
 ISSC 2013, LYIT Letterkenny, June 20-21

Budgetary and Redundancy Optimisation of Homogeneous
Series-Parallel Systems Subject to Availability Constraints

Using Matlab Implemented Genetic Computing
Walid Chaaban1, Michael Schwarz2, and Josef Börcsöck3

Department of Computer Architecture and System Programming

University of Kassel, Kassel, Germany

E-mail: 1walid.chaaban@uni-kassel.de

Abstract This paper deals with finding optimal structures and redundant safety designs
with minimal costs for series-Parallel multi state system (MSS) configurations subject to
availability constraints using genetic algorithms as optimisation mean, since these
biologically inspired evolution concepts showed stability, powerfulness, and effectiveness in
solving such complex combinatorial optimisation tasks. The routine has been written in
Matlab and the tests have been performed using some test data belonging to already existing
models (Levitin, Lisnianski, and Ouzineb).

Keywords Genetic Algorithms, Series-Parallel Systems, Optimisation, Redundancy Allocation Problem
(RAP), Multi State System (MSS), Universal Moment Generating Function (UMGF).

I INTRODUCTION

Solving redundancy problems and finding optimal
reliability/availability designs with minimized
budgetary of homogeneous series-parallel Multi
States Systems (MSS) subject to some predefined
constraints, like availability, weight, and volume
represent one of the most challenging tasks in
reliability and safety engineering. The main purpose
is to achieve a specific level of reliability desired
according to predefined requirement specifications
set for the intended end product. This Problem is
referred to in the literature as the Redundancy
Allocation Problem (RAP) or Redundancy
Optimisation Problem (ROP) [1] and can be often
encountered in many applications areas of the safety
engineering world like electrical power systems and
in the consumer electronic industry where system
designs are mostly assembled using standard certified
component types with known characteristics, e.g.,
reliability, availability, nominal performance, cost,
etc.. This matter has been intensively studied over the
years and has been classified as a complex nonlinear
integer programming combinatorial problem, where
deterministic or conventional mathematical
optimisation approaches become ineffective by
means of computational effort and quality of solution

[1]. Metaheuristic optimisation techniques, e.g.,
Genetic Algorithms (GAs), Tabu Search (TS),
Simulated Annealing, etc., have shown instead how
powerful and effective they are as means to find high
qualitative solutions for such problems, especially
when the corresponding search or solution space of
the formulated problem becomes larger. The rest of
the paper is organised as follows. Section II gives a
short mathematical demonstration about the
advantages of the series-parallel configuration over
the parallel-series configuration. Section III discusses
genetic algorithms and the different belonging
operators. Section IV presents a detailed formulation
of the optimization problem discussed in this paper
and which is going to be solved using heuristic
genetic techniques. Section V deals with the
calculation of the total availability of the different
redundancy structures using the UMGF (Universal
Moment Generating Function). Section VI shows
different results, evaluations, and graphical
representations obtained by the algorithm for the
different treated models which are compared with
existing evaluations while concluding remarks are
made in section VII.

 ISSC 2013, LYIT Letterkenny, June 20-21

II WHY SERIES-PARALLEL SYSTEMS

There have been various publications over the last
decade dealing with the optimisation of redundant
multi state systems. The big part of these publications
is concerned with the optimisation of series-parallel
systems represented Fig.1. In the following, it will be
explained mathematically and physically why
studying or handling especially this arrangement or
structure while many other configurations exist.

comp1:r11

Comp2:r12

compx1:r1x1

comp1:r21

Comp2:r22

Compx2:r2x2

comp1:ri1

Comp2:ri2

Compxi:rixi

comp1:rs1

Comp2:rs2

Compxs:rsxs

Subsystem 2Subsystem 1 Subsystem i Subsystem s

Fig. 1: series-parallel system consisting of s-subsystems

In Fig. 1 rij represents the reliability of a component
of version j within the subsystem i. A short
mathematical computation and explanation will show
why series-parallel configurations are suitable and
why they have been treated all the time. One Brief
explanation is mentioned in [1]

Consider a series-parallel configuration consisting of
4 components that are connected according to Fig. 2.

r12

r11

r22

r21

Comp. 1

Comp. 2

Comp. 3

Comp. 4

Subsystem 1 Subsystem 2
Fig. 2: Series-parallel configuration

The total reliability Rsp of the series-parallel
configuration shown in Fig.2 is given by [1][2][3]

2

1

2

1

])1(1[
s

i

x

j
ijsp

i

rR

)]1)(1(1)][1)(1(1[22211211 rrrr rr(rr([
 2212212212122122211122112111 rrrrrrrrrrrrrr rrrrrr
 22211211221211122111 rrrrrrrrrr r1r11r1 (1)

The corresponding parallel-series configuration of the
series-parallel configuration of Fig. 2 using the same
set of components can be represented in two different
ways depending on how the components will be
connected together. The 2 different arrangements are
depicted in Fig. 3(a) and 3(b).

The reliability of a parallel-series system is given by
2

1

2

1

)1(1
s

i

x

j
ijps

i

rR (2)

Based on equation (2) the corresponding reliabilities
Rps_a and Rps_b of the parallel-series configurations
depicted in Fig. 3(a) and Fig. 3 (b) are respectively
given by [1][2][3]

)1)(1(1 22122111_ rrrrR aps rr(1
2221121122122111 rrrrrrrr 1r11r1r (3)

and

)1)(1(1 21122211_ rrrrR bps rr(1

2221121121122211 rrrrrrrr rrr (4)

r11 r21

r12 r22

Comp. 1 Comp. 3

Comp. 2 Comp. 4

Subsystem 1

Subsystem 2
(a)

r11 r22

r12 r21

Comp. 1 Comp. 4

Comp. 2 Comp. 3

Subsystem 1

Subsystem 2
(b)

Fig.3: Parallel-series configurations

Calculating the difference of reliabilities obtained
from equation (1) and equation (3) will give
respectively for Rsp - Rps_a

)1(122121122211_ rrrrrrRR apssp rrrrR
)1(221122111221 rrrrrr 1r12r21r1r
)1)(1()1)(1(2211122112212211 rrrrrrrr 2r21r1r1r12r2r

 (5)
and for Rsp - Rps_b

)1(221222122111_ rrrrrrRR bpssp rrrrR
)1(211121112212 rrrrrr rrrr

)1)(1()1)(1(2111222122122111 rrrrrrrr rrrrrr
 (6)

The results obtained from equations (5) and (6) are in
both cases positive values since all reliabilities rij are
decimal numbers between 0 and 1. In other words let
us consider the systems depicted in Fig. 2 and Fig.
3(a). If the components 1 and 4 or 2 and 3 fail, the
series-parallel system of Fig. 2 remains working since
failing components are recovered by redundant
components 2 and 3 or 1 and 4, whereas in the
parallel-series configuration of Fig. 3(a) a total
system failure occurs. Same for the parallel-series
configuration of Fig. 3(b), if the components 1 and 3
or 2 and 4 fail, the series-parallel system of Fig. 2
remains operating since failing components are
recovered by redundant components 2 and 4 or 1 and
3, whereas in the parallel-series configuration of Fig.
3(b) a total system failure occurs.

According to the upper mathematical calculation and
physical interpretation, it can be concluded that the
total reliability/availability of a series-parallel
configuration is greater than the total

 ISSC 2013, LYIT Letterkenny, June 20-21

reliability/availability of a parallel-series system
constructed or built using the same set of components
and therefore longer available for the same
investment costs. This is the main reason why series-
parallel configurations are more suitable in designing
reliable systems.

III GENETIC ALGORITHMS AND GENETIC
OPERATORS

The revolution of genetic algorithms (shortened GAs)
started in the sixties of the 20th century with John
Holland, an American computer scientist and
psychologist at the University of Michigan [4].
Holland was impressed by the way how biological
organisms manage and perform difficult tasks in easy
manner [5]. Outgoing from his observations and deep
studies Holland developed the concept with the
aspect of optimisation and studying self-adaptiveness
(self-guidance and self-repair) in biological
processes.

GAs are very effective search metaheuristics that
mimic the process of natural evolution of species.
They represent iterative self-adaptive stochastic
techniques based on the idea of randomness. GAs
became very popular and widely used over the last
decade and are very well suited as universal or
common techniques for solving combinatorial
optimisation problems, e.g., the very well-known
TSP (Travelling Salesman Problem) and redundancy
allocation problems like the one discussed in this
paper and many other matters [6].

Genetic algorithms require as start point a randomly
generated start (initial) population of different
chromosomes, also called solution candidates that are
encoded according to the handled problem (binary,
integer, decimal, etc.) conducting herewith a search
in many areas of the solution space at once. The
encoding of solutions constitutes the most difficult
and challenging task of GAs. The evolving procedure
from one population to the next is called generation.

After each generation the new generated solutions are
decoded and evaluated with the help of the fitness
function. The fitness value of each chromosome
represents a measure for the quality (the fitness) of
the found solution. A general overview of the genetic
cycle is given in Fig. 4.

The genetic run process terminates when at least one
of its predefined termination criterions is met, e.g.,
maximum number of generations or repetitions Nrep
or a specific number of successive runs without any
solution’s improvement is reached.

In genetic programming, during each generation or
genetic cycle 3 main operators will be executed,
hence the selection, crossover or recombination, and
the mutation operator.

Initial Population

Parents
Selection

Recombination or
Crossover

Mutation

Evaluation through the
Fitness Function

Termination Criterion
fullfilled

NoYes

Output of
the Solution Chromosom

if any found

Start Point

Evaluation

Fig. 4: General overview of the genetic process

These operators will be discussed in short in the
following subsections.

a) Selection Operator

Outgoing from a start or initial population of different
solution candidates the selection operator will be
used in order to randomly select or choose pair of
individuals or chromosomes which will reproduce
and help building the next population during the
genetic cycle. The chromosomes will be selected
randomly according to the principle of survival of the
fittest (selection probability proportional to relative
fitness), which drives the evolution towards
optimisation. There are many selection methods,
some of them are listed in the following [4]

 Roulette Wheel selection,
 Tournament selection,
 Rank selection,
 Boltzmann selection,
 etc.

b) Recombination or Crossover

Whereas the selection operator determines which
chromosomes of the recent population are going to
reproduce, the crossover operator performs jumps
between the different solution subspaces enabling the
exploration of the whole solution space and avoiding
herewith premature convergence in addition of
exchanging some basic characteristics and inheriting
these properties to the offsprings which will join next
populations.

There are many crossover techniques used in genetic
algorithms [4], like the one-point crossover, two-
point crossover, uniform and half uniform crossover
and many other crossover techniques.

In the following the one-point crossover operator is
shortly discussed. A crossover point depending on the
crossover rate and the length of the encoded
chromosome is randomly selected on both selected
parent chromosomes. All data beyond that point in
either chromosome is swapped between the two

 ISSC 2013, LYIT Letterkenny, June 20-21

parent organisms so that two new individuals also
called offspring or children chromosomes result. The
one-point crossover procedure is depicted in Fig. 5.

Parent 1

Parent 2

Crossover point

Offspring1

Offspring2
Fig. 5: One-point Crossover

Note, that this simple crossover technique has been
used in the genetic algorithm implemented in this
paper.

c) Mutation

After the offsprings have been born through
crossover, they undergo mutation with a low
mutation rate. The mutation operator introduces
diversity into the GA algorithm and inserts small
disturbance into the properties (genes) of the
proposed solutions avoiding herewith convergence
into local maxima. After the mutation process has
been completed, the new resulting mutated
chromosomes can join the next population.

IV COST- REDUNDANCY OPTIMISATION
PROBLEM – FORMULATION

Two main steps that help improving the total
reliability of an engineering system are (1) increasing
the reliabilities of the individual components, hence
using high reliable components, and (2) using
redundancy at various stages [1]. However, total
system reliability improvement is accompanied with
an increase in total system costs since an increment in
component reliability is related to an increase in
component cost, and using redundant structures at
different stages is accompanied by additional costs
incurred by an increase in equipment units required to
improve the stages reliabilities.

The cost- redundancy allocation problem can be
mathematically formulated as to minimize the cost
function Csys(X,J) (objective function) of the whole
system given by [1] [7]:

s

i
iiJsys xcJXC

i
1

),((7)

Subject to the total system availability Asys(X,J)
which must match or surpass a minimum level of
availability required A0 (inequality constraints)

0
1

)(),(AxAJXA
s

i
iisys A(A

s

i
11

 (8)

iii uxl ux (9)

with xi being a positive integer corresponding to the
number of components used in subsystem i. li and ui

represent respectively the lower and upper bound of
allowed components on stage i.

Finally the optimal structure (X, J) of the series-
parallel reliability system according to the solution
found with respect to the given constraints will be
determined. The cost function Csys (also called the
objective or fitness function in the upper optimisation
task) is given in equation 6 and is represented as the
sum of the costs of the individual components CiJi
used in each stage of the subsystems, whereas Ji is
the version of the component available on the market
used in the found configuration. Ai(xi) represents the
availability of each stage or subsystem which
depends on the number of parallel connected
components and the availability Aij of the used
components.

V UNIVERSAL MOMENT GENERATING
FUNCTION (UMGF) - FUNDAMENTALS

The best way to evaluate the availability of series-
parallel MSS systems where the total system capacity
must not underpass a specific instantaneous demand
level according to the cumulative load curve and
which depends on the nominal performance of the
individually used components is to use the so called
Ushakov- or u-transform [3][8][9]. This mathematical
technique occurs also in the literature under universal
z-transform or Universal Moment Generating
Function (shortened UMGF).

The u-function u(z) of a component with M different
possible states is defined as a polynomial in the form

M

m

W
m

mzpzu
1

)((10)

where pm being the probability, that the nominal
performance of the component at state m is equal to
Wm. Consider for example a binary state component j
(only two states for perfect operating with nominal
performance Wj and probability Pr[Wm=Wj] =Aj or
totally failing with the probability of failure
Pr[Wm=0] =1-Aj). According to equation (10) the
UMGF of a binary state component is given by

2

1

0)1()(
m

W
jj

W
mj

jm zAzAzpzu

jW
jj zAA AA)1((11)

Since the nominal performance of the component in
case of total failure is 0.

For the evaluation of the total availability of series-
parallel systems with respect to different demand
levels required over a partitioned interval of time T
using the u-transform, two basic operators are
required. The first one is the Γ- Operator and is used
for the evaluation of the total u-function of parallel
structures, and the other one is the η- Operator which
is used to determine the u- function of series
structures.

 ISSC 2013, LYIT Letterkenny, June 20-21

a) Γ- Operator – u(z) of Parallel Configuration

The u-function of a parallel system consisting of xi
components is given by

))(),...,(),(()(21 zuzuzuzu
ixparallel (u (12)

and the total performance function f(W1,W2,…,Wxi) of
the system is the sum of performances of all its
components, i.e.,

xi

i
ix WWWWf

i
1

21),...,,((13)

That means for a pair of parallel connected
components with the u-functions u1(z) and u2(z) given
according to equation (10) the total resulting u-
function uparallel (z) of the system is given by

))(),(()(21 zUzUzuparallel (U
ji WW

n

i

m

j
ji zPP 21

1 1
21

W

1 1

n

1
iP1PP

1

m

1

 (14)

where n and m respectively represent the maximal
number of states that the components 1 and 2 can
take. W1i and W2j are respectively the performances
of the components 1 and 2 at respective states i and j
which occur with the respective probabilities P1i and
P2j. From equation (14) it can be concluded that the
Γ- operator is nothing else than the polynomial
product of the individual u-functions of all parallel
connected components and therefore equation (12)
can be represented as

ix

e
eparallel zuzu

1

)()((15)

For a Subsystem i within a series-parallel
configuration consisting of xi different parallel
connected binary state components, which UMGF
representation is given by equation (11), the u-
function according to equation (15) is written in the
form

i
ij

x

e

W
ijijparallel zAAzu

1

])1[()((16)

where j represents the index corresponding to the
version of the component used in case of non-
homogeneity. In the case of homogeneity, i.e., all xi
components are identical, equation (16) will be
reduced to

iij xW
ijijparallel zAAzu])1[()(AA[(17)

According to the binomial theorem the power
representation of equation (17) can be expanded and
rewritten as a sum of the form

kx
ij

kW
ij

x

k

i
parallel

iij
i

AzA
k
x

zu kAAAA
kkk
xx

k

i

kk
xx

)1()()(
0

iji

i kWkx
ij

k
ij

x

k

i zAA
k
x kAAAAA
kkk
xixi

k kk
xx

)1(
0

 ij
i

kW
x

k
ik z

ix

k
ik

0
k zik

 (18)

with
kx

ij
k

ij
i

iijik
iAA

k
x

xAkbinm kAAAAA
kkk
xx

b)1(),,(ik
 (19)

and the binomial coefficients are given by

)!(!
!

kxk
x

k
x

i

ii

kkkkk
xx (20)

That means, that the u-function or the polynomial z-
representation of each parallel subsystem consisting
of xi -identical component can be computed
according to equation (18).

b) η - Operator – u(z) of Series Configuration

In the case of series connected components, the
element with the minimal or least performance
becomes the bottleneck of the system. This element
makes the last decision about the total system
productivity. To calculate the U-function of a system
containing s elements connected in series, the η-
operator should be used:

))(),...,(),(()(21 zuzuzuzu sseries (u (21)

where the total performance function f is given by

),...,,min(),...,,(2121 ss WWWWWWf m (22)

That means for a pair of components u1(z) and u2(z)
connected in series the resulting u- function of the
system useries(z) is given by

))(),(()(21 zuzuzuseries (u

),(

1
2

1
1

21
21

1111

m

j

W
j

n

i

W
i

ji zPzP(

 n

i

m

j

WWf
ji

jizPP
1 1

),(
21

21 (23)

Using equation (22), equation (23) will be reduced to

n

i

m

j

WW
jiseries

jizPPzu
1 1

),min(
21

21)((24)

c) Series-Parallel Systems - (Γ, η)

Using both composition operators Γ and η
respectively, the UMGF of a series-parallel system
can be determined. Since the problem discussed in
this paper deals with homogeneous redundancy the Γ-
operator represented in equation (18) can be used for
determining the specific UMGF of each subsystem
consisting of identical parallel connected
components. Afterward the UMGF usys(z) of the
entire system consisting of s series connected
subsystems will be determined using the η- Operator
and is given by

 ISSC 2013, LYIT Letterkenny, June 20-21

))(),......,(),(()(21 zuzuzuzu ssys (u

).....,,,(

00
2

0
1

2
2

1
1

2

2

1

1

000000

s
sjjj

x

k

kW
sk

x

k

kW
k

x

k

kW
k zzz ksk2k1kk(

 mW

M

m
m z

M

m
0

mm
 (25)

where δm and Wm are real numbers determined
according to equation (24).

The evaluation of the probability that the whole
system overpasses or achieves a specific level of
performance k

W0 is given by

k
m WW

m
k

m
k

ms WWWA
0

)Pr()(00 m
 (26)

Hence the total availability A(X,J) of the system for
all demand level within a period of time T is obtained
by

K

k WW
km

k
m

T
T

JXA
1 0

1),(mm

 K

k WW
kmK

k
k

k
m

T
T 1

1

0

1
mm

 (27)

where K and Tk represent respectively the number of
demands levels and the operation time corresponding
to each demand level.

VI NUMERICAL RESULTS – MATLAB
EVALUATION

For mathematical evaluation and graphical
representation a Matlab routine has been written
which imports the data belonging to the different test
that has been resumed in excel sheets and executes
the genetic algorithm over this data, in order to
determine the corresponding series-parallel structure
belonging to the optimal (minimal) found cost value
with respect to the predefined availability constraint
A0. 3 different models have been tested, the Levitin-
model with 4 subsystems and 3 demand levels (lev4-
(4/6)-3), the Levitin- model with 5 subsystems and 4
demand levels (lev5-(4/9)-4), and finally the
Ouzineb- model with 6 subsystems and 4 demand
levels (ouz6-(4/11)-4). The data has been taken from
[9][10]. Note that the representation -(jmin/jmax)-
stands respectively for the minimum and maximum
number of versions available on the market and
which can be taken from the data. The imported data
contains the number of subsystems of each model and
the number of versions available on market for each
component that may be used on each stage, in
addition to the cost, availability and nominal
performance of the individual components.

The algorithm starts by generating a random
population of size Popsize, where the chromosomes
are integer encoded according to read data (integer
based coding). Each chromosome within the
population is represented as a vector Y with a length
lchrom equal to twice the number of subsystems. Y

results by horizontally concatenating 2 vectors X and
J each of length lchrom/2. Both subvectors X and J
represent respectively the number and the version of
components used in each subsystem (homogeneous
redundancy, i.e., only one version is used in each
subsystem). Consider as an example the chromosome
Y=[1 2 3 2 4 3 1 5]. This belongs to a model
containing 4 subsystems, where the number of
components used on each stage is given by the first 4
elements of the vector, i.e., subvector X=[1 2 3 2] and
the version number used on each stage is given by the
next 4 elements, i.e., the subvector J=[4 3 1 5].

The algorithm parameters have been set in almost all
cases as in the following:

 Population size Popsize=100
 Total number of repetitions Nrep=200 to

500
 Crossover rate Pcrossover= 0.8
 Mutation rate Pmutation= 0.2
 Min. number of elements pro. Stage li= 1
 Max. number of elements pro. Stage ui= 10

After ranking and evaluating each population the best
2 chromosomes are selected explicitly to mate,
recombine, and finally mutate in order to build new
offsprings and complete a next population of size
Popsize. This genetic procedure repeats until the
predefined maximal number of generations Nrep is
reached.

Fig.6 shows the results of one run of the GA over the
Lev4-(4/6)-3 model data by an availability constraint
of A0=0.900. The different plots show the evolution
process outgoing from the random initial population
until the predefined maximum number of generations
is reached. The best result got after each genetic cycle
is depicted.

The time needed to find the best solution depends on
the quality of solutions generated in the start
population and on how the selected fittest
chromosomes evolve throughout crossover and
mutation. On the left hand side of Fig. 6 the best
solution found (Top: cost value, bottom: Availability
value for found cost) during each generation is
plotted against generation number whereas the same
plots are represented on the right hand side against
processing time. In the plot, the best chromosome
corresponding to the optimal (minimal) found cost
subject to the given availability constraint is
represented in addition to the generation and
convergence time for which the best result has been
identified.

The best test results got within 30 successive runs of
the genetic algorithm over the different models
mentioned previously are represented in table 1. The
last column of table 1 represents the time results
computed by Ouzineb for the 3 considered models
using hybridised genetic approaches (Tabu Search)
[9][10]. It is important to mention at this point, that
all results (availability and cost) got over the handled

 ISSC 2013, LYIT Letterkenny, June 20-21

models match the results obtained by Ouzineb
[9][10]. Note that the Matlab algorithm implemented
in this work showed very high effectiveness and
robustness concerning the obtained results and rapid

convergence on qualitative and mostly exact
solutions, as it can be recognised from table 1 when
comparing convergence time corresponding to both
algorithms.

Fig. 6: Example of the Results found by the genetic algorithm run (Levitin- model containing 4 subsystems, availability
constraint A0=0.900). The cost - generation and availability - generation curves dependencies are depicted on the left side,
while the cost-time and availability-time dependencies are depicted on the right side. On the top of each plot u can see the
chromosome or system structure corresponding to the best found or optimal values.

Table 1. Comparison of computation time and results using the GA with computation results of Ouzineb using Hybridised
GA+TS (Tabu Search)

Problem Name Av. Constraint Av. Value Cost Best found Chromosome Time Time(Ouz)
 A0 A(X,J) C(X,J)(mln $) [X,J] t (s) tOuz(s)

lev4-(4/6)-3
 0.900
 0.960
 0.990

0.9102
0.9609
0.9917

5.986
7.303
8.328

[1 2 3 2 4 3 1 5]
[2 3 3 2 2 3 1 5]
[3 3 3 5 1 3 1 2]

 00.40
 01.15
 00.26

 05.06
 05.18
 05.03

lev5-(4/9)-4
 0.975
 0.980
 0.990

0.9774
0.9808
 0.9937

16.450
16.520
17.050

[2 2 3 3 1 2 3 2 7 2]
[2 6 3 3 1 2 5 2 7 2]
[2 2 3 3 3 2 3 2 7 4]

 06.93
 23.36
 33.92

 52.91
 102.36
 86.57

ouz6-(4/11)-4
 0.975
 0.980
 0.990

0.9790
0.9802
0.9902

11.241
11.369
12.764

[4 4 5 7 2 1 3 1 2 2 3 4]
[4 5 5 8 2 1 3 1 2 2 3 4]
[4 4 4 8 2 2 3 1 2 2 3 4]

05.80
07.22
17.71

 112.71
 126.49
 124.76

VII CONCLUSION AND FUTURE WORKS
Based on the results represented in table 1 the
Matlab algorithm implemented in this paper was
well working and very efficient since the
convergence into optimal results takes shorter time
in comparison to the computation times
implemented by Ouzineb [9][10]. Furthermore the
algorithm was converging into the best optimal
solution in almost all runs. One small disadvantage
is the one known by genetic algorithms and which is
resumed in the fact that the best optimal solution is
not guaranteed or ensured in each run, due to the
limitation of the maximum number of iterations that
may result, that some regions of the search or
solution space remains unexplored.

One of our future intentions would be to test genetic
algorithms on non-homogeneous redundant series-
parallel structures, since those structures allow
though diversity system modernisation and
achieving desired availability at lower cost than
homogeneous systems. In addition that this kind of
systems is less susceptible against common cause
failures which represent one of the biggest
disadvantages of homogeneous structures that may
lead to the failure of the entire System. A further
step will be to explore and investigate new
methaheuristics or combination of algorithms which
can be applied on such optimisation task discussed
in this paper in order to get better performance and
promising results.

REFERENCES
[1] Way Kuo,V. Rajendra Prasad, Frank A.Tillman,

and Ching-Lai Hwang. \Optimal Reliability
Design, Fundamentals and Applications",
Cambridge University Press 2001, ISBN 0521
78127 2.

[2] Josef Börcsöck, \Functional Safety- Basic
Principles of Safety –related Systems", Hüthig
Verlag Heidelberg, ISBN 978-3-7785-2986-7,
, 2007.

[3] Gregory Levitin, Anatoly Lisnianski, Hanoch
Ben Haim, David Elmakis. \Genetic Algorithm
and Universal Generating Function Technique
for Solving Problems of Power System
Reliability Optimization". The Israel Electric
Corporation Ltd., Planning Development &
Technology Division, April 2000.

[4] M. Affenzeller, S. Winkler, S. Wagner, and A.
Beham, Genetic Algorithms and Genetic
Programming, Modern Concepts and
Applications". CRC Press 2009.

 [5] Holland J., \ Adaptation in Natural and
Artificial Systems". The University of
Michigan Press, Ann Arbor, Michigan,1975.

[6] Zhigang Tian, Ming J. Zuo, and Hongzhong
Huang. \Reliability-Redundancy Allocation for
Multi-State Series-Parallel Systems". IEEE
Transactions on Reliability, Vol. 57, No. 2,
June 2008

[7] Frank A. Tillman, Ching-Lai Hwang, Way Kuo.
\Optimization Techniques for System
Reliability with Redundancy- A Review".
IEEE Transactions on Reliability, August
1977

[8] Gregory Levitin, \The Universal Generating
Function in Reliability Analysis and
Optimization". Springer ISBN-13: 978-1-
85233-927-2, 2005.

[9] Mohamed Ouzineb, \Heuristiques efficaces
pour l'optimisation de la performance des
systèmes séries-parallèles". Département
d'informatique et de recherche opérationnelle
Faculté des arts et des sciences, Université de
Montréal 2009.

[10] Mohamed Ouzineb, Mustapha Nourelfath,
Michel Gendreau \Tabu search for the
redundancy allocation problem of
homogeneous series-parallel multi-state
systems". Reliability Engineering and System
Safety 93 (2008), 1257–1272, 2008.

