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Abstract    This paper deals with finding optimal structures and redundant safety designs 
with minimal costs for series-Parallel multi state system (MSS) configurations subject to 
availability constraints using genetic algorithms as optimisation mean, since these 
biologically inspired evolution concepts showed stability, powerfulness, and effectiveness in 
solving such complex combinatorial optimisation tasks. The routine has been written in 
Matlab and the tests have been performed using some test data belonging to already existing 
models (Levitin, Lisnianski, and Ouzineb). 
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I INTRODUCTION 

Solving redundancy problems and finding optimal 
reliability/availability designs with minimized 
budgetary of homogeneous series-parallel Multi 
States Systems (MSS) subject to some predefined 
constraints, like availability, weight, and volume 
represent one of the most challenging tasks in 
reliability and safety engineering. The main purpose 
is to achieve a specific level of reliability desired 
according to predefined requirement specifications 
set for the intended end product. This Problem is 
referred to in the literature as the Redundancy 
Allocation Problem (RAP) or Redundancy 
Optimisation Problem (ROP) [1] and can be often 
encountered in many applications areas of the safety 
engineering world like electrical power systems and 
in the consumer electronic industry where system 
designs are mostly assembled using standard certified 
component types with known characteristics, e.g., 
reliability, availability, nominal performance, cost, 
etc.. This matter has been intensively studied over the 
years and has been classified as a complex nonlinear 
integer programming combinatorial problem, where 
deterministic or conventional mathematical 
optimisation approaches become ineffective by 
means of computational effort and quality of solution 

[1]. Metaheuristic optimisation techniques, e.g., 
Genetic Algorithms (GAs), Tabu Search (TS), 
Simulated Annealing, etc., have shown instead how 
powerful and effective they are as means to find high 
qualitative solutions for such problems, especially 
when the corresponding search or solution space of 
the formulated problem becomes larger. The rest of 
the paper is organised as follows. Section II gives a 
short mathematical demonstration about the 
advantages of the series-parallel configuration over 
the parallel-series configuration. Section III discusses 
genetic algorithms and the different belonging 
operators. Section IV presents a detailed formulation 
of the optimization problem discussed in this paper 
and which is going to be solved using heuristic 
genetic techniques. Section V deals with the 
calculation of the total availability of the different 
redundancy structures using the UMGF (Universal 
Moment Generating Function). Section VI shows 
different results, evaluations, and graphical 
representations obtained by the algorithm for the 
different treated models which are compared with 
existing evaluations while concluding remarks are 
made in section VII. 
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II WHY SERIES-PARALLEL SYSTEMS 

There have been various publications over the last 
decade dealing with the optimisation of redundant 
multi state systems. The big part of these publications 
is concerned with the optimisation of series-parallel 
systems represented Fig.1. In the following, it will be 
explained mathematically and physically why 
studying or handling especially this arrangement or 
structure while many other configurations exist. 
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Fig. 1: series-parallel system consisting of s-subsystems 

In Fig. 1 rij represents the reliability of a component 
of version j within the subsystem i. A short 
mathematical computation and explanation will show 
why series-parallel configurations are suitable and 
why they have been treated all the time. One Brief 
explanation is mentioned in [1] 

Consider a series-parallel configuration consisting of 
4 components that are connected according to Fig. 2. 
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Fig. 2: Series-parallel configuration 

The total reliability Rsp of the series-parallel 
configuration shown in Fig.2 is given by [1][2][3] 
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The corresponding parallel-series configuration of the 
series-parallel configuration of Fig. 2 using the same 
set of components can be represented in two different 
ways depending on how the components will be 
connected together. The 2 different arrangements are 
depicted in Fig. 3(a) and 3(b). 

The reliability of a parallel-series system is given by 
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Based on equation (2) the corresponding reliabilities 
Rps_a and Rps_b of the parallel-series configurations 
depicted in Fig. 3(a) and Fig. 3 (b) are respectively 
given by [1][2][3] 
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Fig.3: Parallel-series configurations 

Calculating the difference of reliabilities obtained 
from equation (1) and equation (3) will give 
respectively for Rsp - Rps_a 
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and for Rsp - Rps_b  
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The results obtained from equations (5) and (6) are in 
both cases positive values since all reliabilities rij are 
decimal numbers between 0 and 1.  In other words let 
us consider the systems depicted in Fig. 2 and Fig. 
3(a). If the components 1 and 4 or 2 and 3 fail, the 
series-parallel system of Fig. 2 remains working since 
failing components are recovered by redundant 
components 2 and 3 or 1 and 4, whereas in the 
parallel-series configuration of Fig. 3(a) a total 
system failure occurs. Same for the parallel-series 
configuration of Fig. 3(b), if the components 1 and 3 
or 2 and 4 fail, the series-parallel system of Fig. 2 
remains operating since failing components are 
recovered by redundant components 2 and 4 or 1 and 
3,  whereas in the parallel-series configuration of Fig. 
3(b) a total system failure occurs. 

According to the upper mathematical calculation and 
physical interpretation, it can be concluded that the 
total reliability/availability of a series-parallel 
configuration is greater than the total 
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reliability/availability of a parallel-series system 
constructed or built using the same set of components 
and therefore longer available for the same 
investment costs. This is the main reason why series-
parallel configurations are more suitable in designing 
reliable systems. 

III GENETIC ALGORITHMS AND GENETIC 
OPERATORS  

The revolution of genetic algorithms (shortened GAs) 
started in the sixties of the 20th century with John 
Holland, an American computer scientist and 
psychologist at the University of Michigan [4]. 
Holland was impressed by the way how biological 
organisms manage and perform difficult tasks in easy 
manner [5]. Outgoing from his observations and deep 
studies Holland developed the concept with the 
aspect of optimisation and studying self-adaptiveness 
(self-guidance and self-repair) in biological 
processes.  

GAs are very effective search metaheuristics that 
mimic the process of natural evolution of species. 
They represent iterative self-adaptive stochastic 
techniques based on the idea of randomness. GAs 
became very popular and widely used over the last 
decade and are very well suited as universal or 
common techniques for solving combinatorial 
optimisation problems, e.g., the very well-known 
TSP (Travelling Salesman Problem) and redundancy 
allocation problems like the one discussed in this 
paper and many other matters [6]. 

Genetic algorithms require as start point a randomly 
generated start (initial) population of different 
chromosomes, also called solution candidates that are 
encoded according to the handled problem (binary, 
integer, decimal, etc.) conducting herewith a search 
in many areas of the solution space at once. The 
encoding of solutions constitutes the most difficult 
and challenging task of GAs. The evolving procedure 
from one population to the next is called generation. 

After each generation the new generated solutions are 
decoded and evaluated with the help of the fitness 
function. The fitness value of each chromosome 
represents a measure for the quality (the fitness) of 
the found solution. A general overview of the genetic 
cycle is given in Fig. 4. 

The genetic run process terminates when at least one 
of its predefined termination criterions is met, e.g., 
maximum number of generations or repetitions Nrep 
or a specific number of successive runs without any 
solution’s improvement is reached.  

In genetic programming, during each generation or 
genetic cycle 3 main operators will be executed, 
hence the selection, crossover or recombination, and 
the mutation operator. 
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Fig. 4: General overview of the genetic process 

These operators will be discussed in short in the 
following subsections. 

a) Selection Operator 

Outgoing from a start or initial population of different 
solution candidates the selection operator will be 
used in order to randomly select or choose pair of 
individuals or chromosomes which will reproduce 
and help building the next population during the 
genetic cycle. The chromosomes will be selected 
randomly according to the principle of survival of the 
fittest (selection probability proportional to relative 
fitness), which drives the evolution towards 
optimisation. There are many selection methods, 
some of them are listed in the following [4] 

 Roulette Wheel selection, 
 Tournament selection, 
 Rank selection, 
 Boltzmann selection, 
 etc. 

b) Recombination or Crossover 

Whereas the selection operator determines which 
chromosomes of the recent population are going to 
reproduce, the crossover operator performs jumps 
between the different solution subspaces enabling the 
exploration of the whole solution space and avoiding 
herewith premature convergence in addition of 
exchanging some basic characteristics and inheriting 
these properties to the offsprings which will join next 
populations.  

There are many crossover techniques used in genetic 
algorithms [4], like the one-point crossover, two-
point crossover, uniform and half uniform crossover 
and many other crossover techniques.  

In the following the one-point crossover operator is 
shortly discussed. A crossover point depending on the 
crossover rate and the length of the encoded 
chromosome is randomly selected on both selected 
parent chromosomes. All data beyond that point in 
either chromosome is swapped between the two 
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parent organisms so that two new individuals also 
called offspring or children chromosomes result. The 
one-point crossover procedure is depicted in Fig. 5. 

Parent 1

Parent 2

Crossover point

Offspring1

Offspring2  
Fig. 5: One-point Crossover 

Note, that this simple crossover technique has been 
used in the genetic algorithm implemented in this 
paper. 

c) Mutation 

After the offsprings have been born through 
crossover, they undergo mutation with a low 
mutation rate. The mutation operator introduces 
diversity into the GA algorithm and inserts small 
disturbance into the properties (genes) of the 
proposed solutions avoiding herewith convergence 
into local maxima. After the mutation process has 
been completed, the new resulting mutated 
chromosomes can join the next population. 

IV COST- REDUNDANCY OPTIMISATION 
PROBLEM – FORMULATION 

Two main steps that help improving the total 
reliability of an engineering system are (1) increasing 
the reliabilities of the individual components, hence 
using high reliable components, and (2) using 
redundancy at various stages [1]. However, total 
system reliability improvement is accompanied with 
an increase in total system costs since an increment in 
component reliability is related to an increase in 
component cost, and using redundant structures at 
different stages is accompanied by additional costs 
incurred by an increase in equipment units required to 
improve the stages reliabilities.  

The cost- redundancy allocation problem can be 
mathematically formulated as to minimize the cost 
function Csys(X,J) (objective function) of the whole 
system given by [1] [7]: 
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Subject to the total system availability Asys(X,J) 
which must match or surpass a minimum level of 
availability required A0 (inequality constraints) 
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with xi being a positive integer corresponding to the 
number of components used in subsystem i. li and ui 

represent respectively the lower and upper bound of 
allowed components on stage i. 

Finally the optimal structure (X, J) of the series-
parallel reliability system according to the solution 
found with respect to the given constraints will be 
determined. The cost function Csys (also called the 
objective or fitness function in the upper optimisation 
task) is given in equation 6 and is represented as the 
sum of the costs of the individual components CiJi 
used in each stage of the subsystems, whereas Ji is 
the version of the component available on the market 
used in the found configuration. Ai(xi) represents the 
availability of each stage or subsystem which 
depends on the number of parallel connected 
components and the availability Aij of the used 
components. 

V UNIVERSAL MOMENT GENERATING 
FUNCTION (UMGF) - FUNDAMENTALS 

The best way to evaluate the availability of series-
parallel MSS systems where the total system capacity 
must not underpass a specific instantaneous demand 
level according to the cumulative load curve and 
which depends on the nominal performance of the 
individually used components is to use the so called 
Ushakov- or u-transform [3][8][9]. This mathematical 
technique occurs also in the literature under universal 
z-transform or Universal Moment Generating 
Function (shortened UMGF). 

The u-function u(z) of a component with M different 
possible states is defined as a polynomial in the form 
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where pm being the probability, that the nominal 
performance of the component at state m is equal to 
Wm. Consider for example a binary state component j 
(only two states for perfect operating with nominal 
performance Wj and probability Pr[Wm=Wj] =Aj or 
totally failing with the probability of failure 
Pr[Wm=0] =1-Aj). According to equation (10) the 
UMGF of a binary state component is given by 
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Since the nominal performance of the component in 
case of total failure is 0.  

For the evaluation of the total availability of series-
parallel systems with respect to different demand 
levels required over a partitioned interval of time T 
using the u-transform, two basic operators are 
required. The first one is the Γ- Operator and is used 
for the evaluation of the total u-function of parallel 
structures, and the other one is the η- Operator which 
is used to determine the u- function of series 
structures.  



  ISSC 2013, LYIT Letterkenny, June 20-21 

a) Γ- Operator – u(z) of  Parallel Configuration 

The u-function of a parallel system consisting of xi 
components is given by 

))(),...,(),(()( 21 zuzuzuzu
ixparallel (u                           (12) 

and the total performance function f(W1,W2,…,Wxi) of 
the system is the sum of performances of all its 
components, i.e.,  
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That means for a pair of parallel connected 
components with the u-functions u1(z) and u2(z) given 
according to equation (10) the total resulting u-
function uparallel (z) of the system is given by 
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where n and m respectively represent the maximal 
number of states that the components 1 and 2 can 
take. W1i and W2j are respectively the performances 
of the components 1 and 2 at respective states i and j 
which occur with the respective probabilities P1i and 
P2j. From equation (14) it can be concluded that the 
Γ- operator is nothing else than the polynomial 
product of the individual u-functions of all parallel 
connected components and therefore equation (12) 
can be represented as 
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For a Subsystem i within a series-parallel 
configuration consisting of xi different parallel 
connected binary state components, which UMGF 
representation is given by equation (11), the u-
function according to equation (15) is written in the 
form 
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where j represents the index corresponding to the 
version of the component used in case of non-
homogeneity. In the case of homogeneity, i.e., all xi 
components are identical, equation (16) will be 
reduced to  
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According to the binomial theorem the power 
representation of equation (17) can be expanded and 
rewritten as a sum of the form 
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and the binomial coefficients are given by 
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That means, that the u-function or the polynomial z-
representation of each parallel subsystem consisting 
of xi -identical component can be computed 
according to equation (18). 

b) η - Operator – u(z) of Series Configuration 

In the case of series connected components, the 
element with the minimal or least performance 
becomes the bottleneck of the system. This element 
makes the last decision about the total system 
productivity. To calculate the U-function of a system 
containing s elements connected in series, the η- 
operator should be used: 

))(),...,(),(()( 21 zuzuzuzu sseries (u                               (21) 

where the total performance function f is given by  
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That means for a pair of components u1(z) and u2(z) 
connected in series the resulting u- function of the 
system useries(z) is given by  
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Using equation (22), equation (23) will be reduced to    
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c) Series-Parallel Systems - (Γ, η)                    

Using both composition operators Γ and η 
respectively, the UMGF of a series-parallel system 
can be determined. Since the problem discussed in 
this paper deals with homogeneous redundancy the Γ- 
operator represented in equation (18) can be used for 
determining the specific UMGF of each subsystem 
consisting of identical parallel connected 
components. Afterward the UMGF usys(z) of the 
entire system consisting of s series connected 
subsystems will be determined using the η- Operator 
and is given by  
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where δm and Wm are real numbers determined 
according to equation (24).  

The evaluation of the probability that the whole 
system overpasses or achieves a specific level of 
performance k

W0 is given by 
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Hence the total availability A(X,J) of the system for 
all demand level within a period of time T is obtained 
by 
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where K and Tk represent respectively the number of 
demands levels and the operation time corresponding 
to each demand level. 

VI NUMERICAL RESULTS – MATLAB 
EVALUATION 

For mathematical evaluation and graphical 
representation a Matlab routine has been written 
which imports the data belonging to the different test 
that has been resumed in excel sheets and executes 
the genetic algorithm over this data, in order to 
determine the corresponding series-parallel structure 
belonging to the optimal (minimal) found cost value 
with respect to the predefined availability constraint 
A0. 3 different models have been tested, the Levitin- 
model with 4 subsystems and 3 demand levels (lev4-
(4/6)-3), the Levitin- model with 5 subsystems and 4 
demand levels (lev5-(4/9)-4), and finally the 
Ouzineb- model with 6 subsystems and 4 demand 
levels (ouz6-(4/11)-4). The data has been taken from 
[9][10]. Note that the representation -(jmin/jmax)- 
stands respectively for the minimum and maximum 
number of versions available on the market and 
which can be taken from the data. The imported data 
contains the number of subsystems of each model and 
the number of versions available on market for each 
component that may be used on each stage, in 
addition to the cost, availability and nominal 
performance of the individual components. 

The algorithm starts by generating a random 
population of size Popsize, where the chromosomes 
are integer encoded according to read data (integer 
based coding). Each chromosome within the 
population is represented as a vector Y with a length 
lchrom equal to twice the number of subsystems. Y 

results by horizontally concatenating 2 vectors X and 
J each of length lchrom/2. Both subvectors X and J 
represent respectively the number and the version of 
components used in each subsystem (homogeneous 
redundancy, i.e., only one version is used in each 
subsystem). Consider as an example the chromosome 
Y=[1 2 3 2 4 3 1 5]. This belongs to a model 
containing 4 subsystems, where the number of 
components used on each stage is given by the first 4 
elements of the vector, i.e., subvector X=[1 2 3 2] and 
the version number used on each stage is given by the 
next 4 elements, i.e., the subvector J=[4 3 1 5].  

The algorithm parameters have been set in almost all 
cases as in the following:  

 Population size Popsize=100 
 Total number of repetitions Nrep=200 to 

500  
 Crossover rate Pcrossover= 0.8 
 Mutation rate Pmutation= 0.2 
 Min. number of elements pro. Stage li= 1 
 Max. number of elements pro. Stage ui= 10 

After ranking and evaluating each population the best 
2 chromosomes are selected explicitly to mate, 
recombine, and finally mutate in order to build new 
offsprings and complete a next population of size 
Popsize. This genetic procedure repeats until the 
predefined maximal number of generations Nrep is 
reached.   

Fig.6 shows the results of one run of the GA over the 
Lev4-(4/6)-3 model data by an availability constraint 
of A0=0.900. The different plots show the evolution 
process outgoing from the random initial population 
until the predefined maximum number of generations 
is reached. The best result got after each genetic cycle 
is depicted. 

The time needed to find the best solution depends on 
the quality of solutions generated in the start 
population and on how the selected fittest 
chromosomes evolve throughout crossover and 
mutation. On the left hand side of Fig. 6 the best 
solution found (Top: cost value, bottom: Availability 
value for found cost) during each generation is 
plotted against generation number whereas the same 
plots are represented on the right hand side against 
processing time. In the plot, the best chromosome 
corresponding to the optimal (minimal) found cost 
subject to the given availability constraint is 
represented in addition to the generation and 
convergence time for which the best result has been 
identified. 

The best test results got within 30 successive runs of 
the genetic algorithm over the different models 
mentioned previously are represented in table 1. The 
last column of table 1 represents the time results 
computed by Ouzineb for the 3 considered models 
using hybridised genetic approaches (Tabu Search) 
[9][10]. It is important to mention at this point, that 
all results (availability and cost) got over the handled 



  ISSC 2013, LYIT Letterkenny, June 20-21 

models match the results obtained by Ouzineb 
[9][10].  Note that the Matlab algorithm implemented 
in this work showed very high effectiveness and 
robustness concerning the obtained results and rapid 

convergence on qualitative and mostly exact 
solutions, as it can be recognised from table 1 when 
comparing convergence time corresponding to both 
algorithms.  

 

 

Fig. 6: Example of the Results found by the genetic algorithm run (Levitin- model containing 4 subsystems, availability 
constraint A0=0.900). The cost - generation and availability - generation curves dependencies are depicted on the left side, 
while the cost-time and availability-time dependencies are depicted on the right side. On the top of each plot u can see the 
chromosome or system structure corresponding to the best found or optimal values.  

 
 
 

 
Table 1. Comparison of computation time and results using the GA with computation results of Ouzineb using Hybridised 
GA+TS (Tabu Search) 
 
 
 

Problem Name    Av. Constraint         Av. Value           Cost             Best found Chromosome    Time     Time(Ouz) 
                                           A0                      A(X,J)         C(X,J)(mln $)                 [X,J]                                 t (s)         tOuz(s) 

lev4-(4/6)-3 
     0.900 
     0.960 
     0.990 

0.9102 
0.9609 
0.9917 

5.986 
7.303 
8.328 

[1 2 3 2 4 3 1 5] 
[2 3 3 2 2 3 1 5] 
[3 3 3 5 1 3 1 2] 

    00.40 
    01.15 
    00.26 

     05.06 
     05.18 
     05.03 

lev5-(4/9)-4 
     0.975 
     0.980 
     0.990 

0.9774 
0.9808 
 0.9937 

16.450 
16.520 
17.050 

[2 2 3 3 1 2 3 2 7 2] 
[2 6 3 3 1 2 5 2 7 2] 
[2 2 3 3 3 2 3 2 7 4] 

    06.93 
    23.36 
    33.92 

     52.91 
   102.36 
     86.57 

ouz6-(4/11)-4 
     0.975 
     0.980 
     0.990 

0.9790 
0.9802 
0.9902 

11.241 
11.369 
12.764 

[4 4 5 7 2 1 3 1 2 2 3 4] 
[4 5 5 8 2 1 3 1 2 2 3 4] 
[4 4 4 8 2 2 3 1 2 2 3 4] 

05.80 
07.22 
17.71 

   112.71 
   126.49 
   124.76 



 

VII CONCLUSION AND FUTURE WORKS 
Based on the results represented in table 1 the 
Matlab algorithm implemented in this paper was 
well working and very efficient since the 
convergence into optimal results takes shorter time 
in comparison to the computation times 
implemented by Ouzineb [9][10]. Furthermore the 
algorithm was converging into the best optimal 
solution in almost all runs. One small disadvantage 
is the one known by genetic algorithms and which is 
resumed in the fact that the best optimal solution is 
not guaranteed or ensured in each run, due to the 
limitation of the maximum number of iterations that 
may result, that some regions of the search or 
solution space remains unexplored.   

One of our future intentions would be to test genetic 
algorithms on non-homogeneous redundant series- 
parallel structures, since those structures allow 
though diversity system modernisation and 
achieving desired availability at lower cost than 
homogeneous systems. In addition that this kind of 
systems is less susceptible against common cause 
failures which represent one of the biggest 
disadvantages of homogeneous structures that may 
lead to the failure of the entire System. A further 
step will be to explore and investigate new 
methaheuristics or combination of algorithms which 
can be applied on such optimisation task discussed 
in this paper in order to get better performance and 
promising results.   
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