
 ISSC 2013, LYIT Letterkenny, June 20-21

Reliable System Design with a High Degree of Diagnostic
Procedures for Embedded Systems

Michael H. Schwarz1 and Josef Börcsök2

Department of Safety Computer Technology1,

Department of Computer Architecture and System Programming2

University of Kassel, Germany1, 2

E-mail: 1m.schwarz@uni-kassel.de 2j.boercsoek@uni-kassel.de

Abstract ̶ Maintenance starts with reliable diagnostics. Programming Logic Controllers
(PLCs) are often equipped with a high degree of diagnostic procedures in order to ensure
that the processing unit is functioning correctly. It is vital to verify that the system with its
programme is still within a 'healthy' state, otherwise a safety function is called and the
system is brought into a safe state, or if possible, defect and malfunctioning components are
exchanged during operation and the process can continue without shutting down the system.
However, when it comes to smaller devices such as intelligent sensors, embedded controller
devices with the functionality of an e.g. PID (Proportional-Integral-Derivative), predictive
controller, filter or analytical algorithm, which is embedded into a FPGA or micro-controller
then diagnostics and verification methods are often not considered in the way they should be.
For example, if an intelligent sensor system is not able to diagnose that the sensor-head is
malfunctioning, but the sensor-head still provides some data, then the smart algorithm bases
its calculation on wrong data, which can cause a dangerous situation. This paper investigates
and shows recent results to combine diagnostic methods for small scale devices. Several
safety-related structures are considered with a high degree of diagnostic coverage. The paper
presents relevant procedures and structures to increase the reliability of small devices
without utilising a full scale microcontroller system.

Keywords ̶ Reliability, safety structure, maintenance, diagnosis.

I INTRODUCTION

Reliable system design is an important and fast
growing research area with a wide range of
applications, especially when international
standards are involved. For example, in process and
chemical industries safety programming logic
controllers (PLC) and safety systems are necessary
equipment to protect human lives, environment and
production facilities. Research and development in
this section on PLC is matured, however, still on-
going and far from completed but the necessary
sensibility is available and present.

When it comes to sensors or actuators the same
sensibility is often missing or researchers and
developers are simply not aware of these issues. In
an investigation by the HSE [10] where a system
was subdivided into three parts as shown in Figure 1

and fatal accidents were related to the actual
component that caused the accident.

Fig. 1: System with its subdivisions

A fault in the output-section was with 50% the main
cause of accidents, followed by the category of
sensors with 35% and only 15% were related to the
actual processing unit, as shown in Figure 2. The
last part (processing unit) is the area where most of
the research and development has been done in the
past years.

When it comes to predictive maintenance then
sensors are of great importance as they measure the
health state of a system or component and either

Input
Processing

Unit Output

diagnose the current state immediately or send the
information to a superior unit that carries out the
analysis. Especially in the first case, the sensor itself
is not a passive measurement device anymore but an
entire system with input, processing unit and output.

Fig. 2: Relation Accidents to causes

When a new intelligent sensor device, a new control
algorithm or filter is developed, then the standard
way is to use components from the shelf like a
microcontroller and the algorithm is converted or
directly downloaded. For standard application this is
a suitable way. For more reliable design this is not
enough.

The development of a reliable system starts always
with a specification, where it is defined what the
system should do (necessary requirements), and
servers as a test bench afterwards. During the design
and implementation phase the work has to be
verified according to specification that the
development still matches the requirements. After
the development and verification, the system can
installed.

When it comes to the lifecycle of a system and the
causes of failures then most errors are done in the
specification phase. Again this investigation has
been carried out by HSE [11] and the results are
shown in Figure 3.

Fig. 3: Failure versus Roots

However, much work has been done, in the
direction of how to get requirement formulations
more precise.

The last two figures show that sensor design is
important as it is the cause of many failures but the
careful design from the beginning should not be
underestimated. As sensors are important for
maintenance and e-maintenance in order to diagnose
the health state of the observed system, it is also
important that the health state of the sensor itself is
diagnosed, as it is vital to ensure that the right
information are available to make the right
judgment.

The remaining paper is structured as follows:
Section 2 presents a short literature survey, section
3 describes recent results investigate within the
department and section 4 draws some conclusions
and state future work.

II MOTIVATION AND LITERATURE SURVEY
Different aspects of the development of safety and
reliable systems are detailed in the publication by
Schwarz [18], in this case the development of a
sensor system was described using
Matlab/Simulink. Two main approaches exist; the
first uses an automated generated c-code which is
executed by an operating system, the second uses a
VHDL approach directly for a hardware board.
However, the development follows in both cases the
v-model [12] methodology for the design of reliable
/ safe systems. The system can be tested during
every stage of each design phase. Different
architectures are detailed as well different tests and
checks.

Marek Sniezek and Josef von Stackelberg [19]
describe in their publication on 'A fail safe
programmable logic controller' a hardware
approach to develop a safe controller that fulfills the
requirement of the international standard IEC 61508
[12] for the safety integrity level 3(SIL 3). They
describe a novel safe comparator strategy to
distinguish between different safety faults and to
achieve a fast reaction time.

Riccardo Mariani and Gabriele Boschi [16] are
dealing with robust memory approaches.
International standards such as the IEC 61508 [12]
or others demand that developer considers errors
and faults in the memory of embedded controller
systems and deploy methods and techniques to deal
with those effects.

Grießing et al. and Alvarez et al from the University
of Vigo, Spain present another approach direction.
Grießing et al. from the University of Graz and
associated companies [7], [8], [9] describe a

Output
50%

Processing
Unit
15%

Input
35%

Accidents

44%

21%

14%

6% 15%

Failure

Specification

Design +
Implementation
Installation

Operation +
Maintenance
Modification

development of a safety related function using
Complex Programming Logic Devices (CPLD). It is
stated by the authors that the development follows
safety related standards such as the IEC 61508 [12]
and the ISO 13849 [13]. The papers describe the
development, several testing procedures and
implementation using the derived system to guard a
power drive system. Alvarez et al. [2] used PLDs to
implement a 2oo3D system, which consists of a
2oo3 safety architecture with an additional
diagnostic system. They claim that their approach
meets the required safety performance but is more
flexible and cheaper as a full micro-processor
system.

Rapid prototyping and a full development suite
from simulation to hardware design are an
increasing research topic. Reyneri [17] describes an
interesting code design system for rapid prototyping
using FPGA systems. The described system
contains Mathworks tools for high-level description
languages and a simulation environment. The user
can simulate and optimise system and architectural
parameters before it is downloaded onto a user-
defined FPGA.

Krakora and Hanzalek [14] from the Technical
University in Prague present in their publication a
testing methodology for hybrid Hardware-in-the-
Loop tests, for discrete events, time automata
continuous systems and differential equations
utilising FPGA technology. Their implementation
concentrates on a discrete event system linked with
continuous systems implemented as filters using
fixed-point arithmetic. They use Matlab/UPPAAL
in combination with FPGA based testing tool.

Alberto et al. [1] describes an innovating filtering
structure to detect gas particles using a FPGA
system for processing the data and signals. Different
filter structures were tested to achieve a high
working frequency.

The research by Astarloa et al. from the University
of the Basque County [3] includes the development
of a PID controller IP core to transfer computational
expensive parts into hardware on an FPGA. This
system is self-reconfigurable and different
subsystems with altered features can be loaded and
started during run time.

Elhadef et al. [5] from the University Ottawa
proposed a self-diagnostic technique exploiting
generalised comparison models to detect several
faults. They used an artificial immune system in
order to carry out the diagnosis. Another attempt
uses a multi-layered neural network [6] considering
permanent faults in a t-diagnosable system.

Another interesting approach is presented by
Machado et al. [15] where simulation and formal

verifications are combined to develop a reliable and
safe controller. Timed Automata formalism and
UPPAAL real time model checker are used to
validate the derived model.

III DESIGN
The proposed structure and system has been
developed with Matlab / Simulink, where it can be
tested and simulated, before it is transferred into
VHDL code and downloaded onto an FPGA [4].
Another possibility would be to develop only the
application [16] and embed the developed software
in an operating system and use a 1oo2 safety
processor system. The ideas here are to derive,
simulate and test a system suitable for small
applications and after the results are satisfying to
implement as much functionality as possible into
hardware rather in software, but without losing any
reliability feature.

a) Hardware

Figure 4 shows a schematic of a normally used
system, which is classified as a 1oo1 structure as
described before.

Fig. 4: Sensor System

For standard applications or demonstration purposes
such a system might be sufficient but it contains no
reliability and safety enhancements at all. If this
system gets stuck or the execution freezes then it is
not possible to call a safety function and to close the
process under control or if this architecture is used
in a sensor system, then the system cannot inform
the higher processing unit e.g. a PLC (Programming
Logic Controller) about the problem and to close its
functionality in a systematic manner.

Fig. 5: Sensor System with an error

Input
or

Sensor-
head

Processor
or

Micro-
controller

Output,
Actuator or
Commun-

ication

1oo1

Input
or

Sensor-
head

Processor
or

Micro-
controller

Output,
Actuator or
Commun-

ication

1oo1

oces
or

ro-
olle

Input
or

sor
d

Outp
tuato
mmu

tion

Figure 5 illustrates the problem, that when a part
fails the information cannot be delivered to the next
processing hierarchy.

The only safety function would be a watchdog
which reacts with a reset of the entire system, when
the watch dog time is elapsed. A system reset during
a production can cause unpredictable situations and
can harm people nearby and can cause hazardous
situations. A safety function could be that the
system creates an alarm or an event and send a
message to a superior system or monitoring system
and informs it that the particular system has to be
shut down, necessary valves for examples are closed
and relevant data is stored to analyse it afterwards
or whatever functionality is considered for the
safety function.

b) Reliable Hardware

In order to increase functional safety and
availability of a system a multi-processor
architecture in an N out of M structure is often
recommended. A 1oo1 architecture as shown in
Figure 4 is the simplest and often used system, but
contains no safety architecture at all. If one of the
subsystems (Input Processing Unit, Output) fails
then the entire system might fail and a safety
function might not be initiated to bring the system
into a safe state.

A 1oo2 system, as shown in Figure 7, possesses
two independent paths to call the safety function, if
one of the two systems fail then the other one is still
able to call the safety function. A schematic is
shown below.

Fig. 6: 1oo2 Safety System

A 1oo2D system is similar compared to a 1oo2
system, but it possesses a high degree of diagnostic
procedures. The system is self-tested after each
cycle and if a difference is diagnosed then the
system is brought into a safe state. High diagnostic
procedures are necessary to verify that each
processor is functioning correctly.

A system with a higher availability such as a 2oo2
has a redundant structure but a lower reliability as
both subsystems have to call the safe function. A
schematic is shown in Figure 8.

Fig. 7: 1oo2D Safety System

A 2oo2 system is actually not a safety system as
both systems have to call the safety function to
bring the system into the safe state. However, a
combination of a system with a higher degree of
safety and availability lead to systems which can
tolerate faults and can continue without shutting
down the system. Many processes cannot be
stopped but have to be continued until the process is
completed, but such systems are not considered in
this paper.

Fig. 8: 2oo2 Safety System

When developing reliable sensor systems, controller
systems or filters, then using full multi-core
architectures might become oversized in terms of its
functionality not architecture, to execute few
relatively simple mathematical operations, which
are always carried out in the same way. However,
sensor, controller or filter systems are becoming
more reliable and are equipped with more intelligent
methods and procedures. Sensors are not simple
devices anymore to measure a physical value, but
becoming complex computer systems by their own,
e.g. equipped with Ethernet communication,
wireless communication, analysis methods, filters;
the development of such peripheral systems should
follow the same development procedures and
guidelines as safety and reliable systems.

c) Reliable Design

The structure considered in this paper is shown in
Figure 9. A 1oo2 architecture should be used, which
uses two different inputs, two processing units and
two independent outputs. Both processing units
possess diagnostic methods and the results are
compared with each other. Diagnostic procedures
are able to call the safety function and to bring the

1oo2

Input
Processing

Unit Output

Input
Processing

Unit Output

Safety
Function

1oo2D

Input
Processing

Unit Output

Input
Processing

Unit Output

Safety
Function

Diagnosis

2oo2

Input
Processing

Unit Output

Input
Processing

Unit Output

Safety
Function

system into a safe state. Also, the processing unit
itself has diagnostic procedures (in the application
itself), which can detect that the information itself is
not correct and either correcting procedures are
called or if this is not sufficient enough, the safety
function will be called as well.

Fig. 9: 1oo2D Sensor System

The safety function could be the transmission of an
error code to the superior unit, e.g. a PLC which
processes further the received value. This structure
does not use a majority or minority voting, which
can be found in some applications.

d) Software application structure

The figure below shows the normal application
structure of a sensor system. Some diagnostic
procedures are also implemented in this layer. But
these diagnostics are concerned of the integrity of
the processing value and not with the underlying
diagnostics to determine the integrity of hardware
and the overall system.

Fig. 10: Sensor Application Structure

The received data is firstly filtered due to noise,
afterwards the data is verified that the value is
within the allowed ranges otherwise the safety
function is called. Afterwards, the data is processed
and analysed which is the normal operation of the
system and finally the data is sent to a superior unit,
for example a PLC to be further processed.

The plausibility check is one test of others to ensure
that the received process value is correct, as shown
below. Other tests would be to determine the

gradient and to detect a steep increase which can be
an indication of an error.

Fig. 11: Test procedures at application layer

The plausibility check mimics test procedures of
industrial systems. The standard input value should
be within the range of e.g. ± 10volts. The inputs are
developed in such a way that they are able to
measure inputs above the standard range (which is
also a protection for the inputs), but provide a
warning if the process value is above or below the
±10volts. If the value approaches the ±15 then an
error message is provided. In the same way this
plausibility check works.

The next diagnostic procedure is not situated in the
application layer, where the value is tested but
functionality of software should be tested, that it is
still functioning tin a correct way, especially when
microcontrollers (without an operating system) or
FPGA systems are considered. The test procedure is
explained using a filter as shown below, but it is
valid for the plausibility checks and for the data
processing algorithm as well, because every method
has to be tested and diagnosed as well.

Fig. 12: IIR - Filter

The filter consists of memory blocks, summation
and multiplication and this has to be tested, that the
filter itself still has this functionality. Figure 13
illustrates the filter under normal conditions.

Fig. 13: normal operating mode

1oo2D

Input
Processing

Unit Output

Input Processing
Unit Output

Diagnosis Safety
Function

Diagnosis

Diagnosis

Receiving
Data

Filter

Plausibility
check, an

others

Data
processing

Data
Transmitting

20 30 40 50 60 70 80 90 100

-15

-10

-5

0

5

10

15

Time [sec]

A
m

p
li
tu

d
e
 [

v
o

lt
s
]

Warning

Warning

Error

ErrorProcess value

Z-1 Z-1 …
Z-1

b0
b1 bn

+

Z-1

a1

Z-1…Z-1

am

Normal Operation

Test procedure

During the test phase the IIR-Filter is tested. Firstly,
all values stored in the memory have to be stored in
a separate memory block. Every value has to be
read twice, to ensure that the reading was done
correctly. Afterwards, the filter is prepared with
predefined values and a defined sequence is written
to the inputs and the filtering procedure is carried
out. Afterwards the results are compared with
expected values. If a difference is identified then the
filter is not working correctly and system has to be
brought into the safe state. Figure 14 illustrates the
procedure.

Fig. 14: Testing mode

If the test was successful, then the filter has to be
loaded with the original values. It has to be ensured
that the filter values are correct, therefore, the
values are read back again and compared. This is
demonstrated in Figure 15.

Fig. 15: Restoring mode

During normal operation, the test procedure has to
be validated, then also this one can be damaged or
alternated. This test has to be carried out in regular
intervals to ensure that system is functioning
correctly.

Fig. 16: System test

All the other functions have to be tested and
validated in a similar way to ensure that overall
function is in good condition. The diagnostics has to
be done in both processors and the results have to be
compared. Additionally to the processor, the
peripheral components input and outputs have to be
validated as well as demonstrated in Figure 16.

IV CONCLUSIONS
Reliable system design and diagnostic is an
important issue not only for large systems as
programming logic controllers but also for sensors
and actuators. It is not only necessary to maintain
and indentify the health state of a plant, motor or
compressor but also to indentify the health state of
the sensors and actuators itself. This paper presented
a strategy to develop a sensor system in a more
reliable structure. This starts with the selection of an
appropriate architecture via various test and
diagnostic procedures.

REFERENCES
[1] Alberto D., Falletti E., Ferrero L., Garello R.,

Greco M. Maggiora M., 2009. FPGA
implementation of digital filters for nuclear
detections. Nuclear Instruments and Methods
in Physics Research A, 661, pp. 99-104.

[2] Alvarez J., Marcos J., Fernandez S. 2005. Safe
PLD-based programmable controllers. In the
proceedings of International Conference on
Field Programmable Logic and Applications.
Tampere, Finland pp. 559-562

[3] Astarloa A., Lazaro J., Bidarte U., Jimenez J.,
Zuloaga A., 2009. FPGA technology for multi-
axis control systems. Mechatronics 19, pp. 258-
268.

[4] Burunsus C. 2011. Entwurf von zuverlässigen
Simulink-Diagnose-Strukturen für den Einsatz
auf FPGA Systemen (Design of reliable
Simulink-diagnostic-structures for the use in
FPGA systems) Master-Thesis, 2011,
University of Kassel.

[5] Elhadef M., das S.,Nayak A., 2006. A Novel
Artificial-Immune-Based Approach for
System-Level Fault Diagnosis. Proceedings of
the First International Conference on
Availability, Reliability and Security
(ARES’06). Vienna, Austria, pp. 166-173.

[6] Elhadef M., Nayek A., 2010. A Novel
Generalised-Comparison-Based Self-Diagnosis
Algorithm for Multiprocessor and
Multicomputer Systems using a Multilayered
Neural Network. In the proceedings 13th IEEE
International Conference on Computational
Science and Engineering. pp 245-252.

Testing Operation

1. Storing current values2. Writing known values

3. Writing test sequence 4. Comparing with known results
Test procedure

RestoringOperation

1. Reading stored values and
comparing with original stored
values.

2. Writing back original values

Test procedure

Input
Processing

Unit
Output

Input Processing
Unit Output

Diagnosis Safety
Function

Diagnosis

Diagnosis

Diagnosis

Diagnosis

[7] Grießing G., Mader R., Seger C., Weiß R.,
(2009). Fault Insertion Testing of a Novel
CPLD-based Fail-Safe System. In the
Proceedings of Design, Automation & Test in
Europe Conference & Exhibition, 2009. DATE
'09, pp 214-219

[8] Grießing G., Mader R., Seger C., Weiß R.,
(2010a). A CPLD-based Safety Concept for
Industrial Applications. In the Proceedings
IEEE International Symposium on Industrial
Electronics (ISIE), Bari, Italy, pp. 3027 - 3032

[9] Grießing G., Mader R., Seger C., Weiß R.,
(2010b). Design and Implementation of Safety
Functions on a Novel CPLD-based Fail-Safe
System Architecture. In the Proceedings of
17th IEEE International Conference and
Workshops on Engineering of Computer-Based
Systems. Oxford, United Kingdom. pp. 206-
212.

[10] Health & Safety Executive (HSE) UK, 1996.
The setting of safety standards: A report by an
interdepartmental group of external advisors.
London: HM stationery office, United
Kingdom.

[11] Health & Safety Executive (HSE) UK, 1995.
Programmable electronic systems in safety-
related applications, part I. London: HM
stationery office, United Kingdom.

[12] IEC 61508, 2000. International Standard 61508
Functional Safety of Electrical/Electronic/
Programmable Electronic Safety Related
Systems. International Electrochemical
Commission.

[13] ISO 13849, 2006. Safety of machinery --
Safety-related parts of control systems -- Part
1: General principles for design. International
Organization for Standardization.

[14] Krakora J., Hanzalek Z., 2008. FPGA based
tester tool for hybrid real-time systems.
Microprocessors and Microsystems 32, pp.
447-459.

[15] Machado J., Seabra E., Campos J.C, Soares F.,
Leão C. P, 2011, Safe controllers design for
industrial automation systems. Computers &
Industrial Engineering 60 (2011) pp. 635–653

[16] Mariani R., Boschi G. 2005, A system-level
approach for embedded memory robustness.
Solid-State Electronics 49 (2005) pp. 1791–
1798

[17] Reyneri L.M., 2004. A Simulink-based hybrid
codesign tool for rapid prototyping of FPGA’s
in signal processing systems. Microprocessor
and Microsystems 28, pp. 273-289

[18] Schwarz M. H., Sheng H., Batchuluun B.,
Sheleh A. Chaaban W. Börcsök J. 2009.
Reliable Software Development Methodology
for Safety Related Applications - From
Simulation to Reliable Source Code. XXII
International Symposium on Information, Com-
munication and Automation Technologies,
Sarajevo, Bosnian-Herzegovina.

[19] Sniezek M. von Stackelberg J. 2003, A fail safe
programmable logic controller. Annual
Reviews in Control 27 (2003) pp.63–72

