

Letterkenny Institute of Technology

M.Sc. Thesis

Lightweight Cryptography and Authentication Protocols

for Secure Communications between Resource-Limited

Devices and Wireless Sensor Networks: Evaluation and

Implementation

Author:

Piotr Książak

Student No L00057123

Supervisors:

William Farrelly, M.Sc.

Prof. Paul McKevitt, University of Ulster

Department of Computing

Letterkenny, September 2010

II

Declaration

I hereby declare that for a period of 1 year following the date, on which this

dissertation is deposited in the library of the Letterkenny Institute of Technology, the

dissertation shall remain confidential with access or copying prohibited. Following

the expiry of this period, I permit the librarian of the Institute to allow the dissertation

to be copied in whole or in part without reference to me, on the understanding that

such authority applies to single copies made for study purposes and is subject to

normal conditions of acknowledgement. This restriction does not apply to the

publication of the title or abstract of the dissertation.

III

Acknowledgements

I am pleased to have the opportunity to express my gratitude to all people who

helped me accomplish this dissertation.

Firstly, I would like to thank my primary supervisor William Farrelly, Letterkenny

Institute of Technology for his day-to-day support, great involvement and a huge

amount of patience required to monitor my research. Thank you Billy, without your

help this project would not have come to a successful end – it wouldn‟t even have

started.

Secondly, I would like to appreciate the help received from the co-supervisor Prof.

Paul McKevitt, University of Ulster and my team-mate Markus Korbel who gave me

many useful research hints and had to put up with me on a daily basis. I would also

like to thank Mark Leeney for the mathematical-related help as well as Ruth Lennon,

Liam McIntyre and the colleagues of the WiSAR project for the help with collecting

research sources. I also like to express my gratitude for the help of Dr. David Gray,

Cora Tine Teo and Dr. Damien McKeever, Cora Tine Teo who introduced me to the

wonderful world of fight-for-a-byte microcontroller programming.

I can‟t forget to thank people who greatly contributed to the field of the constrained

devices security, especially Dr. Pedro Peris Lopez, Delft University of Technology

and Dr. François-Xavier Standaert, Université catholique de Louvain who sacrificed

his time to clarify some uncertainties. Their work was a backbone to the

implementation part of this project.

Finally, I would like to thank my mother Ewa and my fiancée Marta Szymańska who

had to put up with my daily complaints about the workload I undertook and helped

me to find the time for this.

IV

Abstract

This dissertation examines the theoretical context for the security of wireless

communication between ubiquitous computing devices and presents an

implementation that addresses this need. The number of Resource-Limited Wireless

Devices utilized in many areas of the IT industry is growing rapidly. Some of the

applications of these devices pose real security threats that can be addressed using

authentication and cryptography.

Many of the available authentication and encryption software solutions are predicated

on the availability of ample processing power and memory. These demands cannot

be met by the majority of ubiquitous computing devices, thus there is a need to apply

lightweight cryptography primitives and lightweight authentication protocols that meet

these demands in any application of security to devices with limited resources.

The analysis of the lightweight solutions is divided into two major sections:

Lightweight Authentication Protocols and Lightweight Encryption Algorithms. Further

sections of this work describe the proposed prototype‟s Wireless Sensor Network

including a study of its limitations.

A number of protocols in the field of Authentication and in the field of Encryption are

analyzed. The Gossamer Authentication Protocol and the Scalable Encryption

Algorithm (SEA) are chosen as the basis of prototype implementation in the C-

language on a development platform of the 8051-compatible Nordic Semiconductor

nRF9E5 microcontroller. A security framework is developed that combines the

attributes of the Gossamer protocol and the SEA to provide an implementation of

inter-device security. The Gossamer Protocol is additionally used as a means of

exchanging session keys for use with the SEA encryption protocol. A brief

performance analysis of the prototype running on the nRF9E5 microcontroller is

provided by way of conclusion. The resuls of the software implementation of the

Gossamer were unsatisfactory both in terms of the code space needs (approximately

1700 bytes excluding shared libraries) and the execution time (almost 150

milliseconds). In contrast, the SEA implementation‟s results were satisfactory above

expectations with the code space requirements smaller than 600 bytes (excluding

shared libraries) and the performance of 27 milliseconds per one 96-bit block of data.

V

Table of Contents

Declaration ... II

Acknowledgements ... III

Abstract ... IV

List of Figures ... VII

1. Introduction .. 1

1.1 Project Background ... 1

1.2 Risk Analysis - Pharmaceutical Industry Example ... 2

1.3 Objectives .. 3

1.4 Research Hypothesis .. 4

1.5 The structure of the Thesis .. 4

2. Security in Wireless Resource-Limited Devices .. 5

2.1 General Statement of the Problem .. 5

2.2 Authentication .. 5

2.2.1 Authentication with Resource-Limited Devices 6

2.2.2 Known and possible attacks.. 7

2.2.3 Identified protocols effective in the context of Infrastructure Wireless

Sensor Network (IWSN) .. 8

2.3 Encryption.. 26

2.3.1 Problem of Encryption in the context of IWSN 26

2.3.2 Known and possible attacks.. 27

2.3.3 Identified algorithms effective in the context of Infrastructure WSN 28

3. Resource-Limited Devices ... 32

3.1 IWSN introduction. ... 33

3.2 Description of the technical problem of authentication and encryption in the

context of the IWSN. ... 36

3.3 What are the specific problems associated with Resource Limited Devices 36

3.4 Technical description of the processor and its implications for effective

security implementation .. 38

3.5 Technical description of the memory structure and its limitations for effective

security implementations ... 39

3.6 Technical description of the radio transceiver and its limitations for effective

security implementations ... 41

VI

3.7 Overcoming limitations: Code Banking on the nRF9E5 42

4. Implementation .. 46

4.1 Hardware-related requirements for the implementation 46

4.2 Integrated Development Environment (IDE) and Hardware utilised. 46

4.3 Design - algorithms for both authentication and encryption 47

4.4 Coding - Main elements of code explained .. 50

4.4.1 Gossamer Implementation .. 51

4.4.2 Scalable Encryption Algorithm (SEA) Implementation 57

4.5 Testing ... 62

4.5.1 Testing environment ... 62

4.5.2 One Round Step-By-Step Test ... 62

4.5.3 Long-term test ... 69

5. Performance Analysis .. 71

5.1 Memory Code Space Requirements on nRF9E5 ... 71

5.2 Execution Speed ... 71

6. Conclusions and Recommendations ... 73

6.1 Conclusions ... 73

6.2 Recommendations for future work ... 74

References ... 76

Appendix A ... 82

Appendix B ... 85

VII

List of Figures

Figure 1.1 Risk Analysis Example for the Pharmaceutical Industry 2

Figure 2.1 MixBits Function .. 16

Figure 2.2 The Gossamer Protocol .. 18

Figure 2.3 MixBits function (repeated) ... 19

Figure 2.4 Modified MixBits Function ... 19

Figure 2.5 One round of XXTEA (el Ruptor 2007) ... 29

Figure 2.6 Encrypt/decrypt and key round of SEA ... 31

Figure 3.1 Wireless Sensor Network Architecture .. 33

Figure 3.2 Infrastructure Wireless Sensor Network Architecture 35

Figure 3.3 8051 Memory Addressing ... 39

Figure 3.4 Physical organization of memory on 8051 .. 40

Figure 3.5 NRF9E5 packet structure .. 41

Figure 3.6 Code Banking Layout .. 43

Figure 3.7 8051 with 156Kb EEPROM attached to ports P0-P3 44

Figure 3.8 nRF9E5 code banking with an external SPI-accessed EEPROM 44

Figure 4.1 The Scope of the Implementation part .. 47

Figure 4.2 Gossamer Protocol Adapted to the Infrastructure WSN 49

Figure 4.3 Main Program Components .. 51

Figure 4.4 Code: Addition Modulo96 .. 52

Figure 4.5 Code: Subtraction Modulo96... 53

Figure 4.6 Code: XOR two 96-bit numbers .. 53

Figure 4.7 Code: Get Modulo96 ... 54

Figure 4.8 Code: Bit Shift ... 54

Figure 4.9 Code: Index Shift .. 55

Figure 4.10 Code: Array Reverse ... 55

Figure 4.11 Code: Bit Rotation.. 56

Figure 4.12 MixBits Function pseudocode .. 56

Figure 4.13 Code: MixBits... 57

Figure 4.14 Code: SEA S-Box .. 57

Figure 4.15 Code: SEA S-box modified .. 57

Figure 4.16 Code: SEA Bit-Rotation ... 58

Figure 4.17 Code: SEA Word-Rotation ... 58

Figure 4.18 Code: SEA Encrypt/Decrypt Round ... 59

Figure 4.19 Code: SEA Key Round .. 60

Figure 4.20 Code: SEA Main Function ... 61

Figure 4.21 Code: Master Side Test Data .. 62

Figure 4.22 Code: Slave Side Test Data .. 63

Figure 4.23 Gossamer messages A and B creation (Master). 63

Figure 4.24 Gossamer n1 and n2 random numbers extraction (Slave). 64

Figure 4.25 Gossamer MixBits function, k1next and k2next creation (Master). 64

Figure 4.26 Gossamer MixBits function, k1next and k2next creation (Slave). 65

VIII

Figure 4.27 Gossamer message C creation (Master). .. 65

Figure 4.28 Gossamer message C creation (Slave). .. 66

Figure 4.29 Gossamer message D creation (Master). .. 66

Figure 4.30 Gossamer message D creation (Slave). .. 67

Figure 4.31 Gossamer keys and IDS updating phase (Master). 67

Figure 4.32 Gossamer keys and IDS updating phase (Master). 68

Figure 4.33 SEA encryption (Master) .. 68

Figure 4.34 SEA decryption (Slave) .. 69

Figure 4.35 Code: Master Initial Values .. 70

Figure 4.36 Code: Slave Initial Values .. 70

1

1. Introduction

The number of Resource-Limited Wireless Devices utilized in many areas of the IT

industry is growing rapidly. This growth rate is expected to rise even higher when

RFID transponders begin to replace Barcodes on a larger scale. Some of the

applications of these devices pose a security threat which can be addressed using

cryptographic techniques. Most of the currently used cryptographic solutions are

predicated on the existence of ample processing power and memory. These

demands cannot be met by the majority of ubiquitous computing devices, thus there

is a need to apply lightweight cryptography primitives that meet security demands

when considering devices with low resources.

1.1 Project Background

This dissertation is written for a fulfilment of the M.Sc. research requirements and a

partial fulfilment of the requirements of the Hybrid Inter-Networking Technologies

(HINT) Project hosted by the Letterkenny Institute of Technology.

The HINT Project is funded under Enterprise Ireland's Innovation Partnership

programme and establishes cooperation between the Letterkenny Institute of

Technology and Cora Tine Teo of Falcarragh, Co. Donegal. The main research fields

of this project include the integration of various RF technologies (inclusive of

Bluetooth, WiFi, and proprietary UHF technologies) and the utilization of Wireless

Sensor Networks and active RFID solutions in the context of an item-level stock

control and temperature monitoring in the pharmaceutical industry.

One of the key requirements of the HINT project is to provide confidentiality of data

exchange between the computing devices used in an entire infrastructure. A major

part of this infrastructure will rely on a network of constrained devices with limited

memory size and computational power. This M.Sc. will attempt to provide a security

framework which can be implemented within the boundaries imposed by Resource-

Limited Devices.

2

1.2 Risk Analysis - Pharmaceutical Industry Example

Figure 1.1 Risk Analysis Example for the Pharmaceutical Industry

0 1

10

Probability of Occurrence

S
e

c
u

ri
ty

 I
m

p
a

c
t

Tag/Sensor Cloning (1, 10)

Risk Analysis for the Pharmaceutical Industry

Tag/Sensor ID Track&Trace (0.6, 3)

Sensor Data Eavesdropping (0.5, 5)

Denial of Service Attacks (0.5, 10)

Rogue Data Injection (0.2, 6)

Cryptanalysis Attack (0.1,10)

The security impact is measured in the scale of 1 to 10, where 10 is the

highest.

3

Figure 1.1 illustrates an example of a Risk Analysis concerning the threats

associated with the usage of Wireless Sensor Networks or RFID systems for the

item-level stock control and temperature monitoring. The following security threats

were identified:

 Tag/Sensor cloning - a serious threat related to the counterfeiting of medicines

with a high likely-hood of occurrence (Juels 2005). Can be addressed with a

strong encryption and authentication system. Risk measure = 1*10 = 10.

 Tag/Sensor tracing - a threat related to unauthorised Track & Trace of a

Sensor/Tag movement throughout a given area, which has negative privacy

implications. It can be addressed with a proper authentication system that

doesn‟t allow the disclosure of a Tag's/Sensor's unique ID. Risk measure =

0.6*3 = 1.8.

 Data Eavesdropping - unauthorized retrieval of sensor/tag data. A strong

encryption algorithm provides a counter-measure to this threat. Risk measure

= 0.5*5 = 2.5.

 Denial of Service attack - affects the operation of the entire network or a group

of Tags/Sensors. The likely-hood of occurrence can be regarded as medium.

Such an attack would require appropriate hardware and in-depth knowledge of

the radio protocol used. A proper Authentication system provides counter-

measures to this threat. Risk measure = 0.5*10 = 5.

 Rogue-Data Injection - an adversary can inject malicious data into the network

causing improper configuration of the sensors for example. The probability of

occurrence can be low as this kind of attack is not valuable to an adversary in

most cases. A Mutual-Authentication system prevents accepting rogue data

from unknown sources. Risk measure = 0.2*6 = 1.2.

 Cryptanalysis Attack - secret key discovery through a cryptanalysis attack on

the authentication and/or encryption system‟s secret data. Such an attack

compromises the whole security and leads to a full disclosure of all data. The

likely-hood of such an event is very low if the encryption key-space is large

enough to prevent brute-force attacks (assumes unbreakable algorithm). Risk

measure = 0.1*10 = 1.

1.3 Objectives

The main objectives of this research are as follows:

 To conduct a thorough academic study of authentication and encryption for

resource-limited devices.

 To select implementable algorithms for authentication and encryption.

 To select protocols for sensor communications, mutual authentication and

establishing secure wireless communication channels.

 To implement a working prototype based on identified algorithms and

protocols.

 To evaluate the performance of the prototype.

4

1.4 Research Hypothesis

Lightweight Authentication and Encryption Protocols can be implemented and fulfil

basic security requirements of the wireless communication between Resource

Limited Devices without hardware modifications.

1.5 The structure of the Thesis

Chapter 2 of this Thesis contains a general statement of the problem and an in-depth

study of security solutions for resource-limited wireless communication devices. This

chapter is split into two main sections: Authentication and Encryption. Each of these

sections provides an introduction to the problem in the context of a prototype

Infrastructure Wireless Sensor Network, lists possible attacks and provides an

overview of possible solutions.

Chapter 3 introduces the implementation platform (nRF9E5 microcontroller) and the

conceptual Infrastructure Wireless Sensor Network used as a reference for the

prototype design. This chapter also provides an in-depth study of the limitations of

the reference platform in terms of processing power, memory and the radio

transceiver capability limitations.

Chapter 4 describes the implementation process and explains the key program

functions. The Gossamer Authentication Protocol and the Scalable Encryption

Algorithm (SEA) C-language implementations were chosen to create the prototype.

At the end of this chapter one can find the results of the prototype testing.

Chapter 5 provides a brief performance analysis of the prototype in terms of code

space requirements and the execution speed on the development platform of the

8051-compatible nRF9E5 microcontroller.

Subsequent chapters list conclusions resulting from this research and provide

recommendations for future work.

The source code of the software prototype in C-language dedicated for an 8-bit CPU

(with minor nRF9E5-specific adaptations) can be found in Appendix B.

5

2. Security in Wireless Resource-Limited Devices

2.1 General Statement of the Problem

Typically, the application of security to wireless networks, such as the Wi-Fi

Protected Access specification (Wi-Fi Alliance 2003), requires complex mathematical

computation and significant protocol data overhead. Since these requirements

cannot be fulfilled by the types of Resource-Limited Devices used in Wireless Sensor

Networks (WSN) and Radio Frequency-Identification (RFID) systems due to the

constraints imposed by limited computational power, limited memory size and the

requirement for low power consumption (Akyildiz et al. 2002), there is a need to

provide a lightweight security mechanism that can be implemented within device

specifications.

The primary aspects of the security of data exchange are listed by (Menezes et al.

1997):

 Mutual Authentication – ensures that all parties involved in communication can

trust each other.

 Confidentiality – no unauthorised party should be able to view plaintext data.

 Integrity – assures that data was not altered during transmission to the

recipient.

 Availability – ensures that a service is constantly available (the Denial of

Service (DoS) attack prevention).

Another important aspect of security especially in the context of Wireless Sensor

Networks, is Data Freshness (Perrig et al. 2002) also referred to as Forward Security.

Data freshness ensures that the data received is fresh and the adversary cannot

replay old messages. Perrig et al. define two types of data freshness: weak, ensuring

the order of messages, and strong, allowing additionally for the delay of the message

estimation.

This MSc examines the nature of inter-device security in the context Wireless

Resource-Limited Devices by decomposition; splitting it into the sub-problems of

authentication and encryption. These sub-problems address the key security issues

identified in the literature (Schneier 1996, Menezes et al. 1997, Mollin 2007,

Ranasinghe & Cole 2008, Karlof et al. 2004).

2.2 Authentication

Mutual Authentication is a process of ensuring that all parties taking part in the

communication can validate each other‟s identity. An intruder should not be able to

masquerade as someone else (Schneier 1996). The physical properties of the radio

frequency communication channel (the ease of eavesdropping), computational

efficiency and power consumption constraints (Akyildiz et al. 2002) impose limitations

6

on the range of authentication protocols which can be taken under consideration. The

problem of authentication in the context of networking resource-limited devices is

explained in the following subsections.

2.2.1 Authentication with Resource-Limited Devices

The issue of Authentication in the networking of wireless resource-limited devices

was given very little attention until RFID systems became popular. As RFID systems

are expected to be widely used for item-level tagging of consumer products the

Electronic Privacy Information Center (EPIC) and researchers like Juels (Juels 2006)

promoted interest in the issues of privacy and security. One of the first papers to

draw attention to these issues was published by Sarma (Sarma et al. 2003). Sarma

et al. drew attention to the need for the application of lightweight cryptographic

primitives and protocols in the development of solutions for RFID.

The two major threats to consumer‟s privacy (Juels 2006) are: tracking (traceability)

and inventory. Under normal operating conditions, a tag reader will interrogate and

read all tags in its proximity. Thus an unsecured RFID tag reveals its unique identifier

in the absence of authentication between tag and reader. Any reader compliant with

a given RFID specification is able to interrogate and identify the tag. In consequence,

a person carrying a given tag, e.g. in a shopping bag, can be tracked around an area

by a series of purposely located interrogators without the person‟s consent. If an

unsecured tag conforms to the Electronic Product Code (EPC) specification (Leong

et al. 2006) it also carries a unique identification of the item to which it is attached.

This poses a threat in respect of itemising the contents of say, a shopping trolley, and

identifying an individual‟s purchasing patterns

Privacy, although drawing most of the attention, is not the only set of issues

associated with the absence of an authentication mechanism. RFID systems and

Wireless Sensor Networks are facing the threat of data forging and manipulation.

Using commonly available equipment an adversary can easily inject messages

(Perrig et al. 2002), causing for example false sensor readings.

The majority of commonly used authentication mechanisms rely heavily on

computationally intensive mathematical techniques requiring the manipulation of, for

example, long keys. Resource Limited Devices share a number of constraints which

in the case of RFID systems make the implementation of computationally intensive

mathematical routines impossible due mainly to significant reduction in processor

power and the absence of sufficient memory to store lengthy keys. A secondary

argument is that an increase in the number of logic gates implementated on an

Integrated Circuit dramatically increases the overall price per tag (Sarma 2001).

Although Wireless Sensor Networks (WSNs) use more capable hardware they are

also tightly constrained by power limitations. WSN sensor battery life requirements

force limited usage of the CPU and the radio bandwidth. Additionally, a node in a

WSN is imbued with many tasks such as the Analogue to Digital Converter (ADC)

7

readings interpretation, radio protocol handling, reprogramming behaviours etc., thus

the code space left for security mechanism implementation is very limited.

In recent years the field of lightweight security has emerged rapidly and is offering

solutions mostly for RFID but also covering the area of WSNs. A number of

researchers (Juels 2005, Chien 2007, Peris-Lopez et al. 2009, Lee et al. 2009)

proposed a group of Ultra-Lightweight Authentication protocols which mainly target

RFID but additionally, promise ways of providing a resource-saving authentication

mechanism for Infrastructure Wireless Sensor Networks (see Section 3.1) due to

their computational simplicity and small data overhead. These protocols are

discussed in section 2.2.3 of this document.

2.2.2 Known and possible attacks

Authentication Protocols applicable for a Wireless Network of constrained devices

can be grouped into three broad attack categories:

 passive attacks, where the adversary eavesdrops on transmitted messages. In

this case we assume that the adversary is not able to alter the messages or

inject new ones;

 active attacks, where the adversary is able not only to eavesdrop the

communication but also inject new messages or alter and replay the previous

ones.

 physical invasive attacks, where the adversary has a physical access and

toolset required to access the device's circuitry and for example read the

EEPROM memory contents.

While the physical access attack threat cannot be fully negated by a protocol, it has

to be noted that the results of such an attack have to be minimised: a compromise of

one tag/node should not compromise the security of other nodes/tags. It should not

be possible to crack a node's previously recorded and stored communications with a

recently discovered key. This requirement is known as the data freshness (see

Section 2.1).

Traceability (ID disclosure) Attack

It is a requirement of RFID systems and Wireless Sensor Networks that it should not

be possible to track nodes without express authority to do so. This is known as a

Traceability (ID disclosure) Attack (Juels 2006). The attack is performed to obtain a

device's unique ID number which can be further used to track the device's

movements using an appropriate RF transceiver. The ID disclosure attack may be

performed using passive or active methods and typically targets the authentication

protocol as the ID has to be transferred in one of the protocol's messages.

8

Full Disclosure Attack

The success of this type of attack means that the entire security of the protocol has

been compromised and all secret information used during the protocol flow is

disclosed. This allows the adversary to fully impersonate (spoof) one of the devices

taking part in the communication and effectively 'Clone' one of the nodes/tags.

Typically a full disclosure attack requires active methods, but weak authentication

protocols can be fully compromised using passive eavesdropping of consecutive

rounds only (Bárász et al. 2007a).

De-Synchronization Attack

A de-synchronization attack is one of the most serious threats for an authentication

protocol that is used in wireless networks. Synchronization means that both parties

are aware of the status of the protocol and are able to continue executing the

protocol with a normal flow. A de-synchronization attack breaks the protocol by

altering the state of one (or both) of the parties authenticating each other in a way

which renders further phases of the protocol not executable (Li & Wang 2007). This

kind of attack may effectively cause a denial-of-service of one or more nodes in the

network.

2.2.3 Identified protocols effective in the context of Infrastructure Wireless

Sensor Network (IWSN)

This review focuses on Ultralightweight and Lightweight Authentication Protocols and

other authentication-related security schemes. Ultralightweight protocols, which were

designed for low-cost RFID systems, rely on minimalistic cryptography techniques

and provide a viable alternative for securing a heavily constrained Infrastructure

Wireless Sensor Network (IWSN) with minor modifications. Other more

computationally intensive schemes designed specifically for Wireless Sensor

Networks (although filtered by the specific requirements of IWSN) or advanced RFID

systems are also discussed.

M²AP - Minimalist Mutual-Authentication Protocol

Peris-Lopez et al. proposed a family of Ultralightweight Mutual Authentication

Protocols (UMAP) initiated by the M²AP (Minimalist Mutual-Authentication Protocol)

(Peris-Lopez et al. 2006c). The M²AP proposes a usage of an index-pseudonym

(IDS) to avoid disclosing device‟s ID which prevents the privacy issues (Traceability

and Inventory) associated with both RFID and some applications of WSN, for

example Wireless Body Sensor Networks (WBSNs). The IDS (96-bit long) is

effectively an index to a record in a database storing tag-specific information. Each

tag stores a key consisting of four concatenated 96-bit long parts (K = K1 II K2 II K3 II

K4). It is assumed that the communication link between a reader and the back-end

database is secure.

9

The protocol is divided into four main stages: tag singulation, mutual authentication,

IDS updating and key updating.

 Tag singulation: the reader sends a “hello” message and the tag replies with

current IDS. The interrogator can now access a record in the database

containing sub-keys K1-K4 associated with a given tag.

 Mutual Authentication is split into two distinct parts: Reader Authentication and

Tag Authentication. In the first stage the reader generates two random

numbers n1 and n2. The n1 and sub-keys K1 and K2 are used to generate A

and B authentication sub-messages which are further concatenated (A II B).

The following computation is performed during a round (n) for a tag(i):

Where = exclusive OR, = concatenation, = logical AND, = logical OR.

The n2 number and K3 key are used to generate sub-message C (further used

to update the IDS and the key K):

These sub-messages are then concatenated and sent to the tag (message =

A II B II C).

The next stage is the Tag Authentication. The Tag uses sub-messages A and

B to authenticate the reader. The message C provides random number n2

which is used by the Tag to update the key K and the IDS. After a successful

reader authentication the tag sends a message comprising of two

concatenated sub-messages D II E.

Sub-message D allows the reader to authenticate the tag. Part E is used to

send the ID in a secure form.

 IDS Updating: in case of a successful authentication the reader and the tag

update the index-pseudonym using the following operation:

 Key Updating: after a completion of the IDS updating the reader and the tag

have to update all 4 sub-keys K1-K4 using the following equations:

10

Peris-Lopez et al. chose only simple operations (and sum mod)

forced by the computational power constraints of low-cost RFID tags and tag

reading speed requirements (limited time for computation). He claims that the

probability of ones and zeros in every sub-key is spread almost evenly and the

Hamming distance between two consecutive keys

 and

 is 47.5

bits on average.

The protocol's author provided a security analysis of the proposal in terms of

resistance to ID disclosure, Man-in-the-middle, replay attacks and Data Integrity

assurance. The anonymity of the tag (ID hiding) is ensured by the usage of an index-

pseudonym (IDS). The Data Integrity is guaranteed by the IDS and four sub-keys -

the attacker would have to be able to modify these values on both the database and

the tag, otherwise even a single bit manipulation would stop the protocol execution.

The mutual authentication mechanism based on two random numbers refreshed with

every iteration of the protocol renders the Man-in-the-middle attack impossible. Peris-

Lopez et al. also claimed that the IDS and sub-keys updating mechanism prevents

Replay Attacks.

The M²AP was analysed and proven insecure by (Bárász et al. 2007b). Bárász

describes specifications of a passive attack (eavesdropping only) against the M²AP

which is able to retrieve the IDS and all sub-keys by eavesdropping over a few

consecutive runs of the protocol. Two main weaknesses of the M²AP were

discovered. The first is the fact that the usage of the bit-wise operations and the

modulo addition only implies that every bit affects only bits which are to the left of

it and the least significant bit is independent of any other bits. Such operations are

called triangular functions or T-functions and per Klimov and Shamir “A T-function is

a mapping in which the i-th bit of the output can depend only on bits 0,1,..., i of the

input“(Klimov & Shamir 2004). The second weak part is the OR and AND operations

used in messages B and D which can help to derive n1 and n2 values with the help

of set and reset bits of IDS. Bárász showed that the attacker can learn the ID, K1, K3,

n1 and n2 after eavesdropping only two consecutive rounds of the M²AP which

already allows for Traceability of the tag. K2 and K4 sub-key discovery requires

eavesdropping more rounds but provides the attacker with the ability to impersonate

the Tag or the Reader.

EMAP - An Efficient Mutual-Authentication Protocol

After weaknesses (Bárász et al. 2007b) were discovered in the M²AP Protocol, Peris-

Lopez et al. proposed a new EMAP Protocol (Peris-Lopez et al. 2006a). The protocol

11

is similar in concept to the M²AP: It has the same four stages and uses IDS and four

sub-keys K1-K4. The only changes which were applied were the mathematical

operations used to construct sub-messages A, B, C, D, E and the formulas for

updating the IDS and four sub-keys. The new formulas for the sub-messages are as

follows:

The IDS updating formula was supposed to have better statistical properties than the

M²AP as the entire number use bit-wise XORed with a random number n2.

The key updating formulas now contain a parity function which divides the 96-

bit number into 24 4-bit blocks, calculates and outputs a parity bit for each block. The

formulas are as follows:

The security analysis provided by Peris-Lopez et al. was largely similar to the one

provided in M²AP specification.

(Li & Deng 2007) highlighted the weaknesses of the protocol allowing for a de-

synchronization and a full disclosure attack. It was highlighted that the tag is not able

to verify if the reader successfully received correct messages D and E and updated

the keys and IDS accordingly. Li & Deng described two types of possible attacks on

LMAP: de-synchronization attack and full disclosure attack. As both of the protocols

rely on a synchronization of IDS and keys stored on a tag and in the back-end

database, a full round of the protocol has to take place in order to keep

synchronization on both sides. Li & Deng proposed two man-in-the-middle de-

synchronization attacks:

12

 Changing the message C – by intercepting message (A II B II C) and XORing

sub-message C with a series of zeros excluding the least significant bit set to

1 and forwarding the set of messages to the tag. The tag can still authenticate

the reader as A and B remain unchanged, but it will get the wrong n2 number.

Despite this the protocol will continue and the tag will reply with incorrect D

and E messages; however, the reader will not be able to discover changes in

D and will accept in all cases. It was shown that there is a 75% chance on

average that the reader will accept an incorrect value E and update its

database using original n2. The tag will do the same using incorrect n2 and

both devices will lose synchronization.

 Changing the messages A and B – similar to the previous attack but in this

case A and B sub-messages are altered and in the result n1 value used by the

tag for an update is changed.

The full disclosure attack is based on a stateless nature of the tags - there is no way

to save the state of the protocol execution on a tag. The attack consists of four

stages, the first three of which are performed on a single protocol run and disclose all

secret values apart from K2, K4 and the tag ID. The fourth stage requires

approximately (runs to fully disclose tag's ID (m-bits long).

LMAP - A Real Lightweight Mutual Authentication Protocol

After several weaknesses were discovered in M²AP and EMAP Peris-Lopez et al

addressed them in the LMAP proposal (Peris-Lopez et al. 2006b). LMAP and EMAP

share some similarities: the same size of the IDS and the same size and number of

sub-keys. However, the Tag to Reader message (previously consisting of sub-

messages D and E) was reduced only to a single message D. The rest of the sub-

messages are now created using the following equations:

The IDS index-pseudonym is now created with the following operation:

The sub-key K1 and K2 equations are identical to the ones proposed in M²AP:

13

The operations used to create the last two sub-keys K3 and K4 were slightly modified

in comparison to M²AP and are as follows:

The LMAP and the M²AP protocols were analysed by (Li & Wang 2007) and serious

weaknesses were discovered in both. The vulnerabilities highlighted and possible

attacks are very similar to the EMAP security flaws analysis in (Li & Deng 2007).

Again, the main issue is related to the fact that the tag is not able to verify if the

reader successfully received and verified message D, which may lead to a protocol

de-synchronization. The de-synchronization attacks are practically identical to the

one proposed earlier: message C alteration and messages A&B alteration attacks

performed by XOring the message with zeros and one as the least significant bit. The

probability of the success of the first attack remained at 50%. The full disclosure

attack is slightly more difficult than in the case of the M²AP protocol. The attacker has

to obtain the current IDS of the tag and then try all possible (A II B II C) messages by

sending them to the tag and changing the j-th bit in A and B at each try. This reveals

the n1 random number value and allows the calculation of K1 and K2. The rest of the

secret values can be discovered by interacting with the reader and the tag one more

time and then derived from the known sub-message creation equations and a simple

algorithm described in (Li & Wang 2007). Several countermeasures were proposed,

the most interesting one proposes a tag status storage mechanism preventing de-

synchronization attacks: an additional status bit on the tag indicating whether a

protocol has been successfully completed and two additional 96-bit memory spaces

for storing n1 and n2 values used in the last protocol run. A Similar mechanism was

included in (Peris-Lopez et al. 2006b) as a LMAP+ extension.

However, the above protocols including Li & Wang's countermeasures were proven

still susceptible to de-synchronization and full disclosure attacks by (Chien & Huang

2007). Chien & Huang showed that the attacker can flip some bits without being

noticed by the reader or the tag so the protocol round would complete and both sides

would update the IDS and keys with different n1 and n2 random numbers. The

authors also revised the Li & Wang's full disclosure attack and showed even more

efficient version of the attack.

The Li & Wang's paper was also followed by (Bárász et al. 2007a) describing a fully

passive full disclosure attack against LMAP, which requires only eavesdropping a few

(about 10) consecutive rounds of the protocol. The main weaknesses of the protocol

mentioned in (Bárász et al. 2007b) were related to triangular functions properties

(weak propagation of bits from left to right).

14

SASI - Strong Authentication and Strong Integrity

The family of UMAP protocols proposed by Peris-Lopez et al. influenced an

interesting SASI protocol specification by (Chien 2007). The concept is similar to that

of the UMAP family. The tag has a unique 96-bit ID and pre-shares an index-

pseudonym (IDS) and two keys K1 and K2 with a back-end database accessible by

the reader (secure link assumed). In order to resist de-synchronization a state-

verification has been employed: the tag stores two sets of (IDS, K1, K2) – the old

values and the potential new values. In each protocol instance the reader may probe

the tag twice: the first time the tag replies with its potential new IDS and if it was not

found it may probe the tag again and this time the tag will use the old IDS value.

The protocol flow is also similar to UMAP family:

 The reader sends a “hello” message.

 The tag replies with its potential next IDS.

 The reader uses IDS to find a matched record in the database. It generates

two random values n1 and n2 and uses stored keys K1 and K2 to generate

messages A, B and C which are further concatenated and sent to the tag. The

following equations are used to generate A and B:

Keys K1 and K2 are rotated using a rotation function „ROT‟, which was not

clearly specified in Chen‟s paper but revealed in (Hernandez-Castro et al.

2008) to be a Hamming rotation. The rotations are described as follows:

According to Hernandez-Castro et al. Chien intended to use a Hamming

rotation , where stands for the Hamming weight

of vector B. If a modular rotation was chosen, then

the protocol would be susceptible to a passive attack proposed in (Hernandez-

Castro et al. 2008).

 After rotations are performed, the rotated and original keys are used to form

the message C:

 The tag receives A II B II C and extracts n1 from A, and n2 from B. Then it

performs the same two rotation functions as the reader in previous step,

calculates message C and compares it with the received one. Upon successful

verification the tag replies to the reader with a message D:

15

After sending the message the tag updates the IDS and keys K1 and K2 using

the following equations:

 After the message was received and successfully verified by the reader, the

reader updates the IDS and keys entries using the same equations as the tag.

Chien provided a security analysis of the protocol claiming that it is secure against

de-synchronization attacks, ID disclosure attacks and it should provide privacy,

anonymity, mutual authentication and forward secrecy (keeping the past

communication secure even if a tag is compromised later) while retaining the ultra-

lightweight properties and requiring a message length of 4L1 and the total memory

size on a tag of 7L as opposed to 6L in UMAP family protocols.

There have been no published successful passive attacks against the SASI protocol

using Hamming rotation function. However, several active attack possibilities were

discovered. Two de-synchronization attacks on the SASI protocol were described by

(Sun et al. 2008). Both attacks were targeting the anti-de-synchronization mechanism

of the SASI protocol: the possibility of re-trying the communication with the old IDS in

case the next-possible IDS was not found in the database. Another paper by (Cao et

al. 2009) described a denial-of-service and ID disclosure attacks. A de-

synchronization, ID disclosure and finally a full disclosure attack against the SASI

protocol was proposed by (D‟Arco & De Santis 2008).

Gossamer Protocol

The Gossamer Protocol derived by (Peris-Lopez et al. 2009) is one of the most

recent proposals in the field of lightweight cryptography. Peris-Lopez et al.

summarized that most of the weaknesses are related to the fact that all simple

bitwise operations like AND, OR, XOR and modulo addition are T-functions

(Klimov & Shamir 2004), thus suffer from weak propagation of bits from left to right.

Another weakness highlighted was the bias in the probability (75%) of obtaining a bit

„1‟ when using bitwise AND operation.

Peris-Lopez proposes a Gossamer Protocol that is largely similar to the SASI

protocol in general concept: each tag has a static identifier (ID), an index-pseudonym

(IDS) and two keys K1 and K2 in memory. Additionally each tag is required to store

two sets of the tuple (IDS, K1, K2): old value and the potential next value. It is

assumed that the only mathematical operations that will be used are bitwise XOR,

1
 L denotes the length of one key or the IDS in bits. 96-bits in the case of the EPC RFID specifications.

16

addition modulo and left rotation function . The rotation function performs

a circular shift on the value of by , positions to the left for a given N (96 in

case of the EPC RFID). The most computationally expensive operation of generating

two random numbers required in each protocol run is designed to be done on the

reader side. An additional security layer is added with a lightweight function

called , which is based on a methodology described in (Hernandez-Castro et

al. 2006) and uses only bitwise right shift. The pseudocode describing the algorithm

for the MixBits function is shown in Figure 2.1.

Z = MixBits (X, Y)
Z = X

FOR counter = 0 to 32
Z = (Z>>1) + Z + Z + Y

ENDFOR

Figure 2.1 MixBits Function

The author of the protocol divided it into three stages: tag identification, mutual

identification and updating phase.

 Tag Identification phase – just as in previously described SASI protocols the

reader sends a “hello” message and the tag replies with its next

potential . The reader performs a search in the database to find a

matching entry and if successful it continues to the next phase. Otherwise the

reader queries the tag again and the tag replies with the old .

 Mutual Authentication phase – the reader generates two random values n1

and n2 and build messages A, B and C using the following equations

(assuming that - 96 bits) :

Now the tag extracts n1 from A and n2 from B and performs the same

operations as the reader to construct . Then it compares received with

 calculated and upon success constructs message D to be sent to the

reader:

17

The tag performs Tag Updating phase. The reader upon receiving message D

performs the same calculation and compares D received with calculated. If

this is successful the reader performs Updating phase.

 Updating phase – the tag updates the two (IDS, K1, K2) tuples as follows:

The reader updates the back-end database using the following formulas:

The protocol requires exchanging four messages between the reader and the tag. All

stages are illustrated in Figure 2.2. Hello message length is not specified, the IDS

and D messages are 96-bits long and the concatenated A II B II C message consist

of three 96-bit long sub-messages. A total of 384 bits (excluding Hello message)

needs to be transmitted during one protocol run.

The Storage Requirements on the tag side are limited to 7 times the key-length (96-

bits in the original specification) to hold two IDS, K1, K2 tuples and the static identifier

ID. Each database record is required to story only one IDS, K1, K2 tuple and the

static ID.

18

Figure 2.2 The Gossamer Protocol

The Gossamer Protocol prevents attacks listed in section 2.2.2 as follows:

 ID Disclosure Attack – the notion of an index-pseudonym (IDS) and private

keys K1 and K2 changed for every authentication session prevents disclosure

of the unique identifier (ID) of the tag.

 Full Disclosure Attack – the secret data (ID, K1, K2) is always scrambled using

two random numbers and sum, Mixbits and Rot functions before being

transmitted over the wireless link.

 De-Synchronization Attack – each tag stores (IDS, K1, K2) tuples used in a

previous protocol run. In case of an unsuccessful update on the reader side in

the last stage of the protocol (message D) the tag can be still identified using

old values. The result is that both the tag and the reader can recover their

synchronized state.

The requirement of the Data Freshness (see section 2.1) is fulfilled by updating

secret values K1, K2, n1 and n2 at each protocol run.

To the knowledge of the author only one paper describing attacks against the

Gossamer protocol was published (Ahmed et al. 2010) shortly before this dissertation

was finished. Ahmed et al. described two attacks against the protocol. The first one

was feasible if both random numbers n1 and n2 were equal to zero allowing the

discovery of all secret values after eavesdropping two consecutive runs of the

protocol. The latter attack concerned a case where both K1 and K2 values are equal

to zero which leads to disclosure of all secret values during a single authentication

round. Ahmed et al. proposed modifications to the protocol. However their proposal

has a major flaw in that it renders the extraction of n1 and n2 impossible.

The original Gossamer protocol is given in fig. 2.1 replicated below for clarity of

explanation.

19

An attack on the original Gossamer protocol is feasible if both random numbers n1

and n2 were equal to zero permitting the discovery of K1 and K2 after eavesdropping

two consecutive runs of the protocol.

The proposed Ahmed et al modification substitutes K1 for n2 in A and K2 for n1 in B.

The values n1 and n2 are known to the reader. In A above,

 is rotated by n2 by the reader and likewise in B,

 is rotated by n1. Messages A & B are exchanged with the tag. The tag‟s

job is to extract the values n2 and n1 from messages A and B and to perform the

appropriate inverse rotation to verify the remainder of the contents of messages A

and B. However, in this modification, the tag is not aware of the value n1 or n2 and

therefore cannot perform the inverse rotation to retrieve

 . This is a flaw in Ahmed‟s analysis that will not permit the completion of

authentication.

Another modification proposed by Ahmed et al. concerning the MixBits function has

also a very weak effect on overcoming the weakness of both random numbers n1

and n2 equal to zero. In the original Gossamer protocol, the mix-bits function exists

during the creation of the new IDS and Key values.

Z = MixBits (X, Y)
Z = X

FOR counter = 0 to 32
Z = (Z>>1) + Z + Z + Y

ENDFOR
Figure 2.3 MixBits function (repeated)

Where X and Y are the input 96-bit numbers and Z is the final result of the MixBits

function. The weakness identified by Ahmed et. al is that if both of the MixBits input

values (n1 and n2 in the first run) are equal to 0 then the result of the function is also

equal to 0. As a result all transformations are dependent on the Key values, the IDS

and Pi. This weakens the effective security of the Gossamer Protocol. Ahmed et al

proposed the following modification:

Z = MixBits (X, Y)
Z = X

FOR counter = 0 to 32
Z = (Z+counter) + Z + Z + Y

ENDFOR
Figure 2.4 Modified MixBits Function

20

It is obvious that in a case where both n1 and n2 numbers are equal to zero then the

result of the MixBits function will be always the sum of numbers 1 to 32 which is 528.

The proposed attack on the MixBits functions where n1 and n2 are 0 has been

rectified but now the first attack proposed can be still performed but using the value

of 528 instead of 0 at the first call of the MixBits function within the Protocol (n3

calculation) and the result can be applied to the subsequent formulae to generate

keys and messages.

Temporarily as a solution to the first attack it is recommended not to allow both

random generated numbers to hold a value of zero at the same time. This verification

should be performed by the PRNG function before the values are forwarded to the

reader.

An altered Gossamer Protocol is suitable as a mechanism for authenticating

Resource Limited Devices. The reader-tag relation is close to the master-slave one in

the Infrastructure WSN scenario (see section 3.1). The main difference is the fact that

a RFID tag is triggered by the reader, where in the IWSN all slaves will periodically

initiate the communication. This difference is not significant in terms of the Gossamer

specification as the „Hello‟ message send by the reader to initiate the communication

does not carry any protocol-specific data, thus can be discarded without any effect. It

has to be pointed out that the Gossamer protocol was designed to be implemented in

hardware but the simplicity of the mathematical operations renders it easily

implementable in software on the reference platform nRF9E5 (see section 3.4). In

consequence, this protocol is chosen for the implementation and further performance

analysis.

Ultralightweight RFID Protocol with Mutual Authentication (UMA-RFID)

Shortly after the Gossamer Protocol was published Lee at al. proposed UMA-RFID

alternative (Lee et al. 2009). The protocol is very similar to the Gossamer

specification but simplified to use only bitwise operations (XOR, OR, AND) and a left

bitwise rotation function ROT. Each tag contains a static identifier ID, pseudonym

called the dynamic temporary identifier (IDT) and a secret key (K). All variables are

128-bits long and shared between the tag and the back-end database accessible by

the reader (secure channel assumed). The reader is assumed to be capable of

generating random number (N). The protocol consists of two stages: Authentication

Phase and Update Phase.

 Authentication Phase: the reader sends a request message and the tag

replies with a temporary identifier (IDT). The reader searches the database to

find a secret key corresponding to the IDT received, generates random

number and calculates messages and as follows:

21

The messages are concatenated and sent to the tag. Upon receiving these

messages the tag obtains from message and calculates message in

the same way as the reader previously. Then message is compared

with . If they are the same then the reader is authenticated and the tag

generates reply message as follows:

The message is sent to the reader and the reader calculates a local copy and

verifies the correctness. After successful verification the tag is authenticated.

 Updating phase: the tag performs this phase after authenticating the reader.

The updating on the reader side is done upon successful authentication of the

tag. Both sides use the following equations to update and :

Peris-Lopez et al. analysed the UMA-RFID protocol (Peris-Lopez et al. 2009) and

found serious weaknesses in the scheme which led to ID Disclosure, Full Disclosure

and De-Synchronization attacks. Peris-Lopez et al. described 5 attacks: ID-disclosure

attack, two passive Full Disclosure attacks and two active De-Synchronization

attacks. The most significant Full Disclosure attack allowing cloning of the tag to be

performed after eavesdropping of only two consecutive runs of the protocol and

requires only computing XOR among some of the messages transmitted over the

radio channel.

SQUASH – A New MAC with Provable Security Properties for Highly

Constrained Devices Such as RFID Tags

Adi Shamir proposed an authentication mechanism based on a challenge-response

scheme and Message Authentication Code (MAC) called SQUASH (short for

SQUare-hASH) specifically for Resource Limited Devices (Shamir 2008). The

proposed challenge-response scheme allows tag-to-reader authentication and does

not address the ID disclosure issue. The document focuses on describing a strong

one-way hashing function (H) performed by the tag upon receiving a random

challenge message (R). The MAC is computed with (R) and secret key (S) as inputs:

The reader shares the secret key S and performs the same calculation upon

receiving the MAC to validate if a tag is legitimate. The author made an interesting

observation that most of the standard one-way hash functions such as SHA-1

(Eastlake & Jones 2001) are primarily designed to be collision resistant as their main

area of usage concerns digital signatures. The requirement for collision resistance

typically adds complexity to the algorithm. Since a collision is not a security threat in

22

a challenge-response scheme, the author proposed an algorithm based on the Rabin

encryption scheme (Rabin 1979). In the Rabin scheme the ciphertext (c) is computed

as , where (m) is a message and (n) is a product of at least two

unknown prime factors. Shamir has shown how the calculation can be simplified

using a step-by-step process that has no adverse effects on the strength of the

security and has proposed a hardware implementation using mixing function (M)

applied to the secret and challenge (S, R) and then the SQUASH function

SQUASH(M(S,R)) as follows:

1. Start with j which is the index at lower end of the desired extended window of t + u bits, and set
carry to 0.
2. Numerically add to the current carry (over the integers, not modulo 2) the k products of the form

 mv * for v = 0, 1, 2, ..., k − 1.

3. Define bit cj as the least significant bit of the carry, set the new carry to the current carry right-
shifted by one bit position, and increment j by one.
4. Repeat steps 2 and 3 t + u times, throw away the first u bits, and provide the last t bits as the
response to the challenge.(Shamir 2008)

The proposed SQUASH-128 hash function uses a modulus a 64-bit key S

and a 64-bit challenge R to produce a 32-bit response. The security of this scheme

was questioned by Ouafi & Vaudenay, who discovered a key recovery attack known

as "known random coins attack" against the Rabin scheme using 1024 chosen

challenges (Ouafi & Vaudenay 2009). The “known random coins attack” allows an

adversary to request many encryptions of the same plaintext and in consequence get

the random coins. The attack is only effective if a linear mixing function is used, thus

the security of SQUASH is still regarded as strong, assuming that a non-linear mixing

function is used.

SPINS - Security Protocols for Sensor Networks

Perrig et al. proposed a security mechanism consisting of two blocks: Secure

Network Encryption Protocol (SNEP) and µTESLA (Perrig et al. 2002). SNEP‟s

security goals are data confidentiality, mutual authentication and the evidence of data

freshness2. µTESLA provides a mechanism for an authenticated broadcast.

 According to the authors SNEP achieves previously mentioned security goals with a

very low communication overhead of only 8 bytes per message. SNEP ensures

semantic security3 using two counters and shared by the communicating

nodes. These counters are further used by the block cipher in counter mode.

Counters do not have to be attached to messages but Perrig et al. described a

mechanism of counter synchronization. The mutual authentication is achieved

through the usage of a MAC function. Both communicating nodes A (sender) and B

(receiver) share a master secret key used to derive keys through a

pseudorandom function. It has to be noted that the authors advised deriving different

2
 Data freshness ensures that the data received is fresh and the adversary cannot replay old

messages.
3
 Semantic security ensures that an eavesdropper is not able to deduct any information about the

plaintext even after analysis of multiple encryptions of the same plaintext.

23

key sets for MAC and encryption. Each key set consists of two keys - one for each

direction of the communication.

Encryption keys:

 =

 =

MAC keys:

 =

 =

The sender node A encrypts (symmetric block cipher) the data using and :

The encrypted result is then used by the MAC function in the following manner:

Finally the sender node sends the message:

This scheme does not provide data freshness. A solution for this issue is provided by

the usage of a random number and a request message send by the node A:

The Receiving Node B responds with an encrypted message and a MAC function

with a cryptographic nonce as one of the inputs:

Upon receiving the message and MAC verification the node A is sure that the node B

generated the message using the cryptographic nonce supplied in a request

message.

SNEP messages require synchronized counters on both sides of the communication.

If the synchronization is lost for example due to lost messages, counter values can

be re-synchronized through the following messages:

24

The concept of µTESLA was based on a TESLA protocol providing a mechanism of

an authenticated broadcast (Perrig et al. 2001). This scheme achieves asymmetry

through a delayed disclosure of symmetric keys rather than using computationally

expensive Public Key Cryptography. The TESLA proposal is not suitable for

implementation within a constrained devices environment. In order to adapt it for the

Wireless Sensor Networks the following issues were addressed:

 TESLA authenticates the initial packet with a digital signature. The

computation of a digital signature is too expensive on sensor nodes so

µTESLA uses only a symmetric mechanism.

 Standard TESLA discloses the key for the previous intervals with every

packet. Since this generates too much overhead µTESLA discloses the key

once for each pre-defined epoch.

 Sensor nodes are not able to store an entire one-way key chain in the

memory. This is addressed in µTESLA by limiting the number of authenticated

senders.

The µTESLA requires that all receiving nodes are loosely time synchronized with the

base station. In order to send an authenticated broadcast, the base station computes

a MAC using the packet and a key which is secret at that point in time. The receiving

node stores the packet in the buffer in order to validate its authenticity later when the

base station broadcasts the verification key. Each MAC is a key of a key chain,

generated by applying a one-way hash function. A successive key is generated by

applying the hash function on the previous key. The time synchronization can be

achieved by the means of the SNEP protocol. The protocol consists of the following

phases:

 Sender setup – the sender node generates a one-way key chain by

successively applying one-way hash function.

 Broadcasting authenticated packets – the time is divided into inform intervals.

The sender associates each key in the key chain with one particular interval

and uses this key to compute MAC of all packets sent in that interval. The key

 is disclosed after a delay which is greater than a few time intervals and has

to be greater than a message round-trip time between the sender and the

receivers.

 Bootstrapping a new receiver – each receiver needs to authenticate one key in

the one-way key chain which allows it to commit to the entire chain: further

keys will be calculated using one-way hash function. The receiver needs to be

loosely time synchronized with the sender and has to know the key disclosure

schedule. Both of these requirements are fulfilled as follows: the Receiver

node sends a request message containing a random number and the

Sender replies with a message containing its current time , the key used

in the past interval , the starting time of this interval , the duration of this

interval and the key disclosure delay . These values are sent with clear

25

text along with a MAC calculated using these values, the random number

 and shared secret key :

 Authenticating broadcast packets – upon receiving a message the receiver

needs to make sure that this packet is safe by verifying if the key used to

compute the MAC was not disclosed yet. This can be achieved thanks to loose

time synchronization between the sender and the receiver. When a node

receives a new key it computes the one-way hash function on the previous

key in order to verify the correctness of . If the check was successful then

a node can authenticate all packets which arrived in the time interval of

Perrig et al. did not specify exactly which encryption algorithm should be used in

SNEP, or which one-way hash function should be used by µTESLA, or indeed which

Random-number generation should be used in both protocol blocks. However, Perrig

et al. provide example functions for the experimental implementation. In order to

tackle the issue of limited code space and RAM size all cryptographic primitives are

based on a modified subset of the RC5 encryption algorithm (Rivest 1995).

The µTESLA‟s main disadvantage is the need for an initial unicast-based parameter

distribution. This issue has been addressed by Liu & Ning in the Multi-Level µTESLA

specification (Liu & Ning 2004). The scheme provides a way to predetermine and

broadcast the initial parameters. Additionally, Multi-Level µTESLA introduces a mulit-

level key chain scheme which removes the need for very long key chain. The authors

claim that the key chain commitment distribution mechanism described in their

document improves the survivability of the scheme against message loss and Denial

Of Service (DOS) attacks.

Since the SPINS specification does not propose exact cryptographic primitives to be

used no security weaknesses were identified in the scheme to the knowledge of the

author. However, several papers were published addressing efficiency and key

management issues found in SNIPS (Liu & Ning 2004), (Yu-Long et al. 2007),

(Hegazy et al. 2007).

Both of the SPINS schemes suffer from using Pseudo-Random Number Generator

(PRNG) engines not only on the base station side but also on the sensors. Perrig et

al. suggested that sensor nodes may draw random numbers from the actual sensor

readings. However, the Analog-to-Digital Converters (ADCs) which are sometimes

only 8 or 10-bit wide may not be able to provide random values in a magnitude large

enough for cryptographic usage. Thus a resource expensive PRNG functions need to

be implemented within a limited sensor node code space.

26

Due to a high computational overhead on the sensor node side, the SPINS

implementation was not considered during this MSc project.

2.3 Encryption

Bruce Schneier said that “Cryptography is the art and science of keeping messages

secure”(Schneier 1996). A message (referred to as a plaintext) undergoes a process

of hiding its substance (encryption) and converting it into a non-meaningful gibberish

(ciphertext or cipher) that can be sent over an insecure communication channel. The

process of retrieving a plaintext from a ciphertext received is referred to as

decryption.

The general rule followed in modern cryptography states that the security of the

system cannot rely on the secrecy of its components (security by obscurity) – the

secrecy must reside entirely in the encryption key. This principle was stated by

Auguste Kerchoff in the nineteenth century (Menezes et al. 1997), who assumed that

a cryptanalyst has a complete knowledge of the algorithm and implementation. An

algorithm that has its security based on keeping its foundations secret is called

restricted. Such a security system can be compromised through an information leak,

reverse engineering, etc. Quality control and standardisation cannot be maintained.

The most common type of cryptography is the Secret-Key Cryptography (symmetric

cryptography), where a message „M‟ gets encrypted with encryption function E, using

a key „k‟ to generate a ciphertext „c‟. Therefore, c = E(k,M). The decryption function D

should provide a way to recover the plaintext „p‟ using shared secret „k‟, such that p =

D(k,c).

2.3.1 Problem of Encryption in the context of IWSN

Resource-Limited Devices (RLDs) are highly constrained in terms of available

memory and processing power (see Section 3.3). The reference platform nRF9E5

(see Section 3.4) used in the example IWSN does not provide any hardware support

for any encryption algorithm, thus the entire mechanism needs to be implemented in

software. The following characteristics are used to evaluate possible encryption

algorithms:

 The code-space required for the implementation is limited (algorithm

simplicity) and will be used as one of the metrics.

 The algorithm should be optimized for 8-bit word size.

 The expected data payload size is limited, thus the resource efficiency of the

algorithm will take precedence before the data throughput.

 The single data payload size is limited to 24 bytes on most occasions.

 It may be not possible to implement a random number generator on the node

side due to general hardware and execution time constraints.

 Thanks to the proposed authentication algorithm (see Section 2.2.3) the key

management problem may be resolved through a re-use of the authentication

27

key for the purpose of a session key fed into a symmetrical block or stream

cipher.

The most security critical aspect of wireless sensor operation is the reconfiguration of

the nodes. An attack enabling an adversary to alter the control messages may lead

for example to Denial Of Service (DOS) attacks affecting the entire network of

sensors. It is assumed that the authentication system will guarantee frequent session

key changes for the purpose of maintaining the data freshness (see Section 2.1). In

consequence, the control messages have to remain safe for a relatively short period

of time, until the next session key is exchanged. In most IWSN applications the data

transferred by sensors will not be valuable to an attacker and will not require infinitely

long secrecy. Given the analysis above, the encryption algorithm may be based on

relatively short encryption keys.

2.3.2 Known and possible attacks

Attacks can be generally divided into two categories - passive and active attacks.

Passive attacks concern monitoring the communication channel and gathering data

(eavesdropping) but not altering it in any way. Wireless Sensor Networks are

especially prone to passive eavesdropping.

Cryptanalysis is an area of science heavily used in performing passive attacks on

Encryption Algorithms. It concerns recovering plaintext of a message without knowing

the Encryption Key. Schneier divided cryptanalytic attacks into several groups

(Schneier 1996). The most important are as follows:

 Ciphertext-only attack – the attacker analyses the ciphertext of several

messages encrypted with the same algorithm in order to recover the

encryption key.

 Known-plaintext attack – the attacker has access to a block of plain text and a

ciphertext produced by the algorithm out of this block. The analysis tries to

extract information on the encryption key by examining changes between input

and output.

 Chosen-plaintext attack – similar to the known-plaintext attack but the attacker

is able to choose a plaintext block to be encrypted.

 Adaptive chosen-plaintext attack – the cryptanalyst sequentially applies

chosen-plaintext attack on variable size plaintext blocks, where each choice is

dependent on the outcome of previous attack.

 Chosen-ciphertext attack – this kind of attack assumes that the cryptanalyst

has access to the decrypted plaintext corresponding to the ciphertext he chose

(without knowing the decryption key).

Attacks requiring alteration of the transmitted ciphertext or alteration of the

computation in a device are referred to as active. These types of attacks commonly

target specific protocol implementation of the security system rather than

cryptographic algorithms on their own.

28

A special case of an active attack is a physical invasive attack - the adversary has a

physical access and toolset required to access the device's circuitry and for example

read the EEPROM memory contents. Since a full protection against this types of

attack requires advanced hardware (such as a sensor case destroying the EEPROM

chip during opening), it is assumed that such attack cannot be prevented. The

consequences of the physical invasive attack have to be limited in such a way that

the security of the entire system is not compromised when a single node‟s key is

revealed and the past communication remains safe (see Section 2.1). This issue

introduces a requirement to maintain session keys unique to each of the sensor

nodes.

2.3.3 Identified algorithms effective in the context of Infrastructure WSN

The field of research concerning cryptography for low cost embedded devices was

not given much attention until the last two decades. The papers concerning

lightweight cryptography are focused either on finding solutions easily implementable

in hardware (Bogdanov et al. 2007, Eisenbarth et al. 2007, Poschmann et al. 2007)

or solutions focused on a software implementation efficiency on low resource

microcontrollers (Standaert et al. 2006, Wheeler & Needham 1994). The reference

platform used in this research forces a software encryption solution.

Tiny Encryption Algorithm (TEA) family

The Tiny Encryption Algorithm (TEA) (Wheeler & Needham 1994) was the initial

proposal of a family of algorithms (chronologically): XTEA and Block TEA (Needham

& Wheeler 1997) and XXTEA (Wheeler & Needham 1998). The main principle behind

the TEA algorithm design was the simplicity of the implementation and the ease of

translation to many programming languages (including Assembly). The initial

proposal was a block cipher operating on 64-bit blocks with 128-bit key. Each of the

identical 64 rounds of the algorithm uses only logical AND, OR, as well as bit-shift

operations and addition/subtraction . The sample C-language source code

consisted of less than 10 lines. The authors favoured large number of iterations over

the complexity of the code. The set up time is relatively short and there is no need to

store any Look-Up-Tables (LUTs) in the memory.

The first weakness discovered in TEA was the fact that each key is equivalent to

three others which effectively reduces the key size to 126 bits. This vulnerability was

used to construct an attack against Microsoft's Xbox game console, which uses TEA

as a hash function (Russell 2004). Since the initial proposal in 1994 several attacks

were published, for example a Key-schedule cryptanalysis (Kelsey et al. 1997) and

Related-key cryptanalysis (Kelsey et al. 1997). Wheeler & Needham addressed the

issue mentioned above when proposing Block TEA and XTEA algorithms. The key

schedule was revised and other computations (bit-shifts, XORs and additions) were

rearranged to introduce the key material more slowly. The XTEA algorithm and it‟s

block version Block TEA also suffer from weaknesses discovered by shortly after

publication by Saarinen (Saarinen 1998): slow diffusion in the decryption direction

29

exploited by chosen plaintext attack. Several other cryptanalysis attempts were also

published in (Andem 2003, Hong et al. 2004, Ko et al. 2004, Lu 2009, Moon et al.

2002). The slow decoding propagation pointed by Saarinen was addressed by

Wheelar & Needham in their XXTEA proposal as a short amendment to the Block

TEA (Wheeler & Needham 1998).

XXTEA operates on a block consisting of at least two 32-bit words using a 128-bit

key. A single round of the algorithm can be viewed as operations on a word and its

two adjacent words (previous and the next one). Figure 2.5 shows one round of

XXTEA cipher, where represents a current block and the four-squares symbol

represents addition Modulo the size of the word. The number of rounds equivalents

to the number of words in the block.

Figure 2.5 One round of XXTEA (el Ruptor 2007)

In (Rinne et al. 2007), Rinne analysed the performance of several ciphers, including

DES (Federal Information Processing Standards 1993), AES (Daemen & Rijmen

1999), IDEA, SEA (Standaert et al. 2006), HIGHT and the TEA family. Rinne

indicated that the TEA family requirements in terms of the code space required are

among the lowest (after the IDEA algorithm) throughout all ciphers analyzed. The

small code space footprint was achieved thanks to the lack of substitution tables

common in other block ciphers. The XXTEA optimisation and performance analysis

were also provided in (Jinwala et al. 2008) proving it to be a viable encryption

algorithm for WSNs.

Shortly before this dissertation was completed E. Yarrkov published a chosen-

plaintext attack against the XXTEA requiring queries (Yarrkov 2010). Yarrkov

took advantage of the fact that the number of full cycles to perform over each block is

equivalent to , where represents the number of rounds. If the block

30

consists of at least 53 words then the number of cycles per word is reduced to only 6.

This characteristic was used to perform differential cryptanalysis, where the

difference was considered subtraction per word. The author described two attacks

proving that XXTEA does not provide the intended 128-bit security.

Scalable Encryption Algorithm (SEA)

The Scalable Encryption Algorithm (SEA) proposed in (Standaert et al. 2006) aims to

provide a low cost encryption implementable on resource limited processors.

Similarly to the TEA family it uses basic operations such as logical AND, OR, XOR,

word/bit rotations, modular additions and a simple substitution box. Apart from the

limited instruction set, the other design criteria were the low memory requirements

and small code size. Per the authors the algorithm allows “on-the-fly” key derivation.

The proposal includes a comprehensive security analysis showing the resistance of

the protocol against major modern cryptanalytic techniques.

The scalability of the algorithm is achieved through the flexibility in the size of the

input parameters. The following parameters are used:

There is one constraint on the size of the key/plaintext that the is a multiple of :

The security analysis provided in the proposal suggests the minimum required

number of rounds to provide security against well know attacks (assuming word size

equal or greater than 8 bits) is:

Figure 2.6 shows one encryption and key round, where denotes the word rotation,

 the bit rotation and the substitution box (in C-like notation).

The represents a -word vector with all words of a value 0 except the least

significant word which value is equal to The Li and Ri represent left and right halves

of the word or the key (KLi, RKi).

31

Figure 2.6 Encrypt/decrypt and key round of SEA

The functions for encrypt (), decrypt () and key () rounds are defined as

follows:

The authors analyzed the performance of the algorithm using the Atmel AVR ATiny

reference 8-bit CPU platform among others. The expected code size for a 96-bit key

implementation was estimated at 386 bytes and the amount of clock cycles required

for encryption/decryption was estimated at 17745. A performance analysis (Rinne et

al. 2007) performed by Rinne on AVR Atmel163 showed a code size of 2132 bytes

for the 96-bit SEA (compared to 1160 bytes for XTEA) and the number of CPU cycles

required to complete encryption/decryption was 9654 (compared to 6718 with XTEA).

The performance and code space requirements of the XTEA algorithm look more

promising than the SEA according to Rinne‟s analysis. However, due to the recent

Yarrkov‟s discovery of security weaknesses in XXTEA the implementation of this

algorithm will be abandoned in favour of the Scalable Encryption Algorithm in 96-bit

version.

Li+1

KLi+1 KRi+1

Ri+1

Ri

Ki

Li KLi KRi

Ci

32

3. Resource-Limited Devices

The term Resource-Limited Device (RLD) will be further used to describe a

microcontroller device with significantly lower processing power and limited memory

in comparison to a modern Personal Computer. This group of devices range from

Radio Frequency Identification (RFID) transponders to a wide spectrum of embedded

devices equipped with small (typically 8-bit) microcontrollers. Such devices are

utilised in wireless sensor networking for example.

This dissertation focuses on the security of the communication over the radio

channel, thus the area of research will be restricted to Wireless Sensor Networks and

advanced RFID systems.

The work in this MSc dissertation is predicated upon the application of the Nordic

Semiconductors nRF9E5 Integrated Circuit (Nordic Semiconductors 2009b) as the

target device. This microcontroller was chosen due to its low price (approximately

2$US per unit at quantities over 1000), integrated UHF radio transceiver and

excellent power saving characteristics which make it an ideal solution for the design

of a low-cost wireless sensor. The nRF9E5 entire chip will be referred to as a

microcontroller and the Intel 8051-compatible Central Processor Unit - a subset of

this system will be referred to as CPU or microprocessor.

Hardware Platform - nRF9E5

The nRF9E5 microcontroller is a single chip system with an integrated sub-1GHz

Radio-Frequency (RF) transceiver, 8-bit 8051-compatible processor and 4-input 10-

bit Analogue to Digital (AD) converter. The design of the chip was based on the

Dallas DS80C320 CPU in terms of hardware specification and instruction cycle

timing. It is a low cost solution with extended power saving capabilities. The minimum

power consumption in power down mode (where the chip can be woken up by a timer

or an external pin) is only 2.5µA. The microprocessor draws 2.2 mA of current at a

clock frequency of 16MHz and the radio transceiver (nRF905) uses 10 to 30 mA in

Transmit Mode (depending on output power setting). Receive Mode power usage is

estimated at 12.5 mA on average.

The CPU is an 8-bit Intel 8051 derivative with the addition of Special Function

Registers (SFRs) used to control the nRF9E5 radio transceiver. The microcontroller

is equipped with 512 bytes of ROM that contains the bootstrap loader, 256 bytes of

Internal Data Memory, 128 SFRs and 4 kilobytes of external on-chip RAM. The

memory is organized with the Harvard Architecture in contrast to the Von Neuman

architecture commonly used in desktop PCs. The bootstrap loader loads the program

from the bottom area of external EEPROM memory upon each power-up or reset

cycle. The manufacturer did not provide any possibility to extend the size of the on-

chip RAM, thus the binary program size is limited to 4 kilobytes.

33

The on-chip radio transceiver subsystem is the Nordic Semiconductors nRF905

connected to the microcontroller through the SPI (Serial Peripheral Interface) port. It

utilizes the nRF ShockBurst™ technology allowing high speed radio signal

processing without the assistance of the microprocessor, which further reduces the

power consumption requirements. The transceiver is able to generate the preamble

and calculate CRC for each data payload when transmitting signals. Additionally, it

can validate CRC for each incoming data payload. The CRC calculations are

performed by an on-board circuit without the CPU's assistance. NRF905 supports

standby mode, where the current consumption is limited but the short startup times

are still maintained, and 4 different Radio Frequency (RF) transmitting power modes

ranging from -10dBm (at 9mA of current consumption) to 10dBm (at 30mA of current

consumption). The current consumption in receiving mode is estimated at 12.5mA

and can be reduced to 10.5mA when using reduced receiving power mode. The

modulation used for the air interface is Gaussian Frequency Shift Keying (GFSK) with

Manchester Encoding yielding an effective data transfer rate of 50kbps. The

transceiver is able to operate on radio frequencies 430 to 434.7MHz or 868 to

928MHz.

3.1 IWSN introduction.

Figure 3.1 Wireless Sensor Network Architecture

34

A typical Wireless Sensor Network consists of a set of Wireless Sensor Nodes and

one or more Upload Stations (also referred to as Gateway Sensor Nodes or sinks)

(Akyildiz et al. 2002) that provide a connection to a Host Computer on an external

network. The external network uses a communication media not available to the

Wireless Sensor Nodes, such as Ethernet or a different RF technology. The most

commonly used architecture (Ye et al. 2002) is an ad-hoc network (see Figure 3.1),

where every sensor node either broadcasts the message to all other nodes (using an

endless message repetition preventing mechanism) or uses a routing mechanism to

forward the message to the upload station through a series of other sensor nodes

used as 'hops'(Kamble et al. 2007). Once the upload station receives the message it

is uploaded to the External Network.

Such architecture is useful in applications where sensors are distributed in an

unplanned manner (e.g. battlefield sensor network deployed from an aircraft) and

messages can be sent unreliably with no confirmation of the delivery from the Upload

Station (although the acknowledgement system can be implemented in this

architecture if the routing mechanism allows that).

Infrastructure Wireless Sensor Network (IWSN) example (HINT Project 2010) used

further in this dissertation describes an architecture consisting of the following:

 Master device - an equivalent of the Upload Station in Classic WSN, linked to

the External Network using for example an Ethernet controller or 802.11 WiFi

controller.

 Sensor (Slave) - a battery operated Wireless Sensor Node in the network

equipped with microcontroller, radio transceiver and ADC converter allowing

readings from the attached sensors.

 Repeater - a bridge forwarding messages between wireless sensors and a

master device. Uses similar radio hardware to sensors but is assumed to have

a regulated power source.

 Host PC - Host computer used by an operator to control the IWSN.

This type of architecture (see Figure 3.2) can be found in WSN with a planned

distribution of sensors, e.g. a network of temperature monitoring sensors deployed

within a large building. It is assumed that all devices operate on the same radio

frequency. All battery operated sensors (Slaves) attempt to connect to the Master

device at a pre-programmed interval. The Master device uses an acknowledgement

mechanism to guarantee the delivery of a single packet or an entire multi-packet

transmission (depending on the configuration and packet type). Each Slave repeats

the transmission attempt a pre-programmed number of times if an acknowledgement

was not received. Repeaters are used to extend the coverage area of the network by

forwarding each received packet to the Master (or other Repeater) and forwarding

acknowledgements back to Sensors.

35

Figure 3.2 Infrastructure Wireless Sensor Network Architecture

All devices using the radio link utilise a simple collision avoidance mechanism with a

back-off system similar to Pure-Aloha Protocol (Abramson 1970): every node listens

to determine if the radio carrier is busy prior to a transmission attempt. If the carrier is

sensed as busy then a node backs off for a random period of time before another

transmission attempt.

The main advantage of this architecture is the simplicity of communication between

devices as no routing tables need to be maintained, even though the delivery of

specific (user pre-defined) data packets can be confirmed by the acknowledgement

mechanism. Thanks to this simplicity the radio-handling part of the software can be

implemented within the limited code space and run efficiently on many Resource

Limited Devices. However, this architecture is not ideal in environments, where

Repeaters and Masters cannot be provided with a fixed power source. The other

disadvantage is that as more slaves are introduced to the network performance

degrades. The simplicity of the collision avoidance mechanism inhibits the use of a

large number of slaves because slaves share a common frequency channel for

transmission.

36

3.2 Description of the technical problem of authentication and

encryption in the context of the IWSN.

Infrastructure WSNs experience common issues related to the use of modulated

radio frequency spectrum (radio waves) as the communication medium:

Eavesdropping is possible on any wireless link using virtually any radio transceiver

tuned to a given frequency with the ability to demodulate the signal. The architecture

(described in 3.1) assumes that the link between the Master and the Host is secure.

The Repeaters are used only to receive and forward data packets, without

processing them and act as radio range extenders. Repeaters will not perform any

active role in the security mechanism. The only parties requiring mutual

authentication and secured (encrypted) communication channel are the Master and

the Slave.

Since the encryption and decryption mechanism has to be implemented on the Slave

device, choosing such a mechanism must involve consideration of the limitations

listed in Section 3.3. Ideally, the Master device will have an always-on, secured link

with a Host (server) and this Host device can perform all of the computationally heavy

encryption and decryption-related calculations. In other words, the master can

offload all computationally heavy tasks to a back-end server and accept returned

values. This permits the processing power of the master device to be used to handle

service requests from a number of slave devices, rather than becoming occupied with

computations associated with authentication and encryption.

3.3 What are the specific problems associated with Resource Limited

Devices

The constraints imposed on possible implementations of security systems for RLDs

can be categorised as Central Processor Unit (CPU) limitations, memory limitations,

power consumption and cost barriers.

CPU constraints

The main CPU constraint in resource-limited devices is obviously the limited

processing power of the processor. Passive RFID transponders (powered by an

external interrogator) with a very limited number of logic gates on the circuit may be

only capable of performing simple logical operations with one-bit values. More

powerful embedded devices may be using 8-bit CPUs for example the Intel 8051

derivative nRF9E5 clocked at 12MHz, which is able to execute only 750,000

operations per second (assuming that 50% of operations require two CPU cycles

and the remaining require one).

The number of operations per second is not the only constraint relating to the

processor. Another issue related to microcontrollers is the word size. The most

37

commonly used cryptographic standards were designed to be implemented either in

hardware (e.g. the first proposals of the Data Encryption Standard - DES (Federal

Information Processing Standards 1993)) or more flexible using software. However,

the majority of standards assume that 32-bit CPUs will be used, thus their

mathematical basis and implementation is commonly optimized to use 32-bit (e.g. the

Rijndael cipher (Daemen & Rijmen 1999)) or even 64-bit word. 8-bit microcontrollers

would be forced to perform numerous instructions to handle 32-bit numbers

manipulation, e.g. it takes approximately 35 CPU operations to multiply two 32-bit

numbers on the 8051 8-bit CPU (Vault Information Services 2009).

Memory limitations

Low-cost passive Electronic Product Code (EPC) RFID tags can have as little as 104

bits of non-volatile memory (EPCGlobal 2008) and may not even contain any

Random Access Memory. More advanced tags however, may be equipped with 1-

2KB of memory. Microcontrollers are typically equipped with no more than 64KB

memory, but this amount can be subject to limitations also due to 8-bit addressing

issues causing slow access to some parts of the memory.

Heavyweight cryptographic techniques using large keys (even 2048-bit in some RSA

implementations) cannot be implemented in resource-limited device environments

not only due to the amount of memory needed but also due to slow memory access

times and limited read/write lifecycle. Most of the EEPROM memory chips allow for

one million Read/Write cycles.

Power consumption

Resource-limited devices are heavily constrained in terms of power availability for

their operation. Passive RFID tags draw the whole power from the interrogating

device; active RFID solutions and wireless sensors are often powered by small cell

batteries and are expected to provide a reasonably long operation time between

battery replacements. Wireless Sensors are typically designed for one-time use, thus

their lifetime can be increased only by power saving. All CPU-intensive operations

and memory manipulations required by most cryptographic algorithms along with the

radio transceiver usage are the most power consuming activities performed by such

devices so they have to limited to a minimum.

Cost Barriers

Most of the resource-limited devices are designed to be manufactured in high

volumes with a very low price per item. An addition of a single logic gate to the

electronic circuit may seem inexpensive but if multiplied by millions of manufactured

items may have a substantial influence on the profit made by the manufacturer. This

constraint forces solutions requiring little or no additional hardware modifications.

38

3.4 Technical description of the processor and its implications for

effective security implementation

The nRF9E5 single chip system uses an 8-bit microprocessor with an instruction set

compatible with the industry standard 8051 processor. The instruction timing differs

from the industry standard: each instruction uses 4 to 20 clock cycles instead of 12 to

48 in the standard. The hardware specification of the chip (Nordic Semiconductors

2009b) allows utilizing a 4-20MHz crystal oscillator to generate clocking signal on the

circuit (shared by microcontroller, AD converter and radio transceiver). The crystal

oscillator can be started and stopped as requested by software. While it is stopped,

nRF9E5 uses the internal low power 4KHz RC oscillator which runs continuously (as

long as 1.8V of power is supplied) and ensures that vital functions such as the wake-

up timer are functioning even in deep power saving modes.

The microcontroller‟s architecture is 8-bit: each machine language opcode (operation

code) is a single 8-bit value, which allows for 256 different instruction codes. Most of

8051‟s registers are 8-bit values, e.g. the Accumulator, each of the Register Banks.

There are several special cases where a given register is referred to as 16-bit (such

as the three Timers), but in fact these registers are addressed as two separate 8-bit

registers often referred to as High and Low indicating which part of the 16-bit value

they hold. The only truly 16-bit values that the 8051 handles are the Program

Counter (PC) indicating the address of the next instruction to be executed and Data

Pointer (DPTR) used for memory addressing. The CPU is only capable of performing

basic mathematical operations on two 8-bit numbers at each cycle. There is no

additional hardware support for calculation of numbers larger than 8-bit or any

decryption/encryption coprocessors. In consequence manipulation of larger numbers

requires numerous 8-bit calculations, for example a multiplication of two 16-bit

numbers requires 9 CPU instructions.

The 8-bit word size, relatively low CPU clock frequency and the lack of mathematical

hardware coprocessors in the nRF9E5 narrow the area of possible security protocols

and algorithms which can be successfully implemented to those that do not require

exhaustive calculations (required by most of the Asymmetric Cryptography

techniques) and those that are optimized for 8-bit values. In consequence, only

lightweight authentication protocols and lightweight encryption algorithms are

reviewed and analysed in this dissertation.

39

3.5 Technical description of the memory structure and its limitations for

effective security implementations

The nRF9E5 microcontroller has 256 bytes of Internal Data Memory used as a RAM

with fast access, 128 Special Function Registers (one byte each) used to set different

operating modes of the CPU and the Radio Frequency Transceiver. Additionally it

contains 4 kilobytes of external on-chip RAM. The memory uses Harvard Architecture

and is organized into six different memory spaces (see Figure 3.3). It provides 128-

bytes of directly addressable DATA RAM (8052 compatible) but may also be used to

hold IDATA-addressed variables. The next 128 bytes are the IDATA memory area

which is accessible through indirect addressing and effectively interleaves with the

Special Function Register (SFR) which in turn is directly accessed. The entire 4K of

memory (addresses above 0FFh) is accessible as an external XDATA memory but

this area is shared with the CODE memory, so the use of XDATA variables

effectively limits the available code space. The first of 256 bytes of XDATA can be

addressed in paged mode and in this configuration it is referred to as PDATA.

Memory addressing diagram can be seen in Figure 3.3.

Figure 3.3 8051 Memory Addressing

The memory structure can be represented in the following manner:

SFR DATA

IDATA

PDATA X
D

A
T

A

C
O

D
E

000h

07Fh

0FFh

FFFh

40

Figure 3.4 Physical organization of memory on 8051

Additionally, there is a small 512 byte ROM area located on-chip and containing

bootstrap program executed automatically after power on or reset. The bootstrap

loads the user program into on-chip 4K RAM from the off-chip external EEPROM

memory required for operation.

The manufacturer of the chip did not include any options to extend the RAM size

above the 4KB - it is not possible to connect any additional external memory directly

to the CPU pins. Additionally, the bootstrap program in ROM cannot be updated. The

only memory size expanding option is to use an external EEPROM memory (generic

25320 with SPI) attached through one of the GPIO pins and interfacing through a

common SPI bus. Accessing external memory through the SPI bus has major

consequence on the performance of the CPU as each of the SPI read/write

(performed byte-by-byte) operations takes several processor cycles. The CPU is not

able to perform additional tasks while in this process. One of the major limitations is

the fact that external EEPROM cannot be used to expand the possible program size.

In consequence, the program code size is always limited to 4KB – the bootstrap

program will ignore anything above 0FFFh address in EEPROM when loading the

program. Section will attempt to provide a solution to overcome this limitation with

the support of 8051 dedicated software Assembly Language Linker.

Possible security implementations have to be filtered through the following

constraints imposed by nRF9E5:

 Limited code/RAM space – The CODE and XDATA space are shared in this

CPU‟s architecture, so variables and constants allocated here limit the overall

code space. The existing Infrastructure WSN programs already occupy a vast

amount of the code/RAM space (HINT Project 2010), so the

algorithms/protocols have to be implementable with a minimum machine code

size and there must be a limited need for variable memory allocation. In case

the solutions used to overcome the memory limitations (see section 3.7) fail

the space for the machine code may be limited to approximately 200 bytes

SFR (128B)

DATA / IDATA (128B)

IDATA (128B)

XDATA / CODE (interleaved, up

to 64KB)

41

only (assuming that for an existing sensor program already occupies 95% of

the available code space).

 Extremely slow access to the external non-volatile memory – the

reference platform utilizes 32Kb 25320 generic EEPROM. The amount of the

data which needs to be accessed from the external EEPROM memory and the

frequency of the access has to be limited. This imposes restrictions on

possible encryption key sizes and the usage of non-volatile protocol-specific

data.

 Hacking the EEPROM - The EEPROM memory can be read by freely

available EEPROM programmers, thus in the case of a physical access attack

the amount of information disclosed cannot compromise the security of the

entire system. This forces solutions without global pre-shared encryption keys.

An example of a physical access attack compromising the security of the

entire WSN using the TinySec Protocol (Karlof et al. 2004) was described in

(Hartung et al. 2005).

3.6 Technical description of the radio transceiver and its limitations for

effective security implementations

The nRF9E5 single chip microcontroller integrates a nRF905 (Nordic Semiconductors

2009a) compatible Radio Frequency (RF) transceiver operating on 433/868/915MHz

bands (sub-1GHz). The transceiver consists of a fully integrated frequency

synthesizer, a power amplifier, a modulator and receiver chain with demodulator.

The modulation type used in nRF905 is Gaussian Frequency Shift Keying (GFSK)

with a data rate of 100kbps. The data bits are encoded and decoded using

Manchester Encoding/Decoding and the effective symbol rate is limited to 50kbps

(one symbol per two clock signals); however, no scrambling on the microcontroller is

needed.

The transceiver uses SPI bus for reprogramming and data input/output. It is equipped

with a circuit able to calculate the Cyclic Redundancy Check (CRC) checksum of the

incoming or outgoing data packets. Transmitting (TX) and Receiving (RX) addresses

can be 1 to 4-byte long and the data payload length may vary from 1 to 32 bytes.

Figure 3.5 NRF9E5 packet structure

Each data packet contains the following (see Figure 3.5):

 Preamble - predefined 10-bit sequence used to adjust the receiver for optimal

performance.

 TX Address - programmable recipient‟s address with a length of 1 to 4 bytes.

 Payload - user data, length of the field configurable within 1 to 32 bytes range.

Preamble TX Address Payload CRC

42

 CRC - 8 or 16-bit CRC checksum.

During the TX mode the packet is assembled automatically by the transceiver once

the Payload and TX address is supplied – the CRC is calculated and added with a

Preamble. After a transmission the RF transceiver sets the Data Ready (DR) pin

high, so the microprocessor can be notified of a finished transmission.

In RX mode the radio is used to listen for incoming transmissions and if one occurs

the Carrier Detect (CD) pin is set high. After this action the nRF905 analyses the

Address field and discards the packet if it is destined for a different address or

accepts it if the address matches, sets the Address Match (AM) pin high, reads in the

payload to the buffer and verifies the CRC checksum.

The way the RF transceiver handles incoming packet addressing (automatic packet

discarding when the address does not match) imposes constraints on the possibilities

of protection against traceability (ID disclosure related) attacks (Juels 2006). In

consequence in a situation where the communication is initiated by the Master device

the packet will need to hold a broadcast address and all Slaves should be able to

temporarily reconfigure themselves to accept such packets. A frequent usage of

broadcast addressing may negatively impact the performance of the entire network

(Ni et al. 1999). Another solution would require Slaves to ignore address mismatch

and examine each packet which again reduces the performance of the network.

The maximum Payload size of 32 bytes seems large but the bandwidth of only

50kbps has to be taken into consideration too. In the presence of multiple devices

operating on the same frequency the transmission time has to be limited to avoid

network congestion. It has to be noted also that the entire NRF9E5 consumes the

highest possible amount of power during radio transceiver operations (up to 30mA at

10dBm output power comparing to 2.2mA when only the 8051 CPU is active), thus

large data transfer, although possible, can severely degrade the sensor‟s lifetime.

In consequence of the above limitations, the security system has to impose low radio

bandwidth requirements.

3.7 Overcoming limitations: Code Banking on the nRF9E5

The major limitations of the reference platform nRF9E5 chip are the code space size

and the lack of any coprocessors enhancing mathematical calculations. While the

latter can be overcome by using less CPU intensive security protocols and

algorithms, the program size and RAM limitations are hard to overcome without

changing the entire microcontroller platform. A software solution to this issue using

the concept of Code Banking with the native support of the 8051 Assembler Linker

(similar solutions are available from KEIL (ARM Ltd. 2009a) and Raisonance

(Raisonance SAS 2010) Integrated Development Environments) is proposed below.

The origin of the Code Banking concept (ARM Ltd. 2009b) comes from the 16-bit

memory addressing limitation of the 8051 CPU. Due to the addressing bit width the

43

maximum memory which can be allocated is limited to 64Kb. The Code Banking

mechanism permits and increase in the Code memory size up to 1MB (KEIL linker) or

4MB (Raisonance linker) by splitting the program into a Common Area section and a

number of memory banks (see Figure 3.6). The Common Area (of a user-defined

size s) and one of the Code Banks is loaded at a given time, so the microcontroller

can effectively “see” and address 64KB of the Code memory. If a function makes a

call to another function the linker generates a code performing that switch, called a

Bridge. All bridges are located in the Common Area which remains the same

regardless of which Code Bank is currently used. The full description of the assembly

language routines performing bank switches and limitations such as interrupt vector

handling are outside the scope of the document and can be found in Raisonance and

KEIL linkers‟ documentation (ARM Ltd. 2009b).

Figure 3.6 Code Banking Layout

A typical hardware design scenario permits connecting the memory directly to the

CPUs I/O ports. In this case a bank switch process would only require changing the

input/output port number to access different blocks of memory, where additional code

banks are located (see Figure 3.7). The Common Area has to be duplicated across

all memory blocks so it would still be accessible in the same form after changing the

I/O ports.

0000

h

FFFFh

Code

Banks

Common Area

Bank 1

Bank 2

Bank 3

...
Bank n

s

44

Figure 3.7 8051 with 156Kb EEPROM attached to ports P0-P3

In case of the reference platform with the nRF9E5 microcontroller, where it is not

possible to connect any additional memory directly to the CPU, the Code Banking

mechanism can be utilized to overcome the Code space limitation but in a manner

different to the original design. Instead of using the directly attached memory chip an

external EEPROM connected to the SPI bus can be utilized to hold additional code

banks. However, the I/O pin switching routine has to be replaced with a function that

overwrites the code bank space in the on-chip RAM with the content of this bank

located on the external EEPROM. Every bank switch will be a very slow process

since the entire code bank binary file (2-3Kb) has to be read through the SPI bus

from the external EEPROM (see Figure 3.8). Initial experiments performed by the

HINT Project team (HINT Project 2010) proved that it takes 65 milliseconds to load a

Code Bank of 2Kb in size.

Figure 3.8 nRF9E5 code banking with an external SPI-accessed EEPROM

Despite the negative effect on the microcontroller‟s performance this mechanism

permits the effective expansion of the available code space above 4Kb without any

3Kb

3Kb

3Kb

3Kb

nRF9E5

SPI Bus

Code Bank

Area (3Kb)

Common Area

(1Kb)

64Kb

64Kb

64Kb

64Kb

8051 CPU

256Kb EEPROM

P0

P1

 P2

P3

45

hardware modifications in the existing reference platform. This would allow providing

a relatively large code space for the implementation of the security mechanism. The

failure of this concept would result in significant code space limitations for the security

algorithms and force the usage of slow –access EEPROM-located variables.

46

4. Implementation

4.1 Hardware-related requirements for the implementation

The main development platform used is the Nordic Semiconductors nRF9E5

microcontroller that is used for both master and slave devices. The nRF9E5 has

limited resources (see Section 3.4 for details) and this has implications for the

implementation of authentication and encryption on these devices. This limitation is

somewhat eased by (a) offloading computationally heavy tasks from the master to a

back-end server, allowing the master to more effectively handle service requests

from slave devices and (b) by improving code memory space using code banking.

Neither of these enhancements has been used in this project. Since a vastly scaled

down communication and radio protocol is used, the inherent memory of the nRF9E5

is sufficient to effectively run the security mechanisms. Variables that would

otherwise be serviced from a back-end server have been hard-coded into master and

slave, negating the use of the back-end server in the developed prototype. However,

in a field implementation of secure sensor networking, where many slaves

communicate with a master, it would be necessary to use a back-end server and

overcome the code space limitations through code banking. Considering the

limitations of the devices, a C language implementation was chosen instead of 8051

native Assembly code to allow faster porting to other platforms.

The main limitation of the nRF9E5 microcontroller in terms of the implementation was

the maximum code size of only 4 kilobytes. The prototype was implemented to fit

under this barrier However, some protocol simplifications were needed to achieve

small code space. These simplifications are further described in section 4.4. The

amount of RAM (256 bytes for both Data and Idata) was sufficient but almost entirely

used by both master and slave prototypes.

The radio transceiver embedded on nRF9E5 requires pre-configuration and manual

handling of the OSI Model Data Link and upper layers. This generates another code

space requirement, thus a simplified radio protocol is used in the prototype. The

hardware design of the radio transceiver offers two useful tools that simplify the radio

protocol implementation: Address Match and Carrier Detect bits. These tools were

used to implement a simple Listen-Before-Talk collision avoidance scheme.

4.2 Integrated Development Environment (IDE) and Hardware utilised.

There are two well known Integrated Development Environments offering packaged

Assembler and ANSI-C compilers for the 8051-compatible microcontrollers: KEIL

(ARM Ltd. 2009a) and Raisonance RC51 IDEs (Raisonance SAS 2010). Raisonance

RKit Eval51 was utilised as it offers an 8051 compiler fully functional with the

exception of a code size limited to 4 kilobytes. The code size limitation perfectly

matches the hardware limitation of the nRF9E5 microcontroller.

47

The hardware used in the implementation stage were two Nordic Semiconductor

Evaluation Boards nRF9E5-EVBOARD with EEPROM emulator/programmer USB

dongles nRF24E1. The programming dongles were controlled by the nRFPROG

software supplied by Nordic Semiconductors.

4.3 Design - algorithms for both authentication and encryption

The prototype is designed to fit within 4 kilobytes of total code space available for

programs on the nRF9E5 reference platform. The usage of code banking or other

techniques overcoming the 4KB limitation is not considered in the prototype

implementation. Instead some minor simplifications in the protocol (explained below)

are used. The scope of the prototype is explained in Fidure 4.1. The back-end

database and PC Host software are outside the scope of the implementation – it will

focus only on the 8-bit microcontroller code written in the C language with nRF9E5-

specific radio transceiver handling functions.

PC Host [PRNG]

EthernetDatabase

[IDSs, keys] Master (nRF9E5)

Slave (nRF9E5)

Slave (nRF9E5)

Slave (nRF9E5)

Prototype‟s

Scope

Production Environment

Requirements

Figure 4.1 The Scope of the Implementation part

Radio Protocol

The prototype uses a simplified radio protocol allowing communication between the

Master and the Slave. Both devices utilise Address Match (AM) and Carrier Detect

(CD) bits. The Carrier Detect bit will be used to implement a simple Listen-Before-

Talk collision avoidance mechanism. Both devices test the CD bit before switching

the radio into transmitting (TX) mode. In this simplified model a transmitting device

will loop forever waiting for the CD bit to be clear and attempt the transmission

straight away after this bit is cleared. Due to code space constraints random TX

back-off period (Pure-Aloha Protocol) or wait-until-CD timeout is not implemented in

the prototype.

48

Authentication

The Gossamer lightweight authentication protocol (see Section 2.2.3 for full

description) was chosen to fulfil the requirement for mutual authentication between

the Master and the Slave devices (see Section 0) in Infrastructure WSN (see Section

3.1). This protocol was chosen mainly thanks to its proven security, low memory and

computation requirements, and the expected simplicity of the implementation of all

necessary mathematical operations on 8051-compatible CPU.

The original design of the Protocol is simplified for the prototype implementation

purposes in the following areas:

 The keys and IDS are not stored persistently on the Slave device due to code

space overhead imposed by the EEPROM read/write routines. Upon each

power loss these values will be reset to the initial ones.

 Master side: random numbers n1 and n2 will be replaced by hard-coded

values for experimentation purposes. The IDS of a sample Slave will also be

hard-coded, so the back-end database will not be needed in the simplified

model.

 Slave side: in the original Gossamer Protocol the Slave device sends the

value D but there is no acknowledgement that D has been received and

verified by the Master. The Slave then updates its keys and IDS and saves

the previous IDS and key values. In a subsequent round, if the slave cannot

verify value C, in which case authentication of the master will not have been a

success, the slave can roll back to the previous keys and IDS values. This de-

synchronization attack prevention mechanism has not been implemented in

the simplified protocol.

Figure 4.2 shows the full round of the Gossamer authentication protocol adapted to

the needs of the Infrastructure WSN. The main difference was the removal of the

„Hello‟ message as in IWSN the Slave device (Tag equivalent in standard Gossamer

specification) initiates the communication.

Encryption

The Scalable Encryption Algorithm (SEA - see Section 2.3.3 for full description) was

chosen as the encryption mechanism. SEA(96, 8) mode was used, meaning that the

block and the key size of 96-bits and 8-bit word matching the word size on the

nRF9E5. The choice of the algorithm can be justified by the lack of proven

weaknesses in the algorithm and the fact that the algorithm can be implemented with

a very limited code space by sacrificing the throughput of the encryption (number of

words that can be encrypted over a given period of time). The reduced throughput of

the algorithm is not a significant issue in the context of IWSN, where the amount of

data transferred is very small in most cases.

49

Figure 4.2 Gossamer Protocol Adapted to the Infrastructure WSN

IDS

Initial Phase

Master to Slave Authentication Phase

A B C

IF Master is authenticated, go to next phase

D

Slave to Master Authentication Phase

IF Slave is authenticated, go to next phase

Keys and IDS updating Phase

Master Slave

50

Another advantage of this algorithm is its scalability which permits increasing key and

word sizes to 192 bits without major modifications of the code. This can be applied in

cases where the 96-bit security is not regarded as strong enough.

Since the Gossamer authentication protocol exchanges two new 96-bits keys at each

round, one of these keys can be used as an encryption key for the SEA(96,8)

algorithm during one communication session between the Master and the Slave.

4.4 Coding - Main elements of code explained

Both the Master and the Slave programs were written in two separate modules:

Master.c and Slave.c. Each of the modules contains the following main elements:

 Initialization (UART timers, radio),

 Utilities Block (UART handling, SPI handling),

 Radio Handling Block (TX and RX),

 Gossamer functions,

 SEA functions.

The organization of the main module for both Master.c and Slave.c is explained in

Figure 4.3. The full code can be found in Appendix B. This sub-section describes the

Gossamer and SEA function.

51

Figure 4.3 Main Program Components

4.4.1 Gossamer Implementation

The Gossamer Protocol implementation uses the main gossamerMaster and

gossamerSlave loops following the design explained in Figure 4.2. All 96-bit values

are implemented as an array of 12 unsigned characters (one byte each) in Big-

endian (Most Significant Bit first) notation. The IDS, ID, K1, K2 and Pi values are

initialized on the startup of the main loop, thus on every power-loss they are reset to

the hard-coded values.

All Gossamer-Related mathematical operations are implemented in separate

functions explained below.

Initialization

InitUartTimer1 SetClock InitRadio

Utilities Block

SpiReadWrite PutChar GetChar PutString

itoa longDelay printArray

Radio Handling Block

ChangeRXAddress TransmitBytes ReceiveMode

Gossamer

additionMod96 subtractionMod96 xorArrays

getModulo96

mixBits

bitRotation bitShift indexShift arrayReverse

Scalable Encryption Algorithm

seaCryptRound seaKeyRound seaBitRotation seaSBOX

seaWordRotation

52

Addition Modulo96

Performs addition Modulo96 on two arrays passed as parameters and saves the
result into the second argument's memory location. The function simply adds each
element in the array one-by-one starting with the last element (12) and carries a bit
over to the lower element if the result is larger than 255. If the lower elements are
255 already then the bit is carried over to lower elements until the head of the array if
needed.

void additionMod96 (unsigned char idata *array1, unsigned char idata

*result)

{

 unsigned char i;

 unsigned char j;

 for (i=11; i>0; i--)

 {

 result[i] += array1[i]; //Add two bytes (no carry)

 if (result[i] < array1[i]) //Check if carry needed and append to

 //upper byte

 {

 result[i-1]++;

 //check if previous byte was not 255 overloaded to 0 and step

 //back to lower elements to do the same

 j=i;

 //If a carry bit overloads upper byte increment upper to

 //overloaded

 //Continue until the array head is met if needed

 while(result[j-1] == 0 && j > 1)

 {

 result[j-2]++;

 --j;

 }

 }

 }

 result[0] += array1[0]; //Got to the MSB - just add and ignore carry

}

Figure 4.4 Code: Addition Modulo96

Subtraction Modulo96

Performs subtraction Modulo96 on two arrays passed as parameters and saves the

result into the second argument's memory location. Similarly to the Addition function

it simply subtracts each element one-by-one starting with the last element. If the

minuend is smaller than the subtrahend, then a bit is borrowed from the lower

element. If the lower elements are zeros then the borrow bit is taken from lower

elements until the array head is met. This function is only required on the Slave side

as it is only needed when extracting random numbers n1 and n2 form message A

and B respectively.

void subtractionMod96 (unsigned char idata *array1, unsigned char idata

*result)

{

 unsigned char i;

 unsigned char j;

53

 for (i=11; i>0; i--)

 {

 if (result[i] < array1[i]) //Verify if the minuend is not smaller

 //than the subtrahend

 {

 result[i-1] -= 0x01; //borrow LSB from the lower element

 j=i;

 //If a borrow bit overloads upper byte decrement upper byte to

 //the overloaded one

 while(result[j-1] == 0xFF && j > 1)

 {

 result[j-2] -= 0x01;

 j--;

 }

 }

 result[i] -= array1[i]; //Subtract (no carry)

 }

 result[0] -= array1[0]; //Got to the MSB - just add and ignore carry

}

Figure 4.5 Code: Subtraction Modulo96

XOR two 96-bit numbers

This function loops through all elements in the array and performs a bitwise exclusive

OR operation on them one-by-one.

void xorArrays (unsigned char idata *array1, unsigned char idata *result)

{

 unsigned char i;

 for (i=0; i<12; i++)

 {

 result[i] ^= array1[i];

 }

}

Figure 4.6 Code: XOR two 96-bit numbers

Bit Rotation (ROT) on two numbers

The bitRotation function performs circular bit rotation of a 96-bit number by a

Modulo96 of a second number passed as a second parameter. This function uses

four sub-functions to perform the bit rotation:

 getModulo96 - returns Modulo96 of a 96-bit number passed in the array of 12

one-byte elements. The function uses a command and conquer approach.

Starting from the lowest element a Modulo96 of each element (split into two 4-

bit numbers and multiplied by 256) is calculated one-by-one and added to the

overall result. At each iteration the overall result is reduced Modulo96.

unsigned char getModulo96 (unsigned char idata *array)

{

 unsigned char i;

 unsigned char modulus = 0;

54

 for (i=0; i<11; i++)

 {

 //Divide and conquer approach: sum of two 4-bit numbers multiplied

//by 256

 modulus += (((array[i] & 0x0f) + (array[i] >> 4))*256)%96;

 modulus %= 96; //Reduce each result Mod96 - can be done less

//frequently

 }

 return (array[11] + modulus)%96; //Add the result to the LSB and

//calculate Mod96 again

}

Figure 4.7 Code: Get Modulo96

 bitShift - performs circular bit-shift (up to 7 places) of each element in the

array in both directions. Depending on the direction the remainder of the shift

is appended to the lower or upper element.

void bitShift (unsigned char idata *array, unsigned int direction, unsigned

int bitsToShift)

{

 unsigned char i;

 unsigned char element0;

 unsigned char temp;

 //Direction: 0 for left shift, 1 for right shift

 if (!direction) //Shift bits to the left with carry to the lower

element

 {

 element0 = array[0];

 array[0] = array[0] << bitsToShift;

 for (i=0; i<11; i++)

 {

 temp = array[i+1];

 array[i+1] = array[i+1] << bitsToShift;

 array[i] |= temp >> (8 - bitsToShift);

 }

 array[11] |= element0 >> (8-bitsToShift);

 }

 else //Shift bits to the right with carry to the lower element

 {

 element0 = array[11];

 array[11] = array[11] >> bitsToShift;

 for (i=11; i>0; i--)

 {

 temp = array[i-1];

 array[i-1] = array[i-1] >> bitsToShift;

 array[i] |= temp << (8 - bitsToShift);

 }

 array[0] |= element0 << (8-bitsToShift);

 }

}

Figure 4.8 Code: Bit Shift

55

 indexShift - rotates the elements of the array by up to 11 positions left or right.

It takes advantage of the arrayReverse function and a formula assuming that

the array is split into two sub-arrays A and B (A.B), where the size of array A is

the number of places the elements are to be rotated. The formula is as follows:

B.A = reverse(reverse(A).reverse(B)).

void indexShift (unsigned char idata *result, unsigned int direction,

unsigned int indexShift)

{

 //Direction: 0 for left shift, 1 for right shift

 if (!direction)

 {

 arrayReverse(result, 0, indexShift-1);

 arrayReverse(result, indexShift, 11);

 arrayReverse(result, 0, 11);

 }

 else

 {

 arrayReverse(result, 12-indexShift, 11);

 arrayReverse(result, 0, 11-indexShift);

 arrayReverse(result, 0, 11);

 }

}

Figure 4.9 Code: Index Shift

 arrayReverse - reverses the elements in the array (array[beginning] becomes

array[end] and so on).

void arrayReverse(unsigned char idata *result, unsigned char left, unsigned

char right)

{

 unsigned char temp;

 unsigned char i;

 unsigned char j;

 //Start with edges and continue until middle elements are processed

 for (i=left, j=right; i<j; i++, j--)

 {

 temp = result[i];

 result[i] = result[j];

 result[j] = temp;

 }

}

Figure 4.10 Code: Array Reverse

The bitRotation function calculates the Modulo96 of the first argument (array to be

rotated by) and then analyses the result to verify if bitShift and indexShift functions

need to be called and calls them accrodingly.

void bitRotation (unsigned char idata *array1, unsigned char idata *result,

unsigned int direction)

{

 unsigned char modulo = getModulo96(array1); //First get modulo

 unsigned char indicesToShift;

 unsigned char bitsToShift;

56

 //Second divide modulo by 8 and rotate the array (if modulo is bigger

 //than 8)

 //Direction: 0 for left shift, 1 for right shift

 if (modulo > 8)

 {

 indicesToShift = modulo/8;

 indexShift(result, direction, indicesToShift);

 }

 //Then bitshift with carry each element by the remaining shift (shift

 //amount will be <8)

 bitsToShift = modulo%8;

 if (bitsToShift != 0)

 bitShift(result, direction, bitsToShift);

}

Figure 4.11 Code: Bit Rotation

MixBits function

The MixBits function implements the Gossamer author's recommendation shown in

Figure 4.12.

Z = MixBits (X, Y)
Z = X

FOR counter = 0 to 32
Z = (Z>>1) + Z + Z + Y

ENDFOR

Figure 4.12 MixBits Function pseudocode

The function uses two arrays passed as parameters and a temporary array returned

with the result. Functions described above (additionMod96 and bitShift) are utilized.

unsigned char* mixBits (unsigned char idata *array1, unsigned char idata

*array2)

{

 // Z = mixBits (X,Y)

 unsigned char idata result[12];

 unsigned char i;

 // Z = X

 for (i=0; i<12; i++)

 {

 result[i] = array1[i];

 }

 // 32times: Z = (Z>>1) + Z + Z + Y

 for (i=0; i<32; i++)

 {

 bitShift (array1, 1, 1);

 additionMod96 (array1, result);

 bitShift (array1, 0, 1);

 additionMod96 (array1, result);

 additionMod96 (array1, result);

 additionMod96 (array2, result);

 }

 return result;

57

}

Figure 4.13 Code: MixBits

The main Gossamer loop following the procedures listed in Figure 4.2 can be found

in Appendix B.

4.4.2 Scalable Encryption Algorithm (SEA) Implementation

The SEA(96, 8) implementation uses a word size of 8-bits (unsigned char) with a

block and key size of 96-bits. Both are passed as an argument in a form of a 12-

element array of unsigned characters. The main components of the SEA

implementation are the following functions: cryptographic round, the key round, the

S-Box, the bit-rotation, the word-rotation and the main SEA wrap-up function. In this

prototype the key used in encryption will be either k1 or k2 updated by the Gossamer

function at each authentication round.

SEA Substitution Box

Per SEA author's suggestions the S-Box can be applied bitwise to any 3 elements of

a block-half currently being processed (for blocks of 96-bits). Since there are 6 one-

byte elements in each half of the block the S-Box can be applied on two different set

of words. (Standaert et al. 2006) suggested a function ('i' equals 0 or 1) shown in

Figure 4.14.

void seaSBOX (unsigned char data *block, unsigned char i)

{

 block[3*i] = (block[3*i+2] && block[3*i+1]) ^ block[3*i];

 block[3*i+1] = (block[3*i+2] && block[3*i]) ^ block[3*i+1];

 block[3*i+2] = (block[3*i] || block[3*i+1]) ^ block[3*i+2];

}

Figure 4.14 Code: SEA S-Box

Standaert agrees that it is safe to simplify this function so the S-Box is only to the first

three elements in order to reduce the code space required by this function.

void seaSBOX (unsigned char idata *block, unsigned char i)

{

 block[0] = (block[2] && block[1]) ^ block[0];

 block[1] = (block[2] && block[0]) ^ block[1];

 block[2] = (block[0] || block[1]) ^ block[2];

}

Figure 4.15 Code: SEA S-box modified

SEA Bit Rotation

The Bit Rotation function in SEA(96,8) implementation performs circular bit-rotation

one place to the right on words numbered 0 and 3, and one place to the left on words

numbered 2 and 5. The seaBitRotation function implemented uses Raisonance RC51

compiler's intrinsic functions '_cror_' and '_crol_' to save the code space.

58

void seaBitRotation (unsigned char idata *block)

{

 block[0] = _cror_(block[0], 1);

 block[2] = _crol_(block[2], 1);

 block[3] = _cror_(block[3], 1);

 block[5] = _crol_(block[5], 1);

}

Figure 4.16 Code: SEA Bit-Rotation

SEA Word rotation

The seaWordRotation function performs circular right- or left-rotation of the block-half

array elements by one place. The Gossamer indexShift function can be re-used to

save the code space but this function was also implemented to make the SEA

module independent and re-usable without the Gossamer functions overhead.

void seaWordRotation (unsigned char idata *block, unsigned char direction)

{

 //Direction 0 for left and 1 for right rotation

 unsigned char i;

 unsigned char temp;

 if (direction == 0)

 {

 temp = block[0];

 for (i=0; i<5; i++)

 block[i] = block[i+1];

 block[5] = temp;

 }

 else

 {

 temp = block[5];

 for (i=5; i>0; i--)

 block[i] = block[i-1];

 block[0] = temp;

 }

}

Figure 4.17 Code: SEA Word-Rotation

SEA Encrypt/Decrypt round

The seaCryptRound function performs one round encryption or decryption round

using left and right half of the block and one half of the key - left or right depending

on the round. This function implements the following SEA equations: encryption

function and decryption function (below). See Figure 2.6 for a graphical

representation of the SEA encryption/decryption round.

Fe(Li, Ri, KeyHalf) = RightWordRot(Li) XOR bitRotation(sbox(Ri+ KeyHalf))

Fd(Li, Ri, KeyHalf) = LeftWordRot(Li XOR bitRotation(sbox(Ri+ KeyHalf)))

The function takes advantage of previously described word rotation, bit rotation and

substitution box functions.

59

void seaCryptRound (unsigned char direction, unsigned char idata

*blockLeft, unsigned char idata *blockRight, unsigned char idata *keyHalf)

{

 unsigned char i;

 unsigned char temp[6];

 //Every operation will be performed on blockLeft as this memory

 //location will become the right block for the next round.

 //Save the right block

 for (i=0; i<6; i++)

 temp[i] = blockRight[i];

 //ENCRYPTION

 //Fe(Li, Ri, K/2i) = RightWordRot(Li) XOR bitRot(sbox(Ri+K/2i))

 //DECRYPTION

 //Fd(Li, Ri, K/2i) = LeftWordRot(Li XOR bitRot(sbox(Ri+K/2i)))

 //Step by step:

 //Ri+K/2i

 for (i=0; i<6; i++)

 blockRight[i] += keyHalf[i];

 //sbox(Ri+K/2i)

 seaSBOX(blockRight, i%2);

 //bitRot(sbox(Ri+K/2i))

 seaBitRotation(blockRight);

 //RightWordRot(Li) - encryption only

 //Direction 0 for encryption and 1 for decryption

 if (direction == 0)

 seaWordRotation(blockLeft, 1);

 //RightWordRot(Li) XOR bitRot(sbox(Ri+K/2i))

 for (i=0; i<6; i++)

 {

 blockRight[i] ^= blockLeft[i];

 blockLeft[i] = temp[i]; //BlockLeft(i)+1 becomes BlockRight(i)

 }

 //LeftWordRot(Li XOR bitRot(sbox(Ri+K/2i))) - decryption only

 if (direction == 1)

 seaWordRotation(blockRight, 0);

}

Figure 4.18 Code: SEA Encrypt/Decrypt Round

SEA Key Round

The seaKeyRound function performs one round of the key scheduling. These rounds

are interleaved with encryption/decryption rounds. Each key round performs the

following key scheduling function (see Figure 2.6 for a graphical representation):

Fk(KLi-1,KRi-1,Ci) <=> KRi = KLi-1 XOR RightWordRot(bitRot(sbox((KRi-1)+Ci)))

The function takes advantage of previously described word rotation, bit rotation and

substitution box functions.

void seaKeyRound (unsigned char idata *keyLeft, unsigned char idata

*keyRight, unsigned char Ci)

{

 //Fk(KLi-1,KRi-1,Ci) <=> KRi = KLi-1 XOR RightWordRot(bitRot(sbox((KRi-

1)+Ci)));

 unsigned char i;

60

 unsigned char temp[6];

 //Save the left key (left key will become right after the round)

 //Every operation will be performed on keyLeft as this memory location

 //will become a right key for the next round.

 for (i=0; i<6; i++)

 temp[i] = keyRight[i];

 //Step-by-step:

 //init Ci (LSW equals i)

 ////Ci[5] = i;

 //(KRi-1)+Ci

 keyRight[5] += Ci;

 //sbox((KRi-1)+Ci)

 seaSBOX(keyRight, (Ci%2));

 ////seaSBOX(keyRight, 1);

 //bitRotation(sbox((KRi-1)+Ci))

 seaBitRotation(keyRight);

 //RightWordRot(bitRot(sbox((KRi-1)+Ci)));

 seaWordRotation(keyRight, 1);

 //KRi = KLi-1 XOR RightWordRot(bitRot(sbox((KRi-1)+Ci)));

 for (i=0; i<6; i++)

 {

 keyRight[i] ^= keyLeft[i];

 keyLeft[i] = temp[i]; //KeyLeft(i)+1 becomes KeyRight(i)

 }

}

Figure 4.19 Code: SEA Key Round

SEA main function

The main SEA(96, 8) function takes two 12-byte parameters: block and key.

(Standaert et al. 2006) advised that the minimum safe number of

encryption/decryption rounds can be calculated using the following formula:

The odd result in case of SEA(96, 8) is 93. The main function runs interleaved

encryption (or decryption) and key scheduling round 46 times. After the initial 46

rounds the key halves are swapped and another further 46 rounds are executed.

After the 92nd round another one encryption/decryption round runs - the key is in its

final state already. It has to be noted that this final state of the key is identical to its

initial state, thus no additional memory locations are needed to store a temporary key

at each round. After the last round the block halves need to be swapped and the

execution of the algorithm stops.

void sea (unsigned char direction, unsigned char idata *block, unsigned

char idata *key)

{

 //Direction 0 for encryption and 1 for decryption

 unsigned char i;

61

 //initialization

 unsigned char* idata keyLeft = &key[0];

 unsigned char* idata keyRight = &key[6];

 unsigned char* idata blockLeft = &block[0];

 unsigned char* idata blockRight = &block[6];

 unsigned char* idata temp; //temp pointer used for swapping key

 //sides

 unsigned char tmp;

 //First half of all rounds (93 as per author's recommendation for a

 //minimum number of rounds)

 for (i=1; i<47; i++)

 {

 //Key scheduling

 //[KLi, KRi] = Fk(KLi-1, KRi-1, C(i));

 seaCryptRound (direction, (unsigned char idata *)blockLeft,

(unsigned char idata *)blockRight, (unsigned char idata *)keyRight);

 seaKeyRound((unsigned char idata *)keyLeft, (unsigned char idata

*)keyRight, i);

 }

 //End of round half - swap pointers

 temp = keyLeft;

 keyLeft = keyRight;

 keyRight = temp;

 //for (i=46; i<92; i++)

 for (i=46; i>0; i--)

 {

 //Key scheduling part 2

 //[KLi, KRi] = Fk(KLi-1, KRi-1, C(r-i));

 seaCryptRound (direction, (unsigned char idata *)blockLeft,

(unsigned char idata *)blockRight, (unsigned char idata *)keyLeft);

 seaKeyRound((unsigned char idata *)keyLeft, (unsigned char idata

*)keyRight, i);

 }

 seaCryptRound (direction, (unsigned char idata *)blockLeft, (unsigned

char idata *)blockRight, (unsigned char idata *)keyLeft);

 //Final: switch Block halves

 //indexShift (block, 0, 6); Gossamer function may be used to save space

 for(i=0; i<6; i++)

 {

 tmp = block[i];

 block[i] = block[i+6];

 block[i+6] = tmp;

 }

}

Figure 4.20 Code: SEA Main Function

The experimental implementation takes Gossamer K1 key as an encryption key for

the SEA algorithm. After a successful authentication round the Master encrypts a

message using K1 and sends it to the Slave. The Slave decrypts the message using

K1 and outputs it to the UART.

62

4.5 Testing

4.5.1 Testing environment

The code implemented in the course of this research was tested using the same

hardware and software as in the implementation stage. During the testing stage two

nRF9E5-EVBOARD development boards with nRF24E1 EEPROM programmers

were used. The EEPROM programmers were connected over the USB link and the

UART input/outputs from the development boards were connected through serial

cables to the RS-232 ports on the development PC running Microsoft Windows XP

Operating System.

Since the RC51 compiler used does not offer nRF9E5-compatible debugger, the

debugging was performed on-device using manually written debug messages sent to

the UART I/O.

4.5.2 One Round Step-By-Step Test

Test Procedure

The goal of this test is to verify the proper functioning of all core functions used by the

Gossamer Authentication Protocol and the SEA encryption/decryption algorithm.

Both the Master and the Slave programs are pre-configured with a Gossamer

Protocol test data and set to output the data at each of the modifications so that the

result can be verified with a 'paper-test' (manual calculation). The integer-to-ascii

(itoa) function will be employed to output the data to the UART in a human-readable

form. The SEA algorithm will not be tested step-by-step due to a large number of

rounds. Instead, a result of the entire encryption and decryption loop will be

displayed.

Test data

Master Side:

unsigned char idata Pi[12] = { 0x32, 0x43, 0xF6, 0xA8, 0x88, 0x5A, 0x30,

0x8D, 0x31, 0x31, 0x98, 0xA2 };

unsigned char idata IDS[12] = { 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,

0x01, 0x01, 0x01, 0x01, 0x01 };

unsigned char idata ID[12] = { 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44,

0x44, 0x44, 0x44, 0x44, 0x44 };

unsigned char idata k1[12] = { 0x10, 0x10, 0x10, 0x10, 0x10, 0x10, 0x10,

0x10, 0x10, 0x10, 0x10, 0x10 };

unsigned char idata k2[12] = { 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,

0x20, 0x20, 0x20, 0x20, 0x20 };

unsigned char idata n1[12] = { 0x22, 0x22, 0xFF, 0xFF, 0x22, 0x22, 0x22,

0x22, 0x22, 0x22, 0x22, 0x22 };

unsigned char idata n2[12] = { 0x23, 0x23, 0x00, 0x00, 0x23, 0x23, 0x23,

0x23, 0x23, 0x23, 0x23, 0x23 };

Figure 4.21 Code: Master Side Test Data

63

Slave side:

unsigned char idata Pi[12] = { 0x32, 0x43, 0xF6, 0xA8, 0x88, 0x5A, 0x30,

0x8D, 0x31, 0x31, 0x98, 0xA2 };

unsigned char idata IDS[12] = { 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,

0x01, 0x01, 0x01, 0x01, 0x01 };

unsigned char idata ID[12] = { 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44,

0x44, 0x44, 0x44, 0x44, 0x44 };

unsigned char idata k1[12] = { 0x10, 0x10, 0x10, 0x10, 0x10, 0x10, 0x10,

0x10, 0x10, 0x10, 0x10, 0x10 };

unsigned char idata k2[12] = { 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,

0x20, 0x20, 0x20, 0x20, 0x20 };

Figure 4.22 Code: Slave Side Test Data

After the Gossamer round the Master will use the modified key k1 to encrypt a

message (temp array) and send to the Slave. After successful transmission the Slave

will use modified k1 to decrypt the message and display it.

Test Results

The test was split into several stages to allow better readability.

Stage 1: Messages A and B creation (Master side - below).

Figure 4.23 Gossamer messages A and B creation (Master).

Stage 2: N1 and N2 extraction from messages A and B (Slave side).

64

Figure 4.24 Gossamer n1 and n2 random numbers extraction (Slave).

Stage 3: n3, k1next and k2next creation (Master side)

Figure 4.25 Gossamer MixBits function, k1next and k2next creation (Master).

65

Stage 4: n3, k1next and k2next creation (Slave side)

Figure 4.26 Gossamer MixBits function, k1next and k2next creation (Slave).

Stage 5: Message C creation (Master Side)

Figure 4.27 Gossamer message C creation (Master).

66

Stage 6: Message C creation (Slave Side)

Figure 4.28 Gossamer message C creation (Slave).

Stage 7: Message D creation (Master side)

Figure 4.29 Gossamer message D creation (Master).

Stage 8: Message D creation (Slave side)

67

Figure 4.30 Gossamer message D creation (Slave).

Stage 9: IDS, k1 and k2 updating (Master side)

Figure 4.31 Gossamer keys and IDS updating phase (Master).

68

Stage 10: IDS, k1 and k2 updating (Slave side)

Figure 4.32 Gossamer keys and IDS updating phase (Master).

Stage 11: SEA Encryption using k1 (Master side)

Figure 4.33 SEA encryption (Master)

69

Stage 12: SEA Decryption using k1 (Slave side)

Figure 4.34 SEA decryption (Slave)

4.5.3 Long-term test

Test Procedure

The goal of this test is to verify the proper functioning of the Gossamer Authentication

Protocol and the SEA encryption/decryption algorithm using multiple values and

multiple rounds.

The test-Master and the test-Slave are pre-configured to loop indefinitely executing

the following operations:

 Both devices: mutual authentication between the test-Slave and the test-

Master

 Both devices: updating values for the next round.

 Master: encrypting a 12-byte message using the SEA encryption algorithm

(using the Gossamer key k1) and transmitting the payload to the test-Slave.

 Slave: receiving the payload form the test-Master and decrypting it using the

SEA decryption algorithm and the Gossamer key k1.

The test-Master uses a delay function before transmitting messages over the radio to

allow for better readability of the UART output. Both the test-Slave and the test-

Master output informational messages to the UART during each loop iteration.

The time to complete an iteration of the main loop in both programs was estimated at

approximately 1.5 seconds. The test-Master and the test-Slave programs were left

running for 7 days. It is estimated that both programs will execute approximately

403200 authentication and encryption/decryption rounds.

Test data

Master initial values:

unsigned char idata Pi[12] = { 0x32, 0x43, 0xF6, 0xA8, 0x88, 0x5A, 0x30,

0x8D, 0x31, 0x31, 0x98, 0xA2 };

70

unsigned char idata IDS[12] = { 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,

0x01, 0x01, 0x01, 0x01, 0x01 };

unsigned char idata ID[12] = { 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44,

0x44, 0x44, 0x44, 0x44, 0x44 };

unsigned char idata k1[12] = { 0x10, 0x10, 0x10, 0x10, 0x10, 0x10, 0x10,

0x10, 0x10, 0x10, 0x10, 0x10 };

unsigned char idata k2[12] = { 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,

0x20, 0x20, 0x20, 0x20, 0x20 };

unsigned char idata n1[12] = { 0x22, 0x22, 0x22, 0x22, 0x22, 0x22, 0x22,

0x22, 0x22, 0x22, 0x22, 0x22 };

unsigned char idata n2[12] = { 0x23, 0x23, 0x23, 0x23, 0x23, 0x23, 0x23,

0x23, 0x23, 0x23, 0x23, 0x23 };

 Figure 4.35 Code: Master Initial Values

Slave initial values:

unsigned char idata Pi[12] = { 0x32, 0x43, 0xF6, 0xA8, 0x88, 0x5A, 0x30,

0x8D, 0x31, 0x31, 0x98, 0xA2 };

unsigned char idata IDS[12] = { 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,

0x01, 0x01, 0x01, 0x01, 0x01 };

unsigned char idata ID[12] = { 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44,

0x44, 0x44, 0x44, 0x44, 0x44 };

unsigned char idata k1[12] = { 0x10, 0x10, 0x10, 0x10, 0x10, 0x10, 0x10,

0x10, 0x10, 0x10, 0x10, 0x10 };

unsigned char idata k2[12] = { 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,

0x20, 0x20, 0x20, 0x20, 0x20 };

Figure 4.36 Code: Slave Initial Values

After the Gossamer round the Master will use the modified key k1 to encrypt a

message (temp array) and send to the Slave. After successful transmission the Slave

will use modified k1 to decrypt the message and display it.

Test Results

Both the test-Master and the test-Slave were running continuously for 6 days and 23

hours and successfully executed approximately 400 000 mutual authentications and

encryption/decryption rounds.

The UART output was periodically monitored and no abnormalities were discovered.

71

5. Performance Analysis

5.1 Memory Code Space Requirements on nRF9E5

The Master and the Slave prototypes used in a Long-term test required the following

code space:

Master: 3923 bytes + 80 bytes of xdata.

Slave: 3937 bytes + 80 bytes of xdata.

The main Gossamer Protocol function loop uses UART to intermittently output the

results throughout the round. In order to verify the real size of the Gossamer loop

without any UART overhead a special version of the program was compiled without

any calls to the PutString or printArray functions. The results after these changes will

be shown in a form of an extract from the Raisonance LX51 Linker Map File which

can be found in Appendix A.

The RAM storage requirements of the Master (229 bytes) and the Slave (244 bytes)

seem high but it has to be noted that all arrays holding 96-bit numbers used by the

Gossamer Protocol are initialized and stored in idata memory during the runtime of

the program. In consequence 210 bytes of idata memory is used by the Master and

the Slave. Approximately 80% of this space can be saved by moving the 96-bit

values to the EEPROM trading off code space required by the external memory

read/write functions.

The total code space requirement by all the Gossamer-related functions is estimated

at 1647bytes (66F Hex) on the Master side and 1710 bytes (6AE Hex) on the Slave

side.

The SEA functions code space requirements are identical on both the Master and the

Slave programs and equal to 589 bytes (24D Hex).

It has to be noted that the Raisonance RC51 compiler imports a LIB51 library which

requires 552 bytes (228 Hex). This library is shared by many functions performing

mathematical operations and is automatically imported even if only the SEA functions

were to be implemented. In consequence, the code space requirements of the LIB51

have to be taken under consideration when estimating the total requirements.

5.2 Execution Speed

The execution speed of different parts of the code was analyzed using an nRF9E5

timer interrupt set to 1 millisecond ticks and small timer handling functions. The timer

was reset before entering a given block of code and the timer value was collected at

the exit of the block.

72

SEA Encryption/Decryption

The full SEA (96, 8) encryption and decryption of a 12-byte block using 12-byte key

and 93 rounds takes 27 milliseconds on an nRF9E5 microcontroller running at

16MHz. This gives an encryption/decryption throughput of 705 bytes per second.

Gossamer Authentication

The full round of the Gossamer Protocol in the prototype program with no UART

output (all PutString function calls removed) took 984 milliseconds on the Master side

and 988 milliseconds on the Slave side. Both devices used the simplified radio

protocol described in section 4.3. It has to be noted that the Master uses a longDelay

function which loops for 280ms before each transmission (TX) attempt. At this time

the Slave loops in the receiving mode (RX) waiting for messages. There are 3 TX

attempts (messages A, B and C) so the total of 3*280ms can be subtracted from the

total loop time on both the Master and the Slave side.

The full Gossamer loop time without the TX delay function:

 Master: 984ms - 3*280ms = 144ms

 Slave: 988ms - 3*280ms = 148ms

The Gossamer Protocol speed was also analyzed per major protocol stages:

 Message A and B creation: 2ms each (Master).

 Message C creation: 65ms (Master and Slave).

 Number n1 and n2 extraction: 2ms each (Slave).

 Message D creation and verification: 3ms (Master).

 Message D creation 2ms: (Slave).

 Keys and IDS update: 38ms (Master and Slave).

73

6. Conclusions and Recommendations

6.1 Conclusions

Lightweight Authentication and Encryption protocols have emerged to fill the security

void created by the transition from desktop to mobile environments. Fast processing

and large memory has characterised desktop technologies. By contrast, mobile

technologies are characterised by their small processing power and small memory.

Authentication and encryption protocols designed for desktop technologies cannot be

easily ported to mobile Resource Limited Devices (RLDs).

The central theme of this dissertation is that lightweight authentication and encryption

protocols can fulfil the requirements of secure communications between RLDs

without hardware modification. An augmentation of the Gossamer authentication

protocol that incorporates elements of the Scalable Encryption Algorithm (SEA) was

implemented to confirm this assertion. Cora Data‟s wireless sensor development

board, comprising the Nordic Semiconductor nRF9E5 microcontroller and auxiliary

radio communications circuitry was used as the reference platform. The

implementation, in software, demonstrates successful accomplishment of the key

objectives of secure communications, but at a cost. Success has been achieved by

greatly simplifying the radio protocol and using almost the entire code space of 4

Kilobytes allowed by the nRF9E5 microcontroller for the implementation of the

security mechanisms. As a consequence, there is zero code space left for the other

tasks involved in the normal operation of an Infrastructure Wireless Sensor Network,

such as sampling the ADC convertor and forming a data payload with the results.

The research objectives, outlined in section 1.3, have been fulfilled. A literature

review comprising an overview of the security issues with respect to RLDs and their

limitations (section 3), an analysis of authentication (section 2.2) and encryption

(section 2.3) has been completed and has established that the Gossamer and SEA

protocols, are the most suitable of the family of ultra-lightweight security protocols for

implementation on RLDs. The algorithms are current, resistant to attacks and

cryptanalysis and their design has been focused on providing solutions for resource

limited devices. In addition, they can be implemented on an 8 bit platform. An

augmented Gossamer protocol that incorporates elements of the SEA is presented

as a possible solution to the implementation of security in networks of RLDs.

A major goal of this dissertation is to examine code space requirements of the

augmented protocol‟s implementation (since memory is a critical resource). The

target is to provide secure communications with protocols that subsume as little of

the memory as possible of the RLD. Although Gossamer uses basic mathematical

operations, which are easy to implement in hardware, the software implementation

on an 8-bit CPU involves a great deal of code space overhead. The performance

analysis (section 5.1) shows that the total code space required by the Gossamer

functions (~1700 Bytes) including the necessary RC51 libraries (552 Bytes) can be

74

estimated at approximately 2200 Bytes, which is 55% of the code space available on

the reference platform. The overhead mainly relates to operations on large numbers

that have to be split into arrays with elements equal to the word size of the CPU.

This leaves little room for the implementation of the radio protocol (hence the need

for simplification) and zero room for ADC or other functionality.

Additionally, the execution speed for each full round of the Gossamer Protocol (144 –

148ms) is relatively high (reflecting the limitations of nRF9E5 processing power).

The simplicity of the underlying mathematical calculations would imply fast

performance. In fact the actual performance varies significantly from that expected.

This may have adverse consequences on the efficiency of the communications

protocol. Further code optimisation and/or native assembly code would reduce code

space requirement and improve performance, but not by a magnitude large enough

to justify the implementation of a software implementation of the Gossamer protocol

on the reference platform. However, if another microcontroller without so strict

memory limitations is used and the performance is regarded as satisfactory then the

mechanism proposed can be considered for implementation.

The SEA (96,8) implementation results were much more promising than the

Gossamer ones. As expected from an algorithm designed to be adapted easily to the

native word size of the CPU, the code space footprint is very small (589 Bytes).

Even when the RC51 libraries overhead is taken into consideration (552 Bytes), the

total size of 1141 Bytes is just below 28% of the total code space available on the

nRF9E5. SEA has not been proven to be insecure to date, thus it can be

recommended for microcontroller implementations with associated low data

throughput requirements.

The code space requirement to implement Gossamer combined with the code space

required by SEA is 3341 Bytes (2200 Bytes + 1141 Bytes) or 83% of available code

space. The remainder of the code space is subsumed by simple radio functionality.

Given the associated memory limitations, lack of hardware support for cryptographic

primitives and the difficulty of implementing code banking with any degree of

performance efficiency, the nRF9E5 cannot be recommended as a suitable platform

on which to implement native authentication and encryption in security demanding

wireless sensor networks. Low cost microcontroller alternatives, such as the Texas

Instruments CC430 family of microcontrollers with an embedded UHF radio

transceiver and hardware support for 128-bit AES encryption may be viable.

6.2 Recommendations for future work

The promising results of the SEA (96, 8) algorithm implementation (with respect to

code size and no. of cycles required to complete the protocol) would suggest that

there is room for further investigation in relation to key size and the associated

security that this brings. It would be interesting to implement a (192, 8) version using

75

a 24-byte key and block size. A comparative framework could then be drawn up to

assess performance of both implementations.

In consequence of the significantly high code space overhead required by the

software implementation of Gossamer, further study of authentication and the

authentication protocols needs to emerge. The need for authentication protocols that

can be implemented in terse code and negate all aspects of security breach remains

a priority in the field of wireless sensor networks. There are additional implications

for power consumption, battery life, signal strength and propagation distance that will

have an influence on the evolution of both sensors and security protocols.

Implementation of the prototype on a larger scale (multiple sensors, single master

and the back-end server) may significantly affect performance. Further research in

this respect would identify performance-related issues and further test the suitability

of the proposed solution for Infrastructure Wireless Sensor Networks.

Additionally, an approach that combines authentication, encryption and key

exchange in a single protocol with shared keys of identical length may prove to be a

useful line of academic enquiry.

76

References

Abramson, N., 1970. The aloha system: Another alternative for computer communications. In

Proceedings of the November 17-19, 1970, fall joint computer conference. pp. 281–

285.

Ahmed, E.G., Shaaban, E. & Hashem, M., 2010. Lightweight Mutual Authentication Protocol

for Low Cost RFID Tags. International Journal of Network Security & Its Application

(IJNSA), Academy & Industry Research Collaboration Center (AIRCC).

Akyildiz, I.F., Su, W., Sankarasubramaniam, Y. & Cayirci, E., 2002. Wireless sensor

networks: a survey. Computer networks, 38(4), 393–422.

Andem, V.R., 2003. A cryptanalysis of the tiny encryption algorithm. Citeseer.

ARM Ltd., 2009a. Keil C51 Compiler Basics. Available at:

http://www.esacademy.com/automation/docs/c51primer/c02.htm [Accessed May 18,

2009].

ARM Ltd., 2009b. LX51 User's Guide: Code Banking. Available at:

http://www.keil.com/support/man/docs/lx51/lx51_codebanking.htm [Accessed

January 6, 2010].

Bárász, M., Boros, B., Ligeti, P., Lója, K. & Nagy, D., 2007a. Breaking LMAP. Proc. of

RFIDSec, 7. Available at: http://www.cs.elte.hu/~turul/pubs/lmap.pdf.

Bárász, M., Boros, B., Ligeti, P., Lója, K. & Nagy, D., 2007b. Passive attack against the

M2AP mutual authentication protocol for RFID tags. In Proc. of First International

EURASIP Workshop on RFID Technology. Available at:

http://www.cs.elte.hu/~turul/pubs/mmap.pdf.

Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw, M.J., Seurin,

Y. & Vikkelsoe, C., 2007. PRESENT: An ultra-lightweight block cipher. Lecture

Notes in Computer Science, 4727, 450.

Cao, T., Bertino, E. & Lei, H., 2009. Security Analysis of the SASI Protocol. IEEE

Transactions on Dependable and Secure Computing, 73–77.

Chien, H., 2007. SASI: A New Ultralightweight RFID Authentication Protocol Providing

Strong Authentication and Strong Integrity. IEEE Transactions on Dependable and

Secure Computing, 4(4), 337-340.

Chien, H. & Huang, C.W., 2007. Security of ultra-lightweight RFID authentication protocols

and its improvements. ACM SIGOPS Operating Systems Review, 41(4), 86.

D’Arco, P. & De Santis, A., 2008. From Weaknesses to Secret Disclosure in a Recent Ultra-

Lightweight RFID Authentication Protocol, Cryptology ePrint Archive. http://eprint.

iacr. org/2008/470, 2008. Available at: http://eprint.iacr.org/2008/470.pdf.

77

Daemen, J. & Rijmen, V., 1999. AES proposal: Rijndael.

Eastlake, D. & Jones, P., 2001. US secure hash algorithm 1 (SHA1), RFC 3174, September

2001.

Eisenbarth, T., Kumar, S., Paar, C., Poschmann, A. & Uhsadel, L., 2007. A survey of

lightweight-cryptography implementations. IEEE Design & Test of Computers, 522–

533.

EPCGlobal, 2008. EPCglobal UHF Class 1 Gen 2. Available at:

http://www.epcglobalinc.org/standards/uhfc1g2 [Accessed August 10, 2009].

Federal Information Processing Standards, 1993. FIPS 46-2 - (DES), Data Encryption

Standard. Available at: http://www.itl.nist.gov/fipspubs/fip46-2.htm [Accessed

October 25, 2009].

Hartung, C., Balasalle, J. & Han, R., 2005. Node compromise in sensor networks: The need

for secure systems. Department of Computer Science University of Colorado at

Boulder. Available at:

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.134.8146&rep=rep1&type=

pdf.

Hegazy, A.E., Darwish, A.M. & El-Fouly, R., 2007. Reducing μTESLA memory

requirements.

Hernandez-Castro, J.C., Estevez-Tapiador, J.M., Ribagorda-Garnacho, A. & Ramos-Alvarez,

B., 2006. Wheedham: An automatically designed block cipher by means of genetic

programming. In Proc. of CEC. pp. 192–199.

Hernandez-Castro, J.C., Tapiador, J.M., Peris-Lopez, P. & Quisquater, J.J., 2008.

Cryptanalysis of the SASI Ultralightweight RFID Authentication Protocol with

Modular Rotations. Arxiv preprint arXiv:0811.4257.

HINT Project, 2010. Research Project: HINT Project. Letterkenny Institute of Technology.

Hong, S., Hong, D., Ko, Y., Chang, D., Lee, W. & Lee, S., 2004. Differential Cryptanalysis of

TEA and XTEA. Information Security and Cryptology-ICISC 2003, 402–417.

Jinwala, D.C., Patel, D.R. & Dasgupta, K.S., 2008. Investigating and Analyzing the Light-

weight ciphers for Wireless Sensor Networks.

Juels, A., 2005. Strengthening EPC tags against cloning. In Proceedings of the 4th ACM

workshop on Wireless security. p. 76. Available at:

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.68.6553&rep=rep1&type=p

df.

Juels, A., 2006. RFID security and privacy: A research survey. IEEE Journal on Selected

Areas in Communications, 24(2), 381–394.

78

Kamble, P., Kshirsagar, R.V. & Mankar, K., 2007. Wireless Sensor Network Architecture.

Available at: http://www.ieee-

spce.org/colloquium/proceedings/Communication_and_Networking/spit-1.pdf.

Karlof, C., Sastry, N. & Wagner, D., 2004. TinySec: a link layer security architecture for

wireless sensor networks. In Proceedings of the 2nd international conference on

Embedded networked sensor systems. pp. 162–175. Available at:

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.61.4930&rep=rep1&type=p

df.

Kelsey, J., Schneier, B. & Wagner, D., 1997. Related-key cryptanalysis of 3-way, biham-des,

cast, des-x, newdes, rc2, and tea. Information and Communications Security, 233–246.

Klimov, A. & Shamir, A., 2004. Cryptographic Applications of T-functions. Lecture notes in

computer science, 248–261.

Ko, Y., Hong, S., Lee, W., Lee, S. & Kang, J.S., 2004. Related key differential attacks on 27

rounds of XTEA and full-round GOST. In Fast Software Encryption. pp. 299–316.

Lee, Y.C., Hsieh, Y.C., You, P.S. & Chen, T.C., 2009. A New Ultralightweight RFID

Protocol with Mutual Authentication. In Information Engineering, 2009. ICIE'09.

WASE International Conference on. pp. 58–61.

Leong, K.S., NG, M.L. & Engels, D.W., 2006. EPC Network Architecture. Auto-ID Labs:

EPC Network Architecture. Available at:

http://www.autoidlabs.org/uploads/media/AUTOIDLABS-WP-SWNET-012.pdf

[Accessed November 26, 2009].

Li, T. & Deng, R., 2007. Vulnerability analysis of EMAP-an efficient RFID mutual

authentication protocol. Proc. of AReS, 7. Available at:

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.63.6430&rep=rep1&type=p

df.

Li, T. & Wang, G., 2007. Security analysis of two ultra-lightweight RFID authentication

protocols. INTERNATIONAL FEDERATION FOR INFORMATION PROCESSING-

PUBLICATIONS-IFIP, 232, 109.

Liu, D. & Ning, P., 2004. Multilevel μTESLA: Broadcast authentication for distributed

sensor networks. ACM Transactions on Embedded Computing Systems (TECS), 3(4),

800–836.

Lu, J., 2009. Related-key rectangle attack on 36 rounds of the XTEA block cipher.

International Journal of Information Security, 8(1), 1–11.

Menezes, A.J., Oorschot, P.C.V. & Vanstone, S.A., 1997. Handbook of applied cryptography,

CRC Press.

Mollin, R.A., 2007. An introduction to cryptography, CRC Press.

Moon, D., Hwang, K., Lee, W., Lee, S. & Lim, J., 2002. Impossible differential cryptanalysis

79

of reduced round XTEA and TEA. In Fast Software Encryption. pp. 117–121.

Needham, R.M. & Wheeler, D.J., 1997. eXtended Tiny Encryption Algorithm, October.

Ni, S.Y., Tseng, Y.C., Chen, Y.S. & Sheu, J.P., 1999. The broadcast storm problem in a

mobile ad hoc network. In Proceedings of the 5th annual ACM/IEEE international

conference on Mobile computing and networking. p. 162. Available at:

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.123.5000&rep=rep1&type=

pdf.

Nordic Semiconductors, 2009a. NORDIC SEMICONDUCTOR - nRF905 Multiband

Transceiver. Available at:

http://www.nordicsemi.com/index.cfm?obj=product&act=display&pro=83 [Accessed

January 5, 2010].

Nordic Semiconductors, 2009b. NORDIC SEMICONDUCTOR - nRF9E5 Multiband

Transceiver/MCU/ADC. Available at:

http://www.nordicsemi.com/index.cfm?obj=product&act=display&pro=82 [Accessed

November 8, 2009].

Ouafi, K. & Vaudenay, S., 2009. Smashing SQUASH-0. In Advances in Cryptology -

EUROCRYPT 2009. pp. 300-312. Available at: http://dx.doi.org/10.1007/978-3-642-

01001-9_17 [Accessed January 6, 2010].

Peris-Lopez, P., Hernandez-Castro, J., Tapiador, J. & Ribagorda, A., 2009. Advances in

Ultralightweight Cryptography for Low-Cost RFID Tags: Gossamer Protocol. In

Information Security Applications. pp. 56–68.

Peris-Lopez, P., Hernandez-Castro, J.C., Estevez-Tapiador, J.M. & Ribagorda, A., 2006a.

EMAP: An efficient mutual-authentication protocol for low-cost RFID tags.

LECTURE NOTES IN COMPUTER SCIENCE, 4277, 352.

Peris-Lopez, P., Hernandez-Castro, J.C., Estevez-Tapiador, J.M. & Ribagorda, A., 2006b.

LMAP: A real lightweight mutual authentication protocol for low-cost RFID tags. In

Workshop on RFID Security. pp. 12–14. Available at:

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.110.2082&rep=rep1&type=

pdf.

Peris-Lopez, P., Hernandez-Castro, J.C., Estevez-Tapiador, J.M. & Ribagorda, A., 2006c.

M^2AP: A Minimalist Mutual-Authentication Protocol for Low-Cost RFID Tags.

Lecture Notes in Computer Science, 4159, 912.

Peris-Lopez, P., Hernandez-Castro, J.C., Tapiador, J.M., van der Lubbe, J.C., Singh, M.K.,

Liang, G., Vaidya, N., Shanmugapriya, D., Padmavathi, G. & Kish, L.L., 2009.

Security Flaws in a Recent Ultralightweight RFID Protocol. Arxiv preprint

arXiv:0910.2115.

Perrig, A., Canetti, R., Song, D. & Tygar, J.D., 2001. Efficient and secure source

authentication for multicast. In Network and Distributed System Security Symposium,

NDSS. pp. 35–46. Available at:

80

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.18.1680&rep=rep1&type=p

df.

Perrig, A., Szewczyk, R., Tygar, J.D., Wen, V. & Culler, D.E., 2002. SPINS: Security

protocols for sensor networks. Wireless networks, 8(5), 521–534.

Poschmann, A., Leander, G., Schramm, K. & Paar, C., 2007. New light-weight crypto

algorithms for RFID. In Proceedings of The IEEE International Symposium on

Circuits and Systems. pp. 1843–1846. Available at:

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.80.1217&rep=rep1&type=p

df.

Rabin, M.O., 1979. Digitalized signatures and public-key functions as intractable as

factorization. MtT/LCS/TR-212.

Raisonance SAS, 2010. Raisonance, Corporate home page. Available at:

http://www.raisonance.com/ [Accessed June 1, 2010].

Ranasinghe, D.C. & Cole, P.H., 2008. Networked RFID Systems and Lightweight

Cryptography, Springer Berlin Heidelberg. Available at:

http://dx.doi.org/10.1007/978-3-540-71641-9 [Accessed December 1, 2008].

Rinne, S., Eisenbarth, T. & Paar, C., 2007. Performance analysis of contemporary light-

weight block ciphers on 8-bit microcontrollers. ECRYPT, 33.

Rivest, R.L., 1995. The RC5 encryption algorithm. Dr Dobb's Journal-Software Tools for the

Professional Programmer, 20(1), 146–149.

el Ruptor, M., 2007. File:XXTEA.png - Wikipedia, the free encyclopedia. Available at:

http://en.wikipedia.org/wiki/File:XXTEA.png [Accessed September 19, 2010].

Russell, M.D., 2004. Tinyness: an overview of TEA and related ciphers. Draft v0.3, 3.

Saarinen, M.J., 1998. Cryptanalysis of Block Tea, unpublished manuscript.

Sarma, S.E., 2001. Towards the five-cent tag, Technical Report MIT-AUTOID-WH-006, MIT

Auto ID Center, 2001. Available at: http://www.autoidlabs.org/uploads/media/mit-

autoid-wh-006.pdf.

Sarma, S.E., Weis, S.A. & Engels, D.W., 2003. RFID systems and security and privacy

implications. Lecture notes in computer science, 454–469.

Schneier, B., 1996. Applied Cryptography: Protocols, Algorithms, and Source Code in C,

Second Edition 2nd ed., Wiley.

Shamir, A., 2008. SQUASH – A New MAC with Provable Security Properties for Highly

Constrained Devices Such as RFID Tags. In Fast Software Encryption. pp. 144-157.

Available at: http://dx.doi.org/10.1007/978-3-540-71039-4_9 [Accessed January 6,

2010].

81

Standaert, F., Piret, G., Gershenfeld, N. & Quisquater, J., 2006. SEA: A scalable encryption

algorithm for small embedded applications. Lecture Notes in Computer Science, 3928,

222.

Sun, H.M., Ting, W.C. & Wang, K.H., 2008. On the security of chien’s ultralightweight RFID

authentication protocol, Cryptology ePrint Archive, Report 2008/083, 2008. Available

at: http://eprint.iacr.org/2008/083.pdf.

Vault Information Services, 2009. 8052.com - The Online 8051/8052 Microcontroller

Resource - 8052.com. Available at: http://www.8052.com/ [Accessed April 7, 2009].

Wheeler, D. & Needham, R., 1994. TEA, a tiny encryption algorithm. In Fast Software

Encryption. pp. 363–366.

Wheeler, D. & Needham, R., 1998. XXTEA: Correction to XTEA, Technical report, Computer

Laboratory, University of Cambridge.

Wi-Fi Alliance, W.F., 2003. Wi-Fi Protected Access: Strong, standards-based, interoperable

security for today’s Wi-Fi networks. , 1(2004), 29–03.

Yarrkov, E., 2010. Cryptanalysis of XXTEA, Available at: http://eprint.iacr.org/2010/254

[Accessed May 28, 2010].

Ye, W., Heidemann, J. & Estrin, D., 2002. An energy-efficient MAC protocol for wireless

sensor networks. In IEEE INFOCOM. pp. 1567–1576.

Yu-Long, S., Qing-Qi, P.E.I. & Jian-Feng, M.A., 2007. microTESLA: Broadcast

Authentication Protocol for Multiple-Base-Station Sensor Networks.

82

Appendix A

Master Linker Map

 TYPE BASE LENGTH RELOCATION SEGMENT NAME

 ---- ---- ------ ---------- ------------

 * * * * * * * DATA/IDATA M E M O R Y * * * * * * *

 REG 0000H 0008H ABSOLUTE "REG BANK 0"

 DATA 0008H 0018H OVERLAID UNIT _DGROUP02_

 0008H 0002H ------------- ?DT?_ChangeRXAddress?MASTER

 0008H 0009H ------------- ?DT?gossamerMaster?MASTER

 0011H 0004H ------------- ?DT?_ReceiveMode?MASTER

 0011H 0007H ------------- ?DT?_bitRotation?MASTER

 0018H 0003H ------------- ?DT?_getModulo96?MASTER

 0018H 0004H ------------- ?DT?_indexShift?MASTER

 001CH 0003H ------------- ?DT?_arrayReverse?MASTER

 0018H 0006H ------------- ?DT?_bitShift?MASTER

 0011H 0002H ------------- ?DT?_TransmitBytes?MASTER

 0011H 0003H ------------- ?DT?_mixBits?MASTER

 0014H 0001H ------------- ?DT?_additionMod96?MASTER

 0011H 0004H ------------- ?DT?_sea?MASTER

 0015H 0009H ------------- ?DT?_seaCryptRound?MASTER

 001EH 0001H ------------- ?DT?_seaWordRotation?MASTER

 0015H 0008H ------------- ?DT?_seaKeyRound?MASTER

 0011H 0007H ------------- ?DT?_printArray?MASTER

 0018H 0008H ------------- ?DT?_itoa?MASTER

 DATA 0020H 0002H OVERLAID UNIT _DGROUP01_

 0020H 0002H -------------?DT?_subtractionMod96?MASTER

 IDATA 0022H 00C3H OVERLAID UNIT _IGROUP02_

 0022H 00B4H ------------- ?ID?gossamerMaster?MASTER

 00D6H 000CH ------------- ?ID?_mixBits?MASTER

 00D6H 000FH ------------- ?ID?_sea?MASTER

 00D6H 0003H ------------- ?ID?_itoa?MASTER

 IDATA 00E5H 0001H * * STACK * * _STACK

 * * * * * * * PDATA/XDATA M E M O R Y * * * * * * *

 0000H 0FB0H *** GAP ***

 XDATA 0FB0H 0048H OVERLAID UNIT _XGROUP02_

 0FB0H 0008H ------------- ?XD?main?MASTER

 0FB8H 0040H ------------- ?XD?gossamerMaster?MASTER

 * * * * * * * CODE M E M O R Y * * * * * * *

 TYPE BASE LENGTH RELOCATION SEGMENT NAME

 ---- ---- ------ ---------- ------------

 CODE 0000H 0003H ABSOLUTE

 CODE 0003H 008EH INBLOCK ?PR?MOVES?LIB51

 CODE 0091H 0228H UNIT ?PR?LIB51

 CODE 02B9H 0018H UNIT ?PR?C51_STARTUP?

 CODE 02D1H 000DH UNIT ?PR?_SpiReadWrite?MASTER

 CODE 02DEH 0008H UNIT ?PR?_PutChar?MASTER

 CODE 02E6H 0008H UNIT ?PR?GetChar?MASTER

 CODE 02EEH 0026H UNIT ?PR?_PutString?MASTER

 CODE 0314H 0021H UNIT ?PR?SetClock?MASTER

 CODE 0335H 0020H UNIT ?PR?InitUartTimer1?MASTER

 CODE 0355H 0014H UNIT ?PR?longDelay?MASTER

 CODE 0369H 0032H UNIT ?PR?_ChangeRXAddress?MASTER

 CODE 039BH 0015H UNIT ?PR?InitRadio?MASTER

 CODE 03B0H 004DH UNIT ?PR?_TransmitBytes?MASTER

83

 CODE 03FDH 006CH UNIT ?STR?MASTER

 CODE 0469H 0056H UNIT ?PR?_ReceiveMode?MASTER

 CODE 04BFH 00B0H UNIT ?PR?_itoa?MASTER

 CODE 056FH 003AH UNIT ?PR?_printArray?MASTER

 CODE 05A9H 004EH UNIT ?PR?_getModulo96?MASTER

 CODE 05F7H 0028H UNIT ?PR?_arrayReverse?MASTER

 CODE 061FH 0044H UNIT ?PR?_indexShift?MASTER

 CODE 0663H 00CFH UNIT ?PR?_bitShift?MASTER

 CODE 0732H 0045H UNIT ?PR?_bitRotation?MASTER

 CODE 0777H 0010H UNIT ?PR?_xorArrays?MASTER

 CODE 0787H 0041H UNIT ?PR?_additionMod96?MASTER

 CODE 07C8H 0058H UNIT ?PR?_subtractionMod96?MASTER

 CODE 0820H 0054H UNIT ?PR?_mixBits?MASTER

 CODE 0874H 004EH UNIT ?PR?_seaSBOX?MASTER

 CODE 08C2H 002FH UNIT ?PR?_seaBitRotation?MASTER

 CODE 08F1H 0036H UNIT ?PR?_seaWordRotation?MASTER

 CODE 0927H 0064H UNIT ?PR?_seaCryptRound?MASTER

 CODE 098BH 0050H UNIT ?PR?_seaKeyRound?MASTER

 CODE 09DBH 00E6H UNIT ?PR?_sea?MASTER

 CODE 0AC1H 000FH UNIT ?PR?_copyArray?MASTER

 CODE 0AD0H 03EDH UNIT ?PR?gossamerMaster?MASTER

 CODE 0EBDH 0028H UNIT ?PR?main?MASTER

EXECUTABLE SUMMARY:

 Total INTERNAL RAM storage requirement: 00E5H (229)

 Total EXTERNAL RAM storage requirement: 0048H (72)

 Total CODE storage requirement: 0EE5H (3813)

Slave Linker Map

 TYPE BASE LENGTH RELOCATION SEGMENT NAME

 ---- ---- ------ ---------- ------------

 * * * * * * * DATA/IDATA M E M O R Y * * * * * * *

 REG 0000H 0008H ABSOLUTE "REG BANK 0"

 DATA 0008H 0017H OVERLAID UNIT _DGROUP02_

 0008H 0002H ------------- ?DT?_ChangeRXAddress?SLAVE

 0008H 0009H ------------- ?DT?gossamerSlave?SLAVE

 0011H 0004H ------------- ?DT?_ReceiveMode?SLAVE

 0011H 0007H ------------- ?DT?_bitRotation?SLAVE

 0018H 0003H ------------- ?DT?_getModulo96?SLAVE

 0018H 0004H ------------- ?DT?_indexShift?SLAVE

 001CH 0003H ------------- ?DT?_arrayReverse?SLAVE

 0018H 0006H ------------- ?DT?_bitShift?SLAVE

 0011H 0002H ------------- ?DT?_subtractionMod96?SLAVE

 0011H 0003H ------------- ?DT?_mixBits?SLAVE

 0014H 0001H ------------- ?DT?_additionMod96?SLAVE

 0011H 0004H ------------- ?DT?_sea?SLAVE

 0015H 0009H ------------- ?DT?_seaCryptRound?SLAVE

 001EH 0001H ------------- ?DT?_seaWordRotation?SLAVE

 0015H 0008H ------------- ?DT?_seaKeyRound?SLAVE

 DATA 001FH 000FH OVERLAID UNIT _DGROUP01_

 001FH 0007H ------------- ?DT?_printArray?SLAVE

 0026H 0008H ------------- ?DT?_itoa?SLAVE

 IDATA 002EH 00C3H OVERLAID UNIT _IGROUP02_

 002EH 00B4H ------------- ?ID?gossamerSlave?SLAVE

 00E2H 000CH ------------- ?ID?_mixBits?SLAVE

 00E2H 000FH ------------- ?ID?_sea?SLAVE

84

 IDATA 00F1H 0003H OVERLAID UNIT _IGROUP01_

 00F1H 0003H ------------- ?ID?_itoa?SLAVE

 IDATA 00F4H 0001H * * STACK * * _STACK

 * * * * * * * PDATA/XDATA M E M O R Y * * * * * * *

 0000H 0FB0H *** GAP ***

 XDATA 0FB0H 0048H OVERLAID UNIT _XGROUP02_

 0FB0H 0008H ------------- ?XD?main?SLAVE

 0FB8H 0040H ------------- ?XD?gossamerSlave?SLAVE

 * * * * * * * CODE M E M O R Y * * * * * * *

 TYPE BASE LENGTH RELOCATION SEGMENT NAME

 ---- ---- ------ ---------- ------------

 CODE 0000H 0003H ABSOLUTE

 CODE 0003H 008EH INBLOCK ?PR?MOVES?LIB51

 CODE 0091H 0228H UNIT ?PR?LIB51

 CODE 02B9H 0018H UNIT ?PR?C51_STARTUP?

 CODE 02D1H 000DH UNIT ?PR?_SpiReadWrite?SLAVE

 CODE 02DEH 0008H UNIT ?PR?_PutChar?SLAVE

 CODE 02E6H 0008H UNIT ?PR?GetChar?SLAVE

 CODE 02EEH 0026H UNIT ?PR?_PutString?SLAVE

 CODE 0314H 0021H UNIT ?PR?SetClock?SLAVE

 CODE 0335H 0020H UNIT ?PR?InitUartTimer1?SLAVE

 CODE 0355H 0032H UNIT ?PR?_ChangeRXAddress?SLAVE

 CODE 0387H 0015H UNIT ?PR?InitRadio?SLAVE

 CODE 039CH 0044H UNIT ?PR?_TransmitBytes?SLAVE

 CODE 03E0H 0054H UNIT ?STR?SLAVE

 CODE 0434H 0056H UNIT ?PR?_ReceiveMode?SLAVE

 CODE 048AH 00B0H UNIT ?PR?_itoa?SLAVE

 CODE 053AH 003AH UNIT ?PR?_printArray?SLAVE

 CODE 0574H 004EH UNIT ?PR?_getModulo96?SLAVE

 CODE 05C2H 0028H UNIT ?PR?_arrayReverse?SLAVE

 CODE 05EAH 0044H UNIT ?PR?_indexShift?SLAVE

 CODE 062EH 00CFH UNIT ?PR?_bitShift?SLAVE

 CODE 06FDH 0045H UNIT ?PR?_bitRotation?SLAVE

 CODE 0742H 0010H UNIT ?PR?_xorArrays?SLAVE

 CODE 0752H 0041H UNIT ?PR?_additionMod96?SLAVE

 CODE 0793H 0058H UNIT ?PR?_subtractionMod96?SLAVE

 CODE 07EBH 0054H UNIT ?PR?_mixBits?SLAVE

 CODE 083FH 004EH UNIT ?PR?_seaSBOX?SLAVE

 CODE 088DH 002FH UNIT ?PR?_seaBitRotation?SLAVE

 CODE 08BCH 0036H UNIT ?PR?_seaWordRotation?SLAVE

 CODE 08F2H 0064H UNIT ?PR?_seaCryptRound?SLAVE

 CODE 0956H 0050H UNIT ?PR?_seaKeyRound?SLAVE

 CODE 09A6H 00E6H UNIT ?PR?_sea?SLAVE

 CODE 0A8CH 000FH UNIT ?PR?_copyArray?SLAVE

 CODE 0A9BH 03D4H UNIT ?PR?gossamerSlave?SLAVE

 CODE 0E6FH 0028H UNIT ?PR?main?SLAVE

EXECUTABLE SUMMARY:

 Total INTERNAL RAM storage requirement: 00F4H (244)

 Total EXTERNAL RAM storage requirement: 0048H (72)

 Total CODE storage requirement: 0E97H (3735)

85

Appendix B

/***

Copyright 2010 Piotr Ksiazak

Filename: Master.c

Project : MSc - IWSN Experimental Master

**

Version 1.0: Initial release

***/

#include <reg9e5.h>

#include <intri51.h>

#define POWER 3 // 0=min power...3 = max power

#define HFREQ 1 // 0=433MHz, 1=868/915MHz

#define CHANNEL 351 // Channel number: f(MHz) =

 //(422.4+CHANNEL/10)*(1+HFREQ)

#pragma REGPARMS // pass arguments to registers

// SPI access

unsigned char SpiReadWrite(unsigned char b)

{

 EXIF &= ~0x20; // Clear SPI interrupt

 SPI_DATA = b; // Move byte to send to SPI data register

 while((EXIF & 0x20) == 0x00) // Wait until SPI hs finished transmitting

 ;

 return SPI_DATA;

}

// Send character to UART

void PutChar(char c)

{

 while(!TI)

 ;

 TI = 0;

 SBUF = c;

}

// Read character from UART

unsigned char GetChar(void)

{

 while(!RI)

 ;

 RI = 0;

 return SBUF;

}

// Send string to UART

void PutString(const char *s)

{

 while(*s != 0)

 PutChar(*s++);

}

// Switch to 16MHz clock:

void SetClock(void)

{

 unsigned char cklf;

 RACSN = 0; // Set CSN on the radio to low (Radio will expect

86

 //instruction)

 SpiReadWrite(RRC | 0x09); // Read R_RF_CONFIG bytes

 //starting at 09 (UP_CLK_FREQ)

 cklf = SpiReadWrite(0) | 0x04; // Set XOF to 001 (0x04 - 16MHz)

 RACSN = 1; // Set CSN on the radio back to low before next

 //instruction (another high to low transition is

 //needed thus the next line)

 RACSN = 0; // Back to low, radio expects another intruction

 SpiReadWrite(WRC | 0x09); // Instruct SPI to write RF_CONFIG

 SpiReadWrite(cklf); // Write RF_CONFIG

 RACSN = 1; // Reset CSN to high

}

// Initialize timer used for UART clocking

void InitUartTimer1(void)

{

 TH1 = 243; // 19200@16MHz (when T1M=1 and SMOD=1)

 CKCON |= 0x10; // T1M=1 (/4 timer clock)

 PCON = 0x80; // SMOD=1 (double baud rate)

 SCON = 0x52; // Serial mode1, enable receiver

 TMOD = 0x20; // Timer1 8bit auto reload

 TR1 = 1; // Start timer1

 P0_ALT |= 0x06; // Select alternate functions on pins

 //P0.1 and P0.2

 P0_DIR |= 0x02; // P0.1 (RxD) is input

 SPICLK = 0; // Max SPI clock

 SPI_CTRL = 0x02; // Connect internal SPI controller to

 //Radio

 ES = 0;

}

// Sleep function

void longDelay()

{

 unsigned int i;

 unsigned int n = 0xFFFF;

 while(n--)

 for(i=0;i<0xFFFF;i++)

 ;

}

// Changes Receiving address of a node

void ChangeRXAddress(unsigned int xdata *RXAddr)

{

 unsigned int i;

 RACSN = 0;

 SpiReadWrite(WRC | 0x05); //Write to RFConfig starting at byte 5

 //(RF Address)

 for(i=0; i<4; i++)

 SpiReadWrite(RXAddr[i]);

 RACSN = 1;

}

// Initialises radio transceiver on channel 0x68

void InitRadio(void)

{

 TXEN = 0;

 TRX_CE =0;

 RACSN = 0;

87

 SpiReadWrite(CC | (POWER << 2) | (HFREQ << 1) | (0x00)); //pass

 //first 8 bits to the register (inlcuding channel high bit)

 SpiReadWrite(0x68); //pass low 8 bits of the channel

 RACSN = 1;

 EA = 1; //Global enable for all interrupts

}

// Transmits a 32-byte packet over the radio

void TransmitBytes(unsigned char data *TXAddr, unsigned char xdata *buff)

{

 unsigned char i;

 longDelay(); //Wait before tranmitting

 //Configure TX Address

 RACSN = 0;

 SpiReadWrite(WTA); //Write to RFConfig starting at byte 5 (RF

 //Address)

 for(i=0; i<4; i++)

 SpiReadWrite(TXAddr[i]);

 RACSN = 1;

 //Write 32-byte packet to SPI

 RACSN = 0;

 SpiReadWrite(WTP); // write packet to SPI

 for (i=0; i<32; i++)

 {

 SpiReadWrite(buff[i]);

 }

 RACSN = 1;

 //wait until channel is clear

 while(CD == 1)

 ;

 TRX_CE = 1; // enable radio

 TXEN = 1; // enable radio TX mode

 while(DR == 0) // wait until data ready goes high

 ;

 TRX_CE = 0; // disable radio

 TXEN = 0; // disable TX mode

}

// Receives 32-byte packet if AM (Address Match) flag is raised

unsigned char ReceiveMode(unsigned char xdata *buff)

{

 unsigned char i;

 unsigned char j;

 unsigned char amFlag;

 amFlag = 0; //reset address match flag

 TXEN = 0; //Set TX_EN to low to enter Shockburst receive mode

 TRX_CE = 1; //enable radio

 j=0; //wait for Carrier Detect

 while(CD == 0 && j<255)

 j++;

 if (AM) //If Address Match: process the SPI buffer

88

 {

 while(DR == 0) //Wait until Data Ready

 ;

 RACSN = 0;

 SpiReadWrite(RRP); //Send packet read command to the SPI

 for (i = 0; i < 32; i++) //Read in the packet ot the buffer

 buff[i] = SpiReadWrite(0);

 RACSN = 1;

 TRX_CE=0; //disable RX mode

 PutString("\r\nRX\r\n");

 amFlag = 1;

 return amFlag;

 }

 return amFlag;

}

// Inteteger to ASCII (itoa) conversion

void itoa(int n, unsigned char *s)

{

 unsigned char *charPtr;

 int idata n1;

 unsigned char idata len;

 len=0;

 //change the sign for negative numbers

 if (n<0)

 {

 n=-n;

 *s++ = '-';

 }

 //calculate the length of the number in decimal digits

 n1=n;

 do

 {

 n1 /= 10;

 len++;

 }

 while(n1);

 *(charPtr = &s[len]) = 0; //null terminate string

 do

 {

 *--charPtr = (n % 10) + '0';

 n /= 10;

 }

 while(n);

}

// Prints array of 12 bytes in decimal notation

void printArray (unsigned char idata *array)

{

 unsigned char i;

 unsigned char stringBuff[5];

 for (i=0; i<12; i++)

 {

89

 itoa((int)array[i], stringBuff);

 PutString(stringBuff);

 PutString("\t");

 }

 PutString("\r\n");

}

//Returns Modulo96 of the 12-byte number (Big Endian) held in 12-element

//array

unsigned char getModulo96 (unsigned char idata *array)

{

 unsigned char i;

 unsigned char modulus = 0;

 for (i=0; i<11; i++)

 {

 //Divide and conquer approach: sum of two 4-bit numbers multiplied

 //by 2*16

 modulus += (((array[i] & 0x0f) + (array[i] >> 4))*256)%96;

 modulus %= 96; //Reduce each result Mod96 - can be done less

 //frequently

 }

 return (array[11] + modulus)%96; //Add the result to the LSB and

 //calculate Mod96 again

}

//Reverses (mirror) the array - used by indexShift function

void arrayReverse(unsigned char idata *result, unsigned char left, unsigned

char right)

{

 unsigned char temp;

 unsigned char i;

 unsigned char j;

 //Start with edges and continue until middle elements are processed

 for (i=left, j=right; i<j; i++, j--)

 {

 temp = result[i];

 result[i] = result[j];

 result[j] = temp;

 }

}

//Rotates the elements of a 12-element array by up to 11 positions left or

right

void indexShift (unsigned char idata *result, unsigned int direction,

unsigned int indexShift)

{

 //ArrayReverse: let array be split into A.B. After rotations it is B.A

 //B.A = reverse(reverse(A).reverse(B))

 //Direction: 0 for left shift, 1 for right shift

 if (!direction)

 {

 arrayReverse(result, 0, indexShift-1);

 arrayReverse(result, indexShift, 11);

 arrayReverse(result, 0, 11);

 }

 else

 {

 arrayReverse(result, 12-indexShift, 11);

90

 arrayReverse(result, 0, 11-indexShift);

 arrayReverse(result, 0, 11);

 }

}

//Bitwise bit rotation of the array (up to 7 places)

void bitShift (unsigned char idata *array, unsigned int direction, unsigned

int bitsToShift)

{

 unsigned char i;

 unsigned char element0;

 unsigned char temp;

 //Direction: 0 for left shift, 1 for right shift

 if (!direction)//Shift bits to the left with carry to the lower element

 {

 element0 = array[0];

 array[0] = array[0] << bitsToShift;

 for (i=0; i<11; i++)

 {

 temp = array[i+1];

 array[i+1] = array[i+1] << bitsToShift;

 array[i] |= temp >> (8 - bitsToShift);

 }

 array[11] |= element0 >> (8-bitsToShift);

 }

 else //Shift bits to the right with carry to the lower element

 {

 element0 = array[11];

 array[11] = array[11] >> bitsToShift;

 for (i=11; i>0; i--)

 {

 temp = array[i-1];

 array[i-1] = array[i-1] >> bitsToShift;

 array[i] |= temp << (8 - bitsToShift);

 }

 array[0] |= element0 << (8-bitsToShift);

 }

}

//Rotates array2 by array1 Modulo96

void bitRotation (unsigned char idata *array1, unsigned char idata *result,

unsigned int direction)

{

 unsigned char modulo = getModulo96(array1); //First get modulo

 unsigned char indicesToShift;

 unsigned char bitsToShift;

 //Second divide modulo by 8 and rotate the array (if modulo is bigger

 //than 8)

 //Direction: 0 for left shift, 1 for right shift

 if (modulo > 8)

 {

 indicesToShift = modulo/8;

 indexShift(result, direction, indicesToShift);

 }

 //Then bitshift with carry each element by the remaining shift (shift

91

 //amount will be <8)

 bitsToShift = modulo%8;

 if (bitsToShift != 0)

 bitShift(result, direction, bitsToShift);

}

//Performs XOR on two arrays and saves the output to the second argument

void xorArrays (unsigned char idata *array1, unsigned char idata *result)

{

 unsigned char i;

 for (i=0; i<12; i++)

 {

 result[i] ^= array1[i];

 }

}

//Performs addition Modulo96 on two arrays and saves the output to the

second argument

void additionMod96 (unsigned char idata *array1, unsigned char idata

*result)

{

 unsigned char i;

 unsigned char j;

 for (i=11; i>0; i--)

 {

 result[i] += array1[i]; //Add two bytes (no carry)

 if (result[i] < array1[i]) //Check if carry needed and append to

 //upper byte

 {

 result[i-1]++;

 //check if previous byte was not 255 overloaded to 0 and step

 //back to lower elements to do the same

 j=i;

 //If a carry bit overloads upper byte increment upper to

 //the overloaded one

 //Continue until the array head is met if needed

 while(result[j-1] == 0 && j > 1)

 {

 result[j-2]++;

 --j;

 }

 }

 }

 result[0] += array1[0]; //Got to the MSB - just add and ignore carry

//(adding Mod96 anyway)

}

//Performs Gossamer MixBits function on two arrays and returns pointer to a

//temporary array

unsigned char* mixBits (unsigned char idata *array1, unsigned char idata

*array2)

{

 // Z = mixBits (X,Y)

 // Z = X

 // 32times: Z = (Z>>1) + Z + Z + Y

 unsigned char idata result[12];

 unsigned char i;

 for (i=0; i<12; i++)

92

 {

 result[i] = array1[i];

 }

 for (i=0; i<32; i++)

 {

 bitShift (array1, 1, 1);

 additionMod96 (array1, result);

 bitShift (array1, 0, 1);

 additionMod96 (array1, result);

 additionMod96 (array1, result);

 additionMod96 (array2, result);

 }

 return result;

}

/* SEA S-Box implementation according to SEA author's suggestions

void seaSBOX (unsigned char data *block, unsigned char i)

{

 block[3*i] = (block[3*i+2] && block[3*i+1]) ^ block[3*i];

 block[3*i+1] = (block[3*i+2] && block[3*i]) ^ block[3*i+1];

 block[3*i+2] = (block[3*i] || block[3*i+1]) ^ block[3*i+2];

}

*/

//Simplified S-Box - per private conversation with the author it is safe to

//perform S-Box on the first three elements only (SEA(96,8).

//Originally author advised to apply S-Box to any 3 elements of each block

void seaSBOX (unsigned char idata *block, unsigned char i)

{

 block[0] = (block[2] && block[1]) ^ block[0];

 block[1] = (block[2] && block[0]) ^ block[1];

 block[2] = (block[0] || block[1]) ^ block[2];

}

//SEA Bit-rotation function for SEA(96,8).

//Function uses Raisonance RC51 intrisic functions (_cror_ and _crol_).

void seaBitRotation (unsigned char idata *block)

{

 block[0] = _cror_(block[0], 1);

 block[2] = _crol_(block[2], 1);

 block[3] = _cror_(block[3], 1);

 block[5] = _crol_(block[5], 1);

}

//SEA(96,8) word rotation - rotates the array by one byte

void seaWordRotation (unsigned char idata *block, unsigned char direction)

{

 //Direction 0 for left and 1 for right rotation

 unsigned char i;

 unsigned char temp;

 if (direction == 0)

 {

 temp = block[0];

 for (i=0; i<5; i++)

 block[i] = block[i+1];

 block[5] = temp;

 }

 else

 {

93

 temp = block[5];

 for (i=5; i>0; i--)

 block[i] = block[i-1];

 block[0] = temp;

 }

}

//Performs one SEA(96,8) Crypto round. Parameter direction: 0 for

encryption and 1 for decryption

void seaCryptRound (unsigned char direction, unsigned char idata

*blockLeft, unsigned char idata *blockRight, unsigned char idata *keyHalf)

{

 unsigned char i;

 unsigned char temp[6];

 //Every operation will be performed on blockLeft as this memory

 //location will become

 //a right block for the next round.

 //Save the left block

 for (i=0; i<6; i++)

 temp[i] = blockRight[i];

 //ENCRYPTION

 //Fe(Li, Ri, K/2i) <=> RightWordRot(Li) XOR bitRot(sbox(Ri+K/2i))

 //DECRYPTION

 //Fd(Li, Ri, K/2i) <=> LeftWordRot(Li XOR bitRot(sbox(Ri+K/2i)))

 //Step by step:

 //Ri+K/2i

 for (i=0; i<6; i++)

 blockRight[i] += keyHalf[i];

 //sbox(Ri+K/2i)

 seaSBOX(blockRight, i%2);

 ////seaSBOX(blockRight, 0);

 //bitRot(sbox(Ri+K/2i))

 seaBitRotation(blockRight);

 //RightWordRot(Li) - encryption only

 //Direction 0 for encryption and 1 for decryption

 if (direction == 0)

 seaWordRotation(blockLeft, 1);

 //RightWordRot(Li) XOR bitRot(sbox(Ri+K/2i))

 for (i=0; i<6; i++)

 {

 blockRight[i] ^= blockLeft[i];

 blockLeft[i] = temp[i]; //BlockLeft(i)+1 becomes BlockRight(i)

 }

 //LeftWordRot(Li XOR bitRot(sbox(Ri+K/2i))) - decryption only

 if (direction == 1)

 seaWordRotation(blockRight, 0);

}

//Performs one SEA(96,8) key round.

void seaKeyRound (unsigned char idata *keyLeft, unsigned char idata

*keyRight, unsigned char Ci)

{

//Fk(KLi-1,KRi-1,Ci) <=> KRi = KLi-1 XOR RightWordRot(bitRot(sbox((KRi-

//1)+Ci)));

 unsigned char i;

 unsigned char temp[6];

 //Save the left key (left key will become right after the round)

94

 //Every operation will be performed on keyLeft as this memory location

 //will become a right key

 //for the next round.

 for (i=0; i<6; i++)

 temp[i] = keyRight[i];

 //Step-by-step:

 //init Ci (LSW equals i)

 ////Ci[5] = i;

 //(KRi-1)+Ci

 keyRight[5] += Ci;

 //sbox((KRi-1)+Ci)

 seaSBOX(keyRight, (Ci%2));

 ////seaSBOX(keyRight, 1);

 //bitRotation(sbox((KRi-1)+Ci))

 seaBitRotation(keyRight);

 //RightWordRot(bitRot(sbox((KRi-1)+Ci)));

 seaWordRotation(keyRight, 1);

 //KRi = KLi-1 XOR RightWordRot(bitRot(sbox((KRi-1)+Ci)));

 for (i=0; i<6; i++)

 {

 keyRight[i] ^= keyLeft[i];

 keyLeft[i] = temp[i]; //KeyLeft(i)+1 becomes KeyRight(i)

 }

}

// SEA Scalable Encryption Algorithm (SEA 96,8) implementation

void sea (unsigned char direction, unsigned char idata *block, unsigned

char idata *key)

{

 //Direction 0 for encryption and 1 for decryption

 unsigned char i;

 //initialization

 unsigned char* idata keyLeft = &key[0];

 unsigned char* idata keyRight = &key[6];

 unsigned char* idata blockLeft = &block[0];

 unsigned char* idata blockRight = &block[6];

 unsigned char* idata temp; //temp pointer used for swapping key sides

 unsigned char tmp;

 //First half of all rounds (93 as per author's recommendation for a

 //minimum number of rounds)

 //for (i=1; i<47; i++)

 for (i=1; i<47; i++)

 {

 //Key scheduling

 //[KLi, KRi] = Fk(KLi-1, KRi-1, C(i));

 //Fk(KLi-1,KRi-1,Ci) <=> KRi = KLi-1 XOR Rot(bitRot(sbox((KRi-

 //1)+Ci)));

 seaCryptRound (direction, (unsigned char idata *)blockLeft,

(unsigned char idata *)blockRight, (unsigned char idata *)keyRight);

 seaKeyRound((unsigned char idata *)keyLeft, (unsigned char idata

*)keyRight, i);

 }

 //End of round half - swap pointers

 temp = keyLeft;

 keyLeft = keyRight;

 keyRight = temp;

 //for (i=46; i<92; i++)

95

 for (i=46; i>0; i--)

 {

 //Key scheduling part 2

 //[KLi, KRi] = Fk(KLi-1, KRi-1, C(r-i));

 //Fk(KLi-1,KRi-1,Ci) <=> KRi = KLi-1 XOR Rot(bitRot(sbox((KRi-

 //1)+Ci)))

 seaCryptRound (direction, (unsigned char idata *)blockLeft,

(unsigned char idata *)blockRight, (unsigned char idata *)keyLeft);

 seaKeyRound((unsigned char idata *)keyLeft, (unsigned char idata

*)keyRight, i);

 }

 seaCryptRound (direction, (unsigned char idata *)blockLeft, (unsigned

char idata *)blockRight, (unsigned char idata *)keyLeft);

 //Final: switch Key and Block halves

 //indexShift (block, 0, 6); //Gossamer function may be used to save

 //space

 for(i=0; i<6; i++)

 {

 tmp = block[i];

 block[i] = block[i+6];

 block[i+6] = tmp;

 }

}

//Copies array to the location of the second argument

void copyArray(unsigned char idata *source, unsigned char idata *target)

{

 unsigned char i;

 for (i=0; i<12; i++)

 target[i] = source[i];

}

//Main Gossamer Master loop - simplified model.

void gossamerMaster (void)

{

 //Simplifications:

 //All data stored in RAM (idata)

 //n1 and n2 random numbers are hardcoded;

 //IDS, k1 and k2 for an example slave device are also hardcoded;

 unsigned char data TXaddr[4] = { 0xC4, 0x5A, 0x5A, 0xC4 };

 unsigned char xdata TXbuff[32];

 unsigned char xdata RXbuff[32];

 unsigned char i;

 unsigned char flag;

 unsigned char idata temp[12];

 unsigned char idata n1temp[12];

 unsigned char *tempPtr;

 unsigned char idata Pi[12] = { 0x32, 0x43, 0xF6, 0xA8, 0x88, 0x5A,

0x30, 0x8D, 0x31, 0x31, 0x98, 0xA2 };

 unsigned char idata IDS[12] = { 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,

0x01, 0x01, 0x01, 0x01, 0x01, 0x01 };

 unsigned char idata ID[12] = { 0x44, 0x44, 0x44, 0x44, 0x44, 0x44,

0x44, 0x44, 0x44, 0x44, 0x44, 0x44 };

 unsigned char idata k1[12] = { 0x10, 0x10, 0x10, 0x10, 0x10, 0x10,

0x10, 0x10, 0x10, 0x10, 0x10, 0x10 };

 unsigned char idata k2[12] = { 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,

0x20, 0x20, 0x20, 0x20, 0x20, 0x20 };

96

 unsigned char idata n1[12] = { 0x22, 0x22, 0x22, 0x22, 0x22, 0x22,

0x22, 0x22, 0x22, 0x22, 0x22, 0x22 };

 unsigned char idata n2[12] = { 0x23, 0x23, 0x23, 0x23, 0x23, 0x23,

0x23, 0x23, 0x23, 0x23, 0x23, 0x23 };

 unsigned char idata messageA[12];

 unsigned char idata messageB[12];

 unsigned char idata messageC[12];

 unsigned char idata messageD[12];

 unsigned char idata k1next[12];

 unsigned char idata k2next[12];

 //Loop forever authenticating the experimental slave

 for (;;)

 {

 //Tag identification: verify incoming IDS

 flag = 1;

 while (!ReceiveMode(RXbuff))

 ;

 for (i=0; i<12; i++)

 {

 if (IDS[i] != RXbuff[i])

 flag = 0;

 }

 if (flag) //If IDS is correct continue with the protocol

 {

 PutString("\r\nIDS OK");

 //Create message A: A = ROT((ROT(IDS+k1+Pi+n1, k2)+k1, k1)

 //messageA + n1

 copyArray(n1, messageA);

 //n1+Pi

 additionMod96(Pi, messageA);

 //k1+Pi+n1

 additionMod96(k1, messageA);

 //IDS+k1+Pi+n1

 additionMod96(IDS, messageA);

 //ROT(IDS+k1+Pi+n1, k2)

 bitRotation (k2, messageA, 0);

 //ROT(IDS+k1+Pi+n1, k2)+k1

 additionMod96(k1, messageA);

 //ROT((ROT(IDS+k1+Pi+n1, k2)+k1, k1)

 bitRotation (k1, messageA, 0);

 //MessageA created - now transmit:

 PutString("\r\nA\t");

 printArray(messageA);

 for (i=0; i<12; i++)

 TXbuff[i] = messageA[i];

 TransmitBytes(TXaddr, TXbuff);

 //Create message B: B = ROT((ROT(IDS+k2+Pi+n2, k1)+k2, k2)

 //messageB + n2

 copyArray(n2, messageB);

 //Pi+n2

 additionMod96(Pi, messageB);

 //k2+Pi+n2

 additionMod96(k2, messageB);

 //IDS+k2+Pi+n2

 additionMod96(IDS, messageB);

 //ROT(IDS+k2+Pi+n2, k1)

 bitRotation (k1, messageB, 0);

97

 //ROT(IDS+k2+Pi+n2, k1)+k2

 additionMod96(k2, messageB);

 //ROT((ROT(IDS+k2+Pi+n2, k1)+k2, k2)

 bitRotation (k2, messageB, 0);

 //MessageB created - now transmit:

 PutString("B\t");

 printArray(messageB);

 for (i=0; i<12; i++)

 TXbuff[i] = messageB[i];

 TransmitBytes(TXaddr, TXbuff);

 //Create temporary n3: n3 = mixBits(n1,n2)

 tempPtr = mixBits(n1, n2);

 for (i=0; i<12; i++)

 temp[i] = tempPtr[i];

 //Create keys for the next round

 //k1next = ROT((ROT(n2+k1+Pi+n3, n2)+k2 XOR n3, n1) XOR n3

 //k1next + n3

 copyArray(temp, k1next);

 //Pi+n3

 additionMod96(Pi, k1next);

 //k1+Pi+n3

 additionMod96(k1, k1next);

 //n2+k1+Pi+n3

 additionMod96(n2, k1next);

 //ROT(n2+k1+Pi+n3, n2)

 bitRotation (n2, k1next, 0);

 //ROT(n2+k1+Pi+n3, n2)+k2

 additionMod96(k2, k1next);

 //ROT(n2+k1+Pi+n3, n2)+k2 XOR n3

 xorArrays(temp, k1next);

 //ROT((ROT(n2+k1+Pi+n3, n2)+k2 XOR n3, n1)

 bitRotation (n1, k1next, 0);

 //ROT((ROT(n2+k1+Pi+n3, n2)+k2 XOR n3, n1) XOR n3

 xorArrays(temp, k1next);

 //k2next = ROT((ROT(n1+k2+Pi+n3, n1)+k1+n3, n2)+n3

 //k2next+n3

 copyArray(temp, k2next);

 //Pi+n3

 additionMod96(Pi, k2next);

 //k2+Pi+n3

 additionMod96(k2, k2next);

 //n1+k2+Pi+n3

 additionMod96(n1, k2next);

 //ROT(n1+k2+Pi+n3, n1)

 bitRotation (n1, k2next, 0);

 //ROT(n1+k2+Pi+n3, n1)+k1

 additionMod96(k1, k2next);

 //ROT(n1+k2+Pi+n3, n1)+k1+n3

 additionMod96(temp, k2next);

 //ROT((ROT(n1+k2+Pi+n3, n1)+k1+n3, n2)

 bitRotation (n2, k2next, 0);

 //ROT((ROT(n1+k2+Pi+n3, n1)+k1+n3, n2)+n3

 additionMod96(temp, k2next);

 //Create temporary n1' = mixBits(n3, n2)

 tempPtr = mixBits(temp, n2);

 for (i=0; i<12; i++)

98

 n1temp[i] = tempPtr[i];

 //Create message C: C = ROT((ROT(n3+k1next+Pi+n1', n3)+k2next

 //XOR n1', n2) XOR n1'

 //messageC+n1'

 copyArray(n1temp, messageC);

 //Pi+n1'

 additionMod96(Pi, messageC);

 //k1next+Pi+n1'

 additionMod96(k1next, messageC);

 //n3+k1next+Pi+n1'

 additionMod96(temp, messageC);

 //ROT(n3+k1next+Pi+n1', n3)

 bitRotation (temp, messageC, 0);

 //ROT(n3+k1next+Pi+n1', n3)+k2next

 additionMod96(k2next, messageC);

 //ROT(n3+k1next+Pi+n1', n3)+k2next XOR n1'

 xorArrays(n1temp, messageC);

 //ROT((ROT(n3+k1next+Pi+n1', n3)+k2next XOR n1', n2)

 bitRotation (n2, messageC, 0);

 //ROT((ROT(n3+k1next+Pi+n1', n3)+k2next XOR n1', n2) XOR n1'

 xorArrays(n1temp, messageC);

 //MessageC created - now transmit:

 PutString("C\t");

 printArray(messageC);

 for (i=0; i<12; i++)

 TXbuff[i] = messageC[i];

 TransmitBytes(TXaddr, TXbuff);

 //Now awaiting reply (message D) - entering receive mode

 while (!ReceiveMode(RXbuff))

 ;

 //Got message D - verify if successfull

 //Step1: calculate local messageD

 //D = ROT(ROT(n2+k2next+ID+n1', n2)+k1next+n1', n3)+n1'

 //messageD +n1'

 copyArray(n1temp, messageD);

 //ID+n1'

 additionMod96(ID, messageD);

 //k2next+ID+n1'

 additionMod96(k2next, messageD);

 //n2+k2next+ID+n1'

 additionMod96(n2, messageD);

 //ROT(n2+k2next+ID+n1', n2)

 bitRotation (n2, messageD, 0);

 //ROT(n2+k2next+ID+n1', n2)+k1next

 additionMod96(k1next, messageD);

 //ROT(n2+k2next+ID+n1', n2)+k1next+n1'

 additionMod96(n1temp, messageD);

 //ROT(ROT(n2+k2next+ID+n1', n2)+k1next+n1', n3)

 bitRotation (temp, messageD, 0);

 //ROT(ROT(n2+k2next+ID+n1', n2)+k1next+n1', n3)+n1'

 additionMod96(n1temp, messageD);

 //Now verify message D received with a local copy

 for (i=0; i<12; i++)

 {

 if (messageD[i] != RXbuff[i])

 flag = 0;

 }

99

 if(flag) //Message D matches - key and IDS updating phase

 {

 //n2 array will be reused

 //n2' = mixBits(n1', n3)

 tempPtr = mixBits(n1temp, temp);

 for (i=0; i<12; i++)

 n2[i] = tempPtr[i];

 //IDS = ROT((ROT(n1'+k1next+IDS+n2', n1')+k2next XOR n2',

 //n3) XOR n2

 //IDS+n2'

 copyArray(n2, IDS);

 //k1next+IDS+n2'

 additionMod96(k1next, IDS);

 //n1'+k1next+IDS+n2'

 additionMod96(n1temp, IDS);

 //ROT(n1'+k1next+IDS+n2', n1')

 bitRotation (n1temp, IDS, 0);

 //ROT(n1'+k1next+IDS+n2', n1')+k2next

 additionMod96(k2next, IDS);

 //ROT(n1'+k1next+IDS+n2', n1')+k2next XOR n2'

 xorArrays(n2, IDS);

 //ROT((ROT(n1'+k1next+IDS+n2', n1')+k2next XOR n2', n3)

 bitRotation (temp, IDS, 0);

 //ROT((ROT(n1'+k1next+IDS+n2', n1')+k2next XOR n2', n3) XOR

 //n2

 xorArrays(n2, IDS);

 PutString("nIDS\t");

 printArray(IDS);

 //k1 update

 //k1 = ROT((ROT(n3+k2next+Pi+n2', n3)+k1next+n2', n1')+n2'

 //k1=n2'

 copyArray(n2, k1);

 //Pi+n2'

 additionMod96(Pi, k1);

 //k2next+Pi+n2'

 additionMod96(k2next, k1);

 //n3+k2next+Pi+n2'

 additionMod96(temp, k1);

 //ROT(n3+k2next+Pi+n2', n3)

 bitRotation (temp, k1, 0);

 //ROT(n3+k2next+Pi+n2', n3)+k1next

 additionMod96(k1next, k1);

 //ROT(n3+k2next+Pi+n2', n3)+k1next+n2'

 additionMod96(n2, k1);

 //ROT((ROT(n3+k2next+Pi+n2', n3)+k1next+n2', n1')

 bitRotation (n1temp, k1, 0);

 //ROT((ROT(n3+k2next+Pi+n2', n3)+k1next+n2', n1')+n2'

 additionMod96(n2, k1);

 //k2 update

 //k2 = ROT((ROT(IDS+k2next+Pi+k1, IDS)+k1next+k1, n2')+k1

 //k2 = k1

 copyArray(k1, k2);

 //k1+Pi

 additionMod96(Pi, k2);

 //k2next+Pi+k1

 additionMod96(k2next, k2);

 //IDS+k2next+Pi+k1

 additionMod96(IDS, k2);

100

 //ROT(IDS+k2next+Pi+k1, IDS)

 bitRotation (IDS, k2, 0);

 //ROT(IDS+k2next+Pi+k1, IDS)+k1next

 additionMod96(k1next, k2);

 //ROT(IDS+k2next+Pi+k1, IDS)+k1next+k1

 additionMod96(k1, k2);

 //ROT((ROT(IDS+k2next+Pi+k1, IDS)+k1next+k1, n2')

 bitRotation (n2, k2, 0);

 //ROT((ROT(IDS+k2next+Pi+k1, IDS)+k1next+k1, n2')+k1

 additionMod96(k1, k2);

 //SEA Demonstration: encrypt temp with k1 and send to the

 //slave

 PutString("SeaD\t");

 printArray(temp);

 sea(0, temp, k1);

 PutString("SeaE\t");

 printArray(temp);

 PutString("k1\t");

 printArray(k1);

 for (i=0; i<12; i++)

 TXbuff[i] = temp[i];

 TransmitBytes(TXaddr, TXbuff);

 }

 else

 {

 PutString(":(D"); //Incorrect message D received

 }

 }

 else

 {

 PutString(":(IDS"); //Incorrect IDS received

 }

 }

}

//Main function - intitialisation of the NRF9E5

int main(void)

{

 unsigned int xdata RXaddr[4] = { 0xC3, 0x5A, 0x5A, 0xC3 };

 InitUartTimer1();

 SetClock();

 ChangeRXAddress(RXaddr);

 InitRadio();

 PutString(":)\n\r");

 gossamerMaster();

 return 0;

}

101

/***

Copyright 2010 Piotr Ksiazak

Filename: Slave.c

Project : MSc - IWSN Experimental Slave

**

Version 1.0: Initial release

***/

#include <reg9e5.h>

#include <intri51.h>

#define POWER 3 // 0=min power...3 = max power

#define HFREQ 1 // 0=433MHz, 1=868/915MHz

#define CHANNEL 351 // Channel number: f(MHz) =

 //(422.4+CHANNEL/10)*(1+HFREQ)

#pragma REGPARMS //pass arguments to registers

// SPI access

unsigned char SpiReadWrite(unsigned char b)

{

 EXIF &= ~0x20; // Clear SPI interrupt

 SPI_DATA = b; // Move byte to send to SPI data

 //register

 while((EXIF & 0x20) == 0x00) // Wait until SPI hs finished

 //transmitting

 ;

 return SPI_DATA;

}

// Send character to UART

void PutChar(char c)

{

 while(!TI)

 ;

 TI = 0;

 SBUF = c;

}

// Read character from UART

unsigned char GetChar(void)

{

 while(!RI)

 ;

 RI = 0;

 return SBUF;

}

// Send string to UART

void PutString(const char *s)

{

 while(*s != 0)

 PutChar(*s++);

}

// Switch to 16MHz clock:

void SetClock(void)

{

 unsigned char cklf;

 RACSN = 0; // Set CSN on the radio to low (Radio will

 //expect instruction)

102

 SpiReadWrite(RRC | 0x09); // Read R_RF_CONFIG bytes starting at 09

 //(UP_CLK_FREQ)

 cklf = SpiReadWrite(0) | 0x04; // Set XOF to 001 (0x04 - 16MHz)

 RACSN = 1; // Set CSN on the radio back to low before next

//instruction (another high to low transition is needed thus the next line)

 RACSN = 0; // Back to low, radio expects another intruction

 SpiReadWrite(WRC | 0x09); // Instruct SPI to write RF_CONFIG

 SpiReadWrite(cklf); // Write RF_CONFIG

 RACSN = 1; // Reset CSN to high

}

// Initialize timer used for UART clocking

void InitUartTimer1(void)

{

 TH1 = 243; // 19200@16MHz (when T1M=1 and SMOD=1)

 CKCON |= 0x10; // T1M=1 (/4 timer clock)

 PCON = 0x80; // SMOD=1 (double baud rate)

 SCON = 0x52; // Serial mode1, enable receiver

 TMOD = 0x20; // Timer1 8bit auto reload

 TR1 = 1; // Start timer1

 P0_ALT |= 0x06; // Select alternate functions on pins

 //P0.1 and P0.2

 P0_DIR |= 0x02; // P0.1 (RxD) is input

 SPICLK = 0; // Max SPI clock

 SPI_CTRL = 0x02; // Connect internal SPI controller to

 //Radio

 ES = 0;

}

// Changes Receiving address of a node

void ChangeRXAddress(unsigned int xdata *RXAddr)

{

 unsigned int i;

 RACSN = 0;

 SpiReadWrite(WRC | 0x05); //Write to RFConfig starting at byte 5

 //(RF Address)

 for(i=0; i<4; i++)

 SpiReadWrite(RXAddr[i]);

 RACSN = 1;

}

// Initialises radio

void InitRadio(void)

{

 TXEN = 0;

 TRX_CE =0;

 //ChangeChannel();//(0x00,0x68);

 RACSN = 0;

 SpiReadWrite(CC | (POWER << 2) | (HFREQ << 1) | (0x00)); //pass first 8

 //bits to the register (inlcuding channel high bit)

 SpiReadWrite(0x68);

 //pass low 8 bits of the channel

 RACSN = 1;

 //Channel changed

 EA = 1; //Global enable for all interrupts

}

// Transmits a 32-byte packet over the radio

103

void TransmitBytes(unsigned char data *TXAddr, unsigned char xdata *buff)

{

 unsigned char i;

 //Configure TX Address

 RACSN = 0;

 SpiReadWrite(WTA); //Write to RFConfig starting at

 //byte 5 (RF Address)

 for(i=0; i<4; i++)

 SpiReadWrite(TXAddr[i]);

 RACSN = 1;

 //Write 32-byte packet to SPI

 RACSN = 0;

 SpiReadWrite(WTP); // write packet to SPI

 for (i=0; i<32; i++)

 {

 SpiReadWrite(buff[i]);

 }

 RACSN = 1;

 //wait until channel is clear

 while(CD == 1)

 ;

 TRX_CE = 1; // enable radio

 TXEN = 1; // enable radio TX mode

 while(DR == 0) // wait until data ready goes high

 ;

 TRX_CE = 0; // disable radio

 TXEN = 0; // disable TX mode

}

// Receives 32-byte packet if AM (Address Match) flag is raised

unsigned char ReceiveMode(unsigned char xdata *buff)

{

 unsigned char i;

 unsigned char j;

 unsigned char amFlag;

 amFlag = 0; //reset address match flag

 TXEN = 0; //Set TX_EN to low to enter Shockburst receive mode

 TRX_CE = 1; //enable radio

 j=0; //wait fo Carrier Detect

 while(CD == 0 && j<255)

 j++;

 if (AM) //If Address Match: process the SPI buffer

 {

 while(DR == 0) //Wait until Data Ready

 ;

 RACSN = 0;

 SpiReadWrite(RRP); //Send packet read command to the SPI

 for (i = 0; i < 32; i++) //Read in the packet ot the buffer

 buff[i] = SpiReadWrite(0);

 RACSN = 1;

104

 TRX_CE=0; //disable RX mode

 PutString("\r\nRX\r\n");

 amFlag = 1;

 return amFlag;

 }

 return amFlag;

}

// Inteteger to ASCII (itoa) conversion

void itoa(int n, unsigned char *s)

{

 unsigned char *charPtr;

 int idata n1;

 unsigned char idata len;

 len=0;

 //change the sign for negative numbers

 if (n<0)

 {

 n=-n;

 *s++ = '-';

 }

 //calculate the length of the number in decimal digits

 n1=n;

 do

 {

 n1 /= 10;

 len++;

 }

 while(n1);

 *(charPtr = &s[len]) = 0; //null terminate string

 do

 {

 *--charPtr = (n % 10) + '0';

 n /= 10;

 }

 while(n);

}

// Prints array of 12 bytes in decimal notation

void printArray (unsigned char idata *array)

{

 unsigned char i;

 unsigned char stringBuff[5];

 for (i=0; i<12; i++)

 {

 itoa((int)array[i], stringBuff);

 PutString(stringBuff);

 PutString("\t");

 }

 PutString("\r\n");

}

//Returns Modulo96 of the 12-byte number (Big Endian) held in 12-element

//array

105

unsigned char getModulo96 (unsigned char idata *array)

{

 unsigned char i;

 unsigned char modulus = 0;

 for (i=0; i<11; i++)

 {

//Divide and conquer approach: sum of two 4-bit numbers multiplied by 2*16

 modulus += (((array[i] & 0x0f) + (array[i] >> 4))*256)%96;

 modulus %= 96; //Reduce each result Mod96 - can be done less

 //frequently

 }

 return (array[11] + modulus)%96; //Add the result to the LSB and

 //calculate Mod96 again

}

//Reverses (mirror) the array - used by indexShift function

void arrayReverse(unsigned char idata *result, unsigned char left, unsigned

char right)

{

 unsigned char temp;

 unsigned char i;

 unsigned char j;

 //Start with edges and continue until middle elements are processed

 for (i=left, j=right; i<j; i++, j--)

 {

 temp = result[i];

 result[i] = result[j];

 result[j] = temp;

 }

}

//Rotates the elements of a 12-element array by up to 11 positions left or

//right

void indexShift (unsigned char idata *result, unsigned int direction,

unsigned int indexShift)

{

 //ArrayReverse: let array be split into A.B. After rotations it is B.A

 //B.A = reverse(reverse(A).reverse(B))

 //Direction: 0 for left shift, 1 for right shift

 if (!direction)

 {

 arrayReverse(result, 0, indexShift-1);

 arrayReverse(result, indexShift, 11);

 arrayReverse(result, 0, 11);

 }

 else

 {

 arrayReverse(result, 12-indexShift, 11);

 arrayReverse(result, 0, 11-indexShift);

 arrayReverse(result, 0, 11);

 }

}

//Bitwise bit rotation of the array (up to 7 places)

void bitShift (unsigned char idata *array, unsigned int direction, unsigned

int bitsToShift)

{

 unsigned char i;

106

 unsigned char element0;

 unsigned char temp;

 //Direction: 0 for left shift, 1 for right shift

 if (!direction)//Shift bits to the left with carry to the lower element

 {

 element0 = array[0];

 array[0] = array[0] << bitsToShift;

 for (i=0; i<11; i++)

 {

 temp = array[i+1];

 array[i+1] = array[i+1] << bitsToShift;

 array[i] |= temp >> (8 - bitsToShift);

 }

 array[11] |= element0 >> (8-bitsToShift);

 }

 else //Shift bits to the right with carry to the lower element

 {

 element0 = array[11];

 array[11] = array[11] >> bitsToShift;

 for (i=11; i>0; i--)

 {

 temp = array[i-1];

 array[i-1] = array[i-1] >> bitsToShift;

 array[i] |= temp << (8 - bitsToShift);

 }

 array[0] |= element0 << (8-bitsToShift);

 }

}

//Rotates array2 by array1 Modulo96

void bitRotation (unsigned char idata *array1, unsigned char idata *result,

unsigned int direction)

{

 unsigned char modulo = getModulo96(array1); //First get modulo

 unsigned char indicesToShift;

 unsigned char bitsToShift;

 //Second divide modulo by 8 and rotate the array (if modulo is bigger

 //than 8)

 //Direction: 0 for left shift, 1 for right shift

 if (modulo > 8)

 {

 indicesToShift = modulo/8;

 indexShift(result, direction, indicesToShift);

 }

 //Then bitshift with carry each element by the remaining shift (shift

 //amount will be <8)

 bitsToShift = modulo%8;

 if (bitsToShift != 0)

 bitShift(result, direction, bitsToShift);

}

//Performs XOR on two arrays and saves the output to the second argument

void xorArrays (unsigned char idata *array1, unsigned char idata *result)

{

 unsigned char i;

107

 for (i=0; i<12; i++)

 {

 result[i] ^= array1[i];

 }

}

//Performs addition Modulo96 on two arrays and saves the output to the

//second argument

void additionMod96 (unsigned char idata *array1, unsigned char idata

*result)

{

 unsigned char i;

 unsigned char j;

 for (i=11; i>0; i--)

 {

 result[i] += array1[i]; //Add two bytes (no carry)

 if (result[i] < array1[i]) //Check if carry needed and append to

 //upper byte

 {

 result[i-1]++;

 //check if previous byte was not 255 overloaded to 0 and step

 //back to lower elements to do the same

 j=i;

 //If a carry bit overloads upper byte increment upper to

 //overloaded

 //Continue until the array head is met if needed

 while(result[j-1] == 0 && j > 1)

 {

 result[j-2]++;

 --j;

 }

 }

 }

 result[0] += array1[0]; //Got to the MSB - just add and ignore carry

 //(adding Mod96 anyway)

}

//Performs subtraction Modulo96 on two arrays and saves the output to the

//second argument

void subtractionMod96 (unsigned char idata *array1, unsigned char idata

*result)

{

 unsigned char i;

 unsigned char j;

 for (i=11; i>0; i--)

 {

 if (result[i] < array1[i]) //Verify if the minuend is not smaller

 //than the subtrahend

 {

 result[i-1] -= 0x01; //borrow LSB from the lower element

 j=i;

 //If a borrow bit overloads upper byte decrement upper byte to

 //the overloaded one

 while(result[j-1] == 0xFF && j > 1)

 {

 result[j-2] -= 0x01;

 j--;

 }

108

 }

 result[i] -= array1[i]; //Subtract (no carry)

 }

 result[0] -= array1[0]; //Got to the MSB - just add and ignore carry

 //(adding Mod96 anyway)

}

//Performs Gossamer MixBits function on two arrays and returns pointer to a

//temporary array

unsigned char* mixBits (unsigned char idata *array1, unsigned char idata

*array2)

{

 // Z = mixBits (X,Y)

 // Z = X

 // 32times: Z = (Z>>1) + Z + Z + Y

 unsigned char idata result[12];

 unsigned char i;

 for (i=0; i<12; i++)

 {

 result[i] = array1[i];

 }

 for (i=0; i<32; i++)

 {

 bitShift (array1, 1, 1);

 additionMod96 (array1, result);

 bitShift (array1, 0, 1);

 additionMod96 (array1, result);

 additionMod96 (array1, result);

 additionMod96 (array2, result);

 }

 return result;

}

/* SEA S-Box implementation according to SEA author's suggestions

void seaSBOX (unsigned char data *block, unsigned char i)

{

 block[3*i] = (block[3*i+2] && block[3*i+1]) ^ block[3*i];

 block[3*i+1] = (block[3*i+2] && block[3*i]) ^ block[3*i+1];

 block[3*i+2] = (block[3*i] || block[3*i+1]) ^ block[3*i+2];

}

*/

//Simplified S-Box - per private conversation with the author it is safe to

//perform S-Box on the first three elements only (SEA(96,8).

//Originally author advised to apply S-Box to any 3 elements of each block

void seaSBOX (unsigned char idata *block, unsigned char i)

{

 block[0] = (block[2] && block[1]) ^ block[0];

 block[1] = (block[2] && block[0]) ^ block[1];

 block[2] = (block[0] || block[1]) ^ block[2];

}

//SEA Bit-rotation function for SEA(96,8).

//Function uses Raisonance RC51 intrisic functions (_cror_ and _crol_).

void seaBitRotation (unsigned char idata *block)

{

 block[0] = _cror_(block[0], 1);

 block[2] = _crol_(block[2], 1);

 block[3] = _cror_(block[3], 1);

109

 block[5] = _crol_(block[5], 1);

}

//SEA(96,8) word rotation - rotates the array by one byte

void seaWordRotation (unsigned char idata *block, unsigned char direction)

{

 //Direction 0 for left and 1 for right rotation

 unsigned char i;

 unsigned char temp;

 if (direction == 0)

 {

 temp = block[0];

 for (i=0; i<5; i++)

 block[i] = block[i+1];

 block[5] = temp;

 }

 else

 {

 temp = block[5];

 for (i=5; i>0; i--)

 block[i] = block[i-1];

 block[0] = temp;

 }

}

//Performs one SEA(96,8) Crypto round. Parameter direction: 0 for

//encryption and 1 for decryption

void seaCryptRound (unsigned char direction, unsigned char idata

*blockLeft, unsigned char idata *blockRight, unsigned char idata *keyHalf)

{

 unsigned char i;

 unsigned char temp[6];

 //Every operation will be performed on blockLeft as this memory

 //location will become a right block for the next round.

 //Save the left block

 for (i=0; i<6; i++)

 temp[i] = blockRight[i];

 //ENCRYPTION

 //Fe(Li, Ri, K/2i) <=> RightWordRot(Li) XOR bitRot(sbox(Ri+K/2i))

 //DECRYPTION

 //Fd(Li, Ri, K/2i) <=> LeftWordRot(Li XOR bitRot(sbox(Ri+K/2i)))

 //Step by step:

 //Ri+K/2i

 for (i=0; i<6; i++)

 blockRight[i] += keyHalf[i];

 //sbox(Ri+K/2i)

 seaSBOX(blockRight, i%2);

 ////seaSBOX(blockRight, 0);

 //bitRot(sbox(Ri+K/2i))

 seaBitRotation(blockRight);

 //RightWordRot(Li) - encryption only

 //Direction 0 for encryption and 1 for decryption

 if (direction == 0)

 seaWordRotation(blockLeft, 1);

 //RightWordRot(Li) XOR bitRot(sbox(Ri+K/2i))

 for (i=0; i<6; i++)

 {

110

 blockRight[i] ^= blockLeft[i];

 blockLeft[i] = temp[i]; //BlockLeft(i)+1 becomes BlockRight(i)

 }

 //LeftWordRot(Li XOR bitRot(sbox(Ri+K/2i))) - decryption only

 if (direction == 1)

 seaWordRotation(blockRight, 0);

}

//Performs one SEA(96,8) key round.

void seaKeyRound (unsigned char idata *keyLeft, unsigned char idata

*keyRight, unsigned char Ci)

{

 //Fk(KLi-1,KRi-1,Ci) <=> KRi = KLi-1 XOR RightWordRot(bitRot(sbox((KRi-

 //1)+Ci)));

 unsigned char i;

 unsigned char temp[6];

 //Save the left key (left key will become right after the round)

 //Every operation will be performed on keyLeft as this memory location

 //will become a right key for the next round.

 for (i=0; i<6; i++)

 temp[i] = keyRight[i];

 //Step-by-step:

 //init Ci (LSW equals i)

 ////Ci[5] = i;

 //(KRi-1)+Ci

 keyRight[5] += Ci;

 //sbox((KRi-1)+Ci)

 seaSBOX(keyRight, (Ci%2));

 ////seaSBOX(keyRight, 1);

 //bitRotation(sbox((KRi-1)+Ci))

 seaBitRotation(keyRight);

 //RightWordRot(bitRot(sbox((KRi-1)+Ci)));

 seaWordRotation(keyRight, 1);

 //KRi = KLi-1 XOR RightWordRot(bitRot(sbox((KRi-1)+Ci)));

 for (i=0; i<6; i++)

 {

 keyRight[i] ^= keyLeft[i];

 keyLeft[i] = temp[i]; //KeyLeft(i)+1 becomes KeyRight(i)

 }

}

// SEA Scalable Encryption Algorithm (SEA 96,8) implementation

void sea (unsigned char direction, unsigned char idata *block, unsigned

char idata *key)

{

 //Direction 0 for encryption and 1 for decryption

 unsigned char i;

 //initialization

 unsigned char* idata keyLeft = &key[0];

 unsigned char* idata keyRight = &key[6];

 unsigned char* idata blockLeft = &block[0];

 unsigned char* idata blockRight = &block[6];

 unsigned char* idata temp; //temp pointer used for swapping key sides

 unsigned char tmp;

 //First half of all rounds (93 as per author's recommendation for a

 //minimum number of rounds)

 for (i=1; i<47; i++)

 {

111

 //Key scheduling

 //[KLi, KRi] = Fk(KLi-1, KRi-1, C(i));

 //Fk(KLi-1,KRi-1,Ci) <=> KRi = KLi-1 XOR Rot(bitRot(sbox((KRi-

 //1)+Ci)));

 seaCryptRound (direction, (unsigned char idata *)blockLeft,

(unsigned char idata *)blockRight, (unsigned char idata *)keyRight);

 seaKeyRound((unsigned char idata *)keyLeft, (unsigned char idata

*)keyRight, i);

 }

 //End of round half - swap pointers

 temp = keyLeft;

 keyLeft = keyRight;

 keyRight = temp;

 for (i=46; i>0; i--)

 {

 //Key scheduling part 2

 //[KLi, KRi] = Fk(KLi-1, KRi-1, C(r-i));

 //Fk(KLi-1,KRi-1,Ci) <=> KRi = KLi-1 XOR Rot(bitRot(sbox((KRi-

 //1)+Ci)))

 seaCryptRound (direction, (unsigned char idata *)blockLeft,

(unsigned char idata *)blockRight, (unsigned char idata *)keyLeft);

 seaKeyRound((unsigned char idata *)keyLeft, (unsigned char idata

*)keyRight, i);

 }

 seaCryptRound (direction, (unsigned char idata *)blockLeft, (unsigned

char idata *)blockRight, (unsigned char idata *)keyLeft);

 //Final: switch Key and Block halves

 //indexShift (block, 0, 6); //Gossamer function may be used to save

 //space

 for(i=0; i<6; i++)

 {

 tmp = block[i];

 block[i] = block[i+6];

 block[i+6] = tmp;

 }

}

//Copies array to the location of the second argument

void copyArray(unsigned char idata *source, unsigned char idata *target)

{

 unsigned char i;

 for (i=0; i<12; i++)

 target[i] = source[i];

}

//Main Gossamer Slave loop - simplified model.

void gossamerSlave (void)

{

 //Simplifications:

 //All data stored in RAM (idata);

 //Roll-back to previous IDS and keys in case of receiving incorrect

 //message C

 //not implemented. Need to copy oldk1 and oldk2 and oldIDS arrays into

 //respective current arrays.

 unsigned char data TXaddr[4] = { 0xC3, 0x5A, 0x5A, 0xC3 };

 unsigned char xdata TXbuff[32];

 unsigned char xdata RXbuff[32];

112

 unsigned char i;

 unsigned char flag;

 unsigned char idata temp[12];

 unsigned char idata n1temp[12];

 unsigned char *tempPtr;

 unsigned char idata Pi[12] = { 0x32, 0x43, 0xF6, 0xA8, 0x88, 0x5A,

0x30, 0x8D, 0x31, 0x31, 0x98, 0xA2 };

 unsigned char idata IDS[12] = { 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,

0x01, 0x01, 0x01, 0x01, 0x01, 0x01 };

 unsigned char idata ID[12] = { 0x44, 0x44, 0x44, 0x44, 0x44, 0x44,

0x44, 0x44, 0x44, 0x44, 0x44, 0x44 };

 unsigned char idata k1[12] = { 0x10, 0x10, 0x10, 0x10, 0x10, 0x10,

0x10, 0x10, 0x10, 0x10, 0x10, 0x10 };

 unsigned char idata k2[12] = { 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,

0x20, 0x20, 0x20, 0x20, 0x20, 0x20 };

 unsigned char idata n1[12];

 unsigned char idata n2[12];

 unsigned char idata oldk1[12];

 unsigned char idata oldk2[12];

 unsigned char idata messageC[12];

 unsigned char idata messageD[12];

 unsigned char idata k1next[12];

 unsigned char idata k2next[12];

 //Loop forever authenticating the experimental Master

 for (;;)

 {

 //Send IDS

 flag = 1;

 PutString("\r\nIDS\t");

 printArray(IDS);

 for (i=0; i<12; i++)

 TXbuff[i] = IDS[i];

 TransmitBytes(TXaddr, TXbuff);

 //Wait for message A

 while (!ReceiveMode(RXbuff))

 ;

 //message A will be used to extract n1 - save it there

 for (i=0; i<12; i++)

 n1[i] = RXbuff[i];

 PutString("A\t");

 printArray(n1);

 //Wait for message B

 while (!ReceiveMode(RXbuff))

 ;

 //message B will be used to extract n2 - save it there

 for (i=0; i<12; i++)

 n2[i] = RXbuff[i];

 PutString("B\t");

 printArray(n2);

 //Extract n1 from A

 //A = ROT((ROT(IDS+k1+Pi+n1, k2)+k1, k1)

 //rightROT A: rightROT((ROT(IDS+k1+Pi+n1, k2)+k1, k1)

113

 bitRotation (k1, n1, 1);

 //ROT(IDS+k1+Pi+n1, k2)-k1

 subtractionMod96(k1, n1);

 //rightROT(IDS+k1+Pi+n1, k2)

 bitRotation (k2, n1, 1);

 //k1+Pi+n1-IDS

 subtractionMod96(IDS, n1);

 //Pi+n1-k1

 subtractionMod96(k1, n1);

 //n1-Pi

 subtractionMod96(Pi, n1);

 //n1 extracted, now process message B

 //Extract n2 from B

 //B = ROT((ROT(IDS+k2+Pi+n2, k1)+k2, k2)

 //rightROT((ROT(IDS+k2+Pi+n2, k1)+k2, k2)

 bitRotation(k2, n2, 1);

 //(ROT(IDS+k2+Pi+n2, k1)-k2

 subtractionMod96(k2, n2);

 //right(ROT(IDS+k2+Pi+n2, k1)

 bitRotation(k1, n2, 1);

 //k2+Pi+n2-IDS

 subtractionMod96(IDS, n2);

 //Pi+n2-k2

 subtractionMod96(k2, n2);

 //n2-Pi

 subtractionMod96(Pi, n2);

 //n2 extracted now calculate message C

 PutString("N1\t");

 printArray(n1);

 PutString("N2\t");

 printArray(n2);

 //Create temporary n3: n3 = mixBits(n1,n2)

 tempPtr = mixBits(n1, n2);

 for (i=0; i<12; i++)

 temp[i] = tempPtr[i];

 //Create keys for the next round

 //k1next = ROT((ROT(n2+k1+Pi+n3, n2)+k2 XOR n3, n1) XOR n3

 //k1next + n3

 copyArray(temp, k1next);

 //Pi+n3

 additionMod96(Pi, k1next);

 //k1+Pi+n3

 additionMod96(k1, k1next);

 //n2+k1+Pi+n3

 additionMod96(n2, k1next);

 //ROT(n2+k1+Pi+n3, n2)

 bitRotation (n2, k1next, 0);

 //ROT(n2+k1+Pi+n3, n2)+k2

 additionMod96(k2, k1next);

 //ROT(n2+k1+Pi+n3, n2)+k2 XOR n3

 xorArrays(temp, k1next);

 //ROT((ROT(n2+k1+Pi+n3, n2)+k2 XOR n3, n1)

 bitRotation (n1, k1next, 0);

 //ROT((ROT(n2+k1+Pi+n3, n2)+k2 XOR n3, n1) XOR n3

 xorArrays(temp, k1next);

 //k2next = ROT((ROT(n1+k2+Pi+n3, n1)+k1+n3, n2)+n3

 //k2next+n3

114

 copyArray(temp, k2next);

 //Pi+n3

 additionMod96(Pi, k2next);

 //k2+Pi+n3

 additionMod96(k2, k2next);

 //n1+k2+Pi+n3

 additionMod96(n1, k2next);

 //ROT(n1+k2+Pi+n3, n1)

 bitRotation (n1, k2next, 0);

 //ROT(n1+k2+Pi+n3, n1)+k1

 additionMod96(k1, k2next);

 //ROT(n1+k2+Pi+n3, n1)+k1+n3

 additionMod96(temp, k2next);

 //ROT((ROT(n1+k2+Pi+n3, n1)+k1+n3, n2)

 bitRotation (n2, k2next, 0);

 //ROT((ROT(n1+k2+Pi+n3, n1)+k1+n3, n2)+n3

 additionMod96(temp, k2next);

 //Create temporary n1' = mixBits(n3, n2)

 tempPtr = mixBits(temp, n2);

 for (i=0; i<12; i++)

 n1temp[i] = tempPtr[i];

 //Create message C: C = ROT((ROT(n3+k1next+Pi+n1', n3)+k2next XOR

 //n1', n2) XOR n1'

 //messageC+n1'

 copyArray(n1temp, messageC);

 //Pi+n1'

 additionMod96(Pi, messageC);

 //k1next+Pi+n1'

 additionMod96(k1next, messageC);

 //n3+k1next+Pi+n1'

 additionMod96(temp, messageC);

 //ROT(n3+k1next+Pi+n1', n3)

 bitRotation (temp, messageC, 0);

 //ROT(n3+k1next+Pi+n1', n3)+k2next

 additionMod96(k2next, messageC);

 //ROT(n3+k1next+Pi+n1', n3)+k2next XOR n1'

 xorArrays(n1temp, messageC);

 //ROT((ROT(n3+k1next+Pi+n1', n3)+k2next XOR n1', n2)

 bitRotation (n2, messageC, 0);

 //ROT((ROT(n3+k1next+Pi+n1', n3)+k2next XOR n1', n2) XOR n1'

 xorArrays(n1temp, messageC);

 //MessageC created - now await message C:

 while (!ReceiveMode(RXbuff))

 ;

 PutString("LC\t");

 printArray(messageC);

 //Message C received - verify if matches local copy of C

 for (i=0; i<12; i++)

 {

 if (messageC[i] != RXbuff[i])

 flag = 0;

 }

 if (flag) //C matches so Master is authenticated. Send message D

 {

 //Step1: calculate local messageD

 //D = ROT(ROT(n2+k2next+ID+n1', n2)+k1next+n1', n3)+n1'

115

 //messageD +n1'

 copyArray(n1temp, messageD);

 //ID+n1'

 additionMod96(ID, messageD);

 //k2next+ID+n1'

 additionMod96(k2next, messageD);

 //n2+k2next+ID+n1'

 additionMod96(n2, messageD);

 //ROT(n2+k2next+ID+n1', n2)

 bitRotation (n2, messageD, 0);

 //ROT(n2+k2next+ID+n1', n2)+k1next

 additionMod96(k1next, messageD);

 //ROT(n2+k2next+ID+n1', n2)+k1next+n1'

 additionMod96(n1temp, messageD);

 //ROT(ROT(n2+k2next+ID+n1', n2)+k1next+n1', n3)

 bitRotation (temp, messageD, 0);

 //ROT(ROT(n2+k2next+ID+n1', n2)+k1next+n1', n3)+n1'

 additionMod96(n1temp, messageD);

 //Now send message D and go to key updating phase

 for (i=0; i<12; i++)

 TXbuff[i] = messageD[i];

 TransmitBytes(TXaddr, TXbuff);

 //Message D sent - key and IDS updating phase

 //First step: save old IDS and keys

 //MessageD memory location will be re-used for oldIDS

 copyArray(IDS, messageD);

 copyArray(k1, oldk1);

 copyArray(k2, oldk2);

 //n2 array will be reused

 //n2' = mixBits(n1', n3)

 tempPtr = mixBits(n1temp, temp);

 for (i=0; i<12; i++)

 n2[i] = tempPtr[i];

 //IDS = ROT((ROT(n1'+k1next+IDS+n2', n1')+k2next XOR n2', n3)

 //XOR n2

 //IDS+n2'

 copyArray(n2, IDS);

 //k1next+IDS+n2'

 additionMod96(k1next, IDS);

 //n1'+k1next+IDS+n2'

 additionMod96(n1temp, IDS);

 //ROT(n1'+k1next+IDS+n2', n1')

 bitRotation (n1temp, IDS, 0);

 //ROT(n1'+k1next+IDS+n2', n1')+k2next

 additionMod96(k2next, IDS);

 //ROT(n1'+k1next+IDS+n2', n1')+k2next XOR n2'

 xorArrays(n2, IDS);

 //ROT((ROT(n1'+k1next+IDS+n2', n1')+k2next XOR n2', n3)

 bitRotation (temp, IDS, 0);

 //ROT((ROT(n1'+k1next+IDS+n2', n1')+k2next XOR n2', n3) XOR n2

 xorArrays(n2, IDS);

 //k1 update

 //k1 = ROT((ROT(n3+k2next+Pi+n2', n3)+k1next+n2', n1')+n2'

 //k1=n2'

 copyArray(n2, k1);

 //Pi+n2'

 additionMod96(Pi, k1);

116

 //k2next+Pi+n2'

 additionMod96(k2next, k1);

 //n3+k2next+Pi+n2'

 additionMod96(temp, k1);

 //ROT(n3+k2next+Pi+n2', n3)

 bitRotation (temp, k1, 0);

 //ROT(n3+k2next+Pi+n2', n3)+k1next

 additionMod96(k1next, k1);

 //ROT(n3+k2next+Pi+n2', n3)+k1next+n2'

 additionMod96(n2, k1);

 //ROT((ROT(n3+k2next+Pi+n2', n3)+k1next+n2', n1')

 bitRotation (n1temp, k1, 0);

 //ROT((ROT(n3+k2next+Pi+n2', n3)+k1next+n2', n1')+n2'

 additionMod96(n2, k1);

 //k2 update

 //k2 = ROT((ROT(IDS+k2next+Pi+k1, IDS)+k1next+k1, n2')+k1

 //k2 = k1

 copyArray(k1, k2);

 //k1+Pi

 additionMod96(Pi, k2);

 //k2next+Pi+k1

 additionMod96(k2next, k2);

 //IDS+k2next+Pi+k1

 additionMod96(IDS, k2);

 //ROT(IDS+k2next+Pi+k1, IDS)

 bitRotation (IDS, k2, 0);

 //ROT(IDS+k2next+Pi+k1, IDS)+k1next

 additionMod96(k1next, k2);

 //ROT(IDS+k2next+Pi+k1, IDS)+k1next+k1

 additionMod96(k1, k2);

 //ROT((ROT(IDS+k2next+Pi+k1, IDS)+k1next+k1, n2')

 bitRotation (n2, k2, 0);

 //ROT((ROT(IDS+k2next+Pi+k1, IDS)+k1next+k1, n2')+k1

 additionMod96(k1, k2);

 //Get encrypted message from Master and save to temp

 while (!ReceiveMode(RXbuff))

 ;

 //encrypted message received

 for (i=0; i<12; i++)

 temp[i] = RXbuff[i];

 //Now decrypt temp with k1 and display

 PutString("SeaE\t");

 printArray(temp);

 sea(1, temp, k1);

 PutString("SeaD\t");

 printArray(temp);

 PutString("k1\t");

 printArray(k1);

 }

 else

 //Simplification: roll-back to old IDS and keys not implemented

 PutString("\r\n:(C"); //wrong message C

 }

}

int main(void)

{

 unsigned int xdata RXaddr[4] = { 0xC4, 0x5A, 0x5A, 0xC4 };

117

 InitUartTimer1();

 SetClock();

 ChangeRXAddress(RXaddr);

 InitRadio();

 PutString(":)\n\r");

 gossamerSlave();

 return 0;

}

