
MagnumServer Pages: Improvements and

Extensions to JavaServer Pages

Patrick J Margey, B.Sc ____OF
i æ m mBjsM5.1T.,.

I i4

Master of Science (M.Sc.)

Letterkenny Institute of Technology

Supervisor: Jonathan Campbell, B.A., D.Phil.

Submitted to the Higher Education and Training Awards Council February 2005

Acknowledgements

Acknowledgements

I would like to thank my supervisor, Dr. Jon Campbell, to whom I am will be forever

grateful for his ideas, insights, encouragement and especially this friendship during

the duration of this masters.

I would also like to give a resounding thanks to my parents for their never-ending

love, support and encouragement.

Also thanks must be given to my three brothers for their strength, advice and

encouragement. "All for one, and one for a ll”.

Finally, a deep heartfelt thanks goes to Sharon for just being herself along the away.

Declaration

Declaration

1 hereby declare that with effect from the date on which the dissertation is deposited

in the Library of Letterkenny Institute of Technology I permit the Librarian of the

Institute to allow the dissertation to be copied in whole or in part without reference to

me on the understanding that such authority applies to the provision of single copies

made for study purposes or for inclusion within the stock of another library. This

restriction does not apply to the copying or publication of the title and abstract of the

dissertation.

IT IS A CONDITION OF USE OF THIS DISSERATION THAT ANYONE WHO

CONSULTS IT MUST RECOGNISE THAT THE COPYRIGHT RESTS WITH

THE AUTHOR AND THAT NO QUOTATION FROM THE DISSERTATION

AND NO INFORMATION DERIVED FROM IT MAY BE PUBLISHED UNLESS

THE SOURCE IS PROPERLY ACKNOWLEDGED

ii

Abstract

Abstract
Today vast amounts of services and information are provided by the WWW. By its very

nature, the information involved is changeable; hence static web pages are no longer

adequate and methods of coping with dynamic information are needed. One such

technology from Sun Microsystems is called JavaServer Pages (JSP.).
f L U T i m

JSP is an integral component of J2EE and can be viewed as a simplified and augmented

version of its parent technology Java servlets. JSP provides businesses with a means to

rapidly develop robust large-scale web applications, as it offers programmers the ability

to work parallel with web designers and provides a mechanism to easily integrate Java

code with static HTML.

However JSP technology does have weaknesses; for example there is no standard design

approach, no caching or compression mechanisms to improved presentation speed,

automated testing is difficult and there are a number of known security vulnerabilities. As

a result the industry has recognised these weaknesses and have started to develop new

servlet frameworks / template engines that supply them with the ability to develop

maintainable and cost effective web applications. Hence developers are now burdened

with an indulgence of complex Java frameworks that require a steep learning curve to

master.

The overall aim of this dissertation is to analyse, design, implement and evaluate a new

improved Java web based technology (that we call MagnumServer Pages) and its

corresponding novel servlet design framework. The new design will ultimately simplify

the development process into easily understood components that resolve the issues

surrounding JSP. The results of a detailed evaluation and benchmarking indicates that the

new design is a flexible framework that provides reduced coupling, increased

presentation speed, support for automated testing and a seamless development process.

Table of Figures

Table of Figures

I f ! " - - - -
Page

Figure 2.1: Example of Three Tiered Architecture... 12

Figure 2.2: Diagram of J2EE Web tier functionality... 15

Figure 2.3: Diagram of Web tier architecture...17

Figure 2.4: Diagram of web .xml file structure (extract taken from XML spy)..............19

Figure 2.5: UML class diagram of the servlet hierarchy.. 22

Figure 2.6: Servlet lifecycle diagram... 24

Figure 2.7: Diagram of traditional JSP lifecycle... 29

Figure 3.1: Composition view of a web application..35

Figure 3.2: Page-view working diagram..37

Figure 3.3: Page View with JavaBean working diagram... 40

Figure 3.4: JSP workflow complexity.. 41

Figure 3.5: Observer Design Pattern [Rose, 2000]..43

Figure 3.6: MVC working diagram.. 46

Figure 3.7: JSP include fragment diagram.. 49

Figure 3.8: Account HTML setup form.. 57

Figure 4.1: Proposed framework design working diagram..64

Figure 5.1: Overall functionality diagram..75

Figure 5.2: UML class diagram of the Controller layer... 76

Figure 5.3: UML class diagram of the HTTP protocol separation................................ 79

Figure 5.4: Multiple technologies diagram...83

Figure 5.5: Controller layer outline behaviour diagram... 85

Figure 5.6: UML class diagram of the Model layer..86

Figure 5.7: Model layer outline behaviour diagram..91

Figure 5.8: UML class diagram of the View layer..92

Figure 5.9: View layer outline behaviour diagram..96

Figure 5.10: Overall system class diagram...97

Figure 5.11: Example MSP source file (. m sp).. 101

Figure 5.12: Example extract from MSP Java class file..103

Figure 6.1: Example of common benchmark web page..108

Table of Figures

Figure 6.2: Column chart of average response times for first benchmark................108

Figure 6.3: Column chart of thread rates for the first benchmark..............................109

Figure 6.4: Column chart of standard deviations for the first benchmark................. 109

Figure 6.5: Line chart of statistical information for the first benchmark.................. 110

Figure 6.6: Column chart of average response times for the second benchmark..... 111

Figure 6.7: Column chart of thread rates for the second benchmark...........................111

Figure 6.8: Column chart of standard deviations for the second benchmark............ 112

Figure 6.9: Line chart of statistical information for the second benchmark................112

Figure 7.1: Line chart of scorecard results for combined benchmarks.......................116

Table of Tables

Table of Tables

Page

Table 4.1: Design contrast between traditional and alternative MVC architectures... 66

Table 4.2: Performance contrast between traditional and alternative MVC

architectures...69

Table 4.3: Testability contrast between traditional and alternative MVC architectures

..71

Table 4.4: Security contrast between traditional and alternative MVC architectures. 73

Table 5.1: contrast between new implementation and Java servlet A PI....................... 81

Table 5.2: Contrast between MSP and JSP package tag syntax................................... 99

Table 5.3: Contrast between MSP and JSP import tag syntax..................................100

Table 5.4: Contrast between MSP and JSP include tag syntax.................................100

Table 5.5: Contrast between MSP and JSP expression tag syntax........................... 100

Table 5.6: Contrast between MSP and JSP code tag syntax.....................................101

Table 6.1: System configuration for benchmarking..107

Table 6.2: Combined benchmark score card tab le .. 113

Table 7.1: Framework capability comparison..117

L fTable of contents
Page

Acknowledgements i

Declaration ii

Abstract iii

Table of Figures iv

Table of Tables vi

Chapter 1 - Introduction

1.1 Purpose and Scope.. 1

1.2 Background and Overview... 1

1.3 Outline of Document... 2

Chapter 2 - Literature Review

2.1 Introduction..4

2.2 The evolution of dynamic web technology.. 5

2.2.1 Common Gateway Interface.................................. .. 5

2.2.1.1 Advantages of CGI... 6

2.2.1.2 Disadvantages of CGI..6

2.2.2 PHP (PHP Hypertext Processor)... 7

2.2.2.1 Advantages of PHP..8

2.2.22 Disadvantages of PHP...9

2.2.3 ASP.NET...9

2.2.3.1 Advantages of ASP.NET............................ ..10

2.2.3.2 Disadvantages of ASP.NET..11

2.2.4 Conclusions..11

2.3 JSP compatibility with the Java Enterprise Edition model...........................11

2.3.1 Three Tiered Architecture.......................... 12

2.3.2 J2EE Web Tier architecture..14

2.3.3 Definition of Web Tier components.................................. 16

2.3.4 Conclusions..20

2.4 Java servlets..20

2.4.1 What are Java servlets?..21

2.4.2 The Servlet Hierarchy...21

2.4.3 The Servlet Lifecycle......................... ... 22

2.4.4 Advantages of servlets over alternative technologies..................................25

2.4.5 Why is JSP needed?...26

2.5 JavaServer Pages (JSP)...28

2.5.1 How does JSP work?...28

2.5.2 What are the advantages of JSP?.. 30

2.6 Conclusions.. 31

Chapter 3 - JSP Problems

3.1 Introduction.. ...32

3.2 Design...33

3.2.1 Composition of a traditional web application...34

3.2.2 Page-centric (Model 1)..35

3.2.2.1 Page-view..36

3.2.2.2 Page-view with Bean.. 37

3.2.2.3 Disadvantages with page-centric design...40

3.2.3 Model View Controller (MVC) or Model 2 ..41

3.2.3.1 Observer / Observable design pattern... 42

3.2.3.2 Components of MVC...44

3.2.3.3 How MVC operates in servlet web applications?............46

3.2.3.4 Problems with MVC..47

3.3 Performance.. 48

3.3.1 Connectivity to external resources... 48

3.3.2 Thread management of Server Side Includes (SSI)..................................... 49

3.3.3 Caching... ..49

3.3.4 No provision for compression of HTML content

3.4 Testability..

3.4.1 Console based testing...

3.4.2 IDE debugger based testing and profding..........

3.5 Security...

3.5.1 Application level vulnerabilities........................ .

3.5.1.1 HTTP Form modification.................................

3.5.1.2 Cross-Site Scripting (XSS)...............................

3.5.1.3 J avaB ean exploitation.......................................

3.5.2 Application Server vulnerabilities........................

3.6 Conclusions..

Chapter 4 - Proposed Solution (MagnumServer Pages)

4.1 Introduction..

4.2 Design..

4.2.1 Enhancement of MVC..

4.2.2 Components of alternative MagnumServer Pages design

4.2.3 How does the alternative design work at run-time?.........

4.2.4 Advantages of the new MagnumServer Pages design......

4.2.5 Summary..

4.3 Performance..

4.3.1 Connectivity to external resources....................................

4.3.2 Thread management of Server Side Includes (SSI)...........

4.3.3 No provision for compression of HTML content..............

4.3.4 Summary..

4.4 Testability..

4.5 Security..

4.6 Conclusions..

Chapter 5 - Implementation

1 Introduction..74

2 Controller..75

5.2.1 Composition of controller... 75

5.2.2 HTTP protocol separation.. 77

5.2.2.1 Composition of HTTP protocol separation...78

5.2.2.2 RequestFactory...79

5.2.2.3 AbstractRequest..79

5.2.2.4 JavaRequest.. 82

5.2.2.5 JavaMultipartRequest...83

5.2.2.6 Accommodation of other technologies..83

5.2.2 Summary...84

3 M odel... 85

5.3.1 Composition of Model...86

5.3.2 Dispatcher........................87

5.3.3 RequestHandler... 88

5.3.4 Summary.. 90

4 View.. 91

5.4.1 Composition of View...92

5.4.2 RenderingStrategy...92

5.4.3 JSPRenderingStrategy.. 94

5.4.4 MSPRenderingStrategy..................... .. 94

5.4.5 Summary...95

5 MagnumServer Pages.. 98

5.5.1 MSP Scripting Language.. 99

5.5.2 MSP significant classes.. 102

5.5.2.1 CompiledPage... 102

5.5.2.2 DocumentBuilder..102

5.5.2.3 PageCompiler... 102

5.5.2.4 Tag...104

5.5.2.5 PackageDirective..104

5.5.2.6 ImportDirective.. 104

5.5.2.7 InclTag..104

5.5.2.8 EvalTag.. 104

5.5.2.9 CodeTag...105

5.5.2.10 StaticTag..105

5.5.3 Summary.. 105

j ub^T-Tir ‘
Chapter 6 - Evaluation

6.1 Introduction.. 106

6.2 System configuration..106

6.3 Description of benchmarks... 107

6.4 Results of 1 thread executed 300 times..108

6.5 Results for 1 thread executed 30 times between 2 second intervals............110

6.6 Conclusions.. 113

Chapter 7 - Conclusion

7.1 Introduction.. 116

7.2 Future work... 117

References... 120

Bibliography... 129

Appendix A - UML Diagrams

Appendix B - Alternative Java Architectures

Appendix C - Benchmark One Results

Appendix D - Benchmark Two Results

Chapter 1 Introduction

1 Introduction

1.1 Purpose and Scope

This document is a thesis submitted in part fulfilment of the requirements for the degree

of Master of Science at Letterkenny Institute of Technology Department of Computing.

The topic is that of constructing a new robust Java web based technology, which will

resolve some fundamental problems surrounding JavaServer Pages (JSP). The new

technology will provide support for additional competing technologies, increased

presentation speed and finally decoupled application code that can be easily unit tested.

1.2 Background and Overview

In recent years the WWW has changed significantly in terms of serving HTML content to

clients Therefore over the course of time the range of dynamic web-based technologies

(for example, CGI, PHP and Java servlets) has grown.

However, these dynamic web-based technologies have their own shortcoming such as

scalability, performance, maintainability and cost of development. Specifically, in the

case of Java servlets, there is no separation of programming logic and HTML processing;

this results in costly development and maintenance difficulties. Hence JavaServer Pages

(JSP) was created as an extension of Java servlets and quickly became the standard Java

solution to dynamic HTML. The reason for this was that it offered developers a

simplified way to create and maintain servlet style code that still contained the full power

of its parent technology (that is, Java servlets).

Although JSP is the standard Java web solution, it is not the only solution. Currently,

software houses have recognised some limitations with JSP, particularly in the areas of

design, performance, testability and security. Therefore some software houses have

started to develop servlet frameworks and template engines (for example, Apache Struts

and Tapestry), which try to solve the limitations of JSP by applying new design patterns

Page 1

Chapter 1 Introduction

and coding approaches. However there are costs associated with these new frameworks,

such as poor documentation and high complexity for average programmers.

Thus the dissertation will present a new solution / approach for creating dynamic content

implemented in Java. This solution will increase responsivity, security, testability and

provide developers with a more intuitive and flexible design framework.

The objectives of this dissertation are as follows:

1. Conduct a detail literature review to investigate the nature of JSP and it’s

competing technologies;

2. Investigate the nature of JSP performance, security, error handling, debugging,

ad-hoc design and the weakness of separation of presentation from business

logic.

3. Follow software development best practices (for example, using object oriented

design patterns and UML design processes) to design, implement and evaluate

the new solution;

4. Discuss and suggestion future enhancements.

1.3 Outline of Document

This dissertation is divided into seven chapters, the first chapter aims to outline the scope

and the main objectives for the dissertation.

Chapter two provides a review of the available literature in the context of JavaServer

Pages (JSP). That is, the history of dynamic web technology is examined, alternative

technologies are explained, Java Enterprise Edition (J2EE) model is explored in the

context of the WWW, Java servlets are discussed and in particular JSP are explained in

detail.

Chapter three examines the problems of JSP in the context of design, performance,

testability and security.

Page 2

Chapter 1 Introduction

Chapter four describes a plan to resolve the problems of JSP in the context of design,

performance, testability and security.

Chapter five describes how the new design was implemented, that is explaining the

architecture and construction in detail.

Chapter six evaluates the newly implemented design against competing Java web

frameworks / technologies.

Chapter seven summarises the overall findings of the project and outlines possible future

work.

Page 3

Chapter 2 Literature Review

2 Literature Review

2.1 Introduction
Currently there are many competing dynamic web page technologies, such as PHP

and CGI, which offer their own unique advantages and disadvantages for building

web applications in terms of design, performance, security and testability. Even

though this chapter discusses and highlights the strengths and weaknesses of some of

these competing technologies, the fundamental purpose of this chapter is to discuss

dynamic web page technology in the context of the standard Java solution for

producing dynamic HTML, namely JavaServer Pages (JSP).

JSP is an extension of the Java servlet architecture [Sun, 2001]; both JSP and servlets

are server-side Java technologies that are supported on the majority of today’s

application servers (in the context of J2EE, “application server” can be defined as a

web server that provides the mechanism to serve dynamic content). These

technologies provide a platform independent language that offers an extensive library

of predefined classes for developing dynamic HTML content. In conjunction with the

existing Java standard development kit (JSDK) class libraries, the predefined servlet

and JSP Java class libraries can be used to build enterprise scale Java web

applications. The servlet and JSP Java class libraries are particularly powerful since

they offer additional functionality support from the more traditional JSDK support

(ranging from database connectivity to multithreaded network processing) [Sun,

2002], Although similar, JSP differs from servlet technology in that it is a web-

scripting language that attempts to separate static content (HTML) from dynamic

presentation (servlet code).

The following sections will discuss JSP under the when, what, where, why, and how;

that is, the following sections will provide detailed answers to the following

questions:

• Why did dynamic web technology arise?

• Where does JSP fit into the overall Java model?

• What are Java servlets?

• Why did JSP technology occur?

Page 4

Chapter 2 Literature Review

• What arc JSP?

• How does JSP work?

• What are the advantages of JSP?

• What exactly is JSP relationship with servlets?

• How does JSP help developers?

• How is JSP different from competing technologies?

• What other Java technologies can be used in tandem with JSP?

• What are JSP competing technologies?

2.2 The evolution of dynamic web technology
When the WWW was created, its primary purpose was to serve static HTML pages.

However this primary purpose changed when people started to use the WWW as not

only a means to find static information but as a tool to perform daily tasks, for

example, banking and shopping. To perform these daily tasks the WWW started to

serve dynamic content [Kassem et al, 2002], The serving of dynamic content occurs

when a client’s browser submits an HTTP request for a particular web page (typically

implemented by a scripting language or technology such as ASP, PHP, CGI or JSP)

on a web server [Brown et al, 2001], the web server would locate the dynamic page,

execute its program and retrieve the page result as HTML through a corresponding

HTTP response [Fields et al, 2000],

To further this discussion, we must discuss some of the dynamic web technologies

alternative to JSP, particularly in the context of different language implementations

and what advantages and disadvantages they bring.

2.2.1 Common Gateway Interface

Common Gateway Interface (CGI) was one of the first technologies to be used for

building dynamic HTML [Fields et al, 2000]. CGI by itself is not a programming

language; it is a standard lightweight interface that is based on the same model that

the web server uses to serve static HTML files [Birznieks et al ,2000]. That is, the

web server reads an incoming HTTP request from a URL and identifies a server side

CGI resource file (that is, an interface file denoted by . c g i extension). Sequentially,

Page 5

Chapter 2 Literature Review

the web server executes CGI resource file, waits until the CGI process has finished

and sends the resultant HTML output as response back to the client [Christiansen et

al, 1998]. CGI code can be written in most languages [NSCA, 98] and while a CGI

file is executed, the application code is sequential executed to print out one large

textual string (The textual string is a combination of intermixed static HTML and

dynamic functionality).

The following are the advantages associated with using CGI:

a) Program languages

CGI applications can be written in most programming languages, for example,

Perl, Python, Visual Basic, C/C++, Unix shell scripts, and even COBOL.

b) Large range of robust utility libraries

Depending on the programming language that you use for your CGI file, for

example, Perl or C / C++, your CGI code would have access to a large set of

built-in libraries, which would provide extra functionality to developers so

they can quickly develop applications with the minimum effort.

c) Learning curve

Since CGI can use any one of a wide range of programming languages for its

coding (which most developers and students have used at least one in their

work/studies) and CGI is extensively documented with workable examples.

Therefore most developers can become highly productive without huge effort.

2.2.1.2 Disadvantages of CGI

The following are the disadvantages associated with using CGI:

a) Use of interpreted languages

In most cases, the programming language you use to build CGI applications is

not compiled, for example, Perl and Python. Once a CGI script / program is

called the interpreter is loaded, the script is checked for errors at run-time,

then executed as a single process on the server. This process is slow to execute

and has large memory footprint [Wu et al, 2000] because the CGI file has to

a j I/
2.2.1.1 Advantages of CGI

Page 6

Chapter 2 Literature Review

be interpreted for every single HTTP request and external resources have to be

held in memory until termination of CGI process.

b) Scalability

This single process execution does not provide support for threading, for

example in the use with database and object pooling. CGI applications have an

increased load time to connect to external resources such as databases and

shared libraries as these external connections need to be created and reloaded

each time the CGI code is executed. Therefore this process has a detrimental

effect on the performance of the web server as it uses valuable CPU memory

in a processor inefficient manner [Wu et al, 2000],
3",
| L .i\; y1

c) Performance

No matter which programming language you use, CGI cannot save user

session data in memory. The reason for this is that upon every request for a

CGI resource file, a single process is executed and then terminated on

completion. Therefore memory allocation must be reinitialised for every

request. Some of the programming languages that can be used with CGI, for

example, Perl uses a combination of text file manipulation (reading and

writing to a file) and databases for data persistence.

2.2.2 PHP (PHP Hypertext Processor)

PHP is an open source platform independent server side scripting language.

It is an interpreted language that is best described as a cross between C/C++ and Perl.

PHP was designed to simplify manipulation of databases and provide a set of reusable

libraries that could be used to build dynamic content for the WWW [Fields et al,

2000]. The PHP scriptlet is embedded into HTML and then executed to give dynamic

functionality [Bakken et al, 2003].

It was created in 1994 by Rasmus Lerdorf as a way to track users entering his website.

Lerdorf originally named PHP (Personal Home Programming) but throughout the

years the language has become more generally accepted and is now adopted by the

Page 7

Chapter 2 Literature Review

GNU community. Currently over 11 million domains use PHP as the main server side

scripting language to render their web pages.

The following subsections describe some of the advantages and disadvantages that are

currently associated with PHP.

2.2.2.1 Advantages of PHP

The following are the advantages associated with using PHP:

a) Large range of robust utility libraries

Since PHP is an open source technology that was built primary for web

development, it comes which an array of built-in libraries, for example, Java

and . NET plug-ins, XML and database libraries, which hide mundane tasks

from developers so they can quickly develop applications with the minimum

effort [Bakken et al, 2003] [Welling et al, 2001].

b) Database integration

PHP has many easy to use predefined libraries to connect and interact with

many industrial standard Databases, for example, MySQL, PostgresSQL,
mSQL, Oracale, Sybase and SQL server etc. This functionality

provides low configuration and start up time to building robust database

driven web systems [Bakken et al, 2003] [Welling et al, 2001],

c) Free to the public

There is no licensing or cost associated with PFIP. It is freely available on the

web and is supported by most major Internet Service Providers (ISP)

d) Learning curve

PHP is very similar to Perl, C and C++ (which most developers and students

have used in their work/studies) and the PHP language is extensively

documented with workable examples. This means that most Perl, C and C++

skilled developers can become highly productive without huge effort [Welling

et al, 2001].

Page 8

Chapter 2 Literature Review

e) Platform independent

The PHP language can run on any UNIX systems such as Linux, Solaris, etc.

and any Windows based platform.

2.2.2.2 Disadvantages of PHP

The following are the disadvantages associated with using PHP:

a) Weak abstraction for databases

PHP comes with a large array of database libraries that use different method

calls to connect to and interact with specific databases. This results in

maintenance difficulty for developers to switch databases within their

applications [Wu et al, 2000], For example, some of the database connection

functions for PHP are:
I :mysql_connec t () - establishes a connection to a MySQL server;

ifx_connect () - establishes a connection to an Informix server;

sybase_connect () - establishes a connection to a Sybase server.

b) Interpreted language

Like all interpreted languages, PHP is not compiled. As stated earlier, once a

script is called the interpreter is loaded, the script is checked for errors at run

time, then executed via a single process on the server; hence this process is

slow too execute and has large memory footprint [Wu et al, 2000],

c) Scalability

This single process execution does not provide support for threading, for

example in the use with database and object pooling. PHP applications have

an increased load time to connect to external resources (databases and files)

and internal components need to be built each time etc which all have a

decreasing effect on the performance of the web server [Wu et al, 2000].

2.2.3 ASP.NET

Active Server Pages .NET (ASP.NET) was created by Microsoft as a core sub

component of the .NET framework. The specific purpose of ASP.NET is to provide

an event driven development approach to building dynamic web pages. In the case of

Page 9

Chapter 2 Literature Review

event driven, we mean that ASP.NET intentions is to provide a high level Application

Programmer Interface (API) (which is part of the .NET Framework Class Library

(FCL)), which a developer can use to implement the minimal amount of code for

separating the background engine code from the user interface portions of a dynamic

web page. ASP.NET can be implemented using any of the five languages for the

.NET framework. That is, C#, VB, C++, JScript and J++ [Kalani, 2003],

The following are the some of the advantages and disadvantages that are currently

associated with ASP.NET.

2.2.3.1 AdvantagesofASP.NET

The following are the advantages associated with using ASP.NET:

a) Large range of robust utility libraries

As ASP.NET is a part of the overall .NET Framework Class Library (FCL), it

can use any predefined classes from the FCL to support basically any

functionality such as web services to file manipulation. These predefined class

libraries offer programmers more power to develop large-scale reusable

components that can form enterprise solutions to large organisations [Kalani,

2003].

b) Performance

Compared to competing technologies (for example, PHP, CGI and JSP), an

application’s overall performance can be improved when the application has

been developed in ASP.NET. This improvement can occur in two ways which

most of the competing technologies do not implement, firstly any dynamic

web page developed using ASP.NET is compiled before it is executed

(therefore saving time on interpreting the source code) and secondly the

compiled version of the dynamic web page is cached (therefore saving time on

recompilation) [Kalani, 2003].

c) Scalability

An application developed in ASP.NET can be distributed across several

machines or several processes of the same machine. Therefore a web

Page 10

Chapter 2 Literature Review

application can scale smoothly as the number of users increases [Kalani,

2003].

d) Learning curve

Programmers can become productive at an early stage since ASP.NET can be

developed in a number of languages (for example, C# and VB) and is

extensively documented.

2.2.3.2 DisadvantagesofASP.NET

The following are the disadvantages associated with using ASP.NET:

a) Platform dependent

Even though ASP.NET source code is compiled into Microsoft Intermediate

Language (MSIL) (which is platform independent native code). One drawback

of ASP.NET is that any web application developed with this framework needs

to be deployed on a Microsoft specific web server such as IIS because the

MSIL has yet to be embraced by other operating systems.

2.2.4 Conclusions

This subsection has offered an insight on the inception and growth of dynamic web

technology and in particular covered some of the more important JSP alternatives.

Therefore we must now investigate and discuss the role of JSP technology in terms of

the overall Java model.

2.3 JSP compatibility with the Java Enterprise Edition model
The purpose of this section is to define the role that the JSP architecture plays in the

overall scheme of the Java Enterprise Edition (J2EE) model; one must understand that

J2EE is an architecture that consists of many technologies such as Enterprise

JavaBeans (EJB), CORBA, XML, servlets, JSP and Web services. Under J2EE these

technologies can be categorised into three distinct groups: component, service and

communication [Kassem et al, 2002],

Due to the vastness of these three J2EE technology groups, this section shall only

examine a subsection of the component group called the Web tier. The Web tier

Page 11

Chapter 2 Literature Review

covers all the fundamental components in relation to JSP and will explain the

processes involved in deploying a Java based application onto the web.

As highlighted previously, the J2EE platform isn’t a single entity. J2EE is

amalgamation of many Java technologies [Kassem et al, 2002] and before discussing

the J2EE Web tier, we must explain in detail about three tiered architectures. That is,

J2EE’s primary focus is to provide the technologies that produce such software

architectures.

Before continuing, we must define “business logic”; which is used throughout this

dissertation; it refers to some context, that is, software component operations; that

make data relevant for an application. Basically business logic refers to the logic

rather than the view / representaion of that data. That is, it refers to the manipulation

of data [McLaughlin, 2002].

2.3.1 Three Tiered Architecture

A three tiered architecture describes the situation in which an application is broken

into a three tier distributed client / server design; the purpose of these tiers is to

provide a loosely coupled architecture that can be developed in parallel (see Figure

2.1).

T o p Browser MyComputer MS Exce l

T ie r

Middle
T ier

Bottom
T ier

MySQL SQLServer

Figure 2.1: Example of Three Tiered Architecture

Page 12

Chapter 2 Literature Review

(Please note: although the image of a browser in Figure 2.1 displays the index page

for the Google search engine, it is only signifying a basic internet browser in the

context of the overall diagram. Also this browser image will be used throughout the

rest of dissertation and the same significance will apply to all diagrams)

Top Tier

The top tier is the entry point of the system, typically a client user interface that

provides services such as logon, session, data input and display.

Middle Tier

The middle tier is usually a set of software components that provide the processing

power to handle events triggered by the top tier user interface. When handling events,

the middle tier conducts server side application logic, which could be in the form of

business logic execution, file input/output, transactions and connectivity to the bottom

tier. The middle tier is flexible in that it provides the ability to add additional software

components without disrupting the majority of the underlining code base; therefore

providing an extensible system that controls the communication flow between top and

bottom tiers.

Bottom Tier

The bottom tier can be recognized as the database management tier; otherwise known

as the physical database. This tier provides data consistency and replication to ensure

secure interaction with the middle tier. The communication with the database tier

usually takes the form of a middle tier database driver or service such as JDBC or EJB

respectively.

Architects and developers must make standard design decisions when deciding the

interoperability of these technologies within a three tiered architecture, this in turn

requires a higher understanding of what technologies drives the platform and the

trade-offs involved in applying specific design decisions to a specific application

problem [Kassem et al, 2002].

Page 13

Chapter 2 Literature Review

2.3.2 J2EE Web Tier architecture

In terms of web development involving Java, the J2EE platform tries to address many

problems that arise in standard development such as:

a) Productivity

Currently, development for the WWW means that a programmer needs to be

skilled in multiple technologies, as they not only provide for dynamic content

but also transactional database processing, distributed systems and mail

clients, etc. Since many different technology bases can be use within system

architectures, these architectures can often become convoluted and as a result,

system and work productivity diminish [Kassem et al, 2002];

i LET!' ■"
f | jf“* /■-' ~i

b) Legacy system connectivity f____

Since most of the data that are used throughout corporations is housed on

legacy systems, such as mainframes, it has become a problem for web

applications to access and reuse this data. Developers need a common and

consistent approach in bridging the gap between their WWW technologies,

legacy middle tier and backend services [Kassem et al, 2002];

c) Scalability

In today’s climate, users demand instant responses to the GUI based queries,

which means WWW applications have to handled multiple requests and scale

efficiently in terms of performance [Kassem et al, 2002];

d) Security

When an application consists of many tiers (for example, the three tiered

architecture) and software components, it is clearly recognizable that there is a

need for an overall security model. That is, there are multiple entry points (top,

middle and bottom tiers) throughout the system, which can be utilised by

hackers to exploit the system [Kassem et al, 2002],

Page 14

Chapter 2 Literature Review

The J2EE platform offers a suggested architecture solution to these problems called

the Web tier [Kassem et al, 2002] (see Figure 2.2). The purpose of the Web tier is to

manage the interaction between its external web clients and an application’s business

logic. The Web tier typically takes an incoming HTTP request and manages the

resultant interaction between itself and its business logic (such as EJB or JDBC

respectively) to form a result, which is then generated as a HTTP response that will

serve particular content (such as HTML or XML) back to the external web clients

[Kassem et al, 2002],

■-------
javax.http.
servlet

java.lang.' java.util.’

Web Tier

r _ - i

class

Figure 2.2: Diagram of J2EE Web tier functionality

The Web tier architecture offers developers the following functionality (see Figure

2 .2):

1. Translates HTTP GET and POST methods so that they can be processed by

the business logic classes, that is, the respective back end logical classes that

conduct processing for an individual HTTP event;

2. Provides the plumbing to manage the interaction between a HTTP browser

and core Java classes;

3. Manages individual user sessions by maintaining state connected with the

processing of HTTP requests;

Page 15

Chapter 2 Literature Review

4. Has the option o f implementing workflow business logic that is needed to

generate dynamic content;

5. Controls the workflow (application flow between different business logic

events) which flows between each rendered HTML page;

6. Generates dynamic content to be displayed on a HTTP browser [Kassem et al,

An application employing the Web tier architecture can be implemented using

servlets, JSP or a combination of both and built from several suggested J2EE

blueprint designs, for example, page-centric and Model View Controller (MVC) (a

full explanation can be found in section 3.2.2 and 3.2.3 respectively). Although the

Web tier architecture is essentially composed of one or more of the J2EE WWW

based technologies (for example, servlets, JSP or JSP with JavaBeans), it must be

realised that there are many more components involved in deploying a Java based

web application onto the WWW. Therefore the following subsection will describe

these components.

2.3.3 Definition of Web Tier components

The objective of this subsection is to highlight and explain many of the external

components that have to be in place for the deployment of JSP. The following

definitions of J2EE components and processes will provide clarification on common

terms that will be used throughout the rest of this dissertation (see Figure 2.3).

2002],

Page 16

Chapter 2 Literature Review

[j2EE Application Server

Figure 2.3: Diagram of Web tier architecture "
I i a '■
I ?, :■ •» f ; ; ;' ’ '

J2EE Application server '

An application server is a particular server, for example, Tomcat or Websphere that

serves both static HTML and dynamic content through a web container [Sun, 2002];

Web container

A web container is used to serve dynamic content (written in either JSP and/or servlet

technologies) as responses to request clients. [Sun, 2002];

WAR file (Web Application aRchive)

A web application archive is a collection/folder of . h tm l files, . j s p files, images,

property files, servlets and applets. These files are then zipped up into a . w ar file

(not unlike a . j a r file) to provide a single web application. Once the WAR file is

deployed to a web container; the file unzips and the application servlets / JSPs are

initialised and ready to serve to web clients [Sun, 2002];

Servlet context

Once a WAR file is unzipped through the deployment process, a top-level folder is

created with a name based on the filename of the WAR file. This folder exists as a

context that contains all the servlets and JSPs for a particular web application, and is

commonly termed as the servlet context. Also once the WAR file has been unzipped,

Page 17

Chapter 2 Literature Review

a Java object of type j avax. servlet. ServletContext is instantiated inside

the Java Virtual Machine (JVM). Basically this object holds information on what JSP

and servlets exist for a web application;

Servlet config

The Servlet config is a Java object of type j a v a x . s e r v l e t . S e r v le tC o n f i g

that initialises once your WAR fde is deployed on the web container. This object

contains application specific configuration information, which is read from the

w eb . xml file. Basically this object contains all the initialisation information to start

up an application servlet context and subsequent servlets and JSP files.

WEB-INF

WEB - INF is a directory that exists inside every WAR file. This folder contains a
w eb . xml file that provides the Java object of type

j avax. servlet. ServletConf i g initialisation parameters in the form of a Java

object of type javax. servlet. ServletConf ig .

w eb . xml (Web application deployment descriptor)

The web . xml file, which is stored under the WEB - INF directory, is a listing of

servlet context’s servlet or JSP information and their initialisation parameters. Once

the WAR file is deployed, the XML file is read into the web container and any

specified servlets will be loaded. It can also contain information on the servlet

context, for example, session timeout, welcome page etc.

An overview of some of the XML tags contained in the w eb . xml is as follows

[Goodwill, 2001] (see Figure 2.4):

Page 18

Chapter 2 Literature Review

.servlet-name

type f
Identifias the name of your
sendet

web-app
type Ì
Identifies the overall servlet
context

^servlet
type

vlet
&

1 ..CO
Specifies each unique servlet

.servlet-class

type I

Identifiés the fully quantified
class path to your setvlet

in rt-p a ram

type

1..«
Specifies an mitialiiation
parameter which will be
passed to the sen/let at
tuntims, such as system
property files are usually
used in cases like this

load-on-startup
type
Identifies the load sequence
of your servlet.

 ̂servlet-mapping
type 1

Specifies the URL pattern to
call the sendet

w e lc o m e -f ile - lis t

type

Specifies any friendly files
that should he loaded once
the servlet context is called
without a specific JSPs or
servlet

Figure 2.4: Diagram of web.xml file structure (extract taken from XML spy)

For more clear definition, there is an example listing of an actually w eb . xml below.
<web-app>

<servlet>
<servlet-namesmyServlet</servlet-names
<servlet-classscom.margey.framework.servlet.Java_DispatcherServlet</servlet-

class>
<init-param>

<param-namesPROPERTY_FILENAME_AND^PATH</parani-naine>
<param-value>C:\\propertyFiles\\Config\\Start_Up.properties</param-values

</init-params
<load-on-startup>l</load-on-startups

</servlets
<servlet-mappings

<servlet-namesmyServlet</serviet-name>
cur1-patterns/s</url-patterns

</servlet-mappings
«welcome-file-lists

<welcome-filesindex.j sp</welcome-files
</welcome-file-lists

</web-apps

Page 19

Chapter 2 Literature Review

l i b directory

The lib directory, which is stored under the WEB - INF directory, is a directory

which contains any and all JAR files (.jar file extension) that are directly related to

running of the web application. Once the WAR file is deployed these . j ar files are

loaded into memory and live under the web application servlet context. Typically

these . j ar files would store Database Drivers (MySQL, Sybase) JavaMail, XML

and/or the direct web application Java source and compiled runtime code.

c l a s s e s directory

The classes directory, which is stored under the WEB - INF directory, is a directory

with can contain all your web application’s compiled Java code, for example,

JavaBeans and Java classes, that are needed in the successful running of an web

application’s servlet and JSPs. Typically this method is used if the developer does not

wish to contain their code in a JAR file. Once the WAR file is deployed these class

files are loaded into memory and live under the web application servlet context.

2.3.4 Conclusions

This subsection has offered an insight into the role of JSP technology in terms of the

J2EE Web tier architecture. The subsection has also defined the context of where JSP

belongs in the physical makeup of a J2EE web application. Therefore the origins of

JSP (That is, its parent technology Java servlets) must now be investigated and

discussed.

2.4 Java servlets
As mentioned in section 2.1, JSP extends the Java servlet architecture therefore we

must digress and investigate the origins of JSP in the form of Java servlets.

Since the introduction of the J ava language, a core feature of the language called Java

applets were used to promote the overall development capabilities of the language. A

Java applet is client-side program; which is downloaded from an HTTP server via the

WWW onto a client’s browser. Once downloaded the applet executes on the client

local machine to perform some action. The applets of yesteryear were normally heavy

graphic oriented presentations or utilities. However since the WWW changed primary

Page 20

Chapter 2 Literature Review

focus from being a research tool to a business medium, it was noticed that these client

side programs offered little regard to solving enterprise business problems, such as

online banking, insurance and shopping. So a new strategy was formed to counteract

the Personal Computer (PC) client side program execution that applets offered. The

new strategy was a fundamental change back to application server side program

execution and in terms of Java technology it was called Java servlets.

2.4.1 What are Java servlets?

Java servlets are a server side mechanism for executing business logic with the view

of displaying dynamic HTML via the WWW. Java servlets provide a simple and

robust API (that is, the API consists of around 10 classes and 10 interfaces) that

supports HTTP Protocol requests and responses.

Servlets are programs that run on a J2EE application server’s web container, their

primary function is to deal with incoming client browser HTTP GET/POST requests

and generate an appropriate HTTP response, which contains specific content such as

HTML or XML.

2.4.2 The Servlet Hierarchy

The server side servlet programs that traffic HTTP request and response between

client PC and application server are made up of a architecture that contains three

distinct components (see Figure 2.5):

Servlet Interface
This Java interface provides a contract to all other servlets, it tells any newly

developed servlet that implements this interface that they must implement an

i n i t () , d e s t r o y () and s e r v i c e () methods (a full explanation can be found in

section 2.3.3). All servlets developed by programmers will implement this interface

directly, or alternatively the most common way is to inherit from a Java class that

implements the contract suggested by the Servlet interface [Goodwill, 2000], [Sun,

2001].

Page 21

Chapter 2 Literature Review

GenericServlet class
This is an abstract Java class that provides a developer with an implementation for

most of the contractual methods supplied by the Java Servlet Interface. However it

doesn’t provide an implementation of the s e r v i c e () method, therefore if class

inheritance occurs then an enforcement of this particular method is needed to run a

Servlet [Goodwill, 2000], [Sun, 2001],

HttpServlet class
This is an abstract Java class that is most commonly inherited from when a

programmer develops a Java servlet. It provides an implementation of all the methods

suggested from the Servlet interface and offers methods such as doPost () and

doGet () for dealing with HTTP POST and GET requests. A programmer can

provide their own processing of these HTTP requests by overriding these methods

[Goodwill, 2000], [Sun, 2001],

Figure 2.5: UML class diagram of the servlet hierarchy

2.4.3 The Servlet Lifecycle

The lifecycle of a Java servlet is quite simple. A servlet is loaded once and then

persists in memory; once loading has completed the servlet initialises any and all

specific system resources. From this point the servlet then services incoming HTTP

requests and then performs it own house keeping (that is, any unnecessary system

resources / process are shutdown). [Sun, 2003] [Zeiger, 1999] [MageLang, 1999]

Page 22

Chapter 2 Literature Review

We shall now look at the significant methods of the servlets in more detail (see Figure

2.6).

public void init(javax.servlet.ServletConfig
servletConfig) throws javax.servlet.ServletException
The init () method is where a servlet’s life begins. This method is invoked straight

after servlet object instantiation. The init () method is used to initialize any system

resources such as CORBA, RMI and JDBC, which the servlet will need when

processing incoming HTTP requests. The method input parameter is of type

j avax. servlet. ServletConfig interface, this object provides infonnation on

the servlet that has be gathered from the deployed WAR file’s web . xml file.

[Goodwill, 2000] [Hunter et al, 1998];

public void service(ServletRequest req, ServletResponse
res)throws ServletException, IOException
This method handles all the incoming HTTP requests by determining the request type

(HTTP GET or POST) and calling the additional appropriate servlet method, such as

doPos t () or doGet (). This method input parameters are of type

j avax. servlet. ServletRequest interface (provides infonnation supplied by

a client) and a j avax. servlet. ServletResponse interface (offers a response

back to the client) [Goodwill, 2000] [Hunter et al, 1998];

protected void doGet(HttpServletRequest request,
HttpServletResponse response) throws ServletException,
j ava.io.IOException
This method handles all HTTP GET requests, which mean browser based URL

queries. The method input parameters are of type

j avax. servlet. http . HttpServletRequest interface (provides HTTP

information supplied by a client) and

j avax. servlet. http . HttpServletResponse interface (offers a HTTP

response back to the client) [Hunter et al, 1998];

Page 23

Chapter 2 Literature Review

protected void doPost(HttpServletRequest servletRequest,
HttpServletResponse servletResponse) throws
ServletException, j ava.io.IOException
This method handles all HTTP POST requests, for example HTML Form based

queries. The method input parameters are of type

javax. servlet. ServletRequest interface (provides HTTP information

supplied by a client) and j avax. servlet. ServletResponse interface (offers

a HTTP response back to the client) [Hunter et al, 1998];

public void destroy()
This method is invoked when it is time to end the servlet life cycle. When an

application server is shutting down, it will execute this method. The destroy method

should do the exact reverse of the init () method, that is, close down any and all

system resources that was open by the init () method. [Goodwill, 2000] [Hunter et

al, 1998].

[4] destoryO

I

Figure 2.6: Servlet lifecycle diagram

Page 24

Chapter 2 Literature Review

2.4.4 Advantages of servlets over alternative technologies

Some of the key benefits of using the servlet architecture over alternative technologies

are as follows: \ ¡LUTTEi '

0 * 1 -
a) Platform independent

Since servlets are written in the Java language, they are completely platform

independent (write once run anywhere). That means a developer can write a

servlet on a Windows operating system and run it on a UNIX flavoured

platform [Hunter et al, 1998] [Hall, 2002], However this only is viable if the

application server that the servlet is deployed on is implemented in Java (for

example, Microsoft’s IIS server cannot run servlets as the server was not

implemented in Java).

b) Extensive class library support

Servlets have a simplified API (that is, 10 classes and interfaces) however

their true power is that they can leverage the extensive Java API. The Java

API comes with a huge library of predefined classes that support everything

from networking, database and file manipulation etc. Also in recent years Sun

Microsystems have added to their existing libraries with J2EE (Java Enterprise

Edition) that caters for CORBA, messaging, mail and XML services. Since

servlets are a component of the J2EE model, these libraries (Java packages)

gives developers programming servlets more power to develop large-scale

reusable components that can form enterprise solutions to large corporations

for example, purchasing a product, handling credit card facilities etc [Hunter

et al, 1998] [Hall, 2002].

c) Application/Web servers

The majority of industry standard application/web servers support JSP (for

example, IBM Websphere, Apache/Tomcat web server and BEA weblogic)

while its main rivals Microsoft’s ActiveServer Pages (ASP) and .NET are

currently only supported by IIS.

Page 25

Chapter 2 Literature Review

d) Memory and process efficiency

Once a servlet is deployed onto an application server, it is instantiated as a

single Java object in memory. Now when a web client starts sending over

HTTP requests for the servlet to handle, the servlet can handle the request

straight away, as it does not need to start an interpreter or spawn another

operating system process. [Hunter et al, 1998] [Hall, 2002]

e) Endurance

Since a servlet stays loaded in memory, it can maintain state and

hold on to external resources such as JDBC database connections, sockets etc

which would normally take a few seconds to load. [Hunter et al, 1998] [Hall,

2002]

f) Free to the public.

There is no licensing or cost associated with Java servlets. It is freely available

on the web and is supported by most major ISP (Internet Service Providers).

2.4.5 Why is JSP needed?

JSP is needed simply because web developers need something that is easier than

servlets to develop; note that many web developers would have difficulty developing

robust large scale web applications with servlets because of their inherent problem of

intermixing business logic and HTML based presentation. The example below shows

how a servlet class was often written.

public class HelloWorldServlet extends HttpServlet {

public void doGet(
HttpServletRequest request,
HttpServletRespon.se response)
throws ServletException, IOException {

response.setContentType("text/html");
PrintWriter out = response.getWriter();

out.printIn("<html>");
out. println (11 <head>") ;
out.println(" <title> Hello World Page </title>");

Page 26

Chapter 2 Literature Review

out .printIn(11 </head>");
out.println(" <body>");
out.println(" <hl>Hello World</hl>");
out.println(" </body>");
out.println("</html>");

}

Therefore these convoluted servlets restrict organised development in the following

ways:

a) Every web page’s HTML content has to be generated through the use of

writing excessive amounts of println () methods which are associated with

Java’s OutputStream or PrintWriter classes. Also every piece of

HTML content that required a quotation had to be delimited by a backslash as

Java code recognises a quotation as the end of a literal string. For example, a

servlet would handle the following code in bold as a literal string and

complain of a compilation error.

out. println ("<forin name=" f orml" method= "post"
action="">");

Therefore the following code manipulation would have to occur to resolve any

literal string problems.

out.println("<form name=\"forml\" method=\"post\"
action=\"\">");

This action resulted in huge human effort in terms of maintenance through the

updating and recompilation of the servlet implementation code [Bergsten,

2003] [Hall, 2002] [Hunter et al, 1998] [Hunter, 2000];

b) Web designer and Java programmer have to work very closely to complete

any and all content changes, as both parties did not have the necessary skills to

complete each other’s work. Therefore this process consumed precious project

schedule time [Bergsten, 2003] [Hunter, 2000];

c) Servlets cannot harness the power of web WYSIWYG development tools such

as Macromedia Dreamweaver, as a developer must manually embed HTML

Page 27

Chapter 2 Literature Review

into servlet code, therefore creating a development process that is error prone

and time-consuming [Bergsten, 2003],

2.5 JavaServer Pages (JSP)
JSP technology is a component of the industry standard J2EE Web tier model (see

section 2.3.2) and with respect to servlets, JSP can be viewed as a simplified version

of the servlet API. The reason for this is that JSP is built upon the existing Java servlet

infrastructure and wraps many of the mundane tasks of servlet programming into an

API that is easier to use but still offers a developer the full power of the servlets.

Basically JSPs are standalone programs that offer programmers the ability to develop

server side Java programs easily, as they overcome the fundamental problems with

servlets (see section 2.4.5).That is, JSP are easily maintained and cleanly separate

project development roles. Therefore, JSP have become the standard Java solution for

producing dynamic HTML. Like JSP’s parent technology (servlets), JSP is a platform

independent server side scripting language for building robust enterprise standard

dynamic websites. However the visual difference between JSP and servlet technology

is in the JSP server scripting language (that is, JSP scriptlet).

This server scripting language can be intermixed with HTML to generate a flat text

file which is known as a JSP document (denoted by . j sp file extension). This JSP

scriptlet code provides a mechanism to separate a developer from his program. That

is, hiding the developer from writing code that will generate / print HTML tags while

performing dynamic actions (which can be costly in both terms of time and

maintenance).

2.5.1 How does JSP work?

An explanation of the execution of a traditional JavaServer Page (JSP) is as follows

(see Figure 2.7):

Page 28

Chapter 2 Literature Review

2. The browser then sends a HTTP Request via GET or POST method to the

application server (for example, Apache Tomcat, IBM Websphere etc);

3. The application server now retrieves the requested . j sp file;

4. The JSP engine, for example, Apache Tomcat’s Jasper parses the . j sp file

and creates a . j ava source file. The . j ava file will hold generated class

code that extends j avax. servlet. http . HttpServlet and contains

the code which will generate the contents to be displayed to the screen

(typically the content is made from a combination of Java code and HTML) ;

5. The JSP engine then compiles the . j a v a source file into a . c l a s s file

which contains the class’s compiled byte code;

6. A JSP engine will then initialise the servlet class into its configuration. The

class file is then executed and resultant text (for example, HTML and XML) is

created;

Page 29

Chapter 2 Literature Review

7. The resultant text stream is then pulled back to the browser via writing the text

to an instance of ServletOutputStream. The instance of

ServletOutputStream can be retrieved from executing the method

getOutputStream () on a interface type of

j avax.servlet.http.HttpServletResponse;

8. The browser displays the result of the process to the client.

2.5.2 What are the advantages of JSP?

The JSP architecture offers developers many benefits over servlets; some of which are

as follows:

a) Reduces development time;

For a JSP program to execute, developers no longer need to consume their

time implementing code that inherits from the servlet base class

j avax. http . HttpServlet. Since a JSP file is a combination of HTML

and JSP scriptlet code that ultimately will be generated into a servlet (through

server parsing and compiling).

b) Reduces development maintenance;

JSP reduces its parent technology (servlet) mundane approach to writing and

modifying HTML (for example, writing inline p r i n t I n statements into

servlets for generating HTML), as JSP auto generates these p r i n t l n

statements once the . j sp file is parsed by a JSP engine.

c) Separation of developer roles;

JSP facilitates the separation of roles within a team context. It clearly defines

that roles between graphic designers and developers, that is the ability to work

on creative front ends and dynamic areas respectively.

Page 30

http://http.HttpServletResponse

Chapter 2 Literature Review

2.6 Conclusions
The subsections covered in this chapter have not oniy plotted the origins o f JSP (that

is, from the initial birth of dynamic web technologies, right through to JSP’s parent

technology servlets), but also discussed in detail the JSP technology itself (that is

what it is, right through to its advantages). Therefore since we now know the when,

what, where, why, and how of the subject matter, we will now proceed to investigate

the wrongs of the technology.

Page 31

Chapter 3 JSP Problems

3 JSP Problems

3.1 Introduction
Even though JSP is the standard Java solution for the production of dynamic HTML it

does have limitations. Therefore the objective of this section is to highlight and

explain some of the fundamental problems that are currently associated with JSP

technology. The problems will be discussed in the context of the following areas:

1. Design

JSP has no standard design approach, this can lead to difficulties with

integrating application business logic with JSP script [McLaughlin, 2000]

[Altendorf et al, 2002] (a full explanation can be found in section 3.2);

2. Performance

a. JSP code requires separate interpretation in addition to Java byte code

interpretation [Hunter, 2000];

b. JSP provides no server side caching of dynamic and static content,

which leads to increase memory usage from web and application

servers [Datta et al, 2002] [Iyengar et al, 2000] [Datta et al, 2002b] (a

full explanation can be found in section 3.3.3);

c. JSP doesn’t provide functionality to compress outgoing data [Hall,

2001] (a full explanation can be found in section 3.3.4).

3. Testability

There is no real unit testing tool at present, only

technologies [Pipka, 2002], which cannot accommodate the existing J2EE

architecture [Massol, 2003]; therefore this type of situation encourages the

well known affliction of testing, that is, testing is done after the completion of

development code [Peeters, 2001]; also JSP error handling provides

non-intuitive debug information therefore making the testing process more

difficult [Hunter, 2000]; (a full explanation can be found in section 3.4)

Page 32

interfaces to existing

Chapter 3 JSP Problems

4. Security

Today’s application server which host JSP pages have serious internal

vulnerabilities that expose the source code in a JSP source fde (. j sp). For

example, since the JSP source file (. j sp) exists on the server it can be

exploited through hacking [Dimov, 2002] [Raykov, 2002] (a full explanation

can be found in section 3.5).

3.2 Design —
It has been acknowledged that the current standalone design of JSP (which intermixes

HTML and JSP scriptlet code) is not very maintainable or reusable for enterprise

solutions, therefore programmers were allowed to impose their concepts of design and

in the early days of the technology many programmers encountered the following

problematic areas:

a) Programmers started to demand more functionality / services from the JSP /

servlet technology. For example, rendering different formats of dynamic

content (XML and HTML etc.) [Dai et al, 2000] was incorporated into the

technology to make use of the other interoperable Java API’s for example,

JavaMail, JavaBeans and JDBC;

b) Each programmer has full access to the

j avax. servlet. http . HttpServletRequest object, which causes

the following problems [Dai et al, 2000],

i. They were developing at the low level HTTP protocol;

ii. Low level programming and business logic became blurred;

iii. Coding and naming inconsistencies became the norm.

However as JSP gained more recognition within the development community, there

has been a debate over what is proper JSP object oriented design. As result, JSP

design techniques continued to evolve, now there are many different proposed

solutions with their own advantages and disadvantages. These solutions often lead to

developer confusion and implementation errors due to inexperience and design

complexity.

Page 33

Chapter 3 JSP Problems

Before we digress further, a discussion on the composition of a web-based system will

be made.

3.2.1 Composition of a traditional web application

Web systems are typically designed into three tiered architectures (a full explanation

can be found in section 2.3.1), with the middle tier typically composed of three logical

tiers [Kaewkasi et al, 2002] [Altendorf et al, 2002] (see Figure 3.1).

1. Business logic

The business logic layer has no knowledge of the corresponding workflow

(see workflow control in this section) or presentation areas (see presentation

layer in this section). The sole purpose is to communicate with external

systems (for example, CORBA and Database) and execute logical

calculations, such as adding, deleting and updating prices in a shopping cart

application or performing file manipulations [McLaughlin, 2002],

2. Presentation layer

This layer takes the final results of a particular page’s business

logic processing and displays them in readable formatted text, for example,

HTML and XML [McLaughlin, 2002],

3. Workflow control

This area implements decisional processing based on a user interface decisions

that are triggered by a user during their individual session visit, that is a user

unique viewing of possible logical workflow within a website. The workflow

control handles all incoming HTTP requests in terms of a switching

mechanism (if-else) and passes them to the business logic layer that will do all

necessary page specific processing before passing the results to the

presentation layer. The presentation layer in turn builds the page and hands the

resultant text back to the workflow control to dispatch as a HTTP Response.

The workflow control could be viewed as a multi-channel switch, which

directs HTTP requests to the correct area for business logic processing. For

Page 34

Chapter 3 JSP Problems

example, a user logging into a system could be directed to a logon error page

or the index page of website depending on the choices that they make

[McLaughlin, 2002].

Figure 3.1: Composition view of a web application

(The database in this diagram is an example of an external system, which the business

logic communicate with)

In the following sections, two industry standard designs for JSP web-based systems

will be discussed along with their inherent problems, these design solutions are page-

centric and Model View Controller (MVC / Model 2) [Brown et al, 2001] [Kassem et

al, 2002],

3.2.2 Page-centric (Model 1)

In this model, the application is built solely from interlinked dynamic web pages,

which incorporate the following components into each page:

• Connectivity to external resources. (Database, CORBA services etc.);

• Implementation of model specification;

• Performing calculations;

• Dynamic formatting of results;

• Hard coded hyperlinks.

Page 35

Chapter 3 JSP Problems

This approach tightly couples the traditional three-tier architecture (a full explanation

can be found in section 2.3.1). It is best suited for small to medium sized web

applications [Brown et al, 2001] because the application page flow is usually

predefined and the overall structure of the application is simple [Kassem et al, 2002].

The page-centric design can be implemented by using the page-view or page-view

with bean design approaches. j ;■

3.2.2.1 Page-view

With this approach the JSP page is solely responsible for processing all incoming

HTTP requests and offering HTTP responses in return. It combines the business logic,

presentation layer and workflow control into one entity, which is the . j sp fde. The

JSP page stands as a single entity that handles, maintains and processes incoming

requests, application state, business logic and presentation. This approach often leads

to a significant amount of JSP scriptlet code embedded within the JSP page [Hunter,

2000] [Brown et al, 2001],

How does the Page-view design work?

The Page View model works in a JSP web application as follows (see Figure 3.2):

1. The HTTP browser requests a specific user requested JSP page;

2. The JSP page in question loads as Java servlet; once initialized, the servlet /

JSP page will then run JSP defined scriptlets which will invoke pure Java

objects to fulfill business logic. Once business processing has completed, the

dynamic content will be presented as straight HTML;

3. The HTML content is now sent back to the browser as a HTTP response.

Page 36

Chapter 3 JSP Problems

Figure 3.2: Page-view working diagram

Z.2.2.2 Page-view with Bean

With this design strategy, an existing Java technology conccpt was introduced to help

reduce the amount of embedded JSP scriptlet code in a JSP page, and in terms of Java,

this technology solution was called JavaBeans.

JavaBeans

Basically JavaBeans are Java classes that can be used as the building blocks to form

other larger components or full applications [DeSoto, 1997]. A JavaBean is a Java

class that fully conforms to the JavaBeans specification. The specification states that

three simple rules must be adhered to by any Java class before the class can become a

JavaBean (that is, a portable, platform-independent software component model [Sun,

1997]). The following three rules are:

a) The class must implement the interface j ava. io. Serializable.
Upon object instantiation, the realisation of the S e r i a l i z a b l e interface

permits a class to compose itself into a streams of bytes [Hall, 2001] [Johnson,

1997] [Sun, 1997]. The stream of bytes offers an S e r i a l i z a b l e object

with the following functionality:

i. The bytes can be transmitted over a network via socket calls;

ii. The bytes can be saved to a hard disk via a flat file, this actions allows

the present state of the object to be stored for later restoration. That is,

the object state can be used as a session variable.

Page 37

Chapter 3 JSP Problems

b) The class must implement a no-argument constructor.

The following rule must be implemented because when an external technology

such as JSP wishes to instantiate a JavaBean, a process called introspection is

performed. Introspection is a runtime process that determines the methods,

properties and constructor of a given bean. This process makes heavy use of

j ava . lan g . r e f le c t reflection mechanism and a number of JavaBeans

naming conventions [Flanagan, 1999] [Sun, 1997]. Therefore during

instantiation of a bean, introspection will take the class type name of the bean

and through reflection, object creation will occur by using the non-argument

constructor [Hall, 2001];

c) A class must provide getter and setter methods to access its properties.

JavaBean properties (attributes) must be implemented as private instance

variables, therefore to gain public access to these variables a class accessor

(getter) and mutator (setter) methods must be implemented. These method

names must adhere to a particular naming convention, which states that each

method name mimics the property name with the get or set prefixed to it

[Brown et al, 2001], Also the initial character of the property name in the

method name must be uppercase. For example, if a JavaBean called Person
contained one property called name, then the JavaBean methods would be

getName () and setName ().

public class Person implements java.io.Serializable{
private String name ;

public Person (){
}

public String getName (){
return this.name;

}

public void setName(String newName){
this.name = newName;

}
}

The reason for following these naming conventions is simple. Through the use

Page 38

Chapter 3 JSP Problems

of Java introspection, a list of properties supported by the JavaBean can be

determined by scanning the class for methods that have the right names and

signatures to be getXXX and setXXX property methods [Brown et al, 2001]

[Sun, 1997],

The introduction of the new JavaBean entity causes a significant intuitive design

change from the previous stated page-centric design called “Page View” (a full

explanation can be found in section 3.2.2.1), as most if not all of the business logic

from each JSP page entity is removed and placed into JavaBeans. This offers a clearer

design by defining a clearer separation of presentation from content [Brown et al,

2001] [Pipka, 2002],

The architecture works on the basis that the JSP file will now be responsible for the

workflow, maintaining state and rendering presentation while delegating all business

logic to its companion JavaBeans. The Beans will then act out all calculations and

interface with external resources and then return the results to the JSP page for

dynamic formatting. M K , rn c iJi I; ! *:
i

O f- 7 1 '* •
How does the Page View with Bean design work?

The Page View with Bean model works in a JSP web application as follows (see

Figure 3.3):

1. The HTTP browser requests a specific user requested JSP page;

2. The JSP Page in question loads as Java servlet, once initialized the servlet /

JSP page will then run JSP scriptlet code or JSP JavaBean tags which will

invoke JavaBeans to fulfill business logic. The JavaBean tags in question are

special JSP tags, which use JavaBean introspection to instantiate a particular

JavaBean (for example, < j sp : u seB ean >) and / or invoke getter and setter

property methods (for example, < j sp : s e t Property > and

< j sp : get Property>) on a particular JavaBean. Once business processing

has completed, the dynamic content will be combined with straight HTML;

3. The HTML content is now sent back to the browser as a HTTP response.

Page 39

Chapter 3 JSP Problems

Figure 3.3: Page View with JavaBean working diagram

(Although this figure is very similar to Figure 3.2, there is a subtle different in that the

Java object in Figure 3.2 has now become a JavaBean and the JSP page in Figure 3.2

has now moved control of HTML presentation to the JavaBean. That is, the JavaBean

reduces the amount of JSP scriptlet code inside the JSP page, which in turn makes the

JSP page more readable and maintainable for developers.)

3.2.2.3 Disadvantages with page-centric design

The following are the fundamental problems associate with the page-centric approach

(That is, both the page-view and page-view with bean approaches):

a) Maintainability.

The degree of maintaining an application built with this approach is enormous.

Reusability would basically be non-existent for other applications. Design

changes could have major time impact on delivery of code. (SQL table change

- could mean an update for all SQL queries in pages). There would be a

significant impact on the fundamental intuitive logic that each page represents

as the JSP scriptlet code and HTML are firmly blurred [Seshadri, 1999]

[Mclaughlin, 2000] [Unger, 2000] [Pipka, 2002] [Kassem et al, 2002],

b) Workflow.

Every single JSP page implemented using a page-centric design approach

Page 40

Chapter 3 JSP Problems

stands on its own merit, that is, there is no outside influence guiding the

overall page to page logical flow for the complete web application. Therefore

there is a diminished intuitiveness to these standalone JSPs, since any

developer would find the page to page logical flow quite difficult to follow as

each page has hard coded links to other dynamic pages. It is not advisable to

place a new step in the workflow / logical flow as every page is uniquely tied

to each other. That is, specific HTTP request and session variables which are

set on a JSP are uniquely used on the following JSP logical flow [Seshadri,

1999] [Hunter, 2000] [Mclaughlin, 2000] [Unger, 2000] [Pipka, 2002]

[Kassem et al, 2002] (see Figure 3.4). j ^ ^

Figure 3.4: JSP workflow complexity

(The . j sp pages in this diagram are examples of how JSP communicates with the

traditional web application layers.)

3.2.3 Model View Controller (MVC) or Model 2

The core difference between the page-centric and MVC design approach is that the

responsibility of HTTP request processing has been removed from the JSP file.

The MVC model provides developers with isolated components that are easier to

understand and maintain (See Appendix B.2 - Apache Struts framework for

Presentation
Layw

WorkFtow
Control

Page 41

Chapter 3 JSP Problems

rationale). It is clear separation of an application (be it web or GUI) into three unique

parts:

a) Model;

b) View;

c) Controller.

These components are further explained in section 3.2.3.2, we note that this design

pattern originated in the Smalltalk-80 system to promote a layered approach to

developing graphical user interfaces (GUI) [Fowler, 2003] [Knight et al, 2002], The

MVC is based on the Observer / Observable design pattern (which is the basis of all

modem day GUI design).

3.2.3.1 Observer / Observable design pattern

The objective of the Observer / Observable design paradigm is to clearly separate an

application’s business logic from its presentation view. That is, the design pattern

supplies a means where components (both GUI and application driver code) are

loosely coupled; therefore promoting component reuse in other applications. This

loose binding of components is achieved through indirect referencing of each other

(presentation view and application code). For example, the application business logic

can be reused in other applications as it loosely coupled from the presentation view.

That is, the business logic has no knowledge of what type of view will present its

results. Therefore for the presentation view to display the results of a business logic

action, it must watch for an event to be triggered by the business logic. Therefore

when an event is triggered by the business logic, all subsequent presentation views

check to see if the event had any specific meaning and therefore carries out an action.

Basically the application data and presentation view do not know that the other exists,

but they behave as the do [Gamma et al, 1994],

This pattern is made up of two distinct parts (see Figure 3.5)

a) Observer

Any class that implements this interface, has a mechanism to update itself

once its present viewing observable object state changes [Gamma et al, 1994],

Page 42

Chapter 3 JSP Problems

b) Observable/Subject class

This class is unaware of how many observers are watching it, these observers

who can attached / detached themselves at any time and are notified when the

state of the observable object is changed [Gamma et al, 1994].

Subject
^Atlach(Observer) +observers Observer
^Detach(Observer)
^NolifyQ

1..n * UpdateQ

A
A for all o in observers { ^

o -> UpdateO;
}

ConcreteSubjecI
$>SubjeciState

+subject
ConcreteObserver

S^obsetverState obseivsrState = ^
subject ■> getStateQ;^GefStaleQ

*SeiStataQ ^UpdateQ

return SubjectState,

Figure 3.5: Observer Design Pattern [Rose, 2000]

To gain a more real world understanding of the Observer / Observable design pattern

the following analogy will be made:

“All of a sudden a man (Observer) from his house window spots (attach method) a

particular movie star, for example, Tom Cruise (Observable) walking down a deserted

street. Unknown to Tom Cruise that he is in fact being watched, he cries “I am the

best movie star in the world” at the top of his voice (notify method). The man laughs

to himself (update method) because he realises that Tom Cruise never won an Oscar.

The man then watches Tom Cruise exit the deserted street (detach method)”.

The MVC builds on the Observer design pattern, in the fact that view components

(observable) are clearly separated from their model components (observer).

Page 43

Chapter 3 JSP Problems

3.2.3.2 Components of MVC

The following are the fundamental components of the MVC architecture:

a) Model

This component deals exclusively with application business logic (that is, the

server side logic processing user HTTP request) [Althammer et al, 1999]. The

model layer suggests that all data objects, for example, JavaBeans will be

processed in this layer before handing the results back to the controller layer,

which in turn directs the results to the appropriate view layer. The model layer

might also touch upon external resources such as JDBC connections, CORBA

services and Enterprise Java Beans (EJB). Any objects belonging to this layer

should be able to run with a command line driver [Krasner et al, 1988]

[Kassem et al, 2002] [Knight et al, 2002], ...
r.' fcUI

Using a model layer in an application promotes the (bllo\^>g^,' ..V

i) Reusability, since the objects processed in the model layer are

independent o f the controller and view layers (that is, they should be

executable through the command line) then there is no reason for why

they cannot be reused in other applications with similar functionality

[Kassem et al, 2002];

ii) Separation of developer roles, as a developer working on this layer

shouldn’t necessary have web development skills [Kassem et al, 2002];

iii) Database portability, since updates to JSP pages containing embedded

SQL commands (that is, JSPs using the page-centric design) would

mean high maintenance costs for a project. Therefore if database

querying is not exclusive tied to a particular database, a model layer

could negate this problem because subsequent changes to objects (for

example, changes to embedded SQL, calling new stored procedures

and / or the usage of a new JDBC driver) on this layer would not

adversely affect the view layer as then are loosely coupled [Kassem et

al, 2002],

Page 44

Chapter 3 JSP Problems

b) View

No business logic is conducted in this layer as its only responsibility is to

display presentation items. For example, static and dynamic HTML, Applets

and images. Usually JSP takes on this responsibility as it offers developers the

opportunity to interact with the model layer by requesting information from

JavaBeans and then render their pages with static and dynamic content

[Krasner et al, 1988] [Kassem et al, 2002] [Knight et al, 2002].

Using a view layer in an application promotes the following:

i) Reusability as the view components, that is JSP pages can broken into

templates with subsections. That is, server side includes which gives

developers the ability to use common page elements through an

application [Kassem et al, 2002];

ii) Separation of developer roles, as a developer (graphic design) working

on this layer shouldn’t necessary have Java development skills

[Kassem et al, 2002].

c) Controller

The controller’s only function is to maintain application state and delegate

user requests to the appropriate model and view layers, where request

processing and presentation rendering can be made respectively.

Using a controller layer in an application promotes the separation of developer

roles as the controller acts as an interface to both the view and model layers

therefore decoupling these two components so that graphic designer and

developer can work separately [Kassem et al, 2002],

Page 45

Chapter 3 JSP Problems

3.2.3.3 How MVC operates in servlet web applications?

The MVC model works in a servlet web application as follows [Ping, 2003] (see

Figure 3.6):

Figure 3.6: MVC working diagram
I

1. The browser sends a HTTP request to the Controller servlet. The servlet then

checks the HTTP request for a specific HTTP field-value string parameter, for

example, nextPage=login. For clarity, a field-value string is aname-value

pair that can attached to any HTTP POST or GET method to signify that a

HTML form or URL contains additional information. For example, a logon

screen contains two HTML form fields (username and password respectively)

therefore once the form has been submitted two field-value strings will be sent

using HTTP POST and might contain the values username=margey and

password=mypassword respectively. The value of HTML form field can

be gather calling the method getParameter (String fieldName) on

the interface HttpServletReques t. After the servlet retrieves the field-

value string, the servlet will then interpret this field-value as a way to direct

the HTTP request to the specific page for further processing.

2. Since the servlet has interpreted the field-value string it can redirect to the

specific page. However before the redirection is made, the servlet could check

the state of certain business Model objects (JavaBeans). This would ensure

Page 46

Chapter 3 JSP Problems

that application state is consistent before allowing further business logic

processing. For example, if a user wished to view/track their current order

from a bookstore, then the servlet must check that the user is actually logged

in before processing.

3. If application state is consistent, the servlet passes the workflow to the specific

page for processing.

4. The page in question will then proceed to build/process business logic objects

to update their state and run specific behaviour. The result of this process will

then be fused within the page text to form dynamic presentation behaviour.

5. At the end of this process the text be it HTML, XML etc. will then be

flushed/sent back to the browser by the means of a HTTP response.
j t L. .
1

3.2.3.4 Problems with MVC

When properly followed the MVC design pattern enforces a well controlled and

structured web application. However it does have the following disadvantages:

a) Unnecessary updates.

A fundamental problem with this design approach is that each component of

the view layer (. j sp file) must update whenever the model (business logic)

changes, even if the component doesn’t need to update. Basically if a JSP file

(view) is broken into subcomponents and a model object changes then a

request will be made to all subcomponents of the JSP page in question [Zhao

et al, 2002] [Althammer et al, 2003] .

b) Model and controller are tightly coupled.

The application logic is not clearly separated between the controller and

model layers, in the sense that the controller and model still needs to maintain

/ share session state between each other [Dai et al, 2000] [Unger, 2000],

Page 47

Chapter 3 JSP Problems

c) Difficulty.

The MVC design pattern is quite difficult to comprehend and implement for

developers who are not well versed in the internals of the Java API. This can

lead to a fragile solution that fails to clearly separate the important parts of the

system and as a result it is hard to implement and maintain [Althammer et al,

2003].

3.3 Performance
As highlighted in the previous section, choosing a standard JSP application design

(that is, between page-centric and MVC) leads to a host of disadvantages, however

that is not the only JSP limitation, another substantial limitation is performance.

The main difference between static and dynamic content is server side processing

time. Static content is served to a client browser in the following manner. Once an

incoming HTTP request is received, the server determines that a particular static page

has been requested and processing starts on a server. Then the web server or container

finds the aforementioned page and serves it back to the client browser.

While serving static content is a relatively low performance drain on a web container

or server, dynamic content is entirely a different matter. JSP performance degrades

under the following pressures:

3.3.1 Connectivity to external resources

Depending on the complexity of an application, dynamic content served via JSP can

require various amounts of processing. Processing of this sort could take the form of

connectivity to various external resources, such as databases or CORBA services etc.

which involves significant periods of time to complete therefore reducing response

speed to a client’s browser [Iyengar et al, 2002].

Page 48

Chapter 3 JSP Problems

3.3.2 Thread management of Server Side Includes (SSI)

Once a JSP file is actually parsed and compiled into a single servlet (which occurs

during the initial execution of the JSP page), the web container has to manage an

individual servlet thread process for each HTTP of the JSP / servlet [Iyengar et al,

2002], Therefore, using server side includes (that is, the JSP include statement < %@

include f ile=" <FILENAME>" %>) to fragmentize a dynamic JSP page with a

view to using common fragments throughout a website (for example, page header and

footer elements) would result in an increase of servlet thread processes that the web

container had to manage [Hunter, 2000] (see Figure 3.7).

load

rV-i ; * request
Google

I *"IS5 *-=

maln.jsp

loadheader.jsp

loft.Jsp rlght.jsp load

&

load

loadfooter.Jsp

1

,jservlefc;‘

.■e e r vie t ;

* " W
'• '¿e rv leV *

^.‘« e rv le h '

Figure 3.7: JSP include fragment diagram

3.3.3 Caching

Section 3.3.2 suggests a more significant problem in JSP, namely there is no facility

to cache server side static or dynamic page fragments. If a programmer had the ability

to store server side JSP dynamic or static fragments as a single process in memory or

serialized on disk, then the web container would not have to manage these JSP

fragments as multiple servlet instances. A JSP caching mechanism would

significantly reduce the load on both web server and container and increase the

overall performance of an application [Challenger et al, 2000] [Knystautas, 2001].

Page 49

Chapter 3 JSP Problems

application = pageContext.getServletContext();
config = pageContext.getServletConfig();
session = pageContext.getSession();
out = pageContext.getOut();

A possible workaround to this problem (although not feasible in the private sector and

very time consuming) is to customise the JSP engine in order to get a

GZIPOutputStream instead of the JspWriter. Developers could do this with at

least one JSP Engine (Tomcat) because it has an open source code base.

3.4 Testab ility

A substantial JSP limitation is in its testability, as developers wishing to perform a

line-by-line debug walkthrough of their JSP scriptlet find themselves with a quite

taxing task compared to normal Java applications. The reasons for this are actual

simple:

a) Pure Java based application GUIs developed using Swing or AWT exclusively

deal with native Java objects. Hence the code can be debugged through a

traditional integrated development environment (IDE). However JSPs have

outside interlinking component variables, which are hard to simulate in an

IDE. Examples of these are the HTTP protocol, web browsers, web containers,

web servers, session management etc. [Brown et al, 2001] [Dai et al, 2000]

[Hieatt et al, 2002];

b) The overall design of a web application consisting of JSP can often lead to an

increase in application complexity and developer’s confusion since the

developers have a wide choice in their implementation methods, for example

page-centric and MVC designs [Brown et al, 2001];

c) The non-intuitive way in which JSP deals with error handling. When JSPs

throw an exception, that exception is based on the generated Java source file

as opposed to the JSP file itself, therefore inexperienced developers try to

match the error line number to the JSP file and not the actually source Java

class file. Basically developers must debug compiled machine code without

Page 51

Chapter 3 JSP Problems

using high level language symbols and structures, and this is difficult

especially for the inexperienced [Brown et al, 2001] [Hunter, 2000];

d) During the parsing and compilation of a JSP source file (. j sp extension) to a

Java servlet class, the base JSP scriptlet code is not checked for warnings (for

example, of type checked / unchecked exceptions and possible null pointers)

and depreciated methods before / during compilation therefore the JSP code is

more vulnerable to runtime errors as oppose to native java code [Dudney et al,

2003] [Hunter, 2000];

e) Currently there is a servlet / JSP application server non-standardisation

towards reporting JSP errors, as each vendor offers their own interpretation /

implementation of a JSP error handling mechanism. Therefore this non

standardisation can lead to programmers spending more time on routine bug

fixing and learning the internal workings of a specific application server

[Brown et al, 2001],

Many programmers try to overcome these JSP testing problems by using conventional

testing methods. These methods can form two categories namely console and IDE

based testing.

3.4.1 Console based testing

This method of testing consists of systematically entering Java

System. out. print In () statements throughout a code base, with a view of

examining the results when the web application is executed.

It is fair to assume that this method is relatively easy to implement and has the

advantage that you don’t have to create additional classes in dealing with outputting

to the console, however there are significant drawbacks.

a) The code based increases in size and method intuitiveness is lost thought the

clutter of System. out. print In () statements [Dudney et al, 2003];

Page 52

Chapter 3 JSP Problems

b) It is laboursome and somewhat mundane process that increases String
object creation in the application server’s Java Virtual Machine (JVM),

therefore overall application performance can degrade significantly.

Example:

System.out.println(
" [debug info: for counter := " + i + "]") ;

One might think that in theory that the overloaded operator “+” only creates

one String object where the String grows in length, however Java strings

are immutable. That is, “+” creates a new String object the size of the right

String plus the left String, therefore in reality a third String object is

created [Sun, 2002b] [Brown et al, 2001];

c) Since the results of the debug messages must be manually examined, incorrect

results could be inferred due to human error [Dudney et al, 2003].

3.4.2 IDE debugger based testing and profiling

Currently there is a large choice of tools for debugging and profiling Java

applications, which can perform breakpoint code walkthroughs, variable watches and

threading support. These tools can speed up development and reduce the number of

application bugs found in a production environment. Even though these tools provide

major advantages, they can be out of reach from small businesses and students as they

are very expensive to purchase.

3.5 Security
The Java language is judged as being secure as it is strongly typed language (that is,

in Java every variable or class has a type and therefore during compilation and

runtime execution, if the value type and object type do not match then a new value

cannot be assign to an object. Thus hackers cannot introduce foreign entities into

system which could masquerade themselves as normal entities) and the Java language

contains cryptography / security API components. However in terms of the WWW,

Page 53

Chapter 3 JSP Problems

application-level security vulnerabilities are inherent in a Web application’s code,

regardless of the technology in which the application is implemented or the security

of the Web server and backend database on which it is built [Scott et al, 2002].

JSP is no exception to the above, since its primary function is to render dynamic web

content over the WWW, it is explicitly exposed to many different security problems

that fall under two categories namely application level and application server

vulnerabilities.

3.5.1 Application level vulnerabilities

General security vulnerabilities at JSP application level can contribute to two

problems, one is third party components; these components might be full of security

holes and developers who are integrating them into their systems have no control over

their problems. The second general problem is that code is buggy as developers

generally overlook the identification of security related code as they are under

projects time constraints / commitments [Scott et al, 2002],

The most significant JSP application level security breaches can fall under three

methods, that is HTTP form modification, Cross-Site Scripting and JavaBean

exploitation.

3.5.1.1 HTTP Form modification

This attack takes the form of saving an outputted dynamic or static HTML page from

a browser and manipulating an embedded HTML form before submitting it via the

WWW [Dimov, 2002],

For example, a user could have a back account creation form where they enter in their

personal details, that are name, address, age etc. However the page could have a

hidden form field that states that the overall balance is zero.

<form name^'forml" method=l,post" action=nhttp: //www.bank. com">
ctable border="l" cellspacing^" 011 cellpadding="011 >

<tr>
<td>Name</td>

Page 54

http://www.bank

Chapter 3 JSP Problems

<tdxinput type="text" name="name"x/td>
</tr>
<tr>
<td>Address</td>
ctdxinput type="text" name= "address"></td>

</tr>
<tr>

ctdxinput type="submit" name="Submit" value="Submit"></td>
ctd> </td>

</tr>
</table>
<input name="balance" type="hidden" value="0">

</form>

Now if a user saved this output and changed the following

HTML text from <i n p u t n a m e = " b a la n c e " ty p e = " h id d e n "

v a lu e = " 0 " > t o <i n p u t n a m e = " b a la n c e " ty p e = " h id d e n "

v a lu e = " 10 0 0 00 0 " > then the user would be a million pounds richer once he/she

submitted the page!

It is extremely difficult to combat this attack, as it requires server side JSP scripting,

which is tedious, time-consuming and error prone task that is rarely undertaken in

practice [Scott et al, 2002], For example, instead of client side Javascript validation;

the validation is now moved to the server side JSP code base - this means that a

HTTP request must be sent to the application server and dealt with there as oppose to

using Javascript. Javascript can check for errors before a HTML form is submitted

and therefore lessen the amount of HTTP requests that are sent to the application

server.

3.5.1.2 Cross-Site Scripting (XSS)

This technique is the most common attack method used by hackers. It is where a

hacker wishes to steal a client’s details (by manipulating their cookies, which contain

passwords and usernames) by embedding malicious JavaScript or HTML into JSP

dynamic page generation output.

For example, take the friendly URL

http : //www. mysite . com/index. j sp?message=Patrick which will take

name - value pair of message and display the users name on the screen.

Page 55

Chapter 3 JSP Problems

A XSS attack could be to embed a malicious URL into the message name - value

pair, which when clicked would bring a friendly user to a new website that exposes

the user’s sensitive information (that is, cookies etc.) [Dimov, 2002] [Klein, 2003]

[Scott et al, 2002].

For example,

http://www.mysite .com/index .j sp?message=Patrick

3.5.1.3 JavaBean exploitation

As specified in the JSP specification, JSP can modularize certain business logic areas

into workable reusable components using JavaBean technology (a full explanation can

be found in section 3.2.2.2).

A JavaBean primary function is to provide an encapsulation of data properties and

provide easy access to these data properties by using getter and setter methods [Sun,

2001]. In JSP these setter methods can be abbreviated through the use of JSP bean

tags, for example < j sp : set Property name = " JavaBean_Name"

property="name"/>

Instead of a developer using multiple JSP bean tags to set multiple JavaBean

properties, a developer can use of the wild card character (for example,

<j sp : setProperty name =" JavaBean^Name" property= "*"/>) [Sun,

2001], which provides a shorthand JSP Bean tag notation to set all properties of a

JavaBean.

However the usage of the wild card character exposes a large security hole, as there is

nothing stopping a user from manipulating a HTTP POST/GET URL (that is, by

appending additional name-value pairs) to set additional properties on a JavaBean

[Dimov, 2002],

For example, a HTML account setup form (see Figure 3.8) that contains two form

fields, say name and address, will be submitted to an Account bean class which

Page 56

http://www.mysite.com/index.j
http://www.evilsite.com%22%3ePatrick%3c/a

Chapter 3 JSP Problems

contains three data properties name, address and balance. Therefore upon the HTML

form submission, only name and address properties will be set on the Account bean.

However if a user appended a name-value pair to the end of the HTML form

designated JSP page, for example, form.jsp?balance=1000000. Then they could

rightly initialise a user bank account balance to a million pounds as oppose to zero

pounds if the JSP code looked like the following.

<jsp:useBean id="account" class="AccountBean">
<jsp:setProperty name=" account" property="*"/>

< j sp : useBean> —
t Le t t s ;.;

Account Setup Details

Name 1

Address r
Submit |

Figure 3.8: Account HTML setup form

3.5.2 Application Server vulnerabilities

Like any other software, application server software can be shipped with deficiencies.

There are many reported cases of where vendors have shipped their JSP

implementations (Tomcat, Websphere etc.) with software bugs in the form of security

vulnerabilities.

For example, an early version of Tomcat had a problem in that it exposed a requested

JSP file source code by replacing the file extension . j sp with . j s%2570. The

problem is that the characters %2 5 is an URL encoded "%", and 7 0 is the

hexadecimal value for "p". Thus application server doesn’t invoke the JSP page (since

the URL docs not end in " . j sp"), however it does invoke a static version of the file

(since the URL ends in ". j s%p"), which displays the file source code [Dimov, 2002]

[Huseby, 2001] [Scott et al, 2002].

Page 57

Chapter 3 JSP Problems

Also versions of Tomcat and Websphere had an exploitation of source code problem

by appending the default servlet implementation

o r g . a p a c h e . c a t a l i n a . s e r v l e t s . D e f a u l t S e r v l e t and

s e r v l e t / f i l e / respectively to the beginning of the requested JSP page. For

example, if hackers wish to gain the source code to a JSP file called i n d e x . j sp

then all they had to do was enter the following text as a URL in a browser.

h t t p : / /www. < w e b s ite n a m e > . c o m /o rg . a p a c h e . c a t a l i n a . s e r v l e t s

. D ef a u l t S e r v l e t / i n d e x . j sp [Rayvok, 2002] or

h t t p : / /www. < w eb siten am e> . c o m / s e r v l e t / f i l e / in d e x , j sp [Shah et

al, 2000],

3.6 Conclusions
The areas highlighted in this chapter, such as design, performance, testability and

security have demonstrated the limitations of JSP. The problems outlined should be

carefully considered as they could cause lateness, instability and quality degradation

within a JSP web development project.

Page 58

http://www.%3cwebsitename%3e.com/org.apache.catalina.servlets

Chapter 4 Proposed Solution

4 Proposed Solution (MagnumServer Pages)

4.1 Introduction
The overall objective of this chapter is to present a new architecture design for

developing web applications in Java. We call this new architecture MagnumServer

Pages, which will provide solutions to the main fundamental problems that are

currently associated with JSP technology, thus the suggested solutions identified in

this chapter are organised according to the JSP problems areas identified in section 3.

Hence the new architecture will be discussed under the categories of design,

performance, testability and security. j M vry

I OFT "

4.2 Design
The new architecture is based on an enhancement of the Model-View-Controller

(MVC) (see section 3.2.3).

4.2.1 Enhancement of MVC

The proposed design alternative will leverage and enhance the MVC tiers (Model,

View and Controller) in the following manner:

a) The Controller servlet will only have one responsibility, that is, to remodel the

HTTP request object as a pure Java object and dispatch it for business

processing [Alur et al, 2003] [Ball, 2001];

b) Each programmer does not have access to the

javax. servlet. http . HttpServletRequest object directly. They

are dealing with a pure Java transport request object which means that the

following will occur:

i) They are developing at a high level, where the HTTP protocol has been

hidden in favour of a pure Java object which acts as a full

request/response mechanism between the model and the view layers

[Alur et al, 2003];

Page 59

Chapter 4 Proposed Solution

ii) Low level programming and business logic will be clearly defined and

separated, that is, the proposed framework will handle all low level

aspects of web development (for example, session management) and

the business logic can follow a Unified Modelling Language (UML)

[Booch et al, 1998] use case format (for example, follow logical

business processing steps) [Alur et al, 2003];

iii) The proposed alternative will impose strict rules on coding application

solutions. Thus these standards will present a set of guidelines that rule

out inconsistencies when developing a web application with JSP (for

example, a developer can design and implement their web application

using any approach they wish. However this can lead to problematic

situations).

Since developers have so many decisions to make in view of JSP object oriented

design (see section 3.2), which in turn offer their own problems, for example with

respect to JSP design there can be less intuitiveness and tightly coupled layers. The

proposed design alternative will present a means to decrease developer’s confusion

and reduce implementation errors, as it will offer a flexible and intuitive design that

experienced developers can use.

In this section a discussion on the proposed design solution for building Java web-

based systems will be made. The design will offer plausible solutions over the

presented MVC design problems.

4.2.2 Components of alternative MagnumServer Pages design

For the design of MagnumServer Pages, the application will use a three-tiered

architecture; in turn the middle tier will use a three-layered approach. The layers will

provide programmers with independent and hidden components that are easy to

implement and invoke. Similar to the MVC design pattern, the new design will be

separated into three distinct parts that will offer loosely coupled and more intuitive

design.

Page 60

Chapter 4 Proposed Solution

a) Model u——

Firstly, the model layer will be completely independent of the HTTP protocol.

That is, if the model implements the Command design pattern [Gamma et al,

1994], it will only deal with pure Java objects (object creation and setting

mutable attributes) and will strictly adhere to the basic and alternative flow of

a UML use case [Booch et al, 1998], It will be perfectly feasible to run the

model element with a command-line driver. For example, a shopping basket

checkout use case could be executed as a separate stand-alone entity.

Using the proposed model layer in an application contributes to the following:

i) Promotion of reusable classes as the objects used are common

throughout an application and they are loosely coupled since they

support the Chain of Responsibility pattern (that is, the model layer is

not aware of were a request was sent from) [Alur et al, 2003] [Gamma

et al, 1994];

ii) Since the model represents a use case and it is independent of the

HTTP protocol, it offers developers the ability to easily unit test their

logical units of work through the use of a flexible test framework such

as Apache JUnit because it can represent a standalone entity (that is,

separate from the controller and view layers) that can be tested by

using a command-line driver [Alur et al, 2003];

iii) The proposed model layer will be very easy to implement and to

understand, as there are no contributing components such as the HTTP

protocol. Therefore other developers may easily pick up another

person’s model unit and continue to work with it with minimal

overhead [Gamma et al, 1994];

iv) The model layer allows a clear separation of developer roles, as a

developer working on this layer will not need web development skills.

b) View

Again this layer will be completely independent of its counterparts, that is the

Page 61

Chapter 4 Proposed Solution

model and controller. No business processing will be conducted in this layer,

as its sole task is to take a single native Java request object and use it to

display dynamic presentation items [Fowler, 2003]. The view layer will also

have the ability to use any presentation rendering style, for example JSP, XSL,

and HTML.

Using a view layer in an application promotes the following:

i) The ability to use the best suitable rendering strategy to display results

without worrying about using a new Java framework or refactoring

code to incorporate a new technology. A developer is free to use a

combination of rendering strategies within their application, which

offers unlimited opportunities in developing web applications [Alur et

scope for reusability. For example, a page broken into page

subsections, which reduces the overall implementation time of

dynamic pages as these subsections can be reused [Alur et al, 2003].

iii) Separation of developer roles, as a developer (graphic designer)

working on this layer shouldn’t necessary have Java development skills

c) Controller

It is proposed that this layer should use a thin servlet that acts a single point of

entry for an application. The layer only functions are to separate the HTTP

protocol from the Java request, dispatch the request for business processing

and then delegate the request for appropriate visual rendering [Fowler, 2003],

Using a controller layer in an application promotes the following:

i) Through the use of a Factory pattern (that is, a class that can create an

abstract class so that it can be perform polymorphic behaviour

throughout the rest of an application), the controller will cleanly

separate the HTTP protocol from an incoming request, which promotes

ii) Like the proposed architecture’s predecessor (MVC) there is huge

al, 2003] [Gamma et al, 1994].

[Fowler, 2003].

Page 62

Chapter 4 Proposed Solution

loosely coupled interaction between the model and view layers

[Fowler, 2003];

ii) The controller layer will have a clean internal design for dispatching a

pure Java request object. That is, as opposed to the normal MVC

decision design mechanism, which uses nested if else or switch
statements. The alternative controller layer will incorporate the

Dispatcher design pattern, which in turn uses Java reflection to decide

how to direct the request to its appropriate model unit. Thus

eliminating decision code maintenance from an ¿application [Alur et al,

2003] [Ball, 2001] [Fowler, 2003]; ! c .

iii) At runtime the controller will also delegate the request object (after

business logic execution) to an appropriate rendering Strategy pattern

[Gamma et al, 1994] (that is, JSP, XML etc.). This runtime binding

will promote the use of interchangeable presentation styles therefore

offering developers with the best possible choice to display results

[Alur et al, 2003],

4.2.3 How does the alternative design work at run-time?

The proposed alternative design solution will work in a servlet web application as

follows (see Figure 4.1)

1. The browser sends a HTTP request to the controller servlet. The servlet first

gathers the j avax. servlet. http . HttpServletRequest object and

then checks the HTTP request for a specific field-value string parameter, that

is Action=login. The servlet will later interpret this field-value as a way to

direct the HTTP request to the specific page for further processing;

2. The servlet now proceeds to grant independence to the object of type

j avax. servlet. http .HttpServletRequest by calling on a

Factory [Gamma et al, 1994] to convert the object to a pure Java object. That

is, the Factory strips out the parameter values, cookies and bytes from the

Page 63

Chapter 4 Proposed Solution

object of type j avax. servlet. http . HttpServletRequest and

inserts these values into a native Java object. This action permits loose

coupling between the controller, model and view layers;

3. Through the use of the Dispatcher object (which uses reflection) [Ball, 2001]

[Cymerman, 1999] [Cymerman, 2000] the servlet now creates a model domain

object by using the field-value string parameter gathered in step 1. After the

model domain object creation occurs, the servlet passes the pure Java request

object to the model for execution (execution follows a UML use case basic and

alternative paths) [Fowler, 2003];

the model unit results (stored in the single pure Java request object) to runtime

rendering strategy (JSP, HTML etc.) for page processing. The pure Java object

in question will then proceed to be fused within the page text to form dynamic

presentation behaviour [Fowler, 2003];

5. At the end of this process the text (be it HTML, XML etc.) will then be

flushed/sent back to the browser by the means of an appropriate rendering

strategy [Fowler, 2003],

4. If application state and model business logic are consist passes

■ Controller Model View

Login.jsp

Figure 4.1 : Proposed framework design working diagram

Page 64

Chapter 4 Proposed Solution

4.2.4 Advantages of the new MagnumServer Pages design

The design offers developers the following solutions to the problems associated with

the page-centric approach (see section 3.2.2):

CiF
a) Maintainability t —— ------- — ■

Maintaining an application built with the proposed framework will be very

manageable. The design will offer a huge amount of reusability in the sense

that existing model use case classes can be inherited from, that is the

functionality can be extended. Design changes (both visual and logical) will

have minimal impact on the delivery of code (that is, text / image changes can

be performed by a graphical designer, while changes to database schema

would result in a programmer simply updating the SQL in the model classes)

[Alur et al, 2003].

b) Workflow

Each page will be clearly separated in model (use case class) and view (JSP,

XSL) tiers. Therefore the workflow is quite easy to follow since it adheres

very closely to a UML use case. A programmer can easily add and remove

workflow steps from an application due to the above model - view separation

and also that the framework hides the low level HTTP request and session

variables [Alur et al, 2003] [Gamma et al, 1994].

Furthermore, even though the framework design uses ideas from the MVC design

paradigm, one would think the design would encounter the same problems outlined

with its predecessor. However that is not the case for the following reasons:

a) Unnecessary updates

During the execution of the model use case unit, the new design’s native Java

request object is filled with the actual results. This object will act as a single

model results carrier to be fused with the appropriate view layer. Since the

rendering strategy will interact only with the single pure Java object as

opposed to the many JavaBeans in the MVC design (see section 3.2.3), this

will reduce the problem of unnecessary updates of the view layer (. j sp file)

whenever the model (business logic) changes in the MVC architecture.

Page 65

Chapter 4 Proposed Solution

b) Model and controller are loosely coupled

In terms of a web application; the logic will be clearly separated in the context

of the controller and model layers. The model and controller are clearly

independent as they do not share and maintain session state between one

another [Alur et al, 2003] [Gamma et al, 1994].

c) Easier to understand and to use

The proposed framework will be very easy to understand and use, as a

developer wishing to develop a dynamic web page will have to follow a

simplified development process. For example, a developer only has to develop

a model use case unit (to perform business logic) and its subsequent page (for

rendering). The development process uses pure Java based classes with no

added HTTP technology layer, therefore simplifying usage for non-web

developers [Alur et al, 2003].

4.2.5 Summary

To summarise, lets contrast the traditional MVC design against the suggested

alternative MVC design in terms of design (see Table 4.1).

Design Category Traditional MVC Design New MVC Design

Protocol HTTP None

Controller decisional

process

If /else statements

Switch statements

Reflection

Controller-model

dependency

Tightly coupled Loosely coupled

Application data transfer

vehicle

HttpServletRequest Pure Java object

(Not tied to servlet API)

Domain model JavaBean Pure Java object

model-view dependency Tightly coupled Loosely coupled

Session management Manual Automatic

Rendering strategy Static Dynamic

Table 4.1: Design contrast between traditional and alternative MVC architectures

Page 66

Chapter 4 Proposed Solution

4.3 Performance
As previously discussed in section 3.3, JSP performance is affected by four

fundamental problems, namely, (i) connectivity to external resources, (ii) thread

management of SSI, (iii) caching and (iv) the lack of compression for HTML content.

Although these problems affect overall JSP application performance significantly,

they are not insoluble. The following section will outline how the new design

proposes to overcome three of these performance problems. One problematic JSP area

caching is out of scope of this thesis because it is too vast to provide a workable

solution.

4.3.1 Connectivity to external resources

Connection to a database via JDBC, for example, can turn out to be a tremendously

expensive operation for JSP; it is expensive in terms of both CPU cycles and memory

footprint. JDBC connections involve significant set-up, execute and shutdown; all this

leads to slower response times and increased server load, which in turn further slows

response.

A proposed solution to this problem is to create a database pooling mechanism [Alur

et al, 2003], Upon servlet deployment and initialisation, a substantial number of JDBC

connections are created within the pool. These connections are then handed out in a

round robin manner to every pure Java request object created by the proposed

architectural design approach. A single connection can be later used for each

individual execution of a model use case unit (business processing) and replaced back

into the database pool for later reuse.

4.3.2 Thread management of Server Side Includes (SSI)

Due to JSP ability to fragment common components of a dynamic JSP page, a web

container’s servlet thread load can increase significantly (that is, including the main

JSP, each JSP fragment is a servlet itself). The effect of this can cause the overall

performance degradation of a web container. Again, this performance problem cannot

be resolved easily, as it is uniquely tied to the overall design o f JSP. However a

proposed remedy to this problem is the creation of a new Java based dynamic page

Page 67

Chapter 4 Proposed Solution

technology called MagnumServer Pages (MSP) (see section 5.5 for a full

explanation), one where servlet threads are eliminated all together from the opposed

technology.

Thus new design will allow for this as the controller layer initially strips the HTTP

protocol (that is, through the use of Factory class) from the incoming Java request

object. Therefore upon creating a dynamic web page, servlet thread activity ceases as

MSP instantiates a native Java object (which in turn is maintained by the JVM). This

native Java object in turn will take on the servlet’s responsibility for building dynamic

content. A full explanation can be found in section 5.5.

4.3.3 No provision for compression of HTML content

In section 3.3.4, we outlined how the design of JSP technology was limited in

producing compressed data. Therefore we shall be introducing a process to compress

the HTML content (that is, we shall retrieve an object of type

j ava . i o . OutputStream from a j avax. servlet. http .
HttpServletResponse object. This OutputStream object will then be

wrapped by a GZIPOutput Stream class, which then writes and flushes the

compressed dynamic string back to the browser). Therefore for the new process to

work, a new dynamic page technology will be implemented (That is, MSP see section

5.5) to return a full dynamic content string so that it can be compressed (that is,

oppose to a JSP page writing the dynamic content string in sizeable segments through

usage of its inherent JspWriter object - a full explanation can be found in section

4.3.4 Summary

To summarise, Table 4.2 contrasts the traditional MVC design (using JSP technology)

against the suggested alternative MVC design (using the new server page technology

[MSP]).

5.5).

Page 68

Chapter 4 Proposed Solution

Performance Category Traditional MVC Design New MVC Design

Connectively to external

resources

None (must be manually

implemented)

Yes (Database pooling

built in)

Thread management of

Server Side Includes

None (fragmentize JSP

creates more servlet

threads)

Yes (addition object

creation)

Provision for compression

of HTML content

None Yes (Provision built into

the overall design)

Caching None None

Table 4.2: Performance contrast between traditional and alternative MVC

architectures

4.4 Testability
As outlined in section 3.4, there are many reasons that contribute to the overall

difficulty in JSP testability. However in this section, a discussion outlining how the

new architectural design solves the current problems with JSP testing will be made.

These solutions are the following:

a) Currently, JSP interlinking components such as the HTTP protocol are hard to

create in an artificial environment, for example an integrated development

environment (IDE). Although the current IDEs offer great debugging

mechanisms for Java based applications developed using the standard Java

application programmer interface (API). The new design provides a suitable

non-artificial environment to debug an application’s core business logic. The

reason for this is simple; the design strips out the HTTP protocol before

business logic processing and session management is hidden for the

programmer.

b) Debugging JSP scriptlet code is difficult as it is combined with an extra layer

of complexity such as HTML and JavaScript. However the new design will

make use of MSP (a full explanation can be found in section 5.5). The primary

objective of MSP is to perform the similar rendering duties of a JSP page, but

without the JSP infrastructure overhead of servlets threads and HTTP protocol.

Page 69

Chapter 4 Proposed Solution

During compilation, this new technology will take the dynamic page source

code (such as the scriptlet code and HTML) and convert it to a native Java

class as oppose to JSP’s method of converting to a Java servlet class. The

native Java class essentially builds a j a v a . u t i l . S t r i n g B u f f e r object,

which is a composition of appended static strings (HTML, Javascript) with

standard Java code execution to form an overall text output in the form of a

j a v a . l a n g . S t r i n g object.

Therefore upon using any standard integrated development environment

(IDE), programmers can easily perform a debug walkthrough as they are

exclusively dealing with a pure Java object as oppose to JSP’s servlet thread

with adjacent interlinking components;

c) The new strict design will decrease application complexity and developers

confusion, because developers will not have to choose from a particular

implementation method, for example page-centric (model 1) and MVC (model

2) designs [Brown et al, 2001]);

d) MSP will offer a more intuitive way in dealing with error handling reporting,

opposed to JSP’s exception handling which is based on the parsed Java class

file from the source . j sp file. The new dynamic page technology (MSP)

parses its source files into native Java classes; therefore all compilation errors

are in the form of native Java API exceptions. Thus inexperienced developers

can easily identify the source of the exceptions in contrast to the identification

of JSP exceptions.

MSP will need a compiler in the form of a command-line application that runs

through the Java virtual machine (JVM). The new compiler grants developers

the provision to debug through the program to assess where there are

compilation errors in the dynamic page source file;

Page 70

Chapter 4 Proposed Solution

e) As JSP scriptlet code is not checked during JSP source code compilation, the

code is more susceptible to runtime errors. However MSP uses native Java

code that is checked during code compilation by the Java virtual machine

(JVM). Therefore the JVM is more inclined to indicate problematic runtime

errors opposed to the JSP compiler;

f) As stated in section 3.4, there is a no standard JSP error handling reporting

amongst application server vendors (Websphere, Tomcat etc.). However as

discussed in this section, the new dynamic pages architecture compiles its

pages into native Java classes therefore using the all standard reporting power

of the Java virtual machine (JVM).

Since the new design offers programmers the ability to produce test friendly code (A

developer has an non HTTP environment to debug in and can track compilation and

runtime errors more easier). Developers are now more inclined drop some, if not all of

JSP’s so-called tried and tested methods of testing, such as console and integrated

development environment (IDE) based testing, in favour of using regression testing

frameworks such as Apache’s JUnit.

To summarise, we contrast the traditional MVC design (using JSP technology) against

the suggested alternative MVC design (using new server page technology) in terms of

testability (see Table 4.3).

Testability Category Traditional MVC Design New MVC Design

Error handling Not transparent,

inexperienced developers

find it hard to track down

origin of JSP error

Transparent, developers

find it easier to track down

JVM error

Outside interlinking

component

Hard to simulate Clean separation of HTTP,

provides for easier testing

of components

Warnings / deprecated

methods

Not checked Checked

Table 4.3: Testability contrast between traditional and alternative MVC architectures

Page 71

Chapter 4 Proposed Solution

4.5 Security
As highlighted previously in section 3.5, current web applications developed using

JSP technology are highly vulnerable to security breaches due to many factors such

a) JSP technology weaknesses.

JavaBeans can be infiltrated due to the shorthand JSP Bean tag notation to set

all properties, that is through the use of the wildcard character.

b) Applications server implementations.

Since JSP source code (which is contained in a file with . j sp extension) is

deployed on an application server for execution. It is more susceptible to

exposure from hackers who can break into these application servers. Also

many of today’s application servers that provide support for JSP (Tomcat,

Websphere etc.), are shipped with serious security vulnerabilities that exposes

the underling JSP source code.

c) Programmer awareness.

Due to inexperience and time commitments, web developers often create

simple security holes in their code that hackers will exploit in the form of

using Cross-Site Scripting and HTTP Form modification.

As security is now a global concern in the WWW community, it is out of scope of this

paper to try and resolve every security problem related to JSP. However in terms of

building a new architectural design a few safeguards will be proposed.

Firstly, the dangers of deploying JSP source code onto an application server cannot be

repaired simply. As the process of deploying JSP source code onto an application

server for execution is one that is bound by the technology. However the proposed

alternative design will offer a new dynamic page technology (MSP). Since it has been

suggested to put forward the idea that this technology will parse its source files into

native Java classes (by using a new Java dynamic page compiler). Then it would be

reasonable to deploy only the compiled version of the dynamic page class as Java byte

Page 72

Chapter 4 Proposed Solution

code, which in turn could be added to a collection of other compiled dynamic pages

and deployed as a single compressed Java archive (JAR) (. j a r file extension). The

result of this security suggestion is that a hacker would need to go to extraordinary

lengths to expose the source code of an individual dynamic page. As they not only

have to first break into the application server, but also decompress and open the

archived collection (. j a r file) of compiled page classes and then decompile each

individual class. Furthermore, since the new MSP compiler wouldn’t reside on the

server (as dynamic page compilation would occur before deployment), the hacker

would then have great difficulty in reengineering the unformatted text (HTML,

Javascript etc.) contained in the . j a v a source file as oppose ta JSPs-formatted text

contained in the . j sp file. I.=:

Secondly, the new architecture suggests the use of native Java classes (HTTP protocol

and session management are stripped out or hidden) throughout the design. Then the

alternative dynamic page technology (MSP) will offer a non-reliance on JavaBeans in

the hope of neutralizing the weakness of using JSP JavaBean tag notation.

To summarise, lets contrast the traditional MVC design (using JSP technology)

against the suggested alternative MVC design (using new server page technology) in

terms of security (see Table 4.4).

Security Category Traditional MVC Design New MVC Design

JavaBean exploitation Yes No

Cross-Site Scripting (XSS) Yes Yes

HTTP Form Modification Yes Yes

Application Server

vulnerability

Yes No (As there is a choice of

Rendering strategies)

Table 4.4: Security contrast between traditional and alternative MYC architectures

4.6 Conclusions
The ideas discussed in this chapter have provided a plan for implementing an

alternative design framework for resolving the problems surrounding JSP. Once

implemented, the highlighted solutions will introduce efficiencies within a Java web

development project.

Page 73

Chapter 5 Implementation

5 Implementation

5.1 Introduction
Section 4 has outlined the architecture of our proposed solution. The following

section will discuss the detailed implementation of its components, namely the

model, the view, and the controller. The following functionality was highlighted in

section 4.2 as the main responsibilities of the system (see Figure 5.1):

a) Instantiation of a thin servlet (controller) and setup any necessary

configurations via a system properties file.

b) Handle the separation of the HTTP protocol from an incoming request

by delegating to a Factory pattern class [Gamma et al, 1994], which in

turn creates a plain Java request object that is native to the improved

design code base.

c) Dispatch the newly created request object for business logic processing

in the model layer. The servlet would delegate responsibility for the

dispatching process to a Dispatcher pattern class [Fowler, 2003], which

in turn loads the correct business logic handler and process the request

object.

d) Render the results of business logic processing in the appropriate format

by identifying the type of appropriate format and then delegating

rendering responsibilities to a chain of responsibility pattern class in the

view layer [Gamma et al, 1994],

Page 74

Chapter 5 Implementation

Improved MVC architecture

HTTP
Request

. I Requ

Fac"

HTTP
Response

Rendering
Strategy

Dispatcher

- I

Figure 5.1: Overall functionality diagram

5.2 Controller
In the improved design, it has been proposed that there is a need for a thin

controller servlet class, which will delegate the following core tasks to other sub

components:

a) Separation of the HTTP protocol from an incoming request.

b) Dispatch the newly created request object for business logic processing in the

model layer.

c) Render the results of business logic processing in the appropriate format by

identifying the type of appropriate format.

5.2.1 Composition of controller

The thin controller servlet is the main component to the proposed solution as it

delegates the processing of HTTP requests to three integral components. These

components along with the main servlet can be identified as the following (see Figure

5.2):

Page 75

Chapter 5 Implementation

a) Java_DispatcherServlet (thin controller servlet)

b) Request Factory (Factory pattern class) J i i _
c) Dispatcher (Dispatcher pattern class)

d) R e n d e r in g S t r a te g y (chain of responsibility interface)

Figure 5.2: UML class diagram of the Controller layer

Since the main components that the controller servlet uses to process HTTP requests

have been identified, it is now necessary to give an overview of the following method

calls that are used within these components:

i n i t ()

Instantiation method of Java_DispatcherServlet, which then creates the three

additional components (RequestFactory, Dispatcher and

RenderingStrategy) for future delegation of tasks.

doPostO anddoGet()
Java DispatcherServlet method to handle incoming HTTP GET and POST

requests.

Page 76

Chapter 5 Implementation

createRequest()
RequestFactory method for creating a plain Java request object that is not tied to

the HTTP protocol.

dispatch ()
Dispatcher method to identified the proper business logic handler, which in turn

processes the plain Java request.

decideRenderingStrategyAndRenderPage()
Java_DispatcherServlet method to decide the appropriate presentation

strategy and pass responsibility to that strategy

renderPage()
Any class which implements from RenderingStrategy must realise the method

to print the final result.

Although the main composition (that is, associated classes and methods) of the

controller layer has been discussed, there is a need to fully discuss another important

entity that is created in controller servlet. That is the plain Java object, which is

created during HTTP protocol separation.

5.2.2 HTTP protocol separation

Although the normal JSP / servlet architecture uses the implicit request / response

objects of type j avax. servlet. http . HttpServletRequest and

j avax. servlet. http. HttpServletResponse to receive and respond to

client demands. It was decided to mimic the functionality of these implicit objects as a

single pure Java object in the new implementation. As long as there is a JVM present,

developers would have the ability to use a pure fully functional Java request that has

no limitations on platform, web application container or even front-end technologies

such as JSP, .NET, PHP etc.

Page 77

Chapter 5 Implementation

5.2.2.1 Composition of HTTP protocol separation

It was decided that the RequestFactory instance method createRequest ()
should return an abstract class of base type AbstractRequest. The

AbstractRequest class holds all the state information posted from the browser,

any state changes conducted during business logic processing and maintains

application state in the session. This is an abstraction of the main primary data

transfer container between the controller servlet, model and view layers. This abstract

class would enable the new implementation to use polymorphism throughout the code

base, which in turn allows the improved design to be scalable and rich in plug-and-

play component architecture.

Before the abstract class was implemented, it was analysed that an interface of type

RenderableObj ect must be first created. This interface is contractual bound to

the A b s t r a c tR e q u e s t class to implement similar H t tp S e r v l e tR e q u e s t

functionality.

An instance that inherits from AbstractRequest could be best described as a

cross between j avax. http . HttpServletRequest and a JavaBean. That is,

any classes that inherited from AbstractRequest would have similar

functionality to HttpServletRequest and would act as the data transfer

container between the controller, model and view layers.

Therefore it was concluded to implement two types of requests; JavaRequest and

JavaMultipartRequest. These classes would handle normal HTTP GET/POST

submissions and HTTP file uploads respectively.

Therefore since all associated classes have been created to successfully satisfy the

needs of the HTTP protocol separation a composite view is shown (see Figure 5.3).

Page 78

Chapter 5 Implementation

Figure 5.3: UML class diagram of the HTTP protocol separation

5.2.2.2 RequestFactory

Based on the gang of four’s Factory design pattern [Gamma et al, 1994], This class

builds polymorphic objects of type AbstractRequest (for example,

JavaRequest and JavaMult iPartRequest) by deconstructing objects of

HttpServletRequest, which are sent via the HTTP Protocol. Ultimately, this

Factory class allows developers to discard the HttpServletRequest early on in

the request process; therefore the improved implementation is less of a reliance on

servlet and JSP technology.

5.2.2.3 AbstractRequest

The AbstractRequest class responsibilities are the following:

a) Hold the Action name-value string pair that identifies which model domain

object to instantiate later;

b) Hold the Type name-value string pair that identifies which view rendering

strategy to run later;

c) Hold all HTTP POST and/or GET data, which is form fields, cookies, headers,

and session objects;

Page 79

Chapter 5 Implementation

d) Retain persistent data that is submitted via the model layer (business logic

processing) so that it is available throughout the lifetime of a client’s session;

e) Retain transient data only for the duration of the HTTP POST or GET;

i L% . .
f) Know the next page name that will be rendered. ___t .

Therefore to actually fulfill the similar responsibilities of HttpServletRequest
the following AbstractRequest actions have been identified (see Table 5.1):

a) The AbstractRequest needs an ability to return a particular HTTP GET

or POST value string based on a name string;

b) Returns a particular HTTP GET or POST value string array based on a name

string;

c) Retrieve a pure Java object from a web clients overall session;

d) Retrieve all Java objects (in the form of a j ava. ut il. Hashtable) from a

web clients overall session;

e) Retrieve a particular pure Java object from a web clients page session / scope;

f) Removal of a particular pure Java object from a web clients overall session by

supplying the object identification string name;

g) Set HTTP GET or POST name-value string pair into the scope (lifetime) of

the request;

h) Set an array of s tr in g objects containing all of the values that the given

HTTP GET or POST request parameter has;

Page 80

Chapter 5 Implementation

Index AbstractRequest Java servlet API

(a) String getFieldValue(String
name)

Javax.servlet.ServletRequest
getParameter(String name)

(b) String []
getFieldValues(String name)

Javax.servlet.ServletRequest
getParameterValues(String name)

(c) Obj ect
getPersistentObject(String
persistentObj ectName)

Javax.servlet.http.HttpSession
getAttribute(j ava.lang.String name
)

(d) j ava.util.Hashtable
getPersistentObjects()

N/A

(e) Obj ect
getTransientObject(String
transientName)

Javax.servlet.j sp.PageContext
getAttribute(j ava.lang.String name
)

(f) removePersistentObject(Strin
g param)

Javax.servlet.http.HttpSession
removeAttribute(j ava.lang.String n
ame)

(g) setFieldValue(String field,
String value)

Javax.servlet.ServletRequest
setAttribute(j ava.lang.String name
, java.lang.Object o)

(h) setFieldValues(String field,
String [] values)

Javax.servlet.ServletRequest
setAttribute(j ava.lang.String name
, java.lang.Object o)

(i) setPersistentObject(String
persistentObjectName, Object
persistentObj ect)

Javax.servlet.http.HttpSession
setAttribute((java.lang.String nam
e, java.lang.Object value)

G) setPersistentObjects(java.ut
il.Hashtable table)

N/A

(k) SetRepsonse(javax.servlet.ht
tp.HttpServletResponse
response)

N/A

(1) setTransientObject(String
transientName, Object obj)

Javax.servlet.j sp.PageContext
setAttribute
(java.lang.String name,
java.lang.Object attribute)

Table 5.1: contrast between new implementation and Java servlet API

Page 81

http://http.HttpSession
http://http.HttpSession
http://http.HttpSession

Chapter 5 Implementation

i) Placement of a single pure Java object into a web clients overall session;

j) Placement of all Java objects (in the form of a j a v a . u t i l . H a s h t a b l e)

into a web clients overall session;

k) Attachment of an HttpServletResponse object for the purpose of using

its output stream at a later stage;

1) Placement of a pure Java object into a web clients page session / scope.

To fulfill A b s t r a c t R e q u e s t other duties, that is the containment of the Action and

Type name-value string pairs and the containment of the next page name that will be

rendered, the following methods have been identified.

getAction()
Retrieves a predefined string Action parameter from the submitted HTTP GET or

POST.

getTYPE()
Retrieves a predefined string Type parameter from the submitted HTTP GET or

POST.

getNextPageName()
Get the next page for the class of base type AbstractRequest object to visit.

setNextPageName(String pageName)
Set the next page for the class of base type AbstractRequest object to visit

5.2.2.4 JavaRequest

This class is an example of a fully implemented data transfer container between the

thin controller servlet, model and view layers. The JavaRequest extends from the

contracted typed AbstractRequest (parent-child relationship) thus inheriting all

implemented methods. While JavaRequest enjoys all the benefits from its parent,

Page 82

Chapter 5 Implementation

it has also been retrofitted to enable the processing of additional work. For example,

JavaRequest implements the

j avax. servlet. http. HttpServletBindingListener Interface, which

supplies a mechanism to allow an instance of the class to know when it is
i - ~ c

bound/unbound to an overall HttpSession.

5.2.2.5 JavaMultipartRequest

JavaMult ipartRequest performs exactly the same functionality as its parent

JavaRequest, however since the servlet / JSP API does not provide any rich

mechanism to deal with multipart HTTP requests, that is, HTTP file form uploading.

It was best thought that this functionality should be built into the framework to

prevent / lessen the workload on developers when developing web page that contain

file uploads.

5.2.2.6 Accommodation of other technologies

While the new implementation only demonstrates two fully functional request classes,

we cannot rule out the building of other classes. For example, CGIRequest (which

could model Perl / CGI variables), PHPRequest (that could model a PHP request

script), VBRequest (That could deal with a Visual Basic application front end), or

evenDotNetRequest (see Figure 5.4)

Page 83

Chapter 5 Implementation

Figure 5.4: Multiple technologies diagram

5.2.3 Summary
To summarise, the following is an outline on how the new implementation will

behave in the controller layer (see Figure 5.5):

1. Once the thin controller servlet is started on an application server, it will load

all system properties into the application by reading from a designated

property file;

1.1. After the loading of system properties, the servlet will continue

initialisation by instantiating objects of type Dispatcher,
RequestFactory and RenderingStrategy;

2. A client’s browser submits a HTTP GET / POST request to the controller

layer;

3. The controller layer will delegate responsibility of separating the HTTP

protocol from the request to the RequestFactory class by invoking the

RequestFactory’s createRequest () method, which in turn creates a

Page 84

Chapter 5 Implementation

polymorphic request object of type AbstractRequest (a full explanation

can be found in section 5.2.2);

4. The controller layer will delegate responsibility of business logic ‘model ’

processing of the newly created request object to the Dispatcher class by

invoking the Dispatcher’s dispatch () method (a full' expjanation can

be found in section 5.3); L — -

5. After the model has executed its business logic, the controller layer will

delegate responsibility of rendering the HTML page to the appropriate

RenderingStrategy class by invoking the servlet’s internal

decideRenderingStrategyAndRenderPage () method (a full explanation can be

found in section 5.4).

.1) Initalisatjtìn

RequestFactory

(3) c r e a t e r e q u e

Dispatcher

(4) dispatch request

(2) send Http request '■■Java_DispatcherServlet-'

« c r e a t e »

[RenderingStrategy] '
\ J (5) render the page

Figure 5.5: Controller layer outline behaviour diagram

Page 85

Chapter 5 Implementation

5.3 Model
As identified in section 5.2.1, the controller thin servlet layer will delegate the

business logic i model’ processing of a newly created polymorphic request object (that

is, of type AbstractRequest) to a Dispatcher pattern class [Ball, 2001] [Fowler,

2003]. Therefore the Dispatcher class will need to fulfill the following to satisfy

the goals of the model layer (a full explanation can be found in section 4.2.2):

a) The model layer will be completely independent of the HTTP protocol; which

is already implemented as the model layer is receiving an request object

devoid of the HTTP protocol (AbstractRequest);

b) The model will represent a UML Use Case basic and alternative flows;

c) The business logic ‘model’ processing can be run as a command-line

application.

5.3.1 Composition of Model

As a natural consequence of separating the HTTP protocol from the Java request, the

Dispatcher instance method dispatch () will take an input parameter of base

type AbstractRequest. The Dispatcher will dispatch / forward the

polymorphic AbstractRequest to an appropriate model domain object of type

RequestHandler for processing.

The RequestHandler class is an abstraction of the main model domain and in turn

provides an abstract implementation to handle the request object appropriately. Page

specific UML use cases would inherit from RequestHandler and override its

abstract implementation.

To overcome the JSP performance problem of connectivity to external resources, (for

example, a database - a full explanation can be found in section 3.3.1) it was analysed

that a database pooling component could be introduced to maximise the speed the

business logic processing.

Page 86

Chapter 5 Implementation

Since all associated classes have been identified to fulfill the characteristics of the

improved model layer, a composite view is shown (see Figure 5.6).

Figure 5.6: UML class diagram of the Model layer

5.3.2 Dispatcher

The D is p a tc h e r class main responsibilities are as follows:

a) Initialise all external resources, such as database connection pooling;

b) Dispatch polymorphic request objects of type AbstractRequest (for

example, JavaRequest and JavaMult iPartRequest) to model

domain objects for business logic processing;

c) The Dispatcher is completely free (not coupled) to a servlet / JSP

environment as it is not tied to the HTTP protocol. Therefore Apache JUnit

test suites can be built to test the functionality of the system.

However how does the Dispatcher know which model domain object (that is, of type

RequestHandler) to delegate the business logic processing to? The answer of this

question is that the Dispatcher class will first call getAction () method on the

polymorphic request object and then through the use of reflection create a

Page 87

Chapter 5 Implementation

polymorphic model domain object instance (that is, of type R e q u e s tH a n d le r)

[Roschelle, 2000].

To fulfill the responsibilities the following Dispatcher methods have been

identified:

dispatch(AbstractRequest request)
Delegate the incoming AbstractRequest to the correct model domain (that is, of

type RequestHandler) for business logic processing. This is done by invoking the

getAct ion () method on AbstractRequest, which gathers the Action name-

value string. Through the use of reflection, this Action string is subsequently used to

create an instance of base type RequestHandler.

getRequestHandler(String action)
This method uses reflection to create a the specific type of RequestHandler
[Cymerman, 1999] [Roschelle, 2000].

5.3.3 RequestHandler

This is an abstract base class that developers will subclass to implement their own

model layer specific functionality (which follows a UML use case). For example, if a

system has a login page then it must also have a subclass of RequestHandler
called LoginHandler, which in turn implements specific page business logic

functionality.

This class is modelled on the Command design pattern [Gamma et al, 1994]. This

design is well suited when endeavouring to break the normal JSP technology coupling

between business logic and page scripting, that is, the relationship between Java beans

and JSP script. The use of JavaBeans in JSP technology does not provide a clear

distinction between what is business logic and page rendering data. Their primary use

is maintaining the behaviour state changes to their class attributes / properties (that is,

getter and setter methods), and not conducting page specific business logic that many

miss sighted programmers implement.

Page 88

Chapter 5 Implementation

However through use of the improved design implementation, the

RequestHandler class focuses developers on conducting model business logic in

a black box, which will aid developers in testing, performance and intuitive

understanding of particular page model domain.

The responsibilities of the RequestHandler are as follows:

a) Execute business model logic, that is, each sub class of RequestHandler is

responsible for the execution of a discrete use case (for example, find

customer, update customer, get summary, etc);

b) Call out to JDBC Connections or any other external date source to

collect/update data;

c) Decide the next page name that will determine the next appropriate view /

page;

d) Add any persistent or transient objects to the polymorphic request object so

that the view layer can retrieve data to use in rendering content.

To satisfy the responsibilities of R e q u e s tH a n d le r , the following method calls

have been identified:

execute(AbstractRequest request)
Each page subclass of must RequestHandler override the following method, with

an implementation of specific model / business logic processing. For example, a

SearchForProductHandler class would execute the following:

a) Retrieve the entered search string parameter from the object of type

AbstractRequest. For example, “DVD = Lord Of the Rings”;

b) Retrieve a JDBC j ava . sql. Connection;
c) Build the SQL query string to search the database with;

d) Search the database and build a product entity object. For example, instantiate

a Product class;

Page 89

Chapter 5 Implementation

e) Store the Product instance as a transient object in AbstractRequest for

later use in page rendering.

preExecute(AbstractRequest request)
This method is called before execute (), if the developer wishes then each subclass

can choose to override this method . An example use of this method would be to

implement retrieval of a commonly used CORBA service;

postExecute(AbstractRequest request)
This method is called after execute (), if the developer wishes then each subclass

can choose to override this method. An example use of this method would be to

implement a reassignment of a commonly used CORBA service.

5.3.4 Summary

To summarise, the following is an outline on how the new implementation behaves in

the model layer (see Figure 5.7):

1) In improved implementation, when a client’s browser submits a HTTP GET

/ POST request to the controller layer, the new implementation will create a

polymorphic object of base type AbstractRequest;

2) The controller layer will delegate responsibility of business logic ‘ model ’

processing of the newly created request object to the Dispatcher class by

invoking the Dispatcher’s dispatch () method;

3) The Dispatcher will now ask the object of base type

AbstractRequest for its Action parameter (HTTP name-value string

pair, for example, Action=Login) by invoking the request object’s

getActionO method;

Page 90

Chapter 5 Implementation

4) Once the Action parameter has been retrieved, the Dispatcher invokes an

internal method getRequestHandler () to fetch the appropriate subclass

of Request Handler.

5) The Dispatcher will delegate responsibility of business logic ‘model ’

processing of the request object to the subclass of RequestHandler class

by invoking the subclass’s execute () method. As a result, all specific

Figure 5.7: Model layer outline behaviour diagram

5.4 View
As identified in section 5.2.1, the controller thin servlet layer will delegate the results

of business logic ‘model’ processing (contained in AbstractRequest) to a

specific rendering approach. Therefore the RenderingStrategy class will need

to promote the following to satisfy the goals of the view layer (a full explanation can

be found in section 4.2.2):

Page 91

Chapter 5 Implementation

a) The new implementation will support multiple rendering approaches,

which allows programmers a variety of choice in how they wish to present

their data;

b) Separation of development roles, for example one developer can work on

the model layer while another works on the view. Therefore promoting

loose coupling between layers.

5.4.1 Composition of View

It was decided that the controller servlet will decide the type of rendering approach

and forward the polymorphic AbstractRequest (which contains results of the

model layer processing) to an appropriate view domain object of base type

RenderingStrategy for content presentation.

The RenderingStrategy class is an abstraction of the view domain and in turn

provides an abstract implementation to present the request object appropriately. More

specific presentation approaches (for example, JSP or XSLT) would inherit from

RenderingStrategy and override its abstract implementation.

Since all associated classes have been identified to fulfill the characteristics of the

improved view layer, a composite view is shown (see Figure 5.8).

Figure 5.8: UML class diagram of the View layer

Page 92

Chapter 5 Implementation

5.4.2 RenderingStrategy

This is an abstract base class that developers will subclass to implement their own

view layer rendering functionality. For example, if a system decides to handle JSP

technology then it must implement JSP_RenderingStrategy (which is a

subclass of RenderingStrategy), which in turn implements JSP specific

rendering functionality.

The overall responsibilities of the RenderingStrategy are as follows:

a) Provide an abstract implementation for presenting the results of the model layer;

b) Encode submitted servlet URL. This is a necessary step in the event that session

tracking is done via URL rewriting (That is, URL rewriting occurs when a

session created within a browser that has cookies turned off);

c) Retrieve a fully quantified submitted URL.

To fulfill the responsibilities of RenderingStrategy, the following method calls

were identified.

renderPage()
An abstract method that implies rendering of a HTML page. All subclasses of

RenderingStrategy must implement the method so they can render the page in

their unique way. For example, a class of type JSP_RenderingStrategy would

implement the method to handle JSP technology presentation;

encodeServletUrl()
Handle encoding URLs in the case of URL rewriting;

getServletURL()
Build a fully quantified URL that is made up of the following.

Get the scheme, which can be HTTP, HTTPS or FTP;

Get the hostname (eg) www.yahoo.com;

Get the path to the servlet;

Get the path after servlet and get the query string.

Page 93

http://www.yahoo.com

Chapter 5 Implementation

5.4.3 JSP_RenderingStrategy

Using the results of the model layer, this class provides an implementation for

presenting JSP. The main responsibility of the class is to redirect the controller flow

of control towards a particular JSP.

Therefore to fulfill the responsibilities of JSP_RenderingStrategy, the

following method call were identified:

renderPage()
An implementation of its parent class (RenderingStrategy) abstract method. A

JSP must be rendered in a particular fashion; the following describes the events that

occur to satisfy the rendered JSP.

a) Firstly, add an object of type AbstractRequest to the HttpSession;
b) Retrieve the relative address URL to the JSP page. For example, /login.jsp;

c) Encode the relative address URL. For example, if there is a white space in the

URL, encoding will change this to %20;

d) j avax. servlet. http . HttpServletResponse is asked to send a

redirect to the page.

5.4.4 MSP_RenderingStrategy

This class provides a mechanism to support the rendering of a new Java based

dynamic page technology called MagnumServer Pages (MSP) (a full explanation can

be found in section 5.5). The main responsibility of the class is to build the

appropriate dynamic HTML content string by using the results of the model layer and

then output the string to a client’s browser. The class also provides functionality to

compress the HTML content string before it is returned back to the browser, therefore

solving the JSP performance limitation of no provision for compression of HTML

content (a full explanation can be found in section 3.3.4).

Therefore to fulfill the responsibilities of MSP_RenderingStrategy, the

following method calls were implemented:

Page 94

Chapter 5 Implementation

renderPage()
An implementation of its parent class (RenderingStrategy) abstract method.

A MSP must be rendered in a particular fashion; the following describes the events

that occur to satisfy the rendering of MSP.

a) Firstly, add an object of type AbstractRequest to the HttpSession;
b) Encode the fully quantified servlet URL address;

c) Combined the results of the request object with the MSP page to create a

HTML String;

d) Compress the HTML string and write it to the web

compressPageAndWrite()
Apply GZIP compression to the HTML string before writing it back to the browser;

renderPageAsString(AbstractRequest request)
Build an HTML string to be render by combining dynamic elements from the request

object (that is, of subtype AbstractRequest) with a MSP.

5.4.5 Summary

To summarise, the following is an outline on how the new implementation behaves in

the view layer (see Figure 5.9):

1) In the new implementation, when a client’s browser submits a HTTP GET /

POST request to the controller layer, the improved implementation will create

a polymorphic object of base type AbstractRequest;

2) The controller layer will delegate responsibility of business logic ‘model ’

processing of the newly created request object to the Dispatcher class by

invoking the Dispatcher’s dispatch () method;

3) The controller layer will invoke its private

decideRenderingStrategyAndRenderPage () method, which in

turn asks the object of base type AbstractRequest for its Type parameter

Page 95

Chapter 5 Implementation

(HTTP name-value string pair, for example, Type=JSP) by invoking the

request object’s getTYPE () method;

4) Once the Type parameter has been retrieved, the controller layer will delegate

rendering responsibilities to the correct subclass of RenderingStrategy
by invoking the RenderingStrategy’s renderPage () method; the

subclass will then present the page in its own specific manner.

We have discussed in detail the implementation of the model, view and controller

layers of the new improved architecture. Therefore we can show an overall system

diagram in Figure 5.10.

Send HTTP Request
CU> flic Servlet

/ A

Figure 5.9: View layer outline behaviour diagram

Page 96

Chapter 5 Implementation

Figure 5.10: Overall system class diagram

Page 97

Chapter 5 Implementation

5.5 M agnum S erver Pages

Section 4.3.2 and 4.3.3 has proposed that there is a need for a new Java based

dynamic web page technology called MSP and its responsibilities are as follows:

Provide an alternative to the JSP dependency on the HTTP protocol and the Java

servlet API, which in turn provides the following solutions to some of JSP limitations:

a) Servlet thread spawning will be eliminated when using SSI, as MSP will only

create additional objects in the JVM (a full explanation can be found in section

3.3.2);

b) In terms of testability, debugging an application’s core business logic can now

be performed without the JSP problems of trying to mimic the HTTP protocol,

web browsers and web containers (a full explanation can be found in section

3.4);

c) In terms of testability, MSP parses its source files into native Java classes;

therefore all compilation errors are in the form of native Java API exceptions.

Thus eliminating JSP problematic native error handling (a full explanation can

be found in section 3.4);

d) Again since MSP parses its source files into native Java classes and compiles

them using the JVM. The JVM is more inclined to discover problematic

runtime errors, identify warnings and depreciated methods oppose to the JSP

compiler (a full explanation can be found in section 3.4);

e) Provide an alternative to the JSP optional dependency on JavaBean

technology, which in turns solves one of JSP fundamental security problems (a

full explanation can be found in section 3.5.1.3);

f) Provide an alternative to the JSP engine for page execution, MSP is solely

reliant on the JVM for it execution therefore it will be less susceptible to JSP

Page 98

Chapter 5 Implementation

application server vulnerabilities (a full explanation can be found in section

3.5.2).

5.5.1 MSP Scripting Language

MSP offers developers the ability to use its new Scripting Language (SL) because it is

a new Java based dynamic web page technology. MSP SL is JSP syntax like language

that allows developers to use HTML comments to add their dynamic syntax (Java

syntax) instead of JSP scriptlet. Just like JSP there are three types of scripting

elements: (i) code based scriptlet (used to execute a block of code); (ii) expression

based scriptlet (an evaluated statement that is printed in the HTML) and (iii)

declaration based scriptlet (used for declaring variables and methods). However

unlike JSP, MSP SL does not provide implicit page objects (for example, request,

session and out) or JSP Bean tags as it is not dependent on the servlet / JSP API. As

mentioned previously MSP SL is in fact embedded HTML comments; therefore

graphic designers can clearly view a MSP file in WYSIWYG editors without breaking

the intuitive design of the surrounding static HTML.

The following are the MSP SL tags that can used to develop Java¿web pages that are

not dependent on the JSP / servlet API. j 1 *£7 *.>

Package tag

Declaration based scriptlet element that allows developers to specify what package

the MSP file belongs to after page compilation (see Table 5.2).

MSP JSP

Syntax <!—$ package <Java Package N am e> —> N/A

Example <!— $ package com. the sis. pages — > N/A

Table 5.2: Contrast between MSP and JSP package tag syntax

Page 99

Chapter 5 Implementation

Import tag

Declaration based scriptlet element that allows developers to import necessary Java

classes into their MSP page (see Table 5.3).

M S P JS P

Syntax <!—S import <Java Package Name> --> <% @ page import=”<Tava Package Nam e>” %>

Exam ple <!— S import java, util,* — > <%@ page import=”java.util. *” %>

Table 5.3: Contrast between MSP and JSP import tag syntax

Include tag

Declaration tag that provides the developer with the ability to make SSI statements in

their MSP page. It is used to substitute additional text/html and/or code into the main

body of their page. For example, developers can chop up their pages into significant

sections (For example, header, footer, main body etc) so that if a change is needed

throughout the website then only one file needs to be change as opposed to making

changes to each page (see Table 5.4).

MSP JSP

Syntax <!— $ incl <M SP Page Name> — > <% @ include file—’<FileName>” %>

Example <!—$ incl CopyRight —> <% @ include file—1’CopyRight.jsp” % >

Table 5.4: Contrast between MSP and JSP include tag syntax

Expression tag

Expression Tag evaluates the contents of the referred value and renders the value as a

HTML string on the MSP Page. Only values of Java primitive types and/or of type

j a v a . la n g . S t r i n g can be evaluated otherwise an exception will be thrown (see

Table 5.5).

MSP JSP

Syntax <!— S eval Expression to evaluate> --> < % = <expression to evaluate> %>

Example <!—$ eval firstiNTame —> < % = firstName %>

Table 5.5: Contrast between MSP and JSP expression tag syntax

Page 100

Chapter 5 Implementation

Code tag

The code tag gives programmers the ability to insert java code snippets/fragments into

their MSP Page. Typically the code tag is used to perform looping, boolean logic

values and/or declare values in the page (see Table 5.6).

MSP JÌSP

Syntax <!—$ code <insert code here> —> <% <insert code here> %>

Example <!—S code for(int i=0; i < 10; i++) {) — > <% for(int i=0; i < 10; i++) {} %>

Table 5.6: Contrast between MSP and JSP code tag syntax

For example, the following tags are listed in Figure 5.11.

1) Package tag;

2) Import tag;

3) Code tag (which initialises j ava . util. ArrayList with four strings);

4) Code tag (iteration of the j ava . u t i 1 . ArrayLi s t) ;

5) Expression tag (evaluate each string)

6) Code tag (for loop close brace)
'<!
!<!
|<!

ArrayList names = new ArrayList ();
naine s. add (naine 1) ;
names . add (naineZ) ;
names.add(name3) ;
names.add(name 4);

■<HTML>
¡■CHEADX/ H£AD>
;<body>
-ttable boccier=l cellspacing=Q cellpadding=0 width=150>
<rr>

<Cd w id th = 1 5 0 va lig n = to p > < B > N am e o f P e rso n < /B >
</td>

</te>
k !— 5 code for[int i=0; i < names. size () ; i++)

f
String nameStr = (String)names.get(i) ;

\<tr> (?)
I <td rjidth=150 valign=top>< !— i? eval naitieStr — ><7td>
</ tr>

k!— $ code >
K/table>
;</body>
[</ HTIIL>

Figure 5.11 : Example MSP source file (. msp)

-i package com. thesis.pages — >
-? import java.ut.il.* — >
"? code (3)
String lismiel = "Patrick";
String narne2 = "James";
String narne3 = "Michael";
String name4 = "Matthew";

Page 101

Chapter 5 Implementation

5.5.2 MSP significant classes

The MSP language is built from framework of interconnected classes which represent

not only the tag symbols themselves but how the MSP source files (. msp) are parsed

Once a MSP source file (. msp) is compiled into a Java source file (. j ava), it
realises the contractual method createDocument () from the CompiledPage
interface.

Once MSP_RenderingStrategy invokes its implementation of renderPage ()
method, it calls this runtime document builder class buildDocument () method to

return the dynamic content string. The buildDocument () method first instantiates

(through reflection) an compiled MSP class and then invokes the MSP class

createDocument () method to build the dynamic content string.

5.5.2.3 PageCompiler

MSP files (. msp) contains both static and dynamic tags (that is, HTML and MSP

specific tags respectively), therefore once a page has been noted for page compilation.

The PageCompiler class will first parse the . msp file into a collection of tags

(that is, tokenising the file into static and dynamic blocks) and then construct a single

. j ava source file by invoking the following routine (see Figure 5.12).

Create the new Java class definition by writing the following to a . j a v a file:

1) The package location of the class (from parsing a MSP package tag);

2) The import statements of the class (from parsing a MSP import tag);

3) The class declaration (by retrieving the . msp filename and appending

to the start file);

4) Realise the CompiledPage interface;

5) Create a class attribute of all static tags called tags. This is accomplished by

sequentially looping through the collection of tags (both static and dynamic)

and building an array of static tags only.

to Java classes and then how these classes output the dynamic content string.

5.5.2.1 CompiledPage

5.5.2.2 DocumentBuilder

Page 102

Chapter 5 Implementation

6) Create the new Java class method createDocument () (implemented from

the CompiledPage interface) by writing the following to a .java file:

a. Create the method declaration;

b. Create a local variable of type j av a . ut il. StringBuf f er (In

production, this buffer will hold the contents o f the dynamic HTML

presentation before converting it to a string);

c. Sequentially append static or MSP expression tags to the buffer, while

intermixing Java code snippets (that is, MSP code tags).

Close the Java class by writing a brace to the . j a v a file.

■ Thia .is a «rìass/ esse, s-fcetsis . gagea1©
— » - tt1 Q

® ©,c »latie Scrinai} V—/

inport sow - wiacgey .M sp . rendering.

iHfport Java

pias»Mc eaue* H3P . mac gg y « * no * Coiwp i (

privale sì dtic tCugs *
CMS * n«f StriBtrlUJi [5 J
fcagat-l] » taiga £31 *
t^agsfSJ « KTBL>\ n < H £ < / H£AB>\ n<.body>\rs< t <sfe 1 e bord****! cel ispinfcing-O ccli^ddiniT'O widt-b-*î50>\n <tK>\t
t&ffsro “ "Sn <zü width“ 150 vAliaireciit»-”)
SQgst̂ -j = *<-1td>\rt
tagsf.JU] * 'Tî n</t,able>’(3ic/toady>^B</HTflL^nr*;

Î

îîaiidle a requis ©
public String t?reait«I>omiiBeKtfc-OHuirar^eyiJâsp .reiïdcrlTig^RciidereifoleÜfciJisct; request) throw* Exceptiez {

Stt iSQBttffet btifi - new S£KïngBuffee-0*

butf .fippeitdf tags[13 Ji

bui:t .append| taço13) î:

3t€l»g nawei
String naïfteâ

String nsnnc4

”?«««* OC1 •Vanses?
*'Hichael "Hasthe®**?

küK F
£ l " t (8

Static Tags

Dynamic Tags

Accentiss names - new A&K«yx»iacO*
aswga* add laaw^Sl x

Figure 5.12: Example extract from MSP Java class file

(This is the result of parsing the MSP source file from Figure 5.11)

Page 103

Chapter 5 Implementation

5.5.2.4 Tag

An abstract class that represents a general purpose tag (both static and dynamic). This

class presents a series of boolean “is<NameOfTag> (/ ’methods (for example,

isStat ic () method) that can be uniquely overridden by each MSP tag subclass, so

that the subclass can be uniquely distinguishable. The Tag class also offers static

methods for creating both static and dynamic tags.

5.5.2.5 PackageDirective

A subclass of Tag class that represents a MSP package tag (that is, < ! - - $

package <Java Package Name> - ->). Overrides both

isPackageDirective () (to return true) and getDirectiveCode () (which

returns the proper package string) methods from the abstract Tag class.

5.5.2.6 ImportDirective

A subclass of Tag class that represents a MSP import tag (that is, < ! - - $ import
<Java Package Name> - ->). Overrides both isImportDirective () (to

return true) and getDirect iveCode () (which returns the proper import string)

methods from the abstract Tag class.

5.5.2.7 InclTag

A subclass of Tag class that represents a MSP include tag (that is, < ! - - $ incl
<MSP Page Name> -->). Overrides both is Incl () (to return true) and

getRenderingCode () (which returns a string signfying the creation of a new

instance of DocumentBuilder and the invocation of the buildDocument ()
method) methods from the abstract Tag class.

5.5.2.8 EvalTag

A subclass of Tag class that represents a MSP expression tag (that is, < ! - - $ eval
<Expression to evaluate> -->). Overrides getRenderingCode ()
(which returns a string value of the expression) method from the abstract Tag class.

Page 104

Chapter 5 Implementation

5.5.2.9 CodeTag

A subclass of Tag class that represents a MSP expression tag (that is, < ! - - $ co d e

< i n s e r t co d e h e re > Overrides g e tR e n d e r in g C o d e () (which

returns a string of the code) method from the abstract Tag class.

5.5.2.10 StaticTag

A subclass of Tag class that represents a collection of HTML static tags.

Overrides both i s S t a t i c () (to return true) and g e tR e n d e r in g C o d e ()

(which returns the HTML block string) methods from the abstract Tag class.

Also this class provides a conversion of any of the MSP files newline and tab

characters to a Java string representation.

5.5.3 Summary

To summarise, MSP provides a range of classes and scripting tags to overcome the

limitations of JSP. These tags and classes provide developers with the means to gain

independence from the HTTP protocol / JSP engine, reduce application bugs through

the intuitive testing and increased security.

Page 105

Chapter 6 Evaluation

6 Evaluation

6.1 Introduction

This section discusses performance benchmarking by comparing and contrasting the

new MSP architecture against the following Java related web architectures:

a) Apache Struts

The most commonly used Java framework in today’s software houses. Struts

is a MVC architecture that uses a combination of servlets, JSP’s and JSP

custom tags technologies [Apache, 2004] (see Appendix B); *
j -̂4;, }_ ¡j

 ̂ ■ -
b) Apache Tapestry

Tapestry is Java component object model, which uses a high level API to

develop web applications with the minimal amount of code [Apache, 2004b]

(see Appendix B);

c) Page-centric JSP

Please refer to section 2.5 for further explanation.

Since the new architecture can render pages using both JSP and MSP (see section 5.5)

technologies, it was decided that each technology within the new architecture should

be individually benchmarked. Therefore, five performance benchmarks were

performed.

6.2 System configuration

Before conducting each individual benchmark, the operating system was rebooted and

all redundant applications and background processes were shutdown. The following

system configuration given in Table 6.1 was used to conduct the benchmarks. The

benchmarking client was Apache’s JMeter 2.0.1, which is an application to load test

functional behaviour and measure performance [Apache, 2004c], JMeter sent multiple

HTTP requests to a local application server of type Apache Tomcat 4.1 and

subsequently retrieved the corresponding HTTP responses.

Page 106

Chapter 6 Evaluation

System type Version
PC Type Dell Dimension 4100
CPU Intel Pentium 3 93 3 Mhz
RAM 512MB
SDRAM 133Mhz
Hard Disk 20GB IDE Maxtor 32049H2
Operating system Windows XP Professional SP 1
JVM j2sdk 1.4.1 01
Java IDE WebSphere Studio Application Developer 5.1
Application server Apache Tomcat 4.1
Application client Apache JMeter 2.0.1
Database MySQL 3.23.55
JDBC Driver MySQL Connector/J 2.0.14

Table 6.1: System configuration for benchmarking

6.3 Description of benchmarks

In total, two benchmark tests were performed on each of the five competing Java

architectures. In the first benchmark, the JMeter client submitted a single HTTP

request 300 times to measure performance under intense load. With the second

benchmark, again the JMeter client submitted a single HTTP request 30 times at

intervals of two seconds to measure performance under high volumes.

Each architectural design used a common dynamic web page throughout testing. The

page is a simple table of data (see Figure 6.1). The data was contained in MySQL

database, which was access via a JDBC driver. To be as unbiased as possible, it was

decided to share as many common Java components between architectural

benchmark. That is, only the specific architectural execution (not the business logic)

and page rendering were different for each benchmark.

Page 107

Chapter 6 Evaluation

l it 'p lir t- i (f ü f i ijfjlitnir--

Rank v i t i » UserA ijwnt DoploymJ Of Last V ls ll I
By

' 107
(* lidip //w w w sînM^ebot c uenAw-l Mu®

Goode 2002-0&-27

2 93 M ettà tof'2 .0 AlinVuta 2002-05-25

3 5 iWtbcoIftÿ&'l.H? 2002 06-2-1

.

MwalìnÒ Q’fS ta p /t ad»

ìflkWtM coiW îkyphtfd)
W>lbot 2002-06-26

5 A (c-^oipwabfr) dow do id 2002*06*25
tniinajjfir

6 } (e s a l i l e ; Aïfc I c îv m) A ikJecve i 2002-06-15

7 2

Iniz ia i 1

M u lW 3 0 (co in p jiiU t,% d L f e r n y) j * * * p .(2 Î0 2 -0 6 .M

'E iilind l

9 > tUr^ V™ 2002*06-20

Figure 6.1: Example of common benchmark web page

Throughout the benchmarking process, each one of the architectures was analysed for

average response time, thread rate per second, standard deviation of response times

and finally a statistical sweep (that is, a comparison of average response time, median

and standard deviation). After the results were analysed, the architectures were scored

between one and five (that is, one being the lowest and five the highest) and then the

overall results were collated to determine the architecture with the best performance.

6.4 Results of 1 thread executed 300 times

Upon analysing the average response time of requesting 300 top spider pages across

the architectures (see Appendix C), it was declared that both MSP and page-centric

JSP had an excellent average response time (see Figure 6.2).

Figure 6.2: Column chart of average response times for first benchmark

Page 108

Chapter 6 Evaluation

When the thread rate per second was examined, It was discovered that MSP and page-

centric JSP both performed the best. The Apache Struts framework pressed hard,

however there was a noticeable drop off between the Tapestry framework and the

improved architecture JSP (see Figure 6.3).

Figure 6.3: Column chart of thread rates for the first benchmark

Comparing the standard deviation of response times indicated that MSP won again,

however it is interesting to note that Apache Struts performed better than expected.

This can be attributed to the fact that Struts had the second fastest maximum response

time (see Figure 6.4).

Figure 6.4: Column chart of standard deviations for the first benchmark

Page 109

Chapter 6 Evaluation

The combination of the average, standard deviation and median response times on the

statistical chart displays very important performance information (see Figure 6.5).

That is, the architecture that has the closest of the three results (average, standard

deviation and median response times) means that the architecture in question is

responding in a consistent and cohesive manner. Any dramatic changes between the

three results means that the architecture in question is experiencing thread locking (for

example, database pooling). Therefore the trio of MSP, Struts and page-centric JSP

have performed in a consistent manner while Tapestry and the framework JSP could

be experiencing performance problems (for example, XML processing and database

pooling).

Figure 6.5: Line chart of statistical information for the first benchmark

6.5 Results for 1 thread executed 30 times between 2

second intervals

Upon analysing the average response time of requesting 30 top spider pages in two

second intervals across the architectures (see Appendix D), it was declared that

framework JSP was the winner with both MSP and page-centric JSP coming a close

second and third (see Figure 6.6).

Page 110

Chapter 6 Evaluation

~ 600
E 500
« 400
g 300
o 200 i/i
= 100
Ë n

Average Response time

559

M Average

368 379 391 K ' 377

M I S
^ / " ^ y
/

/

Figure 6.6: Column chart o f average response times for the second benchmark

When the thread rate per second results were collated (see Figure 6.7), it was

discovered that both the improved framework JSP and MSP had processed their

HTTP requests significantly quicker than their competitors. It was assumed that the

other architectures degraded due to architectural concerns, such as Apache Struts

using a cache instance of org . apache . struts . act ion. Act ion class, which

can cause thread locking issues on the class’s perform method, Tapestry’s heavy

use of XML processing and page-centric JSP parsed and compiled servlet dealing

with database processes such as retrieval and pooling processes while also performing

massive amounts of object instantiation.

Thread Rate per second

VJT3raa>

a>nE3

25
20

15
10
5
0

- 2 — 20:9-

I

15.9 -15.4

I I

I Rate

.9?

Figure 6.7: Column chart of thread rates for the second benchmark

It is interesting to note the both the framework’s rendering strategies (that is, JSP and

MSP) performed significantly better than its competitors. Both strategies had smaller

Page 111

Chapter 6 Evaluation

maximum response times, which again signifies threading concerns with the other

architectures involved in the benchmark (see Figure 6.8).

Standard deviation of response times

(/>E
in■a
c□oain

1400
1200
1000
800
600
400
200

0

1064
4 2 0 3 -

-554

f t

752

^ ^ y ^

j r

I Deviation

Figure 6.8: Column chart of standard deviations for the second benchmark

On closer inspection of the statistical results, It was discovered that framework JSP,

MSP and Tapestry had performed well (the average, standard deviation and median

response times are close together) however Tapestry was significantly slower than the

framework JSP and MSP. Struts and page-centric JSP have an erratic spread of

results, which again points to these architectures experiencing performance

degradation due to thread problems (see Figure 6.9).

Statistics

Figure 6.9: Line chart of statistical information for the second benchmark

Page 112

Chapter 6 Evaluation

6.6 Conclusions

On inspecting the collated score table from both benchmarks (see Table 6.2), it was

surprisingly to find that the new MSP design using JSP to serve content had produced

the lowest results for first benchmark (1 thread executed 300 times). However it had

out performed the majority of other architectures in second benchmark (1 thread

executed 30 times between 2 second intervals). It was judged that the first benchmark

rogue results were due to performance degradation, which in argument was cause by

the parsing and compilation of JSP servlet class upon the first HTTP request or

system processes / resources not adequately being freed up.

Architecture A TR SD S A TR SD S Totals
r “ m m * (BM 1) (BM 1) H I (BM 2J (BM 2) IBM 2) (BM 2)
Framework (JSP)
Framework (MSP)

Struts
Tapestry

PageCentric (JSP)

1 1 1 1 5 4 4 4 21
5 5 5 5 3 5 5 5 38
3 3 4 4 2 1 2 2 21
2 2 2 2 1 3 3 3 18
5 4 3 3 4 2 1 1 23

BM = Benchmark
A = Average Response Time
TR = Thread Rate
SD = Standard Deviation
S = Statistics

Table 6.2: Combined benchmark score card table

The new MSP design using its MSP language to serve content had the highest

performance rating across both benchmarks. In argument this was due to a number of

factors such as, no dependence on JavaBean introspection, XML processing, no

parsing and compiling of JSP’s and minimal coupling on the servlet API.

Even though the Apache Struts framework performed well in the first benchmark

there was a noticeable drop off while performing the second. The problems could be

attributed to the increase in JavaBean introspection calls and XML processing of its

custom tag libraries. Also as argument, the class of type

o r g . a p a c h e . s t r u t s . a c t io n .A c t io n could be a factor as it is cached instead

of reinitialised. Therefore while the class executes at an increased speed, it could

adversely cause a thread locking with the database pooling component.

Page 113

Chapter 6 Evaluation

In relation to Apache Tapestry, which in one’s opinion offers the best and most

simplistic approach to solving the problem of separating of development roles (that is,

graphic designer should only work on the web page while the programmer should

work elsewhere on the background logic). It is clear that Tapestry under achieved in

all categories; it can be argued that the reason for this is that there is a significant

increase in Java reflection, introspection, XML processing and object creation in its

architecture (see Appendix B)

It was surprising at how well page-centric JSP performed during the benchmarking.

The results suggest that even with the problems of page-centric design (that is,

maintainability and intuitiveness), it still performs better than some structured designs

because page-centric design has less structured components to manage, which

reduces JVM object creation and processing (for example, XML processing). It also

has to be factored that the page-centric JSP approach has to parse and compile its

servlet class upon the first HTTP request.

During the evaluation of the new architecture against competing frameworks, a

number of software gaps became apparent regarding the new design. These were the

following:

a) Lack of support of user friendly URLs

Compared to the Apache Struts and Tapestry frameworks, the new MSP

architecture does not support friendly URLs. The reason for this is that each

HTTP request for a page must define two visible name-value parameters on a

URL. That is, the parameters Action and Type, which define a subclass of

R e q u e s tH a n d le r to instantiate / execute and which rendering strategy to

use respectively.

b) Clearer separation of development roles.

In retrospect does the new framework with its MSP technology separate the

role of developer from graphic / web designer? The answer for this is both yes

and no, as it can be argued that there is no longer a reliance on JSP scriptlet or

JavaBean technology as the MSP scripting language is just ordinary HTML

comments. However the argument against is that the MSP scripting language

Page 114

Chapter 6 Evaluation

is too similar to native Java code therefore excluding most graphic / web

designers.

c) Better error reporting.

Currently the new MSP design only catches exceptions in a generic error log.

Shouldn’t a developer have a feature to see exceptions directly on a client’s

web page? Apache Tapestry is excellent at providing a solution to this gap

(that is, a detailed message about the error, application server and logic

processor is displayed on the specific page where the error occurred).

Scorecard o f Tests

Framework
(JSP)
Framework
(MSP)
Struts

Tapestry

—* — PageCentric
(JSP)

A TR SD S A TR SD S

Individual Tests

Figure 6.3: Line chart of scorecard results for combined benchmarks

Page 115

Chapter 7 Conclusion

7 Conclusion T S v
jf ,
it ?• •r -2 *

7.1 Introduction

The implementation and benchmarking of the new MSP architecture provides proof

that the new design does indeed fulfil its main objectives:

a) The new architecture provides a better design, which enables programmers to

use a high level API that is devoid of the HTTP protocol. This API allows for

faster, cleaner and better development of dynamic web pages.

b) The new architecture has outperformed all other competitors in terms of speed

and scalability (see Figure 7.1).

Scorecard o f Tests

Individual Tests

Framework
(JSP)
Framework
(MSP)
Struts

•Tapestry

—* — PageCentric
(JSP)

Figure 7.1: Line chart of scorecard results for combined benchmarks

c) Since the new MSP design reduces coupling with the HTTP protocol, its

model components can be run as separate entities from the command line.

Hence the new design can be easily used within a testing framework such as

Apache JUnit, which will provide a solution to the problems with testing Java

web application frameworks.

d) As outlined in section 3.5, JavaBeans or servlets have security holes

associated to their technology. Since the MSP does not use any of these

technologies, it can offer a better all round security solution. Also remember

Page 116

Chapter 7 Conclusion

the physical MSP page doesn’t reside on the application server, only its

representation as a standard Java class.

e) The new design intensively uses design patterns to decouple the model, view

and controller layers to provide reusable components, which seamlessly fit

into a ‘true’ MVC design.

f) Specific page logic can now be implemented in a more intuitive UML use case

fashion.

To summarise, compared to other frameworks, the new improved architecture can be

considered an overall success and the architecture holds high potential to offer the

development community with the next generation of robust, scalable and maintainable

Java Internet dynamic rendering solution (see Table 7.1).

Capabilities
Normal JSP Apache Struts Apache Tapestry Fram ework (MSP)

Automated testing No Yes No Yes
Presentation Speed High Normal / High Slow High
Coupling High Normal / Low Very Low Low
Development process Easy Normal Complicated Easy
Maintenance High Normal Low Normal
Security Low Normal High Normal / High
Extensible Low Normal Normal High

Table 7.1: Framework capability comparison

7.2 Future w o rk

After performing benchmarking, it was concluded that additional functionality can be

incorporated into the new design (see section 6.6), however it was considered that this

functionality was outside the scope and timescale of the dissertation. The additional

features should provide a starting point for future work, which would increase the

functionality, usability and acceptance of the new framework as an all round viable

web development system. The following are suggested enhancements:

a) Creation of a URL configuration file parser.

A centralised URL configuration file (which is XML based) could be

Page 117

Chapter 7 Conclusion

developed to hold URL information. This file could be read into memory at

application start up. Thus when a user supplies a particular friendly URL (that

is, a parameter less URL) then a new component parser could do a lookup on

the configuration file to find both Action and Type XML elements and supply

them to the rest of the system.

b) MSP tag libraries

The MSP scripting language could be extended to use a new specific tag

library. One where common actions are simplified and intuitive to web

designers.

c) Client side error reporting

The new framework catches exceptions and writes them to a specific error log.

However, there is an issue with presenting errors on the page that it occurred.

That is, in development or production environments there should be feature,

which presents the developer with what type of specific error has occurred on

screen instead of logging onto the application server and reading through log

files.

d) Extensible MSP

The MSP technology itself could be extended to create a hybrid technology.

Imagine the following in the new design; instead of sending a subclass of

Abstract Request to the view layer, the subclass could be decomposed

into generic DNA (XML based) and then sent to a new rendering strategy.

This new rendering strategy could read in a flat web page template file that

contained extensible MSP markup tags. These tags would be intuitive and

more user friendly (for example, a expression tag could be the following < ! -

-Element CustomerName- -> or a loop tag could be < ! - -Loop
Customers From 1 to 10 - - >). Once the rendering strategy had both

the generic XML DNA and the template then it could fuse the two together to

create dynamic content. Also the generic XML DNA could be leverage so that

it could be sent to some web service or even to an XSLT template.

Page 118

Chapter 7 Conclusion

e) Dynamic property files

An additional feature of the new framework could be a component which

monitors the application property files for dynamic updates. That is, the

application server or even the web application would not need a restart once a

property file was changed.

f) Plug and play filtering components

The development of an abstract filtering component could have added value to

the framework. That is, subclasses of the filtering component could be placed

in between the model, view and controller layers. These filters could provide

mechanisms such as XML parsing, object serialisation (for persistence) or

localisation. These plug and play features could then be dynamically bound

internally for certain situations that arose throughout the system.

g) Additional rendering strategies

Update the new improved architecture with new rendering strategics such as

CGI, PHP and .Net which would enable the core architecture to deployed in a

JVM and used with non Java web technologies.

Page 119

References

References
[Altendorf et al, 2002] Altendorf, Eric, Hohman Mark and Zabicki, Roman, Using

J2EE on a Large, Web-Based Project, p. 81-90, January/February, 2002, IEEE

Software

[Althammer et al, 2003] Althammer, Egbert and Pree, Wolfgang, DESIGN AND

IMPLEMENTATION OF A MVC-BASED ARCHITECTURE FOR ECOMMERCE

APPLICATIONS, available @ www at http://citeseer.ist.Dsu.edu/443079.html

accessed 31/05/2004

[Althammer et al, 1999] Althammer, Egbert and Pree, Wolfgang, AN

ARCHITECTURE FOR A STRICT MODEL-VIEW SEPARATION IN JAVA, 1999,

available @ www at http://citesecr.ist.psu.edu/althammer99architecturc.htm] accessed

31/05/2004

[Apache, 2004] Apache software foundation, Kickstart FAQ, available @ www at

http://iakarta.apache.org/staits/faqs/kickstart.html accessed 10/03/2004

[Apache, 2004b] Apache software foundation, Jarkarta Tapestry, available @ www at

http://\akarta.apache.org/tapestry/index.html accessed 10/07/2004

[Apache, 2004c] Apache software foundation, Apache JMeter, available @ www at

http://iakarta.apache.org/jmeter/ accessed 10/10/2004

[Alur et al, 2003] Alur, Deepak, Crupi, John and Malks, David, P. 34-54, Core J2EE

Patterns: Best Practices and Design Strategies, Prentice Hall, 2003

[Ball, 2001] Ball, Michael, Dispatcher eases workflow implementation, P. 1-2,

October, 2001 available @ www at http ://w ww.iavaworld.eom/javaworld/i w-10-

2001/i w-1019-dispatcher-p2 .html, accessed 12/12/2002

Page 120

http://citeseer.ist.Dsu.edu/443079.html
http://citesecr.ist.psu.edu/althammer99architecturc.htm
http://iakarta.apache.org/staits/faqs/kickstart.html
http:///akarta.apache.org/tapestry/index.html
http://iakarta.apache.org/jmeter/

References

[Bakken et al, 2003] Bakken, Stig, Aulbach, Alexander, Schmid, Egon, Winstead,

Jim, Wilson, Lars, Lerdorf, Rasmus, Zmievski, Andrei and Ahto, Jouni, PHP Manual,

April, 2003 available @ www at http://www.php.net/manual/en/ accessed 30/04/2003

[Bayern, 2002] Bayern, Shawn, JSTL in Action, Manning, 2002

[Bergsten, 2003] Bergsten, Hans, JavaServcr Pages, 3rd Edition, O’Reilly, 2003

[Birznieks et al ,2000] Birznieks, Gunther, Guelich, Scott and Gundavaram, Shishir,

CGI Programming with Perl Second Edition, 2000 I Lfc'i v

[Booch et al, 1998] Booch, Grady. Jacobson, Ivar and Rumbaugh, James, Unified

Modeling Language User Guide, Addison-Wesley, 1998

[Brown et al, 2001] Brown, Simon, Burdick, Robert, Falkner, Javson, Galbraith, Ben,

Johnson, Rod, Kim, Larry, Kochmer, Casey, Kristmundsson, Thor, Li, Sing, Malks,

Dan, Nelson, Mark, Palmer, Grant, Sullivan, Bob, Taylor, Geoff, Timney, John,

Tyagi, Sameer, Van Damme, Geert and Wilkninson, Steve, Professional JSP 2nd

Edition. P. 33-164, 165-196, 197-226, 227-263, 264-404, 708-738, Wrox Press Ltd,

2001

[Cavaness, 2002] Cavaness, Chuck, Programming Jakarta Struts, O’Reilly, 2002

[Challenger et al, 2000] Challenger, Jim, Iyengar, Arun , Witting, Karen, Ferstat,

Cameron and Reed, Paul, A Publishing System for Efficiently Creating Dynamic Web

Content, March, 2000, In Proceedings of IEEE INFOCOM 2000.

[Christiansen et al, 1998] Christiansen, Tom and Torkington, Nathan, O'Reilly, Perl

Cookbook First Edition, 1998

[Cymerman, 1999] Cymerman, Michael, Building a Java servlet framework using

reflection, Part 1, p. 1-2, November, 1999 available @ www at

http://www.iavavvorld.com/iavaworld/iw-l 1-1999/iw-l 1-servlet.html accessed

12/12/2002

Page 121

http://www.php.net/manual/en/
http://www.iavavvorld.com/iavaworld/iw-l

References

[Cymerman, 2000] Cymerman, Michael, Building a Java servlet framework using

reflection, Part 2. p. 1, February, 2000 available @ www at

lnip://www.javaworld.com/iavaworid/iw-02-2000/iw-02-servlets2.hunl accessed

12/12/2002

[Dai et al, 2000] Dai, Naci and Ellis, Michael, Best Practises for Developing Web

Applications Using Java Servlets, P. 1-135, 2000, available @ www at

lUtp://www.smalUalkchronicles.nel/papers/Practices.ndf accessed 27/05/2004

[Datta et al, 2002] Datta, Anindya, Dutta, Kaushik, Thomas, Helen, VanderMeer,

Debra and Ramamritham, Krithi, Accelerating Dynamic Web Content Generation, p.

27-36, September/October, 2002, IEEE INTERNET COMPUTING

[Datta et al, 2002b] Datta, Anindya, Dutta, Kaushik, Thomas, Helen, VanderMeer,

Debra, Ramamritham, Krithi and Suresha, Proxy-Based Approach for Dynamic

Content Acceleration on the WWW, p. 159-165, June, 2002, Fourth IEEE

International Workshop on Advanced Issues of E-Commerce and Web-Based

Information Systems

[DeSoto, 1997] DeSoto, Alden, Using the Beans Development Kit 1.0, September,

1997 available @ www at http://iava.sun.com/prodiicts/iavabcans/does/Tulorial-

Sep97.pdf accessed 12/05/2004

[Dimov, 2002] Dimov, Jordan, JSP Security available @ www at

http://www. developer, com/i ava/article.php/883381 accessed 12/ 12/2002

[Dorff et al, 2003] Dorff, Kevin C., Ship, Howard M. Lewis, Tapestry Tutorial, The

Apache Software Foundation, 2003

[Dudney et al, 2003] Dudney, Ben and Lehr, Jonathan, Jakarta Pitfalls: Time-saving

Solutions for Struts, Ant, Junit and Cactus. P. 1-65, 197-237, John Wiley & Sons Inc,

2003

Page 122

http://www.javaworld.com/iavaworid/iw-02-2000/iw-02-servlets2.hunl
http://www.smalUalkchronicles.nel/papers/Practices.ndf
http://iava.sun.com/prodiicts/iavabcans/does/Tulorial-
http://www

References

[Fields et al, 2000] Fields, David and Kolb, Mark A., Web Development with

JavaServer Pages, Manning, 2000

[Flanagan, 1999] Flanagan, David, Java in a Nutshell: A Desktop Quick Reference

Third Edition. P. 330-333, Oreilly & Associates, 1999

[Fowler, 2003] Fowler, Martin, Patterns of Enterprise Application Architecture. P.

330-333, 344-349, 350-360, 379-386, Addison-Wesley, 2003

[Goodwill, 2000] Goodwill, James, Pure JSP — Java Server Pages: A Code-Intensive

Premium Reference. P. 10-21, SAMS, 2000

[Gamma et al, 1994] Gamma, Erich, Helm, Richard, Johnson, Ralph and Vlissides,

John, Design Patterns: Elements of Reusable Object-Oriented Software. P. 87-95,

107-116, 223-232, 233-242, 293-303, 315-323, Addison-Wesley, 1994

[Gourley et al, 2002] Gourley, David, Totty, Brian, Sayer, Marjorie, Reddy, Sailu and

Aggarwal, Anshu, HTTP: The Definitive Guide, O’Reilly, 2002

[Hall, 2001] Hall, Marty, Core Servlets and JavaServer Pages, p. 104-107, p. 287-309,

Prentice Hall, 2001

[Hall, 2002] Hall, Marty, More Servlets and JavaServer Pages, p. 37-39, Prentice

Hall, 2002

[Hall, 2003] Hall, Marty, Apache Struts: An MVC Framework p. 1-7 available @

www at http://courses.coreservlets.com/Course-Materials/ pdf/struts/Struts 1 .pdf

accessed 03/04/2004

[Heaton, 2002] Heaton, Jeff, Comparing JSTL and JSP Scriptlet Programming, Dec,

2002 available @ www at

hUp://www.samspublishing.com/articles/article.asn?p=30334&scciNum=l accessed

23/09/2004

Page 123

http://courses.coreservlets.com/Course-Materials/
http://www.samspublishing.com/articles/article.asn?p=30334&scciNum=l

References

[Hieatt et al, 2002] Hieatt, Edward and Mee, Robert, Going Faster: Testing the Web

Application, P. 60-65, March/April, 2002, IEEE Software.

[Hunter, 2000] Hunter, Jason, The Problems with JSP, February, 2000 available @

www at http://www.servlets.com/soapbox/problems-isp.html accessed 12/12/2002

[Hunter et al, 1998] Hunter, Jason and Crawford, William, Java Servlet Programming,

p 50-68, O’Reilly, 1998

[Huseby, 2001] Huseby, Sverre H, Tomcat may reveal script source code by URL

trickery 2, April, 2001 available @ www at

http://www.securityfocus.com/archive/1/173723 accessed 12/04/2004

[Iyengar et al, 2000] Iyengar, Arun, Challenger, Jim, Dias, Daniel and Dantzig, Paul,

High-Performance Web Site Design Techniques, P. 17-26, March/April, 2000, IEEE

INTERNET COMPUTING

[Iyengar et al, 2002] Iyengar, Arun, Nahum, Erich, Shaikh, Anees and Tewari, Renu,

Enhancing Web Performance, August, 2002, In Proceedings of the 2002 EFIP World

Computer Congress (Communication Systems: The State of the Art, Kluwer)

[Johnson, 1997] Johnson, Mark, A walking tour of JavaBeans, August, 1997 available

@ www at http ://www. iavaworki.com/iavaworkl/iw-08-l 997/i w-08-beans.hlmi

accessed 14/05/2004

[Kalani, 2003] Kalani, Amit, MCAD/MCSD Training Guide 70-315: Developing and

Implementing Web Applications with Visual C#.NET and Visual Studio.NET, Que,

2003

[Kassem et al, 2002] Kassem, Nick, Bodoff, Stephanie, Singh, Inderieet, and Johnson,

Mark, p. 1-6, 75-128, Designing Enterprise Applications with the J2EE, Addison

Wesley, 2002

Page 124

http://www.servlets.com/soapbox/problems-isp.html
http://www.securityfocus.com/archive/1/173723

References

[Klein, 2003] Klein, Amit, Cross Site Scripting Explained, August, 2003, available @

www at www.sanctuminc.com/pdf/WhitePaper CSS Explained.pdf accessed

14/04/2004

[Knight et al, 2002] Knight, Alan and Dai, Naci, Objects and the Web, P. 51-59,

March/April, 2002, IEEE Software.

[Rrasner et al, 1988] Krasner, Glenn E. and Pope, Stephen T . , A Description of the

Model-View-Controller User Interface Paradigm in the Smalltalk-80 System, Aug.

1988, P. 26^49, Journal of Object-Oriented Programming, vol. 1, no. 3.

[Kaewkasi et al, 2002] Kaewkasi, Chanwit and Rivepiboon, Wanchai, WWM: A

Practical Methodology for Web Application Modeling, Aug, 2002, P. 603 - 609, 26th

Annual International Computer Software and Applications Conference

[Knystautas, 2001] Knystautas , Serge, Cache in on faster, more reliable JSPs, May,

2001 available @ www at http://www,javaworld.com/javaworld/jw-05-2001/iw-0504-

cache.html accessed 02/06/2004

[MageLang, 1999] MageLang Institute, Fundamentals of Java Servlets, 1999

available @ www at

http://iava.sun.com/devclopcr/onlineTraining/Servlets/FLindamcntals/contcnts.hlml

accessed 05/05/2004

[Massol, 2003] Massol, Vincent, Unit Testing J2EE Applications, TheServerSide

Symposium, Boston, p 6-43, June, 2003 available @ www at

http://www.pivolis.com/pdf/Unit Testing J2EE V I.1 .pdfaccessed 18/05/2004

[Mclaughlin, 2000] Mclaughlin, Brett, JSP Technology - friend or foe?, p. 6-11,

October, 2000 available @ www at http://www-

106.ibrn.com/developerworks/1 ibrary/w-friend.html accessed 12/ 12/2002

[McLaughlin, 2002] McLaughlin, Brett, Building Java Enterprise Applications

Volume I: Architecture, O’Reilly, 2002

Page 125

http://www.sanctuminc.com/pdf/WhitePaper
http://www,javaworld.com/javaworld/jw-05-2001/iw-0504-
http://iava.sun.com/devclopcr/onlineTraining/Servlets/FLindamcntals/contcnts.hlml
http://www.pivolis.com/pdf/Unit
http://www-

References

[NSCA, 98] The Common Gateway Interface available @ w w w « U * J : -'' 1

http://hoohoo.ncsa.uiuc.edu/cgi/overview.html accessed 12/07/2004

[Peeters, 2001] Peeters, Vera, Simple Design and Unit Testing with Enterprise

JavaBeansTM: The Box Metaphor, p. 3-4, 2001 available @ www at

http://www.xD2001.org/conference/papers/Chapter24-Peeters.txlf accessed

18/05/2004

[Ping, 2003] Ping, Yu, Kontogiannis, Kostas and Lau, Terence C., Transforming

Legacy Web Applications to the MVC Architecture available @ www at

http://www.swen.uwaterloo.ca/~kostas/STEP2003/ EAI-PAPERS/Ping-Lau-

Kontog.doc accessed 01/06/2004

[Pipka, 2002] Pipka, Jens Uwe, Test-Driven Web Application Development in Java,

p. 6-10, October, 2002 available @ www at

http://www.nelobiectdays.org/pd r/02/pat)ers/node/0389. pdf accessed 18/05/2004

[Rayvok, 2002] Rayvok, Rossen, JSP Source code exposure in Tomcat 4.X, p.8,

September, 2002 available @ www at

hnp://onlmc.sccuntvfocus.coim/archive/l/292936/2002-11 -25/2002-12-01/2 accessed

12/ 12/2002

[Roschelle, 2000] Roschelle, Jeremy, Untangle your servlet code with reflection, p. 1-

4, December, 2000 available @ www at http://www. j avaworId. com/i av aworld/ i w-12 -

2000/i w-1221 -reflection.html accessed 12/12/2002

[Rose, 2000] Rational Rose Enterprise Edition, Help facility, Version 7.5

[Scott et al, 2002] Scott, David and Sharp, Richard, Developing Secure Web

Applications, p. 38-45, November/December, 2002, IEEE Internet Computing.

[Seshadri, 1999] Seshadri, Govindi, Understanding JavaServer Pages Model 2

architecture, December, 1999 available @ www at

Page 126

http://hoohoo.ncsa.uiuc.edu/cgi/overview.html
http://www.xD2001.org/conference/papers/Chapter24-Peeters.txlf
http://www.swen.uwaterloo.ca/~kostas/STEP2003/
http://www.nelobiectdays.org/pd
http://www

References

http://www.iavavvorlcl.com/iavaworkl/ivv-12-1999/iw-12-ssi-ispmvc.html accessed

12/ 12/2002

ft vs" ¿ i ,■ r
[Shah et al, 2000] Shah, Shreeraj and Shah, Saumil, IBM WebSphere defaült servlet

handler showcode vulnerability, July, 2000 available @ www at

http://www.securitvfocus.eom/archive/1 /71508 accessed 17/06/2004

[Ship, 2004] Ship, Howard M. Lewis, p. 38-91, Tapestry in Action, Manning

Publications, March, 2004

[Smith, 2004] Smith, Rob, Introduction to Jakarta Tapestry, May, 2004 available @

www at http://www.ociweb.com/inb/inbMay2004.html accessed 25/06/2004

[Sun, 1997] Sun Microsystems, JavaBeans™ API specification, August, 1997

available @ www at http://iava.sun.com/products/iavabeans/docs/spec.html accessed

14/05/2004

[Sun, 2001] Sun Microsystems, JavaServer Pages™ Specification Version 1.2,

August, 2001

[Sun, 2002] Sun Microsystems, The J2EE Tutorial, April, 2002 available @ www at

htlp://iava.sun.com/i2cc/Uitorial/l 3-fcs/index.html accessed 10/06/2003

[Sun, 2002b] Sun Microsystems, String Concatenation/Performance and Improving

Java I/O Performance, March, 2002 available @ www at

http://iava.sun.com/developer/JDCTechTips/2002/tt0305.html accessed 26/05/2004

[Sun, 2003] Sun Microsystems, The Java Servlet API White Paper available @ www

at http://iava.sun.com/products/servlct/wliitepaper.html accessed 06/05/2004

[Unger, 2000] Unger, Kevin, Solve your servlet-based presentation problems,

November, 2000 available @ www at littp://www.iavaworld.com/iavaworld/iw-11 -

2000/j w-1103-presentation-p3 .html accessed 12/12/2002

Page 127

http://www.iavavvorlcl.com/iavaworkl/ivv-12-1999/iw-12-ssi-ispmvc.html
http://www.securitvfocus.eom/archive/1
http://www.ociweb.com/inb/inbMay2004.html
http://iava.sun.com/products/iavabeans/docs/spec.html
http://iava.sun.com/developer/JDCTechTips/2002/tt0305.html
http://iava.sun.com/products/servlct/wliitepaper.html
http://www.iavaworld.com/iavaworld/iw-11

References

[Welling et al, 2001] Welling, Luke and Thomson, Laura, p. 4 -5 , PHP and MySQL

Web Development, Sams Publishing, 2001

[Wu et al, 2000] Wu, Amanda w., Wang, Haibo and Wilkins, Dawn, Performance

Comparison of Alternative Solutions For Web-To-Database Applications, p. 6-10,

October, 2000, In the Proceedings the Southern Conference on Computing, the

University of Southern Mississippi

[W3C, 1999] W3C, June, 1999 available @ www at

http://www.ictf.oru/rfc/rfc2616.txt accessed 15/05/2004

[Zeiger, 1999] Zeiger, Stefan, Servlet Essentials, November, 1999 available @ www

at http://www.novocode.com/doc/servlet-essentials/ accessed 05/05/2004

[Zhao et al, 2002] Zhao, Weiquan, Kearney, David and Gioiosa, Gianpaolo,

Architectures for Web Based Applications, 2002 available @ www at

hllp://citeseer.ni.nec.com/cache/papers/cs/25755/hUp:/Sz/Szwww. dstc.monash.edu.a

uzSzawsa2002zSzDapers/SzZhao.pdf/archi lectures-for-web-based.pdf accessed

01/06/2004

Page 128

http://www.ictf.oru/rfc/rfc2616.txt
http://www.novocode.com/doc/servlet-essentials/

Bibliography

Bibliography

[Baskerville et al, 2003] Baskerville, Richard, Ramesh, Balasubramaniam, Levine,

Linda, Pries-Heje, Jan and Slaughter, Sandra, Is Intemet-Speed Software

Development Different?, p. 70-77, November/December, 2003, IEEE Software

[Castagnctto et al, 1999] Castagnetto, Jesus, Rawat, Harish, Schumann, Sascha,

Scollo, Chris and Veliath, Deepak, p. 14-16, Professional PHP Programming, Wrox

Press Ltd, 1999

[Geary, 2000] Geary, David, JSP Templates, September, 2000 available @ www at

http://www.iavaworid.com/iw-09-2000/iw-Q915-isDweb-p2.html accessed 12/12/2002

[Halloway, 2000] Halloway, Stuart, Improving Serialization Performance with

Extemalizable, April, 2000 available @ www at

http://iava.siin.com/developer/TechTips/2000/tt0425.html accessed 23/09/2004

[Maurer et al, 2002] Maurer, Frank and Martel, Sebastien, Extreme Programming -

Rapid Development forWeb-Based Applications, p. 86-90, January/February, 2002,

IEEE INTERNET COMPUTING

[Menasce, 2002] Menasce, Daniel A., Load Testing o f Web Sites, p. 70-74,

July/August, 2002, IEEE INTERNET COMPUTING

[Mercay et al, 2002] Mercay, Julien and Bouzeid, Gilbert, Boost Struts with XSLT

and XML, p. 1-3, February, 2002 available @ www at

http://www.iavaworld.com/iavaworld/iw-02-2002/iw-0201-strutsxslt.html accessed

21/02/2004

[Meyer, 1997] Meyer, Bertrand, Object-oriented software construction, Prentice-Hall,

1997

Page 129

http://www.iavaworid.com/iw-09-2000/iw-Q915-isDweb-p2.html
http://iava.siin.com/developer/TechTips/2000/tt0425.html
http://www.iavaworld.com/iavaworld/iw-02-2002/iw-0201-strutsxslt.html

Bibliography

[Pooley et al, 2002] Pooley, Rob, Senior, Dave and Christie, Duncan, Collecting and

Analyzing Web-Based Project Metrics, p. 52-58, January/February,

Software

[Sun, 1999] Sun Microsystems, Comparing JavaServer Pages™ and Microsoft®

Active Server Pages™, 1999 available @ www al

http://iava.sun.com/products/isiVisp-asn.html accessed 12/12/2002

Page 130

http://iava.sun.com/products/isiVisp-asn.html

Appendix A UML Diagrams

Appendix A

UML
Diagrams

.,-w

A1

Figure
A

.l : UM
L

Sequence
diagram

of HTTP
processing

by
servlet

W ebB row ser servlet : reauestFactorv : d ispatcher :
Java D ispatcherServlet R equestFactorv D ispatcher RenderinaStrateav

1. Send Http Request

T

1,1. doPost(req, res p)

1.1 .1 . createR equest(a3rjfig, request, response)

1.1.2.

?
d ispa tc lj(request)

1.
I)

1.3, decideR enderingS trja tegyAndR enderPage^erv le tC ontext. httpFjiequest, h ttpR esponse, request)

1.1.3.1. rend^rPage(se iv le tC ontext, IjttpR equest, h ttpR epponse, request)

g

Appendix
A

__UM
L

D
iagram

s

Appendix A UML Diagrams

1. dispatch(request)

1.1. getActionQ

? J
1.2 getRequestHa^idl8r(action) j

< ~ 1 1.2.1. < * jc re a te »

1.3. preExeiute(request)
->r

U1.4. execule(request) -------------¡ p . --------- ^

1.5. postExepute(request)

Figure A.2: UML sequence diagram of request dispatching

A3

Figure
A

.3: UM
L

sequence
diagram

of rendering
page

(JSP

m yServiet. request : isnRenderinaStrateav httoReauest session : httpResoonse :
.Java Di scat cher Sew! et AbstractReauest J SP Rend eri nastrate a v HttoServletReauest HttpS èssi on Htt oS e iv! etRe s do n s e

1. decideRenderinc Context, http Request, htjjpRespionse, request)

1.1. getTYPEQ

1.2. renderPage(seivletC}ontext, httpRequest, http|Response, request)

^ ' 1.2.1 getSessionQ

9

1.2,21 setAttribüte(s, obi)

1.2.3. encodeServletUrl(tjttpRequest, httpRes(|onse)

1.2 4 setResponseHeaders(response)

0 ^ 1.2.5. eLodeRedirectURL(s)

-----------f f1.2.6j sendRedirect(s)

---------1--------------------------

Appendix A UML Diagrams

O

Figure A.4: UML sequence diagram of rendering page (MSP style)

Appendix A UML Diagrams

Figure A. 5: UML component diagram of overall framework

servlet

/ \\
\

net

http

\
\ 10

><■

i f v <
<X

rendering

-j Dispatcher

\ ______ II______
\ If /

>____ \ _ L

/ request

Java_D i spat c h erSe rvl et

Figure A. 6: UML component diagram of servlet

Appendix A UML Diagrams

request

~~K 'X LE" T O i iS 5 i
‘ 'TC?**-' i

S
Request 10

0 _

Figure A. 7: UML component diagram of request handler

1 I D bConnectionBroker

T

sql

©

! A bstract
Request

i------------- 1-------------
1— 1— I D ispatcher

£ ----------- - r
1—1—| R equest

— -— ■ :— r*—- ^ 1 Handler

F P i

Figure A.8: UML component diagram of dispatcher

io

®

< --
servlet

£ > .

/

\
\

\

net

a

' A

I—1—I A bstrac t
I t I Request

w ~

\ I /
\ I /

/
/

http

I— L— I JSP_R endering
^ — St r at egy

Figure A. 9: UML component diagram of JSP rendering strategy

A7

Appendix A UML Diagrams

Figure A. 10: UML component diagram of MSP rendering strategy

Figure A.51: UML component diagram of request factory

A8

Appendix B Alternative Java Architectures

Ì L tii':

I____ O F .T E C h p

Appendix B

Alternative
Java

Architectures

B1

Appendix B Alternative Java Architectures

B.1 Introduction
Although this dissertation’s new framework architecture solves many of JSP

architecture problems, it is not the first innovative idea to be suggested. The following

section reviews and discusses the most popular alternative Java based architectures to

determine which JSP problems they solve and what advantages / disadvantages do

they have as part of their solution.

B.2 Apache Struts framework
Struts is a open source technology framework written Java. It was created by Craig R.

McClanahan and donated to the Apache Software Foundation in May 2000. The

framework was constructed to combine Java Servlets, JSP’s and JSP Custom tags into

a workable model view controller (MVC / Model 2) infrastructure [Apache, 2004]

[Cavaness, 2002],

B.2.1 Components of Struts framework

The Struts framework provides five main components in which developers use to

build web applications:

a) The controller servlet in the form of the ActionServlet class

(org. apache . struts . action .ActionServlet). This class takes

incoming HTTP requests and delegates them to the RequestProcessor
component for processing [Apache, 2004] [Cavaness, 2002];

b) A developer must write the model component that encapsulates all the

particular business logic for a given action / execution of an HTTP request.

The model component must be a subclass of the Act ion class

(org. apache . struts . action .Action) and define a perform method

[Apache, 2004] [Cavaness, 2002];

B2

Appendix B Alternative Java Architectures

c) A developer must write a form component (if needed) with maps directly to an

HTTP form. The form component will encapsulate an HTTP post request to

the ActionServlet. The form component must be a subclass of the

Act ionForm class (org. apache . struts . act ion. ActionForm)
[Apache, 2004] [Cavaness, 2002];

d) The developer must write the view component (JSP page) to render the results

of HTTP request [Apache, 2004];

e) The developer must configure the central struts XML file (s t r u t s -
c o n f i g . xml) that includes Action mappings to combine all above Stmts

components together [Apache, 2004] [Cavaness, 2002].

B.2.2 Struts Action mapping

An Action mapping file is defined in the form of s t r u t s - c o n f i g . xm l, which is

located in the WEB - INF (see section 2.3.3) folder of a web application. This XML

configuration file holds information on how to map individual HTTP requests to their

Figure B.l : Diagram of struts-config.xml file structure

B3

Appendix B Alternative Java Architectures

An Action XML tag (see Figure B .l) can contain the following XML attributes:

• Path attribute - The URL to identify the Action;

• Type attribute - The fully qualified class name of the Action class;

• Name attribute - The name of the business logic worker FormBean class (if

needed);

• Scope attribute - The page scope of FormBean;
• Forward sub-element - The simplified names (ActionForwards) of actual JSP

An Form-Bean XML tag (see Figure B .l) can be associated with the XML attributes:

• Type attribute - The fully qualified class name of the Act ionForm class

• Name attribute - The name of the FormBean class (if needed) contumacious

For more clarity, the following is a real-world example of struts-config.xml file

<struts-config>

<form-beans>
<form-bean name-' loginFormBean " type="myapps.formbean.LoginFormBean "/>

</form-beans>
<action-mappings>

<action path="/loginAction" type="myapp.actions.LoginAction" name-'loginFormBean" scope="session">
<fonvard name-'login" path="/login.jsp"/>

</action>
</action-mappings>

</struts-config>

B.2.3 How does Struts work?

The Struts framework processes individual Http request as follows (see Figure B.2):

1. The Act ionSerlvet is first initialised with struts-config.xml,
which indicates to the servlet how to deal with particular HTTP Requests;

2. The Act ionServlet class will select the corresponding Action class and

instantiate it through reflection;

3. Once obj ect instantiation occurs the developer’s Ac t i on obj ect will make a

call to its p e r fo r m () method;

files.

structure.

B4

Appendix B Alternative Java Architectures

4. The perform method shall have all the necessary business logic to serve an

HTTP request and instantiate the page’s form bean / A c tio n F o rm object (if

needed) to complete the process;

5. Once completed, the workflow the processing is forwarded on to the

appropriate view based on the success, failure or alternative path to complete

the action

B5

Appendix B Alternative Java Architectures

L
Lt.P T ;

OF

{ 3 -----------

a ----------
to w05 o)

□ _ —

-»•
E■Si l

È

I.---------- « n i " --------------

3 -

> - z n

Figure B.2: Basic sequence diagram of Struts request (Extract taken from

http : //roll eri m. free, fr) Copyright (c) 1999-2002 The Apache Software Foundation.

All rights reserved.

B6

Appendix B Alternative Java Architectures

In the previous section the Struts Framework has clearly been defined and explained;

however to gather a more rounded outlook an account of the framework’s advantages

and disadvantages must be given.

B.2.4 Advantages of Struts framework

The following arc the advantages associated with using the Struts framework:

a) Stable and mature framework

Since 2000 Struts has been adopted and widely used by major software houses

(IBM, Allstate etc) in building industry standard web applications.

Many new integrated development environments such as WASD (Websphere

application studio developer), Netbeans and IBM’s Eclipse provide easy to use

and logical support for developing Struts applications.

b) Internationalisation and Localization support

The Struts framework installation package provides a rich set of language

support mechanisms in the form of built in ResourceBundles.

c) Uses proven Java technologies

Struts provides support for many Java industry standard technologies (JSP,

Tag Libraries etc)

d) Free to the public

There is no licensing or cost associated with Struts and it is freely available on

the web.

e) Platform Independent

The Struts framework can run on any UNIX systems (e.g) Linux, Solaris etc

and any Windows based platform.

f) Unit Testing

Struts provides an extension to the JUnit framework called StrutsTestCase.

This extension allows developers to extensively test against from an

application main entry point (the Struts ActionServlet) [Apache, 2004].

B7

Appendix B Alternative Java Architectures

B.2.5 Disadvantages of Struts framework

The following are the disadvantages associated with using the Struts framework:

a) Learning Curve

A developer using the Struts framework must be proficient in JSP, Servlet and

Custom Tags API and must have a firm grasp on the internals of the struts

framework. Thus the framework adds another layer of complexity for less

experienced developers. [Hall, 2003]

b) Poor Documentation

Compared to other open source frameworks (JUnit, PHP etc) Struts has quite

poor documentation. Many users who experimented with Struts find the online

documentation (the Apache resource site) very hard to understand. The

documentation seems to be pitched at a developer with senior to expert level in

the Java language. There are also very little recommended books on the

subject matter compared to other languages and frameworks (.NET, PHP,

ASP, JSP and Servlets) [Hall, 2003]

c) Problematic Custom Tags

It has been noted that several custom JSP tags within the Struts framework can

be problematic and often lead to confusion and development down time.

[Maturo, 2002]

d) Unseen static methods

Since Struts extensively uses reflection to build its dynamic content; any

business logic classes static methods cannot be call through reflection.

[Maturo, 2002]

B8

Appendix B Alternative Java Architectures

B.3 Tapestry framework
Tapestry is an open source technology framework written Java. It was created by

Howard M. Lewis Ship and donated to the Apache Software Foundation in 2000. Not

unlike Java Swing’s component object model for building desktop GUIs, Tapestry

was built for the purpose of representing a dynamic web page as a Java component

object model. Therefore the framework provides developers with a high level API,

where the HTTP and servlet protocols are hidden so that a developer need only

implement minimal code to develop a web application [Apache, 2004b] [Dorff et al,

2003],

B.3.1 Components of Tapestry framework

Since Tapestry provides a high level API, only three main components are needed to

build a dynamic Tapestry web page:

a) Page class

The page class is a Java class (with a . j a v a extension for source code) that

represents a unique instance of a web page. By virtue of introspection and

reflection, the page class methods and properties support the rendering of the

HTML by dynamically populating a Tapestry HTML template. A page class

must inherit from a Tapestry parent class called

o rg . a p a c h e . t a p e s t r y . h t m l . B aseP ag e [Dorff et al, 2003],

b) Page specification

A Tapestry page specification is an validated XML file (with a .page

extension) that is contained within the WEB-INF folder of a Java web

application. The main responsibility of the page specification is to make a

declaration of page components. These page components represent

information on how to identify the page class that needs to be instantiated and

which page class attributes are needed to dynamically populate the respective

HTML template.

A page specification is made up of the following XML elements (see Figure

B.3).

B9

Appendix B Alternative Java Architectures

page-specification
type I } ■
Indicates the start of the
XML document. This element
has an attribute called class,
which identifies what
Tapestry page class to map
components to [Dorff et al,
2003],

0. co

component

iVpa I
binding

type I
The element is used to
declare a page component.
Paga component
distinguishes a page class
attribute through the use of
id and type XML attributes.
These XML attributes identify
the name and the action to
perform on the class attribute
respectively [Dotff et al,
2003]

Tthrough the us* of XML
attributes name and
expression,, this XML element
represents the object binding
to a page component
outlined in the component
XML element fDorff et al,
2003]

Figure B.3: Diagram of Tapestry page specification file structure

The following is an real world example of a Tapestry page specification.

<page-specification class="com.example.PersonDetailsPage">
«component id="name" type="Insert">

•«binding nan;e=" value" expression^"components - person.name"/>
</component>
<component id="address" tvpe="Insert">

cbinding naitie= "value" expression="components .person.address"/>
</component >

</page-specification>

The example above indicates a page class called

"com. example . PersonDetailsPage", which has two page

components called “name” and “address”. These page components perform

an “insert” action, which subsequently binds to an object of type Person
which contains two class instance attributes called “name” and “address”

c) HTML template

On first viewing a Tapestry HTML template looks like a normal HTML file.

However the use of HTML tags indicate to Tapestry which parts of

the template are dynamic components. HTML templates can be viewer in any

WYSIWYG HTML editor as the file is composed totally of HTML markup

tags.

B10

Appendix B Alternative Java Architectures

The following is an example code snippet from a Tapestry HTML template

<tr bgcolor="#CCCCCC">
ctdxspan jwcid="ranking"/></td>
<tdxspan jwcid="numberOf Visit s"/x/td>
<tdxspan jwcid= "userAgent" / x/td>
<tdxspan jwcid="deployedBy"/x/td>
<tdxspan jwcid="date"/x/td>

</tr>

B.3.2 How does Tapestry work?

The Tapestry framework processes individual Http request as follows:

a) Since application initialisation has parsed an XML file of type

. a p p l i c a t i o n file extension (which maps URLs to their appropriate page

specification). The Tapestry framework begins to parse the appropriate page

specification (. p a g e file extension) for page components;

b) During the parsing of the page specification, the HTML template is parsed to

check what dynamic elements are needed;

c) After parsing the page specification (. p a g e file extension), the framework by

means of reflection then instantiates the appropriate page class and using

introspection binds the page components to the dynamic elements outlined in

the HTML template.

B.3.3 Advantages of Tapestry framework

The following are the advantages associated with using the Tapestry framework:

a) Simplicity

Compared to servlet and JSP applications, Tapestry’s true power is through its

ease of use. Tapestry developers need only create a page class and write an

XML page specification to run a dynamic Tapestry web page, as oppose to

implementing more code through using JavaBeans, servlets and . j sp files for

servlet/JSP page rendering. Tapestry removes the low level servlet and JSP

API’s (j a v a x . s e r v l e t . h t t p . *) from its pages, developers are

B ll

Appendix B Alternative Java Architectures

developing at a high level, where the HTTP protocol has been hidden in

favour of a pure Java object which acts as a page object. Low level

programming and business logic is clearly separated, that is, Tapestry handles

all low level aspects of web development (for example, session management)

and the business logic can follow a Unified Modelling Language (UML) Use

Case format [Ship, 2004] [Smith, 2004].

b) Consistency

Tapestry provides implementation consistency through the outlining of strict

rules for building dynamic web pages. These pages follow a set of guidelines,

such as coding standards and using reusable components that rule out

inconsistencies when developing web applications [Ship, 2004] [Smith, 2004].

c) Efficiency

Tapestry web pages offer high application scalablility because during

application initialisation, all Tapestry’s dynamic web page XML specifications

and HTML templates are read and parsed only once, and then cached to

minimize processing time for each request. Also all page instances are stored

in objects pools for later reuse [Ship, 2004] [Smith, 2004].

d) Error handling

Tapestry provides excellent error handling in the form of a complete

diagnostic report on why the error occurred, that is a detailed exception page

showing all nested exceptions, a stack trace at the deepest exception and a

detailed description of the servlet and HTTP request environment. Also file

and precise line numbering are presented to display what caused the error

[Ship, 2004] [Smith, 2004],

e) Free to the public

There is no licensing or cost associated with Tapestry and it is freely available

on the web.

B12

Appendix B Alternative Java Architectures

f) Platform Independent

The Tapestry framework can run on any UNIX systems (e.g) Solaris
i l ¿¡r#

etc and any Windows based platform. Of

B.3.4 Disadvantages of Tapestry framework

The following are the disadvantages associated with using the Tapestry framework:

a) Poor Documentation

Tapestry is not a widely accepted framework like Struts, therefore

documentation on Tapestry is somewhat limited. Many users find the online

documentation (the Apache resource site) very hard to understand. Also there

are also very little recommended books on the subject matter compared to

other languages and frameworks (.NET, PHP, ASP, JSP and Servlets)

b) Learning curve

There is a high learning curve to fully understand the whole component based

Tapestry framework. Thus the framework adds another layer of complexity for

less experienced developers.

c) Application initialisation

Although Tapestry uses caching and object pooling to increase page request

performance, developers must recognise that during application initialisation

the Tapestry framework will use a tremendous amount of introspection and

XML parsing of meta data, therefore a performance lag will occur.

B.4 JSP Standard Tag Library

JSP Standard Tag Library (JSTL) is set of standardized JSP custom tags that provide a

means for developers to create JSPs at an accelerated rate. These standardized JSP

tags provide developers with a high level JSP tag API, where common mundane JSP

tasks, for example, database access, internationalisation support and XML processing

are hidden so that a developer need only implement minimal code to develop a JSP

web application. These custom tags in turn reduce coding errors and promote overall

JSP readability.

B13

Appendix B Alternative Java Architectures

B.4.1 Components of JSTL

Since JSTL provides a high level API, there are four main components / libraries that

can be use to build a simplified JSP.

a) JSTL core

This tag library provides a set of core utilities for simplifying common JSP

scriptlet actions. For example, conditional statements, iterating collections,

URL redirection and manipulation are all handled by this library [Bayern,

2002] [Bergsten, 2003]. To use this JSTL library, one must declare the

following t a g l i b directive tag
<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core"
%>

b) JSTL fmt (Internationalisation and formatting)

Previously developers using plain JSP scriptlet notation had always to provide

their own set of functionality to support localization and general Java primitive

type formatting. Again this tag library is set of common utilities that reduces

the amount of development overhead, by providing tags that help developers

input and output dates and numbers as well as localized formatting [Bayern,

2002] [Bergsten, 2003]. To use this JSTL library, one must declare the

following t a g l i b directive tag
<%@ taglib prefix="fmt" uri="http://java.sun.com/jsp/jstl/fmt"
%>

c) JSTL sql (Database)

The Database tag library provides a set of utilities that simplify the connecting,

querying and updating to a JDBC resource. Previously JSP developers usually

had to develop their own Database JavaBean for simplified JDBC resource

querying [Bayern, 2002] [Bergsten, 2003]. To use this JSTL library, one must

declare the following t a g l i b directive tag
<%@ taglib prefix="sql" uri="http://java.sun.com/jsp/jstl/sgl"
%>

B14

http://java.sun.com/jsp/jstl/core
http://java.sun.com/jsp/jstl/fmt
http://java.sun.com/jsp/jstl/sgl

Appendix B Alternative Java Architectures

d) JSTLXML

This tag library offers a set of tags to simplify XML document parsing,

looping and transformation to XSLT [Bayern, 2002] [Bergsten, 2003]. To use

this JSTL library, one must declare the following t a g l i b directive tag
<%@ taglib prefix="x" uri="http://java.sun.com/jsp/jstl/xml" %>

B.4.2 JSTL Expression Language

Not only does JSTL reduce maintenance of JSP applications by avoiding JSP scriptlet

elements by providing programmers with a set of custom tag libraries, it also offers

developers the ability to use JSTL Expression Language (EL). The JSTL EL is a

JavaScript like language which allows developers to use abbreviated object name

syntax instead of JSP scriptlet (Java syntax) for data access upon the dynamic page’s

implicit and session based objects, for example, JavaBeans contained in session or

JSP HTTP request header information.

The EL data access can denoted by using the following syntax [Bayem, 2002] (see

Figure B.4)

EL Syntax ${<Name of JavaBean instance>.<Variable Name>}
or
${<Name of JavaBean instance>[“«Variab le Name>”]}

EL Example ${customer.fiistName}
Usage o r

${custoiner[“firstName”]}

Figure B.4: JSTL EL Example usage diagram

The EL uses automatic JavaBean inspection to access data variables. For example,

currently in JSP scriptlet programmers must downcast their base JavaBean class types

after j ava . lang. Obj ect retrieval from HttpSession. Where in JSTL,

programmers need only call the base JavaBean class type directly [Heaton, 2002], For

example (see Figure B.5).

B15

http://java.sun.com/jsp/jstl/xml

Appendix B Alternative Java Architectures

JS P
E x a m p le

<%
C u sto m e r a C u s to in e r = iC u s to m e r)s e s s io n .g e tA ttr ib u te ("c u s to m e r”);
if(aC u s to m er.g e tA g e () > 18)

{
%>

%>

Do S o m e th in g H ere

JSTL < c : if te s t= '$ {c u s to m e r.a g e > 1 8 } ‘>
E x a m p le ** * Do S o m e th in g H e re * * *

< /c :if>

Figure B.5: Example code difference between JSTL and JSP

B.4.3 JSTL Custom Tags

While JSTL provide a set of tags that solve many of the standard problems

encountered by web developers; it does not cover all specific problem areas such as

sending emails and file manipulation. The true power of JSTL is that it allows

developers to build their own custom tag libraries to solve their own project specific

problems. A developer must build a special class called a tag handler to handle a new

custom JSP tag. Instead of developing a completely new tag handler class, JSTL has

several support / base classes which can be extended / inherited from, for example,

j a v a x . s e r v l e t . j sp . t a g e x t . T a g S u p p o r t . The process of extending JSTL

base classes focuses development time on writing custom code and not traditional tag

handler methods. A class must realise the j a v a x . s e r v l e t . j sp . t a g e x t . Tag

interface if it is to become a tag handler. However before a new tag can be considered

a tag handler it must be associated to a JSP tag library [Bayern, 2002] [Bergsten,

2003] [Brown et al, 2001],

Before the JSP tag library association can be made, a file called a tag-library

descriptor (TLD) must be created. A TLD is an XML document that describes the

main tags contained in a new JSP tag library (see Figure B.6).

B16

Appendix B Alternative Java Architectures

taglib
type j Î -
Denotes the beginning of a
new JSP tag library

tlib-uersion
lypa
Specifies version label for
new fag library

Jsp-version

Specifies which ✓etsion of
,'SP specification to use
p iote I must be greater than
12)

short-name

IViW I
Denotes an abbreviated
name for the tag library

un
lype
New tag llbraty is unqiuely
identified by a URL

I---- ---- ---1
; display-name ;

llypgl- .-J
Display name for tag library

 ̂description ;
¡type] ;- J - - - - - - '

Tag library description

type

1 ..to
Indicates a new JSP tag in
the library

Figure B.6: Diagram of TLD file structure

In additional to the main XML elements of the TLD, The < t a g l ib > element has a

child < tag > element for each tag (see Figure B.7).

B17

Appendix B Alternative Java Architectures

tag
I'/fM I
Indicates a new JSP tag in
the library

&

.name
type I

The name of the element

, tag-class

type 1
The das; that was written to
handle the new)SP tag

I.attribute
- ---------------- E3-UvpeJ__ jf.V-VJÿ- -Q..00

Indicates -a new attribute for
the new JSP tag

L & r r m m

„name

type
H _ - r The name of the element

_ required

type |
I ; the attribute element
needed

Figure B.7: Diagram of TLD file structure Tag XML element

The following process must be followed before a developer can use a new tag from a

new tag library [Bayern, 2002] [Bergsten, 2003]:

a) A developer must copy their new TLD XML file to the WEB-INF directory

(see section 2.3.3);

b) The developer must copy their new tag handler classes to the lib or classes

directory (see section 2.3.3);

c) The new tag library must be imported into the JSP using the < %@ t a g l ib

% > directive.

B.4.4 Advantages of JSTL

The following are the advantages associated with using the JSTL:

a) Internationalisation and Localization support

The JSTL f mt tag library provides a rich set of language support mechanisms

in the form of built in tags [Brown et al, 2001] [Heaton, 2002]

b) Compatibility with web WYSIWYG development tools

As the JSTL expression language is XML compliant, it is easier for web

WYSIWYG tools (such as Macromedia Dreamweaver) to parse the intermixed

HTML and JSTL, therefore these combined mark-up languages can be display

B18

Appendix B Alternative Java Architectures

in more readable format that graphic designers and developers can understand

[Bayern, 2002] [Heaton, 2002],

c) Readablity

Compared to servlet and JSP applications, JSTL true power is through its ease

of readablity. Since graphic / web designers do not come from a computer

science background, they find it difficult to understand programming language

scriptlet (JSP) which is intermixed with their HTML. As JSTL is based on

XML (which is similar in syntax to HTML) these designers have some

conceptual awareness of how the JSP page is formed and could even place

JSTLs into the page themselves.

On the flip side, since JSTL uses automatic JavaBean inspection, programmers

can simplify the JSP scriptlet syntax (which is really normal Java code after

the JSP page has been parsed) by using JSTL [Bayern, 2002] [Brown et al,

2001] [Heaton, 2002],

B.4.5 Disadvantages of JSTL

The following are the disadvantages associated with using the JSTL:

a) Performance

A performance lag will occur during JSP page execution, as JSTL uses

significant amount of extra server processing than JSP scriptlet. The reason

behind this is that JSTL uses significant amounts of introspection for

JavaBeans and XML parsing for the JSTL expression language [Heaton,

2002],

b) Learning curve

There is a significant learning curve to fully understand the JSTL

specification. Thus the specification adds another layer of complexity for less

experienced developers.

B19

Appendix B Alternative Java Architectures

c) Extra overhead

Compared to JSP scriptlet, JSTL is wonderful for creating simplistic JSP

pages however experienced developers may judge that there is an extra work

in creating a new JSTL XML tag compared to writing JSP scriptlet (which

they already know) [Heaton, 2002].

d) Extensibility

JSTL is not as extensive language as JSP scriptlet, as JSTL is still an evolving

specification that doesn’t allow the full use of all other Java classes as the way

JSP scriptlet does [Heaton, 2002],

e) Database security

JSTL Database library promotes the use of Database functionality from within

an JSP, this maybe problematic as security breeches may enable a hacker

direct access to your Database resource. Therefore for larger applications, it is

better to separate / hide this functionality by moving the Database access to a

JavaBean or another Java class [Bayern, 2002],

B.5 Conclusions
This chapter has provided an insight on other competing Java based solutions for the

fundamental problems to JSP. It has described what these technologies are and how

do they work. But the chapter has also provided an objective view towards their

strong and weak points. Therefore to further this discussion, we must now provide an

independent and objective performance benchmark using the dissertation’s new

framework architecture and several competing alternatives.

B20

Appendix C Benchmark One Results

Cl

Appendix C Benchmark One Results

Graph Results
[Q t e t t P iang im i(E :\H ie s i*_M«tH tsiXToitical,.i.1 _Tesls\Fratncworl< JSF\(Threatfs 1 » UnmpUp 0 - f.oop 30D)\Te.%t Ftan.|«iw) A p a u . M H D C ?

P d Eifit Bun Options Heip

Test Pfan

9 H*' TĥsFrflrmeworliUslrtgĤSP
HTTP Request OefOUs

HTTP Cookie fiVHViger

/* TcpSptd&Pa&s
(SI GrdPhR«ut5
K l Spline Visualizer

[^] View Results in Table

RH View Results Tree

[?F| Aggregate Report

£§! WorkBench

Graph Results
Hanra: [Graph Results "

Write All Data lo a Filo

Ftftmamo - RampUp 0 - Loop 3ÜD)\GraphResults 1 Browse-, 1 Lon Err o*s Only

Graphs 1« Display ® Data ® Avwajja bshfotfton fà ipovferlion fie Tivoughpi#

Deviation 370 Tlirouuhiiul 0231 ? l6flmimrta Median 30

Figure C.l: Graph results of new framework using JSP

Test P lan.|mx Metrics\Tom cat.-4.1_Te*ts\Frärnework _MSP\{ Thread* 1 - Rani<>Ufi 0 - Loop 3 0 Q)\lc s t Ptarxjnw) - Apat— W[?] E3
File B ill Run Option» Help

^ ^ Test Plan

9 H?’ TheĝranwwoiWJsfex̂S}
HTTP Request ÜalooölS

a itf HTTP Cookie Mfliwjcr

jT TopSptfeipAgftMSP
{ v | OfAptl Rèsila

m Spiivs tyisuiÉier

0 VtewftesuSsjn Tubi*

[^ j Veew Restes Trou

I v ì Aggrega® Report

|jf WixkBsnch

*'......... " ¡:'i>

Graph R e s u lts
Naimt: ¡Graph Results

WrltoAllDatatoaFHo

FilonarrKr j- RarnpUp 0- Loop 300)\GraphRe soils Ebowso*» I Lou Errors Only

Graphs in Display Ttì Data irl Averaflß ß Median (2 Dotation fis Ihroirutiptl

1593 ms

0 ms

No of Soinptes 300

Owl alion .30
Latest S ana la 30
IhrouuN urt 1339.285$fml nule

Figure C.2: Graph results of new framework using MSP

C2

Appendix C Benchmark One Results

E A tcsI PUiuJmx (C:\TlwisU _M etrics\Tonica l_ ‘1 .1 e s L * \5 1 ru U _ J 5 P \(11»trads i - RampUp t) • lo o p 300)\Te» l P lan.tom) - A patlm JM— F

[He Etlft Run options Help

9 ,¿1 Test Plan

9 StrutsUsingJSP

HTTP Request OetouSs

j i t HTTP Coo** Mwwjer

/* TepSfidefPAgiSiiiila
f y l Sp*ne Visuallwjr

0 View Roftjfl« in Table

View Results Tree

i? l Ao(p«flflteRcpOit

f i f t WbrfcB&nch

Graph Results
Name? ¡Oraph Results

W i«a A ll Data tu a f if t i

Rfcutame • RampUp 0 - Loop 300)\©raphResuits B rowse» [¿i-Lao Eno fs Only

Graphs to Dtsptuy v j Data iVi Averaoe 1« Mutilan ß Deviation f i í riirouohput

2313 ms

0 ms

No ofSampißs 300
Deviation «3

la test Soitipto 40 .
ThroutjlMMii nè3,2764fminui8

Awratjo 39
Median 40

3EI

Figure C.3: Graph results of Apache Struts using JSP

[W ì c r t Pldi>.|04K (E:|,T lig*l>_,M ftrk.>\Tw iH at ^ .l_ lc»U \,T ttpe a trr\(T l> tt;d d * 1 • RampUp 0 - Loop 3 0 0) \T f t t Pkuujnm) • Apatl»? f r - t e t - H E E

Fitt EiSJl Run Options Hdp

——————®Aw ia ijn 44
Motilan 30

9 44 Test Plan

9 U ' Tapestry
HTTP Request DclttJìa

HTTP Cooto Manager

¿ * TopsEfclera
0 GfnphReiuls
[v l Spftoe VUiMfaer

0 1 View Resufls in Tatoie

(y l View Tree

m Aggregata Ropoct

|̂j-w«itaflnch

Graph Results
Nat))« ¡Graph Results

Friona ma - RampUp 0 - Loop 300)\@r3phRe$ulis Btow su- 1 [Zi LogE irm sO iiV

Graphs to Wsptny k Dala in Avwagti -y, Median [0 Dnviattnn V tnrmiohput

871? ms

30
1054 t??7/m|ftu!o

0 m s

No of S«m|ilusDeviation

Figure C.4: Graph results of Apache Tapestry

C3

Appendix C Benchmark One Results

t Ploiuimx (EiYf h e i i i „Metric s\Tumc<Jl_4.1 _Tcst*\PflQcCcnUtt J5P\(Ttireod» 1 - RatnpUp 0 * Loop 3 00)\T « s t ■ Apadi_. P i [i l B

FHc Edit Will Options Help

9 PageCentricJSP

HTTP Request Dcfauts

ißt HTTP Cookie Manager

Topspiders

\S\ Gi ftph RftiiJa '
m Spline Visuolixer

View Results In Table

[*̂1 View Results Tree

[H3 Aggregate Report

i ! WorkBench

Graph Results
Name: iöfaph Results

Write AJI Data io a Filo

iFfleimmtï - RampUp 0 - Loop 300)\GraphResults¡; j1 8»()W8tì-.- j I , Lou Frrofs Only

Graphs to Display »' Data Uà Averaoe jpfl Mixiian 13 Deviation ß I hr intubimi

3573 ms

Û ms
No u f Samples 300
Deviation 67

Latest Sarnpto 40
ihioutjhjHrt 1316.£484tai(mjte

Figure C.5: Graph results of page-centric JSP

Spline Visualiser
P lan.im x(E:\Thesls M etrics \Tom ca l. ■*.!. Te*ts\FramcwoHc_JSP\(Thrcads I • RampUp0 - Loi»p 300)\Test Pl<Mi,inw> ■ Apat_. H I »] 13

gilí Étífl Rain Options Ijetyji

Test Plan

9 fff ThfiSisFfamcwofkLIslnöJSP
HTTP Request Oe touts

3tt HTTP Coofce Mflnoget

jr TopSpkJCiPatjO
R *1 Graph Raauto

0 Spine Vivuote«

f v l ViewRewAs In ToKe

m View RewAo Tree

m Aiiiffftgi*® Rapat
(j f VtorVfench

Spline Vlsualizer
Name: [Spline Visualizer

write All Data to a Rio

Filename ¡reads 1 - RampUp 0 - Loop 3Q0)VSp11ne EJjowsf^ 1 LopErrOisOnty

'Aiídmum »3020 ms

SO ms

20 ms

Figure C.l : Spline visualiser of new framework using JSP

C4

Appendix C Benchmark One Results

¡Test Plarujmh (E:\Tliesl* _.Metrk*\TuiiM:<it ./».I _Te»U\Framework_MSP\(Ttire*d> I - RdnipUp Q - lo o p 300)'\Te»t P ia iifrn x) • A pac^ H E P

File Edit Riifi Options H&lp

¿ Test Plan

<? TheŝreirevvofkUsbüMSí
^ HTTP Request OeitfjJs

4 ^ HTTP Cookie Manager

/ TopSpiderPageMSP I

[51 Graph Resufts

Spline Vlsualizer
H anrè [Spline Vte u a H z e r___ _______________

Write All Datato a Flic

FUotmmo jreads 1 - RampUp 0 - Loop 3Q0)\Spl(ne| D Log Eftors OnlyUKOWKfT.

|J | WwkBench

Figure C.2: Spline visualiser of new framework using MSP

EH Test Plan.imx (E:\TlKi>IS_M*:trics\Tonicat_*l.l _Tests\Stmts_3SP\(TlMCrt<ls I - RainpUp 0 • LtM»p 300). Test Plrtn.friw) • Apatlie JM ^ H W E

FUe Edit Quin Options Help

^ Tesi Plan

9 j f f StrutsUsingJSP

HTTP Request Oeitmrts

HTTP Cookie Manager

£* TopSfjídeiPcKJeSJrtJív
© G i^ li Reftuls OSfilneViímÉiB
(v | View Rwuts in ToWs

0 View R8Bt4Ís Tree

Aggjrogiife Retxxt

j§ - WskBEnch

V:. --- -- — - . !»

S p lin e V lsu a lize r

Waroœ, ;Si)lineVigualr¿8f

Write All Oat« to a Filo

Ftfonamo re ods 1 - RampUp 0 - Loop 30O)lSij1ine[Browse... f i LotiEfiorsOnV

Maximum 771 ms

Mi Ma 3P ms

neon limi ■IO ms

20 m s

Figure C.3: Spline visualiser of Apache Stmts using JSP

C5

Appendix C Benchmark One Results

0 T c t t Plan.jniH (E:\The*4* _ T « lv \I< jp ts tfY \(T lu x '.iiJ * 1 - ftatn i'Up I) 1 u*»i» 3QO)\Tc\t Plan-jiiiH) Ap.uhe J M B U .H E *]C l

FHo Et (H Run Opilo its H&jp

9 Test Piati

9 H f Tapestry

HTTP Request Défauts

m HT IP CocAue Manager

Topsptcfeis

f ë l Graph ftw u ts

0 Spins VUuflfci«<

F >1 V iew RsauS» Un Table

[v | V iew Re-iiAs Tree

m Aggiogate Report

jj] WorKBerKh

Spline Vlsualizer
Name: [Spline VteualUer

VWlle AH Ddtotoaftle

Rî&iiuma ¡reads 1 - RampUp 0 - Loop 3P0)tepllne] B ro w n u J I 3 Log ErromOnty

‘.^xiriKini 2004 m»

Avwauo 44 f

w o m in ti 30 m *

lUHnimuin Hü ins Of- i r-

Figure C.4: Spline visualiser of Apache Tapestry

Te*t P lan.jnix (&\1hesi*_M etrics\Tuim :al._«M _Te*<*^PagcCt ir i li iO S P\(Threads 1 • R ivnpUp 0 - lo o p 3U0)\Tis¡t P J a i i- ln w)-A p a i!u ,P I I« IE

R e Etlrt Rtm Options fjüîp

jgF PageCentricJSP

HTTP Request Défauts1
ÿj$ HTTP Cookk» Monogcr

i* Tofîîpidflf«
EvJ Graph Resuts
If?) S^neVbudtttcr

f y | View R«w4flrSn Tflbfe
[v | Vtow Results Tree

m Aggregale Raped

WorkBench

Spline Visuallzer
Nanio: jSpI l neVIsu altear _________ ____________

Wtlre All Date (o a Filo

ÍH&trame |j’s ai¿$ 1 - Ra m p U p O - Lo o p 3 0 o)\S pline| | B ro w s e - □ LooEnwsOn̂

Averane 33 ms

Figure C.5: Spline visualiser of page-centric JSP

C6

Appendix C Benchmark One Results

Aggregate Report
¡3» efct P lan.jnw (E:\TheslsJ v1elrics\ï<ii«C«»l- 4 * l—Tests\Fpfl«iework_JSP\(Th»,C4itJf5 I • RompMp 0 - Loop .iüft)\Tp„sl; Pion.jmK) - Apac,,. f e r a c i

FHü ftirt Run Options Help

9 £ TetftPIwi
9 TiieösFrsioewwkUse-jQiJSP

f tj t HTTP Request Dstotrts
HTTP Cookie uamo^or

f lopSpWe/Pnge
Graph fiesuts

¡53 Sf3*r* Vìsuafeer

Q Vlew.Resdlsìn Tobte

E l Vnw R esits Tra©
iv] Arresi*» **pwt

lHj'WtorJÆWncii

Top9piderPa.„| __________300Ì

TOTAL 300;

Aggregate Report
NaroffijAggfgpfo Repott

Write All Data lo a FIte

Filename ampup 0 - Loop 300>\AggrGiiat9Repof< Biowso„ Loti Eh i» s M y

JJEL Counì J . _ A v m j t e ... j
JW !

«I
Ì0L¿òr

Jt&L JM*.
«SK -0 .00 * 6C2D'0ÒÒ% '

m n ~ iJlSJiteee _
jtè.'ì/sec

Figure C. 11 : Aggregate report of new framework using JSP

n (£ i\Thei(s MelHcs\ToiiTEöl_*l.l _ Te5t*\Frarne»ork_pISP\(T lin:ttd* 1 - RompUp 0 - Loop 300) VT e s t Piati.Jì i ih) - Ap.it,,. n Ü J E l

Rie Ëiffl Ron Options HcH|»

9 ¡à9 ThesjsFferj«wofVU;«>yMSi
m HTTP Request Delflula
•jttt HI TP CtitUfo Monoßöf
/* lopspwerpdssusp

Ór aph R esic i

0 Spine Vtiuafix«
GO Vfew Result m Tobte
(5*1 Vfew Restes Tree
[v l Agyotfata Report

1) Wtrk&STKh

Aggregate Report
Näcne; [Aggregate Report____________ __________________

Wiitu All Data tu a Ria

FUefianrto jam pUp Q ■ Loop aPOflAggrogafeReporij Brow se - I .O lo o En o n sO n V

. . . URL._ I Count
Top a pi öerPa. _ J 300
TOTAL” 300

Awräfl* Mm M«_ L. Elior̂531 0 00%33! 10! __
33 I ü 531 ¡0.00%

Rale
22.3/sec
i22.3/sec

Figure C. 12 : Aggregate report of new framework using MSP

C7

Appendix C Benchmark One Results

P ld iijin x (E:\TlitiMs funn./i! -1.1 JSP'', (Threads i - Rdnipüp ü - lo o |j 300) \ l est Flan.jmw) - A)jüt1tL‘ JM... *1
Hlo rUjf Rim Options Holl»

Ç ¿ tçslplsn

Ç ^-Strul8UsiioJSi>

fÊf HTTP RettuoM Cutouts

fU HTTP CCrOHüO »WVSJW

TúpSpWerPaytóinjl!: Isl Giapit R«ms
K l Spk« Viju«taer

0 v iw ResJtt in ToDK!

[v il View RcæuSj Tim

F I A w ojoto R(*»1
¡}§ Wc.k6er.ch

URL Count A v e ia g » _ j Mm 1 wait _ J Ettortb J Rate
TopEpldetPa.. 300 39! 301 77110.00% 119.7/sec

TOTAL 300 39- 20^ 771 0.00% 19.7fcec

Aggregate Report
H m I'm pro aale Reputi

Witiu All M a tonfilo

FHoimmo |:ampup o ■ Loop SOO^grogateRapori ö tow iu - □ U f lE ttu fsO iil/

Figure C.13: Aggregate report of Apache Struts using JSP

|QTe*L Pitm.jmx Met riti ¿\Trjrnc<ll_-l.l„Tesl5\TapeS|lV\{T|jf<0il* 1 - FtdmpUpO - Loot* 30Q)\TesL Plon.ji mm) - Aprichi»

File Edit Run Options Help
r---------------------------

9 Tesi Pl*t

9 Tapestiy

HTTP Request DelouU

j f £ HTTP Cooto Monogcr

f Toptipders

i v i Graph Resuls

f f l Sptoe ViaufAici

F I View Remi* 111 Tjskte

[v] View Rasuls Tree

Aggiffe^e RtpOft

(¡ft WbtkBerich

Topspftieist_
TOTAI-

Aggregate Report
Kanxg [Aggregate Report j

Wttto All Odia to o flh)

Filename [ampUpO'Loop 3OOMggf0QateReporl Browse» J f Loo B ro rs Only"J
JMk. com

3Û0
300!“

Mm I Wax I Efiof%~
201

Rata
29Q4j0.00%
290410.00%

j 17.6/sec
[17.6/sec

Figure C.14: Aggregate report of Apache Tapestry

C8

Appendix C Benchmark One Results

j T c i t P lan-Jnw {E !\T lie (U _M c lriw \lt> m ca tJ 'l_T cs ls \P ö gcC e n trltJS P \(T liiiyK l* 1 - t îa iru i lfp 0 - Loop300)^Test P liin .|m it) - A i i s d ù H j f l E3

File frtiN Run O ptions Help

9 £ TesiPitvi

9 J-PageCert/fcJSP
HTTP Acquest OoTwiia

j K HTTP Cook>e Manager

TopspKlers

F^l C* ophRMuts

! s l Spine V ow tize r

[v j Vtewf?«i*5inTBbte

0 View Results Tfe®

EH Aggregate Retxii
j £ VtaVBench

Topsplciers
TOTAL

Aggregate Report
Name: [ftgoragate Report

Wt«e Alt Data to a File

FBoname arnpUp 0 - Loop 300)\AugjegateReport| Browse.- 1 13 ¡Log Erro rs Only

jjbi- 1_ejüöT
300
300

-MtsöL. -M«L_10
i5f

J4»_ liSSdEL
1191 ¡0.00%
1131 il 00%

. 6lit_
•2 : 0/sec
¡2* Ws.ec

Figure C.15: Aggregate report of page-centric JSP

View Results In Table
T e il P lan.jnw (E;\Thesis_Metric5\Tonicat_4.1_Test5‘,Fran,»ework_JSP\(Ttl*,«®d* 1 - RampUp G

Fite &!H Run .Options Me#»

u 3D0)\Tej»t Pian.jrox) - Ap-ae... HWE3

Figure C.16: View results in table of new framework using JSP

Appendix C Benchmark One Results

Te*t P lan.lmx (L Thc*is M e lrit» \Ton ir.i)t 4 . 1 _resis\Frafncwork_M SP\(T tiic< ids 1 - RdrnpUp O * Loop 300)\Tcst P ta n jtn x) - Apac P f f * l 13

f ie Edit Run Ojrtlomt Help

^ TwtPlfln

9 J f c Thw**FramewOfkUs*nflMSJ

HTTP Request OeioulG

HT1P1 Cook» Mawngcf

f * IcpSfÄtoPitgsUSP

[^1 OrufMi Rwwls

[v] Spine Visytftier

(51 in Tabio!

J v l Vtow-RMiiAs.Tre#

f v l Aggregate Report

j|j|| WerüSertoh

or- • in

View Results in Table
U<ime: (View R e f gits In Tattle

Write Aft Data (ooHte

Fflanmim jipUp 0 - Loop 300)\WewResultslnTatile[Browse... J Luo E irors Qnty
_____________ ___

öamfi}eWo URL

TOpftMeiPMeMSP
TO|)BomeiPageM6P
topSpiderPag8MSF

TepSpideiPegewSp
_5 FctSc
6 TopSpiderPagaMSP
7 TopStndeiPageMSP
9 TopSpldBrPagaMSP
5 TopSpidetPageMBP

10 TopSp laerP ageMSP

11ToeSpMarPageHSP
TopSpld9iP a w y 8P
TopBalderPagewSP

14 TopSpldarPageMEP
5 TopSpJdcrPapeMSP

TqpSpTderPageMSP
TopSpideiPagBMSP
TwHprdKPssieWSi'
TopSpiderPageMSP
TopSpideiPagelitSP
TopBpldsrPageMSP
TopSpldeiPagcMSPTopBpldarpaaawSP

Sample • ms

531

Success?

30<0
CO

_J0

_jf:
M-
30

JSL2ÖI

ISiff
0 _0 _ la 13~_ 0 k~W
mwra— ■0~0~ia

_jh
_3Q-

41
30
50
50
40

13“Idir~ww■0I«iKl

Figure C.17: View results in table of new framework using MSP

Tc»t Plan.hnM (E :\ThM ls M «lrics\Tom cat 4.I_Tests\S lruU ; J 5 P \fn ir iia d * 1 - RmiipUp 0 - Loop 300)*Te*t Pfai».|n»K) - Apat!«* JM*~ W [“] E3

Ffle Edit Hun Option» Help

9 Tesl Plan

9 ^ StrutsOsäiöJSP

$$ HTTP Retries! Daf outs

$ $ HTTP Coote Manager

/ * fcpSpW«P«geSiii<s

0 Graph RatiAs

151 Spine Viiufltaer

[^ V * w r « v * s in Tobte

f f l Vtow RosuIb Trea

i v j Report

|H Wcrkßench

View Results In Table
Mams; [View Resu lts In Table

Wirtie All Daw to <i File

'Filename [»pup 0- Loop 300)WiöwR8su(tslnTabl8j Browse... | I Loo En.ons OnV

SsmpleNo [1 _____________URL

I TopgptderFaoeSirute
Tq !vdi:Tp;.i-jcF,tr.ii.:

j (: BpIdeiPageStaits _________
TooSpitiefP ageStfuls

Sample-m s

GjTopSplderPa ge Slruls
?!TopSpI derPageSUnts
8frö___ Q|TopSpttfo)P ag f Struts
£)'t ops pitferFageStfuts

i o™>Spldet PageSlruis___

11 [To pSpldorPajieSfrute12 TopSpidefPa geSlruts
i 3{Top8pl datPage Sir tits
14 ¡Toip S t i doi P aoeSlrute
15 Tcif^pJdeirftijoStriit”
16;Tnr : • apeStryfs___

1 t j t e pSptdeiPageSlruis____
t S ifo pSpltlerPageSltuls

Topsplderpsijesfrijts
TopSpidgrPa g'e Struts
1 o^S |jki9iP .5JjeSttu£ü

TCipSpldafP ag eStrxjis
TopSp Ide rPn ge Struts
TopSpirtarPageiBlruls

-- f-

771 " 50| 20I 50
30f
40f‘
40_40j40« 50 “ <01 60 30;
3ujo;
30si:501
60

30)JO
jSr
0 -
50!

SllCCfrSS?

'J -V "g-j ■

Figure C.18: View results in table of Apache Struts using JSP

CIO

Appendix C Benchmark One Results

1« (€aT lH»l»._M elrtc<\Tuntcdl_*l.l_Tt?% l*\Topcslry\(Itireaiis 1 - RonipUp 0 • lo o p 3 00)\T c*t |Hao.tmH) * Ap»tt»e H f [" J c J

FHo Edit Run Optlonf Beffi

9 £ Te« Pian
9 ¡¿■‘Tapestry

a^HTTPRewcst Octftuls

IgHÌTPCoolnoMflnos«

Topspiders

0 Cy«pf^n*su*3

fy l Spine Vteuatetei1
[v] View RcìuJs vi Tsbte

m View RosuKs Tree

[^1 Aflijroa-tHo Report

SSI WwkBencb

r4% a ?£&•■ ?:V̂TÌ ~»1

Figure C. 19 : View results in table of Apache Tapestry

a r c i Pfaii.jttm (C:'-.Tlie5is_Melrics\T0l?ICttljj<«liTe»t*\P<HieCen<r«3SP\{ThnNMl> 1 - Roim|»Up Q - l.uop M I3)\T(isl Phin.jnix) - Apodi... H f f l lE j

F ie Edit Run Options H«l

U»

Tesi Wan

PttBtCertikcJSP

HTTP R e s is t Dclouls

? HTTP Coca» M iwwjei

TopapiEtor*

E J Graph Resuis

1?1 Spine Vttuafiie»

O V*wRe«4 i*T*W e

g l View Rosate Trea

E51 A gg io go Report

WtokBench

T— m-^sfclfT

View Results In Table
Nanne ¡View Results in Table

Wrtto At! Dato to a Fifft

Rlumime ipUp 0 - Loop ;3Q0}VtfewResultsliiTable| Browse». f j Loo Eno re Only

SampieNo -L..... URL.
1 Topsplders

Topspldors
Topsptderg
Top SplflSI i
TopgpJd m

a Fop spiders
y j t opsptders

Topsplders
Tcipspidars^
Tqpspicf&rs
Topapiders

0 Ò10 T
j 1 i
Ì 2iTopspldefs
1314
15
16

TopsjJldnrs
Top spiders
Topspidors
Topspiders

J ? fopsptdi&rs
18 TopspidBfs
1 sifppsplders
20 Topspiders
21 Topspiders
22lTopsp(dsrs
23iTopspiders 24jTppspid3rs

J55L-
1191
i l40
30'30?
30;_20l
3p|7
20 !

50I
30.
3D.

JO].
51i
40]
•Ui
301
30
40]
50!
301
40!
40'

Pi
"g~lJa=W “
car
ETE
tóJ#

W13'(2y,
"1
MSS_I

Figure C.20: View results in table of page-centric JSP

C ll

Appendix C Benchmark One Results

View Results in Tree
0 T e s t Pkm,|mH Meldcs\Ton(cot ^ iJ Te»U\Fr<nnt‘Work,J5P\(Threads I - RonipUp 0 • Loop w300)\Teat Man.frnx) • Ap<w... H i f i E 3

Rio Etlft Run Options Help

9 ¿ Test Man

9 jt;"' TTwstefrftm^üikUiina/üP

J f f HTTP Recjuesl Défauts

HTTP Cookie Manager

TcpSpfefefPftgo

f y | Graph fteauta

[v] Spine VteUfltizer

R ~1 V iew Resulta In Tutte

{ ^ V r tW RèïWÎlî: Tlfltì '

(v | Aggrego Report

¡ígj WofkScnch

>

Wrfle All Data fo a Fito

FHoname ¡TipUp 0 - Loop 300)XVlewResu!lslnTree Biowse«. I: Loo Errors Onty

View Results Tree
Name: iVtewResvftsTrea

<P C lR o o t A
D TopBptdetPage

Q TopSpkî&ïPage

D TopSpidéíPaga

D TopSpiderPage

D TopBpiderPage

D TopSplclerPaoe

D TopSpsdeiPage

Q TopSpiderPage

Q TopSpWerPago

D TopSpideiPage

D TopSpiderPage

Q TopSptdetPaga

D TopSpSdeipago

D Topspiderpage

Q Topspiderpage

Q TwpSpiderPage

0 Topsplderpoge

Q TopßpidsrPage

Q TopSpiderPage

Q TopSpiderPage y

S a iT iii lB i le s u l l R f lq iio s l R U E p o flsa d o t*

mart lim» 6620
HTTP response coita; 200
KTTP responso message OK

HTTP responso Inodora:
HTTP/1,1 200 OK

So l-C o o kie '
J8ESSIONIO=3FFE3WD504550C90G80C0B<CE2nF4E,
PatfWTtiealsFramsworfc
Expires’ D
Pragma Mo-tactie
Cache-Control NO-£SihD
Content-Tyno (eilfii1ml;chatcei=lSO-885â-1
Contant-Lengtív 3695

Oats. Sat. 21 Aun Î001 13:08.52 OMT
SetYer AcothsCoToUfl t

Figure C.21: View results in tree of new framework using JSP

Tc»t Plan.Jmx (E:\The* I* Mclric*\Torncal„-4, l _ I e 5ts\Fram<;woH<_MSf>\(Tljfe»d§ ! - RampUp0 -Loop 3Q0)\Te*l PlaiLinw) - Ap.*... ® [*H D

File Edit Run Options Help

¿ Tes* Plan

Ç j £ ’ ThesitfraroeworkUaingMSi

HTTP Request D cfoutj

J j f HTTP Cook» Menajpr

f T opSpcdû» Pag® MSP

(v j GrepbResgts

pH Sptfw Vteyafixer

1551 View Restrts Ir» Tobte
[vH Vww RetuÄc TiOù

0 Aggregate Report

i f ^ IrB e iK t»

View Results Tree
Name*« jview Resulte Tree

WfrtQ All Datolo a Filo

Filename jn pup0 - Loop 3OO)\Viev^0sults)nìree Browse-. | Ji ! Log En o rsü n V

9 tZÜRaot

Q TopSptdorPapoMSP

Q TopSpíderPageMSP

D TopSpidorPageMSP

Q TopSpltf erpageiMSP

Q TopSplderPageMSP

D TopBpiderPageMSP

Q TopSptdetPagoMSP

Q TopSptdeiPagaMSP

Q TopSpfderPagoMSP

D TopSptderPageMSP D TopSpid&rPatjeMSP
Q TnpSpiderPageMSP

D TopSpldef PagoMSP

Q TopSpIderPageMSP

D TopBpiderPageMSP

D TopSplderPaoeMSP

Q TopSpIderPageMSP

D TopSniderPageMSP

D TopBplderPadeMSP

Q TopSpideiPageMSP

Samplers usult FUtqiiosI Rosponsadatn

Load Mm* 531
HTTP responsB coca: 200
HTTP response message OK

HTTP lesponso iiaoders;
HTTP/11 200 OK

Seî-Cookie;
J 8 ESSIONIO=Ê716ÊAB 2B789A128D1 E5Br6ÜC4 6EAEAC ;
Patri=/ThGSl s Fram&wci rk
Expires: 0
Pragma No-cacr>{?
Cache-Control Notacho
CoitfenMypote»WMmi4cit3toet*isa885iM
Contant lenglft: 3608
Dalo Sal, 21 Aug 2004 13:28.33 GkfT
Server: Apathe-Coyole/1.1

Figure C.22: View results in tree of new framework using MSP

C12

Appendix C Benchmark One Results

13 fest PlvJii.imx (C:\Thesis J vteUks\Tonir:at_4.1._Tesls\5lruts_.JSP\('H»e.jds I - RtmtpUp 0 ~ lo o p jQO)'-Tt:sl l:‘U*n.jin?0 - Apache

File Cclrt Run Opi ions Help

^ Test Pia«

9 Strut sUsmpJSP

jÊêt HTTP Request OofouSS

& HTTP Cook» Manager

TopSptferPegeStrUa

[51 Graph Resi»!«

RH Spina Visuofacr

0 View RssijSs In Table

JyJ VttffifjffiMtf Tu eo

5?) AffiiregMs Report

j]g| WorfcBench

View Results Tree
Plante: ¡View Results Tree

Witte All Dato to o FHo

Filename npUp 0 - Loop 300)WiewResultelrtTree Browse-. j«J Log Errors Ou|y

9 O Root d
Q TopSpidciPageStnits I 1
0 TopSplderPageStmts

Q TopSplderPageSlruts

Q TopSplrlerPnoeStruts

Q TopSpidsrPageSimla i

Q TopSplderPageSlnds

D TopSplderPageStruts

Q TopSpidetPageStruts

Q TopSplderPaaeSlruls

D TopSpiderPageSiruis

Q TopSpiderPeaeSátuls

Q TopSpitJerPaQeEUnlts

D TopSplderPageStruts

D TopSplderPaaeStruta

Q TopBpMeiP&ffeSlnils

D TopSpldeiPauifStiuls

Q TopSpiderPageSmjts

Q TopSpjderPageStriJts

D TopSplderPageStruts

H TopSpiderPogeStruls T :

Load Urne 771
HTTP response code: 200
HTTP response message: OK

HTTP response hoatfñFs;
HTTP/1.1 200 OK

Set-CooMe:
J8ES8IONlD=7AAß68D2FA1 Q0D553ÖB971F904BB089B.
Patr^/ThesisSlrutô
ContehtType! U?¡íLrMm i;cfsaiae{n i eo-8859-1
Contsnt-Longtiv 3618
Dato S a l Î I Aug 2004 15:50:30 GMT
Setver: Apache‘Coyple*i 1

L

, 'l a -N., i
TEC

Figure C.23: View results in tree of Apache Struts using JSP

Test PlcMi.jmx (E;\Thesis'_j*1'i l i iC 5\TtHr«;<il._^, !_ I tis is ’* Tape* lr y\(T hr cuds’ 1 - RampUp Ö - Loojf 300)\ First Plan, j i t «) - Apa titi; JM R t«.H il5 l

filo Edit Run Opt ions Heïp

9 ¿ löst «nn

9 Tapestry

HI TP Rftqwest Deiatds

jtff HTTP Cook* Manager

/ * TC¥>3pXlCffi

fv fl Graph R e s i le

f y j SjUne VisuiAxer

J53 View Resyts m Tatoie

(v l V tew R o su *i Treo

E51 Aggregate Repat

j j | j Wfcfk&snch

View Results Tree
Naina: IVjew gesiJlls Troe

Write/U? Date to &Rk]

nieuanto w U p 0• Loop300)\V¡ewR98ullSlnTree¡ B row se- ! f lo u Errore Only

1 CÜRoot

Q Topsplders

D Topsplders

D Topsplders

Q Topsplders

O Topsplders

Q Topsplders

Q Topsplders

D Topsplders

D Topsplders

Q Topsplders

D Topspitfets

Q Topsplders

Q Topsplders

D Topsplders

Q Topsplders

Q Topsplders

Q Topsplders

Q Topsplders

Q Topsplders

H Topsplders

Sampler losult Request Kwponsn Uata

Load time: 29Û4
HTTP response code: 200
HTTP response .message: OK

HTTP response headers:
HTTP/1.1 200 OK
Content-Type; lertm im tcfiorsetsUTF-B
Oate: 8 b1. 21 Aug 2004 14:04 52 OMT

S e im Apa che-C oyole/l i

Figure C.24: View results in tree of Apache Tapestry

Appendix C Benchmark One Results

T«t*t P lan.jnix (E:\Tliesis Melrics\Tomcat_ 4.1 _Tests\PageCenhicJSP\(ltirC iK ls i - Ramp Up 0 - Loop 300)\Test Pianini«) - Apaclw 0

Filo Edit Run Options H&tn

9 ¿ Tesi Ran

9 j-j' P»o«OBrirtej£P
HTTP Request D«tcu*3

jgj$ HTTP Cookie Manager

IopipidcF.s

m Grtph Rssuts

o spine Visuataer

0?) View Resala In TaWe

0 .Tree ¡

{ v i Aggeggia Report

S WorkBench

-<MW, Mi.

View Results Tree
Ndnwi tView Results Tree

WiJte All Data to tí File

Filename jnpU p 0 Loop 3Q0)WtewResullslnTree eróm e» . j : Luo Eh or s Only

9 L3 Root
Q Topspidors

D Topspiders

Q Topsplders

Q Topspiders

Q Topsplders

Q Topsplders

Q Topspiders

Q Top spiders

Q Topsplders

Q Topspiders

Q Topspiders

D Topspiders

Q Topsplders

D Topsplders

Q Topspiders

Q Topspiders

Q Topsplders

Q Topspiders

Q Topsplders

Q Topsplders

Ssinpttfi result j ReqiKftct Response dala

Load time- 1181
HTTP response code: 200
HTTP response mess ago: OK

HTTP response He aders;
HTTP/1,1 200 OK

Sofr Cookie:
JSES$IONlÔ 78D9830l0BB73ÈAA08?eAU62A3CB0SS;
Pôth=/ThesisPouoCenlflcJSP
Contení-Typo- leirlrtiiml;cHar98t=JSO'8859-l
Content-Length 3721

Date Sal. 21 Aug 2004 14 24:06 GMT
Sotver Apache Coyoto/1 i

Figure C.25: View results in tree of page-centric JSP

Overall Results
Architecture minTime maxTime Average Rate Deviation Throughput Median

Framework (JSP) 20 6620 54 1 5 4 379 923 30

Framework (MSP) 10 531 33 22.3 30 1339 30

Struts 20 771 39 19.7 43 1183 40

Tapestry 20 2904 44 17.6 165 1054 30

PageCentric (JSP) 10 1191 33 21.9 67 1316 30

Table C.l: Benchmark one’s overall result

C14

Appendix D Benchmark Two Results

Appendix D

Benchmark Two
Results

(Threads 10 - RampUp 2
- Loop 30)

D1

Appendix D Benchmark Two Results

Graph Results
E Test Plan.jniH (£:\1îteils Mçtric*\ronicdl..4.1_Tc4t»\Frariicwork_JSP\(11ircâd» 10 - ttompUp 2 - Loop 30)\Test Plari,|mK> - Apm~. W l»] B

R ie Edit Rwi Options ye!p

9 ^ Test Plan

9 ¡¡jr' tHessffomiwoiHJsiriifja1
HTTP Request ßafouts

HTTP Cookie Manager

TopSpiderPage

p^ l Spline Visudizer

f v] View Results in Table

m View Results Tree

ES Aggregate Report

ij=! WbrkBench

Graph Results
N<u iku [praph Results

Wrttn All Data lo u Filo

Fileuomo jû- RampUp 2 - Loop 3Q)V0f8phResmis; | Brow#b~ ; Loo Errors Only

Graute Co itepäiiy Jtä Data W Auwauo ® Median ÖffloufiaMtm 10 îhroutitiOut

 ̂385 ms

0 m s I 4
No of Samples 300
Duvlfrtlon 584

Làl&sl Sanipto 110

Throughput 1238.1 ?&8/Mnute

Figure D .l: Graph results of new framework using JSP

03Tost Plan.jmx (Ei\ Thctiv J*1etrks\TonKat _*!.! ..T«»t*1‘Fr<4fnewQrk_MSP\(Tt>rcad* 10 - Pompl/p 2 - Loop 30)VT«t plan-in»*) - Apoc— H î * l E3

File Edil Run Qfitions Mé*p

•p H ' Tìie^FfftriWwWJsfì^ìSF

j g j HTTP Request Défaite

m HT TP Cookie Manogcr

Ti^SpidôfPrtUiAÎSP

fv] li^anhReiaA»-
lv] Spino V iiu fltacf

v'f&w Reiuls m Table

I v J V iew FCmuU Tree

f v | Açrgrûgfiû Roport

•ff V'AxkßeiKn

Graph Results
Niirrwj; lOiJph Results

W HtoAIIDatatoaRle

filmiamo jo - RampUp 2 - Loop 30)tor»phReguUsj [~ B ro m o - t oy Errors Only

Or ap i« to Display ;|3 Data Avwaqo tö Medio« fâ t>uvtotkm 0 Throuuhp»*

1653 ms

5iP.^SaSB!
No of Samples 3GO Latest Sompto 30
pïMaflcn 44Ô ThfÒugVfflUt 129l.fcSI5/mifiUic

Aw fa jp 37'0:
Median 280

Figure D.2: Graph results of new framework using MSP

D2

Appendix D Benchmark Two Results

Test P liin .ifiix (E:\Tfiesis M etrksYTonicat >1.1 _Tests\£tn>t* J5P\(T lifeads 10 - RanipUp 2 - Loop 3 0)\T cs t P ianura«) • Apache J M -HSE3
File Etirt Run Option« Help

9 4̂ Test Ran

9 |§ f StrLrtsUsingJSP
HTTP Request DeHùtds

^ HTTP Cookie Manager

¡T TüpSptcterPAaeSiiuts

(v] gkophRewJto

[•?! Spline Visualizer

View Results in Teble

[v j View Results Tree

0 Aggregate Report

i i l i WorkBench

Graph Results
Wdntfe losapH Rssulis

VWilD All Data to a Filo

Filename 0 - RampUp 2 - Loop 30J\OraphRe$ulls[| D rowse-] □ LoflEirorsOnly

GiaplisfoDfspfay ¡tí Dala I t í Aver ano [tí Metilnn ¡tí IfcMtflnn tí Ntfoughtaut

3270 ms

0 ms

No or Samptas 300
DcMsUon 1054

Latest Sample 30
Throughput 873 3526/minute

Figure D.3: Graph results of Apache Struts using JSP

Test P lan.imx (CsVIhesis M ctrfcs\TonK at_ -t.l_Tests \Tape tilry \ (I forcali» 10 - P amp Up 2 - Loop 3Q)vTc*t P lan^m x) - Apache E3

[He Eiffl Rim Options Help

9 4£ Test Plan

9 j f f Tapestry

■jjift HTTP Request DOfeulS
j # HTTP Cookie Manofler

/ * Topspaiers

Graph R&suts
[¡$3 Spine Vlsuoltor

{^) View Rcjults In Tabte

F I V ie w P ft iu ts Tf * e

f v j Agg?er>e<e Report

j j£ WOfkQerKn

Graph Results
Karnes [Oraph Resalís

Write All Data to a Filo

lilurrame]Q- RarnpUp 2 - Loop 30)\QtaphResuits' j Browse.» j I Luo Errors Only

Grvi]ihiio WspLr/ £9 Data 10 |¡3 M e te l ftí DwAatian H0 1ttfdo||ltput

7702 ms

rj ms

Mo of Samples Avoraau 558

Deviation

Figure D.4: Graph results of Apache Tapestry

D3

Appendix D Benchmark Two Results

\7\ le \ t Pldn.jmx (E î'\lliusiv Metrics Tum id i l . l Fc-it» ■ PdueCi.HiUK J5P (T ltri'u tl» 10 RampUp ?. - l oop 30)\Tesr. I rl,»n.i«nx> A p o d i.. ^ [° j E3

File nu« Run Opi (ons Help

9 ,1̂ Tesi Pian

9 Jf?1 PageCeriricJSP

HTTP Recwest Defausg

j g f HTTP Coc*W Manager

/* tepspüers
Eyl Gfafth PftiOls

j x l Sptoo Vfcufilte-er

R I View Reraufls in Tobte

E J Vfejw Rö&u&ß Tree

Ë îî ÀQ5refl«lo Report

¡ j j j WwkSench

Graph Results

Narra; [Oiaph Results ____________________ ________

Wrltu All Oata too Fite

FÜeuiims J)* RampUp 2 - Loop 30)lOraphResullsj Growse.,, i f j Lou Errors Only

Graphs lo Display f * Dam fK iAw iàoo E Meritali Iti Delation in Throughput

2433 m s

0 m s

No of Samples 300
Deviai tan 1203

,.Ä ..

n
Latust Sample 41

Throuutyut 923.124»/minu»
Ave rase 377

Metîian 30

Figure D.5: Graph results of page-centric JSP

Spline Visualiser
M ît o t Plan.jmx (E:\Tlie-s.ii»_Metnc»\Tprncdt_4Jl _Te*l*\l:ranu!WOrk_.ISPv(Thread* 10 - RampUp Z - Loop 30)\Tc*t Plon.frnK) • Apot». HL"JEI
FBe Ecfrt Run Options Help

¿fr Test Plan

9 ff^ ThesJsFrwnow«Ui5ir«jJSP
HTTP Request E>ciouts

J |£ HTTP Cool'« Manager
lopspcderprtga

0 Graph RtnAi
[± J £ * * * : VlsuWfczer

B 3 View Results In Table
■ 0 View Results Tree

5 1 Aggregate Report

£=; WorkBench

Spline Visuallzer

N'unuK iSpllne Vlsualteef

Wrrta All Data to a Rio

Tiiuname ¡reads 10 - RampUp 2 - Loop 30)tëp»fi&l- Browse-, [L ; L»u Errors Only

MjKitnnin 4717 ms

Avoratio

MbilnmRi

Figure D.6: Spline visualiser of new framework using JSP

D4

Appendix D Benchmark Two Results

0 T e i t PldiLjmx (E;X7lK:>U_MelrtcATumcat_4.1_Tc$UVMmtiwork_M5P\(Thrcddi 10 ■ RampUp Z » loop 30>\Tc.*t PlaiMnw) - H R £3

Filo Edit ram Options Help

9 ¿ i Test Plan

9
HTTP Request

HTTP Coohte Manager

/ * TopSpiderPageMSP

m Gfsph RftuJs
El §P«neVI*w¿«
0 Vie-wv Resu#S' In Tt«Wo

m View Resudo Tr ee

m Aggregato Rejxxl

;ji| WúíkBench

Spline Visualizer

Nam«: - Spline Visualizer

reads 10 - RarnpUp 2 - Loop 3®\Spline!:

370 m s

10 ms O F i

Figure D.7: Spline visualiser of new framework using MSP

Test P la u jm x (E:\TlieMs„Mctric&\Tam<:M_*l.l _ T e « U \5 tn itO S P \(T h re « lft 10 - R«*»ipUp 2 - lo o p 3 0) \T *» l P ta n jm x) - Apacha J M a H R 13
p o Ectffl Rim Opltons Mul

Spline Visualizer

fidimi: ÍSpIlneVlsuafizgr

W rftoA U D ota toaF ih)

Ftfoiiamti jjiea ds lO - RarnpUp 2 -Loop aoyiSpline, Urowso... I □ Loo E iiO tfi O iify

8002 ms

391 ms

30 ms

Mbiimum 20 ms

Figure D.8: Spline visualiser of Apache Stmts using JSP

D5

Appendix D Benchmark Two Results

e it Plan.jmx (E:\ T M e l ri <.s\Tüii ital _4. 1 _T est *\ I ¿|>est.ry\(l hremis 10 - ItarnpUpZ - l.oop 30)\Test fldn.Jiun) - Apatite T^irt.- H P A E31

FWö Edit Rit» Options Help

9 ^ Test Plan

9 f f f ' Tapestry
$$ HTTP Request Dcfoul:

M HTTP Cootao Mbnoger

TopspWers

[v] Gfàph ftesute

0 Sflrm Vuuafaer

S view Resnais in TaWe

pF| View Resufla Trea

® Aggregate Report

| j | | WQrk&mch

6400 pis

Spline Visualizer

Namo: j'SpHne Visualizer

Write Alt Data to a Rie i i

fHonamo reads 10 - RampUp 2 - Loop 30}XSpIlne! B rowse- □ Log Errors Only

SSflm s

10 ms

Figure D.9: Spline visualiser of Apache Tapestry

T n t Ptiiu.juiK (E :\T liC iti_ M e lr lc i\T o rn c 4 ljl. I Ie*t» \P a fleC eii< rk :K P \(Ih« !a< ls 10 * RaitjpUp 2 - lo o p 3 ö) \T ö l i'l«Mi.|nw<) - A p a J u B f i l B

Mo lidn Run Options Help

PageCertricJSP

jg $ HTTP Itocjuftst Do fauns

¿ët HTTP Coe*» Mwiogsr

j f IO|)3fMiers

(51 Gfdph Restili»
O S p ine V ü u iÈ ïô f

R H V ie w ftesLÄs 6n Tortile

V ie w ResuSs Tree

p F | Aggregate ¡Report

WorkDench

Spline Visualizer

FH m ismo

Maximum 10375 ms

I Lou Errors Only

Auer ago 377

ncomtng *11 ms

■Aniinum 20 ms

Figure D.10: Spline visualiser of page-centric JSP

D6

Appendix D Benchmark Two Results

Aggregate Report
(J J le s t Pl»*n.jmx (fc \Ih e il*_ M e lrk * \T o m t* l_ 4 . l_ ie * ls \F ro m * l*O rk _ JlSI>\(Threa<U 1 0 - RarnplJp2 - lo o p 3 0) \T e itP ia ii. jn w): O p a u H W B

Ftío Edit Run Options Help

^ Test Flan

9 I I " FhesisFromawOfiiLlSir'iitsSSP

^ HTTP Request &»iflu3s

¿Hi HTTP Cookie Manager

TopSpWwPiigo

[5] Graph RcaiJf s

m Sptno Viauiifaof

@ V I? w Reams in Tsbte

f51 Vlow RftsUs Tree

f r l A w « f l* f l Report
(fjj WorkEJench

< tí

URL 1 Coutil Average 1 Min 1 Ma». j Enoi% R3I9
TopSpiderPa.. 300: 368! 201 4717!0,00% 20 6Jsec

TOTAL 300; 388j 2Ö| 471710.00% j 20J 'se c

Aggregate Report
Hama: !Ag:sfeqate Report

Wlrltu All Datato a Hie -------------“ j

FllonHmn RampUp 2 - Loop 30)\AggregaleRepod' Brow&o™ 1 f j Loti E r io is Only

Figure D. 11: Aggregate report of new framework using JSP

(3 Test P la ii.ftw t (C:\Tlvc»ls_Mplr it i\T u n K a l_ H , I _Tesi*'Fr<iM»cworkMSP\(Thread* 10 - Ramplíp 2 - Loop 3Q)VTc*t P la iu ftn*) » Apat... H I m i E l |

FUej Edit rain Options Help

9 4£ Test Ran

9 1?* TUftsrtsf
0$, HTTP Request Defauts

3H. HUP Cookie M w jjh

f * I opSptele» PageMSP

[5 J Graph Result

E^l Sptne Vttuafci«

RH Viaw Rejuts in Tobfo

S I View ResLda Tree

RFl ̂ ¿«0** Rapai
; | | WorkBench

URL 1 Count Average 1 Min Max Í £rro(% 1 Rale i!
TopSpiderPa. J 3001 379| 10| 360510.00% [209/sec

TOTAL 300. 378 10! 3605)0.00% ¡ZO jisec

Aggregate Report
Marne: [Aggregale Report

WlRu All Data (0 n Ftfcs

Renam e [RampUp 2- Loop 3P)\AggregateReportj B iowse*. | L i log E ffü is Only

Figure D.12: Aggiogate report of new framework using MSP

D7

Appendix D Benchmark Two Results

H ' « ' P la n . jra B (6 \l ltw lí .M e trk í\T o R ic d l. iÍ_ T e ilí \S tr« U _ J S P \(T h r t '(íd ii Iß - RamplJp 2 - lo o p 30)\T e s t R|att.}nttt) • A pa tite J H ^ H B E3
Fön Eint R p i OplIoiWr Help

9 £ Test Plan

9 ^ strulsUsingJSP

HTTP Request OotQUto

HTTP CiK*tt MAnaggr

f* TopSptderf>ageStait9
[7 ÎC-fft0h RcmAs

p ^ lS ftim Visuatoor

[B VVew Resufts ln Tobte

View Rebuts Tree

Ë r] Aggelale R«x*t

[jti WoilcBeoch

- — ------— — ----- -— - ^
URL Count Ayeniße j Min _ J , fftax ! E fro rV 1 Rate

TopSpittefPa. 300 391' 201 80G2 0.00% 146/sec
TOTAL 3001 39II 20; 8082i0.00% j14.6/sec

Aggregate Report
NatKK [Aggregate Report

Write All Data lo a Filo

Tiietraroo RampUp 2 - Loop 30)XAggregateRepostj [KüW»ü.„ 3® Leo ih sOnty

Figure D.13: Aggregate report of Apache Struts using JSP

Te*I P ldiujmn {E i\1 lie tb _ M e trk i\T w n c « lJ .L T a U \T « (> (!) t ry \ (T lirc w lf 10 - R.mniUp 2 * Loop 30)\Test P Ja iiffim) ■ A pndie [■]fc3

Filo EdM Ritti Options Help

9 Tapestry

Jg£ HTTP Request Dcfauls

■jj£ HTTP Cookio Manager
ri* Tepspyeis

© Gfoph RmuU

0 3 Spfrw Vmiafiier

0 Vlijw RifjuBs In Totale

£§] Vlow RtjiultB: Tree

F?]
'Jjj WüfltSerEh

Aggregate Report
Namo; iAggregate Report

Wtlte AU Datato a Fito

Ríetrame RampUp 2 - Loop 30)\AggregateRepott^ lVowso„. j n Loo Efrocs OnV

URL
Top spiders

C o w l

TOTAL
3Q0[
300!

Avef3jge
559!
559]

30'
30|

EtTOflfr Rato
ô oo_% ______ it̂ Ofsec0.00% íÍ5.9/¿0c

Figure D. 14: Aggregate report of Apache Tapestry

D8

Appendix D Benchmark Two Results

P l«n ,inm (fc :\T lie tl*_M elric*\Tornta l_4.l.Je*l*\P a< jeC efrtrkJS P '“,(Tfiii!<Hj4 10 - R.h ih >U|j 2 -L w p 3 Q) \T ö t t'km.|»m<) - A p o t lw H L s J E

I;,Ile EÜÄ Run Options Help

9 £ Teut Plan

9 E ' PageCertrcJSP

f i t HTTP Rcquesl Dcfouls

HI TP Codue Mwwgef

/̂■Tdpspkters
[5 I Graph Rwuts

@ Spiavj VisuWSier

(5 J W rw R fiiu t! in Toiät

f ^ l View Restes Tree

fv l A{wregtfO Report

[f|r W«kBeiv:h

Topsplders
TOTAL

Aggregate Report
Narra: ».Aggfesate Report

Wr Ma All Da(a to a Flic

FMcmamu RampUp 2 * Loop SQJlAggrogatwReport, ö ip w a u .- _ U Log Errors 0»iiy

URL Count Aw age M'fL
300J3do! 3771

377j

Mm20|_
201

1Q375iQQ0%

t~0375f0.Q0%

Rale
[15 4/sec
¡15.4/sec

Figure D.15: Aggregate report of page-centric JSP

ii V-ÜÏ 4Ci.» *'•v
\ ’ O f? !

View Results In Table
Piäd.jmx (E;\Tht;sis_,Mettics."'1’rurm :aL_l.l_Testï\FriH i»ework_JSP\(TlirBdiJii 10 - RdmpUp2 - Luop 3!>>\re»»t_ Pl<9ii,yri«>t> Ap«»:,,. H I E D I

File itftt Run Cyrtlorrs Help

9ji Tesi Plan

9 J r ThesiîFrejnOWCf^Usin^tSP

5ljHTlPKeöoo5l Defaults

HTTP Cookie Manager

TopSpWfirPAga

¡v] Gresph R*mAs

F I 1 Sptne Vltuefrar

m View Resuli in Teife I

m Vtow Resets Tree

(v î Aggregate Report

jj|] Vtoftôench

View Results in Table
N a n» : ¡View Results In Table

W rrto A ll Data lo a File

F ilo n c in i [mpup 2 - Loop 3Q)\V»$wReeulls!inTable' ß r tm m ,, j. □ Lo® E ito rs O f#

T _UBk_
1 ;TopSplderPage

Sample * ms Success?
2!Top8p!derPage
3TopSpid8fPage
4jTopSplctoiPage

SjTopSpliJeilPage
ETcpSgitierPaoe
7 TopSfjliotPage;
3 T i)t i^ U rrP .:<!«•
STopSpldorPage

____ 10 TOpSpIdOfPâQG
1 TopSpiderPage

2 TopSpidGiPage
i ippSpjderPapG13

160

_U°L
30:

Blä'
y

TopSpJderPajie
TopSpIderPag»
ropSplderPags

I r Ion Sol der Pa as

STopSolderPags
0 TopSpldeiPage
1 TopSplderPage
2 TopSpldotPaoe

TopSpltfarPage

È

i ÎD
_ 30: _

aiti
291

1087Ì
3111
110
180!MOI_47Ìl
32ÔT
300

ei !
33Ô;

>>’ i
481

'251
4 Ol] _
601

fia0T
I?:
w (¿1 ■ H

“0“"(PiÌS&’0"Ef
0iam~B
H _M

Figure D.16: View results in table of new framework using JSP

Appendix D Benchmark Two Results

a Test P[dn,|nix(bUlnsi«_Metrics\Tunicdt,<l»l_Tesh\fKirmiwoTl<_M51,\(n>fewit 10- Rtfnpüp2 - lodp 30)\Tert m) - A | » j u H | i l E |

Ffle idH Run Ojrt torre Help

Test Plan

9 ItailsflnnwyvMkUsn^Ci

jg jf HTTP Request BS10UIJ

HTTP CoUöo Manosn

/ * TOfiSpööPooeMSP

[5] Graph Res

E] Spine VmiatMr

E3 ViwRmAsmToWe
[v] View Results Tree

E l Aggregate Report

i l l ! WorkBench

View Results In Table
N.Tniii: iV tewRgsulls in Table

Write All Rata to a rim

FHonaiiru ImpUp 2 - Loop SOtyVVlev^esullslnTable1 Browse™. 1 i LoaErrors Only

SampleNo URL
TovSpidaiPageMSP
TjcSpiaerPaeowSP
TnpSpidnrPageM3P
Topspitierp aaeMSP

iierPapeMSP
TopSpiderPägeMSP

TopSpl derPageMSP
8 TouSplilerPageMSP

B TiwSpIdotPoseWSP
TopBf>LdeiPaeeM3P

TopSpideiPageMSP
TopSpidorPageMSP
TopSpideiPsjeMSP

« To pSpidOfP 3 ae MS P
15 TopiBpiderPauiMSP

_San i£]s - ms _8ytces52_
3 01 i

320|

M4co:i — 121' 351 ri m~ 2oa
1301
« öl 1BT
' M

0~w00“~w0si0

ISO
571

16 TopßpjdmFapMSP_
17 fopSplderPageMSP
1 8 Ten - : ¡.:J*rF;:^e-MSP
19 TopBplderPageMSP

20 TopSpiderPageMSP
21 TopSpidQfPageMSP
22 TopSpidoiPageMSP
23 TopSpwtoiPageMnP
24 TopSpldorfageMSP

270 :

250] 171Ì
271]
40

221
701160

~ß
:1 0 0

k . i-,
k.
ta“
®" 0 12' 0
0T3“0

Figure D. 17: View results in table of new framework using MSP

|0 TestPtan.]mx (Ei\Tftt$)t _Milrfcs\Tomc*»t „4.1 J lests\5t«iU_JSP\{Tlwe3d* 10 - RdmpUp 2 - Loop 00)\Tèft PJan.KiWf) - Aiiitihc E3 j|
Hie Edit Run Options Help

--- :— À
^ Test Plan

9 UJ* StrulsUsingJSP

$££ HTTP Request DefaiAo

HTTP Codile fckinagcr

^ TopSptódiPflgeSiii«s

E Graph R©su*s

K l Spfcne VisueÜMr

R7! Vww ResuliTrcis

F^i Aggregate Report

WorkBench

View Results in Table
Marno: M e w Results in Table

Write ftllDatoloaftlu!li;^;-v:v'j j
! Ritmarne» |mpUp 2 - Loop 30)\V i8-^èsult3 lnTable| B iiw se— I 11 Loo Errors Only

URL ! Sample -m a Success?

1 TopS_p i d e rP a g e Stru Is
2 TopSpiderPageSlmts

_3 Top£pi derPage Struts
! PageStruts

5 T u p SpicierPage Stru Is6 TopSpiderPsjfiSirijts
7 topSpWerPageSfruts
8Top SplderFaflfSfruts
I TopSp I dcrPag esi/uts

TopSpicJorPageStru]^

360
771

1232)
351]
40;*

0
V,

902200;

___U TopSpld ei PageStr uts
12 jföpsjltf erPageStouts13|TopSpW0iPageSlnjitf
14 ̂ To p Q p i «j e jjP a g e Sinjlg

Ì BTopSpulerPageStnjis

320'
2ao
321
391
401

221

Top SplderPaggStruts
TopSplderPageStruis
TopéplderPageSfruts

TopSpl darPageStruts
To pS p id erPageStaJ ts
T ppSptdef Pagestf u!s

*" »IdefPayoStfuts _]

_361200‘
27ò:
581
531'
3001450'
7111 661

bw~
0 7 IT ® ■ !2
0
ß
ia13
ia
ia0 0- r*
07070

Figure D.18: View results in table of Apache Struts using JSP

D10

Appendix D Benchmark Two Results

m est: Plan.jtHH (£;\ihesis J^elrïcsAJVjiucal.jM_reat*\1âpesLry\(Threadi 1 0 *RätttpUp ?. - LuOgj :¡0)\Teí>t PUii.miih) * Apdclìf 3 M e t .. .H 0)E l

[fie Ed« Run Op Items Help

■1 £ TestPten

Ç J 'T «)» s tiv

jfc (H l TP Request De lauls
UK HTTP Cook» Manag«

i* TDpípKÍeiS

View Results in Table

<

Nanxc [view Results in Table
r

W rfto A ll O d ia lo a Fite'

Fdeiramo |mpUp 2 - Loop SOJWleviResuUslrrTable, B to w su -. j [J L o g E rto is O iily

E] Spine V lju tóe r

E l VtewFtesulj In T»Ue

f5*| V&wRew*s Tree
® Aggiogate Report

$ SftmpieNo URL Sample - m s | Success?

1 Topsplders 2594 E
2 TopGplders 3064 m
3 Topsplders 2283 S3

B|; W orl^rK h 5Topsplders 4266 0
5 Topsplders 2573; fed

i
6 Topsplders 201

§7 Topspiders 361
8 Topsplders 200 K) "

i 9 Topsplders 321 m
10 Topsplders 421 a
i i Topsplders 360 a

;
12 Top&piders 330: tn
13 Topsplders 320 <a
14 Topsplders 3101 0

Í 15 Topsplders 2901 0
16 Topsplders 321 a
17 Topsplders 2411 h
18 Topsplders 331 a
19 Topsplders 40 0

■■ 20 Topsplders 50 a s
ft 21 Topsplders 501 ¡S
Ì 22 Topsplders 411

23 Topsplders 310! a
24 Topsplders 70 . — § - v- • r-f- !► « __________ ; sr-iWÆ-f-'ïiiSK. j _ ►.]

Figure D.19: View results in table of Apache Tapestry

B T w l P lan.|iiw (E5\tl«S4l4_M clrii;ATom c<ilj4.l_Te*U \PaocC eiil.ilciSP\(Tfirtïdds 10 - RarnpUp 2 - Loop 30)\Tfc3t M<ni.l»wti - Apm h - .g l [w] g j

rje Edit Rim Options Kolp

9 ¿ Teil Plan

9 J fc PajeCerlxicJSP

jdÿ HTTP R«R«5t Défauts
$. HTTP Coe*» Manoger
f * fcpjrtters

153 Graph Rwuts
v | Spine VAVBine*

Q ̂ ew Rosuej In Ttìtfe

ÍSH Vlâw ftcaui s Tre«
0 Aggregate Repot!

jj|l WMkSätKh

Figure D.20: View results in table of page-centric JSP

D ll

Appendix D Benchmark Two Results

View Results In Tree
i lm x (Et\ Thesis M c lrk *\T om caV . • ! . ! .T c s t i '. f r« iw w o rk ..J5P \(Ilira«ds 10 - finm pUp 2 - lo o p 3 0) \!e a t Pld».Jnw) • Ap«c.~ 8 0 O

Ffle Edit Rim Options Help

9 Testften

9 TfceäsFf«il«werW&ängJSP

HTTP Roquoil Défauts

■jtjt HTTP Cootae Manager

TopSplcÉçrPeoe

f v l Grnph Resuls

RH Splfte Vtouiteer

E l view Rc«4s In TaUe

@ ywrw ftcjMs-Treinl

.[53 Agrégats Repeat
j|§j wortcöench

View R esu lts Tree

Naino: [view ResultsTree

WrBoAII Data to a Rio

menomo imp Up 2 - Loop 30)\ViewResullslnTreej Browse... f j Leg Erro rs Only

9 C 3 Root

Q TopBpideiPaga

D Tapsplderp age
Q TopSpiderPage

Q TopSplderPsge

Q TopSplderPage

D TopSplderPage

0 TopSpidetPage-

Q TopSplderPage

D TopSplderPage

Q TopSplderPage

D TopSplderPage

01 TopSplderPage
Q TopSpiderPage

D TopSplderPage

D TopSplderPage

Q TopSpideiPaga

Q TopSplderPage

0 TopSplderPage

Q TopSplderPage

D TopSpidetPage

Sampler restiJt (j¡¡Reqi®td Rotvpomwd.it» ¡

Load time; 781
HTTP response code: 200
HTTP response message: OK

HTTP responso headers:
HTTP/1.1 200 OK

S&feGooWei
JSES3IONlD=G D94B05A8C C54 2 20AD1 DEO 8E E 5FE 5A29;
Poth=/n»esls F ra ¡meyvortt
Expires: U
Pragma No*cache
Cache-Control. No-tache
Conient-iyite tertWmfieha rsew so -asso .1
Conten!, leng in 36ftS
Date; Sal, 21 Aug 2004 13,24:13 OWT
Server. Ap ac he-Covste/1.1

Figure D.21: View results in tree of new framework using J SP

< (fc'\T1»e%is_Metrtt*\Ti>nical_4.1_Te5l*\rrai!»«work_MSP\(Tliread% IO - RoinpUp Z - Loop 3fl)\Te*t PldiLfnw} • Apac« » W E3

FWe Edit Run Options Hotp

9 ¿ Test Plan

9 f f f Tlies^rwmewwhysinijíMSí

Ji/$ HTTP Request Detoutt

HTTP CocJié MarxKjpr
/ * TopSpdûrP^gcMSP

j>FI GcaphRc&ufS
m Spine Visuotoccr

FH View Resuïï in Tobte

f ï l View F o u is Tfiw

[*?1 Aggregete Report

U fi VMarfcöench

View Results Tree

Name: jVis'iY R esults Tree

w rite All Data to o Fite

Filename jampUp 2 - Loop 30)VViewResu»tslnTree. Bíow so ..* D Log Errors Only

9 E 3 Root

D TopSpiderPageMSP

O Top8piderPageMSP

Q TopBpiderPageMSP

Q TopSpideiPageMSP

D TopSpiderPageWiSP

Q TopSpldeipegeMSP

Q Top8piderPageMSP

Q TupSpiderPageMSP

Q TopSplderPageWSP

Q TopSpideiPageMSP

Q Top Sp idexFageMSP

Q TopSpiderPageMGP

Q TopSplderPageWSP

O TopSpiderPageMSP

D TopSpiderPegeMSP

D TopSpideiPageMSP

D TopSpiderPageMSP

D TopSpideiPageMSP

Q TopSpideiPageMSP

___D TopSpidarPqaefttSP

Sampler testili Rivuoiti Huwjoiihu d-tl.v

Load time 551
HTTP lespcnso code: 200
HTTP response message: OK

HTTP response headers:
HTTP/1.1 200 OK
SeKGooMe:

JSE38!ONlD=4E2g9AC8f342C4F4?D23ACDD783$E4ee;
Pèth=/thes1sF ramewpffcexpiree: 0
Prognw: Me* cache
Cache-Coritnjl No cache
Contont Type: teJlinTml;ch3reetsl80fl850-1
Conlem-lenglii 3008
Dato. Sa t 21 Aug 2004 13 40.S0 OMT

Server; Apeche-Coyote/1 t

Figure D.22: View results in tree of new framework using MSP

D12

Appendix D Benchmark Two Results

0 T e * t Plan.jm* (E:*. Tl»e»i»^Metricÿ\TO»in:dl_4.1,TK^U\5U »lÿ_3SP\(YlKCads »0 - RanipUp 2 • Loop 30)\Teb'l Mldn.jimQ - Apache J H . - H B E

FHg EcBt Ritti Options Holp

£ Tesi Flan

9 E' StrUtsUçirçjJSP

j ß t HTTP Request Defaults

jjg f H l TP Codoe Manager

lopSpìrifrrPAgeSliiJls

E l «P*i Resets

E I Spfno Visuateer

IM View Resußs In Tofoia

F ? ly iiw R«iita Tim

i v i Aggregata Report

1J|; WbrfcSench

D H mML

View Results Tree

Nwnu: Mew Results Tree

WillB Alt Dalo lu ,I Uli!

multarne jjrnpUp 2 - Loop JDyWiewResultslnTree aowso... | [Log Errors OnV

Ç* O Root *

D TopSpiderPageStniîs

D TopSpiderPageStruts

Q TopSpiderPageSlruls

D TopSpiderPageStruts

D To pSpiderPag eStrute :

D TopSplderPageStmls

Q TopSplderPageStruls

Q TopSpiderPageSUuts

Q TopSpiderPageStruts

D TopSpidorPageStruts

D TopSpiderPageStrols

Q TopSplderPageStruls

D TopSplderPageStruls

0 TopSpidei Page Struts

D TopSprdeiPageStruts

Q TopSpiderPageStrols

Q TopSplderPagoStmts

Q TopSplrjerPageSfnits

Q TopSpfderPageSlruls

h TopSpiderPageStruts -

Siimtilof lasiitl Koqinret fteipuriwi data ¡

Load tim i. 380
HTTP lospcrreocooo:200
HTTP response message OK

HTTP rasponee Haiders:

HTTP/1,1 208 OK
Set-CoaWe:
JSËS8IONID=6«146BËC2FA1 7AÓI00A27D932D4S8FÛ1 ;

Pa!li=/TttesisStruls
Content-Type: le!®hlmt;charsel=!SO-89SS-1

Canlenl-Lengllv 3818
Date Sal. 2 1 Aug 200* 13.56:44 QMT

Server ApattroCoYOteJI I

Figure D.23: View results in tree of Apache Struts using.ISP
i «•

o f a
5tcM.Plai»i|mH(B\Tties)s_MtítricS\Tüíncoti_-l.l_Tesls\T<ípestry\(Tliread5 10 - RampUp 2 - Loujj 30)'\T«.'.sL Plan.)?»*) - Apache JMiít.»n (a] &ñ

|We Eiln Rim Options HOlp

^ TsstPlan

Ç Tapestry

HTTP Re<juest ÛûfouSs

jB f HTTP Cook» Manager

Trepidara
[s] Graph Resuis

iv] Spine Vbuafcar

0 View Re«*s m Tabte

S I Vtaw:itos«* jw«-

151 Aggregate Reperì

| ¡ j ‘ WwkStrxh

iE

View Results Tree

Mamar p/lcw Resulle Tres

Wr itti All Diita to a File

Filename jampUp 2 * Loop 3D)\Vievrf?esullslrîTreejI Browse.. ¡ D Loa Eff o r* Only

9 C 3 R 0 O I *

Q Topspiders

Sampter result Request ftesponw data

Load time 2594
C5 Topspltfers p HTTP response co0g: 20Q
D Topspiders HTTTP response message; OK

D Topspiders

D Topspiders
H ITP response headers
HTTPJl.i 200 OK

Q Topspiders 1 Contení-Typ e: 6*adtíiilmi:th ars ebUTF-Q -
Q Topspiders . Dale: Sat. 21 Aug 200414:12:48 OMT

Q Topspiders Server: Apac he-Coyole/1 t

D Topspiders

Q Topspiders

D Topspiders

D Topspiders

Q Topip ldors

D Topspiders

Q Topspiders

Q Topspiders

D Topspiders

O Topspiders

D Topspldere

n Topspiders * ■: - .

Figure D.24: View results in tree of Apache Tapestry

D13

Appendix D Benchmark Two Results

2Jle s t P lm i.im x (E:Mhc»á*_M <rtric$\Totticot..4.1„Te»U\PaqcCcivlrkJSP\(n»read» 10 - Ramp Up Z - Loop 30>\TcX. Plaiutmw) - Apadu,. FIB E3
Filo Edit Ruin Options Halli

Test Plan

Ç PageCertricJSP

HFTP Requosá Oet<*45

j l fH T IP Cookie Mwiftger

/* TopapWws

{vJO oph R « i4 s

í^ l Spine Viíu4fttí/

(51 View Rtwiifis (h ToWe

j ^ I Vfe«wR®5iáf Tre»

[v] Aggioooio Repwt

lH | WofkBench

View Results Tree

N¿mo: i^iew Results Tree

Wi Me AU Data to à Filo

Rfonwno [ampUp 2 - Loop 30>MewResultsinTree B row so~ 1 l , Loo E rrors Onty

¡9 C3 RooI
D Topspldeis

í j Sampler f osiitt Raques* Rospo»«» dai a

1 Loadttm e 8 i 1
0 Topsplders HTTP responso code: 200
Û Topsplders HTTP reepùnsem ossase: OK

Q Topspldnrs . . .

0 Top spiders i H U >f ré p o n s e headars:
KTTPfl.1 200 OK

Q : TopspliJers Set-Cookie:
Q Topspiders J$ESStONlD=Ol 1700710EOAA51 C l 5BF807C5C85BF

Q T a p s p id e ts ED; Path^/ThesioPeQBCentrlcJSP

Q T o p sp ld e rs Confónl-Type feït/}itmi;chaiËei= £30-0853-1
Oonlont-Lflrjflth; 3721

Q Topspitfers Datò: Sai, 2F Auy 2004 J 4:3Ô;46 OMT
D Topspiders Server Ap6che*Coyote/i 1

D TopSplders

Q Top spiders

D Topspiders

D Topspiders

D Topspldois

Q Topsplders

Q Top spiders

D Topsplders

H Topspiders yr, • . i

Figure D.25: View results in tree of page-centric JSP
I f fe ìT E il i
I - ' . O P T I

Overall Results
A rc h ite c tu re m in T im e m a x T im e A v e ra g e R a te D e v ia t io n T h ro u g h p u t M e d ia n

Framework {JSP) 20 4717 368 20.6 554 1236 261

Framework (MSP) 10 3605 379 20.9 449 1251 280

Struts 20 8062 391 14.6 1064 873 40

Tapestry 30 6409 559 15.9 752 953 441

PageCentric (JSP) 20 10375 377 15.4 1203 923 30

Table D.l : Benchmark two’s overall result

D14

