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Abstract    Compressed sensing (CS) algorithms exploit sparseness properties to reconstruct high spa-
tial resolution magnetic resonance (MR) images from k-space data acquisitions significantly under 
sampled to reduce imaging times. CS algorithm effectiveness is frequently shown using under-sampled 
k-space data from NxN simulated images. These demonstration reconstructions are near perfect with 
quality higher than reconstructions using under-sampled NxN experimental k-space data sets. These 
differences are explained in terms of the interaction between the explicit transform domain sparsity 
requirement employed during iterative CS reconstruction and an inherent frequency domain property 
of the discrete Fourier transform (DFT). We report on experiments to overcome the limitations im-
posed by this DFT property by modifying the CS objective function to use a sparseness transform with 
a resolution higher that the standard transform related to the acquired NxN data matrix size. We 
demonstrate the relative effectiveness and limitations of standard CS and our proposed high-
resolution k-space extrapolation enabled (Hi-KEE) CS reconstruction on under- and fully-sampled, 
simulated and experimental MR k-space data.  

Keywords    Rapid imaging, compressed sensing image reconstruction, magnetic resonance images, im-
age resolution confounding factors. 

   
I INTRODUCTION

Partial Fourier reconstruction (PFR) was an early 
attempt to use incomplete k-space data to solve the 
conflicting requirements associated with acquiring a 
series of high-spatial resolution magnetic resonance 
(MR) images in a short period of time. Compressed 
sensing (CS) reconstruction techniques applied to 
under-sampled k-space data, e.g. [1], have recently 
received greater attention than the 1980’s con-
strained reconstruction approaches, e.g. [2], as a 
solution to overcome the distortions resulting from 
k-space data that no longer meets the Shannon / 
Nyquist sampling criterion.  

McGibney et al. [3] used the underlying digital 
signal processing (DSP) characteristics of algo-
rithms to understand the relative limitations of PFR
implementations; and proposed new reconstruction 
approaches. In this paper, we perform a similar 
analysis on DSP characteristics that might impact 
the available resolution from CS-reconstructed MR

images and lead to greater understanding of possible 
new algorithmic approaches. 

The paper is formatted as follows. In the Theory 
section, the implications of Harris’s work [4] on 
discrete Fourier transform (DFT) windows is re-
examined in the  context of CS reconstructions
where DFTs are repeatedly used to move data 
between k-space and image domains. This reformu-
lation reveals an implicit DFT-related MR k-space
continuity property that can directly impact the 
effective resolution of individual high resolution 
components of the CS reconstructed image.  We 
propose restoring the CS image resolution by using 
Hi-KEE; a high-resolution k-space extrapolation 
enabled variant of the SPARSE-MRI algorithm [1].

In the Method section, we use an MR Shepp-Logan 
phantom with increased high-resolution detail to 
demonstrate the impact of this inherent DFT proper-
ty on the resolution of CS and Hi-KEE reconstructed 
images. The resolution of reconstructed CS images 
from a Shepp-Logan simulation study and experi-
mental MR k-space data are shown in the Results 



and Discussion section; followed by discussion of 
approaches to enhance the resolution of CS recon-
structed images.

II THEORY

a) Description of simulated and experimental MR 
k-space data sets 

The typical NxN MR image [ , ] ; 0 ,EXPTI x y x y N
is the IDFT transformed k-space data set experimen-
tally obtained by a MR scanner

[ , ] [ , ]; / 2 | , | / 2; (1)x y EXPT x y x yS k k S k k N k k N

Van de Walle et al. [5] model MR data capture and 
image reconstruction through continuous and dis-
crete transformations of an infinite spatial-
frequency representation, ( , ); | , |x y x yS k k k k

of a high resolution (HR) object description with
( , ); | , |I x y x y  the corresponding continu-

ous object-space image. Thus [ , ]x y EXPTS k k is derived 
by a truncation of an infinite matrix of values 

[ , ]; | , |x y x yS k k k k  sampled from the origi-
nal ( , )x yS k k representation. In this paper, round and 
square brackets are respectively used to distinguish 
between continuous, ( , )x yS k k , and discrete,  

[ , ]x yS k k , variables.

To simplify further discussion, we approximate 
[ , ]x y EXPTS k k   as the truncation 

[ , ] [ , ] ; / 2 | , | / 2; (2)x y EXPT x y MNxMN x yS k k S k k N k k N

of a finite, rather than infinite, k-space matrix 
[ , ] ; | , |x y MNxMN x yS k k MN k k MN in the limit MN

. This allows us to express the description of 
the continuous object-space MR image in terms of a 
HR discrete MNxMN image with pixel intensities

[ , ] ; 0 ,MNxMNI x y x y MN  with a corresponding 
MNxMN HR k-space data set: 

,

[ , ]

[ , ] exp( 2 / )exp( 2 / );

/ 2 | , | / 2; 0 , (3)

x y MNxMN

MNxMN x y
x y

x y

S k k

I x y k x MN k y MN

MN k k MN x y MN

The [ , ]x y EXPTS k k  samples in Eqn. (2) differ from 
those analytically derived directly in k-space from a 
HR object description as in Chartrand [6].  Howev-
er, the differences between the sampled values of 
the two models become increasingly small for large 

MN and concentrated around the k-space boundaries
| , | / 2x yk k MN  (aliasing effects [4]) where the 
differences will be masked by the decreasing exper-
imental k-space-to-noise ratio with increasing k [7].  
If M >> 1, the differences between the experimental 
k-space values from the two models becomes in-
creasing small for the experimental truncated NxN 
data values, [ , ]x y EXPTS k k  captured by an MR imager. 

With our simplified model, the experimental NxN k-
space data, [ , ]x y EXPTS k k , can be described in Van de 
Walle et al. [5] terms as: an MNxMN-TO-NxN
transformation of the MNxMN image [ , ]MNxMNI x y to 
k-space accomplished through a MNxMN DFT 
operation (M >>1), followed by a NxN k-space 
truncation.  

This truncated data, [ , ]x y EXPTS k k , Eqn. (2) is different 
from the [ , ]x y NxNS k k k-space values generated from 
the simulated NxN Shepp-Logan phantom image 
used in a number of papers discussing CS recon-
struction effectiveness; e.g. the SPARSE-MRI soft-
ware package demonstration of CS reconstruction 
effectiveness [1]. This phantom data can be de-
scribed in terms of a direct NxN-TO-NxN image-to-
k-space transformation accomplished through a NxN
DFT operation performed on an NxN image 

[ , ] ; 0 ,NxNI x y x y N

,
[ , ] [ , ] exp( 2 / )exp( 2 / )

/ 2 | , | / 2; 0 , (5)

x y NxN NxN x y
x y

x y

S k k I x y k x N k y N

N k k N x y N

b) CS reconstruction basics 

MR images can be successfully reconstructed with 
CS by solving the following optimization problem 

1min || [] ||CSI  such that [] []CS NxNFI K               (6) 

where 
the  proposed imaging trajectory  to acquire the 

under-sampled NxN k-space data []NxNK generates 
incoherent (noise-like) aliasing artefacts in the 
image;   

a sparse representation, [],CSI  of the reconstruct-
ed image, [],CSI  is known to exist in a transform 
domain;  and  

the enforcement of sparsity during image recon-
struction, i.e. minimizing the L1-norm 1|| [] ||CSI ,
occurs while maintaining   consistency between the 
known under-sampled k-space data []NxNK and the 
under-sampled k-space data []CSFI derived from the 



CS reconstructed image by the partial Fourier oper-
ator F  [1].  

c) Interpreting Harris Observations in CS context 

Current CS algorithms [1] make extensive use of 
transforms between k-space and a sparse image 
domain.  In principle there may be advantages if 
such transforms were performed analytically on 
continuous descriptions of the MR data, but the DFT 
must be used in practice. Harris [4] discusses the 
differences between pixels of the discretely sampled 
image, [ , ]ICFTI x y , derived from the inverse continu-
ous Fourier transform (ICFT), ( , )I x y , of a continu-
ous signal, ( , )x yS k k , and pixels of the image gener-
ated by applying the IDFT to a limited sub-set of 
sampled values, [ , ]x yS k k , derived from the continu-
ous k-space signal. Harris [4] demonstrated that a 
key factor in the equivalence of discretized ICFT 
and the IDFT values of MR image pixels was linked 
to the NxN cyclic periodicity implicitly imposed on 
the real and imaginary components of the truncated 
MRI k-space data matrix through use of the IDFT
during reconstruction. 

Harris [4] also demonstrates that finite length data 
sets with cyclic continuity in their amplitude have 
lower amplitudes present in the ringing surrounding 
a main peak in the other domain (the side lobes 
associated with spatial or spectral leakage) com-
pared to data with no cyclic continuity. Additional 
levels of cyclic continuity further reduces the ring-
ing, e.g. amplitude and first derivative continuity.  
This implicit cyclic continuity is associated with the 
end points of the finite data sequences that comprise 
any cross-section of the NxN k-space matrix used 
during MR image reconstruction; e.g. the continuity 
between 1[ , ]x yS k k  and 2[ , ]x yS k k  where 1 / 2 1xk N

and 2 / 2xk N .   

Re-interpreting the Harris’ observations implies that 
any truncated MR k-space data that possesses NxN 
cyclic periodic properties will be automatically 
appear more sparse (no side lobes) following any 
NxN transformation that involves the DFT algorithm 
than would data without NxN cyclic periodicity. We 
describe such data as being inherently NxN sparse. 
We hypothesize such NxN sparse data would be 
more easily recovered from an under-sampled set of 
k-space data during CS reconstruction on a NxN grid 
than data without NxN cyclic periodicity, i.e. data 
that is not inherently NxN sparse. 

The components of the k-space signal [ , ]x y NxNS k k

from the NxN phantom, Eqn. (5), are complex 
exponential basis functions belonging to an NxN 
discrete space.  By definition, these components are 

NxN cyclically continuous in amplitude and in all N-
1 derivatives. We identify this data as being inher-
ently NxN sparse in a CS context as each k-space 
cross-section exponential component will be indi-
vidually transformed to a single image-space pixel.  
By comparison, Van de Walle’s description [5] of 
the experimental MR signal indicates that

[ , ]x y EXPTS k k , Eqn. (2), is derived from an MNxMN 
sparse signal, Eqn. (3).  Only the original high 
resolution image [ , ]MNxMNI x y  components located at 
positions where the ratios x/M and y/M are integers 
will generate inherently NxN sparse k-space compo-
nents following the NxN truncation.  

The SPARSE-MRI software CS reconstruction [1] 
demonstration generates a near-perfect image from 
under-sampled k-space values, [ , ]x y NxNS k k , of a NxN 
Shepp-Logan phantom. Here the optimization 
problem expressed in Eqn. (6) is expressed in terms 
of minimizing the CS objective function, the sum of 
L1 norms in NxN unity transform and total variation 
domains, with the constraint that the L2 norm of the 
difference between the under sampled measured 
NxN data and the solution does not exceed some 
estimated noise amount.  We hypothesize that the 
perfect reconstruction is associated with the inherent 
NxN sparseness of the [ , ]x y NxNS k k values; and that 

only those components of an experimental 
[ , ]x y EXPTS k k  data set that are also inherently NxN 

sparse will similarly be ideally reconstructed. 

We suggest that requiring the image be sparse 
following an NxN transform during CS reconstruc-
tion can be re-interpreted in terms of suppression of 
the side-lobes of the main signal components. We 
therefore hypothesize that application of the NxN 
sparsity transform will impose cyclic continuity on 
the reconstructed non-inherently NxN sparse k-space 
data components where none existed before; leading 
to a resolution change relative to the NxN sparse 
data components.  We suggest changing the stand-
ard CS objective function involving a NxN sparsity 
transform related to the measured data size to a 
PNxPN sparsity transform more closely associated 
with the MNxMN HR resolution of the original 
image. We hypothesize that the CS resolution for 
non NxN sparse components of the truncated exper-
imental MR data set would improve when the DFT 
imposed k-space cyclic characteristics are shifted 
from | , | / 2x yk k N to | , | / 2; 1x yk k PN P .

III METHOD

The standard MATLAB Shepp-Logan phantom 
script Phantom( ), (MATLAB, R2011a, The Math-
Works, Natick, MA, USA) was modified as  Modi-



fiedPhantom( ) to use a high resolution image 
description, HiResObject, Fig. 1A.  The high resolu-
tion features present in the new phantom image 
included an under-sized variant of the standard 
Shepp-Logan phantom modified to provide varying, 
rather than constant, wall thicknesses. In addition (i) 
NxN sparse features were generated by centring fine 
lines at locations ; 0x vM v N for all vertical 
line features in the left upper image and the first line 
in the left lower image of Fig. 1A; and (ii) the 
remaining lower left lines centred at x vM to 
produce non NxN sparse features. 

Simulated data generation method 1 (SDG-M1): 
The call ModifiedPhantom(N) produced the image 

[ , ]NxNI x y , Fig. 1E. Following a 2D DFT, this be-
came [ , ]x y NxNS k k , Fig. 1D. This is the equivalent of 
the NxN k-space data set used in [1] and other pa-
pers when demonstrating the success of CS recon-
struction algorithms.  

 
Simulated data generation method 2 (SDG-M2):
The call ModifiedPhantom(MN) produced Fig. 1A; 
a MNxMN image, [ , ]MNxMNI x y  with image resolution 
FOV / MN, where FOV is the field of view of the 
object, M = 32 and N = 64.  This underwent a
MNxMN-TO-MNxMN image-to-k-space transfor-
mation before being truncated to size NxN to pro-
duce the simulated experimental MR data set

[ , ]x y EXPTS k k , Eqn. (3), Fig. 1B.  Application of a 2D 
IDFT produced the experimental image, [ , ]EXPTI x y ,
Fig. 1C.  

a) Experiments performed 

Small under-sampled 64x64 k-space data sets were 
prepared using SDG-M1 and SDG-M2 generation 
approaches to simulate the application of CS recon-
struction to achieve high-temporal resolution MR
image sequences during fMRI. These simulated 
reconstructions were compared to those of a trun-
cated 64x64 experimental k-space data set derived 
from a 512x512 raw k-space MRI experimental scan 
of a GE phantom. The experimental scan used a fast 
gradient recalled echo sequence, FOV of 18cm2,
slice thickness of 6 mm and TR / TE / flip values of 
7.5 ms / 3.7 ms / 200 respectively.

A basic premise behind this paper is to identify 
approaches to remove unrecognized issues with 
existing CS reconstruction implementations rather 
than proposing new algorithms. The software set-
tings for the SPARSE- MRI demonstration package 
(www.eecs.berkeley.edu/mlustig/software/ sparse-
MRI_v0.2.tar.gz) were left unchanged with (A) the  

Fig. 1. (A) The modified HR Shepp-Logan, resolution 
FOV / MN, can be transformed into k-space and truncated 
(B) to size MNxMN to mimic MR acquisition.  This leads 
to image (C) following IDFT reconstruction.  Many CS
reconstruction evaluations directly generate a Shepp-
Logan phantom image (E) at a resolution FOV / N [1] 
before DFT transformation to produce the simulated k-
space data set (D).  Differences in k-space data sets (B) 
and (D) include regional changes in regularity (white 
arrow) and amplitude (grey arrow).  Image differences 
include ringing artefacts (white arrow in C) and loss of 
fine detail (grey arrows in E).

use of the identity transform, and (B) k-space under-
sampling levels representing a cross-section of a 3D 
data set fully sampled in the zk  direction with a 
33% random xk and yk  sampling scheme, centre 
core of size 0.1. These data sets were then recon-
structed using the standard NxN grid. The HI-KEE 
CS reconstruction algorithm was implemented by 
presenting an under-sampled NxN k-space data set 
padded with zeros to size PNxPN to the SPARSE-
MRI software set to generate a high resolution 
PNxPN reconstruction. Lustig et al. [1] discusses 
how certain NxN k-space under-sampling schemes 
produce point-spread functions that better matched 
the CS requirement of generating incoherent (noise-
like) aliasing artefacts in the transformed image. 
This study was repeated using cross-sections of only 
the fine vertical lines from Fig. 1A to explore the 
point spread functions generated by CS reconstruc-
tion of under-sampled k-space data sets that includ-
ed a combination of NxN sparse and non-NxN sparse 
components. 

IV RESULTS AND DISCUSSION

a) SDG-M1 and SDG-M2 k-space differences  

The properties of the DFT [4] allow us to express 
the k-space of the lower resolution image, 

[ , ]x y NxNS k k , as: 

[ , ] [ , ] ;

/ 2 | , | / 2; 0 , ;

/ 2 , / 2 (4)

x y NxN x y MNxMN
v w

x y

S k k S k vN k wN

N k k N x y MN
M v w M

A

MNxMN HR

UPPER            (HR DETAIL AT x = wM)

LOWER            (HR DETAIL AT x <>  wM)

B

←

←

NxN TRUNCATED       FROM MNxMN k−SPACE

D

←

←

NxN SHEPP−LOGAN        (RESOLUTION FOV/N)

C

→

E

←
←



This is a truncation of a sum of shifted (aliased) 
copies of [ , ]x y MNxMNS k k , the k-space of the original 
high-resolution data. This summation provides a 
theoretical explanation why, as a general observa-
tion, [ , ]x y NxNS k k  (Eqn. (3), Fig. 1D) has higher 
amplitudes for high-frequency k-space components 
and lower regularity (smearing) of the low-
frequency k-space components when compared to 

[ , ]x y EXPTS k k  (Eqn. (2), Fig. 1B).   

The impact of these differences is more clearly seen 
in the images where the summation operations 
introduce constructive and destructive interference 
between the superimposed aliased components of

[ , ]x y MNxMNS k k . Destructive interference in the aliased
[ , ]x y MNxMNS k k  that make up the [ , ]x y NxNS k k  data leads 

to missing image components in the low resolution 
image [ , ]NxNI x y , Fig. 1E, the inverse DFT of the Fig. 
1D. Thus Eqn. (4) is the k-space expression of a 
MxM-fold decimation in the image domain of the 
high resolution image, [ , ]MNxMNI x y  that keeps high 
resolution features located at positions 

;0x vM v N and ;0y wM w N .  The blur-
ring of the non NxN sparse lines in Fig. 1C com-
pared to the sharpness of the NxN sparse lines in 
Figs. 1C and 1D can be interpreted as spatial leak-
age; the MR analogue of the spectral leakage de-
scribed by Harris [4] when applying the DFT to 
finite length, time domain series.    

b) Impact on under-sampling artefacts 

A CS requirement is a k-space under-sampling 
scheme that produces aliasing artefacts in the image 
domain with a noise-like appearance (incoherent). 
Lustig’s artefact analysis [1] involved k- space 
under-sampling schemes from a NxN Shepp-Logan 
phantom, which we have shown is comprised of 
components that are inherently NxN sparse. We 
extend this analysis to k-space data sets containing 
both NxN sparse and non-NxN sparse components.   

A 1D DFT was applied to the upper and lower 
cross-sections of a MNxMN HR image consisting of 
only the high-resolution lines of Fig. 1A to provide 
a data set equivalent to the Lustig et al. analysis.  
The k-space data corresponding to cross-sections of 
the lines of lower resolution NxN images produced 
by SDG-M1 and SDG-M2 simulation approaches 
were constructed.  The frequency information of 
each cross-section was truncated to size N= 32, and 
frequency domain data sets reconstructed using a 
1D IDFT for (i) all, (ii) a 50% random and (iii) a 
50% equi-spaced under-sampling of the k-space 
data; columns 1, 2 and 3 of Fig. 2 respectively.  As 
with Lustig’s analysis [1], we see aliasing artefacts  

Fig. 2.  The upper cross section (A) Cross section (Fig. 1, 
upper dotted dashed line) of the NxN Shepp-Logan phan-
tom (Fig. 1E) has all HR detail centred at locations

;0x wM w N .  This section produces images (B) 
and (C) following random and equi-spaced k-space under-
sampling.  The same cross section derived from the 
truncated k-space data (Fig. 1B) is similar in appearance 
for reconstructions on full (D), random (E) and equi-
spaced (F) under-sampled reconstructions respectively.  A 
second cross section (lower dotted dashed line in Fig. 1) 
has most HR detail at locations ;0x wM w N .
Details are lost during the IDFT reconstructions of the 
NxN Shepp-Logan phantom calculated at resolution 

/FOV N from the full (G), random (H) and equi-spaced 
(I) under-sampled data sets.  The truncated k-space data 
set retains detail following IDFT reconstruction from full 
(J), random (K) and equi-spaced (L) under-sampled data 
sets.  (M) The first peak in (G) has k-space cyclic continu-
ity [4] but (N) the second peak in (J) has no cyclic conti-
nuity

with a more noise-like appearance for a 50% ran-
dom under-sampling scheme (column 2) than for 
50% equi-spaced under-sampling (column 3) for 
data sets containing only N-sparse k-space compo-
nents (SDG-M1, row 1; SDG-M2, row 2). A similar 
conclusion can also be reached for data sets having 
both N-sparse and non N-sparse components (SDG-
M1, row 3; SDG-M2, row 4); but there are im-
portant differences in N and non N sparse recon-
struction details. 

1. There is a need to scale the SDG-M2 line 
images to match the peak intensities of the SDG-M1 
line images; a reduction in fine detail intensity also 
seen clearly in the 2D IDFT reconstructions, Figs. 
1C and 1E.   
2. For N-sparse under-sampled k-space data, 
the SDG-M1 and SDG-M2 data generation ap-
proaches generate similar, but not equivalent, image 
domain aliasing patterns, rows 1 and 2 respectively.  
3. Differences exist between rows 3 and 4; 
the SDG-M1 and SDG-M2 line images containing 
both N-sparse and non-N-space components.  The 
most obvious is the total loss of the non N-sparse
image detail relative to the cross-sections of the 
original MNxMN image for the SDG-M1 approach.  
Equally important in terms of possible impact on CS 
reconstruction success, is the changed characteris-
tics of the noise artefacts, and the increased peak 
widths of the non N-sparse peaks, 2nd, 3rd and 4th

peaks in Figs 2K and 2L.  
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c) Impact of CS reconstruction on k-space cyclic 
continuity. 

The heavy lines in Figs. 2M and 2N are the 1D k-
space data associated with the first peak in Fig 2G 
and the second peak in Fig. 2J respectively.  Both 
1D sets of known k-space data values (solid lines) 
are sinusoidal with a period reflecting the position 
of these peaks in their respective NxN and MNxMN 
images. The cyclic continuity [4] associated with 
these data sets has been empathized by generating 
copies of the data [ ] [ ];S k N S k / 2 / 2N k N ;
shown by the dashed lines. It can be seen that Fig. 
2M shows complete k-space cyclic continuity (N-
sparse), but there are amplitude and derivative 
discontinuities in Fig. 2N (non N-sparse).

Figs. 3A and 3C are again modifications of Fig. 1A; 
now representing image cross sections containing 
only N-sparse and non N-sparse fine lines respec-
tively. The IDFT reconstruction of the truncated k-
space data (dotted lines with open square markers 
appear blue in the on-line images) is sharp for the 
N-sparse lines in contrast to the wide peaks and 
ringing artefacts (spatial leakage) for the non N-
sparse lines. Equivalent lines and markers in Figs. 
3B and 3D respectively show the associated k-space 
data generated through a 1D IDFT of Fig. 3A and 
3C.  Again note the presence and absence of k-space 
cyclic continuity respectively present in the N-
sparse (Fig. 3B) and non N-sparse image (Fig. 3D) 
components.   

The vertical lines with round markers (appearing 
red on-line) in Fig. 3A and 3C are cross-sections of 
images from a 2D IDFT reconstruction of zero-
filled, under-sampled, k-space data generated using 
the demonstration software from (2) and described 
in Section 3.1. Note the decreased signal-to-
sampling-artefact ratio of Fig. 3C (SDG-M2) com-
pared to Fig. 3A (SDG-M1) due to the wider, lower 
signal intensities of SDG-M2 lines (c.f. Fig. 2), 
combining with the increased level of artefacts 
associated with the spatial leakage of these non N-
sparse k-space components.   

The black lines in Fig. 3A and 3B show that a CS
reconstruction on an NxN grid perfectly recovers the 
sharp peaks present in the image domain and all the 
missing k-space information for the naturally N-
sparse data. In contrast, the black line in Fig. 3D 
shows that CS reconstruction has introduced cyclic 
continuity between locations / 2 1xk N  and

/ 2xk N  by imposing a low-pass filter on the k-
space data for the non N-sparse data. This CS im-
posed low-pass k-space filtering operation removes 
the rippling artifacts surrounding the main peaks in 
Fig. 3C, black line, but does nothing to aid the 

Fig. 3. A) and B) respectively show the image and k-space 
data of the upper cross section (dot-dashed line) of the 
original,  under sampled,  and CS reconstruction for the 
NxN Shepp-Logan phantom in Fig. 3. The upright lines 
with markers represent the cross-sections of the under-
sampled reconstructions in Fig. 3. The dashed  lines with 
markers representing the fully sampled reconstructions 
overlap the black lines of the CS reconstruction in A and 
B; indicating perfect recovery of the missing k-space data 
values. The k-space data in B) has perfect cyclic continui-
ty. Different behaviour is demonstrated in C) and D) 
which respectively show the corresponding information 
for the lower cross section (dashed line) for the truncated 
k-space reconstruction. Although the ripples are reduced 
during CS reconstruction, dashed line with markers and 
black lines respectively in C), the peaks remain wider and 
lower in intensity than in A). Fig. D) indicates that the 
missing k-space values are better recovered for low k-
space frequencies.  The k-space data appears to have 
become windowed, low pass filtered, during CS recon-
struction in order to meet Harris’s cyclic continuity 
requirement (14) at locations / 2xk N and / 2 1N .

recovery of the lost peak intensities or sharpening 
the peaks (decreasing the peak width).  We antici-
pate that use of a Hi-KEE CS reconstruction on a 
higher resolution grid, PNxPN; P > 1, will assist in 
the recovery of the resolution of the non NxN sparse 
features. 

4.4 Comparing standard and Hi-KEE CS algo-
rithms 

Figs. 4(i) and 4(ii) compare results for IDFT, stand-
ard CS and Hi-KEE CS reconstructions from simu-
lated and GE phantoms respectively.  The figure 
format for each set of images is:  IDFT reconstruc-
tion of (A) a zero-filled under-sampled (33%) 
truncated 64x64 k-space and (B) fully-sampled 
truncated 128x128 k-space. (C) A standard 64x64
CS reconstruction from an under sampled 64x64 k-
space data set, a x3 fold acceleration. (D) The 
256x256 Hi-KEE image from an under sampled 
64x64 k-space data set is equivalent to approximate-
ly a x50 fold acceleration on a 256x256 data acqui-
sition.  Images (E) and (F) are 256x256 and 
512x512 Hi-KEE reconstructions using 100% of the 
64x64 k-space data, and 33% of the 128x128 k-
space data respectively; corresponding to a x16 and
an x24 acceleration on 256x256 and 512x512 data 
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acquisitions. Images A—C were pixel duplicated to 
size 256x256 to generate a common image size.   

An image cross-section (G) compares the NxN CS
reconstruction (dot-dashed line) and 4Nx4NHi-KEE
reconstructions (solid line) on 33%  NxN; N=64 k-
space data with the IDFT reconstruction of 2 2Nx N
truncated data sets (dashed line). In image cross-
section (H) the IDFT reconstruction on 2Nx2N k-
space values (dashed lines), 4Nx4N Hi-KEE recon-
struction on 100% NxN; N=64 k-space data (solid 
line) and 8Nx8N Hi-KEE reconstruction on 100% 
2Nx2N; N=64 k-space data (solid line) are com-
pared. The dotted and dashed lines in images (A) 
through (F) show the location of the upper and 
lower cross-sections used in (G) and (H).   

These cross-sections indicate that the Hi-KEE
images have sharper edged features than CS recon-
structions.  However, while an improvement over 
the CS images, the Hi-KEE CS images using an 
33% under-sampled 64x64 k-space data set do not 
have the very fine detail present in the IDFT recon-
struction of a 128 x 128 truncated data set (B). 
However applying the Hi-KEE approach to data sets 
larger than 64x64 significantly improves the image 
characteristics. The improvements on applying the 
Hi-KEE algorithm are particularly obvious with the 
GE phantom image’s comb detail, located at the 
bottom of images in Fig. 4(ii).  The same comb 
feature shows that the 512x512 Hi-KEE reconstruc-
tion (F) of a 33% under-sampled 128x128 truncated 
data set is clearer than the 128x128 IDFT recon-
struction of the full 128x128 data set (B). This is 
because k-space continuity at, and k-space extrapo-
lation beyond | |,| | / 2; 128x yk k N N , has been 
achieved during 512x512 Hi-KEE CS reconstruction 
avoiding the hard k-space cyclic boundary window 
at associated with the standard CS 128x128 image 
size. 

The bottom row of images displays the absolute k-
space values for Figs. (I) and (J) respectively and 
show Hi-KEE CS images from 33% under-sampled 
and all values of a truncated 64x64 k-space data set. 
Fig (K) provides the 512x512 (8Nx8N) Hi-KEE CS
reconstruction on 33% of the 128x128 (2Nx2N) k-
space values truncated from k-space of the highest 
resolution image decimated to size 256x256. The 
central full and dotted rectangles show the extent of 
the original 64x64 (NxN) k-space values and the k-
space border for 128x128 (2Nx2N) respectively. The 
k-space amplitudes for locations | |,| | / 2x yk k N   are 
decreased in intensity by a factor of 2 to permit 
easier image comparison.   

Extrapolation beyond 128x128 (2Nx2N) is seen 
with all Hi-KEE CS reconstructions. Given there is 

a significantly improved extrapolation for (J) the 
100% Hi-KEE reconstruction over (I) the 33% 
reconstruction, additional extrapolation can also be 
anticipated following optimization of the Hi-KEE
sampling scheme to account for the new higher-
resolution.  As this optimization will depend on 
image features, it will be more difficult to achieve 
than the approach used to optimize the point spread 
function of the NxN k-space sampling scheme 
implemented in [1]  

The modified Shepp-Logan phantom, Fig. 5(i)J, 
shows strong Hi-KEE CS induced extrapolation to 
4Nx4N for many data features. Unfortunately, closer 
examination of the k-spaces of experimental Hi-
KEE images shows that the accurate extrapolation 
of k-space is typically limited to a few points be-
yond | , | / 2x yk k N  for complex image features. 
This implies that the Hi-KEE implementation has 
improved the resolution of the reconstructed non 
NxN sparse features beyond that found in Fig. 3D 
However, simply extending the Sparse-MRI CS
objective function [1] to use a higher resolution grid 
preferentially encourages the retention of features of 
width 2p and low intensity q rather than narrower 
features of width p and higher intensity 2q. This 
implies that modification of the Hi-KEE implemen-
tations are needed to take full advantage of CS 
reconstruction at a higher resolution.   

V CONCLUSION

We have demonstrated that the level of cyclic conti-
nuity present in MR k-space data affects the perfor-
mance of compressed sensing (CS) algorithms. The 
k-space of the NxN images frequently used to vali-
date the performance of CS algorithms have inher-
ent NxN sparseness leading to ideal k-space continu-
ity and perfect CS reconstruction of under-sampled 
data. This contrasts to experimental MR data with 
features that are both NxN sparse and non NxN 
sparse features having non identical resolution 
following CS reconstruction on an NxN grid.  The 
Hi-KEE CS algorithm attempts to generate an image 
with a resolution closer to that of the original image 
rather than being limited to the gathered data size. 
The proposed Hi-KEE implementation improves the 
resolution of experimental MR data reconstruction 
above reconstructions on the standard CS NxN grid, 
but does not take full advantage of the available 
higher resolution.  
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Fig. 4: IDFT reconstructed images from (A) sub-sampled selection (33%) from a 64x64 k-space data set and (B) 128x128 k-
space data set truncated from a 2048x2048 Shepp-Logan phantom study in Fig. 5(i) and truncated from a 512x512 k-space 
data set of a GE phantom in Fig.5(ii). (C) 64x64 CS reconstruction of 33% sub-sampled k-space, (D) 256x256  Hi-KEE CS
reconstruction of 33% sub-sampled 64x64 k-space. (E) 256x256 Hi-KEE CS reconstruction of 100% of 64x64 k-space data 
and (F) 512x512 Hi-KEE CS reconstruction of 33% % of 128x128 k-space data 128x128.  (G) shows cross-sections of im-
ages for a 128x128 IDFT reconstruction (dotted line), 64x64  CS reconstruction (dot-dashed line) and 256x256  Hi-KEE -CS
reconstruction (solid line) on 64x64 under-sampled truncated k-space values.  Dotted and dashed lines indicate the position 
of the upper and lower cross sections in images (A) – (F).  (H)  shows cross-sections of images for a 128x128 IDFT recon-
struction (dotted line), 256x256 HI-KEE CS reconstruction (solid line) on 100% of 64x64 k-space values and a 512x512 Hi-
KEE reconstruction on 33%  of 128x128 k-space values (dot-dashed line).  K-space images are shown for 256x256 Hi-KEE
CS reconstructions on (I) 33% and (J) 100% of 64x64 k-space data. (K) 512x512 Hi-KEE CS reconstruction of 33% of 
128x128 k-space values.  The Hi-KEE reconstructions on a high resolution PNxPN grid contain evidence of k-space extrap-
olation beyond the boundary of the original k-space values and standard NxN CS image grids. 
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