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Abstract 

 

This dissertation examines the theoretical context for the security of wireless 

communication between ubiquitous computing devices and presents an 

implementation that addresses this need. The number of Resource-Limited Wireless 

Devices utilized in many areas of the IT industry is growing rapidly. Some of the 

applications of these devices pose real security threats that can be addressed using 

authentication and cryptography.  

Many of the available authentication and encryption software solutions are predicated 

on the availability of ample processing power and memory. These demands cannot 

be met by the majority of ubiquitous computing devices, thus there is a need to apply 

lightweight cryptography primitives and lightweight authentication protocols that meet 

these demands in any application of security to devices with limited resources. 

The analysis of the lightweight solutions is divided into two major sections: 

Lightweight Authentication Protocols and Lightweight Encryption Algorithms.  Further 

sections of this work describe the proposed prototype‟s Wireless Sensor Network 

including a study of its limitations.  

A number of protocols in the field of Authentication and in the field of Encryption are 

analyzed. The Gossamer Authentication Protocol and the Scalable Encryption 

Algorithm (SEA) are chosen as the basis of prototype implementation in the C-

language on a development platform of the 8051-compatible Nordic Semiconductor 

nRF9E5 microcontroller. A security framework is developed that combines the 

attributes of the Gossamer protocol and the SEA to provide an implementation of 

inter-device security. The Gossamer Protocol is additionally used as a means of 

exchanging session keys for use with the SEA encryption protocol.  A brief 

performance analysis of the prototype running on the nRF9E5 microcontroller is 

provided by way of conclusion. The resuls of the software implementation of the 

Gossamer were unsatisfactory both in terms of the code space needs (approximately 

1700 bytes excluding shared libraries) and the execution time (almost 150 

milliseconds). In contrast, the SEA implementation‟s results were satisfactory above 

expectations with the code space requirements smaller than 600 bytes (excluding 

shared libraries) and the performance of 27 milliseconds per one 96-bit block of data.   
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1. Introduction 

 

The number of Resource-Limited Wireless Devices utilized in many areas of the IT 

industry is growing rapidly. This growth rate is expected to rise even higher when 

RFID transponders begin to replace Barcodes on a larger scale. Some of the 

applications of these devices pose a security threat which can be addressed using 

cryptographic techniques. Most of the currently used cryptographic solutions are 

predicated on the existence of ample processing power and memory. These 

demands cannot be met by the majority of ubiquitous computing devices, thus there 

is a need to apply lightweight cryptography primitives that meet security demands 

when considering devices with low resources. 

 

1.1 Project Background 

This dissertation is written for a fulfilment of the M.Sc. research requirements and a 

partial fulfilment of the requirements of the Hybrid Inter-Networking Technologies 

(HINT) Project hosted by the Letterkenny Institute of Technology.  

The HINT Project is funded under Enterprise Ireland's Innovation Partnership 

programme and establishes cooperation between the Letterkenny Institute of 

Technology and Cora Tine Teo of Falcarragh, Co. Donegal. The main research fields 

of this project include the integration of various RF technologies (inclusive of 

Bluetooth, WiFi, and proprietary UHF technologies) and the utilization of Wireless 

Sensor Networks and active RFID solutions in the context of an item-level stock 

control and temperature monitoring in the pharmaceutical industry. 

One of the key requirements of the HINT project is to provide confidentiality of data 

exchange between the computing devices used in an entire infrastructure. A major 

part of this infrastructure will rely on a network of constrained devices with limited 

memory size and computational power. This M.Sc. will attempt to provide a security 

framework which can be implemented within the boundaries imposed by Resource-

Limited Devices. 
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1.2 Risk Analysis - Pharmaceutical Industry Example 

 

Figure 1.1 Risk Analysis Example for the Pharmaceutical Industry 
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Figure 1.1 illustrates an example of a Risk Analysis concerning the threats 

associated with the usage of Wireless Sensor Networks or RFID systems for the 

item-level stock control and temperature monitoring. The following security threats 

were identified: 

 Tag/Sensor cloning - a serious threat related to the counterfeiting of medicines 

with a high likely-hood of occurrence (Juels 2005). Can be addressed with a 

strong encryption and authentication system. Risk measure = 1*10 = 10. 

 Tag/Sensor tracing - a threat related to unauthorised Track & Trace of a 

Sensor/Tag movement throughout a given area, which has negative privacy 

implications. It can be addressed with a proper authentication system that 

doesn‟t allow the disclosure of a Tag's/Sensor's unique ID. Risk measure = 

0.6*3 = 1.8. 

 Data Eavesdropping - unauthorized retrieval of sensor/tag data. A strong 

encryption algorithm provides a counter-measure to this threat. Risk measure 

= 0.5*5 = 2.5. 

 Denial of Service attack - affects the operation of the entire network or a group 

of Tags/Sensors. The likely-hood of occurrence can be regarded as medium. 

Such an attack would require appropriate hardware and in-depth knowledge of 

the radio protocol used. A proper Authentication system provides counter-

measures to this threat. Risk measure = 0.5*10 = 5. 

 Rogue-Data Injection - an adversary can inject malicious data into the network 

causing improper configuration of the sensors for example. The probability of 

occurrence can be low as this kind of attack is not valuable to an adversary in 

most cases. A Mutual-Authentication system prevents accepting rogue data 

from unknown sources. Risk measure = 0.2*6 = 1.2. 

 Cryptanalysis Attack - secret key discovery through a cryptanalysis attack on 

the authentication and/or encryption system‟s secret data. Such an attack 

compromises the whole security and leads to a full disclosure of all data. The 

likely-hood of such an event is very low if the encryption key-space is large 

enough to prevent brute-force attacks (assumes unbreakable algorithm). Risk 

measure = 0.1*10 = 1. 

1.3 Objectives 

The main objectives of this research are as follows: 

 To conduct a thorough academic study of authentication and encryption for 

resource-limited devices. 

 To select implementable algorithms for authentication and encryption. 

 To select protocols for sensor communications, mutual authentication and 

establishing secure wireless communication channels. 

 To implement a working prototype based on identified algorithms and 

protocols. 

 To evaluate the performance of the prototype. 
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1.4 Research Hypothesis 

Lightweight Authentication and Encryption Protocols can be implemented and fulfil 

basic security requirements of the wireless communication between Resource 

Limited Devices without hardware modifications. 

1.5 The structure of the Thesis 

Chapter 2 of this Thesis contains a general statement of the problem and an in-depth 

study of security solutions for resource-limited wireless communication devices. This 

chapter is split into two main sections: Authentication and Encryption. Each of these 

sections provides an introduction to the problem in the context of a prototype 

Infrastructure Wireless Sensor Network, lists possible attacks and provides an 

overview of possible solutions. 

Chapter 3 introduces the implementation platform (nRF9E5 microcontroller) and the 

conceptual Infrastructure Wireless Sensor Network used as a reference for the 

prototype design. This chapter also provides an in-depth study of the limitations of 

the reference platform in terms of processing power, memory and the radio 

transceiver capability limitations. 

Chapter 4 describes the implementation process and explains the key program 

functions. The Gossamer Authentication Protocol and the Scalable Encryption 

Algorithm (SEA) C-language implementations were chosen to create the prototype. 

At the end of this chapter one can find the results of the prototype testing. 

Chapter 5 provides a brief performance analysis of the prototype in terms of code 

space requirements and the execution speed on the development platform of the 

8051-compatible nRF9E5 microcontroller. 

Subsequent chapters list conclusions resulting from this research and provide 

recommendations for future work. 

The source code of the software prototype in C-language dedicated for an 8-bit CPU 

(with minor nRF9E5-specific adaptations) can be found in Appendix B. 
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2. Security in Wireless Resource-Limited Devices 

2.1 General Statement of the Problem 

Typically, the application of security to wireless networks, such as the Wi-Fi 

Protected Access specification (Wi-Fi Alliance 2003), requires complex mathematical 

computation and significant protocol data overhead. Since these requirements 

cannot be fulfilled by the types of Resource-Limited Devices used in Wireless Sensor 

Networks (WSN) and Radio Frequency-Identification (RFID) systems due to the 

constraints imposed by limited computational power, limited  memory size and the 

requirement for low power consumption (Akyildiz et al. 2002), there is a need to 

provide a lightweight security mechanism that can be implemented within device 

specifications. 

The primary aspects of the security of data exchange are listed by (Menezes et al. 

1997): 

 Mutual Authentication – ensures that all parties involved in communication can 

trust each other. 

 Confidentiality – no unauthorised party should be able to view plaintext data. 

 Integrity – assures that data was not altered during transmission to the 

recipient. 

 Availability – ensures that a service is constantly available (the Denial of 

Service (DoS) attack prevention). 

Another important aspect of security especially in the context of Wireless Sensor 

Networks, is Data Freshness (Perrig et al. 2002) also referred to as Forward Security. 

Data freshness ensures that the data received is fresh and the adversary cannot 

replay old messages. Perrig et al. define two types of data freshness: weak, ensuring 

the order of messages, and strong, allowing additionally for the delay of the message 

estimation. 

This MSc examines the nature of inter-device security in the context Wireless 

Resource-Limited Devices by decomposition; splitting it into the sub-problems of 

authentication and encryption. These sub-problems address the key security issues 

identified in the literature (Schneier 1996, Menezes et al. 1997, Mollin 2007, 

Ranasinghe & Cole 2008, Karlof et al. 2004). 

2.2 Authentication 

Mutual Authentication is a process of ensuring that all parties taking part in the 

communication can validate each other‟s identity. An intruder should not be able to 

masquerade as someone else (Schneier 1996). The physical properties of the radio 

frequency communication channel (the ease of eavesdropping), computational 

efficiency and power consumption constraints (Akyildiz et al. 2002) impose limitations 
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on the range of authentication protocols which can be taken under consideration. The 

problem of authentication in the context of networking resource-limited devices is 

explained in the following subsections. 

2.2.1 Authentication with Resource-Limited Devices 

The issue of Authentication in the networking of wireless resource-limited devices 

was given very little attention until RFID systems became popular. As RFID systems 

are expected to be widely used for item-level tagging of consumer products the 

Electronic Privacy Information Center (EPIC) and researchers like Juels (Juels 2006) 

promoted interest in the issues of privacy and security. One of the first papers to 

draw attention to these issues was published by Sarma (Sarma et al. 2003). Sarma 

et al. drew attention to the need for the application of lightweight cryptographic 

primitives and protocols in the development of solutions for RFID.  

The two major threats to consumer‟s privacy (Juels 2006) are: tracking (traceability) 

and inventory. Under normal operating conditions, a tag reader will interrogate and 

read all tags in its proximity. Thus an unsecured RFID tag reveals its unique identifier 

in the absence of authentication between tag and reader. Any reader compliant with 

a given RFID specification is able to interrogate and identify the tag. In consequence, 

a person carrying a given tag, e.g. in a shopping bag, can be tracked around an area 

by a series of purposely located interrogators without the person‟s consent. If an 

unsecured tag conforms to the Electronic Product Code (EPC) specification (Leong 

et al. 2006) it also carries a unique identification of the item to which it is attached. 

This poses a threat in respect of itemising the contents of say, a shopping trolley, and 

identifying an individual‟s purchasing patterns 

Privacy, although drawing most of the attention, is not the only set of issues 

associated with the absence of an authentication mechanism. RFID systems and 

Wireless Sensor Networks are facing the threat of data forging and manipulation.  

Using commonly available equipment an adversary can easily inject messages 

(Perrig et al. 2002), causing for example false sensor readings.  

The majority of commonly used authentication mechanisms rely heavily on 

computationally intensive mathematical techniques requiring the manipulation of, for 

example, long keys. Resource Limited Devices share a number of constraints which 

in the case of RFID systems make the implementation of computationally intensive 

mathematical routines impossible due mainly to significant reduction in processor 

power and the absence of sufficient memory to store lengthy keys.  A secondary 

argument is that an increase in the number of logic gates implementated on an 

Integrated Circuit dramatically increases the overall price per tag (Sarma 2001). 

Although Wireless Sensor Networks (WSNs) use more capable hardware they are 

also tightly constrained by power limitations. WSN sensor battery life requirements 

force limited usage of the CPU and the radio bandwidth. Additionally, a node in a 

WSN is imbued with many tasks such as the Analogue to Digital Converter (ADC) 
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readings interpretation, radio protocol handling, reprogramming behaviours etc., thus 

the code space left for security mechanism implementation is very limited. 

In recent years the field of lightweight security has emerged rapidly and is offering 

solutions mostly for RFID but also covering the area of WSNs. A number of 

researchers (Juels 2005, Chien 2007, Peris-Lopez et al. 2009, Lee et al. 2009) 

proposed a group of Ultra-Lightweight Authentication protocols which mainly target 

RFID but additionally, promise ways of providing a resource-saving authentication 

mechanism for Infrastructure Wireless Sensor Networks (see Section 3.1) due to 

their computational simplicity and small data overhead. These protocols are 

discussed in section 2.2.3 of this document. 

2.2.2 Known and possible attacks 

Authentication Protocols applicable for a Wireless Network of constrained devices 

can be grouped into three broad attack categories: 

 passive attacks, where the adversary eavesdrops on transmitted messages. In 

this case we assume that the adversary is not able to alter the messages or 

inject new ones; 

 active attacks, where the adversary is able not only to eavesdrop the 

communication but also inject new messages or alter and replay the previous 

ones. 

 physical invasive attacks, where the adversary has a physical access and 

toolset required to access the device's circuitry and for example read the 

EEPROM memory contents. 

While the physical access attack threat cannot be fully negated by a protocol, it has 

to be noted that the results of such an attack have to be minimised: a compromise of 

one tag/node should not compromise the security of other nodes/tags. It should not 

be possible to crack a node's previously recorded and stored communications with a 

recently discovered key. This requirement is known as the data freshness (see 

Section 2.1). 

Traceability (ID disclosure) Attack 

It is a requirement of RFID systems and Wireless Sensor Networks that it should not 

be possible to track nodes without express authority to do so. This is known as a 

Traceability (ID disclosure) Attack (Juels 2006). The attack is performed to obtain a 

device's unique ID number which can be further used to track the device's 

movements using an appropriate RF transceiver. The ID disclosure attack may be 

performed using passive or active methods and typically targets the authentication 

protocol as the ID has to be transferred in one of the protocol's messages. 
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Full Disclosure Attack 

The success of this type of attack means that the entire security of the protocol has 

been compromised and all secret information used during the protocol flow is 

disclosed. This allows the adversary to fully impersonate (spoof) one of the devices 

taking part in the communication and effectively 'Clone' one of the nodes/tags. 

Typically a full disclosure attack requires active methods, but weak authentication 

protocols can be fully compromised using passive eavesdropping of consecutive 

rounds only (Bárász et al. 2007a). 

De-Synchronization Attack 

A de-synchronization attack is one of the most serious threats for an authentication 

protocol that is used in wireless networks. Synchronization means that both parties 

are aware of the status of the protocol and are able to continue executing the 

protocol with a normal flow. A de-synchronization attack breaks the protocol by 

altering the state of one (or both) of the parties authenticating each other in  a way 

which renders further phases of the protocol not executable (Li & Wang 2007). This 

kind of attack may effectively cause a denial-of-service of one or more nodes in the 

network. 

2.2.3 Identified protocols effective in the context of Infrastructure Wireless 

Sensor Network (IWSN) 

This review focuses on Ultralightweight and Lightweight Authentication Protocols and 

other authentication-related security schemes. Ultralightweight protocols, which were 

designed for low-cost RFID systems, rely on minimalistic cryptography techniques 

and provide a viable alternative for securing a heavily constrained Infrastructure 

Wireless Sensor Network (IWSN) with minor modifications. Other more 

computationally intensive schemes designed specifically for Wireless Sensor 

Networks (although filtered by the specific requirements of IWSN) or advanced RFID 

systems are also discussed. 

M²AP - Minimalist Mutual-Authentication Protocol 

Peris-Lopez et al. proposed a family of Ultralightweight Mutual Authentication 

Protocols (UMAP) initiated by the M²AP (Minimalist Mutual-Authentication Protocol) 

(Peris-Lopez et al. 2006c). The M²AP proposes a usage of an index-pseudonym 

(IDS) to avoid disclosing device‟s ID which prevents the privacy issues (Traceability 

and Inventory) associated with both RFID and some applications of WSN, for 

example Wireless Body Sensor Networks (WBSNs). The IDS (96-bit long) is 

effectively an index to a record in a database storing tag-specific information. Each 

tag stores a key consisting of four concatenated 96-bit long parts (K = K1 II K2 II K3 II 

K4). It is assumed that the communication link between a reader and the back-end 

database is secure. 
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The protocol is divided into four main stages: tag singulation, mutual authentication, 

IDS updating and key updating.  

 Tag singulation: the reader sends a “hello” message and the tag replies with 

current IDS. The interrogator can now access a record in the database 

containing sub-keys K1-K4 associated with a given tag.  

 Mutual Authentication is split into two distinct parts: Reader Authentication and 

Tag Authentication. In the first stage the reader generates two random 

numbers n1 and n2. The n1 and sub-keys K1 and K2 are used to generate A 

and B authentication sub-messages which are further concatenated (A II B). 

The following computation is performed during a round (n) for a tag(i):  

               
   

         
   

                  
            

        

Where   = exclusive OR,     = concatenation,   = logical AND,   = logical OR. 

The n2 number and K3 key are used to generate sub-message C (further used 

to update the IDS and the key K): 

             
   

         
       

These sub-messages are then concatenated and sent to the tag (message = 

A II B II C). 

The next stage is the Tag Authentication. The Tag uses sub-messages A and 

B to authenticate the reader. The message C provides random number n2 

which is used by the Tag to update the key K and the IDS. After a successful 

reader authentication the tag sends a message comprising of two 

concatenated sub-messages D II E. 

              
   

         
        

             
                 

Sub-message D allows the reader to authenticate the tag. Part E is used to 

send the ID in a secure form. 

 IDS Updating: in case of a successful authentication the reader and the tag 

update the index-pseudonym using the following operation: 

         
     

             
   

                    

 Key Updating: after a completion of the IDS updating the reader and the tag 

have to update all 4 sub-keys K1-K4 using the following equations: 
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Peris-Lopez et al. chose only simple operations (      and sum mod    ) 

forced by the computational power constraints of low-cost RFID tags and tag 

reading speed requirements (limited time for computation). He claims that the 

probability of ones and zeros in every sub-key is spread almost evenly and the 

Hamming distance between two consecutive keys         
   

 and         
     

 is 47.5 

bits on average. 

The protocol's author provided a security analysis of the proposal in terms of 

resistance to ID disclosure, Man-in-the-middle, replay attacks and Data Integrity 

assurance. The anonymity of the tag (ID hiding) is ensured by the usage of an index-

pseudonym (IDS). The Data Integrity is guaranteed by the IDS and four sub-keys - 

the attacker would have to be able to modify these values on both the database and 

the tag, otherwise even a single bit manipulation would stop the protocol execution. 

The mutual authentication mechanism based on two random numbers refreshed with 

every iteration of the protocol renders the Man-in-the-middle attack impossible. Peris-

Lopez et al. also claimed that the IDS and sub-keys updating mechanism prevents 

Replay Attacks. 

The M²AP was analysed and proven insecure by (Bárász et al. 2007b). Bárász 

describes specifications of a passive attack (eavesdropping only) against the M²AP 

which is able to retrieve the IDS and all sub-keys by eavesdropping over a few 

consecutive runs of the protocol. Two main weaknesses of the M²AP were 

discovered. The first is the fact that the usage of the bit-wise operations and the 

modulo     addition only implies that every bit affects only bits which are to the left of 

it and the least significant bit is independent of any other bits. Such operations are 

called triangular functions or T-functions and per Klimov and Shamir “A T-function is 

a mapping in which the i-th bit of the output can depend only on bits 0,1,..., i of the 

input“(Klimov & Shamir 2004). The second weak part is the OR and AND operations 

used in messages B and D which can help to derive n1 and n2 values with the help 

of set and reset bits of IDS. Bárász showed that the attacker can learn the ID, K1, K3, 

n1 and n2 after eavesdropping only two consecutive rounds of the M²AP which 

already allows for Traceability of the tag. K2 and K4 sub-key discovery requires 

eavesdropping more rounds but provides the attacker with the ability to impersonate 

the Tag or the Reader. 

EMAP - An Efficient Mutual-Authentication Protocol 

After weaknesses (Bárász et al. 2007b) were discovered in the M²AP Protocol, Peris-

Lopez et al. proposed a new EMAP Protocol (Peris-Lopez et al. 2006a). The protocol 
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is similar in concept to the M²AP: It has the same four stages and uses IDS and four 

sub-keys K1-K4. The only changes which were applied were the mathematical 

operations used to construct sub-messages A, B, C, D, E and the formulas for 

updating the IDS and four sub-keys. The new formulas for the sub-messages are as 

follows: 

             
   

         
   

    

              
   

         
   

     

             
   

         
   

    

              
   

         
   

     

              
   

                         
   

         
   

         
   

         
   

 

The IDS updating formula was supposed to have better statistical properties than the 

M²AP as the entire number use bit-wise XORed with a random number n2. 

         
     

            
   

            
   

 

The key updating formulas now contain a parity function         which divides the 96-

bit number into 24 4-bit blocks, calculates and outputs a parity bit for each block. The 

formulas are as follows: 

        
     

           
   

                               
                

      

        
     

           
   

                
                

                      

        
     

           
   

                               
                

      

        
     

           
   

                
                

                      

The security analysis provided by Peris-Lopez et al. was largely similar to the one 

provided in M²AP specification. 

(Li & Deng 2007) highlighted the weaknesses of the protocol allowing for a de-

synchronization and a full disclosure attack. It was highlighted that the tag is not able 

to verify if the reader successfully received correct messages D and E and updated 

the keys and IDS accordingly. Li & Deng described two types of possible attacks on 

LMAP: de-synchronization attack and full disclosure attack. As both of the protocols 

rely on a synchronization of IDS and keys stored on a tag and in the back-end 

database, a full round of the protocol has to take place in order to keep 

synchronization on both sides. Li & Deng proposed two man-in-the-middle de-

synchronization attacks: 
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 Changing the message C – by intercepting message (A II B II C) and XORing 

sub-message C with a series of zeros excluding the least significant bit set to 

1 and forwarding the set of messages to the tag. The tag can still authenticate 

the reader as A and B remain unchanged, but it will get the wrong n2 number. 

Despite this the protocol will continue and the tag will reply with incorrect D 

and E messages; however, the reader will not be able to discover changes in 

D and will accept in all cases. It was shown that there is a 75% chance on 

average that the reader will accept an incorrect value E and update its 

database using original n2. The tag will do the same using incorrect n2 and 

both devices will lose synchronization. 

 Changing the messages A and B – similar to the previous attack but in this 

case A and B sub-messages are altered and in the result n1 value used by the 

tag for an update is changed. 

The full disclosure attack is based on a stateless nature of the tags - there is no way 

to save the state of the protocol execution on a tag. The attack consists of four 

stages, the first three of which are performed on a single protocol run and disclose all 

secret values apart from K2, K4 and the tag ID. The fourth stage requires 

approximately (         runs to fully disclose tag's ID (m-bits long). 

LMAP - A Real Lightweight Mutual Authentication Protocol 

After several weaknesses were discovered in M²AP and EMAP Peris-Lopez et al 

addressed them in the LMAP proposal (Peris-Lopez et al. 2006b). LMAP and EMAP 

share some similarities: the same size of the IDS and the same size and number of 

sub-keys. However, the Tag to Reader message (previously consisting of sub-

messages D and E) was reduced only to a single message D. The rest of the sub-

messages are now created using the following equations: 

             
   

         
   

    

              
   

         
   

     

             
   

         
   

    

              
   

                 

The IDS index-pseudonym is now created with the following operation: 

         
     

             
   

             
                

The sub-key K1 and K2 equations are identical to the ones proposed in M²AP: 
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The operations used to create the last two sub-keys K3 and K4 were slightly modified 

in comparison to M²AP and are as follows: 

        
     

            
   

              
   

           

        
     

            
   

              
   

           

The LMAP and the M²AP protocols were analysed by (Li & Wang 2007) and serious 

weaknesses were discovered in both. The vulnerabilities highlighted and possible 

attacks are very similar to the EMAP security flaws analysis in (Li & Deng 2007). 

Again, the main issue is related to the fact that the tag is not able to verify if the 

reader successfully received and verified message D, which may lead to a protocol 

de-synchronization. The de-synchronization attacks are practically identical to the 

one proposed earlier: message C alteration and messages A&B alteration attacks 

performed by XOring the message with zeros and one as the least significant bit. The 

probability of the success of the first attack remained at 50%. The full disclosure 

attack is slightly more difficult than in the case of the M²AP protocol. The attacker has 

to obtain the current IDS of the tag and then try all possible (A II B II C) messages by 

sending them to the tag and changing the j-th bit in A and B at each try. This reveals 

the n1 random number value and allows the calculation of K1 and K2. The rest of the 

secret values can be discovered by interacting with the reader and the tag one more 

time and then derived from the known sub-message creation equations and a simple 

algorithm described in (Li & Wang 2007). Several countermeasures were proposed, 

the most interesting one proposes a tag status storage mechanism preventing de-

synchronization attacks: an additional status bit on the tag indicating whether a 

protocol has been successfully completed and two additional 96-bit memory spaces 

for storing n1 and n2 values used in the last protocol run. A Similar mechanism was 

included in (Peris-Lopez et al. 2006b) as a LMAP+ extension. 

However, the above protocols including Li & Wang's countermeasures were proven 

still susceptible to de-synchronization and full disclosure attacks by (Chien & Huang 

2007). Chien & Huang showed that the attacker can flip some bits without being 

noticed by the reader or the tag so the protocol round would complete and both sides 

would update the IDS and keys with different n1 and n2 random numbers. The 

authors also revised the Li & Wang's full disclosure attack and showed even more 

efficient version of the attack. 

The Li & Wang's paper was also followed by (Bárász et al. 2007a) describing a fully 

passive full disclosure attack against LMAP, which requires only eavesdropping a few 

(about 10) consecutive rounds of the protocol. The main weaknesses of the protocol 

mentioned in (Bárász et al. 2007b) were related to triangular functions properties 

(weak propagation of bits from left to right). 
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SASI - Strong Authentication and Strong Integrity 

The family of UMAP protocols proposed by Peris-Lopez et al. influenced an 

interesting SASI protocol specification by (Chien 2007). The concept is similar to that 

of the UMAP family. The tag has a unique 96-bit ID and pre-shares an index-

pseudonym (IDS) and two keys K1 and K2 with a back-end database accessible by 

the reader (secure link assumed). In order to resist de-synchronization a state-

verification has been employed: the tag stores two sets of (IDS, K1, K2) – the old 

values and the potential new values. In each protocol instance the reader may probe 

the tag twice: the first time the tag replies with its potential new IDS and if it was not 

found it may probe the tag again and this time the tag will use the old IDS value. 

The protocol flow is also similar to UMAP family: 

 The reader sends a “hello” message. 

 The tag replies with its potential next IDS. 

 The reader uses IDS to find a matched record in the database. It generates 

two random values n1 and n2 and uses stored keys K1 and K2 to generate 

messages A, B and C which are further concatenated and sent to the tag. The 

following equations are used to generate A and B:  

             
   

         
   

    

              
   

         
   

     

Keys K1 and K2 are rotated using a rotation function „ROT‟, which was not 

clearly specified in Chen‟s paper but revealed in (Hernandez-Castro et al. 

2008) to be a Hamming rotation. The rotations are described as follows: 

                  

                  

According to Hernandez-Castro et al. Chien intended to use a Hamming 

rotation                  , where       stands for the Hamming weight 

of vector B. If a modular rotation                   was chosen, then 

the protocol would be susceptible to a passive attack proposed in (Hernandez-

Castro et al. 2008). 

 After rotations are performed, the rotated and original keys are used to form 

the message C: 

                    

 The tag receives A II B II C and extracts n1 from A, and n2 from B. Then it 

performs the same two rotation functions as the reader in previous step, 

calculates message C and compares it with the received one. Upon successful 

verification the tag replies to the reader with a message D: 
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After sending the message the tag updates the IDS and keys K1 and K2 using 

the following equations: 

                                        

                     

                     

 After the message was received and successfully verified by the reader, the 

reader updates the IDS and keys entries using the same equations as the tag. 

Chien provided a security analysis of the protocol claiming that it is secure against 

de-synchronization attacks, ID disclosure attacks and it should provide privacy, 

anonymity, mutual authentication and forward secrecy (keeping the past 

communication secure even if a tag is compromised later) while retaining the ultra-

lightweight properties and requiring a message length of 4L1 and the total memory 

size on a tag of 7L as opposed to 6L in UMAP family protocols. 

There have been no published successful passive attacks against the SASI protocol 

using Hamming rotation function. However, several active attack possibilities were 

discovered. Two de-synchronization attacks on the SASI protocol were described by 

(Sun et al. 2008). Both attacks were targeting the anti-de-synchronization mechanism 

of the SASI protocol: the possibility of re-trying the communication with the old IDS in 

case the next-possible IDS was not found in the database. Another paper by (Cao et 

al. 2009) described a denial-of-service and ID disclosure attacks. A de-

synchronization, ID disclosure and finally a full disclosure attack against the SASI 

protocol was proposed by (D‟Arco & De Santis 2008). 

Gossamer Protocol 

The Gossamer Protocol derived by (Peris-Lopez et al. 2009) is one of the most 

recent proposals in the field of lightweight cryptography. Peris-Lopez et al. 

summarized that most of the weaknesses are related to the fact that all simple 

bitwise operations like AND, OR, XOR and modulo     addition are T-functions 

(Klimov & Shamir 2004), thus suffer from weak propagation of bits from left to right. 

Another weakness highlighted was the bias in the probability (75%) of obtaining a bit 

„1‟ when using bitwise AND operation. 

Peris-Lopez proposes a Gossamer Protocol that is largely similar to the SASI 

protocol in general concept: each tag has a static identifier (ID), an index-pseudonym 

(IDS) and two keys K1 and K2 in memory. Additionally each tag is required to store 

two sets of the tuple (IDS, K1, K2): old value and the potential next value. It is 

assumed that the only mathematical operations that will be used are bitwise XOR, 

                                            
1
 L denotes the length of one key or the IDS in bits. 96-bits in the case of the EPC RFID specifications. 
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addition modulo    and left rotation function         . The rotation function performs 

a circular shift on the value of   by          , positions to the left for a given N (96 in 

case of the EPC RFID). The most computationally expensive operation of generating 

two random numbers required in each protocol run is designed to be done on the 

reader side. An additional security layer is added with a lightweight function 

called        , which is based on a methodology described in (Hernandez-Castro et 

al. 2006) and uses only bitwise right shift. The pseudocode describing the algorithm 

for the MixBits function is shown in Figure 2.1. 

Z = MixBits (X, Y) 
Z = X 

FOR counter = 0 to 32 
Z = (Z>>1) + Z + Z + Y 

ENDFOR 

 
Figure 2.1 MixBits Function 

The author of the protocol divided it into three stages: tag identification, mutual 

identification and updating phase. 

 Tag Identification phase – just as in previously described SASI protocols the 

reader sends a “hello” message and the tag replies with its next 

potential        . The reader performs a search in the database to find a 

matching entry and if successful it continues to the next phase. Otherwise the 

reader queries the tag again and the tag replies with the old       .  

 Mutual Authentication phase – the reader generates two random values n1 

and n2 and build messages A, B and C using the following equations 

(assuming that                              - 96 bits) : 

                                  

                                  

                  

                                        

                                        

                   

                                           

Now the tag extracts n1 from A and n2 from B and performs the same 

operations as the reader to construct    . Then it compares   received with 

   calculated and upon success constructs message D to be sent to the 

reader: 
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The tag performs Tag Updating phase. The reader upon receiving message D 

performs the same calculation and compares D received with    calculated. If 

this is successful the reader performs Updating phase. 

 Updating phase – the tag updates the two (IDS, K1, K2) tuples as follows: 

                    

            

                                                       

         

                                                  

         

                                                  
           

  

        

 

The reader updates the back-end database using the following formulas: 

                    

                                                  

                                              

                                             

 

The protocol requires exchanging four messages between the reader and the tag. All 

stages are illustrated in Figure 2.2. Hello message length is not specified, the IDS 

and D messages are 96-bits long and the concatenated A II B II C message consist 

of three 96-bit long sub-messages. A total of 384 bits (excluding Hello message) 

needs to be transmitted during one protocol run. 

The Storage Requirements on the tag side are limited to 7 times the key-length (96-

bits in the original specification) to hold two IDS, K1, K2 tuples and the static identifier 

ID. Each database record is required to story only one IDS, K1, K2 tuple and the 

static ID. 
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Figure 2.2 The Gossamer Protocol 

The Gossamer Protocol prevents attacks listed in section 2.2.2 as follows: 

 ID Disclosure Attack – the notion of an index-pseudonym (IDS) and private 

keys K1 and K2 changed for every authentication session prevents disclosure 

of the unique identifier (ID) of the tag. 

 Full Disclosure Attack – the secret data (ID, K1, K2) is always scrambled using 

two random numbers and sum, Mixbits and Rot functions before being 

transmitted over the wireless link. 

 De-Synchronization Attack – each tag stores (IDS, K1, K2) tuples used in a 

previous protocol run. In case of an unsuccessful update on the reader side in 

the last stage of the protocol (message D) the tag can be still identified using 

old values. The result is that both the tag and the reader can recover their 

synchronized state. 

The requirement of the Data Freshness (see section 2.1) is fulfilled by updating 

secret values K1, K2, n1 and n2 at each protocol run. 

To the knowledge of the author only one paper describing attacks against the 

Gossamer protocol was published (Ahmed et al. 2010) shortly before this dissertation 

was finished. Ahmed et al. described two attacks against the protocol. The first one 

was feasible if both random numbers n1 and n2 were equal to zero allowing the 

discovery of all secret values after eavesdropping two consecutive runs of the 

protocol. The latter attack concerned a case where both K1 and K2 values are equal 

to zero which leads to disclosure of all secret values during a single authentication 

round. Ahmed et al. proposed modifications to the protocol.  However their proposal 

has a major flaw in that it renders the extraction of n1 and n2 impossible.  

The original Gossamer protocol is given in fig. 2.1 replicated below for clarity of 

explanation.   
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An attack on the original Gossamer protocol is feasible if both random numbers n1 

and n2 were equal to zero permitting the discovery of K1 and K2 after eavesdropping 

two consecutive runs of the protocol. 

The proposed Ahmed et al modification substitutes K1 for n2 in A and K2 for n1 in B.  

                                  

                                  

The values n1 and n2 are known to the reader. In A above,              

          is rotated by n2 by the reader and likewise in B,               

          is rotated by n1. Messages A & B are exchanged with the tag. The tag‟s 

job is to extract the values n2 and n1 from messages A and B and to perform the 

appropriate inverse rotation to verify the remainder of the contents of messages A 

and B.  However, in this modification, the tag is not aware of the value n1 or n2 and 

therefore cannot perform the inverse rotation to retrieve               

         . This is a flaw in Ahmed‟s analysis that will not permit the completion of 

authentication.   

Another modification proposed by Ahmed et al. concerning the MixBits function has 

also a very weak effect on overcoming the weakness of both random numbers n1 

and n2 equal to zero. In the original Gossamer protocol, the mix-bits function exists 

during the creation of the new IDS and Key values.   

Z = MixBits (X, Y) 
Z = X 

FOR counter = 0 to 32 
Z = (Z>>1) + Z + Z + Y 

ENDFOR 
Figure 2.3 MixBits function (repeated) 

Where X and Y are the input 96-bit numbers and Z is the final result of the MixBits 

function. The weakness identified by Ahmed et. al is that if both of the MixBits input 

values (n1 and n2 in the first run) are equal to 0 then the result of the function is also 

equal to 0. As a result all transformations are dependent on the Key values, the IDS 

and Pi. This weakens the effective security of the Gossamer Protocol. Ahmed et al 

proposed the following modification: 

Z = MixBits (X, Y) 
Z = X 

FOR counter = 0 to 32 
Z = (Z+counter) + Z + Z + Y 

ENDFOR 
Figure 2.4 Modified MixBits Function 
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It is obvious that in a case where both n1 and n2 numbers are equal to zero then the 

result of the MixBits function will be always the sum of numbers 1 to 32 which is 528. 

The proposed attack on the MixBits functions where n1 and n2 are 0 has been 

rectified but now the first attack proposed can be still performed but using the value 

of 528 instead of 0 at the first call of the MixBits function within the Protocol (n3 

calculation) and the result can be applied to the subsequent formulae to generate 

keys and messages. 

Temporarily as a solution to the first attack it is recommended not to allow both 

random generated numbers to hold a value of zero at the same time. This verification 

should be performed by the PRNG function before the values are forwarded to the 

reader. 

An altered Gossamer Protocol is suitable as a mechanism for authenticating 

Resource Limited Devices. The reader-tag relation is close to the master-slave one in 

the Infrastructure WSN scenario (see section 3.1). The main difference is the fact that 

a RFID tag is triggered by the reader, where in the IWSN all slaves will periodically 

initiate the communication. This difference is not significant in terms of the Gossamer 

specification as the „Hello‟ message send by the reader to initiate the communication 

does not carry any protocol-specific data, thus can be discarded without any effect. It 

has to be pointed out that the Gossamer protocol was designed to be implemented in 

hardware but the simplicity of the mathematical operations renders it easily 

implementable in software on the reference platform nRF9E5 (see section 3.4). In 

consequence, this protocol is chosen for the implementation and further performance 

analysis. 

Ultralightweight RFID Protocol with Mutual Authentication (UMA-RFID) 

Shortly after the Gossamer Protocol was published Lee at al. proposed UMA-RFID 

alternative (Lee et al. 2009). The protocol is very similar to the Gossamer 

specification but simplified to use only bitwise operations (XOR, OR, AND) and a left 

bitwise rotation function ROT. Each tag contains a static identifier ID, pseudonym 

called the dynamic temporary identifier (IDT) and a secret key (K). All variables are 

128-bits long and shared between the tag and the back-end database accessible by 

the reader (secure channel assumed). The reader is assumed to be capable of 

generating random number (N). The protocol consists of two stages: Authentication 

Phase and Update Phase. 

 Authentication Phase: the reader sends a request message and the tag 

replies with a temporary identifier (IDT). The reader searches the database to 

find a secret key     corresponding to the IDT received, generates random 

number    and calculates messages     and     as follows: 
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The messages are concatenated and sent to the tag. Upon receiving these 

messages the tag obtains     from message     and calculates message      in 

the same way as the reader previously. Then message      is compared 

with   . If they are the same then the reader is authenticated and the tag 

generates reply message     as follows: 

                                           

The message is sent to the reader and the reader calculates a local copy and 

verifies the correctness. After successful verification the tag is authenticated. 

 Updating phase: the tag performs this phase after authenticating the reader. 

The updating on the reader side is done upon successful authentication of the 

tag. Both sides use the following equations to update         and    : 

                         

                     

Peris-Lopez et al. analysed the UMA-RFID protocol (Peris-Lopez et al. 2009) and 

found serious weaknesses in the scheme which led to ID Disclosure, Full Disclosure 

and De-Synchronization attacks. Peris-Lopez et al. described 5 attacks: ID-disclosure 

attack, two passive Full Disclosure attacks and two active De-Synchronization 

attacks. The most significant Full Disclosure attack allowing cloning of the tag to be 

performed after eavesdropping of only two consecutive runs of the protocol and 

requires only computing XOR among some of the messages transmitted over the 

radio channel. 

SQUASH – A New MAC with Provable Security Properties for Highly 

Constrained Devices Such as RFID Tags 

Adi Shamir proposed an authentication mechanism based on a challenge-response 

scheme and Message Authentication Code (MAC) called SQUASH (short for 

SQUare-hASH) specifically for Resource Limited Devices (Shamir 2008). The 

proposed challenge-response scheme allows tag-to-reader authentication and does 

not address the ID disclosure issue. The document focuses on describing a strong 

one-way hashing function (H) performed by the tag upon receiving a random 

challenge message (R). The MAC is computed with (R) and secret key (S) as inputs: 

           

The reader shares the secret key S and performs the same calculation upon 

receiving the MAC to validate if a tag is legitimate. The author made an interesting 

observation that most of the standard one-way hash functions such as SHA-1 

(Eastlake & Jones 2001) are primarily designed to be collision resistant as their main 

area of usage concerns digital signatures. The requirement for collision resistance 

typically adds complexity to the algorithm. Since a collision is not a security threat in 
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a challenge-response scheme, the author proposed an algorithm based on the Rabin 

encryption scheme (Rabin 1979). In the Rabin scheme the ciphertext (c) is computed 

as            , where (m) is a message and (n) is a product of at least two 

unknown prime factors. Shamir has shown how the calculation can be simplified 

using a step-by-step process that has no adverse effects on the strength of the 

security and has proposed a hardware implementation using mixing function (M) 

applied to the secret and challenge (S, R) and then the SQUASH function 

SQUASH(M(S,R)) as follows:  

1. Start with j which is the index at lower end of the desired extended window of t + u bits, and set 
carry to 0. 
2. Numerically add to the current carry (over the integers, not modulo 2) the k products of the form 

 mv *             for v = 0, 1, 2, ..., k − 1. 

3. Define bit cj as the least significant bit of the carry, set the new carry to the current carry right-
shifted by one bit position, and increment j by one. 
4. Repeat steps 2 and 3 t + u times, throw away the first u bits, and provide the last t bits as the 
response to the challenge.(Shamir 2008) 
 

The proposed SQUASH-128 hash function uses a modulus           a 64-bit key S 

and a 64-bit challenge R to produce a 32-bit response. The security of this scheme 

was questioned by Ouafi & Vaudenay, who discovered a key recovery attack known 

as "known random coins attack" against the Rabin scheme using 1024 chosen 

challenges (Ouafi & Vaudenay 2009). The “known random coins attack” allows an 

adversary to request many encryptions of the same plaintext and in consequence get 

the random coins. The attack is only effective if a linear mixing function is used, thus 

the security of SQUASH is still regarded as strong, assuming that a non-linear mixing 

function is used. 

SPINS - Security Protocols for Sensor Networks 

Perrig et al. proposed a security mechanism consisting of two blocks: Secure 

Network Encryption Protocol (SNEP) and µTESLA (Perrig et al. 2002). SNEP‟s 

security goals are data confidentiality, mutual authentication and the evidence of data 

freshness2. µTESLA provides a mechanism for an authenticated broadcast. 

 According to the authors SNEP achieves previously mentioned security goals with a 

very low communication overhead of only 8 bytes per message. SNEP ensures 

semantic security3 using two counters    and    shared by the communicating 

nodes. These counters are further used by the block cipher in counter mode. 

Counters do not have to be attached to messages but Perrig et al. described a 

mechanism of counter synchronization. The mutual authentication is achieved 

through the usage of a MAC function. Both communicating nodes A (sender) and B 

(receiver) share a master secret key     used to derive keys through a 

pseudorandom function. It has to be noted that the authors advised deriving different 

                                            
2
 Data freshness ensures that the data received is fresh and the adversary cannot replay old 

messages. 
3
 Semantic security ensures that an eavesdropper is not able to deduct any information about the 

plaintext even after analysis of multiple encryptions of the same plaintext. 
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key sets for MAC and encryption. Each key set consists of two keys - one for each 

direction of the communication. 

Encryption keys: 

    =       

    =       

MAC keys: 

     =       

     =       

The sender node A encrypts (symmetric block cipher) the data using     and   : 

                  

The encrypted result is then used by the MAC function in the following manner: 

              

Finally the sender node sends the message: 

                                                  

This scheme does not provide data freshness. A solution for this issue is provided by 

the usage of a random number    and a request message    send by the node A: 

           

The Receiving Node B responds with an encrypted message and a MAC function 

with a cryptographic nonce    as one of the inputs: 

                          
 
                            

Upon receiving the message and MAC verification the node A is sure that the node B 

generated the message using the cryptographic nonce supplied in a request 

message. 

SNEP messages require synchronized counters on both sides of the communication. 

If the synchronization is lost for example due to lost messages, counter values can 

be re-synchronized through the following messages: 
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The concept of µTESLA was based on a TESLA protocol providing a mechanism of 

an authenticated broadcast (Perrig et al. 2001). This scheme achieves asymmetry 

through a delayed disclosure of symmetric keys rather than using computationally 

expensive Public Key Cryptography. The TESLA proposal is not suitable for 

implementation within a constrained devices environment. In order to adapt it for the 

Wireless Sensor Networks the following issues were addressed: 

 TESLA authenticates the initial packet with a digital signature. The 

computation of a digital signature is too expensive on sensor nodes so 

µTESLA uses only a symmetric mechanism. 

 Standard TESLA discloses the key for the previous intervals with every 

packet. Since this generates too much overhead µTESLA discloses the key 

once for each pre-defined epoch. 

 Sensor nodes are not able to store an entire one-way key chain in the 

memory. This is addressed in µTESLA by limiting the number of authenticated 

senders. 

The µTESLA requires that all receiving nodes are loosely time synchronized with the 

base station. In order to send an authenticated broadcast, the base station computes 

a MAC using the packet and a key which is secret at that point in time. The receiving 

node stores the packet in the buffer in order to validate its authenticity later when the 

base station broadcasts the verification key. Each MAC is a key of a key chain, 

generated by applying a one-way hash function. A successive key is generated by 

applying the hash function on the previous key. The time synchronization can be 

achieved by the means of the SNEP protocol. The protocol consists of the following 

phases: 

 Sender setup – the sender node generates a one-way key chain by 

successively applying one-way hash function. 

 Broadcasting authenticated packets – the time is divided into inform intervals. 

The sender associates each key in the key chain with one particular interval 

and uses this key to compute MAC of all packets sent in that interval. The key 

   is disclosed after a delay which is greater than a few time intervals and has 

to be greater than a message round-trip time between the sender and the 

receivers. 

 Bootstrapping a new receiver – each receiver needs to authenticate one key in 

the one-way key chain which allows it to commit to the entire chain: further 

keys will be calculated using one-way hash function. The receiver needs to be 

loosely time synchronized with the sender and has to know the key disclosure 

schedule. Both of these requirements are fulfilled as follows: the Receiver 

node sends a request message containing a random number    and the 

Sender replies with a message containing its current time   , the key    used 

in the past interval  , the starting time of this interval   , the duration of this 

interval      and the key disclosure delay  . These values are sent with clear 
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text along with a MAC calculated using these values,  the random number 

   and shared secret key    : 

          

                          

                                      

 Authenticating broadcast packets – upon receiving a message the receiver 

needs to make sure that this packet is safe by verifying if the key used to 

compute the MAC was not disclosed yet. This can be achieved thanks to loose 

time synchronization between the sender and the receiver. When a node 

receives a new key    it computes the one-way hash function on the previous 

key    in order to verify the correctness of   . If the check was successful then 

a node can authenticate all packets which arrived in the time interval of     

Perrig et al. did not specify exactly which encryption algorithm should be used in 

SNEP, or which one-way hash function should be used by µTESLA, or indeed which 

Random-number generation should be used in both protocol blocks. However, Perrig 

et al. provide example functions for the experimental implementation. In order to 

tackle the issue of limited code space and RAM size all cryptographic primitives are 

based on a modified subset of the RC5 encryption algorithm (Rivest 1995). 

The µTESLA‟s main disadvantage is the need for an initial unicast-based parameter 

distribution. This issue has been addressed by Liu & Ning  in the Multi-Level µTESLA 

specification (Liu & Ning 2004). The scheme provides a way to predetermine and 

broadcast the initial parameters. Additionally, Multi-Level µTESLA introduces a mulit-

level key chain scheme which removes the need for very long key chain. The authors 

claim that the key chain commitment distribution mechanism described in their 

document improves the survivability of the scheme against message loss and Denial 

Of Service (DOS) attacks. 

Since the SPINS specification does not propose exact cryptographic primitives to be 

used no security weaknesses were identified in the scheme to the knowledge of the 

author. However, several papers were published addressing efficiency and key 

management issues found in SNIPS (Liu & Ning 2004), (Yu-Long et al. 2007), 

(Hegazy et al. 2007). 

Both of the SPINS schemes suffer from using Pseudo-Random Number Generator 

(PRNG) engines not only on the base station side but also on the sensors. Perrig et 

al. suggested that sensor nodes may draw random numbers from the actual sensor 

readings. However, the Analog-to-Digital Converters (ADCs) which are sometimes 

only 8 or 10-bit wide may not be able to provide random values in a magnitude large 

enough for cryptographic usage. Thus a resource expensive PRNG functions need to 

be implemented within a limited sensor node code space. 
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Due to a high computational overhead on the sensor node side, the SPINS 

implementation was not considered during this MSc project.  

2.3 Encryption 

Bruce Schneier said that “Cryptography is the art and science of keeping messages 

secure”(Schneier 1996). A message (referred to as a plaintext) undergoes a process 

of hiding its substance (encryption) and converting it into a non-meaningful gibberish 

(ciphertext or cipher) that can be sent over an insecure communication channel. The 

process of retrieving a plaintext from a ciphertext received is referred to as 

decryption. 

The general rule followed in modern cryptography states that the security of the 

system cannot rely on the secrecy of its components (security by obscurity) – the 

secrecy must reside entirely in the encryption key. This principle was stated by 

Auguste Kerchoff in the nineteenth century (Menezes et al. 1997), who assumed that 

a cryptanalyst has a complete knowledge of the algorithm and implementation. An 

algorithm that has its security based on keeping its foundations secret is called 

restricted. Such a security system can be compromised through an information leak, 

reverse engineering, etc. Quality control and standardisation cannot be maintained. 

The most common type of cryptography is the Secret-Key Cryptography (symmetric 

cryptography), where a message „M‟ gets encrypted with encryption function E, using 

a key „k‟ to generate a ciphertext „c‟. Therefore, c = E(k,M). The decryption function D 

should provide a way to recover the plaintext „p‟ using shared secret „k‟, such that p = 

D(k,c). 

2.3.1 Problem of Encryption in the context of IWSN 

Resource-Limited Devices (RLDs) are highly constrained in terms of available 

memory and processing power (see Section 3.3). The reference platform nRF9E5 

(see Section 3.4) used in the example IWSN does not provide any hardware support 

for any encryption algorithm, thus the entire mechanism needs to be implemented in 

software. The following characteristics are used to evaluate possible encryption 

algorithms: 

 The code-space required for the implementation is limited (algorithm 

simplicity) and will be used as one of the metrics. 

 The algorithm should be optimized for 8-bit word size. 

 The expected data payload size is limited, thus the resource efficiency of the 

algorithm will take precedence before the data throughput. 

 The single data payload size is limited to 24 bytes on most occasions. 

 It may be not possible to implement a random number generator on the node 

side due to general hardware and execution time constraints. 

 Thanks to the proposed authentication algorithm (see Section 2.2.3) the key 

management problem may be resolved through a re-use of the authentication 
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key for the purpose of a session key fed into a symmetrical block or stream 

cipher.  

The most security critical aspect of wireless sensor operation is the reconfiguration of 

the nodes. An attack enabling an adversary to alter the control messages may lead 

for example to Denial Of Service (DOS) attacks affecting the entire network of 

sensors. It is assumed that the authentication system will guarantee frequent session 

key changes for the purpose of maintaining the data freshness (see Section 2.1). In 

consequence, the control messages have to remain safe for a relatively short period 

of time, until the next session key is exchanged. In most IWSN applications the data 

transferred by sensors will not be valuable to an attacker and will not require infinitely 

long secrecy. Given the analysis above, the encryption algorithm may be based on 

relatively short encryption keys. 

2.3.2 Known and possible attacks 

Attacks can be generally divided into two categories - passive and active attacks. 

Passive attacks concern monitoring the communication channel and gathering data 

(eavesdropping) but not altering it in any way. Wireless Sensor Networks are 

especially prone to passive eavesdropping.  

Cryptanalysis is an area of science heavily used in performing passive attacks on 

Encryption Algorithms. It concerns recovering plaintext of a message without knowing 

the Encryption Key. Schneier divided cryptanalytic attacks into several groups 

(Schneier 1996). The most important are as follows: 

 Ciphertext-only attack – the attacker analyses the ciphertext of several 

messages encrypted with the same algorithm in order to recover the 

encryption key. 

 Known-plaintext attack – the attacker has access to a block of plain text and a 

ciphertext produced by the algorithm out of this block. The analysis tries to 

extract information on the encryption key by examining changes between input 

and output. 

 Chosen-plaintext attack – similar to the known-plaintext attack but the attacker 

is able to choose a plaintext block to be encrypted. 

 Adaptive chosen-plaintext attack – the cryptanalyst sequentially applies 

chosen-plaintext attack on variable size plaintext blocks, where each choice is 

dependent on the outcome of previous attack. 

 Chosen-ciphertext attack – this kind of attack assumes that the cryptanalyst 

has access to the decrypted plaintext corresponding to the ciphertext he chose 

(without knowing the decryption key). 

Attacks requiring alteration of the transmitted ciphertext or alteration of the 

computation in a device are referred to as active. These types of attacks commonly 

target specific protocol implementation of the security system rather than 

cryptographic algorithms on their own. 
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A special case of an active attack is a physical invasive attack - the adversary has a 

physical access and toolset required to access the device's circuitry and for example 

read the EEPROM memory contents. Since a full protection against this types of 

attack requires advanced hardware (such as a sensor case destroying the EEPROM 

chip during opening), it is assumed that such attack cannot be prevented. The 

consequences of the physical invasive attack have to be limited in such a way that 

the security of the entire system is not compromised when a single node‟s key is 

revealed and the past communication remains safe (see Section 2.1). This issue 

introduces a requirement to maintain session keys unique to each of the sensor 

nodes. 

2.3.3 Identified algorithms effective in the context of Infrastructure WSN 

The field of research concerning cryptography for low cost embedded devices was 

not given much attention until the last two decades. The papers concerning 

lightweight cryptography are focused either on finding solutions easily implementable 

in hardware (Bogdanov et al. 2007, Eisenbarth et al. 2007, Poschmann et al. 2007) 

or solutions focused on a software implementation efficiency on low resource 

microcontrollers (Standaert et al. 2006, Wheeler & Needham 1994). The reference 

platform used in this research forces a software encryption solution. 

Tiny Encryption Algorithm (TEA) family 

The Tiny Encryption Algorithm (TEA) (Wheeler & Needham 1994) was the initial 

proposal of a family of algorithms (chronologically): XTEA and Block TEA (Needham 

& Wheeler 1997) and XXTEA (Wheeler & Needham 1998). The main principle behind 

the TEA algorithm design was the simplicity of the implementation and the ease of 

translation to many programming languages (including Assembly). The initial 

proposal was a block cipher operating on 64-bit blocks with 128-bit key. Each of the 

identical 64 rounds of the algorithm uses only logical AND, OR, as well as bit-shift 

operations and addition/subtraction       . The sample C-language source code 

consisted of less than 10 lines. The authors favoured large number of iterations over 

the complexity of the code. The set up time is relatively short and there is no need to 

store any Look-Up-Tables (LUTs) in the memory.  

The first weakness discovered in TEA was the fact that each key is equivalent to 

three others which effectively reduces the key size to 126 bits. This vulnerability was 

used to construct an attack against Microsoft's Xbox game console, which uses TEA 

as a hash function (Russell 2004). Since the initial proposal in 1994 several attacks 

were published, for example a Key-schedule cryptanalysis (Kelsey et al. 1997) and 

Related-key cryptanalysis (Kelsey et al. 1997). Wheeler & Needham addressed the 

issue mentioned above when proposing Block TEA and XTEA algorithms. The key 

schedule was revised and other computations (bit-shifts, XORs and additions) were 

rearranged to introduce the key material more slowly. The XTEA algorithm and it‟s 

block version Block TEA also suffer from weaknesses discovered by shortly after 

publication by Saarinen (Saarinen 1998): slow diffusion in the decryption direction 
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exploited by chosen plaintext attack. Several other cryptanalysis attempts were also 

published in (Andem 2003, Hong et al. 2004, Ko et al. 2004, Lu 2009, Moon et al. 

2002). The slow decoding propagation pointed by Saarinen was addressed by 

Wheelar & Needham in their XXTEA proposal as a short amendment to the Block 

TEA (Wheeler & Needham 1998).  

XXTEA operates on a block consisting of at least two 32-bit words using a 128-bit 

key. A single round of the algorithm can be viewed as operations on a word and its 

two adjacent words (previous and the next one). Figure 2.5 shows one round of 

XXTEA cipher, where    represents a current block and the four-squares symbol 

represents addition Modulo the size of the word. The number of rounds equivalents 

to the number of words in the block. 

 

Figure 2.5 One round of XXTEA (el Ruptor 2007) 

In (Rinne et al. 2007), Rinne analysed the performance of several ciphers, including 

DES (Federal Information Processing Standards 1993), AES (Daemen & Rijmen 

1999), IDEA, SEA (Standaert et al. 2006), HIGHT and the TEA family. Rinne 

indicated that the TEA family requirements in terms of the code space required are 

among the lowest (after the IDEA algorithm) throughout all ciphers analyzed. The 

small code space footprint was achieved thanks to the lack of substitution tables 

common in other block ciphers. The XXTEA optimisation and performance analysis 

were also provided in (Jinwala et al. 2008) proving it to be a viable encryption 

algorithm for WSNs.  

Shortly before this dissertation was completed E. Yarrkov published a chosen-

plaintext attack against the XXTEA requiring     queries (Yarrkov 2010). Yarrkov 

took advantage of the fact that the number of full cycles to perform over each block is 

equivalent to         , where   represents the number of rounds. If the block 
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consists of at least 53 words then the number of cycles per word is reduced to only 6. 

This characteristic was used to perform differential cryptanalysis, where the 

difference was considered subtraction per word. The author described two attacks 

proving that XXTEA does not provide the intended 128-bit security. 

Scalable Encryption Algorithm (SEA) 

The Scalable Encryption Algorithm (SEA) proposed in (Standaert et al. 2006) aims to 

provide a low cost encryption implementable on resource limited processors. 

Similarly to the TEA family it uses basic operations such as logical AND, OR, XOR, 

word/bit rotations, modular additions and a simple substitution box. Apart from the 

limited instruction set, the other design criteria were the low memory requirements 

and small code size. Per the authors the algorithm allows “on-the-fly” key derivation. 

The proposal includes a comprehensive security analysis showing the resistance of 

the protocol against major modern cryptanalytic techniques. 

The scalability of the algorithm is achieved through the flexibility in the size of the 

input parameters. The following parameters are used: 

                           

                            

   
 

  
                                    

                                  

There is one constraint on the size of the key/plaintext that the   is a multiple of   : 

      

The security analysis provided in the proposal suggests the minimum required 

number of rounds to provide security against well know attacks (assuming word size 

equal or greater than 8 bits) is: 

  

 
        

 

 
   

Figure 2.6 shows one encryption and key round, where   denotes the word rotation, 

  the bit rotation and   the substitution box (                     in C-like notation). 

The      represents a   -word vector with all words of a value 0 except the least 

significant word which value is equal to    The Li and Ri represent left and right halves 

of the word or the key (KLi, RKi). 



31 
 

 

Figure 2.6 Encrypt/decrypt and key round of SEA 

The functions for encrypt (  ), decrypt (  ) and key (  ) rounds are defined as 

follows: 

                                               

                                                 

                                                          

The authors analyzed the performance of the algorithm using the Atmel AVR ATiny 

reference 8-bit CPU platform among others. The expected code size for a 96-bit key 

implementation was estimated at 386 bytes and the amount of clock cycles required 

for encryption/decryption was estimated at 17745. A performance analysis (Rinne et 

al. 2007) performed by Rinne on AVR Atmel163 showed a code size of 2132 bytes 

for the 96-bit SEA (compared to 1160 bytes for XTEA) and the number of CPU cycles 

required to complete encryption/decryption was 9654 (compared to 6718 with XTEA).  

The performance and code space requirements of the XTEA algorithm look more 

promising than the SEA according to Rinne‟s analysis. However, due to the recent 

Yarrkov‟s discovery of security weaknesses in XXTEA the implementation of this 

algorithm will be abandoned in favour of the Scalable Encryption Algorithm in 96-bit 

version. 
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3. Resource-Limited Devices 

 

The term Resource-Limited Device (RLD) will be further used to describe a 

microcontroller device with significantly lower processing power and limited memory 

in comparison to a modern Personal Computer. This group of devices range from 

Radio Frequency Identification (RFID) transponders to a wide spectrum of embedded 

devices equipped with small (typically 8-bit) microcontrollers. Such devices are 

utilised in wireless sensor networking for example. 

This dissertation focuses on the security of the communication over the radio 

channel, thus the area of research will be restricted to Wireless Sensor Networks and 

advanced RFID systems. 

The work in this MSc dissertation is predicated upon the application of the Nordic 

Semiconductors nRF9E5 Integrated Circuit (Nordic Semiconductors 2009b) as the 

target device. This microcontroller was chosen due to its low price (approximately 

2$US per unit at quantities over 1000), integrated UHF radio transceiver and 

excellent power saving characteristics which make it an ideal solution for the design 

of a low-cost wireless sensor. The nRF9E5 entire chip will be referred to as a 

microcontroller and the Intel 8051-compatible Central Processor Unit - a subset of 

this system will be referred to as CPU or microprocessor. 

Hardware Platform - nRF9E5 

The nRF9E5 microcontroller is a single chip system with an integrated sub-1GHz 

Radio-Frequency (RF) transceiver, 8-bit 8051-compatible processor and 4-input 10-

bit Analogue to Digital (AD) converter. The design of the chip was based on the 

Dallas DS80C320 CPU in terms of hardware specification and instruction cycle 

timing. It is a low cost solution with extended power saving capabilities. The minimum 

power consumption in power down mode (where the chip can be woken up by a timer 

or an external pin) is only 2.5µA. The microprocessor draws 2.2 mA of current at a 

clock frequency of 16MHz and the radio transceiver (nRF905) uses 10 to 30 mA in 

Transmit Mode (depending on output power setting). Receive Mode power usage is 

estimated at 12.5 mA on average. 

The CPU is an 8-bit Intel 8051 derivative with the addition of Special Function 

Registers (SFRs) used to control the nRF9E5 radio transceiver. The microcontroller 

is equipped with 512 bytes of ROM that contains the bootstrap loader, 256 bytes of 

Internal Data Memory, 128 SFRs and 4 kilobytes of external on-chip RAM. The 

memory is organized with the Harvard Architecture in contrast to the Von Neuman 

architecture commonly used in desktop PCs. The bootstrap loader loads the program 

from the bottom area of external EEPROM memory upon each power-up or reset 

cycle. The manufacturer did not provide any possibility to extend the size of the on-

chip RAM, thus the binary program size is limited to 4 kilobytes.  



33 
 

The on-chip radio transceiver subsystem is the Nordic Semiconductors nRF905 

connected to the microcontroller through the SPI (Serial Peripheral Interface) port. It 

utilizes the nRF ShockBurst™ technology allowing high speed radio signal 

processing without the assistance of the microprocessor, which further reduces the 

power consumption requirements. The transceiver is able to generate the preamble 

and calculate CRC for each data payload when transmitting signals. Additionally, it 

can validate CRC for each incoming data payload. The CRC calculations are 

performed by an on-board circuit without the CPU's assistance. NRF905 supports 

standby mode, where the current consumption is limited but the short startup times 

are still maintained, and 4 different Radio Frequency (RF) transmitting power modes 

ranging from -10dBm (at 9mA of current consumption) to 10dBm (at 30mA of current 

consumption). The current consumption in receiving mode is estimated at 12.5mA 

and can be reduced to 10.5mA when using reduced receiving power mode. The 

modulation used for the air interface is Gaussian Frequency Shift Keying (GFSK) with 

Manchester Encoding yielding an effective data transfer rate of 50kbps. The 

transceiver is able to operate on radio frequencies 430 to 434.7MHz or 868 to 

928MHz. 

3.1 IWSN introduction. 

 

 

Figure 3.1 Wireless Sensor Network Architecture 
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A typical Wireless Sensor Network consists of a set of Wireless Sensor Nodes and 

one or more Upload Stations (also referred to as Gateway Sensor Nodes or sinks) 

(Akyildiz et al. 2002) that provide a connection to a Host Computer on an external 

network. The external network uses a communication media not available to the 

Wireless Sensor Nodes, such as Ethernet or a different RF technology. The most 

commonly used architecture (Ye et al. 2002) is an ad-hoc network (see Figure 3.1), 

where every sensor node either broadcasts the message to all other nodes (using an 

endless message repetition preventing mechanism) or uses a routing mechanism to 

forward the message to the upload station through a series of other sensor nodes 

used as 'hops'(Kamble et al. 2007). Once the upload station receives the message it 

is uploaded to the External Network. 

Such architecture is useful in applications where sensors are distributed in an 

unplanned manner (e.g. battlefield sensor network deployed from an aircraft) and 

messages can be sent unreliably with no confirmation of the delivery from the Upload 

Station (although the acknowledgement system can be implemented in this 

architecture if the routing mechanism allows that).  

Infrastructure Wireless Sensor Network (IWSN) example (HINT Project 2010) used 

further in this dissertation describes an architecture consisting of the following: 

 Master device - an equivalent of the Upload Station in Classic WSN, linked to 

the External Network using for example an Ethernet controller or 802.11 WiFi 

controller. 

 Sensor (Slave) - a battery operated Wireless Sensor Node in the network 

equipped with microcontroller, radio transceiver and ADC converter allowing 

readings from the attached sensors. 

 Repeater - a bridge forwarding messages between wireless sensors and a 

master device. Uses similar radio hardware to sensors but is assumed to have 

a regulated power source. 

 Host PC - Host computer used by an operator to control the IWSN. 

This type of architecture (see Figure 3.2) can be found in WSN with a planned 

distribution of sensors, e.g. a network of temperature monitoring sensors deployed 

within a large building. It is assumed that all devices operate on the same radio 

frequency. All battery operated sensors (Slaves) attempt to connect to the Master 

device at a pre-programmed interval. The Master device uses an acknowledgement 

mechanism to guarantee the delivery of a single packet or an entire multi-packet 

transmission (depending on the configuration and packet type). Each Slave repeats 

the transmission attempt a pre-programmed number of times if an acknowledgement 

was not received. Repeaters are used to extend the coverage area of the network by 

forwarding each received packet to the Master (or other Repeater) and forwarding 

acknowledgements back to Sensors.  
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Figure 3.2 Infrastructure Wireless Sensor Network Architecture 

All devices using the radio link utilise a simple collision avoidance mechanism with a 

back-off system similar to Pure-Aloha Protocol (Abramson 1970): every node listens 

to determine if the radio carrier is busy prior to a transmission attempt. If the carrier is 

sensed as busy then a node backs off for a random period of time before another 

transmission attempt.  

The main advantage of this architecture is the simplicity of communication between 

devices as no routing tables need to be maintained, even though the delivery of 

specific (user pre-defined) data packets can be confirmed by the acknowledgement 

mechanism. Thanks to this simplicity the radio-handling part of the software can be 

implemented within the limited code space and run efficiently on many Resource 

Limited Devices. However, this architecture is not ideal in environments, where 

Repeaters and Masters cannot be provided with a fixed power source. The other 

disadvantage is that as more slaves are introduced to the network performance 

degrades.  The simplicity of the collision avoidance mechanism inhibits the use of a 

large number of slaves because slaves share a common frequency channel for 

transmission. 
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3.2 Description of the technical problem of authentication and 

encryption in the context of the IWSN. 

Infrastructure WSNs experience common issues related to the use of modulated 

radio frequency spectrum (radio waves) as the communication medium: 

Eavesdropping is possible on any wireless link using virtually any radio transceiver 

tuned to a given frequency with the ability to demodulate the signal. The architecture 

(described in 3.1) assumes that the link between the Master and the Host is secure. 

The Repeaters are used only to receive and forward data packets, without 

processing them and act as radio range extenders. Repeaters will not perform any 

active role in the security mechanism. The only parties requiring mutual 

authentication and secured (encrypted) communication channel are the Master and 

the Slave. 

Since the encryption and decryption mechanism has to be implemented on the Slave 

device, choosing such a mechanism must involve consideration of the limitations 

listed in Section 3.3. Ideally, the Master device will have an always-on, secured link 

with a Host (server) and this Host device can perform all of the computationally heavy 

encryption and decryption-related calculations.  In other words, the master can 

offload all computationally heavy tasks to a back-end server and accept returned 

values.  This permits the processing power of the master device to be used to handle 

service requests from a number of slave devices, rather than becoming occupied with 

computations associated with authentication and encryption. 

 

3.3 What are the specific problems associated with Resource Limited 

Devices 

The constraints imposed on possible implementations of security systems for RLDs 

can be categorised as Central Processor Unit (CPU) limitations, memory limitations, 

power consumption and cost barriers. 

CPU constraints 

The main CPU constraint in resource-limited devices is obviously the limited 

processing power of the processor. Passive RFID transponders (powered by an 

external interrogator) with a very limited number of logic gates on the circuit may be 

only capable of performing simple logical operations with one-bit values. More 

powerful embedded devices may be using 8-bit CPUs for example the Intel 8051 

derivative nRF9E5 clocked at 12MHz, which is able to execute only 750,000 

operations per second (assuming that 50% of operations require  two CPU cycles 

and the remaining require one). 

The number of operations per second is not the only constraint relating to the 

processor. Another issue related to microcontrollers is the word size. The most 
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commonly used cryptographic standards were designed to be implemented either in 

hardware (e.g. the first proposals of the Data Encryption Standard - DES (Federal 

Information Processing Standards 1993)) or more flexible using software. However, 

the majority of standards assume that 32-bit CPUs will be used, thus their 

mathematical basis and implementation is commonly optimized to use 32-bit (e.g. the 

Rijndael cipher (Daemen & Rijmen 1999)) or even 64-bit word. 8-bit microcontrollers 

would be forced to perform numerous instructions to handle 32-bit numbers 

manipulation, e.g. it takes approximately 35 CPU operations to multiply two 32-bit 

numbers on the 8051 8-bit CPU (Vault Information Services 2009). 

Memory limitations 

Low-cost passive Electronic Product Code (EPC) RFID tags can have as little as 104 

bits of non-volatile memory (EPCGlobal 2008) and may not even contain any 

Random Access Memory. More advanced tags however, may be equipped with 1-

2KB of memory. Microcontrollers are typically equipped with no more than 64KB 

memory, but this amount can be subject to limitations also due to 8-bit addressing 

issues causing slow access to some parts of the memory. 

Heavyweight cryptographic techniques using large keys (even 2048-bit in some RSA 

implementations) cannot be implemented in resource-limited device environments 

not only due to the amount of memory needed but also due to slow memory access 

times and limited read/write lifecycle. Most of the EEPROM memory chips allow for 

one million Read/Write cycles.  

Power consumption 

Resource-limited devices are heavily constrained in terms of power availability for 

their operation. Passive RFID tags draw the whole power from the interrogating 

device; active RFID solutions and wireless sensors are often powered by small cell 

batteries and are expected to provide a reasonably long operation time between 

battery replacements. Wireless Sensors are typically designed for one-time use, thus 

their lifetime can be increased only by power saving. All CPU-intensive operations 

and memory manipulations required by most cryptographic algorithms along with the 

radio transceiver usage are the most power consuming activities performed by such 

devices so they have to limited to a minimum. 

Cost Barriers 

Most of the resource-limited devices are designed to be manufactured in high 

volumes with a very low price per item. An addition of a single logic gate to the 

electronic circuit may seem inexpensive but if multiplied by millions of manufactured 

items may have a substantial influence on the profit made by the manufacturer. This 

constraint forces solutions requiring little or no additional hardware modifications. 
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3.4 Technical description of the processor and its implications for 

effective security implementation 

 

The nRF9E5 single chip system uses an 8-bit microprocessor with an instruction set 

compatible with the industry standard 8051 processor. The instruction timing differs 

from the industry standard: each instruction uses 4 to 20 clock cycles instead of 12 to 

48 in the standard. The hardware specification of the chip (Nordic Semiconductors 

2009b) allows utilizing a 4-20MHz crystal oscillator to generate clocking signal on the 

circuit (shared by microcontroller, AD converter and radio transceiver). The crystal 

oscillator can be started and stopped as requested by software. While it is stopped, 

nRF9E5 uses the internal low power 4KHz RC oscillator which runs continuously (as 

long as 1.8V of power is supplied) and  ensures that vital functions such as the wake-

up timer are functioning even in deep power saving modes. 

 

The microcontroller‟s architecture is 8-bit: each machine language opcode (operation 

code) is a single 8-bit value, which allows for 256 different instruction codes. Most of 

8051‟s registers are 8-bit values, e.g. the Accumulator, each of the Register Banks. 

There are several special cases where a given register is referred to as 16-bit (such 

as the three Timers), but in fact these registers are addressed as two separate 8-bit 

registers often referred to as High and Low indicating which part of the 16-bit value 

they hold. The only truly 16-bit values that the 8051 handles are the Program 

Counter (PC) indicating the address of the next instruction to be executed and Data 

Pointer (DPTR) used for memory addressing. The CPU is only capable of performing 

basic mathematical operations on two 8-bit numbers at each cycle. There is no 

additional hardware support for calculation of numbers larger than 8-bit or any 

decryption/encryption coprocessors. In consequence manipulation of larger numbers 

requires numerous 8-bit calculations, for example a multiplication of two 16-bit 

numbers requires 9 CPU instructions. 

 

The 8-bit word size, relatively low CPU clock frequency and the lack of mathematical 

hardware coprocessors in the nRF9E5 narrow the area of possible security protocols 

and algorithms which can be successfully implemented to those that do not require 

exhaustive calculations (required by most of the Asymmetric Cryptography 

techniques) and those that are optimized for 8-bit values. In consequence, only 

lightweight authentication protocols and lightweight encryption algorithms are 

reviewed and analysed in this dissertation. 
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3.5 Technical description of the memory structure and its limitations for 

effective security implementations 

The nRF9E5 microcontroller has 256 bytes of Internal Data Memory used as a RAM 

with fast access, 128 Special Function Registers (one byte each) used to set different 

operating modes of the CPU and the Radio Frequency Transceiver. Additionally it 

contains 4 kilobytes of external on-chip RAM. The memory uses Harvard Architecture 

and is organized into six different memory spaces (see Figure 3.3). It provides 128-

bytes of directly addressable DATA RAM (8052 compatible) but may also be used to 

hold IDATA-addressed variables. The next 128 bytes are the IDATA memory area 

which is accessible through indirect addressing and effectively interleaves with the 

Special Function Register (SFR) which in turn is directly accessed. The entire 4K of 

memory (addresses above 0FFh) is accessible as an external XDATA memory but 

this area is shared with the CODE memory, so the use of XDATA variables 

effectively limits the available code space. The first of 256 bytes of XDATA can be 

addressed in paged mode and in this configuration it is referred to as PDATA. 

Memory addressing diagram can be seen in Figure 3.3.  

 

Figure 3.3 8051 Memory Addressing 

The memory structure can be represented in the following manner: 
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Figure 3.4 Physical organization of memory on 8051 

Additionally, there is a small 512 byte ROM area located on-chip and containing 

bootstrap program executed automatically after power on or reset. The bootstrap 

loads the user program into on-chip 4K RAM from the off-chip external EEPROM 

memory required for operation. 

The manufacturer of the chip did not include any options to extend the RAM size 

above the 4KB - it is not possible to connect any additional external memory directly 

to the CPU pins. Additionally, the bootstrap program in ROM cannot be updated. The 

only memory size expanding option is to use an external EEPROM memory (generic 

25320 with SPI) attached through one of the GPIO pins and interfacing through a 

common SPI bus. Accessing external memory through the SPI bus has major 

consequence on the performance of the CPU as each of the SPI read/write 

(performed byte-by-byte) operations takes several processor cycles. The CPU is not 

able to perform additional tasks while in this process. One of the major limitations is 

the fact that external EEPROM cannot be used to expand the possible program size. 

In consequence, the program code size is always limited to 4KB – the bootstrap 

program will ignore anything above 0FFFh address in EEPROM when loading the 

program. Section  will attempt to provide a solution to overcome this limitation with 

the support of 8051 dedicated software Assembly Language Linker. 

Possible security implementations have to be filtered through the following 

constraints imposed by nRF9E5: 

 Limited code/RAM space – The CODE and XDATA space are shared in this 

CPU‟s architecture, so variables and constants allocated here limit the overall 

code space. The existing Infrastructure WSN programs already occupy a vast 

amount of the code/RAM space (HINT Project 2010), so the 

algorithms/protocols have to be implementable with a minimum machine code 

size and there must be a limited need for variable memory allocation. In case 

the solutions used to overcome the memory limitations (see section 3.7) fail 

the space for the machine code may be limited to approximately 200 bytes 
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only (assuming that for an existing sensor program already occupies 95% of 

the available code space). 

 Extremely slow access to the external non-volatile memory – the 

reference platform utilizes 32Kb 25320 generic EEPROM. The amount of the 

data which needs to be accessed from the external EEPROM memory and the 

frequency of the access has to be limited. This imposes restrictions on 

possible encryption key sizes and the usage of non-volatile protocol-specific 

data. 

 Hacking the EEPROM - The EEPROM memory can be read by freely 

available EEPROM programmers, thus in the case of a physical access attack 

the amount of information disclosed cannot compromise the security of the 

entire system. This forces solutions without global pre-shared encryption keys. 

An example of a physical access attack compromising the security of the 

entire WSN using the TinySec Protocol (Karlof et al. 2004) was described in 

(Hartung et al. 2005). 

3.6 Technical description of the radio transceiver and its limitations for 

effective security implementations 

The nRF9E5 single chip microcontroller integrates a nRF905 (Nordic Semiconductors 

2009a) compatible Radio Frequency (RF) transceiver operating on 433/868/915MHz 

bands (sub-1GHz). The transceiver consists of a fully integrated frequency 

synthesizer, a power amplifier, a modulator and receiver chain with demodulator.  

The modulation type used in nRF905 is Gaussian Frequency Shift Keying (GFSK) 

with a data rate of 100kbps. The data bits are encoded and decoded using 

Manchester Encoding/Decoding and the effective symbol rate is limited to 50kbps 

(one symbol per two clock signals); however, no scrambling on the microcontroller is 

needed. 

The transceiver uses SPI bus for reprogramming and data input/output. It is equipped 

with a circuit able to calculate the Cyclic Redundancy Check (CRC) checksum of the 

incoming or outgoing data packets. Transmitting (TX) and Receiving (RX) addresses 

can be 1 to 4-byte long and the data payload length may vary from 1 to 32 bytes.  

 

Figure 3.5 NRF9E5 packet structure 

Each data packet contains the following (see Figure 3.5): 

 Preamble - predefined 10-bit sequence used to adjust the receiver for optimal 

performance. 

 TX Address - programmable recipient‟s address with a length of 1 to 4 bytes. 

 Payload - user data, length of the field configurable within 1 to 32 bytes range. 

Preamble TX Address Payload CRC 
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 CRC - 8 or 16-bit CRC checksum. 

During the TX mode the packet is assembled automatically by the transceiver once 

the Payload and TX address is supplied – the CRC is calculated and added with a 

Preamble. After a transmission the RF transceiver sets the Data Ready (DR) pin 

high, so the microprocessor can be notified of a finished transmission.  

In RX mode the radio is used to listen for incoming transmissions and if one occurs 

the Carrier Detect (CD) pin is set high. After this action the nRF905 analyses the 

Address field and discards the packet if it is destined for a different address or 

accepts it if the address matches, sets the Address Match (AM) pin high, reads in the 

payload to the buffer and verifies the CRC checksum. 

The way the RF transceiver handles incoming packet addressing (automatic packet 

discarding when the address does not match) imposes constraints on the possibilities 

of protection against traceability (ID disclosure related) attacks (Juels 2006). In 

consequence in a situation where the communication is initiated by the Master device 

the packet will need to hold a broadcast address and all Slaves should be able to 

temporarily reconfigure themselves to accept such packets. A frequent usage of 

broadcast addressing may negatively impact the performance of the entire network 

(Ni et al. 1999). Another solution would require Slaves to ignore address mismatch 

and examine each packet which again reduces the performance of the network. 

The maximum Payload size of 32 bytes seems large but the bandwidth of only 

50kbps has to be taken into consideration too. In the presence of multiple devices 

operating on the same frequency the transmission time has to be limited to avoid 

network congestion. It has to be noted also that the entire NRF9E5 consumes the 

highest possible amount of power during radio transceiver operations (up to 30mA at 

10dBm output power comparing to 2.2mA when only the 8051 CPU is active), thus 

large data transfer, although possible, can severely degrade the sensor‟s lifetime.  

In consequence of the above limitations, the security system has to impose low radio 

bandwidth requirements.  

3.7 Overcoming limitations: Code Banking on the nRF9E5 

The major limitations of the reference platform nRF9E5 chip are the code space size 

and the lack of any coprocessors enhancing mathematical calculations. While the 

latter can be overcome by using less CPU intensive security protocols and 

algorithms, the program size and RAM limitations are hard to overcome without 

changing the entire microcontroller platform. A software solution to this issue using 

the concept of Code Banking with the native support of the 8051 Assembler Linker 

(similar solutions are available from KEIL (ARM Ltd. 2009a) and Raisonance 

(Raisonance SAS 2010) Integrated Development Environments) is proposed below. 

The origin of the Code Banking concept (ARM Ltd. 2009b) comes from the 16-bit 

memory addressing limitation of the 8051 CPU. Due to the addressing bit width the 
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maximum memory which can be allocated is limited to 64Kb. The Code Banking 

mechanism permits and increase in the Code memory size up to 1MB (KEIL linker) or 

4MB (Raisonance linker) by splitting the program into a Common Area section and a 

number of memory banks (see Figure 3.6). The Common Area (of a user-defined 

size s) and one of the Code Banks is loaded at a given time, so the microcontroller 

can effectively “see” and address 64KB of the Code memory. If a function makes a 

call to another function the linker generates a code performing that switch, called a 

Bridge. All bridges are located in the Common Area which remains the same 

regardless of which Code Bank is currently used. The full description of the assembly 

language routines performing bank switches and limitations such as interrupt vector 

handling are outside the scope of the document and can be found in Raisonance and 

KEIL linkers‟ documentation (ARM Ltd. 2009b). 

 

Figure 3.6 Code Banking Layout 

A typical hardware design scenario permits connecting the memory directly to the 

CPUs I/O ports. In this case a bank switch process would only require changing the 

input/output port number to access different blocks of memory, where additional code 

banks are located (see Figure 3.7). The Common Area has to be duplicated across 

all memory blocks so it would still be accessible in the same form after changing the 

I/O ports.  
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Figure 3.7 8051 with 156Kb EEPROM attached to ports P0-P3 

In case of the reference platform with the nRF9E5 microcontroller, where it is not 

possible to connect any additional memory directly to the CPU, the Code Banking 

mechanism can be utilized to overcome the Code space limitation but in a manner 

different  to the original design. Instead of using the directly attached memory chip an 

external EEPROM connected to the SPI bus can be utilized to hold additional code 

banks. However, the I/O pin switching routine has to be replaced with a function that 

overwrites the code bank space in the on-chip RAM with the content of this bank 

located on the external EEPROM. Every bank switch will be a very slow process 

since the entire code bank binary file (2-3Kb) has to be read through the SPI bus 

from the external EEPROM (see Figure 3.8). Initial experiments performed by the 

HINT Project team (HINT Project 2010) proved that it takes 65 milliseconds to load a 

Code Bank of 2Kb in size. 

 

Figure 3.8 nRF9E5 code banking with an external SPI-accessed EEPROM 

Despite the negative effect on the microcontroller‟s performance this mechanism 

permits the effective expansion of the available code space above 4Kb without any 
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hardware modifications in the existing reference platform. This would allow providing 

a relatively large code space for the implementation of the security mechanism. The 

failure of this concept would result in significant code space limitations for the security 

algorithms and force the usage of slow –access EEPROM-located variables. 
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4. Implementation 

4.1 Hardware-related requirements for the implementation 

The main development platform used is the Nordic Semiconductors nRF9E5 

microcontroller that is used for both master and slave devices.  The nRF9E5 has 

limited resources (see Section 3.4 for details) and this has implications for the 

implementation of authentication and encryption on these devices.  This limitation is 

somewhat eased by (a) offloading computationally heavy tasks from the master to a 

back-end server, allowing the master to more effectively handle service requests 

from slave devices and (b) by improving code memory space using code banking.  

Neither of these enhancements has been used in this project. Since a vastly scaled 

down communication and radio protocol is used, the inherent memory of the nRF9E5 

is sufficient to effectively run the security mechanisms. Variables that would 

otherwise be serviced from a back-end server have been hard-coded into master and 

slave, negating the use of the back-end server in the developed prototype. However, 

in a field implementation of secure sensor networking, where many slaves 

communicate with a master, it would be necessary to use a back-end server and 

overcome the code space limitations through code banking. Considering the 

limitations of the devices, a C language implementation was chosen instead of 8051 

native Assembly code to allow faster porting to other platforms.  

The main limitation of the nRF9E5 microcontroller in terms of the implementation was 

the maximum code size of only 4 kilobytes. The prototype was implemented to fit 

under this barrier However, some protocol simplifications were needed to achieve 

small code space. These simplifications are further described in section 4.4. The 

amount of RAM (256 bytes for both Data and Idata) was sufficient but almost entirely 

used by both master and slave prototypes. 

The radio transceiver embedded on nRF9E5 requires pre-configuration and manual 

handling of the OSI Model Data Link and upper layers. This generates another code 

space requirement, thus a simplified radio protocol is used in the prototype. The 

hardware design of the radio transceiver offers two useful tools that simplify the radio 

protocol implementation: Address Match and Carrier Detect bits. These tools were 

used to implement a simple Listen-Before-Talk collision avoidance scheme. 

4.2 Integrated Development Environment (IDE) and Hardware utilised. 

There are two well known Integrated Development Environments offering packaged 

Assembler and ANSI-C compilers for the 8051-compatible microcontrollers: KEIL 

(ARM Ltd. 2009a) and Raisonance RC51 IDEs (Raisonance SAS 2010). Raisonance 

RKit Eval51 was utilised as it offers an 8051 compiler fully functional with the 

exception of a code size limited to 4 kilobytes. The code size limitation perfectly 

matches the hardware limitation of the nRF9E5 microcontroller. 
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The hardware used in the implementation stage were two Nordic Semiconductor 

Evaluation Boards nRF9E5-EVBOARD with EEPROM emulator/programmer USB 

dongles nRF24E1. The programming dongles were controlled by the nRFPROG 

software supplied by Nordic Semiconductors. 

4.3 Design - algorithms for both authentication and encryption 

The prototype is designed to fit within 4 kilobytes of total code space available for 

programs on the nRF9E5 reference platform. The usage of code banking or other 

techniques overcoming the 4KB limitation is not considered in the prototype 

implementation. Instead some minor simplifications in the protocol (explained below) 

are used. The scope of the prototype is explained in Fidure 4.1. The back-end 

database and PC Host software are outside the scope of the implementation – it will 

focus only on the 8-bit microcontroller code written in the C language with nRF9E5-

specific radio transceiver handling functions. 

PC Host [PRNG]

EthernetDatabase 

[IDSs, keys] Master (nRF9E5)

Slave (nRF9E5)

Slave (nRF9E5)

Slave (nRF9E5)

Prototype‟s 

Scope

Production Environment 

Requirements 

 

Figure 4.1 The Scope of the Implementation part 

Radio Protocol 

The prototype uses a simplified radio protocol allowing communication between the 

Master and the Slave. Both devices utilise Address Match (AM) and Carrier Detect 

(CD) bits. The Carrier Detect bit will be used to implement a simple Listen-Before-

Talk collision avoidance mechanism. Both devices test the CD bit before switching 

the radio into transmitting (TX) mode. In this simplified model a transmitting device 

will loop forever waiting for the CD bit to be clear and attempt the transmission 

straight away after this bit is cleared. Due to code space constraints random TX 

back-off period (Pure-Aloha Protocol) or wait-until-CD timeout is not implemented in 

the prototype. 
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Authentication 

The Gossamer lightweight authentication protocol (see Section 2.2.3 for full 

description) was chosen to fulfil the requirement for mutual authentication between 

the Master and the Slave devices (see Section 0) in Infrastructure WSN (see Section 

3.1). This protocol was chosen mainly thanks to its proven security, low memory and 

computation requirements, and the expected simplicity of the implementation of all 

necessary mathematical operations on 8051-compatible CPU. 

The original design of the Protocol is simplified for the prototype implementation 

purposes in the following areas: 

 The keys and IDS are not stored persistently on the Slave device due to code 

space overhead imposed by the EEPROM read/write routines. Upon each 

power loss these values will be reset to the initial ones. 

 Master side: random numbers n1 and n2 will be replaced by hard-coded 

values for experimentation purposes. The IDS of a sample Slave will also be 

hard-coded, so the back-end database will not be needed in the simplified 

model. 

 Slave side: in the original Gossamer Protocol the Slave device sends the 

value D but there is no acknowledgement that D has been received and 

verified by the Master.  The Slave then updates its keys and IDS and saves 

the previous IDS and key values.  In a subsequent round, if the slave cannot 

verify value C, in which case authentication of the master will not have been a 

success, the slave can roll back to the previous keys and IDS values.  This de-

synchronization attack prevention mechanism has not been implemented in 

the simplified protocol.   

Figure 4.2 shows the full round of the Gossamer authentication protocol adapted to 

the needs of the Infrastructure WSN. The main difference was the removal of the 

„Hello‟ message as in IWSN the Slave device (Tag equivalent in standard Gossamer 

specification) initiates the communication. 

Encryption 

The Scalable Encryption Algorithm (SEA - see Section 2.3.3 for full description) was 

chosen as the encryption mechanism. SEA(96, 8) mode was used, meaning that the 

block and the key size of 96-bits and 8-bit word matching the word size on the 

nRF9E5. The choice of the algorithm can be justified by the lack of proven 

weaknesses in the algorithm and the fact that the algorithm can be implemented with 

a very limited code space by sacrificing the throughput of the encryption (number of 

words that can be encrypted over a given period of time). The reduced throughput of 

the algorithm is not a significant issue in the context of IWSN, where the amount of 

data transferred is very small in most cases. 
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Figure 4.2 Gossamer Protocol Adapted to the Infrastructure WSN 
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Another advantage of this algorithm is its scalability which permits increasing key and 

word sizes to 192 bits without major modifications of the code. This can be applied in 

cases where the 96-bit security is not regarded as strong enough. 

Since the Gossamer authentication protocol exchanges two new 96-bits keys at each 

round, one of these keys can be used as an encryption key for the SEA(96,8) 

algorithm during one communication session between the Master and the Slave. 

4.4 Coding - Main elements of code explained 

Both the Master and the Slave programs were written in two separate modules: 

Master.c and Slave.c. Each of the modules contains the following main elements: 

 Initialization (UART timers, radio), 

 Utilities Block (UART handling, SPI handling), 

 Radio Handling Block (TX and RX), 

 Gossamer functions, 

 SEA functions. 

The organization of the main module for both Master.c and Slave.c is explained in 

Figure 4.3. The full code can be found in Appendix B. This sub-section describes the 

Gossamer and SEA function. 
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Figure 4.3 Main Program Components 

4.4.1 Gossamer Implementation 

The Gossamer Protocol implementation uses the main gossamerMaster and 

gossamerSlave loops following the design explained in Figure 4.2. All 96-bit values 

are implemented as an array of 12 unsigned characters (one byte each) in Big-

endian (Most Significant Bit first) notation. The IDS, ID, K1, K2 and Pi values are 

initialized on the startup of the main loop, thus on every power-loss they are reset to 

the hard-coded values. 

All Gossamer-Related mathematical operations are implemented in separate 

functions explained below. 
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Addition Modulo96 

Performs addition Modulo96 on two arrays passed as parameters and saves the 
result into the second argument's memory location. The function simply adds each 
element in the array one-by-one starting with the last element (12) and carries a bit 
over to the lower element if the result is larger than 255. If the lower elements are 
255 already then the bit is carried over to lower elements until the head of the array if 
needed. 
 
void additionMod96 (unsigned char idata *array1, unsigned char idata 

*result) 

{ 

 unsigned char i; 

    unsigned char j; 

     

    for (i=11; i>0; i--) 

    {  

        result[i] += array1[i]; //Add two bytes (no carry) 

        if (result[i] < array1[i]) //Check if carry needed and append to 

      //upper byte 

        { 

            result[i-1]++; 

            //check if previous byte was not 255 overloaded to 0 and step 

  //back to lower elements to do the same 

            j=i; 

            //If a carry bit overloads upper byte increment upper to  

  //overloaded 

            //Continue until the array head is met if needed 

            while(result[j-1] == 0 && j > 1)    

            { 

                result[j-2]++; 

                --j; 

            } 

        } 

    }  

    result[0] += array1[0]; //Got to the MSB - just add and ignore carry  

} 

Figure 4.4 Code: Addition Modulo96 

Subtraction Modulo96 

Performs subtraction Modulo96 on two arrays passed as parameters and saves the 

result into the second argument's memory location. Similarly to the Addition function 

it simply subtracts each element one-by-one starting with the last element. If the 

minuend is smaller than the subtrahend, then a bit is borrowed from the lower 

element. If the lower elements are zeros then the borrow bit is taken from lower 

elements until the array head is met. This function is only required on the Slave side 

as it is only needed when extracting random numbers n1 and n2 form message A 

and B respectively. 

void subtractionMod96 (unsigned char idata *array1, unsigned char idata 

*result) 

{ 

 unsigned char i; 

    unsigned char j; 
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    for (i=11; i>0; i--) 

    {     

        if (result[i] < array1[i])  //Verify if the minuend is not smaller 

      //than the subtrahend 

        { 

            result[i-1] -= 0x01;    //borrow LSB from the lower element 

            j=i; 

            //If a borrow bit overloads upper byte decrement upper byte to 

  //the overloaded one 

            while(result[j-1] == 0xFF && j > 1)    

            { 

                result[j-2] -= 0x01; 

                j--; 

            }    

        } 

        result[i] -= array1[i]; //Subtract (no carry) 

    }  

    result[0] -= array1[0]; //Got to the MSB - just add and ignore carry  

} 

Figure 4.5 Code: Subtraction Modulo96 

XOR two 96-bit numbers 

This function loops through all elements in the array and performs a bitwise exclusive 

OR operation on them one-by-one. 

void xorArrays (unsigned char idata *array1, unsigned char idata *result) 

{ 

    unsigned char i; 

 

    for (i=0; i<12; i++) 

    { 

        result[i] ^= array1[i]; 

    } 

} 

Figure 4.6 Code: XOR two 96-bit numbers 

Bit Rotation (ROT) on two numbers 

The bitRotation function performs circular bit rotation of a 96-bit number by a 

Modulo96 of a second number passed as a second parameter. This function uses 

four sub-functions to perform the bit rotation: 

 getModulo96 - returns Modulo96 of a 96-bit number passed in the array of 12 

one-byte elements. The function uses a command and conquer approach. 

Starting from the lowest element a Modulo96 of each element (split into two 4-

bit numbers and multiplied by 256) is calculated one-by-one and added to the 

overall result. At each iteration the overall result is reduced Modulo96. 

unsigned char getModulo96 (unsigned char idata *array) 

{ 

    unsigned char i; 

    unsigned char modulus = 0; 
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    for (i=0; i<11; i++) 

    { 

        //Divide and conquer approach: sum of two 4-bit numbers multiplied 

//by 256 

        modulus +=  (( (array[i] & 0x0f) + (array[i] >> 4) )*256)%96; 

        modulus %= 96;  //Reduce each result Mod96 - can be done less 

//frequently 

    } 

    return (array[11] + modulus)%96;    //Add the result to the LSB and 

//calculate Mod96 again 

} 

Figure 4.7 Code: Get Modulo96  

 bitShift  - performs circular bit-shift (up to 7 places) of each element in the 

array in both directions. Depending on the direction the remainder of the shift 

is appended to the lower or upper element. 

void bitShift (unsigned char idata *array, unsigned int direction, unsigned 

int bitsToShift) 

{ 

    unsigned char i; 

    unsigned char element0; 

    unsigned char temp; 

 

    //Direction: 0 for left shift, 1 for right shift 

    if (!direction)     //Shift bits to the left with carry to the lower 

element  

    { 

        element0 = array[0]; 

        array[0] = array[0] << bitsToShift; 

         

        for (i=0; i<11; i++) 

        {          

            temp = array[i+1]; 

            array[i+1] = array[i+1] << bitsToShift; 

            array[i] |= temp >> (8 - bitsToShift); 

        } 

        array[11] |= element0 >> (8-bitsToShift); 

 

    } 

    else    //Shift bits to the right with carry to the lower element  

    {      

        element0 = array[11]; 

        array[11] = array[11] >> bitsToShift; 

     

        for (i=11; i>0; i--) 

        { 

            temp = array[i-1]; 

            array[i-1] = array[i-1] >> bitsToShift; 

            array[i] |= temp << (8 - bitsToShift); 

        } 

        array[0] |= element0 << (8-bitsToShift); 

    } 

} 

Figure 4.8 Code: Bit Shift 
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 indexShift - rotates the elements of the array by up to 11 positions left or right. 

It takes advantage of the arrayReverse function and a formula assuming that 

the array is split into two sub-arrays A and B (A.B), where the size of array A is 

the number of places the elements are to be rotated. The formula is as follows: 

B.A = reverse( reverse(A).reverse(B) ). 

void indexShift (unsigned char idata *result, unsigned int direction, 

unsigned int indexShift) 

{ 

    //Direction: 0 for left shift, 1 for right shift 

    if (!direction) 

    { 

        arrayReverse(result, 0, indexShift-1); 

        arrayReverse(result, indexShift, 11); 

        arrayReverse(result, 0, 11); 

    } 

    else 

    { 

        arrayReverse(result, 12-indexShift, 11); 

        arrayReverse(result, 0, 11-indexShift); 

        arrayReverse(result, 0, 11); 

    } 

} 

Figure 4.9 Code: Index Shift 

 arrayReverse - reverses the elements in the array (array[beginning] becomes 

array[end] and so on). 

void arrayReverse(unsigned char idata *result, unsigned char left, unsigned 

char right) 

{ 

    unsigned char temp; 

    unsigned char i; 

    unsigned char j; 

 

    //Start with edges and continue until middle elements are processed 

    for (i=left, j=right; i<j; i++, j--) 

    { 

        temp = result[i]; 

        result[i] = result[j]; 

        result[j] = temp; 

    } 

} 

Figure 4.10 Code: Array Reverse 

The bitRotation function calculates the Modulo96 of the first argument (array to be 

rotated by) and then analyses the result to verify if bitShift and indexShift functions 

need to be called and calls them accrodingly. 

void bitRotation (unsigned char idata *array1, unsigned char idata *result, 

unsigned int direction) 

{ 

    unsigned char modulo = getModulo96(array1);     //First get modulo 

    unsigned char indicesToShift; 

    unsigned char bitsToShift; 
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    //Second divide modulo by 8 and rotate the array (if modulo is bigger 

 //than 8) 

    //Direction: 0 for left shift, 1 for right shift 

    if (modulo > 8) 

    { 

        indicesToShift = modulo/8; 

        indexShift(result, direction, indicesToShift); 

    } 

 

    //Then bitshift with carry each element by the remaining shift (shift 

 //amount will be <8) 

    bitsToShift = modulo%8; 

    if (bitsToShift != 0) 

        bitShift(result, direction, bitsToShift); 

} 

Figure 4.11 Code: Bit Rotation 

MixBits function 

The MixBits function implements the Gossamer author's recommendation shown in 

Figure 4.12. 

Z = MixBits (X, Y) 
Z = X 

FOR counter = 0 to 32 
Z = (Z>>1) + Z + Z + Y 

ENDFOR 

 
Figure 4.12 MixBits Function pseudocode 

The function uses two arrays passed as parameters and a temporary array returned 

with the result. Functions described above (additionMod96 and bitShift) are utilized. 

unsigned char* mixBits (unsigned char idata *array1, unsigned char idata 

*array2) 

{ 

    // Z = mixBits (X,Y) 

    unsigned char idata result[12]; 

    unsigned char i; 

 

 // Z = X 

    for (i=0; i<12; i++) 

    { 

        result[i] = array1[i]; 

    } 

 // 32times: Z = (Z>>1) + Z + Z + Y 

    for (i=0; i<32; i++) 

    { 

        bitShift (array1, 1, 1); 

        additionMod96 (array1, result); 

        bitShift (array1, 0, 1); 

        additionMod96 (array1, result); 

        additionMod96 (array1, result); 

        additionMod96 (array2, result); 

    } 

    return result; 
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} 

Figure 4.13 Code: MixBits 

The main Gossamer loop following the procedures listed in Figure 4.2 can be found 

in Appendix B. 

4.4.2 Scalable Encryption Algorithm (SEA) Implementation 

The SEA(96, 8) implementation uses a word size of 8-bits (unsigned char) with a 

block and key size of 96-bits. Both are passed as an argument in a form of a 12-

element array of unsigned characters. The main components of the SEA 

implementation are the following functions: cryptographic round, the key round, the 

S-Box, the bit-rotation, the word-rotation and the main SEA wrap-up function. In this 

prototype the key used in encryption will be either k1 or k2 updated by the Gossamer 

function at each authentication round.  

SEA Substitution Box 

Per SEA author's suggestions the S-Box can be applied bitwise to any 3 elements of 

a block-half currently being processed (for blocks of 96-bits). Since there are 6 one-

byte elements in each half of the block the S-Box can be applied on two different set 

of words. (Standaert et al. 2006) suggested a function ('i' equals 0 or 1) shown in 

Figure 4.14. 

void seaSBOX (unsigned char data *block, unsigned char i) 

{ 

    block[3*i] = (block[3*i+2] && block[3*i+1]) ^ block[3*i]; 

    block[3*i+1] = (block[3*i+2] && block[3*i]) ^ block[3*i+1]; 

    block[3*i+2] = (block[3*i] || block[3*i+1]) ^ block[3*i+2]; 

} 

Figure 4.14 Code: SEA S-Box 

Standaert agrees that it is safe to simplify this function so the S-Box is only to the first 

three elements in order to reduce the code space required by this function. 

void seaSBOX (unsigned char idata *block, unsigned char i) 

{ 

    block[0] = (block[2] && block[1]) ^ block[0]; 

    block[1] = (block[2] && block[0]) ^ block[1]; 

    block[2] = (block[0] || block[1]) ^ block[2]; 

} 

Figure 4.15 Code: SEA S-box modified 

SEA Bit Rotation 

The Bit Rotation function in SEA(96,8) implementation performs circular bit-rotation 

one place to the right on words numbered 0 and 3, and one place to the left on words 

numbered 2 and 5. The seaBitRotation function implemented uses Raisonance RC51 

compiler's intrinsic functions '_cror_' and '_crol_' to save the code space. 
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void seaBitRotation (unsigned char idata *block) 

{ 

    block[0] = _cror_(block[0], 1); 

    block[2] = _crol_(block[2], 1); 

    block[3] = _cror_(block[3], 1); 

    block[5] = _crol_(block[5], 1); 

} 

Figure 4.16 Code: SEA Bit-Rotation 

SEA Word rotation 

The seaWordRotation function performs circular right- or left-rotation of the block-half 

array elements by one place. The Gossamer indexShift function can be re-used to 

save the code space but this function was also implemented to make the SEA 

module independent and re-usable without the Gossamer functions overhead. 

void seaWordRotation (unsigned char idata *block, unsigned char direction) 

{ 

    //Direction 0 for left and 1 for right rotation 

    unsigned char i; 

    unsigned char temp; 

     

    if (direction == 0) 

    { 

        temp = block[0]; 

        for (i=0; i<5; i++) 

            block[i] = block[i+1]; 

        block[5] = temp; 

    } 

    else 

    { 

        temp = block[5]; 

        for (i=5; i>0; i--) 

            block[i] = block[i-1]; 

        block[0] = temp; 

    } 

} 

Figure 4.17 Code: SEA Word-Rotation 

SEA Encrypt/Decrypt round 

The seaCryptRound function performs one round encryption or decryption round 

using left and right half of the block and one half of the key - left or right depending 

on the round. This function implements the following SEA equations:   encryption 

function and   decryption function (below). See Figure 2.6 for a graphical 

representation of the SEA encryption/decryption round.  

Fe(Li, Ri, KeyHalf) = RightWordRot(Li) XOR bitRotation(sbox(Ri+ KeyHalf)) 

Fd(Li, Ri, KeyHalf) = LeftWordRot(Li XOR bitRotation(sbox(Ri+ KeyHalf))) 

The function takes advantage of previously described word rotation, bit rotation and 

substitution box functions. 
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void seaCryptRound (unsigned char direction, unsigned char idata 

*blockLeft, unsigned char idata *blockRight, unsigned char idata *keyHalf) 

{ 

    unsigned char i; 

    unsigned char temp[6]; 

 

    //Every operation will be performed on blockLeft as this memory 

 //location will become the right block for the next round. 

    //Save the right block 

    for (i=0; i<6; i++) 

        temp[i] = blockRight[i]; 

 

    //ENCRYPTION 

    //Fe(Li, Ri, K/2i) = RightWordRot(Li) XOR bitRot(sbox(Ri+K/2i)) 

    //DECRYPTION 

    //Fd(Li, Ri, K/2i) = LeftWordRot(Li XOR bitRot(sbox(Ri+K/2i))) 

 

    //Step by step: 

    //Ri+K/2i 

    for (i=0; i<6; i++) 

        blockRight[i] += keyHalf[i]; 

    //sbox(Ri+K/2i) 

    seaSBOX(blockRight, i%2); 

    //bitRot(sbox(Ri+K/2i)) 

    seaBitRotation(blockRight); 

    //RightWordRot(Li) - encryption only 

    //Direction 0 for encryption and 1 for decryption 

    if (direction == 0) 

        seaWordRotation(blockLeft, 1); 

    //RightWordRot(Li) XOR bitRot(sbox(Ri+K/2i)) 

    for (i=0; i<6; i++) 

    { 

        blockRight[i] ^= blockLeft[i]; 

        blockLeft[i] = temp[i];     //BlockLeft(i)+1 becomes BlockRight(i) 

    } 

    //LeftWordRot(Li XOR bitRot(sbox(Ri+K/2i))) - decryption only 

    if (direction == 1) 

        seaWordRotation(blockRight, 0); 

} 

Figure 4.18 Code: SEA Encrypt/Decrypt Round 

SEA Key Round 

The seaKeyRound function performs one round of the key scheduling. These rounds 

are interleaved with encryption/decryption rounds. Each key round performs the 

following key scheduling function (see Figure 2.6 for a graphical representation): 

Fk(KLi-1,KRi-1,Ci) <=> KRi = KLi-1 XOR RightWordRot(bitRot(sbox((KRi-1)+Ci))) 

The function takes advantage of previously described word rotation, bit rotation and 

substitution box functions. 

void seaKeyRound (unsigned char idata *keyLeft, unsigned char idata 

*keyRight, unsigned char Ci) 

{ 

    //Fk(KLi-1,KRi-1,Ci) <=> KRi = KLi-1 XOR RightWordRot(bitRot(sbox((KRi-

1)+Ci))); 

    unsigned char i; 
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    unsigned char temp[6]; 

     

    //Save the left key (left key will become right after the round) 

    //Every operation will be performed on keyLeft as this memory location 

 //will become a right key for the next round. 

    for (i=0; i<6; i++) 

        temp[i] = keyRight[i]; 

    //Step-by-step: 

    //init Ci (LSW equals i) 

    ////Ci[5] = i; 

    //(KRi-1)+Ci 

    keyRight[5] += Ci; 

    //sbox((KRi-1)+Ci) 

    seaSBOX(keyRight, (Ci%2)); 

    ////seaSBOX(keyRight, 1); 

    //bitRotation(sbox((KRi-1)+Ci)) 

    seaBitRotation(keyRight); 

    //RightWordRot(bitRot(sbox((KRi-1)+Ci))); 

    seaWordRotation(keyRight, 1);    

    //KRi = KLi-1 XOR RightWordRot(bitRot(sbox((KRi-1)+Ci))); 

    for (i=0; i<6; i++) 

    { 

        keyRight[i] ^= keyLeft[i];     

        keyLeft[i] = temp[i];   //KeyLeft(i)+1 becomes KeyRight(i)  

    } 

} 

Figure 4.19 Code: SEA Key Round 

 

SEA main function 

The main SEA(96, 8) function takes two 12-byte parameters: block and key. 

(Standaert et al. 2006) advised that the minimum safe number of 

encryption/decryption rounds can be calculated using the following formula: 

  

 
     

 

  
   

 

 
                                                         

The odd result in case of SEA(96, 8) is 93. The main function runs interleaved 

encryption (or decryption) and key scheduling round 46 times. After the initial 46 

rounds the key halves are swapped and another further 46 rounds are executed. 

After the 92nd round another one encryption/decryption round runs - the key is in its 

final state already. It has to be noted that this final state of the key is identical to its 

initial state, thus no additional memory locations are needed to store a temporary key 

at each round. After the last round the block halves need to be swapped and the 

execution of the algorithm stops. 

void sea (unsigned char direction, unsigned char idata *block, unsigned 

char idata *key) 

{ 

    //Direction 0 for encryption and 1 for decryption 

    unsigned char i; 
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    //initialization 

    unsigned char* idata keyLeft = &key[0]; 

    unsigned char* idata keyRight = &key[6]; 

    unsigned char* idata blockLeft = &block[0]; 

    unsigned char* idata blockRight = &block[6]; 

    unsigned char* idata temp;    //temp pointer used for swapping key 

 //sides 

    unsigned char tmp; 

     

    //First half of all rounds (93 as per author's recommendation for a 

 //minimum number of rounds) 

    for (i=1; i<47; i++) 

    { 

        //Key scheduling 

        //[KLi, KRi] = Fk(KLi-1, KRi-1, C(i)); 

        seaCryptRound (direction, (unsigned char idata *)blockLeft, 

(unsigned char idata *)blockRight, (unsigned char idata *)keyRight); 

        seaKeyRound((unsigned char idata *)keyLeft, (unsigned char idata 

*)keyRight, i); 

    } 

     

    //End of round half - swap pointers 

    temp = keyLeft; 

    keyLeft = keyRight; 

    keyRight = temp; 

 

    //for (i=46; i<92; i++) 

    for (i=46; i>0; i--) 

    { 

        //Key scheduling part 2 

        //[KLi, KRi] = Fk(KLi-1, KRi-1, C(r-i)); 

        seaCryptRound (direction, (unsigned char idata *)blockLeft, 

(unsigned char idata *)blockRight, (unsigned char idata *)keyLeft); 

        seaKeyRound((unsigned char idata *)keyLeft, (unsigned char idata 

*)keyRight, i); 

    } 

    seaCryptRound (direction, (unsigned char idata *)blockLeft, (unsigned 

char idata *)blockRight, (unsigned char idata *)keyLeft); 

     

    //Final: switch Block halves 

    //indexShift (block, 0, 6); Gossamer function may be used to save space  

    for(i=0; i<6; i++) 

    { 

        tmp = block[i]; 

        block[i] = block[i+6]; 

        block[i+6] = tmp; 

    }    

} 

Figure 4.20 Code: SEA Main Function 

The experimental implementation takes Gossamer K1 key as an encryption key for 

the SEA algorithm. After a successful authentication round the Master encrypts a 

message using K1 and sends it to the Slave. The Slave decrypts the message using 

K1 and outputs it to the UART. 
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4.5 Testing 

4.5.1 Testing environment 

The code implemented in the course of this research was tested using the same 

hardware and software as in the implementation stage. During the testing stage two 

nRF9E5-EVBOARD development boards with nRF24E1 EEPROM programmers 

were used. The EEPROM programmers were connected over the USB link and the 

UART input/outputs from the development boards were connected through serial 

cables to the RS-232 ports on the development PC running Microsoft Windows XP 

Operating System. 

Since the RC51 compiler used does not offer nRF9E5-compatible debugger, the 

debugging was performed on-device using manually written debug messages sent to 

the UART I/O. 

4.5.2 One Round Step-By-Step Test 

Test Procedure 

The goal of this test is to verify the proper functioning of all core functions used by the 

Gossamer Authentication Protocol and the SEA encryption/decryption algorithm. 

Both the Master and the Slave programs are pre-configured with a Gossamer 

Protocol test data and set to output the data at each of the modifications so that the 

result can be verified with a 'paper-test' (manual calculation). The integer-to-ascii 

(itoa) function will be employed to output the data to the UART in a human-readable 

form. The SEA algorithm will not be tested step-by-step due to a large number of 

rounds. Instead, a result of the entire encryption and decryption loop will be 

displayed. 

Test data 

Master Side: 

unsigned char idata Pi[12] = { 0x32, 0x43, 0xF6, 0xA8, 0x88, 0x5A, 0x30, 

0x8D, 0x31, 0x31, 0x98, 0xA2 }; 

unsigned char idata IDS[12] = { 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 

0x01, 0x01, 0x01, 0x01, 0x01 }; 

unsigned char idata ID[12] = { 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 

0x44, 0x44, 0x44, 0x44, 0x44 }; 

unsigned char idata k1[12] = { 0x10, 0x10, 0x10, 0x10, 0x10, 0x10, 0x10, 

0x10, 0x10, 0x10, 0x10, 0x10 }; 

unsigned char idata k2[12] = { 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 

0x20, 0x20, 0x20, 0x20, 0x20 }; 

unsigned char idata n1[12] = { 0x22, 0x22, 0xFF, 0xFF, 0x22, 0x22, 0x22, 

0x22, 0x22, 0x22, 0x22, 0x22 }; 

unsigned char idata n2[12] = { 0x23, 0x23, 0x00, 0x00, 0x23, 0x23, 0x23, 

0x23, 0x23, 0x23, 0x23, 0x23 }; 

 

Figure 4.21 Code: Master Side Test Data 
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Slave side: 

unsigned char idata Pi[12] = { 0x32, 0x43, 0xF6, 0xA8, 0x88, 0x5A, 0x30, 

0x8D, 0x31, 0x31, 0x98, 0xA2 }; 

unsigned char idata IDS[12] = { 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 

0x01, 0x01, 0x01, 0x01, 0x01 }; 

unsigned char idata ID[12] = { 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 

0x44, 0x44, 0x44, 0x44, 0x44 }; 

unsigned char idata k1[12] = { 0x10, 0x10, 0x10, 0x10, 0x10, 0x10, 0x10, 

0x10, 0x10, 0x10, 0x10, 0x10 }; 

unsigned char idata k2[12] = { 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 

0x20, 0x20, 0x20, 0x20, 0x20 }; 

 

Figure 4.22 Code: Slave Side Test Data  

After the Gossamer round the Master will use the modified key k1 to encrypt a 

message (temp array) and send to the Slave. After successful transmission the Slave 

will use modified k1 to decrypt the message and display it. 

Test Results 

The test was split into several stages to allow better readability. 

Stage 1: Messages A and B creation (Master side - below).  

                                  

                                  

 

Figure 4.23 Gossamer messages A and B creation (Master). 

 

Stage 2: N1 and N2 extraction from messages A and B (Slave side). 
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Figure 4.24 Gossamer n1 and n2 random numbers extraction (Slave). 

 

Stage 3: n3, k1next and k2next creation (Master side) 

                  

                                        

                                        

 

Figure 4.25 Gossamer MixBits function, k1next and k2next creation (Master). 
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Stage 4: n3, k1next and k2next creation (Slave side) 

                  

                                        

                                        

 

Figure 4.26 Gossamer MixBits function, k1next and k2next creation (Slave). 

 

Stage 5: Message C creation (Master Side) 

                   

                                           

 

Figure 4.27 Gossamer message C creation (Master). 
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Stage 6: Message C creation (Slave Side) 

                   

                                           

 

Figure 4.28 Gossamer message C creation (Slave). 

 

Stage 7:  Message D creation (Master side) 

                                            

 

Figure 4.29 Gossamer message D creation (Master). 

 

Stage 8: Message D creation (Slave side) 
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Figure 4.30 Gossamer message D creation (Slave). 

 

Stage 9: IDS, k1 and k2 updating (Master side) 

                    

                                                  

                                              

                                             

 

Figure 4.31 Gossamer keys and IDS updating phase (Master). 
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Stage 10: IDS, k1 and k2 updating (Slave side) 

                    

            

                                                       

         

                                                  

         

                                                  
           

  

        

 

Figure 4.32 Gossamer keys and IDS updating phase (Master). 

Stage 11: SEA Encryption using k1 (Master side) 

 

Figure 4.33 SEA encryption (Master) 



69 
 

Stage 12: SEA Decryption using k1 (Slave side) 

 

Figure 4.34 SEA decryption (Slave) 

 

4.5.3 Long-term test 

Test Procedure 

The goal of this test is to verify the proper functioning of the Gossamer Authentication 

Protocol and the SEA encryption/decryption algorithm using multiple values and 

multiple rounds. 

The test-Master and the test-Slave are pre-configured to loop indefinitely executing 

the following operations: 

 Both devices: mutual authentication between the test-Slave and the test-

Master 

 Both devices: updating values for the next round. 

 Master: encrypting a 12-byte message using the SEA encryption algorithm 

(using the Gossamer key k1) and transmitting the payload to the test-Slave. 

 Slave: receiving the payload form the test-Master and decrypting it using the 

SEA decryption algorithm and the Gossamer key k1. 

The test-Master uses a delay function before transmitting messages over the radio to 

allow for better readability of the UART output. Both the test-Slave and the test-

Master output informational messages to the UART during each loop iteration.  

The time to complete an iteration of the main loop in both programs was estimated at 

approximately 1.5 seconds. The test-Master and the test-Slave programs were left 

running for 7 days. It is estimated that both programs will execute approximately 

403200 authentication and encryption/decryption rounds. 

Test data 

Master initial values: 

unsigned char idata Pi[12] = { 0x32, 0x43, 0xF6, 0xA8, 0x88, 0x5A, 0x30, 

0x8D, 0x31, 0x31, 0x98, 0xA2 }; 
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unsigned char idata IDS[12] = { 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 

0x01, 0x01, 0x01, 0x01, 0x01 }; 

unsigned char idata ID[12] = { 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 

0x44, 0x44, 0x44, 0x44, 0x44 }; 

unsigned char idata k1[12] = { 0x10, 0x10, 0x10, 0x10, 0x10, 0x10, 0x10, 

0x10, 0x10, 0x10, 0x10, 0x10 }; 

unsigned char idata k2[12] = { 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 

0x20, 0x20, 0x20, 0x20, 0x20 }; 

unsigned char idata n1[12] = { 0x22, 0x22, 0x22, 0x22, 0x22, 0x22, 0x22, 

0x22, 0x22, 0x22, 0x22, 0x22 }; 

unsigned char idata n2[12] = { 0x23, 0x23, 0x23, 0x23, 0x23, 0x23, 0x23, 

0x23, 0x23, 0x23, 0x23, 0x23 }; 

 

 Figure 4.35 Code: Master Initial Values 

Slave initial values: 

unsigned char idata Pi[12] = { 0x32, 0x43, 0xF6, 0xA8, 0x88, 0x5A, 0x30, 

0x8D, 0x31, 0x31, 0x98, 0xA2 }; 

unsigned char idata IDS[12] = { 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 

0x01, 0x01, 0x01, 0x01, 0x01 }; 

unsigned char idata ID[12] = { 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 

0x44, 0x44, 0x44, 0x44, 0x44 }; 

unsigned char idata k1[12] = { 0x10, 0x10, 0x10, 0x10, 0x10, 0x10, 0x10, 

0x10, 0x10, 0x10, 0x10, 0x10 }; 

unsigned char idata k2[12] = { 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 

0x20, 0x20, 0x20, 0x20, 0x20 }; 

 

Figure 4.36 Code: Slave Initial Values 

 

After the Gossamer round the Master will use the modified key k1 to encrypt a 

message (temp array) and send to the Slave. After successful transmission the Slave 

will use modified k1 to decrypt the message and display it. 

Test Results 

Both the test-Master and the test-Slave were running continuously for 6 days and 23 

hours and successfully executed approximately 400 000 mutual authentications and 

encryption/decryption rounds. 

The UART output was periodically monitored and no abnormalities were discovered. 
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5. Performance Analysis 

5.1 Memory Code Space Requirements on nRF9E5 

The Master and the Slave prototypes used in a Long-term test required the following 

code space: 

Master: 3923 bytes + 80 bytes of xdata. 

Slave: 3937 bytes + 80 bytes of xdata. 

The main Gossamer Protocol function loop uses UART to intermittently output the 

results throughout the round. In order to verify the real size of the Gossamer loop 

without any UART overhead a special version of the program was compiled without 

any calls to the PutString or printArray functions. The results after these changes will 

be shown in a form of an extract from the Raisonance LX51 Linker Map File which 

can be found in Appendix A. 

The RAM storage requirements of the Master (229 bytes) and the Slave (244 bytes) 

seem high but it has to be noted that all arrays holding 96-bit numbers used by the 

Gossamer Protocol are initialized and stored in idata memory during the runtime of 

the program. In consequence 210 bytes of idata memory is used by the Master and 

the Slave. Approximately 80% of this space can be saved by moving the 96-bit 

values to the EEPROM trading off code space required by the external memory 

read/write functions. 

The total code space requirement by all the Gossamer-related functions is estimated 

at 1647bytes (66F Hex) on the Master side and 1710 bytes (6AE Hex) on the Slave 

side. 

The SEA functions code space requirements are identical on both the Master and the 

Slave programs and equal to 589 bytes (24D Hex). 

It has to be noted that the Raisonance RC51 compiler imports a LIB51 library which 

requires 552 bytes (228 Hex). This library is shared by many functions performing 

mathematical operations and is automatically imported even if only the SEA functions 

were to be implemented. In consequence, the code space requirements of the LIB51 

have to be taken under consideration when estimating the total requirements. 

5.2 Execution Speed 

The execution speed of different parts of the code was analyzed using an nRF9E5 

timer interrupt set to 1 millisecond ticks and small timer handling functions. The timer 

was reset before entering a given block of code and the timer value was collected at 

the exit of the block. 

 



72 
 

SEA Encryption/Decryption 

The full SEA (96, 8) encryption and decryption of a 12-byte block using 12-byte key 

and 93 rounds takes 27 milliseconds on an nRF9E5 microcontroller running at 

16MHz. This gives an encryption/decryption throughput of 705 bytes per second. 

Gossamer Authentication 

The full round of the Gossamer Protocol in the prototype program with no UART 

output (all PutString function calls removed) took 984 milliseconds on the Master side 

and 988 milliseconds on the Slave side. Both devices used the simplified radio 

protocol described in section 4.3. It has to be noted that the Master uses a longDelay 

function which loops for 280ms before each transmission (TX) attempt. At this time 

the Slave loops in the receiving mode (RX) waiting for messages. There are 3 TX 

attempts (messages A, B and C) so the total of 3*280ms can be subtracted from the 

total loop time on both the Master and the Slave side.  

The full Gossamer loop time without the TX delay function: 

 Master: 984ms - 3*280ms = 144ms 

 Slave: 988ms - 3*280ms = 148ms 

The Gossamer Protocol speed was also analyzed per major protocol stages: 

 Message A and B creation: 2ms each (Master). 

 Message C creation: 65ms (Master and Slave). 

 Number n1 and n2 extraction: 2ms each (Slave). 

 Message D creation and verification: 3ms (Master). 

 Message D creation 2ms: (Slave). 

 Keys and IDS update: 38ms (Master and Slave). 
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6. Conclusions and Recommendations 

6.1 Conclusions 

Lightweight Authentication and Encryption protocols have emerged to fill the security 

void created by the transition from desktop to mobile environments.  Fast processing 

and large memory has characterised desktop technologies.  By contrast, mobile 

technologies are characterised by their small processing power and small memory.  

Authentication and encryption protocols designed for desktop technologies cannot be 

easily ported to mobile Resource Limited Devices (RLDs).    

The central theme of this dissertation is that lightweight authentication and encryption 

protocols can fulfil the requirements of secure communications between RLDs 

without hardware modification.  An augmentation of the Gossamer authentication 

protocol that incorporates elements of the Scalable Encryption Algorithm (SEA) was 

implemented to confirm this assertion.  Cora Data‟s wireless sensor development 

board, comprising the Nordic Semiconductor nRF9E5 microcontroller and auxiliary 

radio communications circuitry was used as the reference platform.  The 

implementation, in software, demonstrates successful accomplishment of the key 

objectives of secure communications, but at a cost.  Success has been achieved by 

greatly simplifying the radio protocol and using almost the entire code space of 4 

Kilobytes allowed by the nRF9E5 microcontroller for the implementation of the 

security mechanisms.  As a consequence, there is zero code space left for the other 

tasks involved in the normal operation of an Infrastructure Wireless Sensor Network, 

such as sampling the ADC convertor and forming a data payload with the results.    

The research objectives, outlined in section 1.3, have been fulfilled.  A literature 

review comprising an overview of the security issues with respect to RLDs and their 

limitations (section 3), an analysis of authentication (section 2.2) and encryption 

(section 2.3) has been completed and has established that the Gossamer and SEA 

protocols, are the most suitable of the family of ultra-lightweight security protocols for 

implementation on RLDs.  The algorithms are current, resistant to attacks and 

cryptanalysis and their design has been focused on providing solutions for resource 

limited devices.  In addition, they can be implemented on an 8 bit platform.  An 

augmented Gossamer protocol that incorporates elements of the SEA is presented 

as a possible solution to the implementation of security in networks of RLDs.   

A major goal of this dissertation is to examine code space requirements of the 

augmented protocol‟s implementation (since memory is a critical resource).  The 

target is to provide secure communications with protocols that subsume as little of 

the memory as possible of the RLD.  Although Gossamer uses basic mathematical 

operations, which are easy to implement in hardware, the software implementation 

on an 8-bit CPU involves a great deal of code space overhead.  The performance 

analysis (section 5.1) shows that the total code space required by the Gossamer 

functions (~1700 Bytes) including the necessary RC51 libraries (552 Bytes) can be 
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estimated at approximately 2200 Bytes, which is 55% of the code space available on 

the reference platform.  The overhead mainly relates to operations on large numbers 

that have to be split into arrays with elements equal to the word size of the CPU.  

This leaves little room for the implementation of the radio protocol (hence the need 

for simplification) and zero room for ADC or other functionality.  

Additionally, the execution speed for each full round of the Gossamer Protocol (144 – 

148ms) is relatively high (reflecting the limitations of nRF9E5 processing power).  

The simplicity of the underlying mathematical calculations would imply fast 

performance.  In fact the actual performance varies significantly from that expected.   

This may have adverse consequences on the efficiency of the communications 

protocol.  Further code optimisation and/or native assembly code would reduce code 

space requirement and improve performance, but not by a magnitude large enough 

to justify the implementation of a software implementation of the Gossamer protocol 

on the reference platform. However, if another microcontroller without so strict 

memory limitations is used and the performance is regarded as satisfactory then the 

mechanism proposed can be considered for implementation. 

The SEA (96,8) implementation results were much more promising than the 

Gossamer ones.  As expected from an algorithm designed to be adapted easily to the 

native word size of the CPU, the code space footprint is very small (589 Bytes).  

Even when the RC51 libraries overhead is taken into consideration (552 Bytes), the 

total size of 1141 Bytes is just below 28% of the total code space available on the 

nRF9E5.  SEA has not been proven to be insecure to date, thus it can be 

recommended for microcontroller implementations with associated low data 

throughput requirements.   

The code space requirement to implement Gossamer combined with the code space 

required by SEA is 3341 Bytes (2200 Bytes + 1141 Bytes) or 83% of available code 

space.  The remainder of the code space is subsumed by simple radio functionality. 

Given the associated memory limitations, lack of hardware support for cryptographic 

primitives and the difficulty of implementing code banking with any degree of 

performance efficiency, the nRF9E5 cannot be recommended as a suitable platform 

on which to implement native authentication and encryption in security demanding 

wireless sensor networks.  Low cost microcontroller alternatives, such as the Texas 

Instruments CC430 family of microcontrollers with an embedded UHF radio 

transceiver and hardware support for 128-bit AES encryption may be viable. 

6.2 Recommendations for future work 

The promising results of the SEA (96, 8) algorithm implementation (with respect to 

code size and no. of cycles required to complete the protocol) would suggest that 

there is room for further investigation in relation to key size and the associated 

security that this brings.  It would be interesting to implement a (192, 8) version using 
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a 24-byte key and block size.  A comparative framework could then be drawn up to 

assess performance of both implementations. 

In consequence of the significantly high code space overhead required by the 

software implementation of Gossamer, further study of authentication and the 

authentication protocols needs to emerge.  The need for authentication protocols that 

can be implemented in terse code and negate all aspects of security breach remains 

a priority in the field of wireless sensor networks.  There are additional implications 

for power consumption, battery life, signal strength and propagation distance that will 

have an influence on the evolution of both sensors and security protocols. 

Implementation of the prototype on a larger scale (multiple sensors, single master 

and the back-end server) may significantly affect performance. Further research in 

this respect would identify performance-related issues and further test the suitability 

of the proposed solution for Infrastructure Wireless Sensor Networks.  

Additionally, an approach that combines authentication, encryption and key 

exchange in a single protocol with shared keys of identical length may prove to be a 

useful line of academic enquiry. 
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Appendix A 

 

Master Linker Map 

    TYPE     BASE       LENGTH    RELOCATION     SEGMENT NAME 

    ----     ----       ------    ----------     ------------ 

 

    * * * * * * *   DATA/IDATA    M E M O R Y   * * * * * * * 

    REG      0000H      0008H     ABSOLUTE       "REG BANK 0" 

    DATA     0008H      0018H     OVERLAID UNIT  _DGROUP02_ 

             0008H      0002H     ------------- ?DT?_ChangeRXAddress?MASTER 

             0008H      0009H     -------------  ?DT?gossamerMaster?MASTER 

             0011H      0004H     -------------  ?DT?_ReceiveMode?MASTER 

             0011H      0007H     -------------  ?DT?_bitRotation?MASTER 

             0018H      0003H     -------------  ?DT?_getModulo96?MASTER 

             0018H      0004H     -------------  ?DT?_indexShift?MASTER 

             001CH      0003H     -------------  ?DT?_arrayReverse?MASTER 

             0018H      0006H     -------------  ?DT?_bitShift?MASTER 

             0011H      0002H     -------------  ?DT?_TransmitBytes?MASTER 

             0011H      0003H     -------------  ?DT?_mixBits?MASTER 

             0014H      0001H     -------------  ?DT?_additionMod96?MASTER 

             0011H      0004H     -------------  ?DT?_sea?MASTER 

             0015H      0009H     -------------  ?DT?_seaCryptRound?MASTER 

             001EH      0001H     ------------- ?DT?_seaWordRotation?MASTER 

             0015H      0008H     -------------  ?DT?_seaKeyRound?MASTER 

             0011H      0007H     -------------  ?DT?_printArray?MASTER 

             0018H      0008H     -------------  ?DT?_itoa?MASTER 

    DATA     0020H      0002H     OVERLAID UNIT  _DGROUP01_ 

             0020H      0002H     -------------?DT?_subtractionMod96?MASTER 

    IDATA    0022H      00C3H     OVERLAID UNIT  _IGROUP02_ 

             0022H      00B4H     -------------  ?ID?gossamerMaster?MASTER 

             00D6H      000CH     -------------  ?ID?_mixBits?MASTER 

             00D6H      000FH     -------------  ?ID?_sea?MASTER 

             00D6H      0003H     -------------  ?ID?_itoa?MASTER 

    IDATA    00E5H      0001H     * * STACK * *  _STACK 

 

    * * * * * * *   PDATA/XDATA   M E M O R Y   * * * * * * * 

             0000H      0FB0H                    *** GAP *** 

    XDATA    0FB0H      0048H     OVERLAID UNIT  _XGROUP02_ 

             0FB0H      0008H     -------------  ?XD?main?MASTER 

             0FB8H      0040H     -------------  ?XD?gossamerMaster?MASTER 

 

    * * * * * * *   CODE          M E M O R Y   * * * * * * * 

 TYPE     BASE       LENGTH    RELOCATION     SEGMENT NAME 

    ----     ----       ------    ----------     ------------ 

    CODE     0000H      0003H     ABSOLUTE        

    CODE     0003H      008EH     INBLOCK        ?PR?MOVES?LIB51 

    CODE     0091H      0228H     UNIT           ?PR?LIB51 

    CODE     02B9H      0018H     UNIT           ?PR?C51_STARTUP? 

    CODE     02D1H      000DH     UNIT           ?PR?_SpiReadWrite?MASTER 

    CODE     02DEH      0008H     UNIT           ?PR?_PutChar?MASTER 

    CODE     02E6H      0008H     UNIT           ?PR?GetChar?MASTER 

    CODE     02EEH      0026H     UNIT           ?PR?_PutString?MASTER 

    CODE     0314H      0021H     UNIT           ?PR?SetClock?MASTER 

    CODE     0335H      0020H     UNIT           ?PR?InitUartTimer1?MASTER 

    CODE     0355H      0014H     UNIT           ?PR?longDelay?MASTER 

    CODE     0369H      0032H     UNIT          ?PR?_ChangeRXAddress?MASTER 

    CODE     039BH      0015H     UNIT           ?PR?InitRadio?MASTER 

    CODE     03B0H      004DH     UNIT           ?PR?_TransmitBytes?MASTER 
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    CODE     03FDH      006CH     UNIT           ?STR?MASTER 

    CODE     0469H      0056H     UNIT           ?PR?_ReceiveMode?MASTER 

    CODE     04BFH      00B0H     UNIT           ?PR?_itoa?MASTER 

    CODE     056FH      003AH     UNIT           ?PR?_printArray?MASTER 

    CODE     05A9H      004EH     UNIT           ?PR?_getModulo96?MASTER 

    CODE     05F7H      0028H     UNIT           ?PR?_arrayReverse?MASTER 

    CODE     061FH      0044H     UNIT           ?PR?_indexShift?MASTER 

    CODE     0663H      00CFH     UNIT           ?PR?_bitShift?MASTER 

    CODE     0732H      0045H     UNIT           ?PR?_bitRotation?MASTER 

    CODE     0777H      0010H     UNIT           ?PR?_xorArrays?MASTER 

    CODE     0787H      0041H     UNIT           ?PR?_additionMod96?MASTER 

    CODE     07C8H      0058H     UNIT         ?PR?_subtractionMod96?MASTER 

    CODE     0820H      0054H     UNIT           ?PR?_mixBits?MASTER 

    CODE     0874H      004EH     UNIT           ?PR?_seaSBOX?MASTER 

    CODE     08C2H      002FH     UNIT           ?PR?_seaBitRotation?MASTER 

    CODE     08F1H      0036H     UNIT          ?PR?_seaWordRotation?MASTER 

    CODE     0927H      0064H     UNIT           ?PR?_seaCryptRound?MASTER 

    CODE     098BH      0050H     UNIT           ?PR?_seaKeyRound?MASTER 

    CODE     09DBH      00E6H     UNIT           ?PR?_sea?MASTER 

    CODE     0AC1H      000FH     UNIT           ?PR?_copyArray?MASTER 

    CODE     0AD0H      03EDH     UNIT           ?PR?gossamerMaster?MASTER 

    CODE     0EBDH      0028H     UNIT           ?PR?main?MASTER 

 

EXECUTABLE SUMMARY: 

------------------- 

    Total INTERNAL RAM storage requirement:  00E5H (229) 

    Total EXTERNAL RAM storage requirement:  0048H (72) 

    Total     CODE     storage requirement:  0EE5H (3813) 

 

Slave Linker Map 

   TYPE     BASE       LENGTH    RELOCATION     SEGMENT NAME 

    ----     ----       ------    ----------     ------------ 

 

    * * * * * * *   DATA/IDATA    M E M O R Y   * * * * * * * 

    REG      0000H      0008H     ABSOLUTE       "REG BANK 0" 

    DATA     0008H      0017H     OVERLAID UNIT  _DGROUP02_ 

             0008H      0002H     -------------  ?DT?_ChangeRXAddress?SLAVE 

             0008H      0009H     -------------  ?DT?gossamerSlave?SLAVE 

             0011H      0004H     -------------  ?DT?_ReceiveMode?SLAVE 

             0011H      0007H     -------------  ?DT?_bitRotation?SLAVE 

             0018H      0003H     -------------  ?DT?_getModulo96?SLAVE 

             0018H      0004H     -------------  ?DT?_indexShift?SLAVE 

             001CH      0003H     -------------  ?DT?_arrayReverse?SLAVE 

             0018H      0006H     -------------  ?DT?_bitShift?SLAVE 

             0011H      0002H     ------------- ?DT?_subtractionMod96?SLAVE 

             0011H      0003H     -------------  ?DT?_mixBits?SLAVE 

             0014H      0001H     -------------  ?DT?_additionMod96?SLAVE 

             0011H      0004H     -------------  ?DT?_sea?SLAVE 

             0015H      0009H     -------------  ?DT?_seaCryptRound?SLAVE 

             001EH      0001H     -------------  ?DT?_seaWordRotation?SLAVE 

             0015H      0008H     -------------  ?DT?_seaKeyRound?SLAVE 

    DATA     001FH      000FH     OVERLAID UNIT  _DGROUP01_ 

             001FH      0007H     -------------  ?DT?_printArray?SLAVE 

             0026H      0008H     -------------  ?DT?_itoa?SLAVE 

    IDATA    002EH      00C3H     OVERLAID UNIT  _IGROUP02_ 

             002EH      00B4H     -------------  ?ID?gossamerSlave?SLAVE 

             00E2H      000CH     -------------  ?ID?_mixBits?SLAVE 

             00E2H      000FH     -------------  ?ID?_sea?SLAVE 
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    IDATA    00F1H      0003H     OVERLAID UNIT  _IGROUP01_ 

             00F1H      0003H     -------------  ?ID?_itoa?SLAVE 

    IDATA    00F4H      0001H     * * STACK * *  _STACK 

 

    * * * * * * *   PDATA/XDATA   M E M O R Y   * * * * * * * 

             0000H      0FB0H                    *** GAP *** 

    XDATA    0FB0H      0048H     OVERLAID UNIT  _XGROUP02_ 

             0FB0H      0008H     -------------  ?XD?main?SLAVE 

             0FB8H      0040H     -------------  ?XD?gossamerSlave?SLAVE 

 

    * * * * * * *   CODE          M E M O R Y   * * * * * * * 

    TYPE     BASE       LENGTH    RELOCATION     SEGMENT NAME 

    ----     ----       ------    ----------     ------------ 

    CODE     0000H      0003H     ABSOLUTE        

    CODE     0003H      008EH     INBLOCK        ?PR?MOVES?LIB51 

    CODE     0091H      0228H     UNIT           ?PR?LIB51 

    CODE     02B9H      0018H     UNIT           ?PR?C51_STARTUP? 

    CODE     02D1H      000DH     UNIT           ?PR?_SpiReadWrite?SLAVE 

    CODE     02DEH      0008H     UNIT           ?PR?_PutChar?SLAVE 

    CODE     02E6H      0008H     UNIT           ?PR?GetChar?SLAVE 

    CODE     02EEH      0026H     UNIT           ?PR?_PutString?SLAVE 

    CODE     0314H      0021H     UNIT           ?PR?SetClock?SLAVE 

    CODE     0335H      0020H     UNIT           ?PR?InitUartTimer1?SLAVE 

    CODE     0355H      0032H     UNIT           ?PR?_ChangeRXAddress?SLAVE 

    CODE     0387H      0015H     UNIT           ?PR?InitRadio?SLAVE 

    CODE     039CH      0044H     UNIT           ?PR?_TransmitBytes?SLAVE 

    CODE     03E0H      0054H     UNIT           ?STR?SLAVE 

    CODE     0434H      0056H     UNIT           ?PR?_ReceiveMode?SLAVE 

    CODE     048AH      00B0H     UNIT           ?PR?_itoa?SLAVE 

    CODE     053AH      003AH     UNIT           ?PR?_printArray?SLAVE 

    CODE     0574H      004EH     UNIT           ?PR?_getModulo96?SLAVE 

    CODE     05C2H      0028H     UNIT           ?PR?_arrayReverse?SLAVE 

    CODE     05EAH      0044H     UNIT           ?PR?_indexShift?SLAVE 

    CODE     062EH      00CFH     UNIT           ?PR?_bitShift?SLAVE 

    CODE     06FDH      0045H     UNIT           ?PR?_bitRotation?SLAVE 

    CODE     0742H      0010H     UNIT           ?PR?_xorArrays?SLAVE 

    CODE     0752H      0041H     UNIT           ?PR?_additionMod96?SLAVE 

    CODE     0793H      0058H     UNIT          ?PR?_subtractionMod96?SLAVE 

    CODE     07EBH      0054H     UNIT           ?PR?_mixBits?SLAVE 

    CODE     083FH      004EH     UNIT           ?PR?_seaSBOX?SLAVE 

    CODE     088DH      002FH     UNIT           ?PR?_seaBitRotation?SLAVE 

    CODE     08BCH      0036H     UNIT           ?PR?_seaWordRotation?SLAVE 

    CODE     08F2H      0064H     UNIT           ?PR?_seaCryptRound?SLAVE 

    CODE     0956H      0050H     UNIT           ?PR?_seaKeyRound?SLAVE 

    CODE     09A6H      00E6H     UNIT           ?PR?_sea?SLAVE 

    CODE     0A8CH      000FH     UNIT           ?PR?_copyArray?SLAVE 

    CODE     0A9BH      03D4H     UNIT           ?PR?gossamerSlave?SLAVE 

    CODE     0E6FH      0028H     UNIT           ?PR?main?SLAVE 

 

EXECUTABLE SUMMARY: 

------------------- 

    Total INTERNAL RAM storage requirement:  00F4H (244) 

    Total EXTERNAL RAM storage requirement:  0048H (72) 

    Total     CODE     storage requirement:  0E97H (3735) 
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Appendix B 

 

/*************************************************************** 

Copyright 2010 Piotr Ksiazak 

Filename: Master.c 

Project : MSc - IWSN Experimental Master 

**************************************************************** 

Version 1.0: Initial release 

***************************************************************/ 

 

#include <reg9e5.h> 

#include <intri51.h> 

#define POWER      3                // 0=min power...3 = max power 

#define HFREQ      1                // 0=433MHz, 1=868/915MHz 

#define CHANNEL  351                // Channel number: f(MHz) =   

      //(422.4+CHANNEL/10)*(1+HFREQ) 

#pragma REGPARMS     // pass arguments to registers 

 

// SPI access 

unsigned char SpiReadWrite(unsigned char b) 

{ 

    EXIF &= ~0x20;               // Clear SPI interrupt 

    SPI_DATA = b;                // Move byte to send to SPI data register 

    while((EXIF & 0x20) == 0x00) // Wait until SPI hs finished transmitting 

        ; 

    return SPI_DATA; 

} 

 

// Send character to UART 

void PutChar(char c) 

{ 

    while(!TI) 

        ; 

    TI = 0; 

    SBUF = c; 

} 

 

// Read character from UART 

unsigned char GetChar(void) 

{ 

    while(!RI) 

        ; 

    RI = 0; 

    return SBUF; 

} 

 

// Send string to UART 

void PutString(const char *s) 

{ 

    while(*s != 0) 

       PutChar(*s++); 

} 

 

// Switch to 16MHz clock: 

void SetClock(void) 

{ 

    unsigned char cklf; 

 

    RACSN = 0; // Set CSN on the radio to low (Radio will expect  
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   //instruction) 

    SpiReadWrite(RRC | 0x09);   // Read R_RF_CONFIG bytes  

       //starting at 09 (UP_CLK_FREQ) 

    cklf = SpiReadWrite(0) | 0x04;  // Set XOF to 001 (0x04 - 16MHz) 

    RACSN = 1;  // Set CSN on the radio back to low before next 

    //instruction (another high to low transition is 

    //needed thus the next line) 

    RACSN = 0;  // Back to low, radio expects another intruction 

    SpiReadWrite(WRC | 0x09);  // Instruct SPI to write RF_CONFIG 

    SpiReadWrite(cklf);   // Write RF_CONFIG 

    RACSN = 1;    // Reset CSN to high 

} 

 

// Initialize timer used for UART clocking 

void InitUartTimer1(void) 

{ 

    TH1 = 243;                      // 19200@16MHz (when T1M=1 and SMOD=1) 

    CKCON |= 0x10;                  // T1M=1 (/4 timer clock) 

    PCON = 0x80;                    // SMOD=1 (double baud rate) 

    SCON = 0x52;                    // Serial mode1, enable receiver 

    TMOD = 0x20;                    // Timer1 8bit auto reload  

    TR1 = 1;                        // Start timer1 

    P0_ALT |= 0x06;                 // Select alternate functions on pins 

      //P0.1 and P0.2 

    P0_DIR |= 0x02;                 // P0.1 (RxD) is input 

 

    SPICLK = 0;                     // Max SPI clock 

    SPI_CTRL = 0x02;                // Connect internal SPI controller to 

      //Radio 

    ES = 0; 

} 

 

// Sleep function 

void longDelay() 

{ 

    unsigned int i; 

    unsigned int n = 0xFFFF; 

    while(n--) 

        for(i=0;i<0xFFFF;i++) 

            ; 

} 

 

// Changes Receiving address of a node 

void ChangeRXAddress(unsigned int xdata *RXAddr) 

{ 

    unsigned int i; 

 

    RACSN = 0; 

    SpiReadWrite(WRC | 0x05);  //Write to RFConfig starting at byte 5 

      //(RF Address) 

    for(i=0; i<4; i++) 

        SpiReadWrite(RXAddr[i]); 

    RACSN = 1; 

} 

 

// Initialises radio transceiver on channel 0x68 

void InitRadio(void) 

{ 

    TXEN = 0; 

    TRX_CE =0; 

    RACSN = 0; 
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    SpiReadWrite(CC | (POWER << 2) | (HFREQ << 1) | (0x00)); //pass 

 //first 8 bits to the register (inlcuding channel high bit) 

    SpiReadWrite(0x68);   //pass low 8 bits of the channel 

    RACSN = 1; 

    EA = 1;     //Global enable for all interrupts 

} 

 

// Transmits a 32-byte packet over the radio 

void TransmitBytes(unsigned char data *TXAddr, unsigned char xdata *buff) 

{ 

 unsigned char i; 

 

    longDelay();    //Wait before tranmitting 

 

    //Configure TX Address 

    RACSN = 0; 

 SpiReadWrite(WTA);  //Write to RFConfig starting at byte 5 (RF 

     //Address) 

 for(i=0; i<4; i++) 

  SpiReadWrite(TXAddr[i]); 

 RACSN = 1; 

     

    //Write 32-byte packet to SPI 

    RACSN = 0; 

    SpiReadWrite(WTP);    // write packet to SPI 

    for (i=0; i<32; i++) 

    { 

        SpiReadWrite(buff[i]); 

    } 

    RACSN = 1; 

     

    //wait until channel is clear 

    while(CD == 1) 

        ; 

     

    TRX_CE = 1;      // enable radio 

    TXEN = 1;      // enable radio TX mode 

    while(DR == 0)   // wait until data ready goes high 

        ; 

 

    TRX_CE = 0;                     // disable radio 

    TXEN = 0;                       // disable TX mode 

} 

 

// Receives 32-byte packet if AM (Address Match) flag is raised 

unsigned char ReceiveMode(unsigned char xdata *buff) 

{ 

    unsigned char i; 

    unsigned char j; 

    unsigned char amFlag; 

     

    amFlag = 0;                 //reset address match flag 

 TXEN = 0;  //Set TX_EN to low to enter Shockburst receive mode 

   

    TRX_CE = 1;                 //enable radio 

 

    j=0;                        //wait for Carrier Detect 

    while(CD == 0 && j<255) 

        j++; 

 

    if (AM)                     //If Address Match: process the SPI buffer 
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    { 

        while(DR == 0)          //Wait until Data Ready 

            ; 

         

        RACSN = 0; 

        SpiReadWrite(RRP);      //Send packet read command to the SPI 

        for (i = 0; i < 32; i++)    //Read in the packet ot the buffer 

            buff[i] = SpiReadWrite(0); 

        RACSN = 1; 

         

        TRX_CE=0;               //disable RX mode 

        PutString("\r\nRX\r\n"); 

 

        amFlag = 1; 

        return amFlag; 

    } 

    return amFlag; 

} 

 

// Inteteger to ASCII (itoa) conversion 

void itoa(int n, unsigned char *s) 

{ 

 unsigned char *charPtr; 

 int idata n1; 

 unsigned char idata len; 

   

 len=0; 

 //change the sign for negative numbers 

 if (n<0) 

 { 

  n=-n; 

  *s++ = '-'; 

 } 

 //calculate the length of the number in decimal digits 

 n1=n;  

 do 

 { 

  n1 /= 10; 

  len++; 

 } 

 while(n1); 

  

  

 *(charPtr = &s[len]) = 0; //null terminate string 

 do 

 { 

  *--charPtr = (n % 10) + '0'; 

  n /= 10; 

 } 

 while(n); 

 

} 

 

// Prints array of 12 bytes in decimal notation 

void printArray (unsigned char idata *array) 

{ 

    unsigned char i; 

    unsigned char stringBuff[5]; 

 

    for (i=0; i<12; i++) 

    { 
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        itoa((int)array[i], stringBuff); 

        PutString(stringBuff); 

        PutString("\t"); 

    } 

    PutString("\r\n"); 

} 

  

//Returns Modulo96 of the 12-byte number (Big Endian) held in 12-element 

//array 

unsigned char getModulo96 (unsigned char idata *array) 

{ 

    unsigned char i; 

    unsigned char modulus = 0; 

 

    for (i=0; i<11; i++) 

    { 

        //Divide and conquer approach: sum of two 4-bit numbers multiplied 

  //by 2*16 

        modulus +=  (( (array[i] & 0x0f) + (array[i] >> 4) )*256)%96; 

        modulus %= 96;  //Reduce each result Mod96 - can be done less  

    //frequently 

    } 

    return (array[11] + modulus)%96;    //Add the result to the LSB and 

       //calculate Mod96 again 

} 

 

//Reverses (mirror) the array - used by indexShift function 

void arrayReverse(unsigned char idata *result, unsigned char left, unsigned 

char right) 

{ 

    unsigned char temp; 

    unsigned char i; 

    unsigned char j; 

 

    //Start with edges and continue until middle elements are processed 

    for (i=left, j=right; i<j; i++, j--) 

    { 

        temp = result[i]; 

        result[i] = result[j]; 

        result[j] = temp; 

    } 

} 

 

//Rotates the elements of a 12-element array by up to 11 positions left or 

right 

void indexShift (unsigned char idata *result, unsigned int direction, 

unsigned int indexShift) 

{ 

    //ArrayReverse: let array be split into A.B. After rotations it is B.A 

    //B.A = reverse( reverse(A).reverse(B) ) 

 

    //Direction: 0 for left shift, 1 for right shift 

    if (!direction) 

    { 

        arrayReverse(result, 0, indexShift-1); 

        arrayReverse(result, indexShift, 11); 

        arrayReverse(result, 0, 11); 

    } 

    else 

    { 

        arrayReverse(result, 12-indexShift, 11); 
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        arrayReverse(result, 0, 11-indexShift); 

        arrayReverse(result, 0, 11); 

    } 

} 

 

//Bitwise bit rotation of the array (up to 7 places) 

void bitShift (unsigned char idata *array, unsigned int direction, unsigned 

int bitsToShift) 

{ 

    unsigned char i; 

    unsigned char element0; 

    unsigned char temp; 

 

    //Direction: 0 for left shift, 1 for right shift 

    if (!direction)//Shift bits to the left with carry to the lower element  

    { 

        element0 = array[0]; 

        array[0] = array[0] << bitsToShift; 

         

        for (i=0; i<11; i++) 

        {          

            temp = array[i+1]; 

            array[i+1] = array[i+1] << bitsToShift; 

            array[i] |= temp >> (8 - bitsToShift); 

        } 

        array[11] |= element0 >> (8-bitsToShift); 

 

    } 

    else    //Shift bits to the right with carry to the lower element  

    {      

        element0 = array[11]; 

        array[11] = array[11] >> bitsToShift; 

     

        for (i=11; i>0; i--) 

        { 

            temp = array[i-1]; 

            array[i-1] = array[i-1] >> bitsToShift; 

            array[i] |= temp << (8 - bitsToShift); 

        } 

        array[0] |= element0 << (8-bitsToShift); 

    } 

} 

 

//Rotates array2 by array1 Modulo96 

void bitRotation (unsigned char idata *array1, unsigned char idata *result, 

unsigned int direction) 

{ 

    unsigned char modulo = getModulo96(array1);     //First get modulo 

    unsigned char indicesToShift; 

    unsigned char bitsToShift; 

 

    //Second divide modulo by 8 and rotate the array (if modulo is bigger 

          //than 8)  

 //Direction: 0 for left shift, 1 for right shift 

    if (modulo > 8) 

    { 

        indicesToShift = modulo/8; 

        indexShift(result, direction, indicesToShift); 

    } 

 

    //Then bitshift with carry each element by the remaining shift (shift 
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 //amount will be <8) 

    bitsToShift = modulo%8; 

    if (bitsToShift != 0) 

        bitShift(result, direction, bitsToShift); 

} 

 

//Performs XOR on two arrays and saves the output to the second argument 

void xorArrays (unsigned char idata *array1, unsigned char idata *result) 

{ 

    unsigned char i; 

 

    for (i=0; i<12; i++) 

    { 

        result[i] ^= array1[i]; 

    } 

} 

 

//Performs addition Modulo96 on two arrays and saves the output to the 

second argument 

void additionMod96 (unsigned char idata *array1, unsigned char idata 

*result) 

{ 

 unsigned char i; 

    unsigned char j; 

     

    for (i=11; i>0; i--) 

    {  

        result[i] += array1[i]; //Add two bytes (no carry) 

        if (result[i] < array1[i]) //Check if carry needed and append to 

      //upper byte 

        { 

            result[i-1]++; 

            //check if previous byte was not 255 overloaded to 0 and step 

  //back to lower elements to do the same 

            j=i; 

            //If a carry bit overloads upper byte increment upper to  

  //the overloaded one 

            //Continue until the array head is met if needed 

            while(result[j-1] == 0 && j > 1)    

            { 

                result[j-2]++; 

                --j; 

            } 

        } 

    }  

    result[0] += array1[0]; //Got to the MSB - just add and ignore carry 

//(adding Mod96 anyway) 

} 

 

//Performs Gossamer MixBits function on two arrays and returns pointer to a 

//temporary array 

unsigned char* mixBits (unsigned char idata *array1, unsigned char idata 

*array2) 

{ 

    // Z = mixBits (X,Y) 

    // Z = X 

    // 32times: Z = (Z>>1) + Z + Z + Y 

    unsigned char idata result[12]; 

    unsigned char i; 

 

    for (i=0; i<12; i++) 
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    { 

        result[i] = array1[i]; 

    } 

 

    for (i=0; i<32; i++) 

    { 

        bitShift (array1, 1, 1); 

        additionMod96 (array1, result); 

        bitShift (array1, 0, 1); 

        additionMod96 (array1, result); 

        additionMod96 (array1, result); 

        additionMod96 (array2, result); 

    } 

    return result; 

} 

 

/* SEA S-Box implementation according to SEA author's suggestions 

void seaSBOX (unsigned char data *block, unsigned char i) 

{ 

    block[3*i] = (block[3*i+2] && block[3*i+1]) ^ block[3*i]; 

    block[3*i+1] = (block[3*i+2] && block[3*i]) ^ block[3*i+1]; 

    block[3*i+2] = (block[3*i] || block[3*i+1]) ^ block[3*i+2]; 

} 

*/ 

 

//Simplified S-Box - per private conversation with the author it is safe to 

//perform S-Box on the first three elements only (SEA(96,8). 

//Originally author advised to apply S-Box to any 3 elements of each block 

void seaSBOX (unsigned char idata *block, unsigned char i) 

{ 

    block[0] = (block[2] && block[1]) ^ block[0]; 

    block[1] = (block[2] && block[0]) ^ block[1]; 

    block[2] = (block[0] || block[1]) ^ block[2]; 

} 

 

//SEA Bit-rotation function for SEA(96,8). 

//Function uses Raisonance RC51 intrisic functions (_cror_ and _crol_). 

void seaBitRotation (unsigned char idata *block) 

{ 

    block[0] = _cror_(block[0], 1); 

    block[2] = _crol_(block[2], 1); 

    block[3] = _cror_(block[3], 1); 

    block[5] = _crol_(block[5], 1); 

} 

 

//SEA(96,8) word rotation - rotates the array by one byte 

void seaWordRotation (unsigned char idata *block, unsigned char direction) 

{ 

    //Direction 0 for left and 1 for right rotation 

    unsigned char i; 

    unsigned char temp; 

     

    if (direction == 0) 

    { 

        temp = block[0]; 

        for (i=0; i<5; i++) 

            block[i] = block[i+1]; 

        block[5] = temp; 

    } 

    else 

    { 
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        temp = block[5]; 

        for (i=5; i>0; i--) 

            block[i] = block[i-1]; 

        block[0] = temp; 

    } 

} 

 

//Performs one SEA(96,8) Crypto round. Parameter direction: 0 for 

encryption and 1 for decryption 

void seaCryptRound (unsigned char direction, unsigned char idata 

*blockLeft, unsigned char idata *blockRight, unsigned char idata *keyHalf) 

{ 

    unsigned char i; 

    unsigned char temp[6]; 

 

    //Every operation will be performed on blockLeft as this memory 

 //location will become  

    //a right block for the next round. 

    //Save the left block 

    for (i=0; i<6; i++) 

        temp[i] = blockRight[i]; 

 

    //ENCRYPTION 

    //Fe(Li, Ri, K/2i) <=> RightWordRot(Li) XOR bitRot(sbox(Ri+K/2i)) 

    //DECRYPTION 

    //Fd(Li, Ri, K/2i) <=> LeftWordRot(Li XOR bitRot(sbox(Ri+K/2i))) 

 

    //Step by step: 

    //Ri+K/2i 

    for (i=0; i<6; i++) 

        blockRight[i] += keyHalf[i]; 

    //sbox(Ri+K/2i) 

    seaSBOX(blockRight, i%2); 

    ////seaSBOX(blockRight, 0); 

    //bitRot(sbox(Ri+K/2i)) 

    seaBitRotation(blockRight); 

    //RightWordRot(Li) - encryption only 

    //Direction 0 for encryption and 1 for decryption 

    if (direction == 0) 

        seaWordRotation(blockLeft, 1); 

    //RightWordRot(Li) XOR bitRot(sbox(Ri+K/2i)) 

    for (i=0; i<6; i++) 

    { 

        blockRight[i] ^= blockLeft[i]; 

        blockLeft[i] = temp[i];     //BlockLeft(i)+1 becomes BlockRight(i) 

    } 

    //LeftWordRot(Li XOR bitRot(sbox(Ri+K/2i))) - decryption only 

    if (direction == 1) 

        seaWordRotation(blockRight, 0); 

} 

 

//Performs one SEA(96,8) key round. 

void seaKeyRound (unsigned char idata *keyLeft, unsigned char idata 

*keyRight, unsigned char Ci) 

{ 

//Fk(KLi-1,KRi-1,Ci) <=> KRi = KLi-1 XOR RightWordRot(bitRot(sbox((KRi-

//1)+Ci))); 

    unsigned char i; 

    unsigned char temp[6]; 

     

    //Save the left key (left key will become right after the round) 
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    //Every operation will be performed on keyLeft as this memory location 

 //will become a right key 

    //for the next round. 

    for (i=0; i<6; i++) 

        temp[i] = keyRight[i]; 

    //Step-by-step: 

    //init Ci (LSW equals i) 

    ////Ci[5] = i; 

    //(KRi-1)+Ci 

    keyRight[5] += Ci; 

    //sbox((KRi-1)+Ci) 

    seaSBOX(keyRight, (Ci%2)); 

    ////seaSBOX(keyRight, 1); 

    //bitRotation(sbox((KRi-1)+Ci)) 

    seaBitRotation(keyRight); 

    //RightWordRot(bitRot(sbox((KRi-1)+Ci))); 

    seaWordRotation(keyRight, 1);    

    //KRi = KLi-1 XOR RightWordRot(bitRot(sbox((KRi-1)+Ci))); 

    for (i=0; i<6; i++) 

    { 

        keyRight[i] ^= keyLeft[i];     

        keyLeft[i] = temp[i];   //KeyLeft(i)+1 becomes KeyRight(i)  

    } 

} 

 

// SEA Scalable Encryption Algorithm (SEA 96,8) implementation 

void sea (unsigned char direction, unsigned char idata *block, unsigned 

char idata *key) 

{ 

    //Direction 0 for encryption and 1 for decryption 

    unsigned char i; 

 

    //initialization 

    unsigned char* idata keyLeft = &key[0]; 

    unsigned char* idata keyRight = &key[6]; 

    unsigned char* idata blockLeft = &block[0]; 

    unsigned char* idata blockRight = &block[6]; 

    unsigned char* idata temp;   //temp pointer used for swapping key sides 

    unsigned char tmp; 

     

    //First half of all rounds (93 as per author's recommendation for a 

 //minimum number of rounds) 

    //for (i=1; i<47; i++) 

    for (i=1; i<47; i++) 

    { 

        //Key scheduling 

        //[KLi, KRi] = Fk(KLi-1, KRi-1, C(i)); 

        //Fk(KLi-1,KRi-1,Ci) <=> KRi = KLi-1 XOR Rot(bitRot(sbox((KRi- 

  //1)+Ci))); 

        seaCryptRound (direction, (unsigned char idata *)blockLeft, 

(unsigned char idata *)blockRight, (unsigned char idata *)keyRight); 

        seaKeyRound((unsigned char idata *)keyLeft, (unsigned char idata 

*)keyRight, i); 

    } 

     

    //End of round half - swap pointers 

    temp = keyLeft; 

    keyLeft = keyRight; 

    keyRight = temp; 

 

    //for (i=46; i<92; i++) 
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    for (i=46; i>0; i--) 

    { 

        //Key scheduling part 2 

        //[KLi, KRi] = Fk(KLi-1, KRi-1, C(r-i)); 

        //Fk(KLi-1,KRi-1,Ci) <=> KRi = KLi-1 XOR Rot(bitRot(sbox((KRi- 

  //1)+Ci))) 

        seaCryptRound (direction, (unsigned char idata *)blockLeft, 

(unsigned char idata *)blockRight, (unsigned char idata *)keyLeft); 

        seaKeyRound((unsigned char idata *)keyLeft, (unsigned char idata 

*)keyRight, i); 

    } 

    seaCryptRound (direction, (unsigned char idata *)blockLeft, (unsigned 

char idata *)blockRight, (unsigned char idata *)keyLeft); 

     

    //Final: switch Key and Block halves 

    //indexShift (block, 0, 6);     //Gossamer function may be used to save 

 //space  

    for(i=0; i<6; i++) 

    { 

        tmp = block[i]; 

        block[i] = block[i+6]; 

        block[i+6] = tmp; 

    }    

} 

 

//Copies array to the location of the second argument 

void copyArray(unsigned char idata *source, unsigned char idata *target) 

{ 

    unsigned char i; 

 

    for (i=0; i<12; i++) 

        target[i] = source[i]; 

} 

 

//Main Gossamer Master loop - simplified model. 

void gossamerMaster (void) 

{ 

    //Simplifications: 

    //All data stored in RAM (idata) 

    //n1 and n2 random numbers are hardcoded; 

    //IDS, k1 and k2 for an example slave device are also hardcoded; 

    unsigned char data TXaddr[4] = { 0xC4, 0x5A, 0x5A, 0xC4 }; 

    unsigned char xdata TXbuff[32]; 

    unsigned char xdata RXbuff[32]; 

    unsigned char i; 

    unsigned char flag; 

 

    unsigned char idata temp[12]; 

    unsigned char idata n1temp[12]; 

    unsigned char *tempPtr; 

 

    unsigned char idata Pi[12] = { 0x32, 0x43, 0xF6, 0xA8, 0x88, 0x5A, 

0x30, 0x8D, 0x31, 0x31, 0x98, 0xA2 }; 

    unsigned char idata IDS[12] = { 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 

0x01, 0x01, 0x01, 0x01, 0x01, 0x01 }; 

    unsigned char idata ID[12] = { 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 

0x44, 0x44, 0x44, 0x44, 0x44, 0x44 }; 

    unsigned char idata k1[12] = { 0x10, 0x10, 0x10, 0x10, 0x10, 0x10, 

0x10, 0x10, 0x10, 0x10, 0x10, 0x10 }; 

    unsigned char idata k2[12] = { 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 

0x20, 0x20, 0x20, 0x20, 0x20, 0x20 }; 
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    unsigned char idata n1[12] = { 0x22, 0x22, 0x22, 0x22, 0x22, 0x22, 

0x22, 0x22, 0x22, 0x22, 0x22, 0x22 }; 

    unsigned char idata n2[12] = { 0x23, 0x23, 0x23, 0x23, 0x23, 0x23, 

0x23, 0x23, 0x23, 0x23, 0x23, 0x23 }; 

     

    unsigned char idata messageA[12]; 

    unsigned char idata messageB[12]; 

    unsigned char idata messageC[12]; 

    unsigned char idata messageD[12]; 

    unsigned char idata k1next[12]; 

    unsigned char idata k2next[12]; 

     

    //Loop forever authenticating the experimental slave 

    for (;;) 

    { 

        //Tag identification: verify incoming IDS 

        flag = 1; 

        while (!ReceiveMode(RXbuff)) 

            ; 

        for (i=0; i<12; i++) 

        { 

            if (IDS[i] != RXbuff[i]) 

                flag = 0; 

        } 

        if (flag)   //If IDS is correct  continue with the protocol 

        { 

            PutString("\r\nIDS OK"); 

            //Create message A: A = ROT((ROT(IDS+k1+Pi+n1, k2)+k1, k1) 

            //messageA + n1 

            copyArray(n1, messageA); 

            //n1+Pi 

            additionMod96(Pi, messageA); 

            //k1+Pi+n1 

            additionMod96(k1, messageA); 

            //IDS+k1+Pi+n1 

            additionMod96(IDS, messageA); 

            //ROT(IDS+k1+Pi+n1, k2) 

            bitRotation (k2, messageA, 0); 

            //ROT(IDS+k1+Pi+n1, k2)+k1 

            additionMod96(k1, messageA); 

            //ROT((ROT(IDS+k1+Pi+n1, k2)+k1, k1) 

            bitRotation (k1, messageA, 0); 

             

            //MessageA created - now transmit: 

            PutString("\r\nA\t"); 

            printArray(messageA); 

            for (i=0; i<12; i++) 

                TXbuff[i] = messageA[i]; 

            TransmitBytes(TXaddr, TXbuff); 

             

            //Create message B: B = ROT((ROT(IDS+k2+Pi+n2, k1)+k2, k2) 

            //messageB + n2 

            copyArray(n2, messageB); 

            //Pi+n2 

            additionMod96(Pi, messageB); 

            //k2+Pi+n2 

            additionMod96(k2, messageB); 

            //IDS+k2+Pi+n2 

            additionMod96(IDS, messageB); 

            //ROT(IDS+k2+Pi+n2, k1) 

            bitRotation (k1, messageB, 0); 
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            //ROT(IDS+k2+Pi+n2, k1)+k2 

            additionMod96(k2, messageB); 

            //ROT((ROT(IDS+k2+Pi+n2, k1)+k2, k2) 

            bitRotation (k2, messageB, 0); 

             

            //MessageB created - now transmit: 

            PutString("B\t"); 

            printArray(messageB); 

            for (i=0; i<12; i++) 

                TXbuff[i] = messageB[i]; 

            TransmitBytes(TXaddr, TXbuff); 

             

            //Create temporary n3: n3 = mixBits(n1,n2) 

            tempPtr = mixBits(n1, n2); 

            for (i=0; i<12; i++) 

                temp[i] = tempPtr[i];   

             

            //Create keys for the next round 

            //k1next = ROT((ROT(n2+k1+Pi+n3, n2)+k2 XOR n3, n1) XOR n3 

            //k1next + n3 

            copyArray(temp, k1next); 

            //Pi+n3 

            additionMod96(Pi, k1next); 

            //k1+Pi+n3 

            additionMod96(k1, k1next); 

            //n2+k1+Pi+n3 

            additionMod96(n2, k1next); 

            //ROT(n2+k1+Pi+n3, n2) 

            bitRotation (n2, k1next, 0); 

            //ROT(n2+k1+Pi+n3, n2)+k2 

            additionMod96(k2, k1next); 

            //ROT(n2+k1+Pi+n3, n2)+k2 XOR n3 

            xorArrays(temp, k1next); 

            //ROT((ROT(n2+k1+Pi+n3, n2)+k2 XOR n3, n1) 

            bitRotation (n1, k1next, 0); 

            //ROT((ROT(n2+k1+Pi+n3, n2)+k2 XOR n3, n1) XOR n3 

            xorArrays(temp, k1next);        

             

            //k2next = ROT((ROT(n1+k2+Pi+n3, n1)+k1+n3, n2)+n3 

            //k2next+n3 

            copyArray(temp, k2next); 

            //Pi+n3 

            additionMod96(Pi, k2next); 

            //k2+Pi+n3 

            additionMod96(k2, k2next); 

            //n1+k2+Pi+n3 

            additionMod96(n1, k2next); 

            //ROT(n1+k2+Pi+n3, n1) 

            bitRotation (n1, k2next, 0); 

            //ROT(n1+k2+Pi+n3, n1)+k1 

            additionMod96(k1, k2next); 

            //ROT(n1+k2+Pi+n3, n1)+k1+n3 

            additionMod96(temp, k2next); 

            //ROT((ROT(n1+k2+Pi+n3, n1)+k1+n3, n2) 

            bitRotation (n2, k2next, 0); 

            //ROT((ROT(n1+k2+Pi+n3, n1)+k1+n3, n2)+n3 

            additionMod96(temp, k2next); 

             

            //Create temporary n1' = mixBits(n3, n2) 

            tempPtr = mixBits(temp, n2); 

            for (i=0; i<12; i++) 
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                n1temp[i] = tempPtr[i]; 

             

            //Create message C: C = ROT((ROT(n3+k1next+Pi+n1', n3)+k2next 

  //XOR n1', n2) XOR n1' 

            //messageC+n1' 

            copyArray(n1temp, messageC); 

            //Pi+n1' 

            additionMod96(Pi, messageC); 

            //k1next+Pi+n1' 

            additionMod96(k1next, messageC); 

            //n3+k1next+Pi+n1' 

            additionMod96(temp, messageC); 

            //ROT(n3+k1next+Pi+n1', n3) 

            bitRotation (temp, messageC, 0); 

            //ROT(n3+k1next+Pi+n1', n3)+k2next 

            additionMod96(k2next, messageC); 

            //ROT(n3+k1next+Pi+n1', n3)+k2next XOR n1' 

            xorArrays(n1temp, messageC); 

            //ROT((ROT(n3+k1next+Pi+n1', n3)+k2next XOR n1', n2) 

            bitRotation (n2, messageC, 0); 

            //ROT((ROT(n3+k1next+Pi+n1', n3)+k2next XOR n1', n2) XOR n1' 

            xorArrays(n1temp, messageC); 

             

            //MessageC created - now transmit: 

            PutString("C\t"); 

            printArray(messageC); 

            for (i=0; i<12; i++) 

                TXbuff[i] = messageC[i]; 

            TransmitBytes(TXaddr, TXbuff); 

             

            //Now awaiting reply (message D) - entering receive mode 

            while (!ReceiveMode(RXbuff)) 

                ; 

            //Got message D - verify if successfull 

            //Step1: calculate local messageD 

            //D = ROT(ROT(n2+k2next+ID+n1', n2)+k1next+n1', n3)+n1' 

            //messageD +n1' 

            copyArray(n1temp, messageD); 

            //ID+n1' 

            additionMod96(ID, messageD); 

            //k2next+ID+n1' 

            additionMod96(k2next, messageD); 

            //n2+k2next+ID+n1' 

            additionMod96(n2, messageD); 

            //ROT(n2+k2next+ID+n1', n2) 

            bitRotation (n2, messageD, 0); 

            //ROT(n2+k2next+ID+n1', n2)+k1next 

            additionMod96(k1next, messageD); 

            //ROT(n2+k2next+ID+n1', n2)+k1next+n1' 

            additionMod96(n1temp, messageD); 

            //ROT(ROT(n2+k2next+ID+n1', n2)+k1next+n1', n3) 

            bitRotation (temp, messageD, 0); 

            //ROT(ROT(n2+k2next+ID+n1', n2)+k1next+n1', n3)+n1' 

            additionMod96(n1temp, messageD); 

             

            //Now verify message D received with a local copy 

            for (i=0; i<12; i++) 

            { 

                if (messageD[i] != RXbuff[i]) 

                    flag = 0; 

            } 



99 
 

         

            if(flag) //Message D matches - key and IDS updating phase 

            { 

                //n2 array will be reused 

                //n2' = mixBits(n1', n3) 

                tempPtr = mixBits(n1temp, temp); 

                for (i=0; i<12; i++) 

                    n2[i] = tempPtr[i]; 

                //IDS = ROT((ROT(n1'+k1next+IDS+n2', n1')+k2next XOR n2', 

   //n3) XOR n2 

                //IDS+n2' 

                copyArray(n2, IDS); 

                //k1next+IDS+n2' 

                additionMod96(k1next, IDS); 

                //n1'+k1next+IDS+n2' 

                additionMod96(n1temp, IDS); 

                //ROT(n1'+k1next+IDS+n2', n1') 

                bitRotation (n1temp, IDS, 0); 

                //ROT(n1'+k1next+IDS+n2', n1')+k2next 

                additionMod96(k2next, IDS); 

                //ROT(n1'+k1next+IDS+n2', n1')+k2next XOR n2' 

                xorArrays(n2, IDS); 

                //ROT((ROT(n1'+k1next+IDS+n2', n1')+k2next XOR n2', n3) 

                bitRotation (temp, IDS, 0); 

                //ROT((ROT(n1'+k1next+IDS+n2', n1')+k2next XOR n2', n3) XOR 

   //n2 

                xorArrays(n2, IDS); 

                PutString("nIDS\t"); 

                printArray(IDS); 

                 

                //k1 update 

                //k1 = ROT((ROT(n3+k2next+Pi+n2', n3)+k1next+n2', n1')+n2' 

                //k1=n2' 

                copyArray(n2, k1); 

                //Pi+n2' 

                additionMod96(Pi, k1); 

                //k2next+Pi+n2' 

                additionMod96(k2next, k1); 

                //n3+k2next+Pi+n2' 

                additionMod96(temp, k1); 

                //ROT(n3+k2next+Pi+n2', n3) 

                bitRotation (temp, k1, 0); 

                //ROT(n3+k2next+Pi+n2', n3)+k1next 

                additionMod96(k1next, k1); 

                //ROT(n3+k2next+Pi+n2', n3)+k1next+n2' 

                additionMod96(n2, k1); 

                //ROT((ROT(n3+k2next+Pi+n2', n3)+k1next+n2', n1') 

                bitRotation (n1temp, k1, 0); 

                //ROT((ROT(n3+k2next+Pi+n2', n3)+k1next+n2', n1')+n2' 

                additionMod96(n2, k1); 

 

                //k2 update 

                //k2 = ROT((ROT(IDS+k2next+Pi+k1, IDS)+k1next+k1, n2')+k1 

                //k2 = k1 

                copyArray(k1, k2); 

                //k1+Pi 

                additionMod96(Pi, k2); 

                //k2next+Pi+k1 

                additionMod96(k2next, k2); 

                //IDS+k2next+Pi+k1 

                additionMod96(IDS, k2); 
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                //ROT(IDS+k2next+Pi+k1, IDS) 

                bitRotation (IDS, k2, 0); 

                //ROT(IDS+k2next+Pi+k1, IDS)+k1next 

                additionMod96(k1next, k2); 

                //ROT(IDS+k2next+Pi+k1, IDS)+k1next+k1 

                additionMod96(k1, k2); 

                //ROT((ROT(IDS+k2next+Pi+k1, IDS)+k1next+k1, n2') 

                bitRotation (n2, k2, 0); 

                //ROT((ROT(IDS+k2next+Pi+k1, IDS)+k1next+k1, n2')+k1 

                additionMod96(k1, k2); 

                 

                //SEA Demonstration: encrypt temp with k1 and send to the 

   //slave 

                PutString("SeaD\t"); 

                printArray(temp); 

                sea(0, temp, k1); 

                PutString("SeaE\t"); 

                printArray(temp); 

                PutString("k1\t"); 

                printArray(k1); 

                 

                for (i=0; i<12; i++) 

                    TXbuff[i] = temp[i]; 

                TransmitBytes(TXaddr, TXbuff); 

            } 

            else 

            { 

                PutString(":( D"); //Incorrect message D received 

            } 

        } 

        else 

        { 

            PutString(":( IDS");    //Incorrect IDS received 

        } 

    } 

} 

 

//Main function - intitialisation of the NRF9E5 

int main(void) 

{ 

 unsigned int xdata RXaddr[4] = { 0xC3, 0x5A, 0x5A, 0xC3 }; 

 

 InitUartTimer1(); 

 SetClock(); 

 ChangeRXAddress(RXaddr); 

 InitRadio(); 

 PutString(":)\n\r"); 

    gossamerMaster(); 

 

    return 0; 

} 
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/*************************************************************** 

Copyright 2010 Piotr Ksiazak 

Filename: Slave.c 

Project : MSc - IWSN Experimental Slave 

**************************************************************** 

Version 1.0: Initial release 

***************************************************************/ 

 

#include <reg9e5.h> 

#include <intri51.h> 

#define POWER      3                // 0=min power...3 = max power 

#define HFREQ      1                // 0=433MHz, 1=868/915MHz 

#define CHANNEL  351                // Channel number: f(MHz) =   

      //(422.4+CHANNEL/10)*(1+HFREQ) 

#pragma REGPARMS    //pass arguments to registers 

 

// SPI access 

unsigned char SpiReadWrite(unsigned char b) 

{ 

    EXIF &= ~0x20;                  // Clear SPI interrupt 

    SPI_DATA = b;                   // Move byte to send to SPI data  

      //register 

    while((EXIF & 0x20) == 0x00)    // Wait until SPI hs finished  

      //transmitting 

        ; 

    return SPI_DATA; 

} 

 

// Send character to UART 

void PutChar(char c) 

{ 

    while(!TI) 

        ; 

    TI = 0; 

    SBUF = c; 

} 

 

// Read character from UART 

unsigned char GetChar(void) 

{ 

    while(!RI) 

        ; 

    RI = 0; 

    return SBUF; 

} 

 

// Send string to UART 

void PutString(const char *s) 

{ 

    while(*s != 0) 

       PutChar(*s++); 

} 

 

// Switch to 16MHz clock: 

void SetClock(void) 

{ 

    unsigned char cklf; 

 

    RACSN = 0;   // Set CSN on the radio to low (Radio will 

     //expect instruction) 
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    SpiReadWrite(RRC | 0x09); // Read R_RF_CONFIG bytes starting at 09  

     //(UP_CLK_FREQ) 

    cklf = SpiReadWrite(0) | 0x04;  // Set XOF to 001 (0x04 - 16MHz) 

    RACSN = 1;  // Set CSN on the radio back to low before next 

//instruction (another high to low transition is needed thus the next line) 

    RACSN = 0;  // Back to low, radio expects another intruction 

    SpiReadWrite(WRC | 0x09);  // Instruct SPI to write RF_CONFIG 

    SpiReadWrite(cklf);   // Write RF_CONFIG 

    RACSN = 1;    // Reset CSN to high 

} 

 

// Initialize timer used for UART clocking 

void InitUartTimer1(void) 

{ 

    TH1 = 243;                      // 19200@16MHz (when T1M=1 and SMOD=1) 

    CKCON |= 0x10;                  // T1M=1 (/4 timer clock) 

    PCON = 0x80;                    // SMOD=1 (double baud rate) 

    SCON = 0x52;                    // Serial mode1, enable receiver 

    TMOD = 0x20;                    // Timer1 8bit auto reload  

    TR1 = 1;                        // Start timer1 

    P0_ALT |= 0x06;                 // Select alternate functions on pins 

      //P0.1 and P0.2 

    P0_DIR |= 0x02;                 // P0.1 (RxD) is input 

 

    SPICLK = 0;                     // Max SPI clock 

    SPI_CTRL = 0x02;                // Connect internal SPI controller to 

      //Radio 

    ES = 0; 

} 

 

// Changes Receiving address of a node 

void ChangeRXAddress(unsigned int xdata *RXAddr) 

{ 

 unsigned int i; 

 

    RACSN = 0; 

 SpiReadWrite(WRC | 0x05); //Write to RFConfig starting at byte 5 

      //(RF Address) 

 for(i=0; i<4; i++) 

  SpiReadWrite(RXAddr[i]); 

 RACSN = 1; 

} 

 

// Initialises radio 

void InitRadio(void) 

{ 

   TXEN = 0; 

   TRX_CE =0; 

   //ChangeChannel();//(0x00,0x68); 

   RACSN = 0; 

   SpiReadWrite(CC | (POWER << 2) | (HFREQ << 1) | (0x00)); //pass first 8 

    //bits to the register (inlcuding channel high bit) 

   SpiReadWrite(0x68);         

     //pass low 8 bits of the channel 

   RACSN = 1; 

   //Channel changed 

 

   EA = 1;     //Global enable for all interrupts 

} 

 

// Transmits a 32-byte packet over the radio 
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void TransmitBytes(unsigned char data *TXAddr, unsigned char xdata *buff) 

{  

 unsigned char i; 

 

      //Configure TX Address 

      RACSN = 0; 

 SpiReadWrite(WTA);   //Write to RFConfig starting at 

      //byte 5 (RF Address) 

 for(i=0; i<4; i++) 

  SpiReadWrite(TXAddr[i]); 

 RACSN = 1; 

     

    //Write 32-byte packet to SPI 

    RACSN = 0; 

    SpiReadWrite(WTP);    // write packet to SPI 

    for (i=0; i<32; i++) 

    { 

        SpiReadWrite(buff[i]); 

    } 

    RACSN = 1; 

     

    //wait until channel is clear 

    while(CD == 1) 

        ; 

     

    TRX_CE = 1;    // enable radio 

    TXEN = 1;    // enable radio TX mode 

    while(DR == 0)   // wait until data ready goes high 

        ; 

     

    TRX_CE = 0;                     // disable radio 

    TXEN = 0;                       // disable TX mode 

} 

 

// Receives 32-byte packet if AM (Address Match) flag is raised 

unsigned char ReceiveMode(unsigned char xdata *buff) 

{ 

    unsigned char i; 

    unsigned char j; 

    unsigned char amFlag; 

     

    amFlag = 0;                 //reset address match flag 

 TXEN = 0;  //Set TX_EN to low to enter Shockburst receive mode 

   

    TRX_CE = 1;                 //enable radio 

 

    j=0;                        //wait fo Carrier Detect 

    while(CD == 0 && j<255) 

        j++; 

 

    if (AM)                     //If Address Match: process the SPI buffer 

    { 

        while(DR == 0)          //Wait until Data Ready 

            ; 

         

        RACSN = 0; 

        SpiReadWrite(RRP);      //Send packet read command to the SPI 

        for (i = 0; i < 32; i++)    //Read in the packet ot the buffer 

            buff[i] = SpiReadWrite(0); 

        RACSN = 1; 
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        TRX_CE=0;               //disable RX mode 

        PutString("\r\nRX\r\n"); 

 

        amFlag = 1; 

        return amFlag; 

    } 

    return amFlag; 

} 

 

// Inteteger to ASCII (itoa) conversion 

void itoa(int n, unsigned char *s) 

{ 

 unsigned char *charPtr; 

 int idata n1; 

 unsigned char idata len; 

   

 len=0; 

 //change the sign for negative numbers 

 if (n<0) 

 { 

  n=-n; 

  *s++ = '-'; 

 } 

 //calculate the length of the number in decimal digits 

 n1=n;  

 do 

 { 

  n1 /= 10; 

  len++; 

 } 

 while(n1); 

  

  

 *(charPtr = &s[len]) = 0; //null terminate string 

 do 

 { 

  *--charPtr = (n % 10) + '0'; 

  n /= 10; 

 } 

 while(n); 

 

} 

 

// Prints array of 12 bytes in decimal notation 

void printArray (unsigned char idata *array) 

{ 

    unsigned char i; 

    unsigned char stringBuff[5]; 

 

    for (i=0; i<12; i++) 

    { 

        itoa((int)array[i], stringBuff); 

        PutString(stringBuff); 

        PutString("\t"); 

    } 

    PutString("\r\n"); 

} 

  

  

//Returns Modulo96 of the 12-byte number (Big Endian) held in 12-element 

//array 
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unsigned char getModulo96 (unsigned char idata *array) 

{ 

    unsigned char i; 

    unsigned char modulus = 0; 

 

    for (i=0; i<11; i++) 

    { 

//Divide and conquer approach: sum of two 4-bit numbers multiplied by 2*16 

        modulus +=  (( (array[i] & 0x0f) + (array[i] >> 4) )*256)%96; 

        modulus %= 96;  //Reduce each result Mod96 - can be done less  

    //frequently 

    } 

    return (array[11] + modulus)%96;    //Add the result to the LSB and 

       //calculate Mod96 again 

} 

 

//Reverses (mirror) the array - used by indexShift function 

void arrayReverse(unsigned char idata *result, unsigned char left, unsigned 

char right) 

{ 

    unsigned char temp; 

    unsigned char i; 

    unsigned char j; 

 

    //Start with edges and continue until middle elements are processed 

    for (i=left, j=right; i<j; i++, j--) 

    { 

        temp = result[i]; 

        result[i] = result[j]; 

        result[j] = temp; 

    } 

} 

 

//Rotates the elements of a 12-element array by up to 11 positions left or 

//right 

void indexShift (unsigned char idata *result, unsigned int direction, 

unsigned int indexShift) 

{ 

    //ArrayReverse: let array be split into A.B. After rotations it is B.A 

    //B.A = reverse( reverse(A).reverse(B) ) 

 

    //Direction: 0 for left shift, 1 for right shift 

    if (!direction) 

    { 

        arrayReverse(result, 0, indexShift-1); 

        arrayReverse(result, indexShift, 11); 

        arrayReverse(result, 0, 11); 

    } 

    else 

    { 

        arrayReverse(result, 12-indexShift, 11); 

        arrayReverse(result, 0, 11-indexShift); 

        arrayReverse(result, 0, 11); 

    } 

} 

 

//Bitwise bit rotation of the array (up to 7 places) 

void bitShift (unsigned char idata *array, unsigned int direction, unsigned 

int bitsToShift) 

{ 

    unsigned char i; 
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    unsigned char element0; 

    unsigned char temp; 

 

    //Direction: 0 for left shift, 1 for right shift 

    if (!direction)//Shift bits to the left with carry to the lower element  

    { 

        element0 = array[0]; 

        array[0] = array[0] << bitsToShift; 

         

        for (i=0; i<11; i++) 

        {          

            temp = array[i+1]; 

            array[i+1] = array[i+1] << bitsToShift; 

            array[i] |= temp >> (8 - bitsToShift); 

        } 

        array[11] |= element0 >> (8-bitsToShift); 

 

    } 

    else    //Shift bits to the right with carry to the lower element  

    {      

        element0 = array[11]; 

        array[11] = array[11] >> bitsToShift; 

     

        for (i=11; i>0; i--) 

        { 

            temp = array[i-1]; 

            array[i-1] = array[i-1] >> bitsToShift; 

            array[i] |= temp << (8 - bitsToShift); 

        } 

        array[0] |= element0 << (8-bitsToShift); 

    } 

} 

 

//Rotates array2 by array1 Modulo96 

void bitRotation (unsigned char idata *array1, unsigned char idata *result, 

unsigned int direction) 

{ 

    unsigned char modulo = getModulo96(array1);     //First get modulo 

    unsigned char indicesToShift; 

    unsigned char bitsToShift; 

 

    //Second divide modulo by 8 and rotate the array (if modulo is bigger 

 //than 8) 

    //Direction: 0 for left shift, 1 for right shift 

    if (modulo > 8) 

    { 

        indicesToShift = modulo/8; 

        indexShift(result, direction, indicesToShift); 

    } 

 

    //Then bitshift with carry each element by the remaining shift (shift 

 //amount will be <8) 

    bitsToShift = modulo%8; 

    if (bitsToShift != 0) 

        bitShift(result, direction, bitsToShift); 

} 

 

//Performs XOR on two arrays and saves the output to the second argument 

void xorArrays (unsigned char idata *array1, unsigned char idata *result) 

{ 

    unsigned char i; 
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    for (i=0; i<12; i++) 

    { 

        result[i] ^= array1[i]; 

    } 

} 

 

//Performs addition Modulo96 on two arrays and saves the output to the 

//second argument 

void additionMod96 (unsigned char idata *array1, unsigned char idata 

*result) 

{ 

 unsigned char i; 

    unsigned char j; 

     

    for (i=11; i>0; i--) 

    {  

        result[i] += array1[i]; //Add two bytes (no carry) 

        if (result[i] < array1[i]) //Check if carry needed and append to 

      //upper byte 

        { 

            result[i-1]++; 

            //check if previous byte was not 255 overloaded to 0 and step 

  //back to lower elements to do the same 

            j=i; 

            //If a carry bit overloads upper byte increment upper to  

  //overloaded 

            //Continue until the array head is met if needed 

            while(result[j-1] == 0 && j > 1)    

            { 

                result[j-2]++; 

                --j; 

            } 

        } 

    }  

    result[0] += array1[0]; //Got to the MSB - just add and ignore carry 

    //(adding Mod96 anyway) 

} 

 

//Performs subtraction Modulo96 on two arrays and saves the output to the 

//second argument 

void subtractionMod96 (unsigned char idata *array1, unsigned char idata 

*result) 

{ 

 unsigned char i; 

    unsigned char j; 

 

    for (i=11; i>0; i--) 

    {     

        if (result[i] < array1[i])  //Verify if the minuend is not smaller 

      //than the subtrahend 

        { 

            result[i-1] -= 0x01;    //borrow LSB from the lower element 

            j=i; 

            //If a borrow bit overloads upper byte decrement upper byte to 

  //the overloaded one 

            while(result[j-1] == 0xFF && j > 1)    

            { 

                result[j-2] -= 0x01; 

                j--; 

            }    
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        } 

        result[i] -= array1[i]; //Subtract (no carry) 

    }  

    result[0] -= array1[0]; //Got to the MSB - just add and ignore carry 

    //(adding Mod96 anyway) 

} 

 

//Performs Gossamer MixBits function on two arrays and returns pointer to a 

//temporary array 

unsigned char* mixBits (unsigned char idata *array1, unsigned char idata 

*array2) 

{ 

    // Z = mixBits (X,Y) 

    // Z = X 

    // 32times: Z = (Z>>1) + Z + Z + Y 

    unsigned char idata result[12]; 

    unsigned char i; 

 

    for (i=0; i<12; i++) 

    { 

        result[i] = array1[i]; 

    } 

 

    for (i=0; i<32; i++) 

    { 

        bitShift (array1, 1, 1); 

        additionMod96 (array1, result); 

        bitShift (array1, 0, 1); 

        additionMod96 (array1, result); 

        additionMod96 (array1, result); 

        additionMod96 (array2, result); 

    } 

    return result; 

} 

 

/* SEA S-Box implementation according to SEA author's suggestions 

void seaSBOX (unsigned char data *block, unsigned char i) 

{ 

    block[3*i] = (block[3*i+2] && block[3*i+1]) ^ block[3*i]; 

    block[3*i+1] = (block[3*i+2] && block[3*i]) ^ block[3*i+1]; 

    block[3*i+2] = (block[3*i] || block[3*i+1]) ^ block[3*i+2]; 

} 

*/ 

 

//Simplified S-Box - per private conversation with the author it is safe to 

//perform S-Box on the first three elements only (SEA(96,8). 

//Originally author advised to apply S-Box to any 3 elements of each block 

void seaSBOX (unsigned char idata *block, unsigned char i) 

{ 

    block[0] = (block[2] && block[1]) ^ block[0]; 

    block[1] = (block[2] && block[0]) ^ block[1]; 

    block[2] = (block[0] || block[1]) ^ block[2]; 

} 

 

//SEA Bit-rotation function for SEA(96,8). 

//Function uses Raisonance RC51 intrisic functions (_cror_ and _crol_). 

void seaBitRotation (unsigned char idata *block) 

{ 

    block[0] = _cror_(block[0], 1); 

    block[2] = _crol_(block[2], 1); 

    block[3] = _cror_(block[3], 1); 
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    block[5] = _crol_(block[5], 1); 

} 

 

//SEA(96,8) word rotation - rotates the array by one byte 

void seaWordRotation (unsigned char idata *block, unsigned char direction) 

{ 

    //Direction 0 for left and 1 for right rotation 

    unsigned char i; 

    unsigned char temp; 

     

    if (direction == 0) 

    { 

        temp = block[0]; 

        for (i=0; i<5; i++) 

            block[i] = block[i+1]; 

        block[5] = temp; 

    } 

    else 

    { 

        temp = block[5]; 

        for (i=5; i>0; i--) 

            block[i] = block[i-1]; 

        block[0] = temp; 

    } 

} 

 

//Performs one SEA(96,8) Crypto round. Parameter direction: 0 for 

//encryption and 1 for decryption 

void seaCryptRound (unsigned char direction, unsigned char idata 

*blockLeft, unsigned char idata *blockRight, unsigned char idata *keyHalf) 

{ 

    unsigned char i; 

    unsigned char temp[6]; 

 

    //Every operation will be performed on blockLeft as this memory 

 //location will become a right block for the next round. 

    //Save the left block 

    for (i=0; i<6; i++) 

        temp[i] = blockRight[i]; 

 

    //ENCRYPTION 

    //Fe(Li, Ri, K/2i) <=> RightWordRot(Li) XOR bitRot(sbox(Ri+K/2i)) 

    //DECRYPTION 

    //Fd(Li, Ri, K/2i) <=> LeftWordRot(Li XOR bitRot(sbox(Ri+K/2i))) 

 

    //Step by step: 

    //Ri+K/2i 

    for (i=0; i<6; i++) 

        blockRight[i] += keyHalf[i]; 

    //sbox(Ri+K/2i) 

    seaSBOX(blockRight, i%2); 

    ////seaSBOX(blockRight, 0); 

    //bitRot(sbox(Ri+K/2i)) 

    seaBitRotation(blockRight); 

    //RightWordRot(Li) - encryption only 

    //Direction 0 for encryption and 1 for decryption 

    if (direction == 0) 

        seaWordRotation(blockLeft, 1); 

    //RightWordRot(Li) XOR bitRot(sbox(Ri+K/2i)) 

    for (i=0; i<6; i++) 

    { 
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        blockRight[i] ^= blockLeft[i]; 

        blockLeft[i] = temp[i];     //BlockLeft(i)+1 becomes BlockRight(i) 

    } 

    //LeftWordRot(Li XOR bitRot(sbox(Ri+K/2i))) - decryption only 

    if (direction == 1) 

        seaWordRotation(blockRight, 0); 

} 

 

//Performs one SEA(96,8) key round. 

void seaKeyRound (unsigned char idata *keyLeft, unsigned char idata 

*keyRight, unsigned char Ci) 

{ 

    //Fk(KLi-1,KRi-1,Ci) <=> KRi = KLi-1 XOR RightWordRot(bitRot(sbox((KRi-

 //1)+Ci))); 

    unsigned char i; 

    unsigned char temp[6]; 

     

    //Save the left key (left key will become right after the round) 

    //Every operation will be performed on keyLeft as this memory location       

 //will become a right key for the next round. 

    for (i=0; i<6; i++) 

        temp[i] = keyRight[i]; 

    //Step-by-step: 

    //init Ci (LSW equals i) 

    ////Ci[5] = i; 

    //(KRi-1)+Ci 

    keyRight[5] += Ci; 

    //sbox((KRi-1)+Ci) 

    seaSBOX(keyRight, (Ci%2)); 

    ////seaSBOX(keyRight, 1); 

    //bitRotation(sbox((KRi-1)+Ci)) 

    seaBitRotation(keyRight); 

    //RightWordRot(bitRot(sbox((KRi-1)+Ci))); 

    seaWordRotation(keyRight, 1);    

    //KRi = KLi-1 XOR RightWordRot(bitRot(sbox((KRi-1)+Ci))); 

    for (i=0; i<6; i++) 

    { 

        keyRight[i] ^= keyLeft[i];     

        keyLeft[i] = temp[i];   //KeyLeft(i)+1 becomes KeyRight(i)  

    } 

} 

 

// SEA Scalable Encryption Algorithm (SEA 96,8) implementation 

void sea (unsigned char direction, unsigned char idata *block, unsigned 

char idata *key) 

{ 

    //Direction 0 for encryption and 1 for decryption 

    unsigned char i; 

 

    //initialization 

    unsigned char* idata keyLeft = &key[0]; 

    unsigned char* idata keyRight = &key[6]; 

    unsigned char* idata blockLeft = &block[0]; 

    unsigned char* idata blockRight = &block[6]; 

    unsigned char* idata temp; //temp pointer used for swapping key sides 

    unsigned char tmp; 

     

    //First half of all rounds (93 as per author's recommendation for a 

 //minimum number of rounds) 

    for (i=1; i<47; i++) 

    { 
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        //Key scheduling 

        //[KLi, KRi] = Fk(KLi-1, KRi-1, C(i)); 

        //Fk(KLi-1,KRi-1,Ci) <=> KRi = KLi-1 XOR Rot(bitRot(sbox((KRi- 

  //1)+Ci))); 

        seaCryptRound (direction, (unsigned char idata *)blockLeft, 

(unsigned char idata *)blockRight, (unsigned char idata *)keyRight); 

        seaKeyRound((unsigned char idata *)keyLeft, (unsigned char idata 

*)keyRight, i); 

    } 

     

    //End of round half - swap pointers 

    temp = keyLeft; 

    keyLeft = keyRight; 

    keyRight = temp; 

 

    for (i=46; i>0; i--) 

    { 

        //Key scheduling part 2 

        //[KLi, KRi] = Fk(KLi-1, KRi-1, C(r-i)); 

        //Fk(KLi-1,KRi-1,Ci) <=> KRi = KLi-1 XOR Rot(bitRot(sbox((KRi- 

  //1)+Ci))) 

        seaCryptRound (direction, (unsigned char idata *)blockLeft, 

(unsigned char idata *)blockRight, (unsigned char idata *)keyLeft); 

        seaKeyRound((unsigned char idata *)keyLeft, (unsigned char idata 

*)keyRight, i); 

    } 

    seaCryptRound (direction, (unsigned char idata *)blockLeft, (unsigned 

char idata *)blockRight, (unsigned char idata *)keyLeft); 

     

    //Final: switch Key and Block halves 

    //indexShift (block, 0, 6);     //Gossamer function may be used to save 

 //space  

    for(i=0; i<6; i++) 

    { 

        tmp = block[i]; 

        block[i] = block[i+6]; 

        block[i+6] = tmp; 

    }    

} 

 

//Copies array to the location of the second argument 

void copyArray(unsigned char idata *source, unsigned char idata *target) 

{ 

    unsigned char i; 

 

    for (i=0; i<12; i++) 

        target[i] = source[i]; 

} 

 

//Main Gossamer Slave loop - simplified model. 

void gossamerSlave (void) 

{ 

    //Simplifications: 

    //All data stored in RAM (idata); 

    //Roll-back to previous IDS and keys in case of receiving incorrect 

 //message C 

    //not implemented. Need to copy oldk1 and oldk2 and oldIDS arrays into 

 //respective current arrays. 

    unsigned char data TXaddr[4] = { 0xC3, 0x5A, 0x5A, 0xC3 }; 

    unsigned char xdata TXbuff[32]; 

    unsigned char xdata RXbuff[32]; 
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    unsigned char i; 

    unsigned char flag; 

 

    unsigned char idata temp[12]; 

    unsigned char idata n1temp[12]; 

    unsigned char *tempPtr; 

 

    unsigned char idata Pi[12] = { 0x32, 0x43, 0xF6, 0xA8, 0x88, 0x5A, 

0x30, 0x8D, 0x31, 0x31, 0x98, 0xA2 }; 

    unsigned char idata IDS[12] = { 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 

0x01, 0x01, 0x01, 0x01, 0x01, 0x01 }; 

    unsigned char idata ID[12] = { 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 

0x44, 0x44, 0x44, 0x44, 0x44, 0x44 }; 

    unsigned char idata k1[12] = { 0x10, 0x10, 0x10, 0x10, 0x10, 0x10, 

0x10, 0x10, 0x10, 0x10, 0x10, 0x10 }; 

    unsigned char idata k2[12] = { 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 

0x20, 0x20, 0x20, 0x20, 0x20, 0x20 }; 

    unsigned char idata n1[12]; 

    unsigned char idata n2[12]; 

 

    unsigned char idata oldk1[12]; 

    unsigned char idata oldk2[12]; 

     

    unsigned char idata messageC[12]; 

    unsigned char idata messageD[12]; 

    unsigned char idata k1next[12]; 

    unsigned char idata k2next[12]; 

     

    //Loop forever authenticating the experimental Master 

    for (;;) 

    { 

        //Send IDS 

        flag = 1; 

        PutString("\r\nIDS\t"); 

        printArray(IDS); 

 

        for (i=0; i<12; i++) 

            TXbuff[i] = IDS[i]; 

        TransmitBytes(TXaddr, TXbuff); 

         

        //Wait for message A 

        while (!ReceiveMode(RXbuff)) 

            ; 

        //message A will be used to extract n1 - save it there 

        for (i=0; i<12; i++) 

            n1[i] = RXbuff[i]; 

        PutString("A\t"); 

        printArray(n1); 

         

        //Wait for message B 

        while (!ReceiveMode(RXbuff)) 

            ; 

        //message B will be used to extract n2 - save it there 

        for (i=0; i<12; i++) 

            n2[i] = RXbuff[i]; 

        PutString("B\t"); 

        printArray(n2); 

         

        //Extract n1 from A 

        //A = ROT((ROT(IDS+k1+Pi+n1, k2)+k1, k1) 

        //rightROT A: rightROT((ROT(IDS+k1+Pi+n1, k2)+k1, k1) 
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        bitRotation (k1, n1, 1); 

        //ROT(IDS+k1+Pi+n1, k2)-k1 

        subtractionMod96(k1, n1); 

        //rightROT(IDS+k1+Pi+n1, k2) 

        bitRotation (k2, n1, 1); 

        //k1+Pi+n1-IDS 

        subtractionMod96(IDS, n1); 

        //Pi+n1-k1 

        subtractionMod96(k1, n1); 

        //n1-Pi 

        subtractionMod96(Pi, n1); 

        //n1 extracted, now process message B 

         

        //Extract n2 from B 

        //B = ROT((ROT(IDS+k2+Pi+n2, k1)+k2, k2) 

        //rightROT((ROT(IDS+k2+Pi+n2, k1)+k2, k2) 

        bitRotation(k2, n2, 1); 

        //(ROT(IDS+k2+Pi+n2, k1)-k2 

        subtractionMod96(k2, n2); 

        //right(ROT(IDS+k2+Pi+n2, k1) 

        bitRotation(k1, n2, 1); 

        //k2+Pi+n2-IDS 

        subtractionMod96(IDS, n2); 

        //Pi+n2-k2 

        subtractionMod96(k2, n2); 

        //n2-Pi 

        subtractionMod96(Pi, n2); 

        //n2 extracted now calculate message C 

        PutString("N1\t"); 

        printArray(n1); 

        PutString("N2\t"); 

        printArray(n2); 

 

        //Create temporary n3: n3 = mixBits(n1,n2) 

        tempPtr = mixBits(n1, n2); 

        for (i=0; i<12; i++) 

            temp[i] = tempPtr[i]; 

 

        //Create keys for the next round 

        //k1next = ROT((ROT(n2+k1+Pi+n3, n2)+k2 XOR n3, n1) XOR n3 

        //k1next + n3 

        copyArray(temp, k1next); 

        //Pi+n3 

        additionMod96(Pi, k1next); 

        //k1+Pi+n3 

        additionMod96(k1, k1next); 

        //n2+k1+Pi+n3 

        additionMod96(n2, k1next); 

        //ROT(n2+k1+Pi+n3, n2) 

        bitRotation (n2, k1next, 0); 

        //ROT(n2+k1+Pi+n3, n2)+k2 

        additionMod96(k2, k1next); 

        //ROT(n2+k1+Pi+n3, n2)+k2 XOR n3 

        xorArrays(temp, k1next); 

        //ROT((ROT(n2+k1+Pi+n3, n2)+k2 XOR n3, n1) 

        bitRotation (n1, k1next, 0); 

        //ROT((ROT(n2+k1+Pi+n3, n2)+k2 XOR n3, n1) XOR n3 

        xorArrays(temp, k1next); 

              

        //k2next = ROT((ROT(n1+k2+Pi+n3, n1)+k1+n3, n2)+n3 

        //k2next+n3 
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        copyArray(temp, k2next); 

        //Pi+n3 

        additionMod96(Pi, k2next); 

        //k2+Pi+n3 

        additionMod96(k2, k2next); 

        //n1+k2+Pi+n3 

        additionMod96(n1, k2next); 

        //ROT(n1+k2+Pi+n3, n1) 

        bitRotation (n1, k2next, 0); 

        //ROT(n1+k2+Pi+n3, n1)+k1 

        additionMod96(k1, k2next); 

        //ROT(n1+k2+Pi+n3, n1)+k1+n3 

        additionMod96(temp, k2next); 

        //ROT((ROT(n1+k2+Pi+n3, n1)+k1+n3, n2) 

        bitRotation (n2, k2next, 0); 

        //ROT((ROT(n1+k2+Pi+n3, n1)+k1+n3, n2)+n3 

        additionMod96(temp, k2next); 

         

        //Create temporary n1' = mixBits(n3, n2) 

        tempPtr = mixBits(temp, n2); 

        for (i=0; i<12; i++) 

            n1temp[i] = tempPtr[i]; 

         

        //Create message C: C = ROT((ROT(n3+k1next+Pi+n1', n3)+k2next XOR 

  //n1', n2) XOR n1' 

        //messageC+n1' 

        copyArray(n1temp, messageC); 

        //Pi+n1' 

        additionMod96(Pi, messageC); 

        //k1next+Pi+n1' 

        additionMod96(k1next, messageC); 

        //n3+k1next+Pi+n1' 

        additionMod96(temp, messageC); 

        //ROT(n3+k1next+Pi+n1', n3) 

        bitRotation (temp, messageC, 0); 

        //ROT(n3+k1next+Pi+n1', n3)+k2next 

        additionMod96(k2next, messageC); 

        //ROT(n3+k1next+Pi+n1', n3)+k2next XOR n1' 

        xorArrays(n1temp, messageC); 

        //ROT((ROT(n3+k1next+Pi+n1', n3)+k2next XOR n1', n2) 

        bitRotation (n2, messageC, 0); 

        //ROT((ROT(n3+k1next+Pi+n1', n3)+k2next XOR n1', n2) XOR n1' 

        xorArrays(n1temp, messageC); 

         

        //MessageC created - now await message C: 

        while (!ReceiveMode(RXbuff)) 

            ; 

        PutString("LC\t"); 

        printArray(messageC); 

         

        //Message C received - verify if matches local copy of C 

        for (i=0; i<12; i++) 

        { 

            if (messageC[i] != RXbuff[i]) 

                flag = 0; 

        } 

         

        if (flag) //C matches so Master is authenticated. Send message D 

        { 

            //Step1: calculate local messageD 

            //D = ROT(ROT(n2+k2next+ID+n1', n2)+k1next+n1', n3)+n1' 
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            //messageD +n1' 

            copyArray(n1temp, messageD); 

            //ID+n1' 

            additionMod96(ID, messageD); 

            //k2next+ID+n1' 

            additionMod96(k2next, messageD); 

            //n2+k2next+ID+n1' 

            additionMod96(n2, messageD); 

            //ROT(n2+k2next+ID+n1', n2) 

            bitRotation (n2, messageD, 0); 

            //ROT(n2+k2next+ID+n1', n2)+k1next 

            additionMod96(k1next, messageD); 

            //ROT(n2+k2next+ID+n1', n2)+k1next+n1' 

            additionMod96(n1temp, messageD); 

            //ROT(ROT(n2+k2next+ID+n1', n2)+k1next+n1', n3) 

            bitRotation (temp, messageD, 0); 

            //ROT(ROT(n2+k2next+ID+n1', n2)+k1next+n1', n3)+n1' 

            additionMod96(n1temp, messageD); 

             

            //Now send message D and go to key updating phase 

            for (i=0; i<12; i++) 

                TXbuff[i] = messageD[i]; 

            TransmitBytes(TXaddr, TXbuff); 

         

            //Message D sent - key and IDS updating phase 

            //First step: save old IDS and keys 

            //MessageD memory location will be re-used for oldIDS 

            copyArray(IDS, messageD); 

            copyArray(k1, oldk1); 

            copyArray(k2, oldk2); 

         

            //n2 array will be reused 

            //n2' = mixBits(n1', n3) 

            tempPtr = mixBits(n1temp, temp); 

            for (i=0; i<12; i++) 

                n2[i] = tempPtr[i]; 

            //IDS = ROT((ROT(n1'+k1next+IDS+n2', n1')+k2next XOR n2', n3) 

   //XOR n2 

            //IDS+n2' 

            copyArray(n2, IDS); 

            //k1next+IDS+n2' 

            additionMod96(k1next, IDS); 

            //n1'+k1next+IDS+n2' 

            additionMod96(n1temp, IDS); 

            //ROT(n1'+k1next+IDS+n2', n1') 

            bitRotation (n1temp, IDS, 0); 

            //ROT(n1'+k1next+IDS+n2', n1')+k2next 

            additionMod96(k2next, IDS); 

            //ROT(n1'+k1next+IDS+n2', n1')+k2next XOR n2' 

            xorArrays(n2, IDS); 

            //ROT((ROT(n1'+k1next+IDS+n2', n1')+k2next XOR n2', n3) 

            bitRotation (temp, IDS, 0); 

            //ROT((ROT(n1'+k1next+IDS+n2', n1')+k2next XOR n2', n3) XOR n2 

            xorArrays(n2, IDS); 

             

            //k1 update 

            //k1 = ROT((ROT(n3+k2next+Pi+n2', n3)+k1next+n2', n1')+n2' 

            //k1=n2' 

            copyArray(n2, k1); 

            //Pi+n2' 

            additionMod96(Pi, k1); 
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            //k2next+Pi+n2' 

            additionMod96(k2next, k1); 

            //n3+k2next+Pi+n2' 

            additionMod96(temp, k1); 

            //ROT(n3+k2next+Pi+n2', n3) 

            bitRotation (temp, k1, 0); 

            //ROT(n3+k2next+Pi+n2', n3)+k1next 

            additionMod96(k1next, k1); 

            //ROT(n3+k2next+Pi+n2', n3)+k1next+n2' 

            additionMod96(n2, k1); 

            //ROT((ROT(n3+k2next+Pi+n2', n3)+k1next+n2', n1') 

            bitRotation (n1temp, k1, 0); 

            //ROT((ROT(n3+k2next+Pi+n2', n3)+k1next+n2', n1')+n2' 

            additionMod96(n2, k1); 

 

            //k2 update 

            //k2 = ROT((ROT(IDS+k2next+Pi+k1, IDS)+k1next+k1, n2')+k1 

            //k2 = k1 

            copyArray(k1, k2); 

            //k1+Pi 

            additionMod96(Pi, k2); 

            //k2next+Pi+k1 

            additionMod96(k2next, k2); 

            //IDS+k2next+Pi+k1 

            additionMod96(IDS, k2); 

            //ROT(IDS+k2next+Pi+k1, IDS) 

            bitRotation (IDS, k2, 0); 

            //ROT(IDS+k2next+Pi+k1, IDS)+k1next 

            additionMod96(k1next, k2); 

            //ROT(IDS+k2next+Pi+k1, IDS)+k1next+k1 

            additionMod96(k1, k2); 

            //ROT((ROT(IDS+k2next+Pi+k1, IDS)+k1next+k1, n2') 

            bitRotation (n2, k2, 0); 

            //ROT((ROT(IDS+k2next+Pi+k1, IDS)+k1next+k1, n2')+k1 

            additionMod96(k1, k2); 

             

            //Get encrypted message from Master and save to temp 

            while (!ReceiveMode(RXbuff)) 

                ; 

            //encrypted message received 

            for (i=0; i<12; i++) 

                temp[i] = RXbuff[i]; 

 

            //Now decrypt temp with k1 and display   

            PutString("SeaE\t"); 

            printArray(temp); 

            sea(1, temp, k1); 

            PutString("SeaD\t"); 

            printArray(temp); 

            PutString("k1\t"); 

            printArray(k1);     

        } 

        else 

            //Simplification: roll-back to old IDS and keys not implemented 

            PutString("\r\n:( C");      //wrong message C 

    } 

} 

 

int main(void) 

{ 

 unsigned int xdata RXaddr[4] = { 0xC4, 0x5A, 0x5A, 0xC4 }; 
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 InitUartTimer1(); 

 SetClock(); 

 ChangeRXAddress(RXaddr); 

 InitRadio(); 

 PutString(":)\n\r"); 

    gossamerSlave();   

 

    return 0; 

} 

 

 


