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Abstract

Abstract
Today vast amounts of services and information are provided by the WWW. By its very 

nature, the information involved is changeable; hence static web pages are no longer 

adequate and methods of coping with dynamic information are needed. One such 

technology from Sun Microsystems is called JavaServer Pages (JSP.).
f L U T i m

JSP is an integral component of J2EE and can be viewed as a simplified and augmented 

version of its parent technology Java servlets. JSP provides businesses with a means to 

rapidly develop robust large-scale web applications, as it offers programmers the ability 

to work parallel with web designers and provides a mechanism to easily integrate Java 

code with static HTML.

However JSP technology does have weaknesses; for example there is no standard design 

approach, no caching or compression mechanisms to improved presentation speed, 

automated testing is difficult and there are a number of known security vulnerabilities. As 

a result the industry has recognised these weaknesses and have started to develop new 

servlet frameworks / template engines that supply them with the ability to develop 

maintainable and cost effective web applications. Hence developers are now burdened 

with an indulgence of complex Java frameworks that require a steep learning curve to 

master.

The overall aim of this dissertation is to analyse, design, implement and evaluate a new 

improved Java web based technology (that we call MagnumServer Pages) and its 

corresponding novel servlet design framework. The new design will ultimately simplify 

the development process into easily understood components that resolve the issues 

surrounding JSP. The results of a detailed evaluation and benchmarking indicates that the 

new design is a flexible framework that provides reduced coupling, increased 

presentation speed, support for automated testing and a seamless development process.
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Chapter 1 Introduction

1 Introduction

1.1 Purpose and Scope

This document is a thesis submitted in part fulfilment of the requirements for the degree 

of Master of Science at Letterkenny Institute of Technology Department of Computing. 

The topic is that of constructing a new robust Java web based technology, which will 

resolve some fundamental problems surrounding JavaServer Pages (JSP). The new 

technology will provide support for additional competing technologies, increased 

presentation speed and finally decoupled application code that can be easily unit tested.

1.2 Background and Overview

In recent years the WWW has changed significantly in terms of serving HTML content to 

clients Therefore over the course of time the range of dynamic web-based technologies 

(for example, CGI, PHP and Java servlets) has grown.

However, these dynamic web-based technologies have their own shortcoming such as 

scalability, performance, maintainability and cost of development. Specifically, in the 

case of Java servlets, there is no separation of programming logic and HTML processing; 

this results in costly development and maintenance difficulties. Hence JavaServer Pages 

(JSP) was created as an extension of Java servlets and quickly became the standard Java 

solution to dynamic HTML. The reason for this was that it offered developers a 

simplified way to create and maintain servlet style code that still contained the full power 

of its parent technology (that is, Java servlets).

Although JSP is the standard Java web solution, it is not the only solution. Currently, 

software houses have recognised some limitations with JSP, particularly in the areas of 

design, performance, testability and security. Therefore some software houses have 

started to develop servlet frameworks and template engines (for example, Apache Struts 

and Tapestry), which try to solve the limitations of JSP by applying new design patterns
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Chapter 1 Introduction

and coding approaches. However there are costs associated with these new frameworks, 

such as poor documentation and high complexity for average programmers.

Thus the dissertation will present a new solution / approach for creating dynamic content 

implemented in Java. This solution will increase responsivity, security, testability and 

provide developers with a more intuitive and flexible design framework.

The objectives of this dissertation are as follows:

1. Conduct a detail literature review to investigate the nature of JSP and it’s 

competing technologies;

2. Investigate the nature of JSP performance, security, error handling, debugging, 

ad-hoc design and the weakness of separation of presentation from business 

logic.

3. Follow software development best practices (for example, using object oriented 

design patterns and UML design processes) to design, implement and evaluate 

the new solution;

4. Discuss and suggestion future enhancements.

1.3 Outline of Document

This dissertation is divided into seven chapters, the first chapter aims to outline the scope 

and the main objectives for the dissertation.

Chapter two provides a review of the available literature in the context of JavaServer 

Pages (JSP). That is, the history of dynamic web technology is examined, alternative 

technologies are explained, Java Enterprise Edition (J2EE) model is explored in the 

context of the WWW, Java servlets are discussed and in particular JSP are explained in 

detail.

Chapter three examines the problems of JSP in the context of design, performance, 

testability and security.
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Chapter four describes a plan to resolve the problems of JSP in the context of design, 

performance, testability and security.

Chapter five describes how the new design was implemented, that is explaining the 

architecture and construction in detail.

Chapter six evaluates the newly implemented design against competing Java web 

frameworks / technologies.

Chapter seven summarises the overall findings of the project and outlines possible future 

work.
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2 Literature Review

2.1 Introduction
Currently there are many competing dynamic web page technologies, such as PHP 

and CGI, which offer their own unique advantages and disadvantages for building 

web applications in terms of design, performance, security and testability. Even 

though this chapter discusses and highlights the strengths and weaknesses of some of 

these competing technologies, the fundamental purpose of this chapter is to discuss 

dynamic web page technology in the context of the standard Java solution for 

producing dynamic HTML, namely JavaServer Pages (JSP).

JSP is an extension of the Java servlet architecture [Sun, 2001]; both JSP and servlets 

are server-side Java technologies that are supported on the majority of today’s 

application servers (in the context of J2EE, “application server” can be defined as a 

web server that provides the mechanism to serve dynamic content). These 

technologies provide a platform independent language that offers an extensive library 

of predefined classes for developing dynamic HTML content. In conjunction with the 

existing Java standard development kit (JSDK) class libraries, the predefined servlet 

and JSP Java class libraries can be used to build enterprise scale Java web 

applications. The servlet and JSP Java class libraries are particularly powerful since 

they offer additional functionality support from the more traditional JSDK support 

(ranging from database connectivity to multithreaded network processing) [Sun,

2002], Although similar, JSP differs from servlet technology in that it is a web- 

scripting language that attempts to separate static content (HTML) from dynamic 

presentation (servlet code).

The following sections will discuss JSP under the when, what, where, why, and how; 

that is, the following sections will provide detailed answers to the following 

questions:

• Why did dynamic web technology arise?

• Where does JSP fit into the overall Java model?

• What are Java servlets?

• Why did JSP technology occur?
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• What arc JSP?

• How does JSP work?

• What are the advantages of JSP?

• What exactly is JSP relationship with servlets?

• How does JSP help developers?

• How is JSP different from competing technologies?

• What other Java technologies can be used in tandem with JSP?

• What are JSP competing technologies?

2.2 The evolution of dynamic web technology
When the WWW was created, its primary purpose was to serve static HTML pages. 

However this primary purpose changed when people started to use the WWW as not 

only a means to find static information but as a tool to perform daily tasks, for 

example, banking and shopping. To perform these daily tasks the WWW started to 

serve dynamic content [Kassem et al, 2002], The serving of dynamic content occurs 

when a client’s browser submits an HTTP request for a particular web page (typically 

implemented by a scripting language or technology such as ASP, PHP, CGI or JSP) 

on a web server [Brown et al, 2001], the web server would locate the dynamic page, 

execute its program and retrieve the page result as HTML through a corresponding 

HTTP response [Fields et al, 2000],

To further this discussion, we must discuss some of the dynamic web technologies 

alternative to JSP, particularly in the context of different language implementations 

and what advantages and disadvantages they bring.

2.2.1 Common Gateway Interface

Common Gateway Interface (CGI) was one of the first technologies to be used for 

building dynamic HTML [Fields et al, 2000]. CGI by itself is not a programming 

language; it is a standard lightweight interface that is based on the same model that 

the web server uses to serve static HTML files [Birznieks et al ,2000]. That is, the 

web server reads an incoming HTTP request from a URL and identifies a server side 

CGI resource file (that is, an interface file denoted by . c g i  extension). Sequentially,
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the web server executes CGI resource file, waits until the CGI process has finished 

and sends the resultant HTML output as response back to the client [Christiansen et 

al, 1998]. CGI code can be written in most languages [NSCA, 98] and while a CGI 

file is executed, the application code is sequential executed to print out one large 

textual string (The textual string is a combination of intermixed static HTML and 

dynamic functionality).

The following are the advantages associated with using CGI:

a) Program languages

CGI applications can be written in most programming languages, for example, 

Perl, Python, Visual Basic, C/C++, Unix shell scripts, and even COBOL.

b) Large range of robust utility libraries

Depending on the programming language that you use for your CGI file, for 

example, Perl or C / C++, your CGI code would have access to a large set of 

built-in libraries, which would provide extra functionality to developers so 

they can quickly develop applications with the minimum effort.

c) Learning curve

Since CGI can use any one of a wide range of programming languages for its 

coding (which most developers and students have used at least one in their 

work/studies) and CGI is extensively documented with workable examples. 

Therefore most developers can become highly productive without huge effort.

2.2.1.2 Disadvantages of CGI

The following are the disadvantages associated with using CGI:

a) Use of interpreted languages

In most cases, the programming language you use to build CGI applications is 

not compiled, for example, Perl and Python. Once a CGI script / program is 

called the interpreter is loaded, the script is checked for errors at run-time, 

then executed as a single process on the server. This process is slow to execute 

and has large memory footprint [Wu et al, 2000] because the CGI file has to

a j I/ ....
2.2.1.1 Advantages of CGI
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be interpreted for every single HTTP request and external resources have to be 

held in memory until termination of CGI process.

b) Scalability

This single process execution does not provide support for threading, for 

example in the use with database and object pooling. CGI applications have an 

increased load time to connect to external resources such as databases and 

shared libraries as these external connections need to be created and reloaded 

each time the CGI code is executed. Therefore this process has a detrimental 

effect on the performance of the web server as it uses valuable CPU memory 

in a processor inefficient manner [Wu et al, 2000],
3",
| L .i\; y1

c) Performance

No matter which programming language you use, CGI cannot save user 

session data in memory. The reason for this is that upon every request for a 

CGI resource file, a single process is executed and then terminated on 

completion. Therefore memory allocation must be reinitialised for every 

request. Some of the programming languages that can be used with CGI, for 

example, Perl uses a combination of text file manipulation (reading and 

writing to a file) and databases for data persistence.

2.2.2 PHP (PHP Hypertext Processor)

PHP is an open source platform independent server side scripting language.

It is an interpreted language that is best described as a cross between C/C++ and Perl. 

PHP was designed to simplify manipulation of databases and provide a set of reusable 

libraries that could be used to build dynamic content for the WWW [Fields et al,

2000]. The PHP scriptlet is embedded into HTML and then executed to give dynamic 

functionality [Bakken et al, 2003].

It was created in 1994 by Rasmus Lerdorf as a way to track users entering his website. 

Lerdorf originally named PHP (Personal Home Programming) but throughout the 

years the language has become more generally accepted and is now adopted by the
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GNU community. Currently over 11 million domains use PHP as the main server side 

scripting language to render their web pages.

The following subsections describe some of the advantages and disadvantages that are 

currently associated with PHP.

2.2.2.1 Advantages of PHP

The following are the advantages associated with using PHP:

a) Large range of robust utility libraries

Since PHP is an open source technology that was built primary for web 

development, it comes which an array of built-in libraries, for example, Java 

and . NET plug-ins, XML and database libraries, which hide mundane tasks 

from developers so they can quickly develop applications with the minimum 

effort [Bakken et al, 2003] [Welling et al, 2001].

b) Database integration

PHP has many easy to use predefined libraries to connect and interact with 

many industrial standard Databases, for example, MySQL, PostgresSQL, 
mSQL, Oracale, Sybase and SQL server etc. This functionality 

provides low configuration and start up time to building robust database 

driven web systems [Bakken et al, 2003] [Welling et al, 2001],

c) Free to the public

There is no licensing or cost associated with PFIP. It is freely available on the 

web and is supported by most major Internet Service Providers (ISP)

d) Learning curve

PHP is very similar to Perl, C and C++ (which most developers and students 

have used in their work/studies) and the PHP language is extensively 

documented with workable examples. This means that most Perl, C and C++ 

skilled developers can become highly productive without huge effort [Welling 

et al, 2001].
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e) Platform independent

The PHP language can run on any UNIX systems such as Linux, Solaris, etc. 

and any Windows based platform.

2.2.2.2 Disadvantages of PHP

The following are the disadvantages associated with using PHP:

a) Weak abstraction for databases

PHP comes with a large array of database libraries that use different method 

calls to connect to and interact with specific databases. This results in 

maintenance difficulty for developers to switch databases within their 

applications [Wu et al, 2000], For example, some of the database connection 

functions for PHP are:
I  :mysql_connec t () - establishes a connection to a MySQL server; 

ifx_connect () - establishes a connection to an Informix server; 

sybase_connect () - establishes a connection to a Sybase server.

b) Interpreted language

Like all interpreted languages, PHP is not compiled. As stated earlier, once a 

script is called the interpreter is loaded, the script is checked for errors at run

time, then executed via a single process on the server; hence this process is 

slow too execute and has large memory footprint [Wu et al, 2000],

c) Scalability

This single process execution does not provide support for threading, for 

example in the use with database and object pooling. PHP applications have 

an increased load time to connect to external resources (databases and files) 

and internal components need to be built each time etc which all have a 

decreasing effect on the performance of the web server [Wu et al, 2000].

2.2.3 ASP.NET

Active Server Pages .NET (ASP.NET) was created by Microsoft as a core sub 

component of the .NET framework. The specific purpose of ASP.NET is to provide 

an event driven development approach to building dynamic web pages. In the case of
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event driven, we mean that ASP.NET intentions is to provide a high level Application 

Programmer Interface (API) (which is part of the .NET Framework Class Library 

(FCL)), which a developer can use to implement the minimal amount of code for 

separating the background engine code from the user interface portions of a dynamic 

web page. ASP.NET can be implemented using any of the five languages for the 

.NET framework. That is, C#, VB, C++, JScript and J++ [Kalani, 2003],

The following are the some of the advantages and disadvantages that are currently 

associated with ASP.NET.

2.2.3.1 AdvantagesofASP.NET

The following are the advantages associated with using ASP.NET:

a) Large range of robust utility libraries

As ASP.NET is a part of the overall .NET Framework Class Library (FCL), it 

can use any predefined classes from the FCL to support basically any 

functionality such as web services to file manipulation. These predefined class 

libraries offer programmers more power to develop large-scale reusable 

components that can form enterprise solutions to large organisations [Kalani, 

2003].

b) Performance

Compared to competing technologies (for example, PHP, CGI and JSP), an 

application’s overall performance can be improved when the application has 

been developed in ASP.NET. This improvement can occur in two ways which 

most of the competing technologies do not implement, firstly any dynamic 

web page developed using ASP.NET is compiled before it is executed 

(therefore saving time on interpreting the source code) and secondly the 

compiled version of the dynamic web page is cached (therefore saving time on 

recompilation) [Kalani, 2003].

c) Scalability

An application developed in ASP.NET can be distributed across several 

machines or several processes of the same machine. Therefore a web
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application can scale smoothly as the number of users increases [Kalani,

2003].

d) Learning curve

Programmers can become productive at an early stage since ASP.NET can be 

developed in a number of languages (for example, C# and VB) and is 

extensively documented.

2.2.3.2 DisadvantagesofASP.NET

The following are the disadvantages associated with using ASP.NET:

a) Platform dependent

Even though ASP.NET source code is compiled into Microsoft Intermediate 

Language (MSIL) (which is platform independent native code). One drawback 

of ASP.NET is that any web application developed with this framework needs 

to be deployed on a Microsoft specific web server such as IIS because the 

MSIL has yet to be embraced by other operating systems.

2.2.4 Conclusions

This subsection has offered an insight on the inception and growth of dynamic web 

technology and in particular covered some of the more important JSP alternatives. 

Therefore we must now investigate and discuss the role of JSP technology in terms of 

the overall Java model.

2.3 JSP compatibility with the Java Enterprise Edition model
The purpose of this section is to define the role that the JSP architecture plays in the 

overall scheme of the Java Enterprise Edition (J2EE) model; one must understand that 

J2EE is an architecture that consists of many technologies such as Enterprise 

JavaBeans (EJB), CORBA, XML, servlets, JSP and Web services. Under J2EE these 

technologies can be categorised into three distinct groups: component, service and 

communication [Kassem et al, 2002],

Due to the vastness of these three J2EE technology groups, this section shall only 

examine a subsection of the component group called the Web tier. The Web tier
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covers all the fundamental components in relation to JSP and will explain the 

processes involved in deploying a Java based application onto the web.

As highlighted previously, the J2EE platform isn’t a single entity. J2EE is 

amalgamation of many Java technologies [Kassem et al, 2002] and before discussing 

the J2EE Web tier, we must explain in detail about three tiered architectures. That is, 

J2EE’s primary focus is to provide the technologies that produce such software 

architectures.

Before continuing, we must define “business logic”; which is used throughout this 

dissertation; it refers to some context, that is, software component operations; that 

make data relevant for an application. Basically business logic refers to the logic 

rather than the view / representaion of that data. That is, it refers to the manipulation 

of data [McLaughlin, 2002].

2.3.1 Three Tiered Architecture

A three tiered architecture describes the situation in which an application is broken 

into a three tier distributed client / server design; the purpose of these tiers is to 

provide a loosely coupled architecture that can be developed in parallel (see Figure

2.1).

T o p  Browser MyComputer MS Exce l

T ie r

Middle
T ier

Bottom  
T ier

MySQL SQLServer

Figure 2.1: Example of Three Tiered Architecture
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(Please note: although the image of a browser in Figure 2.1 displays the index page 

for the Google search engine, it is only signifying a basic internet browser in the 

context of the overall diagram. Also this browser image will be used throughout the 

rest of dissertation and the same significance will apply to all diagrams)

Top Tier

The top tier is the entry point of the system, typically a client user interface that 

provides services such as logon, session, data input and display.

Middle Tier

The middle tier is usually a set of software components that provide the processing 

power to handle events triggered by the top tier user interface. When handling events, 

the middle tier conducts server side application logic, which could be in the form of 

business logic execution, file input/output, transactions and connectivity to the bottom 

tier. The middle tier is flexible in that it provides the ability to add additional software 

components without disrupting the majority of the underlining code base; therefore 

providing an extensible system that controls the communication flow between top and 

bottom tiers.

Bottom Tier

The bottom tier can be recognized as the database management tier; otherwise known 

as the physical database. This tier provides data consistency and replication to ensure 

secure interaction with the middle tier. The communication with the database tier 

usually takes the form of a middle tier database driver or service such as JDBC or EJB 

respectively.

Architects and developers must make standard design decisions when deciding the 

interoperability of these technologies within a three tiered architecture, this in turn 

requires a higher understanding of what technologies drives the platform and the 

trade-offs involved in applying specific design decisions to a specific application 

problem [Kassem et al, 2002].
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2.3.2 J2EE Web Tier architecture

In terms of web development involving Java, the J2EE platform tries to address many 

problems that arise in standard development such as:

a) Productivity

Currently, development for the WWW means that a programmer needs to be 

skilled in multiple technologies, as they not only provide for dynamic content 

but also transactional database processing, distributed systems and mail 

clients, etc. Since many different technology bases can be use within system 

architectures, these architectures can often become convoluted and as a result, 

system and work productivity diminish [Kassem et al, 2002];

i LET!' ■"
f | jf“* /■-' ~i

b) Legacy system connectivity f____

Since most of the data that are used throughout corporations is housed on 

legacy systems, such as mainframes, it has become a problem for web 

applications to access and reuse this data. Developers need a common and 

consistent approach in bridging the gap between their WWW technologies, 

legacy middle tier and backend services [Kassem et al, 2002];

c) Scalability

In today’s climate, users demand instant responses to the GUI based queries, 

which means WWW applications have to handled multiple requests and scale 

efficiently in terms of performance [Kassem et al, 2002];

d) Security

When an application consists of many tiers (for example, the three tiered 

architecture) and software components, it is clearly recognizable that there is a 

need for an overall security model. That is, there are multiple entry points (top, 

middle and bottom tiers) throughout the system, which can be utilised by 

hackers to exploit the system [Kassem et al, 2002],
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The J2EE platform offers a suggested architecture solution to these problems called 

the Web tier [Kassem et al, 2002] (see Figure 2.2). The purpose of the Web tier is to 

manage the interaction between its external web clients and an application’s business 

logic. The Web tier typically takes an incoming HTTP request and manages the 

resultant interaction between itself and its business logic (such as EJB or JDBC 

respectively) to form a result, which is then generated as a HTTP response that will 

serve particular content (such as HTML or XML) back to the external web clients 

[Kassem et al, 2002],

■-------
javax.http.
servlet

java.lang.' java.util.’

Web Tier

r _ - i

class

Figure 2.2: Diagram of J2EE Web tier functionality

The Web tier architecture offers developers the following functionality (see Figure

2 .2):

1. Translates HTTP GET and POST methods so that they can be processed by 

the business logic classes, that is, the respective back end logical classes that 

conduct processing for an individual HTTP event;

2. Provides the plumbing to manage the interaction between a HTTP browser 

and core Java classes;

3. Manages individual user sessions by maintaining state connected with the 

processing of HTTP requests;

Page 15



Chapter 2 Literature Review

4. Has the option o f implementing workflow business logic that is needed to 

generate dynamic content;

5. Controls the workflow (application flow between different business logic 

events) which flows between each rendered HTML page;

6. Generates dynamic content to be displayed on a HTTP browser [Kassem et al,

An application employing the Web tier architecture can be implemented using 

servlets, JSP or a combination of both and built from several suggested J2EE 

blueprint designs, for example, page-centric and Model View Controller (MVC) (a 

full explanation can be found in section 3.2.2 and 3.2.3 respectively). Although the 

Web tier architecture is essentially composed of one or more of the J2EE WWW 

based technologies (for example, servlets, JSP or JSP with JavaBeans), it must be 

realised that there are many more components involved in deploying a Java based 

web application onto the WWW. Therefore the following subsection will describe 

these components.

2.3.3 Definition of Web Tier components

The objective of this subsection is to highlight and explain many of the external 

components that have to be in place for the deployment of JSP. The following 

definitions of J2EE components and processes will provide clarification on common 

terms that will be used throughout the rest of this dissertation (see Figure 2.3).

2002],
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[j2EE Application Server

Figure 2.3: Diagram of Web tier architecture "
I i a '■
I ?, :■ •» f ; ; ;' ’ '

J2EE Application server '

An application server is a particular server, for example, Tomcat or Websphere that 

serves both static HTML and dynamic content through a web container [Sun, 2002];

Web container

A web container is used to serve dynamic content (written in either JSP and/or servlet 

technologies) as responses to request clients. [Sun, 2002];

WAR file (Web Application aRchive)

A web application archive is a collection/folder of . h tm l files, . j s p  files, images, 

property files, servlets and applets. These files are then zipped up into a . w ar file 

(not unlike a . j  a r  file) to provide a single web application. Once the WAR file is 

deployed to a web container; the file unzips and the application servlets / JSPs are 

initialised and ready to serve to web clients [Sun, 2002];

Servlet context

Once a WAR file is unzipped through the deployment process, a top-level folder is 

created with a name based on the filename of the WAR file. This folder exists as a 

context that contains all the servlets and JSPs for a particular web application, and is 

commonly termed as the servlet context. Also once the WAR file has been unzipped,
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a Java object of type j avax. servlet. ServletContext is instantiated inside 

the Java Virtual Machine (JVM). Basically this object holds information on what JSP 

and servlets exist for a web application;

Servlet config

The Servlet config is a Java object of type j  a v a x . s e r v l e t . S e r v le tC o n f  i g  

that initialises once your WAR fde is deployed on the web container. This object 

contains application specific configuration information, which is read from the 

w eb . xml file. Basically this object contains all the initialisation information to start 

up an application servlet context and subsequent servlets and JSP files.

WEB-INF

WEB - INF is a directory that exists inside every WAR file. This folder contains a 
w eb . xml file that provides the Java object of type

j avax. servlet. ServletConf i g  initialisation parameters in the form of a Java 

object of type javax. servlet. ServletConf ig .

w eb . xml (Web application deployment descriptor)

The web . xml file, which is stored under the WEB - INF directory, is a listing of 

servlet context’s servlet or JSP information and their initialisation parameters. Once 

the WAR file is deployed, the XML file is read into the web container and any 

specified servlets will be loaded. It can also contain information on the servlet 

context, for example, session timeout, welcome page etc.

An overview of some of the XML tags contained in the w eb . xml is as follows 

[Goodwill, 2001] (see Figure 2.4):
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.servlet-name

type f
Identifias the name of your 
sendet

web-app
type Ì
Identifies the overall servlet 
context

^servlet
type

vlet
&

1 ..CO
Specifies each unique servlet

.servlet-class

type I

Identifiés the fully quantified 
class path to your setvlet

in rt-p a ram

type

1..«
Specifies an mitialiiation 
parameter which will be 
passed to the sen/let at 
tuntims, such as system
property files are usually 
used in cases like this

load-on-startup
type
Identifies the load sequence 
of your servlet.

 ̂servlet-mapping
type 1

Specifies the URL pattern to 
call the sendet

w e lc o m e -f ile - lis t

type

Specifies any friendly files 
that should he loaded once 
the servlet context is called 
without a specific JSPs or
servlet

Figure 2.4: Diagram of web.xml file structure (extract taken from XML spy)

For more clear definition, there is an example listing of an actually w eb . xml below.
<web-app>

<servlet>
<servlet-namesmyServlet</servlet-names
<servlet-classscom.margey.framework.servlet.Java_DispatcherServlet</servlet-

class>
<init-param>

<param-namesPROPERTY_FILENAME_AND^PATH</parani-naine>
<param-value>C:\\propertyFiles\\Config\\Start_Up.properties</param-values 

</init-params
<load-on-startup>l</load-on-startups 

</servlets 
<servlet-mappings

<servlet-namesmyServlet</serviet-name> 
cur1-patterns/s</url-patterns 

</servlet-mappings 
«welcome-file-lists

<welcome-filesindex.j sp</welcome-files 
</welcome-file-lists 

</web-apps
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l i b  directory

The lib directory, which is stored under the WEB - INF directory, is a directory 

which contains any and all JAR files (.jar file extension) that are directly related to 

running of the web application. Once the WAR file is deployed these . j ar files are 

loaded into memory and live under the web application servlet context. Typically 

these . j ar files would store Database Drivers (MySQL, Sybase) JavaMail, XML 

and/or the direct web application Java source and compiled runtime code.

c l a s s e s  directory

The classes directory, which is stored under the WEB - INF directory, is a directory 

with can contain all your web application’s compiled Java code, for example, 

JavaBeans and Java classes, that are needed in the successful running of an web 

application’s servlet and JSPs. Typically this method is used if  the developer does not 

wish to contain their code in a JAR file. Once the WAR file is deployed these class 

files are loaded into memory and live under the web application servlet context.

2.3.4 Conclusions

This subsection has offered an insight into the role of JSP technology in terms of the 

J2EE Web tier architecture. The subsection has also defined the context of where JSP 

belongs in the physical makeup of a J2EE web application. Therefore the origins of 

JSP (That is, its parent technology Java servlets) must now be investigated and 

discussed.

2.4 Java servlets
As mentioned in section 2.1, JSP extends the Java servlet architecture therefore we 

must digress and investigate the origins of JSP in the form of Java servlets.

Since the introduction of the J ava language, a core feature of the language called Java 

applets were used to promote the overall development capabilities of the language. A 

Java applet is client-side program; which is downloaded from an HTTP server via the 

WWW onto a client’s browser. Once downloaded the applet executes on the client 

local machine to perform some action. The applets of yesteryear were normally heavy 

graphic oriented presentations or utilities. However since the WWW changed primary
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focus from being a research tool to a business medium, it was noticed that these client 

side programs offered little regard to solving enterprise business problems, such as 

online banking, insurance and shopping. So a new strategy was formed to counteract 

the Personal Computer (PC) client side program execution that applets offered. The 

new strategy was a fundamental change back to application server side program 

execution and in terms of Java technology it was called Java servlets.

2.4.1 What are Java servlets?

Java servlets are a server side mechanism for executing business logic with the view 

of displaying dynamic HTML via the WWW. Java servlets provide a simple and 

robust API (that is, the API consists of around 10 classes and 10 interfaces) that 

supports HTTP Protocol requests and responses.

Servlets are programs that run on a J2EE application server’s web container, their 

primary function is to deal with incoming client browser HTTP GET/POST requests 

and generate an appropriate HTTP response, which contains specific content such as 

HTML or XML.

2.4.2 The Servlet Hierarchy

The server side servlet programs that traffic HTTP request and response between 

client PC and application server are made up of a architecture that contains three 

distinct components (see Figure 2.5):

Servlet Interface
This Java interface provides a contract to all other servlets, it tells any newly 

developed servlet that implements this interface that they must implement an 

i n i t  ( ) ,  d e s t r o y  () and s e r v i c e  () methods (a full explanation can be found in 

section 2.3.3). All servlets developed by programmers will implement this interface 

directly, or alternatively the most common way is to inherit from a Java class that 

implements the contract suggested by the Servlet interface [Goodwill, 2000], [Sun,

2001].
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GenericServlet class
This is an abstract Java class that provides a developer with an implementation for 

most of the contractual methods supplied by the Java Servlet Interface. However it 

doesn’t provide an implementation of the s e r v i c e  () method, therefore if class 

inheritance occurs then an enforcement of this particular method is needed to run a 

Servlet [Goodwill, 2000], [Sun, 2001],

HttpServlet class
This is an abstract Java class that is most commonly inherited from when a 

programmer develops a Java servlet. It provides an implementation of all the methods 

suggested from the Servlet interface and offers methods such as doPost () and 

doGet () for dealing with HTTP POST and GET requests. A programmer can 

provide their own processing of these HTTP requests by overriding these methods 

[Goodwill, 2000], [Sun, 2001],

Figure 2.5: UML class diagram of the servlet hierarchy 

2.4.3 The Servlet Lifecycle

The lifecycle of a Java servlet is quite simple. A servlet is loaded once and then 

persists in memory; once loading has completed the servlet initialises any and all 

specific system resources. From this point the servlet then services incoming HTTP 

requests and then performs it own house keeping (that is, any unnecessary system 

resources / process are shutdown). [Sun, 2003] [Zeiger, 1999] [MageLang, 1999]
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We shall now look at the significant methods of the servlets in more detail (see Figure 

2.6).

public void init(javax.servlet.ServletConfig 
servletConfig) throws javax.servlet.ServletException
The init () method is where a servlet’s life begins. This method is invoked straight 

after servlet object instantiation. The init () method is used to initialize any system 

resources such as CORBA, RMI and JDBC, which the servlet will need when 

processing incoming HTTP requests. The method input parameter is of type 

j avax. servlet. ServletConfig interface, this object provides infonnation on 

the servlet that has be gathered from the deployed WAR file’s web . xml file. 

[Goodwill, 2000] [Hunter et al, 1998];

public void service(ServletRequest req, ServletResponse 
res)throws ServletException, IOException
This method handles all the incoming HTTP requests by determining the request type 

(HTTP GET or POST) and calling the additional appropriate servlet method, such as 

doPos t () or doGet (). This method input parameters are of type 

j avax. servlet. ServletRequest interface (provides infonnation supplied by 

a client) and a j avax. servlet. ServletResponse interface (offers a response 

back to the client) [Goodwill, 2000] [Hunter et al, 1998];

protected void doGet(HttpServletRequest request, 
HttpServletResponse response) throws ServletException, 
j ava.io.IOException
This method handles all HTTP GET requests, which mean browser based URL 

queries. The method input parameters are of type

j avax. servlet. http . HttpServletRequest interface (provides HTTP 

information supplied by a client) and

j avax. servlet. http . HttpServletResponse interface (offers a HTTP 

response back to the client) [Hunter et al, 1998];
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protected void doPost(HttpServletRequest servletRequest, 
HttpServletResponse servletResponse) throws 
ServletException, j ava.io.IOException
This method handles all HTTP POST requests, for example HTML Form based 

queries. The method input parameters are of type

javax. servlet. ServletRequest interface (provides HTTP information 

supplied by a client) and j avax. servlet. ServletResponse interface (offers 

a HTTP response back to the client) [Hunter et al, 1998];

public void destroy()
This method is invoked when it is time to end the servlet life cycle. When an 

application server is shutting down, it will execute this method. The destroy method 

should do the exact reverse of the init () method, that is, close down any and all 

system resources that was open by the init () method. [Goodwill, 2000] [Hunter et

al, 1998].

[4] destoryO

I

Figure 2.6: Servlet lifecycle diagram
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2.4.4 Advantages of servlets over alternative technologies

Some of the key benefits of using the servlet architecture over alternative technologies 

are as follows: \ ¡LUTTEi '

0 * 1  -
a) Platform independent

Since servlets are written in the Java language, they are completely platform 

independent (write once run anywhere). That means a developer can write a 

servlet on a Windows operating system and run it on a UNIX flavoured 

platform [Hunter et al, 1998] [Hall, 2002], However this only is viable if the 

application server that the servlet is deployed on is implemented in Java (for 

example, Microsoft’s IIS server cannot run servlets as the server was not 

implemented in Java).

b) Extensive class library support

Servlets have a simplified API (that is, 10 classes and interfaces) however 

their true power is that they can leverage the extensive Java API. The Java 

API comes with a huge library of predefined classes that support everything 

from networking, database and file manipulation etc. Also in recent years Sun 

Microsystems have added to their existing libraries with J2EE (Java Enterprise 

Edition) that caters for CORBA, messaging, mail and XML services. Since 

servlets are a component of the J2EE model, these libraries (Java packages) 

gives developers programming servlets more power to develop large-scale 

reusable components that can form enterprise solutions to large corporations 

for example, purchasing a product, handling credit card facilities etc [Hunter 

et al, 1998] [Hall, 2002].

c) Application/Web servers

The majority of industry standard application/web servers support JSP (for 

example, IBM Websphere, Apache/Tomcat web server and BEA weblogic) 

while its main rivals Microsoft’s ActiveServer Pages (ASP) and .NET are 

currently only supported by IIS.
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d) Memory and process efficiency

Once a servlet is deployed onto an application server, it is instantiated as a 

single Java object in memory. Now when a web client starts sending over 

HTTP requests for the servlet to handle, the servlet can handle the request 

straight away, as it does not need to start an interpreter or spawn another 

operating system process. [Hunter et al, 1998] [Hall, 2002]

e) Endurance

Since a servlet stays loaded in memory, it can maintain state and 

hold on to external resources such as JDBC database connections, sockets etc 

which would normally take a few seconds to load. [Hunter et al, 1998] [Hall,

2002]

f) Free to the public.

There is no licensing or cost associated with Java servlets. It is freely available 

on the web and is supported by most major ISP (Internet Service Providers).

2.4.5 Why is JSP needed?

JSP is needed simply because web developers need something that is easier than 

servlets to develop; note that many web developers would have difficulty developing 

robust large scale web applications with servlets because of their inherent problem of 

intermixing business logic and HTML based presentation. The example below shows 

how a servlet class was often written.

public class HelloWorldServlet extends HttpServlet {

public void doGet(
HttpServletRequest request,
HttpServletRespon.se response)
throws ServletException, IOException {

response.setContentType("text/html");
PrintWriter out = response.getWriter( );

out.printIn("<html>"); 
out. println (11 <head>") ;
out.println(" <title> Hello World Page </title>");
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out .printIn(11 </head>");
out.println(" <body>");
out.println(" <hl>Hello World</hl>");
out.println(" </body>");
out.println("</html>");

}

Therefore these convoluted servlets restrict organised development in the following 

ways:

a) Every web page’s HTML content has to be generated through the use of 

writing excessive amounts of println () methods which are associated with 

Java’s OutputStream or PrintWriter classes. Also every piece of 

HTML content that required a quotation had to be delimited by a backslash as 

Java code recognises a quotation as the end of a literal string. For example, a 

servlet would handle the following code in bold as a literal string and 

complain of a compilation error.

out. println ( "<forin name=" f orml" method= "post" 
action="">");

Therefore the following code manipulation would have to occur to resolve any 

literal string problems.

out.println("<form name=\"forml\" method=\"post\" 
action=\"\">");

This action resulted in huge human effort in terms of maintenance through the 

updating and recompilation of the servlet implementation code [Bergsten,

2003] [Hall, 2002] [Hunter et al, 1998] [Hunter, 2000];

b) Web designer and Java programmer have to work very closely to complete 

any and all content changes, as both parties did not have the necessary skills to 

complete each other’s work. Therefore this process consumed precious project 

schedule time [Bergsten, 2003] [Hunter, 2000];

c) Servlets cannot harness the power of web WYSIWYG development tools such 

as Macromedia Dreamweaver, as a developer must manually embed HTML
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into servlet code, therefore creating a development process that is error prone 

and time-consuming [Bergsten, 2003],

2.5 JavaServer Pages (JSP)
JSP technology is a component of the industry standard J2EE Web tier model (see 

section 2.3.2) and with respect to servlets, JSP can be viewed as a simplified version 

of the servlet API. The reason for this is that JSP is built upon the existing Java servlet 

infrastructure and wraps many of the mundane tasks of servlet programming into an 

API that is easier to use but still offers a developer the full power of the servlets.

Basically JSPs are standalone programs that offer programmers the ability to develop 

server side Java programs easily, as they overcome the fundamental problems with 

servlets (see section 2.4.5).That is, JSP are easily maintained and cleanly separate 

project development roles. Therefore, JSP have become the standard Java solution for 

producing dynamic HTML. Like JSP’s parent technology (servlets), JSP is a platform 

independent server side scripting language for building robust enterprise standard 

dynamic websites. However the visual difference between JSP and servlet technology 

is in the JSP server scripting language (that is, JSP scriptlet).

This server scripting language can be intermixed with HTML to generate a flat text 

file which is known as a JSP document (denoted by . j sp  file extension). This JSP 

scriptlet code provides a mechanism to separate a developer from his program. That 

is, hiding the developer from writing code that will generate / print HTML tags while 

performing dynamic actions (which can be costly in both terms of time and 

maintenance).

2.5.1 How does JSP work?

An explanation of the execution of a traditional JavaServer Page (JSP) is as follows 

(see Figure 2.7):
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2. The browser then sends a HTTP Request via GET or POST method to the 

application server (for example, Apache Tomcat, IBM Websphere etc);

3. The application server now retrieves the requested . j  sp  file;

4. The JSP engine, for example, Apache Tomcat’s Jasper parses the . j  sp file 

and creates a . j ava source file. The . j ava file will hold generated class 

code that extends j avax. servlet. http . HttpServlet and contains 

the code which will generate the contents to be displayed to the screen 

(typically the content is made from a combination of Java code and HTML) ;

5. The JSP engine then compiles the . j a v a  source file into a . c l a s s  file 

which contains the class’s compiled byte code;

6. A JSP engine will then initialise the servlet class into its configuration. The 

class file is then executed and resultant text (for example, HTML and XML) is 

created;
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7. The resultant text stream is then pulled back to the browser via writing the text 

to an instance of ServletOutputStream. The instance of 

ServletOutputStream can be retrieved from executing the method 

getOutputStream () on a interface type of

j avax.servlet.http.HttpServletResponse;

8. The browser displays the result of the process to the client.

2.5.2 What are the advantages of JSP?

The JSP architecture offers developers many benefits over servlets; some of which are 

as follows:

a) Reduces development time;

For a JSP program to execute, developers no longer need to consume their 

time implementing code that inherits from the servlet base class 

j avax. http . HttpServlet. Since a JSP file is a combination of HTML 

and JSP scriptlet code that ultimately will be generated into a servlet (through 

server parsing and compiling).

b) Reduces development maintenance;

JSP reduces its parent technology (servlet) mundane approach to writing and 

modifying HTML (for example, writing inline p r i n t  I n  statements into 

servlets for generating HTML), as JSP auto generates these p r i n t l n  

statements once the . j  sp  file is parsed by a JSP engine.

c) Separation of developer roles;

JSP facilitates the separation of roles within a team context. It clearly defines 

that roles between graphic designers and developers, that is the ability to work 

on creative front ends and dynamic areas respectively.
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2.6 Conclusions
The subsections covered in this chapter have not oniy plotted the origins o f JSP (that 

is, from the initial birth of dynamic web technologies, right through to JSP’s parent 

technology servlets), but also discussed in detail the JSP technology itself (that is 

what it is, right through to its advantages). Therefore since we now know the when, 

what, where, why, and how of the subject matter, we will now proceed to investigate 

the wrongs of the technology.
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3 JSP Problems

3.1 Introduction
Even though JSP is the standard Java solution for the production of dynamic HTML it 

does have limitations. Therefore the objective of this section is to highlight and 

explain some of the fundamental problems that are currently associated with JSP 

technology. The problems will be discussed in the context of the following areas:

1. Design

JSP has no standard design approach, this can lead to difficulties with 

integrating application business logic with JSP script [McLaughlin, 2000] 

[Altendorf et al, 2002] (a full explanation can be found in section 3.2);

2. Performance

a. JSP code requires separate interpretation in addition to Java byte code 

interpretation [Hunter, 2000];

b. JSP provides no server side caching of dynamic and static content, 

which leads to increase memory usage from web and application 

servers [Datta et al, 2002] [Iyengar et al, 2000] [Datta et al, 2002b] (a 

full explanation can be found in section 3.3.3);

c. JSP doesn’t provide functionality to compress outgoing data [Hall,

2001] (a full explanation can be found in section 3.3.4).

3. Testability 

There is no real unit testing tool at present, only 

technologies [Pipka, 2002], which cannot accommodate the existing J2EE 

architecture [Massol, 2003]; therefore this type of situation encourages the 

well known affliction of testing, that is, testing is done after the completion of 

development code [Peeters, 2001]; also JSP error handling provides 

non-intuitive debug information therefore making the testing process more 

difficult [Hunter, 2000]; (a full explanation can be found in section 3.4)
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4. Security

Today’s application server which host JSP pages have serious internal 

vulnerabilities that expose the source code in a JSP source fde (. j sp). For 

example, since the JSP source file (. j sp) exists on the server it can be 

exploited through hacking [Dimov, 2002] [Raykov, 2002] (a full explanation 

can be found in section 3.5).

3.2 Design —
It has been acknowledged that the current standalone design of JSP (which intermixes 

HTML and JSP scriptlet code) is not very maintainable or reusable for enterprise 

solutions, therefore programmers were allowed to impose their concepts of design and 

in the early days of the technology many programmers encountered the following 

problematic areas:

a) Programmers started to demand more functionality / services from the JSP / 

servlet technology. For example, rendering different formats of dynamic 

content (XML and HTML etc.) [Dai et al, 2000] was incorporated into the 

technology to make use of the other interoperable Java API’s for example, 

JavaMail, JavaBeans and JDBC;

b) Each programmer has full access to the

j avax. servlet. http . HttpServletRequest object, which causes 

the following problems [Dai et al, 2000],

i. They were developing at the low level HTTP protocol;

ii. Low level programming and business logic became blurred;

iii. Coding and naming inconsistencies became the norm.

However as JSP gained more recognition within the development community, there 

has been a debate over what is proper JSP object oriented design. As result, JSP 

design techniques continued to evolve, now there are many different proposed 

solutions with their own advantages and disadvantages. These solutions often lead to 

developer confusion and implementation errors due to inexperience and design 

complexity.
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Before we digress further, a discussion on the composition of a web-based system will 

be made.

3.2.1 Composition of a traditional web application

Web systems are typically designed into three tiered architectures (a full explanation 

can be found in section 2.3.1), with the middle tier typically composed of three logical 

tiers [Kaewkasi et al, 2002] [Altendorf et al, 2002] (see Figure 3.1).

1. Business logic

The business logic layer has no knowledge of the corresponding workflow 

(see workflow control in this section) or presentation areas (see presentation 

layer in this section). The sole purpose is to communicate with external 

systems (for example, CORBA and Database) and execute logical 

calculations, such as adding, deleting and updating prices in a shopping cart 

application or performing file manipulations [McLaughlin, 2002],

2. Presentation layer

This layer takes the final results of a particular page’s business

logic processing and displays them in readable formatted text, for example,

HTML and XML [McLaughlin, 2002],

3. Workflow control

This area implements decisional processing based on a user interface decisions 

that are triggered by a user during their individual session visit, that is a user 

unique viewing of possible logical workflow within a website. The workflow 

control handles all incoming HTTP requests in terms of a switching 

mechanism (if-else) and passes them to the business logic layer that will do all 

necessary page specific processing before passing the results to the 

presentation layer. The presentation layer in turn builds the page and hands the 

resultant text back to the workflow control to dispatch as a HTTP Response. 

The workflow control could be viewed as a multi-channel switch, which 

directs HTTP requests to the correct area for business logic processing. For
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example, a user logging into a system could be directed to a logon error page 

or the index page of website depending on the choices that they make 

[McLaughlin, 2002].

Figure 3.1: Composition view of a web application 

(The database in this diagram is an example of an external system, which the business

logic communicate with)

In the following sections, two industry standard designs for JSP web-based systems 

will be discussed along with their inherent problems, these design solutions are page- 

centric and Model View Controller (MVC / Model 2) [Brown et al, 2001] [Kassem et 

al, 2002],

3.2.2 Page-centric (Model 1)

In this model, the application is built solely from interlinked dynamic web pages, 

which incorporate the following components into each page:

• Connectivity to external resources. (Database, CORBA services etc.);

• Implementation of model specification;

• Performing calculations;

• Dynamic formatting of results;

• Hard coded hyperlinks.
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This approach tightly couples the traditional three-tier architecture (a full explanation 

can be found in section 2.3.1). It is best suited for small to medium sized web 

applications [Brown et al, 2001] because the application page flow is usually 

predefined and the overall structure of the application is simple [Kassem et al, 2002]. 

The page-centric design can be implemented by using the page-view or page-view 

with bean design approaches. j ;■

3.2.2.1 Page-view

With this approach the JSP page is solely responsible for processing all incoming 

HTTP requests and offering HTTP responses in return. It combines the business logic, 

presentation layer and workflow control into one entity, which is the . j  sp  fde. The 

JSP page stands as a single entity that handles, maintains and processes incoming 

requests, application state, business logic and presentation. This approach often leads 

to a significant amount of JSP scriptlet code embedded within the JSP page [Hunter,

2000] [Brown et al, 2001],

How does the Page-view design work?

The Page View model works in a JSP web application as follows (see Figure 3.2):

1. The HTTP browser requests a specific user requested JSP page;

2. The JSP page in question loads as Java servlet; once initialized, the servlet / 

JSP page will then run JSP defined scriptlets which will invoke pure Java 

objects to fulfill business logic. Once business processing has completed, the 

dynamic content will be presented as straight HTML;

3. The HTML content is now sent back to the browser as a HTTP response.
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Figure 3.2: Page-view working diagram 

Z.2.2.2 Page-view with Bean

With this design strategy, an existing Java technology conccpt was introduced to help 

reduce the amount of embedded JSP scriptlet code in a JSP page, and in terms of Java, 

this technology solution was called JavaBeans.

JavaBeans

Basically JavaBeans are Java classes that can be used as the building blocks to form 

other larger components or full applications [DeSoto, 1997]. A JavaBean is a Java 

class that fully conforms to the JavaBeans specification. The specification states that 

three simple rules must be adhered to by any Java class before the class can become a 

JavaBean (that is, a portable, platform-independent software component model [Sun, 

1997]). The following three rules are:

a) The class must implement the interface j ava. io. Serializable.
Upon object instantiation, the realisation of the S e r i a l i z a b l e  interface 

permits a class to compose itself into a streams of bytes [Hall, 2001] [Johnson, 

1997] [Sun, 1997]. The stream of bytes offers an S e r i a l i z a b l e  object 

with the following functionality:

i. The bytes can be transmitted over a network via socket calls;

ii. The bytes can be saved to a hard disk via a flat file, this actions allows 

the present state of the object to be stored for later restoration. That is, 

the object state can be used as a session variable.
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b) The class must implement a no-argument constructor.

The following rule must be implemented because when an external technology 

such as JSP wishes to instantiate a JavaBean, a process called introspection is 

performed. Introspection is a runtime process that determines the methods, 

properties and constructor of a given bean. This process makes heavy use of 

j ava . lan g . r e f le c t  reflection mechanism and a number of JavaBeans 

naming conventions [Flanagan, 1999] [Sun, 1997]. Therefore during 

instantiation of a bean, introspection will take the class type name of the bean 

and through reflection, object creation will occur by using the non-argument 

constructor [Hall, 2001];

c) A class must provide getter and setter methods to access its properties. 

JavaBean properties (attributes) must be implemented as private instance 

variables, therefore to gain public access to these variables a class accessor 

(getter) and mutator (setter) methods must be implemented. These method 

names must adhere to a particular naming convention, which states that each 

method name mimics the property name with the get or set prefixed to it 

[Brown et al, 2001], Also the initial character of the property name in the 

method name must be uppercase. For example, if a JavaBean called Person 
contained one property called name, then the JavaBean methods would be 

getName ( ) and setName ( ).

public class Person implements java.io.Serializable{ 
private String name ;

public Person (){
}

public String getName (){ 
return this.name;

}

public void setName(String newName){ 
this.name = newName;

}
}

The reason for following these naming conventions is simple. Through the use
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of Java introspection, a list of properties supported by the JavaBean can be

determined by scanning the class for methods that have the right names and 

signatures to be getXXX and setXXX property methods [Brown et al, 2001] 

[Sun, 1997],

The introduction of the new JavaBean entity causes a significant intuitive design 

change from the previous stated page-centric design called “Page View” (a full 

explanation can be found in section 3.2.2.1), as most if not all of the business logic 

from each JSP page entity is removed and placed into JavaBeans. This offers a clearer 

design by defining a clearer separation of presentation from content [Brown et al,

2001] [Pipka, 2002],

The architecture works on the basis that the JSP file will now be responsible for the 

workflow, maintaining state and rendering presentation while delegating all business 

logic to its companion JavaBeans. The Beans will then act out all calculations and 

interface with external resources and then return the results to the JSP page for 

dynamic formatting. M K , rn c iJi I; ! *: 
i

O f- 7 1 '* •
How does the Page View with Bean design work?

The Page View with Bean model works in a JSP web application as follows (see 

Figure 3.3):

1. The HTTP browser requests a specific user requested JSP page;

2. The JSP Page in question loads as Java servlet, once initialized the servlet / 

JSP page will then run JSP scriptlet code or JSP JavaBean tags which will 

invoke JavaBeans to fulfill business logic. The JavaBean tags in question are 

special JSP tags, which use JavaBean introspection to instantiate a particular 

JavaBean (for example, < j sp  : u seB ean > ) and / or invoke getter and setter 

property methods (for example, < j sp  : s e t  Property > and

< j sp : get Property>) on a particular JavaBean. Once business processing 

has completed, the dynamic content will be combined with straight HTML;

3. The HTML content is now sent back to the browser as a HTTP response.
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Figure 3.3: Page View with JavaBean working diagram

(Although this figure is very similar to Figure 3.2, there is a subtle different in that the 

Java object in Figure 3.2 has now become a JavaBean and the JSP page in Figure 3.2 

has now moved control of HTML presentation to the JavaBean. That is, the JavaBean 

reduces the amount of JSP scriptlet code inside the JSP page, which in turn makes the 

JSP page more readable and maintainable for developers.)

3.2.2.3 Disadvantages with page-centric design

The following are the fundamental problems associate with the page-centric approach 

(That is, both the page-view and page-view with bean approaches):

a) Maintainability.

The degree of maintaining an application built with this approach is enormous. 

Reusability would basically be non-existent for other applications. Design 

changes could have major time impact on delivery of code. (SQL table change 

-  could mean an update for all SQL queries in pages). There would be a 

significant impact on the fundamental intuitive logic that each page represents 

as the JSP scriptlet code and HTML are firmly blurred [Seshadri, 1999] 

[Mclaughlin, 2000] [Unger, 2000] [Pipka, 2002] [Kassem et al, 2002],

b) Workflow.

Every single JSP page implemented using a page-centric design approach
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stands on its own merit, that is, there is no outside influence guiding the 

overall page to page logical flow for the complete web application. Therefore 

there is a diminished intuitiveness to these standalone JSPs, since any 

developer would find the page to page logical flow quite difficult to follow as 

each page has hard coded links to other dynamic pages. It is not advisable to 

place a new step in the workflow / logical flow as every page is uniquely tied 

to each other. That is, specific HTTP request and session variables which are 

set on a JSP are uniquely used on the following JSP logical flow [Seshadri, 

1999] [Hunter, 2000] [Mclaughlin, 2000] [Unger, 2000] [Pipka, 2002] 

[Kassem et al, 2002] (see Figure 3.4). j ^  ^

Figure 3.4: JSP workflow complexity 

(The . j sp  pages in this diagram are examples of how JSP communicates with the

traditional web application layers.)

3.2.3 Model View Controller (MVC) or Model 2

The core difference between the page-centric and MVC design approach is that the 

responsibility of HTTP request processing has been removed from the JSP file.

The MVC model provides developers with isolated components that are easier to 

understand and maintain (See Appendix B.2 -  Apache Struts framework for

Presentation
Layw

WorkFtow
Control
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rationale). It is clear separation of an application (be it web or GUI) into three unique 

parts:

a) Model;

b) View;

c) Controller.

These components are further explained in section 3.2.3.2, we note that this design 

pattern originated in the Smalltalk-80 system to promote a layered approach to 

developing graphical user interfaces (GUI) [Fowler, 2003] [Knight et al, 2002], The 

MVC is based on the Observer / Observable design pattern (which is the basis of all 

modem day GUI design).

3.2.3.1 Observer / Observable design pattern

The objective of the Observer / Observable design paradigm is to clearly separate an 

application’s business logic from its presentation view. That is, the design pattern 

supplies a means where components (both GUI and application driver code) are 

loosely coupled; therefore promoting component reuse in other applications. This 

loose binding of components is achieved through indirect referencing of each other 

(presentation view and application code). For example, the application business logic 

can be reused in other applications as it loosely coupled from the presentation view. 

That is, the business logic has no knowledge of what type of view will present its 

results. Therefore for the presentation view to display the results of a business logic 

action, it must watch for an event to be triggered by the business logic. Therefore 

when an event is triggered by the business logic, all subsequent presentation views 

check to see if the event had any specific meaning and therefore carries out an action. 

Basically the application data and presentation view do not know that the other exists, 

but they behave as the do [Gamma et al, 1994],

This pattern is made up of two distinct parts (see Figure 3.5)

a) Observer

Any class that implements this interface, has a mechanism to update itself 

once its present viewing observable object state changes [Gamma et al, 1994],
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b) Observable/Subject class

This class is unaware of how many observers are watching it, these observers 

who can attached / detached themselves at any time and are notified when the 

state of the observable object is changed [Gamma et al, 1994].

Subject
^Atlach(Observer) +observers Observer
^Detach(Observer)
^NolifyQ

1..n * UpdateQ

A
A for all o in observers { ^  

o -> UpdateO;
}

ConcreteSubjecI
$>SubjeciState

+subject
ConcreteObserver

S^obsetverState obseivsrState = ^  
subject ■> getStateQ;^GefStaleQ

*SeiStataQ ^UpdateQ

return SubjectState,

Figure 3.5: Observer Design Pattern [Rose, 2000]

To gain a more real world understanding of the Observer / Observable design pattern 

the following analogy will be made:

“All of a sudden a man (Observer) from his house window spots (attach method) a 

particular movie star, for example, Tom Cruise (Observable) walking down a deserted 

street. Unknown to Tom Cruise that he is in fact being watched, he cries “I am the 

best movie star in the world” at the top of his voice (notify method). The man laughs 

to himself (update method) because he realises that Tom Cruise never won an Oscar. 

The man then watches Tom Cruise exit the deserted street (detach method)”.

The MVC builds on the Observer design pattern, in the fact that view components 

(observable) are clearly separated from their model components (observer).
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3.2.3.2 Components of MVC

The following are the fundamental components of the MVC architecture:

a) Model

This component deals exclusively with application business logic (that is, the 

server side logic processing user HTTP request) [Althammer et al, 1999]. The 

model layer suggests that all data objects, for example, JavaBeans will be 

processed in this layer before handing the results back to the controller layer, 

which in turn directs the results to the appropriate view layer. The model layer 

might also touch upon external resources such as JDBC connections, CORBA 

services and Enterprise Java Beans (EJB). Any objects belonging to this layer 

should be able to run with a command line driver [Krasner et al, 1988] 

[Kassem et al, 2002] [Knight et al, 2002], ...
r.' fcUI

Using a model layer in an application promotes the (bllo\^>g^,' ..V

i) Reusability, since the objects processed in the model layer are

independent o f the controller and view layers (that is, they should be 

executable through the command line) then there is no reason for why 

they cannot be reused in other applications with similar functionality 

[Kassem et al, 2002];

ii) Separation of developer roles, as a developer working on this layer 

shouldn’t necessary have web development skills [Kassem et al, 2002];

iii) Database portability, since updates to JSP pages containing embedded 

SQL commands (that is, JSPs using the page-centric design) would 

mean high maintenance costs for a project. Therefore if database 

querying is not exclusive tied to a particular database, a model layer 

could negate this problem because subsequent changes to objects (for 

example, changes to embedded SQL, calling new stored procedures 

and / or the usage of a new JDBC driver) on this layer would not 

adversely affect the view layer as then are loosely coupled [Kassem et 

al, 2002],
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b) View

No business logic is conducted in this layer as its only responsibility is to 

display presentation items. For example, static and dynamic HTML, Applets 

and images. Usually JSP takes on this responsibility as it offers developers the 

opportunity to interact with the model layer by requesting information from 

JavaBeans and then render their pages with static and dynamic content 

[Krasner et al, 1988] [Kassem et al, 2002] [Knight et al, 2002].

Using a view layer in an application promotes the following:

i) Reusability as the view components, that is JSP pages can broken into 

templates with subsections. That is, server side includes which gives 

developers the ability to use common page elements through an 

application [Kassem et al, 2002];

ii) Separation of developer roles, as a developer (graphic design) working 

on this layer shouldn’t necessary have Java development skills 

[Kassem et al, 2002].

c) Controller

The controller’s only function is to maintain application state and delegate 

user requests to the appropriate model and view layers, where request 

processing and presentation rendering can be made respectively.

Using a controller layer in an application promotes the separation of developer 

roles as the controller acts as an interface to both the view and model layers 

therefore decoupling these two components so that graphic designer and 

developer can work separately [Kassem et al, 2002],
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3.2.3.3 How MVC operates in servlet web applications?

The MVC model works in a servlet web application as follows [Ping, 2003] (see 

Figure 3.6):

Figure 3.6: MVC working diagram
I

1. The browser sends a HTTP request to the Controller servlet. The servlet then 

checks the HTTP request for a specific HTTP field-value string parameter, for 

example, nextPage=login. For clarity, a field-value string is aname-value 

pair that can attached to any HTTP POST or GET method to signify that a 

HTML form or URL contains additional information. For example, a logon 

screen contains two HTML form fields (username and password respectively) 

therefore once the form has been submitted two field-value strings will be sent 

using HTTP POST and might contain the values username=margey and 

password=mypassword respectively. The value of HTML form field can 

be gather calling the method getParameter (String fieldName) on 

the interface HttpServletReques t. After the servlet retrieves the field- 

value string, the servlet will then interpret this field-value as a way to direct 

the HTTP request to the specific page for further processing.

2. Since the servlet has interpreted the field-value string it can redirect to the 

specific page. However before the redirection is made, the servlet could check 

the state of certain business Model objects (JavaBeans). This would ensure
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that application state is consistent before allowing further business logic 

processing. For example, if a user wished to view/track their current order 

from a bookstore, then the servlet must check that the user is actually logged 

in before processing.

3. If application state is consistent, the servlet passes the workflow to the specific 

page for processing.

4. The page in question will then proceed to build/process business logic objects 

to update their state and run specific behaviour. The result of this process will 

then be fused within the page text to form dynamic presentation behaviour.

5. At the end of this process the text be it HTML, XML etc. will then be

flushed/sent back to the browser by the means of a HTTP response.
j t L. .
1

3.2.3.4 Problems with MVC

When properly followed the MVC design pattern enforces a well controlled and 

structured web application. However it does have the following disadvantages:

a) Unnecessary updates.

A fundamental problem with this design approach is that each component of 

the view layer (. j  sp  file) must update whenever the model (business logic) 

changes, even if the component doesn’t need to update. Basically if a JSP file 

(view) is broken into subcomponents and a model object changes then a 

request will be made to all subcomponents of the JSP page in question [Zhao 

et al, 2002] [Althammer et al, 2003] .

b) Model and controller are tightly coupled.

The application logic is not clearly separated between the controller and 

model layers, in the sense that the controller and model still needs to maintain 

/ share session state between each other [Dai et al, 2000] [Unger, 2000],

Page 47



Chapter 3 JSP Problems

c) Difficulty.

The MVC design pattern is quite difficult to comprehend and implement for 

developers who are not well versed in the internals of the Java API. This can 

lead to a fragile solution that fails to clearly separate the important parts of the 

system and as a result it is hard to implement and maintain [Althammer et al, 

2003].

3.3 Performance
As highlighted in the previous section, choosing a standard JSP application design 

(that is, between page-centric and MVC) leads to a host of disadvantages, however 

that is not the only JSP limitation, another substantial limitation is performance.

The main difference between static and dynamic content is server side processing 

time. Static content is served to a client browser in the following manner. Once an 

incoming HTTP request is received, the server determines that a particular static page 

has been requested and processing starts on a server. Then the web server or container 

finds the aforementioned page and serves it back to the client browser.

While serving static content is a relatively low performance drain on a web container 

or server, dynamic content is entirely a different matter. JSP performance degrades 

under the following pressures:

3.3.1 Connectivity to external resources

Depending on the complexity of an application, dynamic content served via JSP can 

require various amounts of processing. Processing of this sort could take the form of 

connectivity to various external resources, such as databases or CORBA services etc. 

which involves significant periods of time to complete therefore reducing response 

speed to a client’s browser [Iyengar et al, 2002].
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3.3.2 Thread management of Server Side Includes (SSI)

Once a JSP file is actually parsed and compiled into a single servlet (which occurs 

during the initial execution of the JSP page), the web container has to manage an 

individual servlet thread process for each HTTP of the JSP / servlet [Iyengar et al,

2002], Therefore, using server side includes (that is, the JSP include statement < %@ 

include f  ile=" <FILENAME>" %>) to fragmentize a dynamic JSP page with a 

view to using common fragments throughout a website (for example, page header and 

footer elements) would result in an increase of servlet thread processes that the web 

container had to manage [Hunter, 2000] (see Figure 3.7).
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Figure 3.7: JSP include fragment diagram

3.3.3 Caching

Section 3.3.2 suggests a more significant problem in JSP, namely there is no facility 

to cache server side static or dynamic page fragments. If a programmer had the ability 

to store server side JSP dynamic or static fragments as a single process in memory or 

serialized on disk, then the web container would not have to manage these JSP 

fragments as multiple servlet instances. A JSP caching mechanism would 

significantly reduce the load on both web server and container and increase the 

overall performance of an application [Challenger et al, 2000] [Knystautas, 2001].
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application = pageContext.getServletContext(); 
config = pageContext.getServletConfig(); 
session = pageContext.getSession(); 
out = pageContext.getOut();

A possible workaround to this problem (although not feasible in the private sector and 

very time consuming) is to customise the JSP engine in order to get a 

GZIPOutputStream instead of the JspWriter. Developers could do this with at 

least one JSP Engine (Tomcat) because it has an open source code base.

3.4 Testab ility

A substantial JSP limitation is in its testability, as developers wishing to perform a 

line-by-line debug walkthrough of their JSP scriptlet find themselves with a quite 

taxing task compared to normal Java applications. The reasons for this are actual 

simple:

a) Pure Java based application GUIs developed using Swing or AWT exclusively 

deal with native Java objects. Hence the code can be debugged through a 

traditional integrated development environment (IDE). However JSPs have 

outside interlinking component variables, which are hard to simulate in an 

IDE. Examples of these are the HTTP protocol, web browsers, web containers, 

web servers, session management etc. [Brown et al, 2001] [Dai et al, 2000] 

[Hieatt et al, 2002];

b) The overall design of a web application consisting of JSP can often lead to an 

increase in application complexity and developer’s confusion since the 

developers have a wide choice in their implementation methods, for example 

page-centric and MVC designs [Brown et al, 2001];

c) The non-intuitive way in which JSP deals with error handling. When JSPs 

throw an exception, that exception is based on the generated Java source file 

as opposed to the JSP file itself, therefore inexperienced developers try to 

match the error line number to the JSP file and not the actually source Java 

class file. Basically developers must debug compiled machine code without
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using high level language symbols and structures, and this is difficult 

especially for the inexperienced [Brown et al, 2001] [Hunter, 2000];

d) During the parsing and compilation of a JSP source file (. j sp  extension) to a 

Java servlet class, the base JSP scriptlet code is not checked for warnings (for 

example, of type checked / unchecked exceptions and possible null pointers) 

and depreciated methods before / during compilation therefore the JSP code is 

more vulnerable to runtime errors as oppose to native java code [Dudney et al, 

2003] [Hunter, 2000];

e) Currently there is a servlet / JSP application server non-standardisation 

towards reporting JSP errors, as each vendor offers their own interpretation / 

implementation of a JSP error handling mechanism. Therefore this non

standardisation can lead to programmers spending more time on routine bug 

fixing and learning the internal workings of a specific application server 

[Brown et al, 2001],

Many programmers try to overcome these JSP testing problems by using conventional 

testing methods. These methods can form two categories namely console and IDE 

based testing.

3.4.1 Console based testing

This method of testing consists of systematically entering Java

System. out. print In () statements throughout a code base, with a view of

examining the results when the web application is executed.

It is fair to assume that this method is relatively easy to implement and has the 

advantage that you don’t have to create additional classes in dealing with outputting 

to the console, however there are significant drawbacks.

a) The code based increases in size and method intuitiveness is lost thought the 

clutter of System. out. print In () statements [Dudney et al, 2003];
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b) It is laboursome and somewhat mundane process that increases String 
object creation in the application server’s Java Virtual Machine (JVM), 

therefore overall application performance can degrade significantly.

Example:

System.out.println(
" [debug info: for counter := " + i + "]") ;

One might think that in theory that the overloaded operator “+” only creates 

one String object where the String grows in length, however Java strings 

are immutable. That is, “+” creates a new String object the size of the right 

String plus the left String, therefore in reality a third String object is 

created [Sun, 2002b] [Brown et al, 2001];

c) Since the results of the debug messages must be manually examined, incorrect 

results could be inferred due to human error [Dudney et al, 2003].

3.4.2 IDE debugger based testing and profiling

Currently there is a large choice of tools for debugging and profiling Java 

applications, which can perform breakpoint code walkthroughs, variable watches and 

threading support. These tools can speed up development and reduce the number of 

application bugs found in a production environment. Even though these tools provide 

major advantages, they can be out of reach from small businesses and students as they 

are very expensive to purchase.

3.5 Security
The Java language is judged as being secure as it is strongly typed language (that is, 

in Java every variable or class has a type and therefore during compilation and 

runtime execution, if the value type and object type do not match then a new value 

cannot be assign to an object. Thus hackers cannot introduce foreign entities into 

system which could masquerade themselves as normal entities) and the Java language 

contains cryptography / security API components. However in terms of the WWW,
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application-level security vulnerabilities are inherent in a Web application’s code, 

regardless of the technology in which the application is implemented or the security 

of the Web server and backend database on which it is built [Scott et al, 2002].

JSP is no exception to the above, since its primary function is to render dynamic web 

content over the WWW, it is explicitly exposed to many different security problems 

that fall under two categories namely application level and application server 

vulnerabilities.

3.5.1 Application level vulnerabilities

General security vulnerabilities at JSP application level can contribute to two 

problems, one is third party components; these components might be full of security 

holes and developers who are integrating them into their systems have no control over 

their problems. The second general problem is that code is buggy as developers 

generally overlook the identification of security related code as they are under 

projects time constraints / commitments [Scott et al, 2002],

The most significant JSP application level security breaches can fall under three 

methods, that is HTTP form modification, Cross-Site Scripting and JavaBean 

exploitation.

3.5.1.1 HTTP Form modification

This attack takes the form of saving an outputted dynamic or static HTML page from 

a browser and manipulating an embedded HTML form before submitting it via the 

WWW [Dimov, 2002],

For example, a user could have a back account creation form where they enter in their 

personal details, that are name, address, age etc. However the page could have a 

hidden form field that states that the overall balance is zero.

<form name^'forml" method=l,post" action=nhttp: //www.bank. com"> 
ctable border="l" cellspacing^" 011 cellpadding="011 >

<tr>
<td>Name</td>
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<tdxinput type="text" name="name"x/td>
</tr>
<tr>
<td>Address</td>
ctdxinput type="text" name= "address"></td>

</tr>
<tr>

ctdxinput type="submit" name="Submit" value="Submit"></td> 
ctd>&nbsp;</td>

</tr>
</table>
<input name="balance" type="hidden" value="0">

</form>

Now if a user saved this output and changed the following 

HTML text from <i n p u t  n a m e = " b a la n c e "  ty p e = " h id d e n "  

v a lu e = " 0 " >  t o <i n p u t  n a m e = " b a la n c e "  ty p e = " h id d e n "  

v a lu e  = " 10 0 0 00 0 " > then the user would be a million pounds richer once he/she 

submitted the page!

It is extremely difficult to combat this attack, as it requires server side JSP scripting, 

which is tedious, time-consuming and error prone task that is rarely undertaken in 

practice [Scott et al, 2002], For example, instead of client side Javascript validation; 

the validation is now moved to the server side JSP code base -  this means that a 

HTTP request must be sent to the application server and dealt with there as oppose to 

using Javascript. Javascript can check for errors before a HTML form is submitted 

and therefore lessen the amount of HTTP requests that are sent to the application 

server.

3.5.1.2 Cross-Site Scripting (XSS)

This technique is the most common attack method used by hackers. It is where a 

hacker wishes to steal a client’s details (by manipulating their cookies, which contain 

passwords and usernames) by embedding malicious JavaScript or HTML into JSP 

dynamic page generation output.

For example, take the friendly URL

http : //www. mysite . com/index. j sp?message=Patrick which will take 

name -  value pair of message and display the users name on the screen.
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A XSS attack could be to embed a malicious URL into the message name -  value 

pair, which when clicked would bring a friendly user to a new website that exposes 

the user’s sensitive information (that is, cookies etc.) [Dimov, 2002] [Klein, 2003] 

[Scott et al, 2002].

For example,

http://www.mysite .com/index .j sp?message=<a 
href="http://www.evilsite.com">Patrick</a>

3.5.1.3 JavaBean exploitation

As specified in the JSP specification, JSP can modularize certain business logic areas 

into workable reusable components using JavaBean technology (a full explanation can 

be found in section 3.2.2.2).

A JavaBean primary function is to provide an encapsulation of data properties and 

provide easy access to these data properties by using getter and setter methods [Sun, 

2001]. In JSP these setter methods can be abbreviated through the use of JSP bean 

tags, for example < j sp : set Property name = " JavaBean_Name" 

property="name"/>

Instead of a developer using multiple JSP bean tags to set multiple JavaBean 

properties, a developer can use of the wild card character (for example,

<j sp : setProperty name =" JavaBean^Name" property= "*"/>) [Sun, 

2001], which provides a shorthand JSP Bean tag notation to set all properties of a 

JavaBean.

However the usage of the wild card character exposes a large security hole, as there is 

nothing stopping a user from manipulating a HTTP POST/GET URL (that is, by 

appending additional name-value pairs) to set additional properties on a JavaBean 

[Dimov, 2002],

For example, a HTML account setup form (see Figure 3.8) that contains two form 

fields, say name and address, will be submitted to an Account bean class which
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contains three data properties name, address and balance. Therefore upon the HTML 

form submission, only name and address properties will be set on the Account bean. 

However if a user appended a name-value pair to the end of the HTML form 

designated JSP page, for example, form.jsp?balance=1000000. Then they could 

rightly initialise a user bank account balance to a million pounds as oppose to zero 

pounds if the JSP code looked like the following.

<jsp:useBean id="account" class="AccountBean">
<jsp:setProperty name=" account" property="*"/>

< j sp : useBean> —
t Le t t s ;.;

Account Setup Details

Name 1

Address r
Submit |

Figure 3.8: Account HTML setup form

3.5.2 Application Server vulnerabilities

Like any other software, application server software can be shipped with deficiencies. 

There are many reported cases of where vendors have shipped their JSP 

implementations (Tomcat, Websphere etc.) with software bugs in the form of security 

vulnerabilities.

For example, an early version of Tomcat had a problem in that it exposed a requested 

JSP file source code by replacing the file extension . j  sp  with . j  s%2570. The 

problem is that the characters %2 5 is an URL encoded "%", and 7 0 is the 

hexadecimal value for "p". Thus application server doesn’t invoke the JSP page (since 

the URL docs not end in " . j sp"), however it does invoke a static version of the file 

(since the URL ends in ". j s%p"), which displays the file source code [Dimov, 2002] 

[Huseby, 2001] [Scott et al, 2002].
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Also versions of Tomcat and Websphere had an exploitation of source code problem

by appending the default servlet implementation

o r g . a p a c h e . c a t a l i n a . s e r v l e t s . D e f a u l t S e r v l e t  and

s e r v l e t  /  f i l e /  respectively to the beginning of the requested JSP page. For

example, if hackers wish to gain the source code to a JSP file called i n d e x . j sp

then all they had to do was enter the following text as a URL in a browser.

h t t p : / /www. < w e b s ite n a m e > . c o m /o rg . a p a c h e . c a t a l i n a . s e r v l e t s

. D ef a u l t S e r v l e t / i n d e x . j sp  [Rayvok, 2002] or

h t t p  : /  /www. < w eb siten am e>  . c o m / s e r v l e t /  f i l e /  in d e x ,  j sp  [Shah et 

al, 2000],

3.6 Conclusions
The areas highlighted in this chapter, such as design, performance, testability and 

security have demonstrated the limitations of JSP. The problems outlined should be 

carefully considered as they could cause lateness, instability and quality degradation 

within a JSP web development project.
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4 Proposed Solution (MagnumServer Pages)

4.1 Introduction
The overall objective of this chapter is to present a new architecture design for 

developing web applications in Java. We call this new architecture MagnumServer 

Pages, which will provide solutions to the main fundamental problems that are 

currently associated with JSP technology, thus the suggested solutions identified in 

this chapter are organised according to the JSP problems areas identified in section 3. 

Hence the new architecture will be discussed under the categories of design, 

performance, testability and security. j M vry

I OFT "

4.2 Design
The new architecture is based on an enhancement of the Model-View-Controller 

(MVC) (see section 3.2.3).

4.2.1 Enhancement of MVC

The proposed design alternative will leverage and enhance the MVC tiers (Model, 

View and Controller) in the following manner:

a) The Controller servlet will only have one responsibility, that is, to remodel the 

HTTP request object as a pure Java object and dispatch it for business 

processing [Alur et al, 2003] [Ball, 2001];

b) Each programmer does not have access to the

javax. servlet. http . HttpServletRequest object directly. They 

are dealing with a pure Java transport request object which means that the 

following will occur:

i) They are developing at a high level, where the HTTP protocol has been 

hidden in favour of a pure Java object which acts as a full 

request/response mechanism between the model and the view layers 

[Alur et al, 2003];
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ii) Low level programming and business logic will be clearly defined and 

separated, that is, the proposed framework will handle all low level 

aspects of web development (for example, session management) and 

the business logic can follow a Unified Modelling Language (UML) 

[Booch et al, 1998] use case format (for example, follow logical 

business processing steps) [Alur et al, 2003];

iii) The proposed alternative will impose strict rules on coding application 

solutions. Thus these standards will present a set of guidelines that rule 

out inconsistencies when developing a web application with JSP (for 

example, a developer can design and implement their web application 

using any approach they wish. However this can lead to problematic 

situations).

Since developers have so many decisions to make in view of JSP object oriented 

design (see section 3.2), which in turn offer their own problems, for example with 

respect to JSP design there can be less intuitiveness and tightly coupled layers. The 

proposed design alternative will present a means to decrease developer’s confusion 

and reduce implementation errors, as it will offer a flexible and intuitive design that 

experienced developers can use.

In this section a discussion on the proposed design solution for building Java web- 

based systems will be made. The design will offer plausible solutions over the 

presented MVC design problems.

4.2.2 Components of alternative MagnumServer Pages design

For the design of MagnumServer Pages, the application will use a three-tiered 

architecture; in turn the middle tier will use a three-layered approach. The layers will 

provide programmers with independent and hidden components that are easy to 

implement and invoke. Similar to the MVC design pattern, the new design will be 

separated into three distinct parts that will offer loosely coupled and more intuitive 

design.
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a) Model u——

Firstly, the model layer will be completely independent of the HTTP protocol. 

That is, if the model implements the Command design pattern [Gamma et al, 

1994], it will only deal with pure Java objects (object creation and setting 

mutable attributes) and will strictly adhere to the basic and alternative flow of 

a UML use case [Booch et al, 1998], It will be perfectly feasible to run the 

model element with a command-line driver. For example, a shopping basket 

checkout use case could be executed as a separate stand-alone entity.

Using the proposed model layer in an application contributes to the following:

i) Promotion of reusable classes as the objects used are common 

throughout an application and they are loosely coupled since they 

support the Chain of Responsibility pattern (that is, the model layer is 

not aware of were a request was sent from) [Alur et al, 2003] [Gamma 

et al, 1994];

ii) Since the model represents a use case and it is independent of the 

HTTP protocol, it offers developers the ability to easily unit test their 

logical units of work through the use of a flexible test framework such 

as Apache JUnit because it can represent a standalone entity (that is, 

separate from the controller and view layers) that can be tested by 

using a command-line driver [Alur et al, 2003];

iii) The proposed model layer will be very easy to implement and to 

understand, as there are no contributing components such as the HTTP 

protocol. Therefore other developers may easily pick up another 

person’s model unit and continue to work with it with minimal 

overhead [Gamma et al, 1994];

iv) The model layer allows a clear separation of developer roles, as a 

developer working on this layer will not need web development skills.

b) View

Again this layer will be completely independent of its counterparts, that is the
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model and controller. No business processing will be conducted in this layer, 

as its sole task is to take a single native Java request object and use it to 

display dynamic presentation items [Fowler, 2003]. The view layer will also 

have the ability to use any presentation rendering style, for example JSP, XSL, 

and HTML.

Using a view layer in an application promotes the following:

i) The ability to use the best suitable rendering strategy to display results 

without worrying about using a new Java framework or refactoring 

code to incorporate a new technology. A developer is free to use a 

combination of rendering strategies within their application, which 

offers unlimited opportunities in developing web applications [Alur et

scope for reusability. For example, a page broken into page 

subsections, which reduces the overall implementation time of 

dynamic pages as these subsections can be reused [Alur et al, 2003].

iii) Separation of developer roles, as a developer (graphic designer)

working on this layer shouldn’t necessary have Java development skills

c) Controller

It is proposed that this layer should use a thin servlet that acts a single point of 

entry for an application. The layer only functions are to separate the HTTP 

protocol from the Java request, dispatch the request for business processing 

and then delegate the request for appropriate visual rendering [Fowler, 2003],

Using a controller layer in an application promotes the following:

i) Through the use of a Factory pattern (that is, a class that can create an 

abstract class so that it can be perform polymorphic behaviour 

throughout the rest of an application), the controller will cleanly 

separate the HTTP protocol from an incoming request, which promotes

ii) Like the proposed architecture’s predecessor (MVC) there is huge

al, 2003] [Gamma et al, 1994].

[Fowler, 2003].
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loosely coupled interaction between the model and view layers 

[Fowler, 2003];

ii) The controller layer will have a clean internal design for dispatching a 

pure Java request object. That is, as opposed to the normal MVC 

decision design mechanism, which uses nested if else or switch 
statements. The alternative controller layer will incorporate the 

Dispatcher design pattern, which in turn uses Java reflection to decide 

how to direct the request to its appropriate model unit. Thus 

eliminating decision code maintenance from an ¿application [Alur et al, 

2003] [Ball, 2001] [Fowler, 2003]; ! c .

iii) At runtime the controller will also delegate the request object (after 

business logic execution) to an appropriate rendering Strategy pattern 

[Gamma et al, 1994] (that is, JSP, XML etc.). This runtime binding 

will promote the use of interchangeable presentation styles therefore 

offering developers with the best possible choice to display results 

[Alur et al, 2003],

4.2.3 How does the alternative design work at run-time?

The proposed alternative design solution will work in a servlet web application as 

follows (see Figure 4.1)

1. The browser sends a HTTP request to the controller servlet. The servlet first 

gathers the j avax. servlet. http . HttpServletRequest object and 

then checks the HTTP request for a specific field-value string parameter, that 

is Action=login. The servlet will later interpret this field-value as a way to 

direct the HTTP request to the specific page for further processing;

2. The servlet now proceeds to grant independence to the object of type

j avax. servlet. http .HttpServletRequest by calling on a 

Factory [Gamma et al, 1994] to convert the object to a pure Java object. That 

is, the Factory strips out the parameter values, cookies and bytes from the
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object of type j avax. servlet. http . HttpServletRequest and 

inserts these values into a native Java object. This action permits loose 

coupling between the controller, model and view layers;

3. Through the use of the Dispatcher object (which uses reflection) [Ball, 2001] 

[Cymerman, 1999] [Cymerman, 2000] the servlet now creates a model domain 

object by using the field-value string parameter gathered in step 1. After the 

model domain object creation occurs, the servlet passes the pure Java request 

object to the model for execution (execution follows a UML use case basic and 

alternative paths) [Fowler, 2003];

the model unit results (stored in the single pure Java request object) to runtime 

rendering strategy (JSP, HTML etc.) for page processing. The pure Java object 

in question will then proceed to be fused within the page text to form dynamic 

presentation behaviour [Fowler, 2003];

5. At the end of this process the text (be it HTML, XML etc.) will then be 

flushed/sent back to the browser by the means of an appropriate rendering 

strategy [Fowler, 2003],

4. If application state and model business logic are consist passes

■ Controller Model View

Login.jsp

Figure 4.1 : Proposed framework design working diagram
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4.2.4 Advantages of the new MagnumServer Pages design

The design offers developers the following solutions to the problems associated with 

the page-centric approach (see section 3.2.2):

CiF
a) Maintainability t —— ------- —     ■

Maintaining an application built with the proposed framework will be very 

manageable. The design will offer a huge amount of reusability in the sense 

that existing model use case classes can be inherited from, that is the 

functionality can be extended. Design changes (both visual and logical) will 

have minimal impact on the delivery of code (that is, text / image changes can 

be performed by a graphical designer, while changes to database schema 

would result in a programmer simply updating the SQL in the model classes) 

[Alur et al, 2003].

b) Workflow

Each page will be clearly separated in model (use case class) and view (JSP, 

XSL) tiers. Therefore the workflow is quite easy to follow since it adheres 

very closely to a UML use case. A programmer can easily add and remove 

workflow steps from an application due to the above model - view separation 

and also that the framework hides the low level HTTP request and session 

variables [Alur et al, 2003] [Gamma et al, 1994].

Furthermore, even though the framework design uses ideas from the MVC design 

paradigm, one would think the design would encounter the same problems outlined 

with its predecessor. However that is not the case for the following reasons:

a) Unnecessary updates

During the execution of the model use case unit, the new design’s native Java 

request object is filled with the actual results. This object will act as a single 

model results carrier to be fused with the appropriate view layer. Since the 

rendering strategy will interact only with the single pure Java object as 

opposed to the many JavaBeans in the MVC design (see section 3.2.3), this 

will reduce the problem of unnecessary updates of the view layer (. j  sp  file) 

whenever the model (business logic) changes in the MVC architecture.
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b) Model and controller are loosely coupled

In terms of a web application; the logic will be clearly separated in the context 

of the controller and model layers. The model and controller are clearly 

independent as they do not share and maintain session state between one 

another [Alur et al, 2003] [Gamma et al, 1994].

c) Easier to understand and to use

The proposed framework will be very easy to understand and use, as a 

developer wishing to develop a dynamic web page will have to follow a 

simplified development process. For example, a developer only has to develop 

a model use case unit (to perform business logic) and its subsequent page (for 

rendering). The development process uses pure Java based classes with no 

added HTTP technology layer, therefore simplifying usage for non-web 

developers [Alur et al, 2003].

4.2.5 Summary

To summarise, lets contrast the traditional MVC design against the suggested 

alternative MVC design in terms of design (see Table 4.1).

Design Category Traditional MVC Design New MVC Design

Protocol HTTP None

Controller decisional 

process

If /else statements 

Switch statements

Reflection

Controller-model 

dependency

Tightly coupled Loosely coupled

Application data transfer 

vehicle

HttpServletRequest Pure Java object 

(Not tied to servlet API)

Domain model JavaBean Pure Java object

model-view dependency Tightly coupled Loosely coupled

Session management Manual Automatic

Rendering strategy Static Dynamic

Table 4.1: Design contrast between traditional and alternative MVC architectures
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4.3 Performance
As previously discussed in section 3.3, JSP performance is affected by four 

fundamental problems, namely, (i) connectivity to external resources, (ii) thread 

management of SSI, (iii) caching and (iv) the lack of compression for HTML content. 

Although these problems affect overall JSP application performance significantly, 

they are not insoluble. The following section will outline how the new design 

proposes to overcome three of these performance problems. One problematic JSP area 

caching is out of scope of this thesis because it is too vast to provide a workable 

solution.

4.3.1 Connectivity to external resources

Connection to a database via JDBC, for example, can turn out to be a tremendously 

expensive operation for JSP; it is expensive in terms of both CPU cycles and memory 

footprint. JDBC connections involve significant set-up, execute and shutdown; all this 

leads to slower response times and increased server load, which in turn further slows 

response.

A proposed solution to this problem is to create a database pooling mechanism [Alur 

et al, 2003], Upon servlet deployment and initialisation, a substantial number of JDBC 

connections are created within the pool. These connections are then handed out in a 

round robin manner to every pure Java request object created by the proposed 

architectural design approach. A single connection can be later used for each 

individual execution of a model use case unit (business processing) and replaced back 

into the database pool for later reuse.

4.3.2 Thread management of Server Side Includes (SSI)

Due to JSP ability to fragment common components of a dynamic JSP page, a web 

container’s servlet thread load can increase significantly (that is, including the main 

JSP, each JSP fragment is a servlet itself). The effect of this can cause the overall 

performance degradation of a web container. Again, this performance problem cannot 

be resolved easily, as it is uniquely tied to the overall design o f JSP. However a 

proposed remedy to this problem is the creation of a new Java based dynamic page
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technology called MagnumServer Pages (MSP) (see section 5.5 for a full 

explanation), one where servlet threads are eliminated all together from the opposed 

technology.

Thus new design will allow for this as the controller layer initially strips the HTTP 

protocol (that is, through the use of Factory class) from the incoming Java request 

object. Therefore upon creating a dynamic web page, servlet thread activity ceases as 

MSP instantiates a native Java object (which in turn is maintained by the JVM). This 

native Java object in turn will take on the servlet’s responsibility for building dynamic 

content. A full explanation can be found in section 5.5.

4.3.3 No provision for compression of HTML content

In section 3.3.4, we outlined how the design of JSP technology was limited in 

producing compressed data. Therefore we shall be introducing a process to compress 

the HTML content (that is, we shall retrieve an object of type 

j ava . i o  . OutputStream from a j avax. servlet. http . 
HttpServletResponse object. This OutputStream object will then be 

wrapped by a GZIPOutput Stream class, which then writes and flushes the 

compressed dynamic string back to the browser). Therefore for the new process to 

work, a new dynamic page technology will be implemented (That is, MSP see section

5.5) to return a full dynamic content string so that it can be compressed (that is, 

oppose to a JSP page writing the dynamic content string in sizeable segments through 

usage of its inherent JspWriter object - a full explanation can be found in section

4.3.4 Summary

To summarise, Table 4.2 contrasts the traditional MVC design (using JSP technology) 

against the suggested alternative MVC design (using the new server page technology 

[MSP]).

5.5).
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Performance Category Traditional MVC Design New MVC Design

Connectively to external 

resources

None (must be manually 

implemented)

Yes (Database pooling 

built in)

Thread management of 

Server Side Includes

None (fragmentize JSP 

creates more servlet 

threads)

Yes (addition object 

creation)

Provision for compression 

of HTML content

None Yes (Provision built into 

the overall design)

Caching None None

Table 4.2: Performance contrast between traditional and alternative MVC

architectures

4.4 Testability
As outlined in section 3.4, there are many reasons that contribute to the overall 

difficulty in JSP testability. However in this section, a discussion outlining how the 

new architectural design solves the current problems with JSP testing will be made. 

These solutions are the following:

a) Currently, JSP interlinking components such as the HTTP protocol are hard to 

create in an artificial environment, for example an integrated development 

environment (IDE). Although the current IDEs offer great debugging 

mechanisms for Java based applications developed using the standard Java 

application programmer interface (API). The new design provides a suitable 

non-artificial environment to debug an application’s core business logic. The 

reason for this is simple; the design strips out the HTTP protocol before 

business logic processing and session management is hidden for the 

programmer.

b) Debugging JSP scriptlet code is difficult as it is combined with an extra layer 

of complexity such as HTML and JavaScript. However the new design will 

make use of MSP (a full explanation can be found in section 5.5). The primary 

objective of MSP is to perform the similar rendering duties of a JSP page, but 

without the JSP infrastructure overhead of servlets threads and HTTP protocol.
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During compilation, this new technology will take the dynamic page source 

code (such as the scriptlet code and HTML) and convert it to a native Java 

class as oppose to JSP’s method of converting to a Java servlet class. The 

native Java class essentially builds a j a v a  . u t i l . S t r i n g B u f  f e r  object, 

which is a composition of appended static strings (HTML, Javascript) with 

standard Java code execution to form an overall text output in the form of a 

j a v a  . l a n g  . S t r i n g  object.

Therefore upon using any standard integrated development environment 

(IDE), programmers can easily perform a debug walkthrough as they are 

exclusively dealing with a pure Java object as oppose to JSP’s servlet thread 

with adjacent interlinking components;

c) The new strict design will decrease application complexity and developers 

confusion, because developers will not have to choose from a particular 

implementation method, for example page-centric (model 1) and MVC (model

2) designs [Brown et al, 2001]);

d) MSP will offer a more intuitive way in dealing with error handling reporting, 

opposed to JSP’s exception handling which is based on the parsed Java class 

file from the source . j  sp  file. The new dynamic page technology (MSP) 

parses its source files into native Java classes; therefore all compilation errors 

are in the form of native Java API exceptions. Thus inexperienced developers 

can easily identify the source of the exceptions in contrast to the identification 

of JSP exceptions.

MSP will need a compiler in the form of a command-line application that runs 

through the Java virtual machine (JVM). The new compiler grants developers 

the provision to debug through the program to assess where there are 

compilation errors in the dynamic page source file;
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e) As JSP scriptlet code is not checked during JSP source code compilation, the 

code is more susceptible to runtime errors. However MSP uses native Java 

code that is checked during code compilation by the Java virtual machine 

(JVM). Therefore the JVM is more inclined to indicate problematic runtime 

errors opposed to the JSP compiler;

f) As stated in section 3.4, there is a no standard JSP error handling reporting 

amongst application server vendors (Websphere, Tomcat etc.). However as 

discussed in this section, the new dynamic pages architecture compiles its 

pages into native Java classes therefore using the all standard reporting power 

of the Java virtual machine (JVM).

Since the new design offers programmers the ability to produce test friendly code (A 

developer has an non HTTP environment to debug in and can track compilation and 

runtime errors more easier). Developers are now more inclined drop some, if not all of 

JSP’s so-called tried and tested methods of testing, such as console and integrated 

development environment (IDE) based testing, in favour of using regression testing 

frameworks such as Apache’s JUnit.

To summarise, we contrast the traditional MVC design (using JSP technology) against 

the suggested alternative MVC design (using new server page technology) in terms of 

testability (see Table 4.3).

Testability Category Traditional MVC Design New MVC Design

Error handling Not transparent, 

inexperienced developers 

find it hard to track down 

origin of JSP error

Transparent, developers 

find it easier to track down 

JVM error

Outside interlinking 

component

Hard to simulate Clean separation of HTTP, 

provides for easier testing 

of components

Warnings / deprecated 

methods

Not checked Checked

Table 4.3: Testability contrast between traditional and alternative MVC architectures
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4.5 Security
As highlighted previously in section 3.5, current web applications developed using 

JSP technology are highly vulnerable to security breaches due to many factors such

a) JSP technology weaknesses.

JavaBeans can be infiltrated due to the shorthand JSP Bean tag notation to set 

all properties, that is through the use of the wildcard character.

b) Applications server implementations.

Since JSP source code (which is contained in a file with . j sp  extension) is 

deployed on an application server for execution. It is more susceptible to 

exposure from hackers who can break into these application servers. Also 

many of today’s application servers that provide support for JSP (Tomcat, 

Websphere etc.), are shipped with serious security vulnerabilities that exposes 

the underling JSP source code.

c) Programmer awareness.

Due to inexperience and time commitments, web developers often create 

simple security holes in their code that hackers will exploit in the form of 

using Cross-Site Scripting and HTTP Form modification.

As security is now a global concern in the WWW community, it is out of scope of this 

paper to try and resolve every security problem related to JSP. However in terms of 

building a new architectural design a few safeguards will be proposed.

Firstly, the dangers of deploying JSP source code onto an application server cannot be 

repaired simply. As the process of deploying JSP source code onto an application 

server for execution is one that is bound by the technology. However the proposed 

alternative design will offer a new dynamic page technology (MSP). Since it has been 

suggested to put forward the idea that this technology will parse its source files into 

native Java classes (by using a new Java dynamic page compiler). Then it would be 

reasonable to deploy only the compiled version of the dynamic page class as Java byte

Page 72



Chapter 4 Proposed Solution

code, which in turn could be added to a collection of other compiled dynamic pages 

and deployed as a single compressed Java archive (JAR) ( . j a r  file extension). The 

result of this security suggestion is that a hacker would need to go to extraordinary 

lengths to expose the source code of an individual dynamic page. As they not only 

have to first break into the application server, but also decompress and open the 

archived collection (. j a r  file) of compiled page classes and then decompile each 

individual class. Furthermore, since the new MSP compiler wouldn’t reside on the 

server (as dynamic page compilation would occur before deployment), the hacker 

would then have great difficulty in reengineering the unformatted text (HTML, 

Javascript etc.) contained in the . j  a v a  source file as oppose ta  JSPs-formatted text 

contained in the . j sp  file. I. . .....=:

Secondly, the new architecture suggests the use of native Java classes (HTTP protocol 

and session management are stripped out or hidden) throughout the design. Then the 

alternative dynamic page technology (MSP) will offer a non-reliance on JavaBeans in 

the hope of neutralizing the weakness of using JSP JavaBean tag notation.

To summarise, lets contrast the traditional MVC design (using JSP technology) 

against the suggested alternative MVC design (using new server page technology) in 

terms of security (see Table 4.4).

Security Category Traditional MVC Design New MVC Design

JavaBean exploitation Yes No

Cross-Site Scripting (XSS) Yes Yes

HTTP Form Modification Yes Yes

Application Server 

vulnerability

Yes No (As there is a choice of 

Rendering strategies)

Table 4.4: Security contrast between traditional and alternative MYC architectures

4.6 Conclusions
The ideas discussed in this chapter have provided a plan for implementing an 

alternative design framework for resolving the problems surrounding JSP. Once 

implemented, the highlighted solutions will introduce efficiencies within a Java web 

development project.
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5 Implementation

5.1 Introduction
Section 4 has outlined the architecture of our proposed solution. The following 

section will discuss the detailed implementation of its components, namely the 

model, the view, and the controller. The following functionality was highlighted in 

section 4.2 as the main responsibilities of the system (see Figure 5.1):

a) Instantiation of a thin servlet (controller) and setup any necessary 

configurations via a system properties file.

b) Handle the separation of the HTTP protocol from an incoming request 

by delegating to a Factory pattern class [Gamma et al, 1994], which in 

turn creates a plain Java request object that is native to the improved 

design code base.

c) Dispatch the newly created request object for business logic processing 

in the model layer. The servlet would delegate responsibility for the 

dispatching process to a Dispatcher pattern class [Fowler, 2003], which 

in turn loads the correct business logic handler and process the request 

object.

d) Render the results of business logic processing in the appropriate format 

by identifying the type of appropriate format and then delegating 

rendering responsibilities to a chain of responsibility pattern class in the 

view layer [Gamma et al, 1994],
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Improved MVC architecture

HTTP
Request

. I  Requ 

Fac"

HTTP
Response

Rendering
Strategy

Dispatcher

- I

Figure 5.1: Overall functionality diagram

5.2 Controller
In the improved design, it has been proposed that there is a need for a thin 

controller servlet class, which will delegate the following core tasks to other sub 

components:

a) Separation of the HTTP protocol from an incoming request.

b) Dispatch the newly created request object for business logic processing in the 

model layer.

c) Render the results of business logic processing in the appropriate format by 

identifying the type of appropriate format.

5.2.1 Composition of controller

The thin controller servlet is the main component to the proposed solution as it 

delegates the processing of HTTP requests to three integral components. These 

components along with the main servlet can be identified as the following (see Figure

5.2):
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a) Java_DispatcherServlet (thin controller servlet)

b) Request Factory (Factory pattern class) J i i _
c) Dispatcher (Dispatcher pattern class)

d) R e n d e r in g S t r a te g y  (chain of responsibility interface)

Figure 5.2: UML class diagram of the Controller layer

Since the main components that the controller servlet uses to process HTTP requests 

have been identified, it is now necessary to give an overview of the following method 

calls that are used within these components:

i n i t ()

Instantiation method of Java_DispatcherServlet, which then creates the three 

additional components (RequestFactory, Dispatcher and 

RenderingStrategy) for future delegation of tasks.

doPostO anddoGet()
Java DispatcherServlet method to handle incoming HTTP GET and POST 

requests.
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createRequest()
RequestFactory method for creating a plain Java request object that is not tied to 

the HTTP protocol.

dispatch ()
Dispatcher method to identified the proper business logic handler, which in turn 

processes the plain Java request.

decideRenderingStrategyAndRenderPage()
Java_DispatcherServlet method to decide the appropriate presentation 

strategy and pass responsibility to that strategy

renderPage()
Any class which implements from RenderingStrategy must realise the method 

to print the final result.

Although the main composition (that is, associated classes and methods) of the 

controller layer has been discussed, there is a need to fully discuss another important 

entity that is created in controller servlet. That is the plain Java object, which is 

created during HTTP protocol separation.

5.2.2 HTTP protocol separation

Although the normal JSP / servlet architecture uses the implicit request / response 

objects of type j avax. servlet. http . HttpServletRequest and 

j avax. servlet. http. HttpServletResponse to receive and respond to 

client demands. It was decided to mimic the functionality of these implicit objects as a 

single pure Java object in the new implementation. As long as there is a JVM present, 

developers would have the ability to use a pure fully functional Java request that has 

no limitations on platform, web application container or even front-end technologies 

such as JSP, .NET, PHP etc.
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5.2.2.1 Composition of HTTP protocol separation

It was decided that the RequestFactory instance method createRequest () 
should return an abstract class of base type AbstractRequest. The 

AbstractRequest class holds all the state information posted from the browser, 

any state changes conducted during business logic processing and maintains 

application state in the session. This is an abstraction of the main primary data 

transfer container between the controller servlet, model and view layers. This abstract 

class would enable the new implementation to use polymorphism throughout the code 

base, which in turn allows the improved design to be scalable and rich in plug-and- 

play component architecture.

Before the abstract class was implemented, it was analysed that an interface of type 

RenderableObj ect must be first created. This interface is contractual bound to

the A b s t r a c tR e q u e s t  class to implement similar H t tp S e r v l e tR e q u e s t  

functionality.

An instance that inherits from AbstractRequest could be best described as a 

cross between j avax. http . HttpServletRequest and a JavaBean. That is, 

any classes that inherited from AbstractRequest would have similar 

functionality to HttpServletRequest and would act as the data transfer 

container between the controller, model and view layers.

Therefore it was concluded to implement two types of requests; JavaRequest and 

JavaMultipartRequest. These classes would handle normal HTTP GET/POST 

submissions and HTTP file uploads respectively.

Therefore since all associated classes have been created to successfully satisfy the 

needs of the HTTP protocol separation a composite view is shown (see Figure 5.3).
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Figure 5.3: UML class diagram of the HTTP protocol separation

5.2.2.2 RequestFactory

Based on the gang of four’s Factory design pattern [Gamma et al, 1994], This class 

builds polymorphic objects of type AbstractRequest (for example, 

JavaRequest and JavaMult iPartRequest) by deconstructing objects of 

HttpServletRequest, which are sent via the HTTP Protocol. Ultimately, this 

Factory class allows developers to discard the HttpServletRequest early on in 

the request process; therefore the improved implementation is less of a reliance on 

servlet and JSP technology.

5.2.2.3 AbstractRequest

The AbstractRequest class responsibilities are the following:

a) Hold the Action name-value string pair that identifies which model domain 

object to instantiate later;

b) Hold the Type name-value string pair that identifies which view rendering 

strategy to run later;

c) Hold all HTTP POST and/or GET data, which is form fields, cookies, headers, 

and session objects;
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d) Retain persistent data that is submitted via the model layer (business logic 

processing) so that it is available throughout the lifetime of a client’s session;

e) Retain transient data only for the duration of the HTTP POST or GET;

i L% . .
f) Know the next page name that will be rendered. ___t .

Therefore to actually fulfill the similar responsibilities of HttpServletRequest 
the following AbstractRequest actions have been identified (see Table 5.1):

a) The AbstractRequest needs an ability to return a particular HTTP GET 

or POST value string based on a name string;

b) Returns a particular HTTP GET or POST value string array based on a name 

string;

c) Retrieve a pure Java object from a web clients overall session;

d) Retrieve all Java objects (in the form of a j ava. ut il. Hashtable) from a 

web clients overall session;

e) Retrieve a particular pure Java object from a web clients page session / scope;

f) Removal of a particular pure Java object from a web clients overall session by 

supplying the object identification string name;

g) Set HTTP GET or POST name-value string pair into the scope (lifetime) of 

the request;

h) Set an array of s tr in g  objects containing all of the values that the given 

HTTP GET or POST request parameter has;
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Index AbstractRequest Java servlet API

(a) String getFieldValue(String 
name)

Javax.servlet.ServletRequest 
getParameter(String name)

(b) String []
getFieldValues(String name)

Javax.servlet.ServletRequest 
getParameterValues(String name)

(c) Obj ect
getPersistentObject(String 
persistentObj ectName)

Javax.servlet.http.HttpSession 
getAttribute(j ava.lang.String name
)

(d) j ava.util.Hashtable 
getPersistentObjects()

N/A

(e) Obj ect
getTransientObject(String 
transientName)

Javax.servlet.j sp.PageContext 
getAttribute(j ava.lang.String name
)

(f) removePersistentObject(Strin 
g param)

Javax.servlet.http.HttpSession 
removeAttribute(j ava.lang.String n 
ame)

(g) setFieldValue(String field, 
String value)

Javax.servlet.ServletRequest 
setAttribute(j ava.lang.String name 
, java.lang.Object o)

(h) setFieldValues(String field, 
String [ ] values)

Javax.servlet.ServletRequest 
setAttribute(j ava.lang.String name 
, java.lang.Object o)

(i) setPersistentObject(String 
persistentObjectName, Object 
persistentObj ect)

Javax.servlet.http.HttpSession 
setAttribute((java.lang.String nam 
e, java.lang.Object value)

G) setPersistentObjects(java.ut 
il.Hashtable table)

N/A

(k) SetRepsonse(javax.servlet.ht 
tp.HttpServletResponse 
response)

N/A

(1) setTransientObject(String 
transientName, Object obj)

Javax.servlet.j sp.PageContext 
setAttribute 
(java.lang.String name, 
java.lang.Object attribute)

Table 5.1: contrast between new implementation and Java servlet API
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i) Placement of a single pure Java object into a web clients overall session;

j) Placement of all Java objects (in the form of a j a v a . u t  i l . H a s h t a b l e )  

into a web clients overall session;

k) Attachment of an HttpServletResponse object for the purpose of using 

its output stream at a later stage;

1) Placement of a pure Java object into a web clients page session / scope.

To fulfill A b s t r a c t R e q u e s t  other duties, that is the containment of the Action and 

Type name-value string pairs and the containment of the next page name that will be 

rendered, the following methods have been identified.

getAction()
Retrieves a predefined string Action parameter from the submitted HTTP GET or 

POST.

getTYPE()
Retrieves a predefined string Type parameter from the submitted HTTP GET or 

POST.

getNextPageName()
Get the next page for the class of base type AbstractRequest object to visit. 

setNextPageName(String pageName)
Set the next page for the class of base type AbstractRequest object to visit

5.2.2.4 JavaRequest

This class is an example of a fully implemented data transfer container between the 

thin controller servlet, model and view layers. The JavaRequest extends from the 

contracted typed AbstractRequest (parent-child relationship) thus inheriting all 

implemented methods. While JavaRequest enjoys all the benefits from its parent,
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it has also been retrofitted to enable the processing of additional work. For example, 

JavaRequest implements the

j avax. servlet. http. HttpServletBindingListener Interface, which 

supplies a mechanism to allow an instance of the class to know when it is
i - ~ c

bound/unbound to an overall HttpSession.

5.2.2.5 JavaMultipartRequest

JavaMult ipartRequest performs exactly the same functionality as its parent 

JavaRequest, however since the servlet / JSP API does not provide any rich 

mechanism to deal with multipart HTTP requests, that is, HTTP file form uploading.

It was best thought that this functionality should be built into the framework to 

prevent / lessen the workload on developers when developing web page that contain 

file uploads.

5.2.2.6 Accommodation of other technologies

While the new implementation only demonstrates two fully functional request classes, 

we cannot rule out the building of other classes. For example, CGIRequest (which 

could model Perl / CGI variables), PHPRequest (that could model a PHP request 

script), VBRequest (That could deal with a Visual Basic application front end), or 

evenDotNetRequest (see Figure 5.4)
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Figure 5.4: Multiple technologies diagram

5.2.3 Summary
To summarise, the following is an outline on how the new implementation will 

behave in the controller layer (see Figure 5.5):

1. Once the thin controller servlet is started on an application server, it will load 

all system properties into the application by reading from a designated 

property file;

1.1. After the loading of system properties, the servlet will continue 

initialisation by instantiating objects of type Dispatcher, 
RequestFactory and RenderingStrategy;

2. A client’s browser submits a HTTP GET / POST request to the controller 

layer;

3. The controller layer will delegate responsibility of separating the HTTP 

protocol from the request to the RequestFactory class by invoking the 

RequestFactory’s createRequest () method, which in turn creates a
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polymorphic request object of type AbstractRequest (a full explanation 

can be found in section 5.2.2);

4. The controller layer will delegate responsibility of business logic ‘model ’

processing of the newly created request object to the Dispatcher class by 

invoking the Dispatcher’s dispatch ( ) method (a full' expjanation can 

be found in section 5.3); L — -

5. After the model has executed its business logic, the controller layer will 

delegate responsibility of rendering the HTML page to the appropriate 

RenderingStrategy class by invoking the servlet’s internal 

decideRenderingStrategyAndRenderPage ( ) method (a full explanation can be 

found in section 5.4).

.1) Initalisatjtìn

RequestFactory

(3) c r e a t e  r e q u e

Dispatcher

(4) dispatch request

(2) send Http request '■■Java_DispatcherServlet-'

« c r e a t e »

[RenderingStrategy] '
\  J  (5) render the page

Figure 5.5: Controller layer outline behaviour diagram
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5.3 Model
As identified in section 5.2.1, the controller thin servlet layer will delegate the 

business logic i model’ processing of a newly created polymorphic request object (that 

is, of type AbstractRequest) to a Dispatcher pattern class [Ball, 2001] [Fowler,

2003]. Therefore the Dispatcher class will need to fulfill the following to satisfy 

the goals of the model layer (a full explanation can be found in section 4.2.2):

a) The model layer will be completely independent of the HTTP protocol; which 

is already implemented as the model layer is receiving an request object 

devoid of the HTTP protocol (AbstractRequest);

b) The model will represent a UML Use Case basic and alternative flows;

c) The business logic ‘model’ processing can be run as a command-line 

application.

5.3.1 Composition of Model

As a natural consequence of separating the HTTP protocol from the Java request, the 

Dispatcher instance method dispatch () will take an input parameter of base 

type AbstractRequest. The Dispatcher will dispatch / forward the 

polymorphic AbstractRequest to an appropriate model domain object of type 

RequestHandler for processing.

The RequestHandler class is an abstraction of the main model domain and in turn 

provides an abstract implementation to handle the request object appropriately. Page 

specific UML use cases would inherit from RequestHandler and override its 

abstract implementation.

To overcome the JSP performance problem of connectivity to external resources, (for 

example, a database - a full explanation can be found in section 3.3.1) it was analysed 

that a database pooling component could be introduced to maximise the speed the 

business logic processing.
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Since all associated classes have been identified to fulfill the characteristics of the 

improved model layer, a composite view is shown (see Figure 5.6).

Figure 5.6: UML class diagram of the Model layer 

5.3.2 Dispatcher

The D is p a tc h e r  class main responsibilities are as follows:

a) Initialise all external resources, such as database connection pooling;

b) Dispatch polymorphic request objects of type AbstractRequest (for 

example, JavaRequest and JavaMult iPartRequest) to model 

domain objects for business logic processing;

c) The Dispatcher is completely free (not coupled) to a servlet / JSP 

environment as it is not tied to the HTTP protocol. Therefore Apache JUnit 

test suites can be built to test the functionality of the system.

However how does the Dispatcher know which model domain object (that is, of type 

RequestHandler) to delegate the business logic processing to? The answer of this 

question is that the Dispatcher class will first call getAction () method on the 

polymorphic request object and then through the use of reflection create a

Page 87



Chapter 5 Implementation

polymorphic model domain object instance (that is, of type R e q u e s tH a n d le r )  

[Roschelle, 2000].

To fulfill the responsibilities the following Dispatcher methods have been 

identified:

dispatch(AbstractRequest request)
Delegate the incoming AbstractRequest to the correct model domain (that is, of 

type RequestHandler) for business logic processing. This is done by invoking the 

getAct ion () method on AbstractRequest, which gathers the Action name- 

value string. Through the use of reflection, this Action string is subsequently used to 

create an instance of base type RequestHandler.

getRequestHandler(String action)
This method uses reflection to create a the specific type of RequestHandler 
[Cymerman, 1999] [Roschelle, 2000].

5.3.3 RequestHandler

This is an abstract base class that developers will subclass to implement their own 

model layer specific functionality (which follows a UML use case). For example, if  a 

system has a login page then it must also have a subclass of RequestHandler 
called LoginHandler, which in turn implements specific page business logic 

functionality.

This class is modelled on the Command design pattern [Gamma et al, 1994]. This 

design is well suited when endeavouring to break the normal JSP technology coupling 

between business logic and page scripting, that is, the relationship between Java beans 

and JSP script. The use of JavaBeans in JSP technology does not provide a clear 

distinction between what is business logic and page rendering data. Their primary use 

is maintaining the behaviour state changes to their class attributes / properties (that is, 

getter and setter methods), and not conducting page specific business logic that many 

miss sighted programmers implement.
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However through use of the improved design implementation, the 

RequestHandler class focuses developers on conducting model business logic in 

a black box, which will aid developers in testing, performance and intuitive 

understanding of particular page model domain.

The responsibilities of the RequestHandler are as follows:

a) Execute business model logic, that is, each sub class of RequestHandler is 

responsible for the execution of a discrete use case (for example, find 

customer, update customer, get summary, etc);

b) Call out to JDBC Connections or any other external date source to 

collect/update data;

c) Decide the next page name that will determine the next appropriate view / 

page;

d) Add any persistent or transient objects to the polymorphic request object so 

that the view layer can retrieve data to use in rendering content.

To satisfy the responsibilities of R e q u e s tH a n d le r ,  the following method calls 

have been identified:

execute(AbstractRequest request)
Each page subclass of must RequestHandler override the following method, with 

an implementation of specific model / business logic processing. For example, a 

SearchForProductHandler class would execute the following:

a) Retrieve the entered search string parameter from the object of type 

AbstractRequest. For example, “DVD = Lord Of the Rings”;

b) Retrieve a JDBC j ava . sql. Connection;
c) Build the SQL query string to search the database with;

d) Search the database and build a product entity object. For example, instantiate 

a Product class;
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e) Store the Product instance as a transient object in AbstractRequest for 

later use in page rendering.

preExecute(AbstractRequest request)
This method is called before execute (), if  the developer wishes then each subclass 

can choose to override this method . An example use of this method would be to 

implement retrieval of a commonly used CORBA service;

postExecute(AbstractRequest request)
This method is called after execute (), if  the developer wishes then each subclass 

can choose to override this method. An example use of this method would be to 

implement a reassignment of a commonly used CORBA service.

5.3.4 Summary

To summarise, the following is an outline on how the new implementation behaves in 

the model layer (see Figure 5.7):

1) In improved implementation, when a client’s browser submits a HTTP GET 

/ POST request to the controller layer, the new implementation will create a 

polymorphic object of base type AbstractRequest;

2) The controller layer will delegate responsibility of business logic ‘ model ’ 

processing of the newly created request object to the Dispatcher class by 

invoking the Dispatcher’s dispatch () method;

3) The Dispatcher will now ask the object of base type 

AbstractRequest for its Action parameter (HTTP name-value string 

pair, for example, Action=Login) by invoking the request object’s 

getActionO method;
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4) Once the Action parameter has been retrieved, the Dispatcher invokes an 

internal method getRequestHandler () to fetch the appropriate subclass

of Request Handler.

5) The Dispatcher will delegate responsibility of business logic ‘model ’ 

processing of the request object to the subclass of RequestHandler class 

by invoking the subclass’s execute () method. As a result, all specific

Figure 5.7: Model layer outline behaviour diagram

5.4 View
As identified in section 5.2.1, the controller thin servlet layer will delegate the results 

of business logic ‘model’ processing (contained in AbstractRequest) to a 

specific rendering approach. Therefore the RenderingStrategy class will need 

to promote the following to satisfy the goals of the view layer (a full explanation can 

be found in section 4.2.2):
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a) The new implementation will support multiple rendering approaches, 

which allows programmers a variety of choice in how they wish to present 

their data;

b) Separation of development roles, for example one developer can work on 

the model layer while another works on the view. Therefore promoting 

loose coupling between layers.

5.4.1 Composition of View

It was decided that the controller servlet will decide the type of rendering approach 

and forward the polymorphic AbstractRequest (which contains results of the 

model layer processing) to an appropriate view domain object of base type 

RenderingStrategy for content presentation.

The RenderingStrategy class is an abstraction of the view domain and in turn 

provides an abstract implementation to present the request object appropriately. More 

specific presentation approaches (for example, JSP or XSLT) would inherit from 

RenderingStrategy and override its abstract implementation.

Since all associated classes have been identified to fulfill the characteristics of the 

improved view layer, a composite view is shown (see Figure 5.8).

Figure 5.8: UML class diagram of the View layer
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5.4.2 RenderingStrategy

This is an abstract base class that developers will subclass to implement their own 

view layer rendering functionality. For example, if  a system decides to handle JSP 

technology then it must implement JSP_RenderingStrategy (which is a 

subclass of RenderingStrategy), which in turn implements JSP specific 

rendering functionality.

The overall responsibilities of the RenderingStrategy are as follows:

a) Provide an abstract implementation for presenting the results of the model layer;

b) Encode submitted servlet URL. This is a necessary step in the event that session 

tracking is done via URL rewriting (That is, URL rewriting occurs when a 

session created within a browser that has cookies turned off);

c) Retrieve a fully quantified submitted URL.

To fulfill the responsibilities of RenderingStrategy, the following method calls 

were identified.

renderPage()
An abstract method that implies rendering of a HTML page. All subclasses of 

RenderingStrategy must implement the method so they can render the page in 

their unique way. For example, a class of type JSP_RenderingStrategy would 

implement the method to handle JSP technology presentation;

encodeServletUrl()
Handle encoding URLs in the case of URL rewriting; 

getServletURL()
Build a fully quantified URL that is made up of the following.

Get the scheme, which can be HTTP, HTTPS or FTP;

Get the hostname (eg) www.yahoo.com;

Get the path to the servlet;

Get the path after servlet and get the query string.
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5.4.3 JSP_RenderingStrategy

Using the results of the model layer, this class provides an implementation for 

presenting JSP. The main responsibility of the class is to redirect the controller flow 

of control towards a particular JSP.

Therefore to fulfill the responsibilities of JSP_RenderingStrategy, the 

following method call were identified:

renderPage()
An implementation of its parent class (RenderingStrategy) abstract method. A 

JSP must be rendered in a particular fashion; the following describes the events that 

occur to satisfy the rendered JSP.

a) Firstly, add an object of type AbstractRequest to the HttpSession;
b) Retrieve the relative address URL to the JSP page. For example, /login.jsp;

c) Encode the relative address URL. For example, if there is a white space in the 

URL, encoding will change this to %20;

d) j avax. servlet. http . HttpServletResponse is asked to send a 

redirect to the page.

5.4.4 MSP_RenderingStrategy

This class provides a mechanism to support the rendering of a new Java based 

dynamic page technology called MagnumServer Pages (MSP) (a full explanation can 

be found in section 5.5). The main responsibility of the class is to build the 

appropriate dynamic HTML content string by using the results of the model layer and 

then output the string to a client’s browser. The class also provides functionality to 

compress the HTML content string before it is returned back to the browser, therefore 

solving the JSP performance limitation of no provision for compression of HTML 

content (a full explanation can be found in section 3.3.4).

Therefore to fulfill the responsibilities of MSP_RenderingStrategy, the 

following method calls were implemented:
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renderPage()
An implementation of its parent class (RenderingStrategy) abstract method.

A MSP must be rendered in a particular fashion; the following describes the events 

that occur to satisfy the rendering of MSP.

a) Firstly, add an object of type AbstractRequest to the HttpSession;
b) Encode the fully quantified servlet URL address;

c) Combined the results of the request object with the MSP page to create a 

HTML String;

d) Compress the HTML string and write it to the web

compressPageAndWrite()
Apply GZIP compression to the HTML string before writing it back to the browser;

renderPageAsString(AbstractRequest request)
Build an HTML string to be render by combining dynamic elements from the request 

object (that is, of subtype AbstractRequest) with a MSP.

5.4.5 Summary

To summarise, the following is an outline on how the new implementation behaves in 

the view layer (see Figure 5.9):

1) In the new implementation, when a client’s browser submits a HTTP GET / 

POST request to the controller layer, the improved implementation will create 

a polymorphic object of base type AbstractRequest;

2) The controller layer will delegate responsibility of business logic ‘model ’ 

processing of the newly created request object to the Dispatcher class by 

invoking the Dispatcher’s dispatch () method;

3) The controller layer will invoke its private 

decideRenderingStrategyAndRenderPage () method, which in 

turn asks the object of base type AbstractRequest for its Type parameter
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(HTTP name-value string pair, for example, Type=JSP) by invoking the 

request object’s getTYPE () method;

4) Once the Type parameter has been retrieved, the controller layer will delegate 

rendering responsibilities to the correct subclass of RenderingStrategy 
by invoking the RenderingStrategy’s renderPage () method; the 

subclass will then present the page in its own specific manner.

We have discussed in detail the implementation of the model, view and controller 

layers of the new improved architecture. Therefore we can show an overall system 

diagram in Figure 5.10.

Send HTTP Request
CU> flic Servlet

/  A

Figure 5.9: View layer outline behaviour diagram
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Figure 5.10: Overall system class diagram
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5.5 M agnum S erver Pages

Section 4.3.2 and 4.3.3 has proposed that there is a need for a new Java based 

dynamic web page technology called MSP and its responsibilities are as follows:

Provide an alternative to the JSP dependency on the HTTP protocol and the Java 

servlet API, which in turn provides the following solutions to some of JSP limitations:

a) Servlet thread spawning will be eliminated when using SSI, as MSP will only 

create additional objects in the JVM (a full explanation can be found in section

3.3.2);

b) In terms of testability, debugging an application’s core business logic can now 

be performed without the JSP problems of trying to mimic the HTTP protocol, 

web browsers and web containers (a full explanation can be found in section 

3.4);

c) In terms of testability, MSP parses its source files into native Java classes; 

therefore all compilation errors are in the form of native Java API exceptions. 

Thus eliminating JSP problematic native error handling (a full explanation can 

be found in section 3.4);

d) Again since MSP parses its source files into native Java classes and compiles 

them using the JVM. The JVM is more inclined to discover problematic 

runtime errors, identify warnings and depreciated methods oppose to the JSP 

compiler (a full explanation can be found in section 3.4);

e) Provide an alternative to the JSP optional dependency on JavaBean 

technology, which in turns solves one of JSP fundamental security problems (a 

full explanation can be found in section 3.5.1.3);

f) Provide an alternative to the JSP engine for page execution, MSP is solely 

reliant on the JVM for it execution therefore it will be less susceptible to JSP
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application server vulnerabilities (a full explanation can be found in section

3.5.2).

5.5.1 MSP Scripting Language

MSP offers developers the ability to use its new Scripting Language (SL) because it is 

a new Java based dynamic web page technology. MSP SL is JSP syntax like language 

that allows developers to use HTML comments to add their dynamic syntax (Java 

syntax) instead of JSP scriptlet. Just like JSP there are three types of scripting 

elements: (i) code based scriptlet (used to execute a block of code); (ii) expression 

based scriptlet (an evaluated statement that is printed in the HTML) and (iii) 

declaration based scriptlet (used for declaring variables and methods). However 

unlike JSP, MSP SL does not provide implicit page objects (for example, request, 

session and out) or JSP Bean tags as it is not dependent on the servlet / JSP API. As 

mentioned previously MSP SL is in fact embedded HTML comments; therefore 

graphic designers can clearly view a MSP file in WYSIWYG editors without breaking 

the intuitive design of the surrounding static HTML.

The following are the MSP SL tags that can used to develop Java¿web pages that are 

not dependent on the JSP / servlet API. j  1 *£7 *.>

Package tag

Declaration based scriptlet element that allows developers to specify what package 

the MSP file belongs to after page compilation (see Table 5.2).

MSP JSP

Syntax <!—$ package <Java Package N am e> —> N/A

Example <!— $ package com. the sis. pages — > N/A

Table 5.2: Contrast between MSP and JSP package tag syntax
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Import tag

Declaration based scriptlet element that allows developers to import necessary Java 

classes into their MSP page (see Table 5.3).

M S P JS P

Syntax <!—S import <Java Package Name> --> <% @  page import=”<Tava Package Nam e>” %>

Exam ple <!— S import java, util,* — > <%@ page import=”java.util. *” %>

Table 5.3: Contrast between MSP and JSP import tag syntax

Include tag

Declaration tag that provides the developer with the ability to make SSI statements in 

their MSP page. It is used to substitute additional text/html and/or code into the main 

body of their page. For example, developers can chop up their pages into significant 

sections (For example, header, footer, main body etc) so that if  a change is needed 

throughout the website then only one file needs to be change as opposed to making 

changes to each page (see Table 5.4).

MSP JSP

Syntax <!— $ incl <M SP Page Name> — > <% @  include file—’<FileName>” %>

Example <!—$ incl CopyRight —> <% @  include file—1’CopyRight.jsp” % >

Table 5.4: Contrast between MSP and JSP include tag syntax

Expression tag

Expression Tag evaluates the contents of the referred value and renders the value as a 

HTML string on the MSP Page. Only values of Java primitive types and/or of type 

j a v a  . la n g  . S t r i n g  can be evaluated otherwise an exception will be thrown (see 

Table 5.5).

MSP JSP

Syntax <!— S eval Expression to evaluate> --> < % =  <expression to evaluate> %>

Example <!—$ eval firstiNTame —> < % =  firstName %>

Table 5.5: Contrast between MSP and JSP expression tag syntax
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Code tag

The code tag gives programmers the ability to insert java code snippets/fragments into 

their MSP Page. Typically the code tag is used to perform looping, boolean logic

values and/or declare values in the page (see Table 5.6).

MSP JÌSP

Syntax <!—$ code <insert code here> —> <% <insert code here> %>

Example <!—S code for( int i=0; i < 10; i++) { )  — > <%  for( int i=0; i < 10; i++) {} %>

Table 5.6: Contrast between MSP and JSP code tag syntax

For example, the following tags are listed in Figure 5.11.

1) Package tag;

2) Import tag;

3) Code tag (which initialises j ava . util. ArrayList with four strings);

4) Code tag (iteration of the j  ava . u t  i 1 . ArrayLi s  t) ;

5) Expression tag (evaluate each string)

6) Code tag (for loop close brace)
'<!
!<!
|<!

ArrayList names = new ArrayList ();
naine s. add ( naine 1 ) ;
names . add (naineZ ) ;
names.add(name3) ;
names.add(name 4);

■<HTML>
¡■CHEADX/ H£AD>
;<body>
-ttable boccier=l cellspacing=Q cellpadding=0 width=150> 
<rr>

<Cd w id th = 1 5 0  va lig n = to p > < B > N am e o f  P e rso n < /B >
</td>

</te>
k !— 5 code for[int i=0; i < names. size () ; i++)

f
String nameStr = (String)names.get(i) ;

\<tr> (?)
I <td rjidth=150 valign=top>< !— i? eval naitieStr — ><7td> 
</ tr> 

k!— $ code >
K/table>
;</body>
[</ HTIIL>

Figure 5.11 : Example MSP source file (. msp)

-i package com. thesis.pages — > 
-? import java.ut.il.* — >
"? code (3)
String lismiel = "Patrick"; 
String narne2 = "James";
String narne3 = "Michael"; 
String name4 = "Matthew";
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5.5.2 MSP significant classes

The MSP language is built from framework of interconnected classes which represent 

not only the tag symbols themselves but how the MSP source files (. msp) are parsed

Once a MSP source file (. msp) is compiled into a Java source file (. j  ava), it 
realises the contractual method createDocument ( ) from the CompiledPage 
interface.

Once MSP_RenderingStrategy invokes its implementation of renderPage () 
method, it calls this runtime document builder class buildDocument () method to 

return the dynamic content string. The buildDocument () method first instantiates 

(through reflection) an compiled MSP class and then invokes the MSP class 

createDocument () method to build the dynamic content string.

5.5.2.3 PageCompiler

MSP files (. msp) contains both static and dynamic tags (that is, HTML and MSP 

specific tags respectively), therefore once a page has been noted for page compilation. 

The PageCompiler class will first parse the . msp file into a collection of tags 

(that is, tokenising the file into static and dynamic blocks) and then construct a single 

. j ava source file by invoking the following routine (see Figure 5.12).

Create the new Java class definition by writing the following to a . j  a v a  file:

1) The package location of the class (from parsing a MSP package tag);

2) The import statements of the class (from parsing a MSP import tag);

3) The class declaration (by retrieving the . msp filename and appending

to the start file);

4) Realise the CompiledPage interface;

5) Create a class attribute of all static tags called tags. This is accomplished by 

sequentially looping through the collection of tags (both static and dynamic) 

and building an array of static tags only.

to Java classes and then how these classes output the dynamic content string.

5.5.2.1 CompiledPage

5.5.2.2 DocumentBuilder
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6) Create the new Java class method createDocument ( ) (implemented from 

the CompiledPage interface) by writing the following to a .java file:

a. Create the method declaration;

b. Create a local variable of type j av a  . ut il. StringBuf f  er (In 

production, this buffer will hold the contents o f the dynamic HTML 

presentation before converting it to a string);

c. Sequentially append static or MSP expression tags to the buffer, while 

intermixing Java code snippets (that is, MSP code tags).

Close the Java class by writing a brace to the . j  a v a  file.

*■ Thia .is a «rìass*/ esse, s-fcetsis . gagea1©
— » - tt1 Q

®  ©,c »latie Scrinai} V—/

inport sow - wiacgey .M sp . rendering. 

iHfport Java

pias»Mc eaue* H3P . mac gg y « * no * Coiwp i (

privale sì dtic tCugs *
CMS * n«f StriBtrlUJi [5 J
fcagat-l] » taiga £31 *
t^agsfSJ « KTBL>\ n < H £ < / H£AB>\ n<.body>\rs< t <sfe 1 e bord****! cel ispinfcing-O ccli^ddiniT'O widt-b-*î50>\n <tK>\t 
t&ffsro “ "Sn <zü width“ 150 vAliaireciit»-”)
SQgst̂ -j = *<-1td>\rt
tagsf.JU] *  'Tî n</t,able>’(3ic/toady>^B</HTflL^nr*;

Î

îîaiidle a requis ©
public String t?reait«I>omiiBeKtfc-OHuirar^eyiJâsp .reiïdcrlTig^RciidereifoleÜfciJisct; request) throw* Exceptiez { 

Stt iSQBttffet btifi - new S£KïngBuffee-0*

butf .fippeitdf tags[13 Ji 

bui:t .append| taço13) î:

3t€l»g nawei
String naïfteâ 

String nsnnc4

”?«««* OC1 •Vanses? 
*'Hichael "Hasthe®**?

küK F 
£ l " t  ( 8

Static Tags 

Dynamic Tags

Accentiss names - new A&K«yx»iacO* 
aswga* add laaw^Sl x

Figure 5.12: Example extract from MSP Java class file 

(This is the result of parsing the MSP source file from Figure 5.11)
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5.5.2.4 Tag

An abstract class that represents a general purpose tag (both static and dynamic). This 

class presents a series of boolean “is<NameOfTag> ( / ’methods (for example, 

isStat ic () method) that can be uniquely overridden by each MSP tag subclass, so 

that the subclass can be uniquely distinguishable. The Tag class also offers static 

methods for creating both static and dynamic tags.

5.5.2.5 PackageDirective

A subclass of Tag class that represents a MSP package tag (that is, < ! - - $ 

package <Java Package Name> - -> ). Overrides both 

isPackageDirective () (to return true) and getDirectiveCode () (which 

returns the proper package string) methods from the abstract Tag class.

5.5.2.6 ImportDirective

A subclass of Tag class that represents a MSP import tag (that is, < ! - - $ import 
<Java Package Name> - -> ). Overrides both isImportDirective () (to 

return true) and getDirect iveCode () (which returns the proper import string) 

methods from the abstract Tag class.

5.5.2.7 InclTag

A subclass of Tag class that represents a MSP include tag (that is, < ! - - $ incl 
<MSP Page Name> --> ). Overrides both is Incl () (to return true) and 

getRenderingCode () (which returns a string signfying the creation of a new 

instance of DocumentBuilder and the invocation of the buildDocument () 
method) methods from the abstract Tag class.

5.5.2.8 EvalTag

A subclass of Tag class that represents a MSP expression tag (that is, < ! - - $ eval 
<Expression to evaluate> --> ). Overrides getRenderingCode () 
(which returns a string value of the expression) method from the abstract Tag class.
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5.5.2.9 CodeTag

A subclass of Tag class that represents a MSP expression tag (that is, < ! - - $ co d e  

< i n s e r t  co d e  h e re >  Overrides g e tR e n d e r in g C o d e  () (which

returns a string of the code) method from the abstract Tag class.

5.5.2.10 StaticTag

A subclass of Tag class that represents a collection of HTML static tags.

Overrides both i s S t a t i c  () (to return true) and g e tR e n d e r in g C o d e  ()

(which returns the HTML block string) methods from the abstract Tag class.

Also this class provides a conversion of any of the MSP files newline and tab 

characters to a Java string representation.

5.5.3 Summary

To summarise, MSP provides a range of classes and scripting tags to overcome the 

limitations of JSP. These tags and classes provide developers with the means to gain 

independence from the HTTP protocol / JSP engine, reduce application bugs through 

the intuitive testing and increased security.
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6 Evaluation

6.1 Introduction

This section discusses performance benchmarking by comparing and contrasting the 

new MSP architecture against the following Java related web architectures:

a) Apache Struts

The most commonly used Java framework in today’s software houses. Struts 

is a MVC architecture that uses a combination of servlets, JSP’s and JSP

custom tags technologies [Apache, 2004] (see Appendix B); *
j -̂4;, }_ ¡j

 ̂ ■ -
b) Apache Tapestry

Tapestry is Java component object model, which uses a high level API to 

develop web applications with the minimal amount of code [Apache, 2004b] 

(see Appendix B);

c) Page-centric JSP

Please refer to section 2.5 for further explanation.

Since the new architecture can render pages using both JSP and MSP (see section 5.5) 

technologies, it was decided that each technology within the new architecture should 

be individually benchmarked. Therefore, five performance benchmarks were 

performed.

6.2 System configuration

Before conducting each individual benchmark, the operating system was rebooted and 

all redundant applications and background processes were shutdown. The following 

system configuration given in Table 6.1 was used to conduct the benchmarks. The 

benchmarking client was Apache’s JMeter 2.0.1, which is an application to load test 

functional behaviour and measure performance [Apache, 2004c], JMeter sent multiple 

HTTP requests to a local application server of type Apache Tomcat 4.1 and 

subsequently retrieved the corresponding HTTP responses.
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System type Version
PC Type Dell Dimension 4100
CPU Intel Pentium 3 93 3 Mhz
RAM 512MB
SDRAM 133Mhz
Hard Disk 20GB IDE Maxtor 32049H2
Operating system Windows XP Professional SP 1
JVM j2sdk 1.4.1 01
Java IDE WebSphere Studio Application Developer 5.1
Application server Apache Tomcat 4.1
Application client Apache JMeter 2.0.1
Database MySQL 3.23.55
JDBC Driver MySQL Connector/J 2.0.14

Table 6.1: System configuration for benchmarking

6.3 Description of benchmarks

In total, two benchmark tests were performed on each of the five competing Java 

architectures. In the first benchmark, the JMeter client submitted a single HTTP 

request 300 times to measure performance under intense load. With the second 

benchmark, again the JMeter client submitted a single HTTP request 30 times at 

intervals of two seconds to measure performance under high volumes.

Each architectural design used a common dynamic web page throughout testing. The 

page is a simple table of data (see Figure 6.1). The data was contained in MySQL 

database, which was access via a JDBC driver. To be as unbiased as possible, it was 

decided to share as many common Java components between architectural 

benchmark. That is, only the specific architectural execution (not the business logic) 

and page rendering were different for each benchmark.
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Figure 6.1: Example of common benchmark web page

Throughout the benchmarking process, each one of the architectures was analysed for 

average response time, thread rate per second, standard deviation of response times 

and finally a statistical sweep (that is, a comparison of average response time, median 

and standard deviation). After the results were analysed, the architectures were scored 

between one and five (that is, one being the lowest and five the highest) and then the 

overall results were collated to determine the architecture with the best performance.

6.4 Results of 1 thread executed 300 times

Upon analysing the average response time of requesting 300 top spider pages across 

the architectures (see Appendix C), it was declared that both MSP and page-centric 

JSP had an excellent average response time (see Figure 6.2).

Figure 6.2: Column chart of average response times for first benchmark
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When the thread rate per second was examined, It was discovered that MSP and page- 

centric JSP both performed the best. The Apache Struts framework pressed hard, 

however there was a noticeable drop off between the Tapestry framework and the 

improved architecture JSP (see Figure 6.3).

Figure 6.3: Column chart of thread rates for the first benchmark

Comparing the standard deviation of response times indicated that MSP won again, 

however it is interesting to note that Apache Struts performed better than expected. 

This can be attributed to the fact that Struts had the second fastest maximum response 

time (see Figure 6.4).

Figure 6.4: Column chart of standard deviations for the first benchmark
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The combination of the average, standard deviation and median response times on the 

statistical chart displays very important performance information (see Figure 6.5).

That is, the architecture that has the closest of the three results (average, standard 

deviation and median response times) means that the architecture in question is 

responding in a consistent and cohesive manner. Any dramatic changes between the 

three results means that the architecture in question is experiencing thread locking (for 

example, database pooling). Therefore the trio of MSP, Struts and page-centric JSP 

have performed in a consistent manner while Tapestry and the framework JSP could 

be experiencing performance problems (for example, XML processing and database 

pooling).

Figure 6.5: Line chart of statistical information for the first benchmark

6.5 Results for 1 thread executed 30 times between 2 

second intervals

Upon analysing the average response time of requesting 30 top spider pages in two 

second intervals across the architectures (see Appendix D), it was declared that 

framework JSP was the winner with both MSP and page-centric JSP coming a close 

second and third (see Figure 6.6).
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Figure 6.6: Column chart o f average response times for the second benchmark

When the thread rate per second results were collated (see Figure 6.7), it was 

discovered that both the improved framework JSP and MSP had processed their 

HTTP requests significantly quicker than their competitors. It was assumed that the 

other architectures degraded due to architectural concerns, such as Apache Struts 

using a cache instance of org . apache . struts . act ion. Act ion class, which 

can cause thread locking issues on the class’s perform method, Tapestry’s heavy 

use of XML processing and page-centric JSP parsed and compiled servlet dealing 

with database processes such as retrieval and pooling processes while also performing 

massive amounts of object instantiation.

Thread Rate per second

VJT3raa>

a>nE3

25
20

15
10
5
0

- 2 — 20:9-

I

15.9 -15.4

I I

I Rate

.9?

Figure 6.7: Column chart of thread rates for the second benchmark

It is interesting to note the both the framework’s rendering strategies (that is, JSP and 

MSP) performed significantly better than its competitors. Both strategies had smaller
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maximum response times, which again signifies threading concerns with the other 

architectures involved in the benchmark (see Figure 6.8).
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Figure 6.8: Column chart of standard deviations for the second benchmark

On closer inspection of the statistical results, It was discovered that framework JSP, 

MSP and Tapestry had performed well (the average, standard deviation and median 

response times are close together) however Tapestry was significantly slower than the 

framework JSP and MSP. Struts and page-centric JSP have an erratic spread of 

results, which again points to these architectures experiencing performance 

degradation due to thread problems (see Figure 6.9).

Statistics

Figure 6.9: Line chart of statistical information for the second benchmark
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6.6 Conclusions

On inspecting the collated score table from both benchmarks (see Table 6.2), it was 

surprisingly to find that the new MSP design using JSP to serve content had produced 

the lowest results for first benchmark (1 thread executed 300 times). However it had 

out performed the majority of other architectures in second benchmark (1 thread 

executed 30 times between 2 second intervals). It was judged that the first benchmark 

rogue results were due to performance degradation, which in argument was cause by 

the parsing and compilation of JSP servlet class upon the first HTTP request or 

system processes / resources not adequately being freed up.

Architecture A TR SD S A TR SD S Totals
r  “ m m * (BM 1) (BM 1) H I (BM 2J (BM 2) IBM 2 ) (BM 2)
Framework (JSP) 
Framework (MSP) 

Struts 
Tapestry 

PageCentric (JSP)

1 1 1 1 5 4 4 4 21
5 5 5 5 3 5 5 5 38
3 3 4 4 2 1 2 2 21
2 2 2 2 1 3 3 3 18
5 4 3 3 4 2 1 1 23

BM = Benchmark 
A = Average Response Time 
TR = Thread Rate 
SD = Standard Deviation 
S = Statistics

Table 6.2: Combined benchmark score card table

The new MSP design using its MSP language to serve content had the highest 

performance rating across both benchmarks. In argument this was due to a number of 

factors such as, no dependence on JavaBean introspection, XML processing, no 

parsing and compiling of JSP’s and minimal coupling on the servlet API.

Even though the Apache Struts framework performed well in the first benchmark 

there was a noticeable drop off while performing the second. The problems could be 

attributed to the increase in JavaBean introspection calls and XML processing of its 

custom tag libraries. Also as argument, the class of type

o r g . a p a c h e  . s t r u t s  . a c t  io n  .A c t io n  could be a factor as it is cached instead 

of reinitialised. Therefore while the class executes at an increased speed, it could 

adversely cause a thread locking with the database pooling component.
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In relation to Apache Tapestry, which in one’s opinion offers the best and most 

simplistic approach to solving the problem of separating of development roles (that is, 

graphic designer should only work on the web page while the programmer should 

work elsewhere on the background logic). It is clear that Tapestry under achieved in 

all categories; it can be argued that the reason for this is that there is a significant 

increase in Java reflection, introspection, XML processing and object creation in its 

architecture (see Appendix B)

It was surprising at how well page-centric JSP performed during the benchmarking. 

The results suggest that even with the problems of page-centric design (that is, 

maintainability and intuitiveness), it still performs better than some structured designs 

because page-centric design has less structured components to manage, which 

reduces JVM object creation and processing (for example, XML processing). It also 

has to be factored that the page-centric JSP approach has to parse and compile its 

servlet class upon the first HTTP request.

During the evaluation of the new architecture against competing frameworks, a 

number of software gaps became apparent regarding the new design. These were the 

following:

a) Lack of support of user friendly URLs

Compared to the Apache Struts and Tapestry frameworks, the new MSP 

architecture does not support friendly URLs. The reason for this is that each 

HTTP request for a page must define two visible name-value parameters on a 

URL. That is, the parameters Action and Type, which define a subclass of 

R e q u e s tH a n d le r  to instantiate / execute and which rendering strategy to 

use respectively.

b) Clearer separation of development roles.

In retrospect does the new framework with its MSP technology separate the 

role of developer from graphic / web designer? The answer for this is both yes 

and no, as it can be argued that there is no longer a reliance on JSP scriptlet or 

JavaBean technology as the MSP scripting language is just ordinary HTML 

comments. However the argument against is that the MSP scripting language
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is too similar to native Java code therefore excluding most graphic / web 

designers.

c) Better error reporting.

Currently the new MSP design only catches exceptions in a generic error log. 

Shouldn’t a developer have a feature to see exceptions directly on a client’s 

web page? Apache Tapestry is excellent at providing a solution to this gap 

(that is, a detailed message about the error, application server and logic 

processor is displayed on the specific page where the error occurred).

Scorecard o f Tests

Framework 
(JSP) 
Framework 
(MSP)
Struts

Tapestry

—* — PageCentric 
(JSP)

A TR SD S A TR SD S 

Individual Tests

Figure 6.3: Line chart of scorecard results for combined benchmarks

Page 115



Chapter 7 Conclusion

7 Conclusion T S v
jf ,
it ?• •r -2 *

7.1 Introduction

The implementation and benchmarking of the new MSP architecture provides proof 

that the new design does indeed fulfil its main objectives:

a) The new architecture provides a better design, which enables programmers to 

use a high level API that is devoid of the HTTP protocol. This API allows for 

faster, cleaner and better development of dynamic web pages.

b) The new architecture has outperformed all other competitors in terms of speed 

and scalability (see Figure 7.1).

Scorecard o f Tests

Individual Tests

Framework
(JSP)
Framework
(MSP)
Struts

•Tapestry

—* — PageCentric 
(JSP)

Figure 7.1: Line chart of scorecard results for combined benchmarks

c) Since the new MSP design reduces coupling with the HTTP protocol, its 

model components can be run as separate entities from the command line. 

Hence the new design can be easily used within a testing framework such as 

Apache JUnit, which will provide a solution to the problems with testing Java 

web application frameworks.

d) As outlined in section 3.5, JavaBeans or servlets have security holes 

associated to their technology. Since the MSP does not use any of these 

technologies, it can offer a better all round security solution. Also remember
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the physical MSP page doesn’t reside on the application server, only its 

representation as a standard Java class.

e) The new design intensively uses design patterns to decouple the model, view 

and controller layers to provide reusable components, which seamlessly fit 

into a ‘true’ MVC design.

f) Specific page logic can now be implemented in a more intuitive UML use case 

fashion.

To summarise, compared to other frameworks, the new improved architecture can be 

considered an overall success and the architecture holds high potential to offer the 

development community with the next generation of robust, scalable and maintainable 

Java Internet dynamic rendering solution (see Table 7.1).

Capabilities
Normal JSP Apache Struts Apache Tapestry Fram ework (MSP)

Automated testing No Yes No Yes
Presentation Speed High Normal /  High Slow High
Coupling High Normal / Low Very Low Low
Development process Easy Normal Complicated Easy
Maintenance High Normal Low Normal
Security Low Normal High Normal / High
Extensible Low Normal Normal High

Table 7.1: Framework capability comparison

7.2 Future w o rk

After performing benchmarking, it was concluded that additional functionality can be 

incorporated into the new design (see section 6.6), however it was considered that this 

functionality was outside the scope and timescale of the dissertation. The additional 

features should provide a starting point for future work, which would increase the 

functionality, usability and acceptance of the new framework as an all round viable 

web development system. The following are suggested enhancements:

a) Creation of a URL configuration file parser.

A centralised URL configuration file (which is XML based) could be
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developed to hold URL information. This file could be read into memory at 

application start up. Thus when a user supplies a particular friendly URL (that 

is, a parameter less URL) then a new component parser could do a lookup on 

the configuration file to find both Action and Type XML elements and supply 

them to the rest of the system.

b) MSP tag libraries

The MSP scripting language could be extended to use a new specific tag 

library. One where common actions are simplified and intuitive to web 

designers.

c) Client side error reporting

The new framework catches exceptions and writes them to a specific error log. 

However, there is an issue with presenting errors on the page that it occurred. 

That is, in development or production environments there should be feature, 

which presents the developer with what type of specific error has occurred on 

screen instead of logging onto the application server and reading through log 

files.

d) Extensible MSP

The MSP technology itself could be extended to create a hybrid technology. 

Imagine the following in the new design; instead of sending a subclass of 

Abstract Request to the view layer, the subclass could be decomposed 

into generic DNA (XML based) and then sent to a new rendering strategy.

This new rendering strategy could read in a flat web page template file that 

contained extensible MSP markup tags. These tags would be intuitive and 

more user friendly (for example, a expression tag could be the following < ! - 

-Element CustomerName- -> or a loop tag could be < ! - -Loop 
Customers From 1 to 10 - - >). Once the rendering strategy had both 

the generic XML DNA and the template then it could fuse the two together to 

create dynamic content. Also the generic XML DNA could be leverage so that 

it could be sent to some web service or even to an XSLT template.
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e) Dynamic property files

An additional feature of the new framework could be a component which 

monitors the application property files for dynamic updates. That is, the 

application server or even the web application would not need a restart once a 

property file was changed.

f) Plug and play filtering components

The development of an abstract filtering component could have added value to 

the framework. That is, subclasses of the filtering component could be placed 

in between the model, view and controller layers. These filters could provide 

mechanisms such as XML parsing, object serialisation (for persistence) or 

localisation. These plug and play features could then be dynamically bound 

internally for certain situations that arose throughout the system.

g) Additional rendering strategies

Update the new improved architecture with new rendering strategics such as 

CGI, PHP and .Net which would enable the core architecture to deployed in a 

JVM and used with non Java web technologies.
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Appendix A UML Diagrams
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Figure A.2: UML sequence diagram of request dispatching
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Figure A.4: UML sequence diagram of rendering page (MSP style)
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Figure A. 5: UML component diagram of overall framework
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Figure A. 10: UML component diagram of MSP rendering strategy

Figure A.51: UML component diagram of request factory
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Appendix B Alternative Java Architectures

B.1 Introduction
Although this dissertation’s new framework architecture solves many of JSP 

architecture problems, it is not the first innovative idea to be suggested. The following 

section reviews and discusses the most popular alternative Java based architectures to 

determine which JSP problems they solve and what advantages / disadvantages do 

they have as part of their solution.

B.2 Apache Struts framework
Struts is a open source technology framework written Java. It was created by Craig R. 

McClanahan and donated to the Apache Software Foundation in May 2000. The 

framework was constructed to combine Java Servlets, JSP’s and JSP Custom tags into 

a workable model view controller (MVC / Model 2) infrastructure [Apache, 2004] 

[Cavaness, 2002],

B.2.1 Components of Struts framework

The Struts framework provides five main components in which developers use to 

build web applications:

a) The controller servlet in the form of the ActionServlet class

(org. apache . struts . action .ActionServlet). This class takes 

incoming HTTP requests and delegates them to the RequestProcessor 
component for processing [Apache, 2004] [Cavaness, 2002];

b) A developer must write the model component that encapsulates all the 

particular business logic for a given action / execution of an HTTP request.

The model component must be a subclass of the Act ion class

(org. apache . struts . action .Action) and define a perform method 

[Apache, 2004] [Cavaness, 2002];
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c) A developer must write a form component (if needed) with maps directly to an 

HTTP form. The form component will encapsulate an HTTP post request to 

the ActionServlet. The form component must be a subclass of the

Act ionForm class (org. apache . struts . act ion. ActionForm) 
[Apache, 2004] [Cavaness, 2002];

d) The developer must write the view component (JSP page) to render the results 

of HTTP request [Apache, 2004];

e) The developer must configure the central struts XML file ( s t r u t  s - 
c o n f  i g . xml) that includes Action mappings to combine all above Stmts 

components together [Apache, 2004] [Cavaness, 2002].

B.2.2 Struts Action mapping

An Action mapping file is defined in the form of s t r u t s  - c o n f  i g  . xm l, which is 

located in the WEB - INF (see section 2.3.3) folder of a web application. This XML 

configuration file holds information on how to map individual HTTP requests to their

Figure B.l : Diagram of struts-config.xml file structure
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An Action XML tag (see Figure B .l) can contain the following XML attributes:

• Path attribute - The URL to identify the Action;

• Type attribute - The fully qualified class name of the Action class;

• Name attribute - The name of the business logic worker FormBean class (if 

needed);

• Scope attribute -  The page scope of FormBean;
• Forward sub-element - The simplified names (ActionForwards) of actual JSP

An Form-Bean XML tag (see Figure B .l) can be associated with the XML attributes:

• Type attribute - The fully qualified class name of the Act ionForm class

• Name attribute - The name of the FormBean class (if needed) contumacious

For more clarity, the following is a real-world example of struts-config.xml file

<struts-config>

<form-beans>
<form-bean name-' loginFormBean " type="myapps.formbean.LoginFormBean "/>

</form-beans>
<action-mappings>

<action path="/loginAction" type="myapp.actions.LoginAction" name-'loginFormBean" scope="session"> 
<fonvard name-'login" path="/login.jsp"/>

</action>
</action-mappings>

</struts-config>

B.2.3 How does Struts work?

The Struts framework processes individual Http request as follows (see Figure B.2):

1. The Act ionSerlvet is first initialised with struts-config.xml, 
which indicates to the servlet how to deal with particular HTTP Requests;

2. The Act ionServlet class will select the corresponding Action class and 

instantiate it through reflection;

3. Once obj ect instantiation occurs the developer’s Ac t i  on obj ect will make a 

call to its p e r fo r m  () method;

files.

structure.
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4. The perform method shall have all the necessary business logic to serve an 

HTTP request and instantiate the page’s form bean / A c tio n F o rm  object (if 

needed) to complete the process;

5. Once completed, the workflow the processing is forwarded on to the 

appropriate view based on the success, failure or alternative path to complete

the action
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Figure B.2: Basic sequence diagram of Struts request (Extract taken from 

http : //roll eri m. free, fr) Copyright (c) 1999-2002 The Apache Software Foundation.

All rights reserved.
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In the previous section the Struts Framework has clearly been defined and explained; 

however to gather a more rounded outlook an account of the framework’s advantages 

and disadvantages must be given.

B.2.4 Advantages of Struts framework

The following arc the advantages associated with using the Struts framework:

a) Stable and mature framework

Since 2000 Struts has been adopted and widely used by major software houses 

(IBM, Allstate etc) in building industry standard web applications.

Many new integrated development environments such as WASD (Websphere 

application studio developer), Netbeans and IBM’s Eclipse provide easy to use 

and logical support for developing Struts applications.

b) Internationalisation and Localization support

The Struts framework installation package provides a rich set of language 

support mechanisms in the form of built in ResourceBundles.

c) Uses proven Java technologies

Struts provides support for many Java industry standard technologies (JSP,

Tag Libraries etc)

d) Free to the public

There is no licensing or cost associated with Struts and it is freely available on 

the web.

e) Platform Independent

The Struts framework can run on any UNIX systems (e.g) Linux, Solaris etc 

and any Windows based platform.

f) Unit Testing

Struts provides an extension to the JUnit framework called StrutsTestCase. 

This extension allows developers to extensively test against from an 

application main entry point (the Struts ActionServlet) [Apache, 2004].
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B.2.5 Disadvantages of Struts framework

The following are the disadvantages associated with using the Struts framework:

a) Learning Curve

A developer using the Struts framework must be proficient in JSP, Servlet and 

Custom Tags API and must have a firm grasp on the internals of the struts 

framework. Thus the framework adds another layer of complexity for less 

experienced developers. [Hall, 2003]

b) Poor Documentation

Compared to other open source frameworks (JUnit, PHP etc) Struts has quite 

poor documentation. Many users who experimented with Struts find the online 

documentation (the Apache resource site) very hard to understand. The 

documentation seems to be pitched at a developer with senior to expert level in 

the Java language. There are also very little recommended books on the 

subject matter compared to other languages and frameworks (.NET, PHP,

ASP, JSP and Servlets) [Hall, 2003]

c) Problematic Custom Tags

It has been noted that several custom JSP tags within the Struts framework can 

be problematic and often lead to confusion and development down time. 

[Maturo, 2002]

d) Unseen static methods

Since Struts extensively uses reflection to build its dynamic content; any 

business logic classes static methods cannot be call through reflection. 

[Maturo, 2002]
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B.3 Tapestry framework
Tapestry is an open source technology framework written Java. It was created by 

Howard M. Lewis Ship and donated to the Apache Software Foundation in 2000. Not 

unlike Java Swing’s component object model for building desktop GUIs, Tapestry 

was built for the purpose of representing a dynamic web page as a Java component 

object model. Therefore the framework provides developers with a high level API, 

where the HTTP and servlet protocols are hidden so that a developer need only 

implement minimal code to develop a web application [Apache, 2004b] [Dorff et al, 

2003],

B.3.1 Components of Tapestry framework

Since Tapestry provides a high level API, only three main components are needed to 

build a dynamic Tapestry web page:

a) Page class

The page class is a Java class (with a . j  a v a  extension for source code) that 

represents a unique instance of a web page. By virtue of introspection and 

reflection, the page class methods and properties support the rendering of the 

HTML by dynamically populating a Tapestry HTML template. A page class 

must inherit from a Tapestry parent class called 

o rg  . a p a c h e  . t a p e s t r y . h t m l . B aseP ag e  [Dorff et al, 2003],

b) Page specification

A Tapestry page specification is an validated XML file (with a .page 

extension) that is contained within the WEB-INF folder of a Java web 

application. The main responsibility of the page specification is to make a 

declaration of page components. These page components represent 

information on how to identify the page class that needs to be instantiated and 

which page class attributes are needed to dynamically populate the respective 

HTML template.

A page specification is made up of the following XML elements (see Figure 

B.3).
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page-specification
type I } ■
Indicates the start of the
XML document. This element 
has an attribute called class, 
which identifies what 
Tapestry page class to map 
components to [Dorff et al, 
2003],

0. co

component

iVpa I
binding

type I
The element is used to 
declare a page component. 
Paga component 
distinguishes a page class 
attribute through the use of 
id and type XML attributes. 
These XML attributes identify 
the name and the action to 
perform on the class attribute 
respectively [Dotff et al, 
2003]

Tthrough the us* of XML 
attributes name and
expression,, this XML element 
represents the object binding 
to a page component 
outlined in the component 
XML element fDorff et al, 
2003]

Figure B.3: Diagram of Tapestry page specification file structure

The following is an real world example of a Tapestry page specification.

<page-specification class="com.example.PersonDetailsPage">
«component id="name" type="Insert">

•«binding nan;e=" value" expression^"components - person.name"/>
</component>
<component id="address" tvpe="Insert">

cbinding naitie= "value" expression="components .person.address"/>
</component >

</page-specification>

The example above indicates a page class called 

"com. example . PersonDetailsPage", which has two page 

components called “name” and “address”. These page components perform 

an “insert” action, which subsequently binds to an object of type Person 
which contains two class instance attributes called “name” and “address”

c) HTML template

On first viewing a Tapestry HTML template looks like a normal HTML file. 

However the use of HTML <SPAN> tags indicate to Tapestry which parts of 

the template are dynamic components. HTML templates can be viewer in any 

WYSIWYG HTML editor as the file is composed totally of HTML markup 

tags.
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The following is an example code snippet from a Tapestry HTML template
<span jwcid="spiders">

<tr bgcolor="#CCCCCC">
ctdxspan jwcid="ranking"/></td>
<tdxspan jwcid="numberOf Visit s"/x/td>
<tdxspan jwcid= "userAgent" / x/td>
<tdxspan jwcid="deployedBy"/x/td>
<tdxspan jwcid="date"/x/td>

</tr>
</span>

B.3.2 How does Tapestry work?

The Tapestry framework processes individual Http request as follows:

a) Since application initialisation has parsed an XML file of type

. a p p l i c a t i o n  file extension (which maps URLs to their appropriate page 

specification). The Tapestry framework begins to parse the appropriate page 

specification (. p a g e  file extension) for page components;

b) During the parsing of the page specification, the HTML template is parsed to 

check what dynamic elements are needed;

c) After parsing the page specification (. p a g e  file extension), the framework by 

means of reflection then instantiates the appropriate page class and using 

introspection binds the page components to the dynamic elements outlined in 

the HTML template.

B.3.3 Advantages of Tapestry framework

The following are the advantages associated with using the Tapestry framework:

a) Simplicity

Compared to servlet and JSP applications, Tapestry’s true power is through its 

ease of use. Tapestry developers need only create a page class and write an 

XML page specification to run a dynamic Tapestry web page, as oppose to 

implementing more code through using JavaBeans, servlets and . j sp  files for 

servlet/JSP page rendering. Tapestry removes the low level servlet and JSP 

API’s (j a v a x . s e r v l e t . h t  t p . *) from its pages, developers are
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developing at a high level, where the HTTP protocol has been hidden in 

favour of a pure Java object which acts as a page object. Low level 

programming and business logic is clearly separated, that is, Tapestry handles 

all low level aspects of web development (for example, session management) 

and the business logic can follow a Unified Modelling Language (UML) Use 

Case format [Ship, 2004] [Smith, 2004].

b) Consistency

Tapestry provides implementation consistency through the outlining of strict 

rules for building dynamic web pages. These pages follow a set of guidelines, 

such as coding standards and using reusable components that rule out 

inconsistencies when developing web applications [Ship, 2004] [Smith, 2004].

c) Efficiency

Tapestry web pages offer high application scalablility because during 

application initialisation, all Tapestry’s dynamic web page XML specifications 

and HTML templates are read and parsed only once, and then cached to 

minimize processing time for each request. Also all page instances are stored 

in objects pools for later reuse [Ship, 2004] [Smith, 2004].

d) Error handling

Tapestry provides excellent error handling in the form of a complete 

diagnostic report on why the error occurred, that is a detailed exception page 

showing all nested exceptions, a stack trace at the deepest exception and a 

detailed description of the servlet and HTTP request environment. Also file 

and precise line numbering are presented to display what caused the error 

[Ship, 2004] [Smith, 2004],

e) Free to the public

There is no licensing or cost associated with Tapestry and it is freely available 

on the web.
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f) Platform Independent

The Tapestry framework can run on any UNIX systems (e.g) Solaris
i l  ¿¡r#

etc and any Windows based platform. Of

B.3.4 Disadvantages of Tapestry framework

The following are the disadvantages associated with using the Tapestry framework:

a) Poor Documentation

Tapestry is not a widely accepted framework like Struts, therefore 

documentation on Tapestry is somewhat limited. Many users find the online 

documentation (the Apache resource site) very hard to understand. Also there 

are also very little recommended books on the subject matter compared to 

other languages and frameworks (.NET, PHP, ASP, JSP and Servlets)

b) Learning curve

There is a high learning curve to fully understand the whole component based 

Tapestry framework. Thus the framework adds another layer of complexity for 

less experienced developers.

c) Application initialisation

Although Tapestry uses caching and object pooling to increase page request 

performance, developers must recognise that during application initialisation 

the Tapestry framework will use a tremendous amount of introspection and 

XML parsing of meta data, therefore a performance lag will occur.

B.4 JSP Standard Tag Library

JSP Standard Tag Library (JSTL) is set of standardized JSP custom tags that provide a 

means for developers to create JSPs at an accelerated rate. These standardized JSP 

tags provide developers with a high level JSP tag API, where common mundane JSP 

tasks, for example, database access, internationalisation support and XML processing 

are hidden so that a developer need only implement minimal code to develop a JSP 

web application. These custom tags in turn reduce coding errors and promote overall 

JSP readability.
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B.4.1 Components of JSTL

Since JSTL provides a high level API, there are four main components / libraries that 

can be use to build a simplified JSP.

a) JSTL core

This tag library provides a set of core utilities for simplifying common JSP 

scriptlet actions. For example, conditional statements, iterating collections, 

URL redirection and manipulation are all handled by this library [Bayern,

2002] [Bergsten, 2003]. To use this JSTL library, one must declare the 

following t a g l i b  directive tag
<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core"
%>

b) JSTL fmt (Internationalisation and formatting)

Previously developers using plain JSP scriptlet notation had always to provide 

their own set of functionality to support localization and general Java primitive 

type formatting. Again this tag library is set of common utilities that reduces 

the amount of development overhead, by providing tags that help developers 

input and output dates and numbers as well as localized formatting [Bayern,

2002] [Bergsten, 2003]. To use this JSTL library, one must declare the 

following t a g l  i b  directive tag
<%@ taglib prefix="fmt" uri="http://java.sun.com/jsp/jstl/fmt"
%>

c) JSTL sql (Database)

The Database tag library provides a set of utilities that simplify the connecting, 

querying and updating to a JDBC resource. Previously JSP developers usually 

had to develop their own Database JavaBean for simplified JDBC resource 

querying [Bayern, 2002] [Bergsten, 2003]. To use this JSTL library, one must 

declare the following t a g l i b  directive tag
<%@ taglib prefix="sql" uri="http://java.sun.com/jsp/jstl/sgl"
%>
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d) JSTLXML

This tag library offers a set of tags to simplify XML document parsing, 

looping and transformation to XSLT [Bayern, 2002] [Bergsten, 2003]. To use 

this JSTL library, one must declare the following t  a g l  i b  directive tag
<%@ taglib prefix="x" uri="http://java.sun.com/jsp/jstl/xml" %>

B.4.2 JSTL Expression Language

Not only does JSTL reduce maintenance of JSP applications by avoiding JSP scriptlet 

elements by providing programmers with a set of custom tag libraries, it also offers 

developers the ability to use JSTL Expression Language (EL). The JSTL EL is a 

JavaScript like language which allows developers to use abbreviated object name 

syntax instead of JSP scriptlet (Java syntax) for data access upon the dynamic page’s 

implicit and session based objects, for example, JavaBeans contained in session or 

JSP HTTP request header information.

The EL data access can denoted by using the following syntax [Bayem, 2002] (see 

Figure B.4)

EL Syntax ${<Name of JavaBean instance>.<Variable Name>} 
or
${<Name of JavaBean instance>[“«Variab le  Name>”]}

EL Example ${customer.fiistName}
Usage o r

${custoiner[“firstName”]}

Figure B.4: JSTL EL Example usage diagram

The EL uses automatic JavaBean inspection to access data variables. For example, 

currently in JSP scriptlet programmers must downcast their base JavaBean class types 

after j ava . lang. Obj ect retrieval from HttpSession. Where in JSTL, 

programmers need only call the base JavaBean class type directly [Heaton, 2002], For 

example (see Figure B.5).
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JS P
E x a m p le

<%
C u sto m e r a C u s to in e r = iC u s to m e r)s e s s io n .g e tA ttr ib u te ("c u s to m e r”); 
if( aC u s to m er.g e tA g e ( ) > 18 )

{
%>

%>

Do S o m e th in g  H ere

JSTL < c : if  te s t= '$ {c u s to m e r.a g e  > 1 8 } ‘>
E x a m p le  ** *  Do S o m e th in g  H e re  * * *

< /c :if>

Figure B.5: Example code difference between JSTL and JSP

B.4.3 JSTL Custom Tags

While JSTL provide a set of tags that solve many of the standard problems 

encountered by web developers; it does not cover all specific problem areas such as 

sending emails and file manipulation. The true power of JSTL is that it allows 

developers to build their own custom tag libraries to solve their own project specific 

problems. A developer must build a special class called a tag handler to handle a new 

custom JSP tag. Instead of developing a completely new tag handler class, JSTL has 

several support / base classes which can be extended / inherited from, for example, 

j a v a x . s e r v l e t . j  sp  . t  a g e x t . T a g S u p p o r t . The process of extending JSTL 

base classes focuses development time on writing custom code and not traditional tag 

handler methods. A class must realise the j a v a x . s e r v l e t . j  sp  . t a g e x t . Tag 

interface if it is to become a tag handler. However before a new tag can be considered 

a tag handler it must be associated to a JSP tag library [Bayern, 2002] [Bergsten,

2003] [Brown et al, 2001],

Before the JSP tag library association can be made, a file called a tag-library 

descriptor (TLD) must be created. A TLD is an XML document that describes the 

main tags contained in a new JSP tag library (see Figure B.6).
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taglib
type j Î -
Denotes the beginning of a 
new JSP tag library

tlib-uersion
lypa
Specifies version label for 
new fag library

Jsp-version

Specifies which ✓etsion of 
,'SP specification to use 
p iote I must be greater than 
12)

short-name

IViW I
Denotes an abbreviated 
name for the tag library

un
lype
New tag llbraty is unqiuely 
identified by a URL

I----  ---- ---1
; display-name ;

llypgl- .- .........J
Display name for tag library

 ̂description ;
¡type] ;- J - - - - -  - '

Tag library description

type

1 ..to
Indicates a new JSP tag in 
the library

Figure B.6: Diagram of TLD file structure

In additional to the main XML elements of the TLD, The < t a g l ib >  element has a 

child < tag >  element for each tag (see Figure B.7).
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tag
I'/fM I
Indicates a new JSP tag in 
the library

&

.name
type I

The name of the element

, tag-class

type 1
The das; that was written to 
handle the new )SP  tag

I.attribute
- ---------------- E3-UvpeJ__ jf.V-VJÿ- -Q..00

Indicates -a new attribute for 
the new JSP tag

L & r r m m

„name

type
H  _ - r The name of the element

_ required

type |
I ;  the attribute element
needed

Figure B.7: Diagram of TLD file structure Tag XML element

The following process must be followed before a developer can use a new tag from a 

new tag library [Bayern, 2002] [Bergsten, 2003]:

a) A developer must copy their new TLD XML file to the WEB-INF directory 

(see section 2.3.3);

b) The developer must copy their new tag handler classes to the lib or classes 

directory (see section 2.3.3);

c) The new tag library must be imported into the JSP using the < %@ t  a g l  ib  

% > directive.

B.4.4 Advantages of JSTL

The following are the advantages associated with using the JSTL:

a) Internationalisation and Localization support

The JSTL f  mt tag library provides a rich set of language support mechanisms 

in the form of built in tags [Brown et al, 2001] [Heaton, 2002]

b) Compatibility with web WYSIWYG development tools

As the JSTL expression language is XML compliant, it is easier for web 

WYSIWYG tools (such as Macromedia Dreamweaver) to parse the intermixed 

HTML and JSTL, therefore these combined mark-up languages can be display
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in more readable format that graphic designers and developers can understand 

[Bayern, 2002] [Heaton, 2002],

c) Readablity

Compared to servlet and JSP applications, JSTL true power is through its ease 

of readablity. Since graphic / web designers do not come from a computer 

science background, they find it difficult to understand programming language 

scriptlet (JSP) which is intermixed with their HTML. As JSTL is based on 

XML (which is similar in syntax to HTML) these designers have some 

conceptual awareness of how the JSP page is formed and could even place 

JSTLs into the page themselves.

On the flip side, since JSTL uses automatic JavaBean inspection, programmers 

can simplify the JSP scriptlet syntax (which is really normal Java code after 

the JSP page has been parsed) by using JSTL [Bayern, 2002] [Brown et al,

2001] [Heaton, 2002],

B.4.5 Disadvantages of JSTL

The following are the disadvantages associated with using the JSTL:

a) Performance

A performance lag will occur during JSP page execution, as JSTL uses 

significant amount of extra server processing than JSP scriptlet. The reason 

behind this is that JSTL uses significant amounts of introspection for 

JavaBeans and XML parsing for the JSTL expression language [Heaton,

2002],

b) Learning curve

There is a significant learning curve to fully understand the JSTL 

specification. Thus the specification adds another layer of complexity for less 

experienced developers.
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c) Extra overhead

Compared to JSP scriptlet, JSTL is wonderful for creating simplistic JSP 

pages however experienced developers may judge that there is an extra work 

in creating a new JSTL XML tag compared to writing JSP scriptlet (which 

they already know) [Heaton, 2002].

d) Extensibility

JSTL is not as extensive language as JSP scriptlet, as JSTL is still an evolving 

specification that doesn’t allow the full use of all other Java classes as the way 

JSP scriptlet does [Heaton, 2002],

e) Database security

JSTL Database library promotes the use of Database functionality from within 

an JSP, this maybe problematic as security breeches may enable a hacker 

direct access to your Database resource. Therefore for larger applications, it is 

better to separate / hide this functionality by moving the Database access to a 

JavaBean or another Java class [Bayern, 2002],

B.5 Conclusions
This chapter has provided an insight on other competing Java based solutions for the 

fundamental problems to JSP. It has described what these technologies are and how 

do they work. But the chapter has also provided an objective view towards their 

strong and weak points. Therefore to further this discussion, we must now provide an 

independent and objective performance benchmark using the dissertation’s new 

framework architecture and several competing alternatives.
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Figure C.20: View results in table of page-centric JSP
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Figure C.21: View results in tree of new framework using JSP
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Figure C.22: View results in tree of new framework using MSP
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Figure C.23: View results in tree of Apache Struts using JSP
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Figure C.25: View results in tree of page-centric JSP

Overall Results
Architecture minTime maxTime Average Rate Deviation Throughput Median

Framework (JSP) 20 6620 54 1 5 4 379 923 30

Framework (MSP) 10 531 33 22.3 30 1339 30

Struts 20 771 39 19.7 43 1183 40

Tapestry 20 2904 44 17.6 165 1054 30

PageCentric (JSP) 10 1191 33 21.9 67 1316 30

Table C.l: Benchmark one’s overall result
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Figure D.22: View results in tree of new framework using MSP
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Figure D.24: View results in tree of Apache Tapestry
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Figure D.25: View results in tree of page-centric JSP
I f fe ìT E il i  
I - '  . O P T I

Overall Results
A rc h ite c tu re m in T im e m a x T im e A v e ra g e R a te D e v ia t io n T h ro u g h p u t M e d ia n

Framework {JSP) 20 4717 368 20.6 554 1236 261

Framework (MSP) 10 3605 379 20.9 449 1251 280

Struts 20 8062 391 14.6 1064 873 40

Tapestry 30 6409 559 15.9 752 953 441

PageCentric (JSP) 20 10375 377 15.4 1203 923 30

Table D.l : Benchmark two’s overall result
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