult female subsets, using the methodology of Dedman et al. (in review), 353 areas could be closed temporarily, based around each species' reproductive cycle. This 354 could be paired with technical/gear measures, such that all ray fishing could be banned 355 from juvenile hotspots, minimum landings sizes could be in place year-round, and 356 maximum landing sizes could be in place within mature female hotspots during spawning 357 seasons, for example.

There is value in assessing how the underlying BRT abundance hotspot maps change on a yearly basis. Inflexibility in the face of mobile species and climate change is a common failing of closed areas (Fulton et al., 2015), and repeated high CPUE is a required condition to satisfy the definition of a nursery area (Heupel et al., 2007). Dedman et al. (2015) pooled the data from all years into a single analysis. Teasing out yearly hotspot maps (e.g. with bootstrapping) could produce yearly closed area maps which would allow the spatial management of these stocks to continually adapt to the changing situation, in a yearly open dialogue with all stakeholders.

367 5.7 Caveats and further work

Fishing effort was the metric used to model the priorities of the fleet, but CPUE or LPUE (landings per unit effort) may more accurately represent their spatial references and could be incorporated into future applications of the tool. The current approach allows many differing preferences to be incorporated, but it is still prescriptive, insofar as it uses a set algorithm. An alternative would be to build a feature on top of the Bpa summing process that would allow stakeholders to draw their own MPAs onto a digital map, and see what proportion of each species' theoretical Bpa is protected by the MPA, in real time. These could be based in greater or lesser degree on the algorithm determined candidate areas, and could draw on stakeholders tacit knowledge. It would allow fishermen to factor in steaming time and therefore fuel costs, for example.

The Harvest Rate figures from Shephard et al. (2015) were calculated for the adjoining Celtic Sea (ICES area VIIg), and thus may not be perfectly suited to the Irish Sea (VIIa). Management utilisation of this approach as an advisory tool may thus require investment in validating the key inputs on HR_{MSY}, vulnerability and harvest ratio.

383 6 Conclusion

This methodology allows us to map vulnerable ray CPUEs with reference to their habitat, and use this information to develop MSY-proxy candidate spatially closures, based on the principle of conserving an escapement biomass. We are able to build management priorities directly into the mapping process, and then propose closures which can minimise the displacement of effort, which is the classic problem in spatial management of fisheries. This method gives fishermen the ability to propose closures, based on their own preferences, but still underpinned by biological science, and within the remit of the Common Fisheries Policy. 7 Acknowledgements The authors appreciate the input of Graham Johnston and Sam Shephard's local and biological knowledge, and Hans Gerritsen's statistical and programming expertise. We gratefully acknowledge the critical comments of the reviewers, which helped to improve the present paper. Research funding was received from the European Community's Seventh Framework Programme (FP7/2007–2013) under grant agreement MYFISH number 289257. David G. Reid also acknowledges funding from a Beaufort Marine Research Award, carried out under the Sea Change Strategy and the Strategy for Science Technology and Innovation (2006–2013), with the support of the Marine Institute, funded under the Marine

402 Research Sub- Programme of the National Development Plan 2007–2013. The funders

403 had no role in study design, data collection and analysis, decision to publish, or

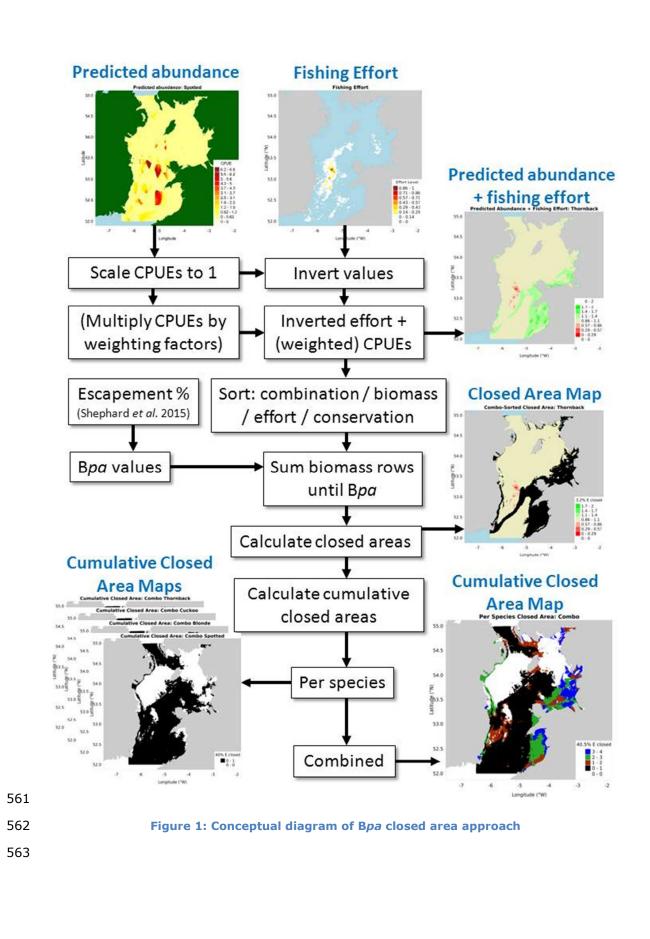
404 preparation of the manuscript.

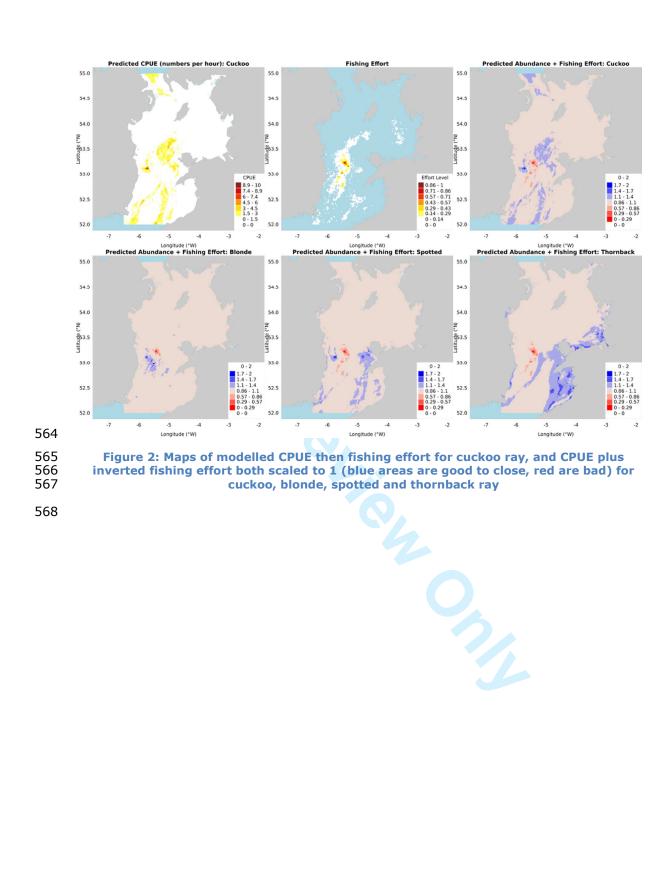
405 8 Author Contributions

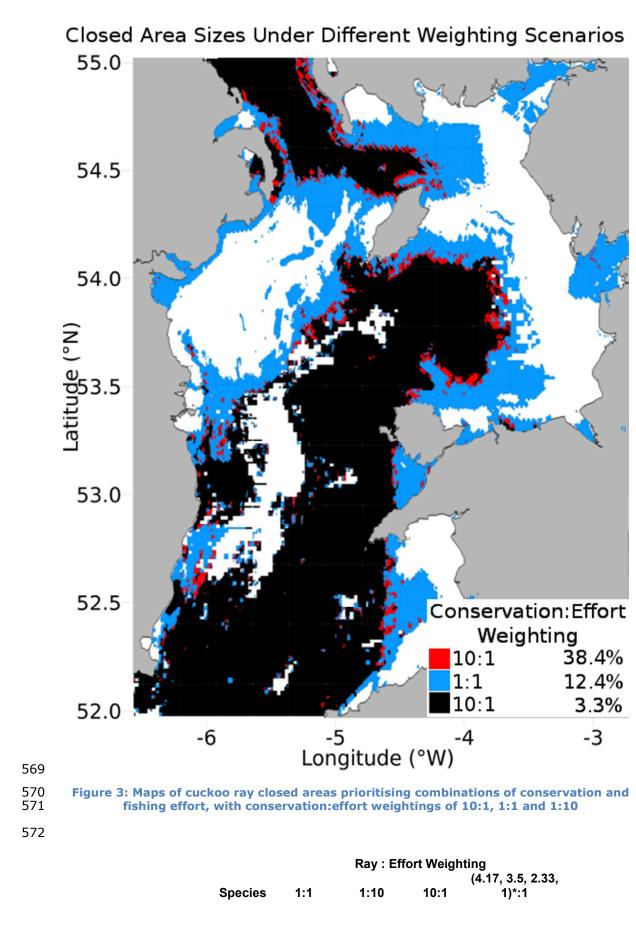
406 Conceived and designed analyses: SD DGR DB RO MC. Performed analyses: SD. Wrote407 paper: SD DGR DB RO MC

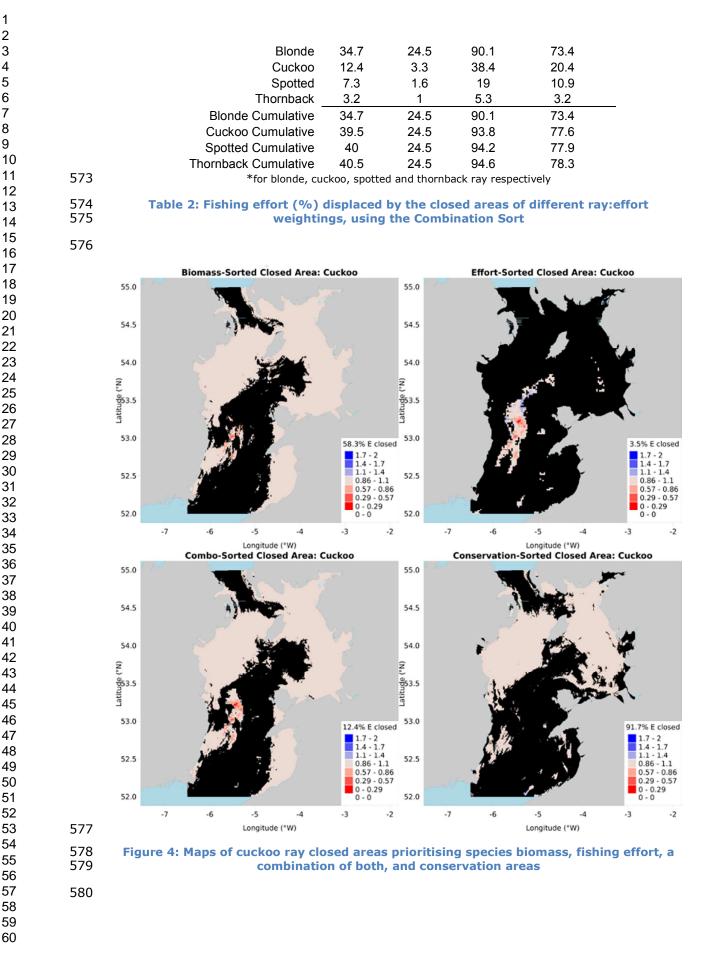
408 9 References

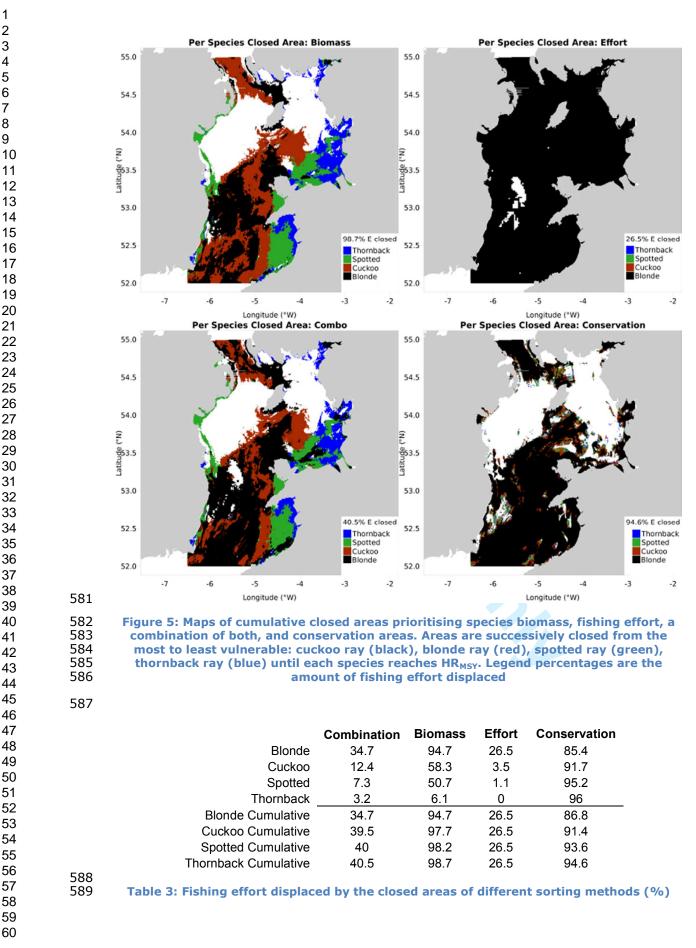
Agardy, T., Di Sciara, G.N., Christie, P., 2011. Mind the gap: Addressing the shortcomings of marine protected areas through large scale marine spatial planning. Marine Policy 35, 226-232. Ball, I.R., Possingham, H.P., 2003. MARXAN - A Reserve System Selection Tool [WWW Document]. URL http://www.ecology.uq.edu.au/marxan.htm (accessed 13-6.13). Baum, J.K., Myers, R.A., Kehler, D.G., Worm, B., Harley, S.J., Doherty, P.A., 2003. Collapse and conservation of shark populations in the Northwest Atlantic. Science 299, 389-392. Brander, K., 1981. Disappearance of common skate Raia batis from Irish Sea. Nature 290, 48 - 49. doi:10.1038/290048a0 Commission, E., 2013. No. 1380/2013 of the European Parliament and of the Council of 11 December 2013 on the Common Fisheries Policy, amending Council Regulations (EC) No 1954/2003 and (EC) No 1224/2009 and repealing Council Regulations (EC) No 2371/2002 and (EC) No 639/2004 and Council Decision 2004/585/EC. Official Journal of the European Union 354, 22–61. Dedman, S., Officer, R., Brophy, D., Clarke, M., Reid, D.G., 2015. Modelling abundance hotspots for data-poor Irish Sea rays. Ecological Modelling 312, 77–90. doi:10.1016/j.ecolmodel.2015.05.010 Dedman, S., Officer, R., Brophy, D., Clarke, M., Reid, D.G., in review Advanced spatial modelling to inform management of data-poor juvenile and adult female rays. 39pp. Elith, J., Graham, C.H., Anderson, R.P., Dudi, M., Ferrier, S., Guisan, A., Hijmans, R.J., Huettmann, F., Leathwick, J.R., Lehmann, A., Li, J., Lohmann, L.G., Loiselle, B.A., Manion, G., Moritz, C., Nakamura, M., Nakazawa, Y., Overton, J.M., Peterson, A.T.P.S.J., Richardson, K., Scachetti-Pereira, R., Schapire, R.E., Soberon, J., Williams, S., Wisz, M.S., Zimmermann, N.E., H Graham, C., P Anderson, R., Dudík, M., J Hijmans, R., R Leathwick, J., G Lohmann, L., A Loiselle, B., McC M Overton, J., Townsend Peterson, A., J Phillips, S., E Schapire, R., Soberón, J., S Wisz, M., E Zimmermann, N., 2006. Novel methods improve prediction of species' distributions from occurrence data. Ecography, Fifty-fifth session 29, 129–151. doi:10.1111/j.2006.0906-7590.04596.x Elith, J., Phillips, S.J., Hastie, T., Dudík, M., Chee, Y.E., Yates, C.J., 2011. A statistical explanation of MaxEnt for ecologists. Diversity and Distributions 17, 43–57. Ellis, J.R., Dulvy, N.K., Jennings, S., Parker-Humphreys, M., Rogers, S.I., 2005. Assessing the status of demersal elasmobranchs in UK waters: a review. Journal of the Marine Biological Association of the UK 85, 1025–1048. Ellis, J.R., Silva, J.F., McCully, S.R., Evans, M., Catchpole, T., 2010. UK fisheries for skates (Rajidae): History and development of the fishery, recent management actions and survivorship of discards. ICES. Foley, M.M., Halpern, B.S., Micheli, F., Armsby, M.H., Caldwell, M.R., Crain, C.M., Prahler, E., Rohr, N., Sivas, D., Beck, M.W., Carr, M.H., Crowder, L.B., Duffy, J.E., Hacker, S.D., McLeod, K.J., Palumbi, S.R., Peterson, C.H., Regan, H.M., Ruckelshaus, M.H., Sandifer, P.A., Steneck, R.S., 2010. Guiding ecological principles for marine spatial planning. Marine Policy 34, 955–966. Fulton, E.A., Bax, N.J., Bustamante, R.H., Dambacher, J.M., Dichmont, C., Dunstan, P.K., Hayes, K.R., Hobday, A.J., Pitcher, R., Plagányi, É.E., others, 2015. Modelling

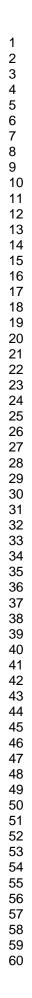

1		
2	166	
3	466	marine protected areas: insights and hurdles. Phil. Trans. R. Soc. B 370, 20140278.
4	467 468	Game, E.T., Kareiva, P., Possingham, H.P., 2013. Six common mistakes in conservation
5	468	priority setting. Conservation Biology 27, 480–485.
6 7	470	phoney setting. Conservation blology 27, 480–485.
8	471	Heupel, M.R., Carlson, J.K., Simpfendorfer, C.A., 2007. Shark nursery areas: concepts,
	472	definition, characterization and assumptions. Marine Ecology Progress Series 337,
9	473	287–297.
10	474	207 257.
11	475	ICES, 2013. ICES Database of Trawl Surveys, IBTS VIIa & IGFS Ireland 2003-12 [WWW
12	476	Document]. URL http://datras.ices.dk (accessed 21–1.13).
13	477	
14	478	ICES WGEF, 2012a. ICES advice: Rays and skates in Subarea VI and Divisions VIIa-c,
15	479	e-j (Celtic Sea and west of Scotland).
16	480	e j (cente sea and west of scotland).
17	481	ICES WGEF, 2012b. ICES WGEF Report.
18	482	
19	483	ICES WGEF, 2014. Report of the Working Group on Elasmobranch Fishes (WGEF), 2014.
20	484	Lisbon, Portugal.
21	485	
22	486	Kaplan, I.C., Levin, P., 2009. Ecosystem-based management of what? An emerging
23	487	approach for balancing conflicting objectives in marine resource management, in: The
24	488	Future of Fisheries Science in North America. Springer, pp. 77–95.
25	489	rutare of rishenes science in North America. Springer, pp. 77-95.
26	490	Kelleher, G., 1999. Guidelines for Marine Protected Areas. IUCN, Cambridge, UK.
27	491	
28	492	Klein, C.J., Tulloch, V.J., Halpern, B.S., Selkoe, K.A., Watts, M.E., Steinback, C., Scholz,
29	493	A., Possingham, H.P., 2013. Tradeoffs in marine reserve design: habitat condition,
30	494	representation, and socioeconomic costs. Conservation Letters 6, 324–332.
31	495	
32	496	Levin, P.S., Kaplan, I., Grober-Dunsmore, R., Chittaro, P.M., Oyamada, S., Andrews, K.,
33	497	Mangel, M., 2009. A framework for assessing the biodiversity and fishery aspects of
34	498	marine reserves. Journal of applied ecology 46, 735–742.
35	499	marme reserves, sournar of applied ecology ro, 755 7 12.
36	500	Penn, J.W., Fletcher, W.J., 2010. The efficacy of sanctuary areas for the management of
37	501	fish stocks and biodiversity in WA waters, Fisheries Research Report. Government of
38	502	Western Australia Department of Fisheries.
39	503	
40	504	Phillips, S.J., Dudík, M., Schapire, R.E., 2004. A Maximum Entropy Approach to Species
41	505	Distribution Modeling, in: Proceedings of the Twenty-First International Conference on
42	506	Machine Learning. pp. 655–662.
43	507	
44	508	Pielke, R.A., 2007. The honest broker: making sense of science in policy and politics.
45	509	Cambridge Univ Press.
46	510	
47	511	Pope, J., 1983. Fisheries resource management theory and practice, in: Taylor JL, Baird
48	512	GG (Ed.), New Zealand Finfish Fisheries: The Resources and Their Management. Trade
49	513	Publications Limited, Auckland, New Zealand, pp. 56–62.
50	514	, , , , , , , , , , , , , , , , , , , ,
51	515	De Raedemaecker, F., Brophy, D., O'Connor, I., Comerford, S., 2012. Habitat
52	516	characteristics promoting high density and condition of juvenile flatfish at nursery
53	517	grounds on the west coast of Ireland. Journal of Sea Research 73, 7–17.
54	518	
55	519	Rogers, S., Ellis, J.R., 2000. Changes in the demersal fish assemblages of British coastal
56	520	waters during the 20th century. ICES Journal of Marine Science 57, 866-881.
57	521	
58		
59		
60		


522 523	Schrope, M., 2010. Fisheries: What's the catch? Nature 465, 540-542.
524 525	Shephard, S., Reid, D.G., Gerritsen, H.G., Farnsworth, K.D., 2015. Estimating biomass, fishing mortality, and "total allowable discards" for surveyed non-target fish. ICES
526 527	Journal of Marine Science 72, 458–466.
528 529 530	Suuronen, P., Jounela, P., Tschernij, V., 2010. Fishermen responses on marine protected areas in the Baltic cod fishery. Marine Policy 34, 237–243.
531 532 533 534	Walker, P., Hislop, J., 1998. Sensitive skates or resilient rays? Spatial and temporal shifts in ray species composition in the central and north-western North Sea between 1930 and the present day. ICES Journal of Marine Science 55, 392–402.
535 536 537	Warton, D.I., Foster, S.D., De'ath, G., Stoklosa, J., Dunstan, P.K., 2015. Model-based thinking for community ecology. Plant Ecology 216, 669–682.
538 539 540 541 542	Watts, M.E., Ball, I.R., Stewart, R.S., Klein, C.J., Wilson, K., Steinback, C., Lourival, R., Kircher, L., Possingham, H.P., 2009. Marxan with Zones: software for optimal conservation based land-and sea-use zoning. Environmental Modelling & Software 24, 1513–1521.
543 544 545 546	Worm, B., Davis, B., Kettemer, L., Ward-Paige, C.A., Chapman, D., Heithaus, M.R., Kessel, S.T., Gruber, S.H., 2013. Global catches, exploitation rates, and rebuilding options for sharks. Marine Policy 40, 194–204.
547 548 549	Zabel, R.W., Harvey, C.J., Katz, S.L., Good, T.P., Levin, P.S., 2003. Ecologically sustainable yield. American Scientist 91, 150–157.
550 551 552	Zhou, S., Yin, S., Thorson, J.T., Smith, A.D.M., Fuller, M., Walters, C.J., 2012. Linking fishing mortality reference points to life history traits: an empirical study. Canadian Journal of Fisheries and Aquatic Sciences 69, 1292–1301.
553	R functions used


- 554 gbm.auto, including gbm.map, gbm.rsb, gbm.cons and gbm.valuemap, written by SD
- 555 2012-2016 and available at: <u>https://github.com/SimonDedman/gbm.auto</u>


10 Figures and Tables


						Scaled	
Species	Area	Fishing pressure	Stock size	%SSA	Total V.	ratio	V. Rank
Blonde ray	VIIa,f,g	Overexploited:1	Unknown:1	0.5	2.5	4.17	1
Cuckoo ray	VI, VII	Overexploited:1	Decreasing:1	0.1	2.1	3.5	2
Spotted ray	VIIa, e-h	Overexploited:1	Increasing:0	0.4	1.4	2.33	3
Thornback ray	VIIa, f, g	Appropriate:0	Increasing:0	0.6	0.6	1	4
 Table 1: Conservation status, percent of spawning in study area, and vulnerability of key Irish Sea rays (ICES WGEF, 2014) with calculated total vulnerability metric, ratios from scaling the least vulnerable to 1, and rank 							
560							



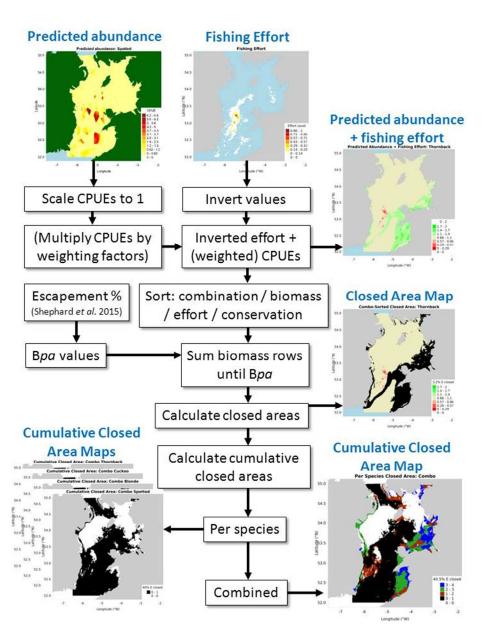


Figure 1: Conceptual diagram of Bpa closed area approach 188x248mm (96 x 96 DPI)

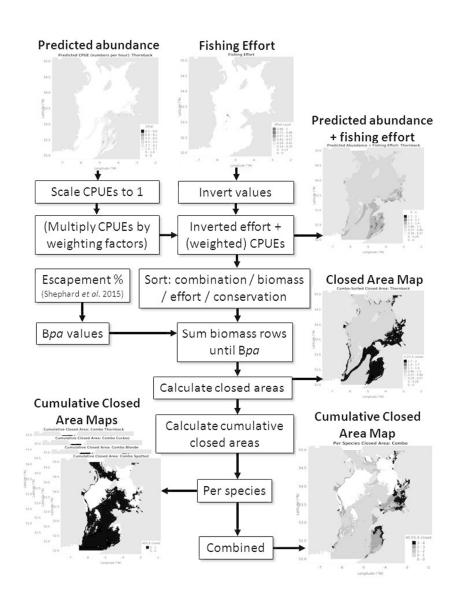


Figure 1: Conceptual diagram of Bpa closed area approach 190x275mm (96 x 96 DPI)

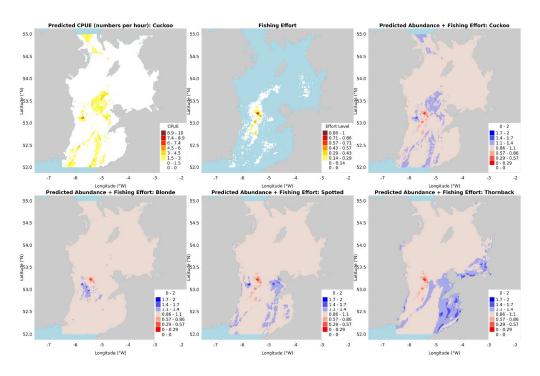
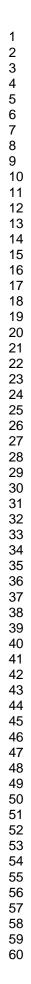



Figure 2: Maps of modelled CPUE then fishing effort for cuckoo ray, and CPUE plus inverted fishing effort both scaled to 1 (blue areas are good to close, red are bad) for cuckoo, blonde, spotted and thornback ray 2731x1821mm (72 x 72 DPI)

Page 27 of 33

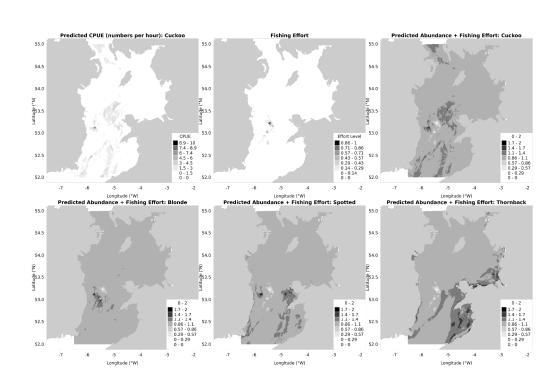
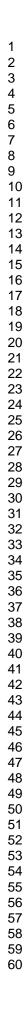



Figure 2: Maps of modelled CPUE then fishing effort for cuckoo ray, and CPUE plus inverted fishing effort both scaled to 1 (blue areas are good to close, red are bad) for cuckoo, blonde, spotted and thornback ray 2731x1821mm (72 x 72 DPI)



Figure 3: Maps of cuckoo ray closed areas prioritising combinations of conservation and fishing effort, with conservation:effort weightings of 10:1, 1:1 and 1:10 208x275mm (72 x 72 DPI)

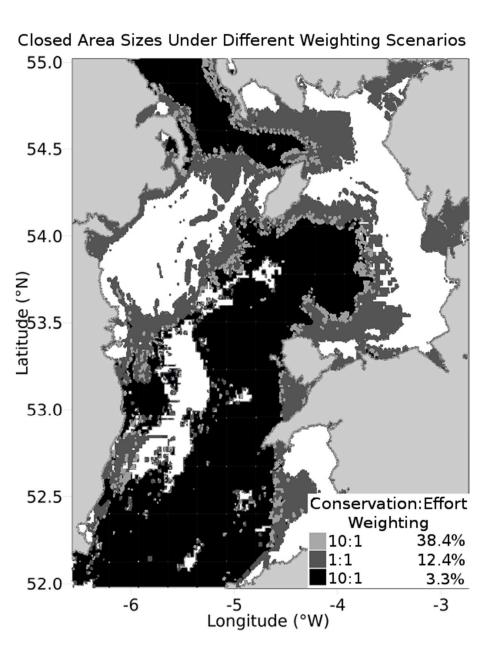


Figure 3: Maps of cuckoo ray closed areas prioritising combinations of conservation and fishing effort, with conservation:effort weightings of 10:1, 1:1 and 1:10 208x275mm (72 x 72 DPI)

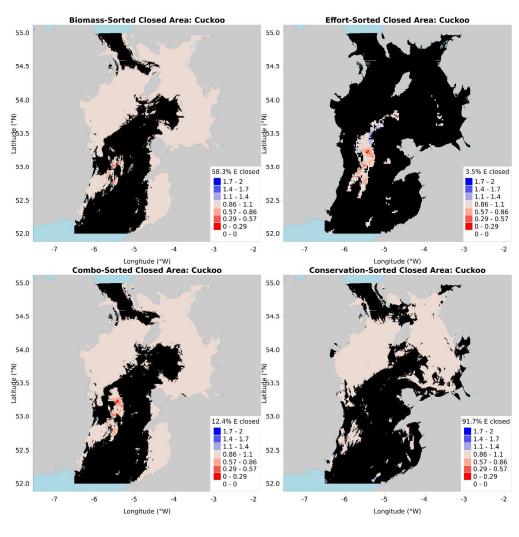


Figure 4: Maps of cuckoo ray closed areas prioritising species biomass, fishing effort, a combination of both, and conservation areas 2230x2230mm (72 x 72 DPI)

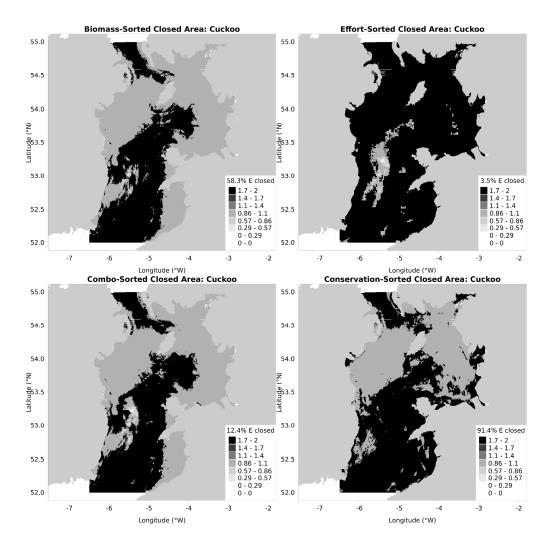


Figure 4: Maps of cuckoo ray closed areas prioritising species biomass, fishing effort, a combination of both, and conservation areas 2230x2230mm (72 x 72 DPI)

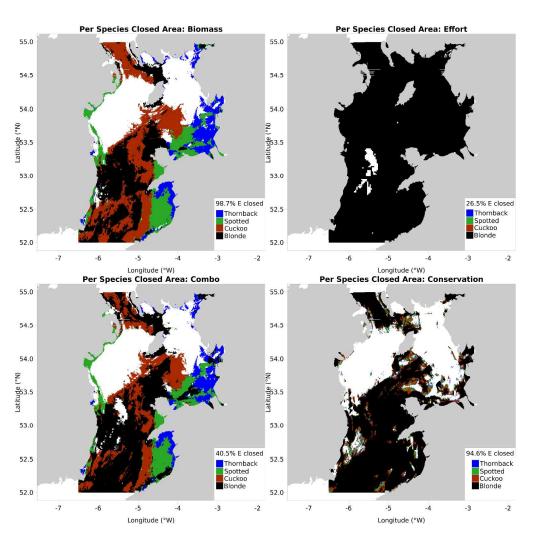


Figure 5: Maps of cumulative closed areas prioritising species biomass, fishing effort, a combination of both, and conservation areas. Areas are successively closed from the most to least vulnerable: cuckoo ray (black), blonde ray (red), spotted ray (green), thornback ray (blue) until each species reaches HRMSY. Legend percentages are the amount of fishing effort displaced

2230x2230mm (72 x 72 DPI)

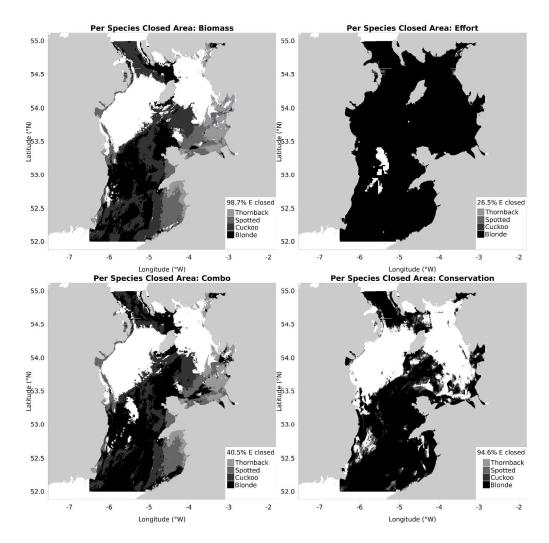


Figure 5: Maps of cumulative closed areas prioritising species biomass, fishing effort, a combination of both, and conservation areas. Areas are successively closed from the most to least vulnerable: cuckoo ray (black), blonde ray (red), spotted ray (green), thornback ray (blue) until each species reaches HRMSY. Legend percentages are the amount of fishing effort displaced

2230x2230mm (72 x 72 DPI)