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Abstract 

 
In this paper we present a method for monitoring 
and processing large-scale highly variable and non-
linear reliability data for MEMS RF Switches. The 
data is generated by measuring the switch actuation 
dynamics and a combination of statistical methods 
are applied to extract the switch closure/opening 
time. The signal processing is performed in a 2-step 
approach encompassing basic parametric and non-
parametric statistical methods to correctly 
categorize the obtained datasets, supplemented with 
a mean-first derivative algorithm to extract the 
reliability indicators from the filtered data. The 
presented procedure proves to be highly accurate 
generating very low error in dataset classification. 
The acquired results give an insight into the 
evolution of switch health throughout its whole 
operation cycle and can lead to further 
understanding of failure mechanisms in micro-
mechanical structures. 

 
I. Introduction 

 
Despite extensive research in the area of MEMS 

switches little is still known about the cause of their 
failure and how to prevent it. Some studies have 
highlighted the importance of mechanical effects like 
material creep[1,2], surface effects[3] or electrical 
influences[4]. But in most cases it is a combination of 
all of the above which decides if the device works or 
fails[5]. Therefore for MEMS there is currently no 
consistent method of predicting switch failure.  

The first step in a device failure prediction is an 
established and reliable heath monitoring system which 
can be generalized to many different designs and 
operational during a normal device usage. Unfortunately 
because of the MEMS sizes and their need to work in a 
strictly controlled environment the number of available 
health monitoring methods is very limited. The most 
popular ones are: pull-in voltage monitoring, resistance 
check after the device closes and optical methods such 
as SEM imaging or white light interferometry. 
Unfortunately the optical methods cannot be applied to 
final product - switches which are sealed in a hermetic 
package. For the remaining electrical methods their 
significant drawback is the fact they are a static-type 
measurement which can only be done when the device 

operation is paused and therefore can miss the signs of a 
device approaching failure. 

In the paper presented at the recent MME2012 
conference[6] we proposed a dynamic approach (usable 
during the device operation) to the health monitoring of 
MEMS devices and proved that the switch opening and 
closure times evolve over the device life cycle and their 
change can be correlated with the degradation of device 
health. To verify the usability of this approach and 
understand the relation between the monitored response 
of the switch and it proximity to failure we have 
developed a large-scale reliability test which 
encompasses different types of MEMS switches. 

Unfortunately, a major difficulty in this test is the 
amount of devices and data which have to be processed 
to generate useful results. Therefore, quantifying key 
parameters has to be automated. The challenges faced in 
this work are the large amount of data generated per 
switch test, high data variability and data non–linearity. 
In this paper, we present the algorithm used to process 
the data and provide a base for future development into 
a real-time monitoring and/or failure prediction system. 

This paper is organized as follows: Section II 
introduces the reader to MEMS switches; Section III 
describes the tested samples; Section IV presents the 
testing setup and procedure, Section V presents the data 
processing methodology and identification of results; 
Section VI draws conclusions from the work outlined 
and presents future developments of this method. 

 
II. MEMS Switches 

 
Microelectromechanical (MEMS) RF switches are a 

group of mechanical devices with their largest 
dimensions typically in the range of m. They are 
produced in different types and shapes but their 
principle of operation can be differentiated into two 
main types: ohmic and capacitive[7]. In the first case the 
switching mechanism is based on breakage/formation of 
a direct electrical path whereas in the second case the 
switching is done by the increase/decrease of the 
existing capacitance in the circuit thus creating a 
“barrier” in high-frequency solutions. MEMS switches 
when compared to a more traditional p-i-n diode or FET 
switches have much better electrical parameters like: 
energy consumption in off-state, isolation or insertion 
loss but unfortunately as a mechanical device are 
susceptible to a higher amount of failure mechanisms[8] 
than a pure electronic device. Thus reliability issues are 
the major factors which slow down the MEMS switch 
market. To allow further development of this market it 



is of crucial importance to establish a detailed 
understanding of the switch failure mechanism. 

 
III. Tested Samples 

 
For the purpose of result comparison three types of 

MEMS ohmic RF switches have been tested. 
The first two types represent a simple reference 

MEMS switch with a basic construction, differentiating 
only in the shape of the switch anchor (Figure 1): 

  

 
Figure 1: Basic reference MEMS switches type: 

Type1(A) and Type2(B), dimensions in m 

In both Type1 and Type2 the material used for beam 
formation was h = 6 m electroplated gold with a 
designed electrode gap gd = 0.6 m and a contact gap of 
gc = 0.26 m. 

The third type of the tested samples was a high-
reliability construction similar to that described in the 
work of Goggin et al.[9]. A SEM picture of the switch is 
presented in Figure 2 

 
Figure 2: SEM image of Type3 tested sample 

Smiliary to the Type1 and Type2 the switch material 
was 6 m electroplated gold. The dimensions of this 
design are: eletrode gap gd = 0.6 m; contact gap gc = 
0.26 m; rectangular region over the actuation 
electrode: length loe = 63 m, width woe = 38 m; five 
tethers connecting the beam to the anchor have length lt 
= 14 m and width of wt = 14 m. Further in this article 
this switch will be refered to as Type3. 

In total there were 20 of Type1 and 18 of Type2 
tested. To supplement them 3 of Type3 switches were 
added to the test. 

Before a reliability experiment each switch was 
tested for its actuation voltage (voltage at which the 

switch closes). Results of those tests are presented in the 
Table 1. 

 
Switch Type Actuation Voltage Range 

Type1 46.2 – 65.4 V 
Type2 48.5 – 75.6 V 
Type3 42.6 – 66 V 

Table 1: Starting Actuation Voltage depending on the 
switch type 

The visible spread of starting actuation voltage 
highlights one of the factors which makes reliability 
prediction and data analysis such a problem in micro-
devices. Due to the specifics of the fabrication process 
there are no two identical devices. Even when created 
with the same method there will be minimal differences 
(asperities) in the surface of the contact pads as well as 
structural variances in the beam and anchor. 
Unfortunately, those differences can have a significant 
impact on the device performance due to changes in the 
resulting surface/restoring forces. 

 
IV. Testing Setup and procedure 

 
The purpose of the reliability tests was to gather a 

detailed closure/opening characteristic of the switches in 
motion from an unused state to failure. Because of the 
fact that the tests had to be performed in an environment 
as close as possible to regular switch usage a removal of 
the protective cap over the MEMS switch was not an 
option, thus optical test methods were excluded. The 
chosen methodology was an electrical approach which 
in principle measures the existence of a current flow 
through a closed switch. This method was previously 
described by Do et al.[10] in his work on performance 
of MEMS switches. 

The testing station consisted of a GPIB controlled 
waveform generator, x50 voltage amplifier, 500 mV 
voltage source and a GPIB controlled oscilloscope for 
data acquisition. The acquired data was transmitted via 
a GPIB connection to the PC with a Labview – based 
control and data saving program. A schematic of the 
experiment setup can be seen on the Figure 3 

 
Figure 3: Testing Station Schematic 

On this test setup two types of experiments were 
performed simultaneously: 

 



a) The Cycling Test 
The aim of this test type was to introduce the 

switches to a repeatable actuation to simulate their 
normal operation. 

The tested samples were actuated with a 50% duty 
cycle square wave waveform from 0 to 70 V to 
introduce a repeatable closing motion in the switches. 
The frequency of the waveform was chosen to be 28 
kHz as it allowed for a fairly fast switch failure event – 
for a typical 1010 life cycles switch the estimated failure 
for a continuous 24h actuation would take ~4 days. The 
sampling resolution of the scope was set to 40 ns/point 
in a 500 sample length, further on exchanged into 20 
ns/point in a 1000 sample length. This setting allowed to 
record the full response of the switch for the applied 
actuation voltage. To limit the amount of data the scope 
measurements were taken every 5 s.  

 

b) The Pull-In Voltage test 
The aim of this test type was to monitor the change 

of the closing voltage of the samples during the process 
of cycling actuation. 

Additionally to the cycling test the pull-in voltage of 
the switches was checked every 110 measurement 
cycles (4 channels measurement + data saving = one 
measurement cycle). The procedure was to raise the 
actuation voltage of the switch from 0 till the point 
when a switch closure event was registered. This event 
was defined as a drop of the 500 mV signal to a level 
below 300 mV which would indicate a high resistance 
electrical connection between the switch tip and the 
contact pad. 

 
V. Data Processing and Analysis 

method 
 

a) Scope of the problem 
An initial evaluation of the combined static/dynamic 

characterization method was carried out by manual data 
analysis and yielded promising results[6]. Due to the 
large amount of data per each switch tested, scaling the 
experiment to a statistically significant sample size 
requires automatic parameter extraction from each 
dataset. For the dataset used in this work over 300 GB 
of data with a detailed record of switch movement and 
pull-in voltage characteristics changing with time have 
been recorded To the author’s knowledge this is the first 
report of an automated analysis algorithm for such a 
MEMS data set. Examples of the obtained datasets can 
be seen on figures below. Figure 4  illustrates a Type3 
switch response and Figure 5 shows a Type1 switch 
response. 

 
Figure 4: Example Type3 switch dataset 

 
Figure 5: Example Type1 switch dataset 

A failure of a switch was defined as a situation 
where the switch has become stuck–down to the contact 
surface thus producing a constant voltage drop across 
the circuit, an example comparison of working switch 
response vs. a stuck-down switch can be seen on the 
previously described Figure 4 and Figure 5. 

The key parameters which are of interest in this 
experiment are marked Tc – Closure Time and To – 
Opening Time, during the course of the experiment it 
was proven that both of these parameters change with 
the degradation of switch health. Unfortunately each 
switch exhibited a high variability in its response an 
example of such a behavior has been show in Figure 6 
below. 

 



 

 
Figure 6: Examples of variability in acquired data: A - 
Bounces can disappear (also described by Fruehling et 
al. [11]), B – Switch response indicating no closure – 

high voltage value after supplying with actuation 
voltage, C – Additional voltage drops around the 

closure/opening events and/or sharp multiple bounces 

Therefore the extraction method had to account for 
such variability in all of the acquired data on top of 
distinguishing between a working and a failed switch. 

 

b) Signal Filtering 
The first step to extraction of Tc/To was to separate 

the acquired data for usable and non-usable. After trying 
typical statistical methods (standard deviation, variance, 
median and others) and filtering techniques the method 
which was exhibiting the best results was using the 
kurtosis parameter to distinguish between a working and 
a failed device. 

As described by Balanda et al.[12] the kurtosis 
parameter could be described as a measure of 
peakedness of the analyzed signal. Kurtosis of a 
distribution H is defined as: 

 

 ( 1) 

Where: 
 4(H) – is the fourth moment about the mean 

of the distribution H 
 2(H) – is the second moment about the mean 

of the distribution H or simply standard 
deviation of H 

With this definition a kurtosis value of a normal 
(Gaussian) distribution has a value of 3. 

This analysis method was based on the fact that the 
general shape of a working device response was known 
and the typical obtained voltage values would follow a 

Gaussian point distribution (majority of data points for a 
working switch would be in the “closed” region where 
the voltage values would not exceed 100 mV).  

Through manual analysis of a limited set of samples 
it was determined that a normally working switch has a 
kurtosis value of its points in the range of 0 to 6 with 
some exceptions reaching values above 10. In case of 
the stuck-on data due to the fact that the spread of data 
was very limited the point distribution was more 
“sharp” in shape, the signal had more “peaks” when 
compared to its mean value and thus the kurtosis was 
reaching values over 30. After identifying the general 
kurtosis threshold for working switches as a value of 6, 
a “cut-off filter – type” process was designed: 

 
Figure 7: kurtosis Filter, I step: Stuck-On separation 

This method proved to be highly successful in 
identifying and separating the unusable (either stuck-on 
or no distinct voltage drops) data from further analysis 
with no errors. This approach should be generally 
applicable to any MEMS switch with a similar operating 
behavior, although the kurtosis threshold value should 
be verified if using different designs also the voltage 
detection limits depend on the used testing setup and 
should be adjusted accordingly. 

The second step of data preparation was to identify 
the variability of the data and validate its usefulness for 
Tc/To extraction. In some cases (see example in Figure 
6B) the Tc, To or both could be undetectable. 
Unfortunately using variance, mean and standard 
deviation proved to be not effective therefore an 
approach using boxplot parameters to describe the data 
spread was used. The parameters in question which 
were needed to describe the data were: QM –Median of 
the dataset, QU – Upper Quartile and QL – Lower 
Quartile. All of these parameters are defined as 
follows[13]: 

 QM – middle value of data after the dataset has been 
ordered from lowest to highest value. 

 QU – middle value among the data values above the 
median. Or 75% percentile of the dataset. 

 QL – middle value among the data values below the 
median. Or 25% percentile of the dataset. 

 
For a working switch with a near-ideal spread of 

data (see Figure 4) the QM value should be close to the 
QL value due to the fact that the majority of data is 
situated in the closed position with values below the 100 
mV level. At the same time the QU parameter should 
have a value much higher than the QL due to the 



existence of the open regions when the switch has a 
value close to 500 mV level. Therefore the first criterion 
of the distinguishing algorithm is formed: 

 ( 2) 
 
The variable det_const determines the sensitivity of 

this detection. Through manual testing on a limited 
number of datasets a value of det_const = 1.3 was found 
to be optimal. In case of measurements with a large 
number of “sharp” bounces or a switch with no bounces 
at all the QU parameter can exhibit a lower value 
therefore it was a necessity to add a second criterion 
which would verify the QU level in respect to the 
kurtosis of the dataset. Therefore the finished second 
step of the filtering/distinguishing can be summarized 
as: 

 
Figure 8: kurtosis Filter, II step: High_On/High error 

signal type identification and separation 

After application of the described method (both step 
I and step II) to the acquired data, three types of datasets 
have been produced for each tested device: UND – 
unusable data either after switch failure (visible as a 
continuous red area) or with no distinct voltage drops 
(single red lines); High_On – highly variable data with 
large amount of voltage drops or no-closure events, 
impossible to generate a general Tc/To extraction 
method for all datasets in this category, Normal – data 
for analysis via a general Tc/To extraction method. 
Depending on the switch type the amount of datasets in 
each category was different. An example of a switch 
data distribution after applying the developed filtering 
method can be seen on Figure 9 below. 

 

 
Figure 9: Type1 switch data separated into categories 

after filtering 

c) Tc/To extraction method 
The chosen method for Tc/To extraction was based 

on calculating the first derivative of the previously pre-
processed input signal and using it to identify the 
existence of voltage peaks in the data. The locations of 
the peaks were afterwards processed using a Tc or To 
algorithm to correctly calculate the sought parameter. 
As the whole analysis was done using Matlab 
environment, Matlab in-built function findpeaks.m was 
selected as a method to detect peaks in switch data. 

The first step to calculate either a Tc or To from the 
dataset was to identify the “charging peak” location in 
the dataset. The charging peak is a short voltage 
increase in the signal near the starting point. In the 
presented switch response graphs (Figure 4-6) it is 
located at point 0 on the x-axis. The charging peak is 
generated when the 70V actuation voltage is applied to 
the switch. Therefore, it indicates when the device has 
started to move downwards into the closed position. 
Because of the fact that this value is usually the largest 
voltage peak in the whole dataset and its position is 
known to high accuracy (location depends on the Scope 
triggering setup which does not change during the 
experiment) a simple Maximum value check with a 
detection threshold on a limited number of points is 
sufficient enough to identify its position in the dataset. 

The Tc parameter extraction uses the 
extraction/verification algorithm outlined in Figure 10. 
To limit the processing time, the search is initially 
limited to the first half of the dataset. The first check 
starts from the charging peak to 10% of the length of the 
whole dataset. For the correct usage of Matlab 
findpeaks.m function the data is negated and shifted up 
by a constant 500 mV value. Next the findpeaks.m 
function is used to detect peaks in the data which would 
indicate that the switch voltage value has dropped (data 
is negated). A threshold detection limit is set to find 
only the voltage drops which are higher than half of the 
500mV level. If no peaks have been found in the first 
data range, it is extended by 20 points. When a peak is 
found a recurring loop is created which checks the mean 
value of following 10 points after the detected peak. 
When these point values indicate that the switch has 
closed the search is completed and the Tc peak is 
defined. As the point resolution of the measurement is 
known the Tc value is equal to number of points 
between the charging peak and the Tc peak. A general 
view of the algorithm is attached below in Figure 10: 

 



 
Figure 10: Tc extraction algorithm 

The To parameter extraction uses a similar algorithm 
to that presented for Tc extraction. It is again based on 
the findpeaks.m function and mean calculation of 
following points after detected peaks. The difference 
lies in the fact that there is no need for data negation as 
the To is a rising edge in the data values. Additionally, 
the amount of following points had to be reduced due to 
the presence of post opening troughs in the measured 
profile. After manual tests the average of 4 points after 
peak detection was found to be optimal. The To value 
calculation was also slightly different as the To value 
should represent the switch time to open after turning 
off the actuation voltage, this was simply corrected by 
subtracting the known (from the test setup) actuation 
time of the switch. 

Both of the sought parameters Tc and To were 
extracted from acquired measurement data and the 
detection error was in the range of 0 to 1 data points (0 
– 40 ns). Figure 11 below presents an example of 
extracted Tc and To change during the course of the 
experiment on one switch. 

 
Figure 11: Example of extracted Tc and To change 

VI. Conclusions 
 

The signal processing and analysis method presented 
here allows for reliable, automated extraction of MEMS 
switch closure and opening time from large measured 
datasets. Using simple statistical tools it was possible to 
develop a general processing algorithm for highly 
variable non-linear reliability data and to extract the 
novel dynamic parameters which initial results can 
indicate device health on various switch types. The 
extraction error generated by the algorithm is minimal 
thanks to a two-step filtering approach and allows for 
fast classification of the obtained reliability results. The 

automated process will be further refined in future work 
but is now the basis for a large scale measurement of 
MEMS switch reliability where contact and opening 
times will be correlated with data from complimentary 
failure analysis methods. An investigation of the results 
obtained from this correlation will allow for an 
evaluation of the usability of this method for failure 
prediction of MEMS switches. In the long term 
improvements of this method could allow for the 
development of a real-time health monitoring system for 
MEMS switches. 
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